export isl_map_compute_divs
[isl.git] / isl_coalesce.c
blobbdf20ebfe3cacb2ec546b310329abf310eb1293c
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
14 #include "isl_seq.h"
15 #include "isl_tab.h"
17 #define STATUS_ERROR -1
18 #define STATUS_REDUNDANT 1
19 #define STATUS_VALID 2
20 #define STATUS_SEPARATE 3
21 #define STATUS_CUT 4
22 #define STATUS_ADJ_EQ 5
23 #define STATUS_ADJ_INEQ 6
25 static int status_in(isl_int *ineq, struct isl_tab *tab)
27 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
28 switch (type) {
29 case isl_ineq_error: return STATUS_ERROR;
30 case isl_ineq_redundant: return STATUS_VALID;
31 case isl_ineq_separate: return STATUS_SEPARATE;
32 case isl_ineq_cut: return STATUS_CUT;
33 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
34 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
38 /* Compute the position of the equalities of basic map "i"
39 * with respect to basic map "j".
40 * The resulting array has twice as many entries as the number
41 * of equalities corresponding to the two inequalties to which
42 * each equality corresponds.
44 static int *eq_status_in(struct isl_map *map, int i, int j,
45 struct isl_tab **tabs)
47 int k, l;
48 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
49 unsigned dim;
51 dim = isl_basic_map_total_dim(map->p[i]);
52 for (k = 0; k < map->p[i]->n_eq; ++k) {
53 for (l = 0; l < 2; ++l) {
54 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
55 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
56 if (eq[2 * k + l] == STATUS_ERROR)
57 goto error;
59 if (eq[2 * k] == STATUS_SEPARATE ||
60 eq[2 * k + 1] == STATUS_SEPARATE)
61 break;
64 return eq;
65 error:
66 free(eq);
67 return NULL;
70 /* Compute the position of the inequalities of basic map "i"
71 * with respect to basic map "j".
73 static int *ineq_status_in(struct isl_map *map, int i, int j,
74 struct isl_tab **tabs)
76 int k;
77 unsigned n_eq = map->p[i]->n_eq;
78 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
80 for (k = 0; k < map->p[i]->n_ineq; ++k) {
81 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
82 ineq[k] = STATUS_REDUNDANT;
83 continue;
85 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
86 if (ineq[k] == STATUS_ERROR)
87 goto error;
88 if (ineq[k] == STATUS_SEPARATE)
89 break;
92 return ineq;
93 error:
94 free(ineq);
95 return NULL;
98 static int any(int *con, unsigned len, int status)
100 int i;
102 for (i = 0; i < len ; ++i)
103 if (con[i] == status)
104 return 1;
105 return 0;
108 static int count(int *con, unsigned len, int status)
110 int i;
111 int c = 0;
113 for (i = 0; i < len ; ++i)
114 if (con[i] == status)
115 c++;
116 return c;
119 static int all(int *con, unsigned len, int status)
121 int i;
123 for (i = 0; i < len ; ++i) {
124 if (con[i] == STATUS_REDUNDANT)
125 continue;
126 if (con[i] != status)
127 return 0;
129 return 1;
132 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
134 isl_basic_map_free(map->p[i]);
135 isl_tab_free(tabs[i]);
137 if (i != map->n - 1) {
138 map->p[i] = map->p[map->n - 1];
139 tabs[i] = tabs[map->n - 1];
141 tabs[map->n - 1] = NULL;
142 map->n--;
145 /* Replace the pair of basic maps i and j by the basic map bounded
146 * by the valid constraints in both basic maps and the constraint
147 * in extra (if not NULL).
149 static int fuse(struct isl_map *map, int i, int j,
150 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
151 __isl_keep isl_mat *extra)
153 int k, l;
154 struct isl_basic_map *fused = NULL;
155 struct isl_tab *fused_tab = NULL;
156 unsigned total = isl_basic_map_total_dim(map->p[i]);
157 unsigned extra_rows = extra ? extra->n_row : 0;
159 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
160 map->p[i]->n_div,
161 map->p[i]->n_eq + map->p[j]->n_eq,
162 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
163 if (!fused)
164 goto error;
166 for (k = 0; k < map->p[i]->n_eq; ++k) {
167 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
168 eq_i[2 * k + 1] != STATUS_VALID))
169 l = isl_basic_map_alloc_equality(fused);
170 if (l < 0)
171 goto error;
172 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
175 for (k = 0; k < map->p[j]->n_eq; ++k) {
176 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
177 eq_j[2 * k + 1] != STATUS_VALID))
178 continue;
179 l = isl_basic_map_alloc_equality(fused);
180 if (l < 0)
181 goto error;
182 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
185 for (k = 0; k < map->p[i]->n_ineq; ++k) {
186 if (ineq_i[k] != STATUS_VALID)
187 continue;
188 l = isl_basic_map_alloc_inequality(fused);
189 if (l < 0)
190 goto error;
191 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
194 for (k = 0; k < map->p[j]->n_ineq; ++k) {
195 if (ineq_j[k] != STATUS_VALID)
196 continue;
197 l = isl_basic_map_alloc_inequality(fused);
198 if (l < 0)
199 goto error;
200 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
203 for (k = 0; k < extra_rows; ++k) {
204 l = isl_basic_map_alloc_inequality(fused);
205 if (l < 0)
206 goto error;
207 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
210 fused = isl_basic_map_gauss(fused, NULL);
211 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
212 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
213 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
214 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
216 fused_tab = isl_tab_from_basic_map(fused);
217 if (isl_tab_detect_redundant(fused_tab) < 0)
218 goto error;
220 isl_basic_map_free(map->p[i]);
221 map->p[i] = fused;
222 isl_tab_free(tabs[i]);
223 tabs[i] = fused_tab;
224 drop(map, j, tabs);
226 return 1;
227 error:
228 isl_tab_free(fused_tab);
229 isl_basic_map_free(fused);
230 return -1;
233 /* Given a pair of basic maps i and j such that all constraints are either
234 * "valid" or "cut", check if the facets corresponding to the "cut"
235 * constraints of i lie entirely within basic map j.
236 * If so, replace the pair by the basic map consisting of the valid
237 * constraints in both basic maps.
239 * To see that we are not introducing any extra points, call the
240 * two basic maps A and B and the resulting map U and let x
241 * be an element of U \setminus ( A \cup B ).
242 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
243 * violates them. Let X be the intersection of U with the opposites
244 * of these constraints. Then x \in X.
245 * The facet corresponding to c_1 contains the corresponding facet of A.
246 * This facet is entirely contained in B, so c_2 is valid on the facet.
247 * However, since it is also (part of) a facet of X, -c_2 is also valid
248 * on the facet. This means c_2 is saturated on the facet, so c_1 and
249 * c_2 must be opposites of each other, but then x could not violate
250 * both of them.
252 static int check_facets(struct isl_map *map, int i, int j,
253 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
255 int k, l;
256 struct isl_tab_undo *snap;
257 unsigned n_eq = map->p[i]->n_eq;
259 snap = isl_tab_snap(tabs[i]);
261 for (k = 0; k < map->p[i]->n_ineq; ++k) {
262 if (ineq_i[k] != STATUS_CUT)
263 continue;
264 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
265 for (l = 0; l < map->p[j]->n_ineq; ++l) {
266 int stat;
267 if (ineq_j[l] != STATUS_CUT)
268 continue;
269 stat = status_in(map->p[j]->ineq[l], tabs[i]);
270 if (stat != STATUS_VALID)
271 break;
273 if (isl_tab_rollback(tabs[i], snap) < 0)
274 return -1;
275 if (l < map->p[j]->n_ineq)
276 break;
279 if (k < map->p[i]->n_ineq)
280 /* BAD CUT PAIR */
281 return 0;
282 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
285 /* Both basic maps have at least one inequality with and adjacent
286 * (but opposite) inequality in the other basic map.
287 * Check that there are no cut constraints and that there is only
288 * a single pair of adjacent inequalities.
289 * If so, we can replace the pair by a single basic map described
290 * by all but the pair of adjacent inequalities.
291 * Any additional points introduced lie strictly between the two
292 * adjacent hyperplanes and can therefore be integral.
294 * ____ _____
295 * / ||\ / \
296 * / || \ / \
297 * \ || \ => \ \
298 * \ || / \ /
299 * \___||_/ \_____/
301 * The test for a single pair of adjancent inequalities is important
302 * for avoiding the combination of two basic maps like the following
304 * /|
305 * / |
306 * /__|
307 * _____
308 * | |
309 * | |
310 * |___|
312 static int check_adj_ineq(struct isl_map *map, int i, int j,
313 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
315 int changed = 0;
317 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
318 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
319 /* ADJ INEQ CUT */
321 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
322 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
323 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
324 /* else ADJ INEQ TOO MANY */
326 return changed;
329 /* Check if basic map "i" contains the basic map represented
330 * by the tableau "tab".
332 static int contains(struct isl_map *map, int i, int *ineq_i,
333 struct isl_tab *tab)
335 int k, l;
336 unsigned dim;
338 dim = isl_basic_map_total_dim(map->p[i]);
339 for (k = 0; k < map->p[i]->n_eq; ++k) {
340 for (l = 0; l < 2; ++l) {
341 int stat;
342 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
343 stat = status_in(map->p[i]->eq[k], tab);
344 if (stat != STATUS_VALID)
345 return 0;
349 for (k = 0; k < map->p[i]->n_ineq; ++k) {
350 int stat;
351 if (ineq_i[k] == STATUS_REDUNDANT)
352 continue;
353 stat = status_in(map->p[i]->ineq[k], tab);
354 if (stat != STATUS_VALID)
355 return 0;
357 return 1;
360 /* Basic map "i" has an inequality "k" that is adjacent to some equality
361 * of basic map "j". All the other inequalities are valid for "j".
362 * Check if basic map "j" forms an extension of basic map "i".
364 * In particular, we relax constraint "k", compute the corresponding
365 * facet and check whether it is included in the other basic map.
366 * If so, we know that relaxing the constraint extends the basic
367 * map with exactly the other basic map (we already know that this
368 * other basic map is included in the extension, because there
369 * were no "cut" inequalities in "i") and we can replace the
370 * two basic maps by thie extension.
371 * ____ _____
372 * / || / |
373 * / || / |
374 * \ || => \ |
375 * \ || \ |
376 * \___|| \____|
378 static int is_extension(struct isl_map *map, int i, int j, int k,
379 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
381 int changed = 0;
382 int super;
383 struct isl_tab_undo *snap, *snap2;
384 unsigned n_eq = map->p[i]->n_eq;
386 snap = isl_tab_snap(tabs[i]);
387 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
388 snap2 = isl_tab_snap(tabs[i]);
389 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
390 super = contains(map, j, ineq_j, tabs[i]);
391 if (super) {
392 if (isl_tab_rollback(tabs[i], snap2) < 0)
393 return -1;
394 map->p[i] = isl_basic_map_cow(map->p[i]);
395 if (!map->p[i])
396 return -1;
397 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
398 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
399 drop(map, j, tabs);
400 changed = 1;
401 } else
402 if (isl_tab_rollback(tabs[i], snap) < 0)
403 return -1;
405 return changed;
408 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
409 * wrap the constraint around "bound" such that it includes the whole
410 * set "set" and append the resulting constraint to "wraps".
411 * "wraps" is assumed to have been pre-allocated to the appropriate size.
412 * wraps->n_row is the number of actual wrapped constraints that have
413 * been added.
414 * If any of the wrapping problems results in a constraint that is
415 * identical to "bound", then this means that "set" is unbounded in such
416 * way that no wrapping is possible. If this happens then wraps->n_row
417 * is reset to zero.
419 static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
420 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
422 int l;
423 int w;
424 unsigned total = isl_basic_map_total_dim(bmap);
426 w = wraps->n_row;
428 for (l = 0; l < bmap->n_ineq; ++l) {
429 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
430 continue;
431 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
432 continue;
433 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
434 continue;
436 isl_seq_cpy(wraps->row[w], bound, 1 + total);
437 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
438 return -1;
439 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
440 goto unbounded;
441 ++w;
443 for (l = 0; l < bmap->n_eq; ++l) {
444 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
445 continue;
446 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
447 continue;
449 isl_seq_cpy(wraps->row[w], bound, 1 + total);
450 isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
451 if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
452 return -1;
453 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
454 goto unbounded;
455 ++w;
457 isl_seq_cpy(wraps->row[w], bound, 1 + total);
458 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
459 return -1;
460 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
461 goto unbounded;
462 ++w;
465 wraps->n_row = w;
466 return 0;
467 unbounded:
468 wraps->n_row = 0;
469 return 0;
472 /* Given a basic set i with a constraint k that is adjacent to either the
473 * whole of basic set j or a facet of basic set j, check if we can wrap
474 * both the facet corresponding to k and the facet of j (or the whole of j)
475 * around their ridges to include the other set.
476 * If so, replace the pair of basic sets by their union.
478 * All constraints of i (except k) are assumed to be valid for j.
480 * In the case where j has a facet adjacent to i, tab[j] is assumed
481 * to have been restricted to this facet, so that the non-redundant
482 * constraints in tab[j] are the ridges of the facet.
483 * Note that for the purpose of wrapping, it does not matter whether
484 * we wrap the ridges of i aronud the whole of j or just around
485 * the facet since all the other constraints are assumed to be valid for j.
486 * In practice, we wrap to include the whole of j.
487 * ____ _____
488 * / | / \
489 * / || / |
490 * \ || => \ |
491 * \ || \ |
492 * \___|| \____|
495 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
496 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
498 int changed = 0;
499 struct isl_mat *wraps = NULL;
500 struct isl_set *set_i = NULL;
501 struct isl_set *set_j = NULL;
502 struct isl_vec *bound = NULL;
503 unsigned total = isl_basic_map_total_dim(map->p[i]);
504 struct isl_tab_undo *snap;
506 snap = isl_tab_snap(tabs[i]);
508 set_i = isl_set_from_basic_set(
509 isl_basic_map_underlying_set(isl_basic_map_copy(map->p[i])));
510 set_j = isl_set_from_basic_set(
511 isl_basic_map_underlying_set(isl_basic_map_copy(map->p[j])));
512 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
513 map->p[i]->n_ineq + map->p[j]->n_ineq,
514 1 + total);
515 bound = isl_vec_alloc(map->ctx, 1 + total);
516 if (!set_i || !set_j || !wraps || !bound)
517 goto error;
519 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
520 isl_int_add_ui(bound->el[0], bound->el[0], 1);
522 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
523 wraps->n_row = 1;
525 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
526 goto error;
527 if (!wraps->n_row)
528 goto unbounded;
530 tabs[i] = isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k);
531 if (isl_tab_detect_redundant(tabs[i]) < 0)
532 goto error;
534 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
536 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
537 goto error;
538 if (!wraps->n_row)
539 goto unbounded;
541 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
543 if (!changed) {
544 unbounded:
545 if (isl_tab_rollback(tabs[i], snap) < 0)
546 goto error;
549 isl_mat_free(wraps);
551 isl_set_free(set_i);
552 isl_set_free(set_j);
554 isl_vec_free(bound);
556 return changed;
557 error:
558 isl_vec_free(bound);
559 isl_mat_free(wraps);
560 isl_set_free(set_i);
561 isl_set_free(set_j);
562 return -1;
565 /* Given two basic sets i and j such that i has exactly one cut constraint,
566 * check if we can wrap the corresponding facet around its ridges to include
567 * the other basic set (and nothing else).
568 * If so, replace the pair by their union.
570 * We first check if j has a facet adjacent to the cut constraint of i.
571 * If so, we try to wrap in the facet.
572 * ____ _____
573 * / ___|_ / \
574 * / | | / |
575 * \ | | => \ |
576 * \|____| \ |
577 * \___| \____/
579 static int can_wrap_in_set(struct isl_map *map, int i, int j,
580 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
582 int changed = 0;
583 int k, l;
584 unsigned total = isl_basic_map_total_dim(map->p[i]);
585 struct isl_tab_undo *snap;
587 for (k = 0; k < map->p[i]->n_ineq; ++k)
588 if (ineq_i[k] == STATUS_CUT)
589 break;
591 isl_assert(map->ctx, k < map->p[i]->n_ineq, return -1);
593 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
594 for (l = 0; l < map->p[j]->n_ineq; ++l)
595 if (isl_seq_eq(map->p[i]->ineq[k],
596 map->p[j]->ineq[l], 1 + total))
597 break;
598 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
600 if (l >= map->p[j]->n_ineq)
601 return 0;
603 snap = isl_tab_snap(tabs[j]);
604 tabs[j] = isl_tab_select_facet(tabs[j], map->p[j]->n_eq + l);
605 if (isl_tab_detect_redundant(tabs[j]) < 0)
606 return -1;
608 changed = can_wrap_in_facet(map, i, j, k, tabs, NULL, ineq_i, NULL, ineq_j);
610 if (!changed && isl_tab_rollback(tabs[j], snap) < 0)
611 return -1;
613 return changed;
616 /* Check if either i or j has a single cut constraint that can
617 * be used to wrap in (a facet of) the other basic set.
618 * if so, replace the pair by their union.
620 static int check_wrap(struct isl_map *map, int i, int j,
621 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
623 int changed = 0;
625 if (count(ineq_i, map->p[i]->n_ineq, STATUS_CUT) == 1)
626 changed = can_wrap_in_set(map, i, j, tabs, ineq_i, ineq_j);
627 if (changed)
628 return changed;
630 if (count(ineq_j, map->p[j]->n_ineq, STATUS_CUT) == 1)
631 changed = can_wrap_in_set(map, j, i, tabs, ineq_j, ineq_i);
632 return changed;
635 /* At least one of the basic maps has an equality that is adjacent
636 * to inequality. Make sure that only one of the basic maps has
637 * such an equality and that the other basic map has exactly one
638 * inequality adjacent to an equality.
639 * We call the basic map that has the inequality "i" and the basic
640 * map that has the equality "j".
641 * If "i" has any "cut" inequality, then relaxing the inequality
642 * by one would not result in a basic map that contains the other
643 * basic map.
645 static int check_adj_eq(struct isl_map *map, int i, int j,
646 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
648 int changed = 0;
649 int k;
651 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
652 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
653 /* ADJ EQ TOO MANY */
654 return 0;
656 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
657 return check_adj_eq(map, j, i, tabs,
658 eq_j, ineq_j, eq_i, ineq_i);
660 /* j has an equality adjacent to an inequality in i */
662 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
663 /* ADJ EQ CUT */
664 return 0;
665 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
666 count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
667 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
668 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
669 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
670 /* ADJ EQ TOO MANY */
671 return 0;
673 for (k = 0; k < map->p[i]->n_ineq ; ++k)
674 if (ineq_i[k] == STATUS_ADJ_EQ)
675 break;
677 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
678 if (changed)
679 return changed;
681 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
683 return changed;
686 /* Check if the union of the given pair of basic maps
687 * can be represented by a single basic map.
688 * If so, replace the pair by the single basic map and return 1.
689 * Otherwise, return 0;
691 * We first check the effect of each constraint of one basic map
692 * on the other basic map.
693 * The constraint may be
694 * redundant the constraint is redundant in its own
695 * basic map and should be ignore and removed
696 * in the end
697 * valid all (integer) points of the other basic map
698 * satisfy the constraint
699 * separate no (integer) point of the other basic map
700 * satisfies the constraint
701 * cut some but not all points of the other basic map
702 * satisfy the constraint
703 * adj_eq the given constraint is adjacent (on the outside)
704 * to an equality of the other basic map
705 * adj_ineq the given constraint is adjacent (on the outside)
706 * to an inequality of the other basic map
708 * We consider six cases in which we can replace the pair by a single
709 * basic map. We ignore all "redundant" constraints.
711 * 1. all constraints of one basic map are valid
712 * => the other basic map is a subset and can be removed
714 * 2. all constraints of both basic maps are either "valid" or "cut"
715 * and the facets corresponding to the "cut" constraints
716 * of one of the basic maps lies entirely inside the other basic map
717 * => the pair can be replaced by a basic map consisting
718 * of the valid constraints in both basic maps
720 * 3. there is a single pair of adjacent inequalities
721 * (all other constraints are "valid")
722 * => the pair can be replaced by a basic map consisting
723 * of the valid constraints in both basic maps
725 * 4. there is a single adjacent pair of an inequality and an equality,
726 * the other constraints of the basic map containing the inequality are
727 * "valid". Moreover, if the inequality the basic map is relaxed
728 * and then turned into an equality, then resulting facet lies
729 * entirely inside the other basic map
730 * => the pair can be replaced by the basic map containing
731 * the inequality, with the inequality relaxed.
733 * 5. there is a single adjacent pair of an inequality and an equality,
734 * the other constraints of the basic map containing the inequality are
735 * "valid". Moreover, the facets corresponding to both
736 * the inequality and the equality can be wrapped around their
737 * ridges to include the other basic map
738 * => the pair can be replaced by a basic map consisting
739 * of the valid constraints in both basic maps together
740 * with all wrapping constraints
742 * 6. one of the basic maps has a single cut constraint and
743 * the other basic map has a constraint adjacent to this constraint.
744 * Moreover, the facets corresponding to both constraints
745 * can be wrapped around their ridges to include the other basic map
746 * => the pair can be replaced by a basic map consisting
747 * of the valid constraints in both basic maps together
748 * with all wrapping constraints
750 * Throughout the computation, we maintain a collection of tableaus
751 * corresponding to the basic maps. When the basic maps are dropped
752 * or combined, the tableaus are modified accordingly.
754 static int coalesce_pair(struct isl_map *map, int i, int j,
755 struct isl_tab **tabs)
757 int changed = 0;
758 int *eq_i = NULL;
759 int *eq_j = NULL;
760 int *ineq_i = NULL;
761 int *ineq_j = NULL;
763 eq_i = eq_status_in(map, i, j, tabs);
764 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
765 goto error;
766 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
767 goto done;
769 eq_j = eq_status_in(map, j, i, tabs);
770 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
771 goto error;
772 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
773 goto done;
775 ineq_i = ineq_status_in(map, i, j, tabs);
776 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
777 goto error;
778 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
779 goto done;
781 ineq_j = ineq_status_in(map, j, i, tabs);
782 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
783 goto error;
784 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
785 goto done;
787 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
788 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
789 drop(map, j, tabs);
790 changed = 1;
791 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
792 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
793 drop(map, i, tabs);
794 changed = 1;
795 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
796 any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) {
797 /* BAD CUT */
798 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
799 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
800 /* ADJ EQ PAIR */
801 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
802 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
803 changed = check_adj_eq(map, i, j, tabs,
804 eq_i, ineq_i, eq_j, ineq_j);
805 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
806 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
807 /* Can't happen */
808 /* BAD ADJ INEQ */
809 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
810 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
811 changed = check_adj_ineq(map, i, j, tabs, ineq_i, ineq_j);
812 } else {
813 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
814 if (!changed)
815 changed = check_wrap(map, i, j, tabs, ineq_i, ineq_j);
818 done:
819 free(eq_i);
820 free(eq_j);
821 free(ineq_i);
822 free(ineq_j);
823 return changed;
824 error:
825 free(eq_i);
826 free(eq_j);
827 free(ineq_i);
828 free(ineq_j);
829 return -1;
832 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
834 int i, j;
836 for (i = 0; i < map->n - 1; ++i)
837 for (j = i + 1; j < map->n; ++j) {
838 int changed;
839 changed = coalesce_pair(map, i, j, tabs);
840 if (changed < 0)
841 goto error;
842 if (changed)
843 return coalesce(map, tabs);
845 return map;
846 error:
847 isl_map_free(map);
848 return NULL;
851 /* For each pair of basic maps in the map, check if the union of the two
852 * can be represented by a single basic map.
853 * If so, replace the pair by the single basic map and start over.
855 struct isl_map *isl_map_coalesce(struct isl_map *map)
857 int i;
858 unsigned n;
859 struct isl_tab **tabs = NULL;
861 if (!map)
862 return NULL;
864 if (map->n <= 1)
865 return map;
867 map = isl_map_align_divs(map);
869 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
870 if (!tabs)
871 goto error;
873 n = map->n;
874 for (i = 0; i < map->n; ++i) {
875 tabs[i] = isl_tab_from_basic_map(map->p[i]);
876 if (!tabs[i])
877 goto error;
878 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
879 tabs[i] = isl_tab_detect_implicit_equalities(tabs[i]);
880 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
881 if (isl_tab_detect_redundant(tabs[i]) < 0)
882 goto error;
884 for (i = map->n - 1; i >= 0; --i)
885 if (tabs[i]->empty)
886 drop(map, i, tabs);
888 map = coalesce(map, tabs);
890 if (map)
891 for (i = 0; i < map->n; ++i) {
892 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
893 tabs[i]);
894 map->p[i] = isl_basic_map_finalize(map->p[i]);
895 if (!map->p[i])
896 goto error;
897 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
898 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
901 for (i = 0; i < n; ++i)
902 isl_tab_free(tabs[i]);
904 free(tabs);
906 return map;
907 error:
908 if (tabs)
909 for (i = 0; i < n; ++i)
910 isl_tab_free(tabs[i]);
911 free(tabs);
912 return NULL;
915 /* For each pair of basic sets in the set, check if the union of the two
916 * can be represented by a single basic set.
917 * If so, replace the pair by the single basic set and start over.
919 struct isl_set *isl_set_coalesce(struct isl_set *set)
921 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);