2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
17 #define STATUS_ERROR -1
18 #define STATUS_REDUNDANT 1
19 #define STATUS_VALID 2
20 #define STATUS_SEPARATE 3
22 #define STATUS_ADJ_EQ 5
23 #define STATUS_ADJ_INEQ 6
25 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
27 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
29 case isl_ineq_error
: return STATUS_ERROR
;
30 case isl_ineq_redundant
: return STATUS_VALID
;
31 case isl_ineq_separate
: return STATUS_SEPARATE
;
32 case isl_ineq_cut
: return STATUS_CUT
;
33 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
34 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
38 /* Compute the position of the equalities of basic map "i"
39 * with respect to basic map "j".
40 * The resulting array has twice as many entries as the number
41 * of equalities corresponding to the two inequalties to which
42 * each equality corresponds.
44 static int *eq_status_in(struct isl_map
*map
, int i
, int j
,
45 struct isl_tab
**tabs
)
48 int *eq
= isl_calloc_array(map
->ctx
, int, 2 * map
->p
[i
]->n_eq
);
51 dim
= isl_basic_map_total_dim(map
->p
[i
]);
52 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
53 for (l
= 0; l
< 2; ++l
) {
54 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
55 eq
[2 * k
+ l
] = status_in(map
->p
[i
]->eq
[k
], tabs
[j
]);
56 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
59 if (eq
[2 * k
] == STATUS_SEPARATE
||
60 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
70 /* Compute the position of the inequalities of basic map "i"
71 * with respect to basic map "j".
73 static int *ineq_status_in(struct isl_map
*map
, int i
, int j
,
74 struct isl_tab
**tabs
)
77 unsigned n_eq
= map
->p
[i
]->n_eq
;
78 int *ineq
= isl_calloc_array(map
->ctx
, int, map
->p
[i
]->n_ineq
);
80 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
81 if (isl_tab_is_redundant(tabs
[i
], n_eq
+ k
)) {
82 ineq
[k
] = STATUS_REDUNDANT
;
85 ineq
[k
] = status_in(map
->p
[i
]->ineq
[k
], tabs
[j
]);
86 if (ineq
[k
] == STATUS_ERROR
)
88 if (ineq
[k
] == STATUS_SEPARATE
)
98 static int any(int *con
, unsigned len
, int status
)
102 for (i
= 0; i
< len
; ++i
)
103 if (con
[i
] == status
)
108 static int count(int *con
, unsigned len
, int status
)
113 for (i
= 0; i
< len
; ++i
)
114 if (con
[i
] == status
)
119 static int all(int *con
, unsigned len
, int status
)
123 for (i
= 0; i
< len
; ++i
) {
124 if (con
[i
] == STATUS_REDUNDANT
)
126 if (con
[i
] != status
)
132 static void drop(struct isl_map
*map
, int i
, struct isl_tab
**tabs
)
134 isl_basic_map_free(map
->p
[i
]);
135 isl_tab_free(tabs
[i
]);
137 if (i
!= map
->n
- 1) {
138 map
->p
[i
] = map
->p
[map
->n
- 1];
139 tabs
[i
] = tabs
[map
->n
- 1];
141 tabs
[map
->n
- 1] = NULL
;
145 /* Replace the pair of basic maps i and j by the basic map bounded
146 * by the valid constraints in both basic maps and the constraint
147 * in extra (if not NULL).
149 static int fuse(struct isl_map
*map
, int i
, int j
,
150 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
,
151 __isl_keep isl_mat
*extra
)
154 struct isl_basic_map
*fused
= NULL
;
155 struct isl_tab
*fused_tab
= NULL
;
156 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
157 unsigned extra_rows
= extra
? extra
->n_row
: 0;
159 fused
= isl_basic_map_alloc_dim(isl_dim_copy(map
->p
[i
]->dim
),
161 map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
,
162 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
+ extra_rows
);
166 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
167 if (eq_i
&& (eq_i
[2 * k
] != STATUS_VALID
||
168 eq_i
[2 * k
+ 1] != STATUS_VALID
))
169 l
= isl_basic_map_alloc_equality(fused
);
172 isl_seq_cpy(fused
->eq
[l
], map
->p
[i
]->eq
[k
], 1 + total
);
175 for (k
= 0; k
< map
->p
[j
]->n_eq
; ++k
) {
176 if (eq_j
&& (eq_j
[2 * k
] != STATUS_VALID
||
177 eq_j
[2 * k
+ 1] != STATUS_VALID
))
179 l
= isl_basic_map_alloc_equality(fused
);
182 isl_seq_cpy(fused
->eq
[l
], map
->p
[j
]->eq
[k
], 1 + total
);
185 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
186 if (ineq_i
[k
] != STATUS_VALID
)
188 l
= isl_basic_map_alloc_inequality(fused
);
191 isl_seq_cpy(fused
->ineq
[l
], map
->p
[i
]->ineq
[k
], 1 + total
);
194 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
195 if (ineq_j
[k
] != STATUS_VALID
)
197 l
= isl_basic_map_alloc_inequality(fused
);
200 isl_seq_cpy(fused
->ineq
[l
], map
->p
[j
]->ineq
[k
], 1 + total
);
203 for (k
= 0; k
< extra_rows
; ++k
) {
204 l
= isl_basic_map_alloc_inequality(fused
);
207 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
210 fused
= isl_basic_map_gauss(fused
, NULL
);
211 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
212 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) &&
213 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
214 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
216 fused_tab
= isl_tab_from_basic_map(fused
);
217 if (isl_tab_detect_redundant(fused_tab
) < 0)
220 isl_basic_map_free(map
->p
[i
]);
222 isl_tab_free(tabs
[i
]);
228 isl_tab_free(fused_tab
);
229 isl_basic_map_free(fused
);
233 /* Given a pair of basic maps i and j such that all constraints are either
234 * "valid" or "cut", check if the facets corresponding to the "cut"
235 * constraints of i lie entirely within basic map j.
236 * If so, replace the pair by the basic map consisting of the valid
237 * constraints in both basic maps.
239 * To see that we are not introducing any extra points, call the
240 * two basic maps A and B and the resulting map U and let x
241 * be an element of U \setminus ( A \cup B ).
242 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
243 * violates them. Let X be the intersection of U with the opposites
244 * of these constraints. Then x \in X.
245 * The facet corresponding to c_1 contains the corresponding facet of A.
246 * This facet is entirely contained in B, so c_2 is valid on the facet.
247 * However, since it is also (part of) a facet of X, -c_2 is also valid
248 * on the facet. This means c_2 is saturated on the facet, so c_1 and
249 * c_2 must be opposites of each other, but then x could not violate
252 static int check_facets(struct isl_map
*map
, int i
, int j
,
253 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
256 struct isl_tab_undo
*snap
;
257 unsigned n_eq
= map
->p
[i
]->n_eq
;
259 snap
= isl_tab_snap(tabs
[i
]);
261 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
262 if (ineq_i
[k
] != STATUS_CUT
)
264 tabs
[i
] = isl_tab_select_facet(tabs
[i
], n_eq
+ k
);
265 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
) {
267 if (ineq_j
[l
] != STATUS_CUT
)
269 stat
= status_in(map
->p
[j
]->ineq
[l
], tabs
[i
]);
270 if (stat
!= STATUS_VALID
)
273 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
275 if (l
< map
->p
[j
]->n_ineq
)
279 if (k
< map
->p
[i
]->n_ineq
)
282 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
285 /* Both basic maps have at least one inequality with and adjacent
286 * (but opposite) inequality in the other basic map.
287 * Check that there are no cut constraints and that there is only
288 * a single pair of adjacent inequalities.
289 * If so, we can replace the pair by a single basic map described
290 * by all but the pair of adjacent inequalities.
291 * Any additional points introduced lie strictly between the two
292 * adjacent hyperplanes and can therefore be integral.
301 * The test for a single pair of adjancent inequalities is important
302 * for avoiding the combination of two basic maps like the following
312 static int check_adj_ineq(struct isl_map
*map
, int i
, int j
,
313 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
317 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
) ||
318 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
))
321 else if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) == 1 &&
322 count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
) == 1)
323 changed
= fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
324 /* else ADJ INEQ TOO MANY */
329 /* Check if basic map "i" contains the basic map represented
330 * by the tableau "tab".
332 static int contains(struct isl_map
*map
, int i
, int *ineq_i
,
338 dim
= isl_basic_map_total_dim(map
->p
[i
]);
339 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
340 for (l
= 0; l
< 2; ++l
) {
342 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
343 stat
= status_in(map
->p
[i
]->eq
[k
], tab
);
344 if (stat
!= STATUS_VALID
)
349 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
351 if (ineq_i
[k
] == STATUS_REDUNDANT
)
353 stat
= status_in(map
->p
[i
]->ineq
[k
], tab
);
354 if (stat
!= STATUS_VALID
)
360 /* Basic map "i" has an inequality "k" that is adjacent to some equality
361 * of basic map "j". All the other inequalities are valid for "j".
362 * Check if basic map "j" forms an extension of basic map "i".
364 * In particular, we relax constraint "k", compute the corresponding
365 * facet and check whether it is included in the other basic map.
366 * If so, we know that relaxing the constraint extends the basic
367 * map with exactly the other basic map (we already know that this
368 * other basic map is included in the extension, because there
369 * were no "cut" inequalities in "i") and we can replace the
370 * two basic maps by thie extension.
378 static int is_extension(struct isl_map
*map
, int i
, int j
, int k
,
379 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
383 struct isl_tab_undo
*snap
, *snap2
;
384 unsigned n_eq
= map
->p
[i
]->n_eq
;
386 snap
= isl_tab_snap(tabs
[i
]);
387 tabs
[i
] = isl_tab_relax(tabs
[i
], n_eq
+ k
);
388 snap2
= isl_tab_snap(tabs
[i
]);
389 tabs
[i
] = isl_tab_select_facet(tabs
[i
], n_eq
+ k
);
390 super
= contains(map
, j
, ineq_j
, tabs
[i
]);
392 if (isl_tab_rollback(tabs
[i
], snap2
) < 0)
394 map
->p
[i
] = isl_basic_map_cow(map
->p
[i
]);
397 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
398 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_FINAL
);
402 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
408 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
409 * wrap the constraint around "bound" such that it includes the whole
410 * set "set" and append the resulting constraint to "wraps".
411 * "wraps" is assumed to have been pre-allocated to the appropriate size.
412 * wraps->n_row is the number of actual wrapped constraints that have
414 * If any of the wrapping problems results in a constraint that is
415 * identical to "bound", then this means that "set" is unbounded in such
416 * way that no wrapping is possible. If this happens then wraps->n_row
419 static int add_wraps(__isl_keep isl_mat
*wraps
, __isl_keep isl_basic_map
*bmap
,
420 struct isl_tab
*tab
, isl_int
*bound
, __isl_keep isl_set
*set
)
424 unsigned total
= isl_basic_map_total_dim(bmap
);
428 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
429 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], 1 + total
))
431 if (isl_seq_eq(bound
, bmap
->ineq
[l
], 1 + total
))
433 if (isl_tab_is_redundant(tab
, bmap
->n_eq
+ l
))
436 isl_seq_cpy(wraps
->row
[w
], bound
, 1 + total
);
437 if (!isl_set_wrap_facet(set
, wraps
->row
[w
], bmap
->ineq
[l
]))
439 if (isl_seq_eq(wraps
->row
[w
], bound
, 1 + total
))
443 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
444 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], 1 + total
))
446 if (isl_seq_eq(bound
, bmap
->eq
[l
], 1 + total
))
449 isl_seq_cpy(wraps
->row
[w
], bound
, 1 + total
);
450 isl_seq_neg(wraps
->row
[w
+ 1], bmap
->eq
[l
], 1 + total
);
451 if (!isl_set_wrap_facet(set
, wraps
->row
[w
], wraps
->row
[w
+ 1]))
453 if (isl_seq_eq(wraps
->row
[w
], bound
, 1 + total
))
457 isl_seq_cpy(wraps
->row
[w
], bound
, 1 + total
);
458 if (!isl_set_wrap_facet(set
, wraps
->row
[w
], bmap
->eq
[l
]))
460 if (isl_seq_eq(wraps
->row
[w
], bound
, 1 + total
))
472 /* Given a basic set i with a constraint k that is adjacent to either the
473 * whole of basic set j or a facet of basic set j, check if we can wrap
474 * both the facet corresponding to k and the facet of j (or the whole of j)
475 * around their ridges to include the other set.
476 * If so, replace the pair of basic sets by their union.
478 * All constraints of i (except k) are assumed to be valid for j.
480 * In the case where j has a facet adjacent to i, tab[j] is assumed
481 * to have been restricted to this facet, so that the non-redundant
482 * constraints in tab[j] are the ridges of the facet.
483 * Note that for the purpose of wrapping, it does not matter whether
484 * we wrap the ridges of i aronud the whole of j or just around
485 * the facet since all the other constraints are assumed to be valid for j.
486 * In practice, we wrap to include the whole of j.
495 static int can_wrap_in_facet(struct isl_map
*map
, int i
, int j
, int k
,
496 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
499 struct isl_mat
*wraps
= NULL
;
500 struct isl_set
*set_i
= NULL
;
501 struct isl_set
*set_j
= NULL
;
502 struct isl_vec
*bound
= NULL
;
503 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
504 struct isl_tab_undo
*snap
;
506 snap
= isl_tab_snap(tabs
[i
]);
508 set_i
= isl_set_from_basic_set(
509 isl_basic_map_underlying_set(isl_basic_map_copy(map
->p
[i
])));
510 set_j
= isl_set_from_basic_set(
511 isl_basic_map_underlying_set(isl_basic_map_copy(map
->p
[j
])));
512 wraps
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
513 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
515 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
516 if (!set_i
|| !set_j
|| !wraps
|| !bound
)
519 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
520 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
522 isl_seq_cpy(wraps
->row
[0], bound
->el
, 1 + total
);
525 if (add_wraps(wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
530 tabs
[i
] = isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ k
);
531 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
534 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
536 if (add_wraps(wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
541 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
);
545 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
565 /* Given two basic sets i and j such that i has exactly one cut constraint,
566 * check if we can wrap the corresponding facet around its ridges to include
567 * the other basic set (and nothing else).
568 * If so, replace the pair by their union.
570 * We first check if j has a facet adjacent to the cut constraint of i.
571 * If so, we try to wrap in the facet.
579 static int can_wrap_in_set(struct isl_map
*map
, int i
, int j
,
580 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
584 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
585 struct isl_tab_undo
*snap
;
587 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
588 if (ineq_i
[k
] == STATUS_CUT
)
591 isl_assert(map
->ctx
, k
< map
->p
[i
]->n_ineq
, return -1);
593 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
594 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
)
595 if (isl_seq_eq(map
->p
[i
]->ineq
[k
],
596 map
->p
[j
]->ineq
[l
], 1 + total
))
598 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
600 if (l
>= map
->p
[j
]->n_ineq
)
603 snap
= isl_tab_snap(tabs
[j
]);
604 tabs
[j
] = isl_tab_select_facet(tabs
[j
], map
->p
[j
]->n_eq
+ l
);
605 if (isl_tab_detect_redundant(tabs
[j
]) < 0)
608 changed
= can_wrap_in_facet(map
, i
, j
, k
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
);
610 if (!changed
&& isl_tab_rollback(tabs
[j
], snap
) < 0)
616 /* Check if either i or j has a single cut constraint that can
617 * be used to wrap in (a facet of) the other basic set.
618 * if so, replace the pair by their union.
620 static int check_wrap(struct isl_map
*map
, int i
, int j
,
621 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
625 if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
) == 1)
626 changed
= can_wrap_in_set(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
630 if (count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
) == 1)
631 changed
= can_wrap_in_set(map
, j
, i
, tabs
, ineq_j
, ineq_i
);
635 /* At least one of the basic maps has an equality that is adjacent
636 * to inequality. Make sure that only one of the basic maps has
637 * such an equality and that the other basic map has exactly one
638 * inequality adjacent to an equality.
639 * We call the basic map that has the inequality "i" and the basic
640 * map that has the equality "j".
641 * If "i" has any "cut" inequality, then relaxing the inequality
642 * by one would not result in a basic map that contains the other
645 static int check_adj_eq(struct isl_map
*map
, int i
, int j
,
646 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
651 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) &&
652 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
))
653 /* ADJ EQ TOO MANY */
656 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
))
657 return check_adj_eq(map
, j
, i
, tabs
,
658 eq_j
, ineq_j
, eq_i
, ineq_i
);
660 /* j has an equality adjacent to an inequality in i */
662 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
))
665 if (count(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
) != 1 ||
666 count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
667 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
) ||
668 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
669 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
))
670 /* ADJ EQ TOO MANY */
673 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
674 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
677 changed
= is_extension(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
681 changed
= can_wrap_in_facet(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
686 /* Check if the union of the given pair of basic maps
687 * can be represented by a single basic map.
688 * If so, replace the pair by the single basic map and return 1.
689 * Otherwise, return 0;
691 * We first check the effect of each constraint of one basic map
692 * on the other basic map.
693 * The constraint may be
694 * redundant the constraint is redundant in its own
695 * basic map and should be ignore and removed
697 * valid all (integer) points of the other basic map
698 * satisfy the constraint
699 * separate no (integer) point of the other basic map
700 * satisfies the constraint
701 * cut some but not all points of the other basic map
702 * satisfy the constraint
703 * adj_eq the given constraint is adjacent (on the outside)
704 * to an equality of the other basic map
705 * adj_ineq the given constraint is adjacent (on the outside)
706 * to an inequality of the other basic map
708 * We consider six cases in which we can replace the pair by a single
709 * basic map. We ignore all "redundant" constraints.
711 * 1. all constraints of one basic map are valid
712 * => the other basic map is a subset and can be removed
714 * 2. all constraints of both basic maps are either "valid" or "cut"
715 * and the facets corresponding to the "cut" constraints
716 * of one of the basic maps lies entirely inside the other basic map
717 * => the pair can be replaced by a basic map consisting
718 * of the valid constraints in both basic maps
720 * 3. there is a single pair of adjacent inequalities
721 * (all other constraints are "valid")
722 * => the pair can be replaced by a basic map consisting
723 * of the valid constraints in both basic maps
725 * 4. there is a single adjacent pair of an inequality and an equality,
726 * the other constraints of the basic map containing the inequality are
727 * "valid". Moreover, if the inequality the basic map is relaxed
728 * and then turned into an equality, then resulting facet lies
729 * entirely inside the other basic map
730 * => the pair can be replaced by the basic map containing
731 * the inequality, with the inequality relaxed.
733 * 5. there is a single adjacent pair of an inequality and an equality,
734 * the other constraints of the basic map containing the inequality are
735 * "valid". Moreover, the facets corresponding to both
736 * the inequality and the equality can be wrapped around their
737 * ridges to include the other basic map
738 * => the pair can be replaced by a basic map consisting
739 * of the valid constraints in both basic maps together
740 * with all wrapping constraints
742 * 6. one of the basic maps has a single cut constraint and
743 * the other basic map has a constraint adjacent to this constraint.
744 * Moreover, the facets corresponding to both constraints
745 * can be wrapped around their ridges to include the other basic map
746 * => the pair can be replaced by a basic map consisting
747 * of the valid constraints in both basic maps together
748 * with all wrapping constraints
750 * Throughout the computation, we maintain a collection of tableaus
751 * corresponding to the basic maps. When the basic maps are dropped
752 * or combined, the tableaus are modified accordingly.
754 static int coalesce_pair(struct isl_map
*map
, int i
, int j
,
755 struct isl_tab
**tabs
)
763 eq_i
= eq_status_in(map
, i
, j
, tabs
);
764 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ERROR
))
766 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_SEPARATE
))
769 eq_j
= eq_status_in(map
, j
, i
, tabs
);
770 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ERROR
))
772 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_SEPARATE
))
775 ineq_i
= ineq_status_in(map
, i
, j
, tabs
);
776 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ERROR
))
778 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_SEPARATE
))
781 ineq_j
= ineq_status_in(map
, j
, i
, tabs
);
782 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ERROR
))
784 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_SEPARATE
))
787 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
788 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
791 } else if (all(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_VALID
) &&
792 all(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_VALID
)) {
795 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) ||
796 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
)) {
798 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
) ||
799 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_EQ
)) {
801 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) ||
802 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
)) {
803 changed
= check_adj_eq(map
, i
, j
, tabs
,
804 eq_i
, ineq_i
, eq_j
, ineq_j
);
805 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) ||
806 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
)) {
809 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
810 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
)) {
811 changed
= check_adj_ineq(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
813 changed
= check_facets(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
815 changed
= check_wrap(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
832 static struct isl_map
*coalesce(struct isl_map
*map
, struct isl_tab
**tabs
)
836 for (i
= 0; i
< map
->n
- 1; ++i
)
837 for (j
= i
+ 1; j
< map
->n
; ++j
) {
839 changed
= coalesce_pair(map
, i
, j
, tabs
);
843 return coalesce(map
, tabs
);
851 /* For each pair of basic maps in the map, check if the union of the two
852 * can be represented by a single basic map.
853 * If so, replace the pair by the single basic map and start over.
855 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
859 struct isl_tab
**tabs
= NULL
;
867 map
= isl_map_align_divs(map
);
869 tabs
= isl_calloc_array(map
->ctx
, struct isl_tab
*, map
->n
);
874 for (i
= 0; i
< map
->n
; ++i
) {
875 tabs
[i
] = isl_tab_from_basic_map(map
->p
[i
]);
878 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
))
879 tabs
[i
] = isl_tab_detect_implicit_equalities(tabs
[i
]);
880 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
))
881 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
884 for (i
= map
->n
- 1; i
>= 0; --i
)
888 map
= coalesce(map
, tabs
);
891 for (i
= 0; i
< map
->n
; ++i
) {
892 map
->p
[i
] = isl_basic_map_update_from_tab(map
->p
[i
],
894 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
897 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
);
898 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
);
901 for (i
= 0; i
< n
; ++i
)
902 isl_tab_free(tabs
[i
]);
909 for (i
= 0; i
< n
; ++i
)
910 isl_tab_free(tabs
[i
]);
915 /* For each pair of basic sets in the set, check if the union of the two
916 * can be represented by a single basic set.
917 * If so, replace the pair by the single basic set and start over.
919 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
921 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);