isl_map.c: div_involves_vars: use isl_basic_map_var_offset
[isl.git] / isl_map_simplify.c
blobcffb37f6977c0668e6c437581be4e65e46992195
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
6 * Copyright 2023 Cerebras Systems
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, K.U.Leuven, Departement
11 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
14 * B.P. 105 - 78153 Le Chesnay, France
15 * and Cerebras Systems, 1237 E Arques Ave, Sunnyvale, CA, USA
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include "isl_equalities.h"
21 #include <isl/map.h>
22 #include <isl_seq.h>
23 #include "isl_tab.h"
24 #include <isl_space_private.h>
25 #include <isl_mat_private.h>
26 #include <isl_vec_private.h>
28 #include <bset_to_bmap.c>
29 #include <bset_from_bmap.c>
30 #include <set_to_map.c>
31 #include <set_from_map.c>
33 /* Mark "bmap" as having one or more inequality constraints modified.
34 * If "equivalent" is set, then this modification was done based
35 * on an equality constraint already available in "bmap".
37 * Any modification may result in the constraints no longer being sorted and
38 * may also undo the effect of reduce_coefficients.
40 * A modification that uses extra information may also result
41 * in the modified constraint(s) becoming redundant or
42 * turning into an implicit equality constraint.
44 static __isl_give isl_basic_map *isl_basic_map_modify_inequality(
45 __isl_take isl_basic_map *bmap, int equivalent)
47 if (!bmap)
48 return NULL;
49 ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED);
50 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
51 if (equivalent)
52 return bmap;
53 ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
54 ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
55 return bmap;
58 static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b)
60 isl_int *t = bmap->eq[a];
61 bmap->eq[a] = bmap->eq[b];
62 bmap->eq[b] = t;
65 static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b)
67 if (a != b) {
68 isl_int *t = bmap->ineq[a];
69 bmap->ineq[a] = bmap->ineq[b];
70 bmap->ineq[b] = t;
74 /* Scale down the inequality constraint "ineq" of length "len"
75 * by a factor of "f".
76 * All the coefficients, except the constant term,
77 * are assumed to be multiples of "f".
79 * If the factor is 0 or 1, then no scaling needs to be performed.
81 * If scaling is performed then take into account that the constraint
82 * is modified (not simply based on an equality constraint).
84 static __isl_give isl_basic_map *scale_down_inequality(
85 __isl_take isl_basic_map *bmap, int ineq, isl_int f, unsigned len)
87 if (!bmap)
88 return NULL;
90 if (isl_int_is_zero(f) || isl_int_is_one(f))
91 return bmap;
93 isl_int_fdiv_q(bmap->ineq[ineq][0], bmap->ineq[ineq][0], f);
94 isl_seq_scale_down(bmap->ineq[ineq] + 1, bmap->ineq[ineq] + 1, f, len);
96 bmap = isl_basic_map_modify_inequality(bmap, 0);
98 return bmap;
101 __isl_give isl_basic_map *isl_basic_map_normalize_constraints(
102 __isl_take isl_basic_map *bmap)
104 int i;
105 isl_int gcd;
106 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
108 if (total < 0)
109 return isl_basic_map_free(bmap);
111 isl_int_init(gcd);
112 for (i = bmap->n_eq - 1; i >= 0; --i) {
113 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
114 if (isl_int_is_zero(gcd)) {
115 if (!isl_int_is_zero(bmap->eq[i][0])) {
116 bmap = isl_basic_map_set_to_empty(bmap);
117 break;
119 if (isl_basic_map_drop_equality(bmap, i) < 0)
120 goto error;
121 continue;
123 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
124 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
125 if (isl_int_is_one(gcd))
126 continue;
127 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
128 bmap = isl_basic_map_set_to_empty(bmap);
129 break;
131 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
134 for (i = bmap->n_ineq - 1; i >= 0; --i) {
135 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
136 if (isl_int_is_zero(gcd)) {
137 if (isl_int_is_neg(bmap->ineq[i][0])) {
138 bmap = isl_basic_map_set_to_empty(bmap);
139 break;
141 if (isl_basic_map_drop_inequality(bmap, i) < 0)
142 goto error;
143 continue;
145 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
146 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
147 bmap = scale_down_inequality(bmap, i, gcd, total);
148 if (!bmap)
149 goto error;
151 isl_int_clear(gcd);
153 return bmap;
154 error:
155 isl_int_clear(gcd);
156 isl_basic_map_free(bmap);
157 return NULL;
160 __isl_give isl_basic_set *isl_basic_set_normalize_constraints(
161 __isl_take isl_basic_set *bset)
163 isl_basic_map *bmap = bset_to_bmap(bset);
164 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
167 /* Reduce the coefficient of the variable at position "pos"
168 * in integer division "div", such that it lies in the half-open
169 * interval (1/2,1/2], extracting any excess value from this integer division.
170 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
171 * corresponds to the constant term.
173 * That is, the integer division is of the form
175 * floor((... + (c * d + r) * x_pos + ...)/d)
177 * with -d < 2 * r <= d.
178 * Replace it by
180 * floor((... + r * x_pos + ...)/d) + c * x_pos
182 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
183 * Otherwise, c = floor((c * d + r)/d) + 1.
185 * This is the same normalization that is performed by isl_aff_floor.
187 static __isl_give isl_basic_map *reduce_coefficient_in_div(
188 __isl_take isl_basic_map *bmap, int div, int pos)
190 isl_int shift;
191 int add_one;
193 isl_int_init(shift);
194 isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
195 isl_int_mul_ui(shift, shift, 2);
196 add_one = isl_int_gt(shift, bmap->div[div][0]);
197 isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
198 if (add_one)
199 isl_int_add_ui(shift, shift, 1);
200 isl_int_neg(shift, shift);
201 bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
202 isl_int_clear(shift);
204 return bmap;
207 /* Does the coefficient of the variable at position "pos"
208 * in integer division "div" need to be reduced?
209 * That is, does it lie outside the half-open interval (1/2,1/2]?
210 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
211 * 2 * c != d.
213 static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
214 int pos)
216 isl_bool r;
218 if (isl_int_is_zero(bmap->div[div][1 + pos]))
219 return isl_bool_false;
221 isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
222 r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
223 !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
224 isl_int_divexact_ui(bmap->div[div][1 + pos],
225 bmap->div[div][1 + pos], 2);
227 return r;
230 /* Reduce the coefficients (including the constant term) of
231 * integer division "div", if needed.
232 * In particular, make sure all coefficients lie in
233 * the half-open interval (1/2,1/2].
235 static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
236 __isl_take isl_basic_map *bmap, int div)
238 int i;
239 isl_size total;
241 total = isl_basic_map_dim(bmap, isl_dim_all);
242 if (total < 0)
243 return isl_basic_map_free(bmap);
244 for (i = 0; i < 1 + total; ++i) {
245 isl_bool reduce;
247 reduce = needs_reduction(bmap, div, i);
248 if (reduce < 0)
249 return isl_basic_map_free(bmap);
250 if (!reduce)
251 continue;
252 bmap = reduce_coefficient_in_div(bmap, div, i);
253 if (!bmap)
254 break;
257 return bmap;
260 /* Reduce the coefficients (including the constant term) of
261 * the known integer divisions, if needed
262 * In particular, make sure all coefficients lie in
263 * the half-open interval (1/2,1/2].
265 static __isl_give isl_basic_map *reduce_div_coefficients(
266 __isl_take isl_basic_map *bmap)
268 int i;
270 if (!bmap)
271 return NULL;
272 if (bmap->n_div == 0)
273 return bmap;
275 for (i = 0; i < bmap->n_div; ++i) {
276 if (isl_int_is_zero(bmap->div[i][0]))
277 continue;
278 bmap = reduce_div_coefficients_of_div(bmap, i);
279 if (!bmap)
280 break;
283 return bmap;
286 /* Remove any common factor in numerator and denominator of the div expression,
287 * not taking into account the constant term.
288 * That is, if the div is of the form
290 * floor((a + m f(x))/(m d))
292 * then replace it by
294 * floor((floor(a/m) + f(x))/d)
296 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
297 * and can therefore not influence the result of the floor.
299 static __isl_give isl_basic_map *normalize_div_expression(
300 __isl_take isl_basic_map *bmap, int div)
302 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
303 isl_ctx *ctx = bmap->ctx;
305 if (total < 0)
306 return isl_basic_map_free(bmap);
307 if (isl_int_is_zero(bmap->div[div][0]))
308 return bmap;
309 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
310 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
311 if (isl_int_is_one(ctx->normalize_gcd))
312 return bmap;
313 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
314 ctx->normalize_gcd);
315 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
316 ctx->normalize_gcd);
317 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
318 ctx->normalize_gcd, total);
320 return bmap;
323 /* Remove any common factor in numerator and denominator of a div expression,
324 * not taking into account the constant term.
325 * That is, look for any div of the form
327 * floor((a + m f(x))/(m d))
329 * and replace it by
331 * floor((floor(a/m) + f(x))/d)
333 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
334 * and can therefore not influence the result of the floor.
336 static __isl_give isl_basic_map *normalize_div_expressions(
337 __isl_take isl_basic_map *bmap)
339 int i;
341 if (!bmap)
342 return NULL;
343 if (bmap->n_div == 0)
344 return bmap;
346 for (i = 0; i < bmap->n_div; ++i)
347 bmap = normalize_div_expression(bmap, i);
349 return bmap;
352 /* Some progress has been made.
353 * Set *progress if "progress" is not NULL.
355 static void mark_progress(int *progress)
357 if (progress)
358 *progress = 1;
361 /* Eliminate the variable at position "pos" from the constraints of "bmap"
362 * using the equality constraint "eq".
363 * If "keep_divs" is set, then try and preserve
364 * the integer division expressions. In this case, these expressions
365 * are assumed to have been ordered.
366 * If "equivalent" is set, then the elimination is performed
367 * using an equality constraint of "bmap", meaning that the meaning
368 * of the constraints is preserved.
370 static __isl_give isl_basic_map *eliminate_var_using_equality(
371 __isl_take isl_basic_map *bmap,
372 unsigned pos, isl_int *eq, int keep_divs, int equivalent, int *progress)
374 isl_size total;
375 isl_size v_div;
376 int k;
377 int last_div;
378 isl_ctx *ctx;
380 total = isl_basic_map_dim(bmap, isl_dim_all);
381 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
382 if (total < 0 || v_div < 0)
383 return isl_basic_map_free(bmap);
384 ctx = isl_basic_map_get_ctx(bmap);
385 last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
386 for (k = 0; k < bmap->n_eq; ++k) {
387 if (bmap->eq[k] == eq)
388 continue;
389 if (isl_int_is_zero(bmap->eq[k][1+pos]))
390 continue;
391 mark_progress(progress);
392 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
393 isl_seq_normalize(ctx, bmap->eq[k], 1 + total);
396 for (k = 0; k < bmap->n_ineq; ++k) {
397 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
398 continue;
399 mark_progress(progress);
400 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
401 isl_seq_gcd(bmap->ineq[k], 1 + total, &ctx->normalize_gcd);
402 bmap = scale_down_inequality(bmap, k, ctx->normalize_gcd,
403 total);
404 bmap = isl_basic_map_modify_inequality(bmap, equivalent);
405 if (!bmap)
406 return NULL;
409 for (k = 0; k < bmap->n_div; ++k) {
410 if (isl_int_is_zero(bmap->div[k][0]))
411 continue;
412 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
413 continue;
414 mark_progress(progress);
415 /* We need to be careful about circular definitions,
416 * so for now we just remove the definition of div k
417 * if the equality contains any divs.
418 * If keep_divs is set, then the divs have been ordered
419 * and we can keep the definition as long as the result
420 * is still ordered.
422 if (last_div == -1 || (keep_divs && last_div < k)) {
423 isl_seq_elim(bmap->div[k]+1, eq,
424 1+pos, 1+total, &bmap->div[k][0]);
425 bmap = normalize_div_expression(bmap, k);
426 if (!bmap)
427 return NULL;
428 } else
429 isl_seq_clr(bmap->div[k], 1 + total);
432 return bmap;
435 /* Eliminate and remove the local variable at position "pos" of "bmap"
436 * using the equality constraint "eq".
437 * If "keep_divs" is set, then try and preserve
438 * the integer division expressions. In this case, these expressions
439 * are assumed to have been ordered.
440 * If "equivalent" is set, then the elimination is performed
441 * using an equality constraint of "bmap", meaning that the meaning
442 * of the constraints is preserved.
444 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
445 isl_int *eq, unsigned div, int keep_divs, int equivalent)
447 isl_size v_div;
448 unsigned pos;
450 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
451 if (v_div < 0)
452 return isl_basic_map_free(bmap);
453 pos = v_div + div;
454 bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs,
455 equivalent, NULL);
457 bmap = isl_basic_map_drop_div(bmap, div);
459 return bmap;
462 /* Check if elimination of div "div" using equality "eq" would not
463 * result in a div depending on a later div.
465 static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
466 unsigned div)
468 int k;
469 int last_div;
470 isl_size v_div;
471 unsigned pos;
473 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
474 if (v_div < 0)
475 return isl_bool_error;
476 pos = v_div + div;
478 last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
479 if (last_div < 0 || last_div <= div)
480 return isl_bool_true;
482 for (k = 0; k <= last_div; ++k) {
483 if (isl_int_is_zero(bmap->div[k][0]))
484 continue;
485 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
486 return isl_bool_false;
489 return isl_bool_true;
492 /* Eliminate divs based on equalities
494 static __isl_give isl_basic_map *eliminate_divs_eq(
495 __isl_take isl_basic_map *bmap, int *progress)
497 int d;
498 int i;
499 int modified = 0;
500 unsigned off;
502 bmap = isl_basic_map_order_divs(bmap);
504 if (!bmap)
505 return NULL;
507 off = isl_basic_map_offset(bmap, isl_dim_div);
509 for (d = bmap->n_div - 1; d >= 0 ; --d) {
510 for (i = 0; i < bmap->n_eq; ++i) {
511 isl_bool ok;
513 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
514 !isl_int_is_negone(bmap->eq[i][off + d]))
515 continue;
516 ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
517 if (ok < 0)
518 return isl_basic_map_free(bmap);
519 if (!ok)
520 continue;
521 modified = 1;
522 mark_progress(progress);
523 bmap = eliminate_div(bmap, bmap->eq[i], d, 1, 1);
524 if (isl_basic_map_drop_equality(bmap, i) < 0)
525 return isl_basic_map_free(bmap);
526 break;
529 if (modified)
530 return eliminate_divs_eq(bmap, progress);
531 return bmap;
534 /* Eliminate divs based on inequalities
536 static __isl_give isl_basic_map *eliminate_divs_ineq(
537 __isl_take isl_basic_map *bmap, int *progress)
539 int d;
540 int i;
541 unsigned off;
542 struct isl_ctx *ctx;
544 if (!bmap)
545 return NULL;
547 ctx = bmap->ctx;
548 off = isl_basic_map_offset(bmap, isl_dim_div);
550 for (d = bmap->n_div - 1; d >= 0 ; --d) {
551 for (i = 0; i < bmap->n_eq; ++i)
552 if (!isl_int_is_zero(bmap->eq[i][off + d]))
553 break;
554 if (i < bmap->n_eq)
555 continue;
556 for (i = 0; i < bmap->n_ineq; ++i)
557 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
558 break;
559 if (i < bmap->n_ineq)
560 continue;
561 mark_progress(progress);
562 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
563 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
564 break;
565 bmap = isl_basic_map_drop_div(bmap, d);
566 if (!bmap)
567 break;
569 return bmap;
572 /* Does the equality constraint at position "eq" in "bmap" involve
573 * any local variables in the range [first, first + n)
574 * that are not marked as having an explicit representation?
576 static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
577 int eq, unsigned first, unsigned n)
579 unsigned o_div;
580 int i;
582 if (!bmap)
583 return isl_bool_error;
585 o_div = isl_basic_map_offset(bmap, isl_dim_div);
586 for (i = 0; i < n; ++i) {
587 isl_bool unknown;
589 if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
590 continue;
591 unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
592 if (unknown < 0)
593 return isl_bool_error;
594 if (unknown)
595 return isl_bool_true;
598 return isl_bool_false;
601 /* The last local variable involved in the equality constraint
602 * at position "eq" in "bmap" is the local variable at position "div".
603 * It can therefore be used to extract an explicit representation
604 * for that variable.
605 * Do so unless the local variable already has an explicit representation or
606 * the explicit representation would involve any other local variables
607 * that in turn do not have an explicit representation.
608 * An equality constraint involving local variables without an explicit
609 * representation can be used in isl_basic_map_drop_redundant_divs
610 * to separate out an independent local variable. Introducing
611 * an explicit representation here would block this transformation,
612 * while the partial explicit representation in itself is not very useful.
613 * Set *progress if anything is changed.
615 * The equality constraint is of the form
617 * f(x) + n e >= 0
619 * with n a positive number. The explicit representation derived from
620 * this constraint is
622 * floor((-f(x))/n)
624 static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
625 int div, int eq, int *progress)
627 isl_size total;
628 unsigned o_div;
629 isl_bool involves;
631 if (!bmap)
632 return NULL;
634 if (!isl_int_is_zero(bmap->div[div][0]))
635 return bmap;
637 involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
638 if (involves < 0)
639 return isl_basic_map_free(bmap);
640 if (involves)
641 return bmap;
643 total = isl_basic_map_dim(bmap, isl_dim_all);
644 if (total < 0)
645 return isl_basic_map_free(bmap);
646 o_div = isl_basic_map_offset(bmap, isl_dim_div);
647 isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
648 isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
649 isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
650 mark_progress(progress);
652 return bmap;
655 /* Perform fangcheng (Gaussian elimination) on the equality
656 * constraints of "bmap".
657 * That is, put them into row-echelon form, starting from the last column
658 * backward and use them to eliminate the corresponding coefficients
659 * from all constraints.
661 * If "progress" is not NULL, then it gets set if the elimination
662 * results in any changes.
663 * The elimination process may result in some equality constraints
664 * getting interchanged or removed.
665 * If "swap" or "drop" are not NULL, then they get called when
666 * two equality constraints get interchanged or
667 * when a number of final equality constraints get removed.
668 * As a special case, if the input turns out to be empty,
669 * then drop gets called with the number of removed equality
670 * constraints set to the total number of equality constraints.
671 * If "swap" or "drop" are not NULL, then the local variables (if any)
672 * are assumed to be in a valid order.
674 __isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap,
675 int *progress,
676 isl_stat (*swap)(unsigned a, unsigned b, void *user),
677 isl_stat (*drop)(unsigned n, void *user), void *user)
679 int k;
680 int done;
681 int last_var;
682 unsigned total_var;
683 isl_size total;
684 unsigned n_drop;
686 if (!swap && !drop)
687 bmap = isl_basic_map_order_divs(bmap);
689 total = isl_basic_map_dim(bmap, isl_dim_all);
690 if (total < 0)
691 return isl_basic_map_free(bmap);
693 total_var = total - bmap->n_div;
695 last_var = total - 1;
696 for (done = 0; done < bmap->n_eq; ++done) {
697 for (; last_var >= 0; --last_var) {
698 for (k = done; k < bmap->n_eq; ++k)
699 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
700 break;
701 if (k < bmap->n_eq)
702 break;
704 if (last_var < 0)
705 break;
706 if (k != done) {
707 swap_equality(bmap, k, done);
708 if (swap && swap(k, done, user) < 0)
709 return isl_basic_map_free(bmap);
711 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
712 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
714 bmap = eliminate_var_using_equality(bmap, last_var,
715 bmap->eq[done], 1, 1, progress);
717 if (last_var >= total_var)
718 bmap = set_div_from_eq(bmap, last_var - total_var,
719 done, progress);
720 if (!bmap)
721 return NULL;
723 if (done == bmap->n_eq)
724 return bmap;
725 for (k = done; k < bmap->n_eq; ++k) {
726 if (isl_int_is_zero(bmap->eq[k][0]))
727 continue;
728 if (drop && drop(bmap->n_eq, user) < 0)
729 return isl_basic_map_free(bmap);
730 return isl_basic_map_set_to_empty(bmap);
732 n_drop = bmap->n_eq - done;
733 bmap = isl_basic_map_free_equality(bmap, n_drop);
734 if (drop && drop(n_drop, user) < 0)
735 return isl_basic_map_free(bmap);
736 return bmap;
739 __isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
740 int *progress)
742 return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL);
745 __isl_give isl_basic_set *isl_basic_set_gauss(
746 __isl_take isl_basic_set *bset, int *progress)
748 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
749 progress));
753 static unsigned int round_up(unsigned int v)
755 int old_v = v;
757 while (v) {
758 old_v = v;
759 v ^= v & -v;
761 return old_v << 1;
764 /* Hash table of inequalities in a basic map.
765 * "index" is an array of addresses of inequalities in the basic map, some
766 * of which are NULL. The inequalities are hashed on the coefficients
767 * except the constant term.
768 * "size" is the number of elements in the array and is always a power of two
769 * "bits" is the number of bits need to represent an index into the array.
770 * "total" is the total dimension of the basic map.
772 struct isl_constraint_index {
773 unsigned int size;
774 int bits;
775 isl_int ***index;
776 isl_size total;
779 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
781 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
782 __isl_keep isl_basic_map *bmap)
784 isl_ctx *ctx;
786 ci->index = NULL;
787 if (!bmap)
788 return isl_stat_error;
789 ci->total = isl_basic_map_dim(bmap, isl_dim_all);
790 if (ci->total < 0)
791 return isl_stat_error;
792 if (bmap->n_ineq == 0)
793 return isl_stat_ok;
794 ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
795 ci->bits = ffs(ci->size) - 1;
796 ctx = isl_basic_map_get_ctx(bmap);
797 ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
798 if (!ci->index)
799 return isl_stat_error;
801 return isl_stat_ok;
804 /* Free the memory allocated by create_constraint_index.
806 static void constraint_index_free(struct isl_constraint_index *ci)
808 free(ci->index);
811 /* Return the position in ci->index that contains the address of
812 * an inequality that is equal to *ineq up to the constant term,
813 * provided this address is not identical to "ineq".
814 * If there is no such inequality, then return the position where
815 * such an inequality should be inserted.
817 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
819 int h;
820 uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
821 for (h = hash; ci->index[h]; h = (h+1) % ci->size)
822 if (ineq != ci->index[h] &&
823 isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
824 break;
825 return h;
828 /* Return the position in ci->index that contains the address of
829 * an inequality that is equal to the k'th inequality of "bmap"
830 * up to the constant term, provided it does not point to the very
831 * same inequality.
832 * If there is no such inequality, then return the position where
833 * such an inequality should be inserted.
835 static int hash_index(struct isl_constraint_index *ci,
836 __isl_keep isl_basic_map *bmap, int k)
838 return hash_index_ineq(ci, &bmap->ineq[k]);
841 static int set_hash_index(struct isl_constraint_index *ci,
842 __isl_keep isl_basic_set *bset, int k)
844 return hash_index(ci, bset, k);
847 /* Fill in the "ci" data structure with the inequalities of "bset".
849 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
850 __isl_keep isl_basic_set *bset)
852 int k, h;
854 if (create_constraint_index(ci, bset) < 0)
855 return isl_stat_error;
857 for (k = 0; k < bset->n_ineq; ++k) {
858 h = set_hash_index(ci, bset, k);
859 ci->index[h] = &bset->ineq[k];
862 return isl_stat_ok;
865 /* Is the inequality ineq (obviously) redundant with respect
866 * to the constraints in "ci"?
868 * Look for an inequality in "ci" with the same coefficients and then
869 * check if the contant term of "ineq" is greater than or equal
870 * to the constant term of that inequality. If so, "ineq" is clearly
871 * redundant.
873 * Note that hash_index_ineq ignores a stored constraint if it has
874 * the same address as the passed inequality. It is ok to pass
875 * the address of a local variable here since it will never be
876 * the same as the address of a constraint in "ci".
878 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
879 isl_int *ineq)
881 int h;
883 h = hash_index_ineq(ci, &ineq);
884 if (!ci->index[h])
885 return isl_bool_false;
886 return isl_int_ge(ineq[0], (*ci->index[h])[0]);
889 /* If we can eliminate more than one div, then we need to make
890 * sure we do it from last div to first div, in order not to
891 * change the position of the other divs that still need to
892 * be removed.
894 static __isl_give isl_basic_map *remove_duplicate_divs(
895 __isl_take isl_basic_map *bmap, int *progress)
897 unsigned int size;
898 int *index;
899 int *elim_for;
900 int k, l, h;
901 int bits;
902 struct isl_blk eq;
903 isl_size v_div;
904 unsigned total;
905 struct isl_ctx *ctx;
907 bmap = isl_basic_map_order_divs(bmap);
908 if (!bmap || bmap->n_div <= 1)
909 return bmap;
911 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
912 if (v_div < 0)
913 return isl_basic_map_free(bmap);
914 total = v_div + bmap->n_div;
916 ctx = bmap->ctx;
917 for (k = bmap->n_div - 1; k >= 0; --k)
918 if (!isl_int_is_zero(bmap->div[k][0]))
919 break;
920 if (k <= 0)
921 return bmap;
923 size = round_up(4 * bmap->n_div / 3 - 1);
924 if (size == 0)
925 return bmap;
926 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
927 bits = ffs(size) - 1;
928 index = isl_calloc_array(ctx, int, size);
929 if (!elim_for || !index)
930 goto out;
931 eq = isl_blk_alloc(ctx, 1+total);
932 if (isl_blk_is_error(eq))
933 goto out;
935 isl_seq_clr(eq.data, 1+total);
936 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
937 for (--k; k >= 0; --k) {
938 uint32_t hash;
940 if (isl_int_is_zero(bmap->div[k][0]))
941 continue;
943 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
944 for (h = hash; index[h]; h = (h+1) % size)
945 if (isl_seq_eq(bmap->div[k],
946 bmap->div[index[h]-1], 2+total))
947 break;
948 if (index[h]) {
949 mark_progress(progress);
950 l = index[h] - 1;
951 elim_for[l] = k + 1;
953 index[h] = k+1;
955 for (l = bmap->n_div - 1; l >= 0; --l) {
956 if (!elim_for[l])
957 continue;
958 k = elim_for[l] - 1;
959 isl_int_set_si(eq.data[1 + v_div + k], -1);
960 isl_int_set_si(eq.data[1 + v_div + l], 1);
961 bmap = eliminate_div(bmap, eq.data, l, 1, 0);
962 if (!bmap)
963 break;
964 isl_int_set_si(eq.data[1 + v_div + k], 0);
965 isl_int_set_si(eq.data[1 + v_div + l], 0);
968 isl_blk_free(ctx, eq);
969 out:
970 free(index);
971 free(elim_for);
972 return bmap;
975 /* Is the local variable at position "div" of "bmap"
976 * an integral integer division?
978 static isl_bool is_known_integral_div(__isl_keep isl_basic_map *bmap, int div)
980 isl_bool unknown;
982 unknown = isl_basic_map_div_is_marked_unknown(bmap, div);
983 if (unknown < 0 || unknown)
984 return isl_bool_not(unknown);
985 return isl_basic_map_div_is_integral(bmap, div);
988 /* Eliminate local variable "div" from "bmap", given
989 * that it represents an integer division with denominator 1.
991 * Construct an equality constraint that equates the local variable
992 * to the argument of the integer division and use that to eliminate
993 * the local variable.
995 static __isl_give isl_basic_map *eliminate_integral_div(
996 __isl_take isl_basic_map *bmap, int div)
998 isl_size total, v_div;
999 isl_vec *v;
1001 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1002 total = isl_basic_map_dim(bmap, isl_dim_all);
1003 if (v_div < 0 || total < 0)
1004 return isl_basic_map_free(bmap);
1005 v = isl_vec_alloc(isl_basic_map_get_ctx(bmap), 1 + total);
1006 if (!v)
1007 return isl_basic_map_free(bmap);
1008 isl_seq_cpy(v->el, bmap->div[div] + 1, 1 + total);
1009 isl_int_set_si(v->el[1 + v_div + div], -1);
1010 bmap = eliminate_div(bmap, v->el, div, 1, 0);
1011 isl_vec_free(v);
1013 return bmap;
1016 /* Eliminate all integer divisions with denominator 1.
1018 static __isl_give isl_basic_map *eliminate_integral_divs(
1019 __isl_take isl_basic_map *bmap, int *progress)
1021 int i;
1022 isl_size n_div;
1024 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1025 if (n_div < 0)
1026 return isl_basic_map_free(bmap);
1028 for (i = 0; i < n_div; ++i) {
1029 isl_bool eliminate;
1031 eliminate = is_known_integral_div(bmap, i);
1032 if (eliminate < 0)
1033 return isl_basic_map_free(bmap);
1034 if (!eliminate)
1035 continue;
1037 bmap = eliminate_integral_div(bmap, i);
1038 mark_progress(progress);
1039 i--;
1040 n_div--;
1043 return bmap;
1046 static int n_pure_div_eq(__isl_keep isl_basic_map *bmap)
1048 int i, j;
1049 isl_size v_div;
1051 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1052 if (v_div < 0)
1053 return -1;
1054 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
1055 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1056 --j;
1057 if (j < 0)
1058 break;
1059 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + v_div, j) != -1)
1060 return 0;
1062 return i;
1065 /* Normalize divs that appear in equalities.
1067 * In particular, we assume that bmap contains some equalities
1068 * of the form
1070 * a x = m * e_i
1072 * and we want to replace the set of e_i by a minimal set and
1073 * such that the new e_i have a canonical representation in terms
1074 * of the vector x.
1075 * If any of the equalities involves more than one divs, then
1076 * we currently simply bail out.
1078 * Let us first additionally assume that all equalities involve
1079 * a div. The equalities then express modulo constraints on the
1080 * remaining variables and we can use "parameter compression"
1081 * to find a minimal set of constraints. The result is a transformation
1083 * x = T(x') = x_0 + G x'
1085 * with G a lower-triangular matrix with all elements below the diagonal
1086 * non-negative and smaller than the diagonal element on the same row.
1087 * We first normalize x_0 by making the same property hold in the affine
1088 * T matrix.
1089 * The rows i of G with a 1 on the diagonal do not impose any modulo
1090 * constraint and simply express x_i = x'_i.
1091 * For each of the remaining rows i, we introduce a div and a corresponding
1092 * equality. In particular
1094 * g_ii e_j = x_i - g_i(x')
1096 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1097 * corresponding div (if g_kk != 1).
1099 * If there are any equalities not involving any div, then we
1100 * first apply a variable compression on the variables x:
1102 * x = C x'' x'' = C_2 x
1104 * and perform the above parameter compression on A C instead of on A.
1105 * The resulting compression is then of the form
1107 * x'' = T(x') = x_0 + G x'
1109 * and in constructing the new divs and the corresponding equalities,
1110 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1111 * by the corresponding row from C_2.
1113 static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
1114 int *progress)
1116 int i, j, k;
1117 isl_size v_div;
1118 int div_eq;
1119 struct isl_mat *B;
1120 struct isl_vec *d;
1121 struct isl_mat *T = NULL;
1122 struct isl_mat *C = NULL;
1123 struct isl_mat *C2 = NULL;
1124 isl_int v;
1125 int *pos = NULL;
1126 int dropped, needed;
1128 if (!bmap)
1129 return NULL;
1131 if (bmap->n_div == 0)
1132 return bmap;
1134 if (bmap->n_eq == 0)
1135 return bmap;
1137 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
1138 return bmap;
1140 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1141 div_eq = n_pure_div_eq(bmap);
1142 if (v_div < 0 || div_eq < 0)
1143 return isl_basic_map_free(bmap);
1144 if (div_eq == 0)
1145 return bmap;
1147 if (div_eq < bmap->n_eq) {
1148 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1149 bmap->n_eq - div_eq, 0, 1 + v_div);
1150 C = isl_mat_variable_compression(B, &C2);
1151 if (!C || !C2)
1152 goto error;
1153 if (C->n_col == 0) {
1154 bmap = isl_basic_map_set_to_empty(bmap);
1155 isl_mat_free(C);
1156 isl_mat_free(C2);
1157 goto done;
1161 d = isl_vec_alloc(bmap->ctx, div_eq);
1162 if (!d)
1163 goto error;
1164 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1165 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1166 --j;
1167 isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]);
1169 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + v_div);
1171 if (C) {
1172 B = isl_mat_product(B, C);
1173 C = NULL;
1176 T = isl_mat_parameter_compression(B, d);
1177 if (!T)
1178 goto error;
1179 if (T->n_col == 0) {
1180 bmap = isl_basic_map_set_to_empty(bmap);
1181 isl_mat_free(C2);
1182 isl_mat_free(T);
1183 goto done;
1185 isl_int_init(v);
1186 for (i = 0; i < T->n_row - 1; ++i) {
1187 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1188 if (isl_int_is_zero(v))
1189 continue;
1190 isl_mat_col_submul(T, 0, v, 1 + i);
1192 isl_int_clear(v);
1193 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1194 if (!pos)
1195 goto error;
1196 /* We have to be careful because dropping equalities may reorder them */
1197 dropped = 0;
1198 for (j = bmap->n_div - 1; j >= 0; --j) {
1199 for (i = 0; i < bmap->n_eq; ++i)
1200 if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1201 break;
1202 if (i < bmap->n_eq) {
1203 bmap = isl_basic_map_drop_div(bmap, j);
1204 if (isl_basic_map_drop_equality(bmap, i) < 0)
1205 goto error;
1206 ++dropped;
1209 pos[0] = 0;
1210 needed = 0;
1211 for (i = 1; i < T->n_row; ++i) {
1212 if (isl_int_is_one(T->row[i][i]))
1213 pos[i] = i;
1214 else
1215 needed++;
1217 if (needed > dropped) {
1218 bmap = isl_basic_map_extend(bmap, needed, needed, 0);
1219 if (!bmap)
1220 goto error;
1222 for (i = 1; i < T->n_row; ++i) {
1223 if (isl_int_is_one(T->row[i][i]))
1224 continue;
1225 k = isl_basic_map_alloc_div(bmap);
1226 pos[i] = 1 + v_div + k;
1227 isl_seq_clr(bmap->div[k] + 1, 1 + v_div + bmap->n_div);
1228 isl_int_set(bmap->div[k][0], T->row[i][i]);
1229 if (C2)
1230 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + v_div);
1231 else
1232 isl_int_set_si(bmap->div[k][1 + i], 1);
1233 for (j = 0; j < i; ++j) {
1234 if (isl_int_is_zero(T->row[i][j]))
1235 continue;
1236 if (pos[j] < T->n_row && C2)
1237 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1238 C2->row[pos[j]], 1 + v_div);
1239 else
1240 isl_int_neg(bmap->div[k][1 + pos[j]],
1241 T->row[i][j]);
1243 j = isl_basic_map_alloc_equality(bmap);
1244 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+v_div+bmap->n_div);
1245 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1247 free(pos);
1248 isl_mat_free(C2);
1249 isl_mat_free(T);
1251 mark_progress(progress);
1252 done:
1253 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1255 return bmap;
1256 error:
1257 free(pos);
1258 isl_mat_free(C);
1259 isl_mat_free(C2);
1260 isl_mat_free(T);
1261 isl_basic_map_free(bmap);
1262 return NULL;
1265 static __isl_give isl_basic_map *set_div_from_lower_bound(
1266 __isl_take isl_basic_map *bmap, int div, int ineq)
1268 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1270 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1271 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1272 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1273 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1274 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1276 return bmap;
1279 /* Check whether it is ok to define a div based on an inequality.
1280 * To avoid the introduction of circular definitions of divs, we
1281 * do not allow such a definition if the resulting expression would refer to
1282 * any other undefined divs or if any known div is defined in
1283 * terms of the unknown div.
1285 static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
1286 int div, int ineq)
1288 int j;
1289 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1291 /* Not defined in terms of unknown divs */
1292 for (j = 0; j < bmap->n_div; ++j) {
1293 if (div == j)
1294 continue;
1295 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1296 continue;
1297 if (isl_int_is_zero(bmap->div[j][0]))
1298 return isl_bool_false;
1301 /* No other div defined in terms of this one => avoid loops */
1302 for (j = 0; j < bmap->n_div; ++j) {
1303 if (div == j)
1304 continue;
1305 if (isl_int_is_zero(bmap->div[j][0]))
1306 continue;
1307 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1308 return isl_bool_false;
1311 return isl_bool_true;
1314 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1315 * be a better expression than the current one?
1317 * If we do not have any expression yet, then any expression would be better.
1318 * Otherwise we check if the last variable involved in the inequality
1319 * (disregarding the div that it would define) is in an earlier position
1320 * than the last variable involved in the current div expression.
1322 static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
1323 int div, int ineq)
1325 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1326 int last_div;
1327 int last_ineq;
1329 if (isl_int_is_zero(bmap->div[div][0]))
1330 return isl_bool_true;
1332 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1333 bmap->n_div - (div + 1)) >= 0)
1334 return isl_bool_false;
1336 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1337 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1338 total + bmap->n_div);
1340 return last_ineq < last_div;
1343 /* Given two constraints "k" and "l" that are opposite to each other,
1344 * except for the constant term, check if we can use them
1345 * to obtain an expression for one of the hitherto unknown divs or
1346 * a "better" expression for a div for which we already have an expression.
1347 * "sum" is the sum of the constant terms of the constraints.
1348 * If this sum is strictly smaller than the coefficient of one
1349 * of the divs, then this pair can be used to define the div.
1350 * To avoid the introduction of circular definitions of divs, we
1351 * do not use the pair if the resulting expression would refer to
1352 * any other undefined divs or if any known div is defined in
1353 * terms of the unknown div.
1355 static __isl_give isl_basic_map *check_for_div_constraints(
1356 __isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
1357 int *progress)
1359 int i;
1360 unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1362 for (i = 0; i < bmap->n_div; ++i) {
1363 isl_bool set_div;
1365 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1366 continue;
1367 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1368 continue;
1369 set_div = better_div_constraint(bmap, i, k);
1370 if (set_div >= 0 && set_div)
1371 set_div = ok_to_set_div_from_bound(bmap, i, k);
1372 if (set_div < 0)
1373 return isl_basic_map_free(bmap);
1374 if (!set_div)
1375 break;
1376 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1377 bmap = set_div_from_lower_bound(bmap, i, k);
1378 else
1379 bmap = set_div_from_lower_bound(bmap, i, l);
1380 mark_progress(progress);
1381 break;
1383 return bmap;
1386 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1387 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1389 struct isl_constraint_index ci;
1390 int k, l, h;
1391 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
1392 isl_int sum;
1394 if (total < 0 || bmap->n_ineq <= 1)
1395 return bmap;
1397 if (create_constraint_index(&ci, bmap) < 0)
1398 return bmap;
1400 h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1401 ci.index[h] = &bmap->ineq[0];
1402 for (k = 1; k < bmap->n_ineq; ++k) {
1403 h = hash_index(&ci, bmap, k);
1404 if (!ci.index[h]) {
1405 ci.index[h] = &bmap->ineq[k];
1406 continue;
1408 l = ci.index[h] - &bmap->ineq[0];
1409 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1410 swap_inequality(bmap, k, l);
1411 isl_basic_map_drop_inequality(bmap, k);
1412 --k;
1414 isl_int_init(sum);
1415 for (k = 0; bmap && k < bmap->n_ineq-1; ++k) {
1416 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1417 h = hash_index(&ci, bmap, k);
1418 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1419 if (!ci.index[h])
1420 continue;
1421 l = ci.index[h] - &bmap->ineq[0];
1422 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1423 if (isl_int_is_pos(sum)) {
1424 if (detect_divs)
1425 bmap = check_for_div_constraints(bmap, k, l,
1426 sum, progress);
1427 continue;
1429 if (isl_int_is_zero(sum)) {
1430 /* We need to break out of the loop after these
1431 * changes since the contents of the hash
1432 * will no longer be valid.
1433 * Plus, we probably we want to regauss first.
1435 mark_progress(progress);
1436 isl_basic_map_drop_inequality(bmap, l);
1437 isl_basic_map_inequality_to_equality(bmap, k);
1438 } else
1439 bmap = isl_basic_map_set_to_empty(bmap);
1440 break;
1442 isl_int_clear(sum);
1444 constraint_index_free(&ci);
1445 return bmap;
1448 /* Detect all pairs of inequalities that form an equality.
1450 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1451 * Call it repeatedly while it is making progress.
1453 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1454 __isl_take isl_basic_map *bmap, int *progress)
1456 int duplicate;
1458 do {
1459 duplicate = 0;
1460 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1461 &duplicate, 0);
1462 if (duplicate)
1463 mark_progress(progress);
1464 } while (duplicate);
1466 return bmap;
1469 /* Given a known integer division "div" that is not integral
1470 * (with denominator 1), eliminate it from the constraints in "bmap"
1471 * where it appears with a (positive or negative) unit coefficient.
1472 * If "progress" is not NULL, then it gets set if the elimination
1473 * results in any changes.
1475 * That is, replace
1477 * floor(e/m) + f >= 0
1479 * by
1481 * e + m f >= 0
1483 * and
1485 * -floor(e/m) + f >= 0
1487 * by
1489 * -e + m f + m - 1 >= 0
1491 * The first conversion is valid because floor(e/m) >= -f is equivalent
1492 * to e/m >= -f because -f is an integral expression.
1493 * The second conversion follows from the fact that
1495 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1498 * Note that one of the div constraints may have been eliminated
1499 * due to being redundant with respect to the constraint that is
1500 * being modified by this function. The modified constraint may
1501 * no longer imply this div constraint, so we add it back to make
1502 * sure we do not lose any information.
1504 static __isl_give isl_basic_map *eliminate_unit_div(
1505 __isl_take isl_basic_map *bmap, int div, int *progress)
1507 int j;
1508 isl_size v_div, dim;
1509 isl_ctx *ctx;
1511 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1512 dim = isl_basic_map_dim(bmap, isl_dim_all);
1513 if (v_div < 0 || dim < 0)
1514 return isl_basic_map_free(bmap);
1516 ctx = isl_basic_map_get_ctx(bmap);
1518 for (j = 0; j < bmap->n_ineq; ++j) {
1519 int s;
1521 if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) &&
1522 !isl_int_is_negone(bmap->ineq[j][1 + v_div + div]))
1523 continue;
1525 mark_progress(progress);
1527 s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]);
1528 isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0);
1529 if (s < 0)
1530 isl_seq_combine(bmap->ineq[j],
1531 ctx->negone, bmap->div[div] + 1,
1532 bmap->div[div][0], bmap->ineq[j], 1 + dim);
1533 else
1534 isl_seq_combine(bmap->ineq[j],
1535 ctx->one, bmap->div[div] + 1,
1536 bmap->div[div][0], bmap->ineq[j], 1 + dim);
1537 if (s < 0) {
1538 isl_int_add(bmap->ineq[j][0],
1539 bmap->ineq[j][0], bmap->div[div][0]);
1540 isl_int_sub_ui(bmap->ineq[j][0],
1541 bmap->ineq[j][0], 1);
1544 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1545 bmap = isl_basic_map_add_div_constraint(bmap, div, s);
1546 if (!bmap)
1547 return NULL;
1550 return bmap;
1553 /* Eliminate selected known divs from constraints where they appear with
1554 * a (positive or negative) unit coefficient.
1555 * In particular, only handle those for which "select" returns isl_bool_true.
1556 * If "progress" is not NULL, then it gets set if the elimination
1557 * results in any changes.
1559 * We skip integral divs, i.e., those with denominator 1, as we would
1560 * risk eliminating the div from the div constraints.
1561 * They are eliminated in eliminate_integral_divs instead.
1563 static __isl_give isl_basic_map *eliminate_selected_unit_divs(
1564 __isl_take isl_basic_map *bmap,
1565 isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div),
1566 int *progress)
1568 int i;
1569 isl_size n_div;
1571 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1572 if (n_div < 0)
1573 return isl_basic_map_free(bmap);
1575 for (i = 0; i < n_div; ++i) {
1576 isl_bool skip;
1577 isl_bool selected;
1579 skip = isl_basic_map_div_is_marked_unknown(bmap, i);
1580 if (skip >= 0 && !skip)
1581 skip = isl_basic_map_div_is_integral(bmap, i);
1582 if (skip < 0)
1583 return isl_basic_map_free(bmap);
1584 if (skip)
1585 continue;
1586 selected = select(bmap, i);
1587 if (selected < 0)
1588 return isl_basic_map_free(bmap);
1589 if (!selected)
1590 continue;
1591 bmap = eliminate_unit_div(bmap, i, progress);
1592 if (!bmap)
1593 return NULL;
1596 return bmap;
1599 /* eliminate_selected_unit_divs callback that selects every
1600 * integer division.
1602 static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div)
1604 return isl_bool_true;
1607 /* Eliminate known divs from constraints where they appear with
1608 * a (positive or negative) unit coefficient.
1609 * If "progress" is not NULL, then it gets set if the elimination
1610 * results in any changes.
1612 static __isl_give isl_basic_map *eliminate_unit_divs(
1613 __isl_take isl_basic_map *bmap, int *progress)
1615 return eliminate_selected_unit_divs(bmap, &is_any_div, progress);
1618 /* eliminate_selected_unit_divs callback that selects
1619 * integer divisions that only appear with
1620 * a (positive or negative) unit coefficient
1621 * (outside their div constraints).
1623 static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div)
1625 int i;
1626 isl_size v_div, n_ineq;
1628 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1629 n_ineq = isl_basic_map_n_inequality(bmap);
1630 if (v_div < 0 || n_ineq < 0)
1631 return isl_bool_error;
1633 for (i = 0; i < n_ineq; ++i) {
1634 isl_bool skip;
1636 if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div]))
1637 continue;
1638 skip = isl_basic_map_is_div_constraint(bmap,
1639 bmap->ineq[i], div);
1640 if (skip < 0)
1641 return isl_bool_error;
1642 if (skip)
1643 continue;
1644 if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) &&
1645 !isl_int_is_negone(bmap->ineq[i][1 + v_div + div]))
1646 return isl_bool_false;
1649 return isl_bool_true;
1652 /* Eliminate known divs from constraints where they appear with
1653 * a (positive or negative) unit coefficient,
1654 * but only if they do not appear in any other constraints
1655 * (other than the div constraints).
1657 __isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs(
1658 __isl_take isl_basic_map *bmap)
1660 return eliminate_selected_unit_divs(bmap, &is_pure_unit_div, NULL);
1663 __isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
1665 int progress = 1;
1666 if (!bmap)
1667 return NULL;
1668 while (progress) {
1669 isl_bool empty;
1671 progress = 0;
1672 empty = isl_basic_map_plain_is_empty(bmap);
1673 if (empty < 0)
1674 return isl_basic_map_free(bmap);
1675 if (empty)
1676 break;
1677 bmap = isl_basic_map_normalize_constraints(bmap);
1678 bmap = reduce_div_coefficients(bmap);
1679 bmap = normalize_div_expressions(bmap);
1680 bmap = remove_duplicate_divs(bmap, &progress);
1681 bmap = eliminate_unit_divs(bmap, &progress);
1682 bmap = eliminate_divs_eq(bmap, &progress);
1683 bmap = eliminate_divs_ineq(bmap, &progress);
1684 bmap = eliminate_integral_divs(bmap, &progress);
1685 bmap = isl_basic_map_gauss(bmap, &progress);
1686 /* requires equalities in normal form */
1687 bmap = normalize_divs(bmap, &progress);
1688 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1689 &progress, 1);
1691 return bmap;
1694 __isl_give isl_basic_set *isl_basic_set_simplify(
1695 __isl_take isl_basic_set *bset)
1697 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
1701 isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1702 isl_int *constraint, unsigned div)
1704 unsigned pos;
1706 if (!bmap)
1707 return isl_bool_error;
1709 pos = isl_basic_map_offset(bmap, isl_dim_div) + div;
1711 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1712 int neg;
1713 isl_int_sub(bmap->div[div][1],
1714 bmap->div[div][1], bmap->div[div][0]);
1715 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1716 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1717 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1718 isl_int_add(bmap->div[div][1],
1719 bmap->div[div][1], bmap->div[div][0]);
1720 if (!neg)
1721 return isl_bool_false;
1722 if (isl_seq_first_non_zero(constraint+pos+1,
1723 bmap->n_div-div-1) != -1)
1724 return isl_bool_false;
1725 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1726 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1727 return isl_bool_false;
1728 if (isl_seq_first_non_zero(constraint+pos+1,
1729 bmap->n_div-div-1) != -1)
1730 return isl_bool_false;
1731 } else
1732 return isl_bool_false;
1734 return isl_bool_true;
1737 /* If the only constraints a div d=floor(f/m)
1738 * appears in are its two defining constraints
1740 * f - m d >=0
1741 * -(f - (m - 1)) + m d >= 0
1743 * then it can safely be removed.
1745 static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
1747 int i;
1748 isl_size v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1749 unsigned pos = 1 + v_div + div;
1751 if (v_div < 0)
1752 return isl_bool_error;
1754 for (i = 0; i < bmap->n_eq; ++i)
1755 if (!isl_int_is_zero(bmap->eq[i][pos]))
1756 return isl_bool_false;
1758 for (i = 0; i < bmap->n_ineq; ++i) {
1759 isl_bool red;
1761 if (isl_int_is_zero(bmap->ineq[i][pos]))
1762 continue;
1763 red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
1764 if (red < 0 || !red)
1765 return red;
1768 for (i = 0; i < bmap->n_div; ++i) {
1769 if (isl_int_is_zero(bmap->div[i][0]))
1770 continue;
1771 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1772 return isl_bool_false;
1775 return isl_bool_true;
1779 * Remove divs that don't occur in any of the constraints or other divs.
1780 * These can arise when dropping constraints from a basic map or
1781 * when the divs of a basic map have been temporarily aligned
1782 * with the divs of another basic map.
1784 static __isl_give isl_basic_map *remove_redundant_divs(
1785 __isl_take isl_basic_map *bmap)
1787 int i;
1788 isl_size v_div;
1790 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1791 if (v_div < 0)
1792 return isl_basic_map_free(bmap);
1794 for (i = bmap->n_div-1; i >= 0; --i) {
1795 isl_bool redundant;
1797 redundant = div_is_redundant(bmap, i);
1798 if (redundant < 0)
1799 return isl_basic_map_free(bmap);
1800 if (!redundant)
1801 continue;
1802 bmap = isl_basic_map_drop_constraints_involving(bmap,
1803 v_div + i, 1);
1804 bmap = isl_basic_map_drop_div(bmap, i);
1806 return bmap;
1809 /* Mark "bmap" as final, without checking for obviously redundant
1810 * integer divisions. This function should be used when "bmap"
1811 * is known not to involve any such integer divisions.
1813 __isl_give isl_basic_map *isl_basic_map_mark_final(
1814 __isl_take isl_basic_map *bmap)
1816 if (!bmap)
1817 return NULL;
1818 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1819 return bmap;
1822 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1824 __isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
1826 bmap = remove_redundant_divs(bmap);
1827 bmap = isl_basic_map_mark_final(bmap);
1828 return bmap;
1831 __isl_give isl_basic_set *isl_basic_set_finalize(
1832 __isl_take isl_basic_set *bset)
1834 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
1837 /* Remove definition of any div that is defined in terms of the given variable.
1838 * The div itself is not removed. Functions such as
1839 * eliminate_divs_ineq depend on the other divs remaining in place.
1841 static __isl_give isl_basic_map *remove_dependent_vars(
1842 __isl_take isl_basic_map *bmap, int pos)
1844 int i;
1846 if (!bmap)
1847 return NULL;
1849 for (i = 0; i < bmap->n_div; ++i) {
1850 if (isl_int_is_zero(bmap->div[i][0]))
1851 continue;
1852 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1853 continue;
1854 bmap = isl_basic_map_mark_div_unknown(bmap, i);
1855 if (!bmap)
1856 return NULL;
1858 return bmap;
1861 /* Eliminate the specified variables from the constraints using
1862 * Fourier-Motzkin. The variables themselves are not removed.
1864 __isl_give isl_basic_map *isl_basic_map_eliminate_vars(
1865 __isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
1867 int d;
1868 int i, j, k;
1869 isl_size total;
1870 int need_gauss = 0;
1872 if (n == 0)
1873 return bmap;
1874 total = isl_basic_map_dim(bmap, isl_dim_all);
1875 if (total < 0)
1876 return isl_basic_map_free(bmap);
1878 bmap = isl_basic_map_cow(bmap);
1879 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1880 bmap = remove_dependent_vars(bmap, d);
1881 if (!bmap)
1882 return NULL;
1884 for (d = pos + n - 1;
1885 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1886 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1887 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1888 int n_lower, n_upper;
1889 if (!bmap)
1890 return NULL;
1891 for (i = 0; i < bmap->n_eq; ++i) {
1892 if (isl_int_is_zero(bmap->eq[i][1+d]))
1893 continue;
1894 bmap = eliminate_var_using_equality(bmap, d,
1895 bmap->eq[i], 0, 1, NULL);
1896 if (isl_basic_map_drop_equality(bmap, i) < 0)
1897 return isl_basic_map_free(bmap);
1898 need_gauss = 1;
1899 break;
1901 if (i < bmap->n_eq)
1902 continue;
1903 n_lower = 0;
1904 n_upper = 0;
1905 for (i = 0; i < bmap->n_ineq; ++i) {
1906 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1907 n_lower++;
1908 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1909 n_upper++;
1911 bmap = isl_basic_map_extend_constraints(bmap,
1912 0, n_lower * n_upper);
1913 if (!bmap)
1914 goto error;
1915 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1916 int last;
1917 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1918 continue;
1919 last = -1;
1920 for (j = 0; j < i; ++j) {
1921 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1922 continue;
1923 last = j;
1924 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1925 isl_int_sgn(bmap->ineq[j][1+d]))
1926 continue;
1927 k = isl_basic_map_alloc_inequality(bmap);
1928 if (k < 0)
1929 goto error;
1930 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1931 1+total);
1932 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1933 1+d, 1+total, NULL);
1935 isl_basic_map_drop_inequality(bmap, i);
1936 i = last + 1;
1938 if (n_lower > 0 && n_upper > 0) {
1939 bmap = isl_basic_map_normalize_constraints(bmap);
1940 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1941 NULL, 0);
1942 bmap = isl_basic_map_gauss(bmap, NULL);
1943 bmap = isl_basic_map_remove_redundancies(bmap);
1944 need_gauss = 0;
1945 if (!bmap)
1946 goto error;
1947 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1948 break;
1951 if (need_gauss)
1952 bmap = isl_basic_map_gauss(bmap, NULL);
1953 return bmap;
1954 error:
1955 isl_basic_map_free(bmap);
1956 return NULL;
1959 __isl_give isl_basic_set *isl_basic_set_eliminate_vars(
1960 __isl_take isl_basic_set *bset, unsigned pos, unsigned n)
1962 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
1963 pos, n));
1966 /* Eliminate the specified n dimensions starting at first from the
1967 * constraints, without removing the dimensions from the space.
1968 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1969 * Otherwise, they are projected out and the original space is restored.
1971 __isl_give isl_basic_map *isl_basic_map_eliminate(
1972 __isl_take isl_basic_map *bmap,
1973 enum isl_dim_type type, unsigned first, unsigned n)
1975 isl_space *space;
1977 if (!bmap)
1978 return NULL;
1979 if (n == 0)
1980 return bmap;
1982 if (isl_basic_map_check_range(bmap, type, first, n) < 0)
1983 return isl_basic_map_free(bmap);
1985 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1986 first += isl_basic_map_offset(bmap, type) - 1;
1987 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1988 return isl_basic_map_finalize(bmap);
1991 space = isl_basic_map_get_space(bmap);
1992 bmap = isl_basic_map_project_out(bmap, type, first, n);
1993 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1994 bmap = isl_basic_map_reset_space(bmap, space);
1995 return bmap;
1998 __isl_give isl_basic_set *isl_basic_set_eliminate(
1999 __isl_take isl_basic_set *bset,
2000 enum isl_dim_type type, unsigned first, unsigned n)
2002 return isl_basic_map_eliminate(bset, type, first, n);
2005 /* Remove all constraints from "bmap" that reference any unknown local
2006 * variables (directly or indirectly).
2008 * Dropping all constraints on a local variable will make it redundant,
2009 * so it will get removed implicitly by
2010 * isl_basic_map_drop_constraints_involving_dims. Some other local
2011 * variables may also end up becoming redundant if they only appear
2012 * in constraints together with the unknown local variable.
2013 * Therefore, start over after calling
2014 * isl_basic_map_drop_constraints_involving_dims.
2016 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs(
2017 __isl_take isl_basic_map *bmap)
2019 isl_bool known;
2020 isl_size n_div;
2021 int i, o_div;
2023 known = isl_basic_map_divs_known(bmap);
2024 if (known < 0)
2025 return isl_basic_map_free(bmap);
2026 if (known)
2027 return bmap;
2029 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2030 if (n_div < 0)
2031 return isl_basic_map_free(bmap);
2032 o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
2034 for (i = 0; i < n_div; ++i) {
2035 known = isl_basic_map_div_is_known(bmap, i);
2036 if (known < 0)
2037 return isl_basic_map_free(bmap);
2038 if (known)
2039 continue;
2040 bmap = remove_dependent_vars(bmap, o_div + i);
2041 bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
2042 isl_dim_div, i, 1);
2043 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2044 if (n_div < 0)
2045 return isl_basic_map_free(bmap);
2046 i = -1;
2049 return bmap;
2052 /* Remove all constraints from "bset" that reference any unknown local
2053 * variables (directly or indirectly).
2055 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs(
2056 __isl_take isl_basic_set *bset)
2058 isl_basic_map *bmap;
2060 bmap = bset_to_bmap(bset);
2061 bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap);
2062 return bset_from_bmap(bmap);
2065 /* Remove all constraints from "map" that reference any unknown local
2066 * variables (directly or indirectly).
2068 * Since constraints may get dropped from the basic maps,
2069 * they may no longer be disjoint from each other.
2071 __isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs(
2072 __isl_take isl_map *map)
2074 int i;
2075 isl_bool known;
2077 known = isl_map_divs_known(map);
2078 if (known < 0)
2079 return isl_map_free(map);
2080 if (known)
2081 return map;
2083 map = isl_map_cow(map);
2084 if (!map)
2085 return NULL;
2087 for (i = 0; i < map->n; ++i) {
2088 map->p[i] =
2089 isl_basic_map_drop_constraints_involving_unknown_divs(
2090 map->p[i]);
2091 if (!map->p[i])
2092 return isl_map_free(map);
2095 if (map->n > 1)
2096 ISL_F_CLR(map, ISL_MAP_DISJOINT);
2098 return map;
2101 /* Don't assume equalities are in order, because align_divs
2102 * may have changed the order of the divs.
2104 static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim,
2105 unsigned len)
2107 int d, i;
2109 for (d = 0; d < len; ++d)
2110 elim[d] = -1;
2111 for (i = 0; i < bmap->n_eq; ++i) {
2112 for (d = len - 1; d >= 0; --d) {
2113 if (isl_int_is_zero(bmap->eq[i][1+d]))
2114 continue;
2115 elim[d] = i;
2116 break;
2121 static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
2122 int *elim, unsigned len)
2124 compute_elimination_index(bset_to_bmap(bset), elim, len);
2127 static int reduced_using_equalities(isl_int *dst, isl_int *src,
2128 __isl_keep isl_basic_map *bmap, int *elim, unsigned total)
2130 int d;
2131 int copied = 0;
2133 for (d = total - 1; d >= 0; --d) {
2134 if (isl_int_is_zero(src[1+d]))
2135 continue;
2136 if (elim[d] == -1)
2137 continue;
2138 if (!copied) {
2139 isl_seq_cpy(dst, src, 1 + total);
2140 copied = 1;
2142 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
2144 return copied;
2147 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
2148 __isl_keep isl_basic_set *bset, int *elim, unsigned total)
2150 return reduced_using_equalities(dst, src,
2151 bset_to_bmap(bset), elim, total);
2154 static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
2155 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2157 int i;
2158 int *elim;
2159 isl_size dim;
2161 if (!bset || !context)
2162 goto error;
2164 if (context->n_eq == 0) {
2165 isl_basic_set_free(context);
2166 return bset;
2169 bset = isl_basic_set_cow(bset);
2170 dim = isl_basic_set_dim(bset, isl_dim_set);
2171 if (dim < 0)
2172 goto error;
2174 elim = isl_alloc_array(bset->ctx, int, dim);
2175 if (!elim)
2176 goto error;
2177 set_compute_elimination_index(context, elim, dim);
2178 for (i = 0; i < bset->n_eq; ++i)
2179 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
2180 context, elim, dim);
2181 for (i = 0; i < bset->n_ineq; ++i)
2182 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
2183 context, elim, dim);
2184 isl_basic_set_free(context);
2185 free(elim);
2186 bset = isl_basic_set_simplify(bset);
2187 bset = isl_basic_set_finalize(bset);
2188 return bset;
2189 error:
2190 isl_basic_set_free(bset);
2191 isl_basic_set_free(context);
2192 return NULL;
2195 /* For each inequality in "ineq" that is a shifted (more relaxed)
2196 * copy of an inequality in "context", mark the corresponding entry
2197 * in "row" with -1.
2198 * If an inequality only has a non-negative constant term, then
2199 * mark it as well.
2201 static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
2202 __isl_keep isl_basic_set *context, int *row)
2204 struct isl_constraint_index ci;
2205 isl_size n_ineq, cols;
2206 unsigned total;
2207 int k;
2209 if (!ineq || !context)
2210 return isl_stat_error;
2211 if (context->n_ineq == 0)
2212 return isl_stat_ok;
2213 if (setup_constraint_index(&ci, context) < 0)
2214 return isl_stat_error;
2216 n_ineq = isl_mat_rows(ineq);
2217 cols = isl_mat_cols(ineq);
2218 if (n_ineq < 0 || cols < 0)
2219 return isl_stat_error;
2220 total = cols - 1;
2221 for (k = 0; k < n_ineq; ++k) {
2222 int l;
2223 isl_bool redundant;
2225 l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
2226 if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
2227 row[k] = -1;
2228 continue;
2230 redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
2231 if (redundant < 0)
2232 goto error;
2233 if (!redundant)
2234 continue;
2235 row[k] = -1;
2237 constraint_index_free(&ci);
2238 return isl_stat_ok;
2239 error:
2240 constraint_index_free(&ci);
2241 return isl_stat_error;
2244 static __isl_give isl_basic_set *remove_shifted_constraints(
2245 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
2247 struct isl_constraint_index ci;
2248 int k;
2250 if (!bset || !context)
2251 return bset;
2253 if (context->n_ineq == 0)
2254 return bset;
2255 if (setup_constraint_index(&ci, context) < 0)
2256 return bset;
2258 for (k = 0; k < bset->n_ineq; ++k) {
2259 isl_bool redundant;
2261 redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
2262 if (redundant < 0)
2263 goto error;
2264 if (!redundant)
2265 continue;
2266 bset = isl_basic_set_cow(bset);
2267 if (!bset)
2268 goto error;
2269 isl_basic_set_drop_inequality(bset, k);
2270 --k;
2272 constraint_index_free(&ci);
2273 return bset;
2274 error:
2275 constraint_index_free(&ci);
2276 return bset;
2279 /* Remove constraints from "bmap" that are identical to constraints
2280 * in "context" or that are more relaxed (greater constant term).
2282 * We perform the test for shifted copies on the pure constraints
2283 * in remove_shifted_constraints.
2285 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
2286 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
2288 isl_basic_set *bset, *bset_context;
2290 if (!bmap || !context)
2291 goto error;
2293 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
2294 isl_basic_map_free(context);
2295 return bmap;
2298 bmap = isl_basic_map_order_divs(bmap);
2299 context = isl_basic_map_align_divs(context, bmap);
2300 bmap = isl_basic_map_align_divs(bmap, context);
2302 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
2303 bset_context = isl_basic_map_underlying_set(context);
2304 bset = remove_shifted_constraints(bset, bset_context);
2305 isl_basic_set_free(bset_context);
2307 bmap = isl_basic_map_overlying_set(bset, bmap);
2309 return bmap;
2310 error:
2311 isl_basic_map_free(bmap);
2312 isl_basic_map_free(context);
2313 return NULL;
2316 /* Does the (linear part of a) constraint "c" involve any of the "len"
2317 * "relevant" dimensions?
2319 static int is_related(isl_int *c, int len, int *relevant)
2321 int i;
2323 for (i = 0; i < len; ++i) {
2324 if (!relevant[i])
2325 continue;
2326 if (!isl_int_is_zero(c[i]))
2327 return 1;
2330 return 0;
2333 /* Drop constraints from "bmap" that do not involve any of
2334 * the dimensions marked "relevant".
2336 static __isl_give isl_basic_map *drop_unrelated_constraints(
2337 __isl_take isl_basic_map *bmap, int *relevant)
2339 int i;
2340 isl_size dim;
2342 dim = isl_basic_map_dim(bmap, isl_dim_all);
2343 if (dim < 0)
2344 return isl_basic_map_free(bmap);
2345 for (i = 0; i < dim; ++i)
2346 if (!relevant[i])
2347 break;
2348 if (i >= dim)
2349 return bmap;
2351 for (i = bmap->n_eq - 1; i >= 0; --i)
2352 if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
2353 bmap = isl_basic_map_cow(bmap);
2354 if (isl_basic_map_drop_equality(bmap, i) < 0)
2355 return isl_basic_map_free(bmap);
2358 for (i = bmap->n_ineq - 1; i >= 0; --i)
2359 if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
2360 bmap = isl_basic_map_cow(bmap);
2361 if (isl_basic_map_drop_inequality(bmap, i) < 0)
2362 return isl_basic_map_free(bmap);
2365 return bmap;
2368 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2370 * In particular, for any variable involved in the constraint,
2371 * find the actual group id from before and replace the group
2372 * of the corresponding variable by the minimal group of all
2373 * the variables involved in the constraint considered so far
2374 * (if this minimum is smaller) or replace the minimum by this group
2375 * (if the minimum is larger).
2377 * At the end, all the variables in "c" will (indirectly) point
2378 * to the minimal of the groups that they referred to originally.
2380 static void update_groups(int dim, int *group, isl_int *c)
2382 int j;
2383 int min = dim;
2385 for (j = 0; j < dim; ++j) {
2386 if (isl_int_is_zero(c[j]))
2387 continue;
2388 while (group[j] >= 0 && group[group[j]] != group[j])
2389 group[j] = group[group[j]];
2390 if (group[j] == min)
2391 continue;
2392 if (group[j] < min) {
2393 if (min >= 0 && min < dim)
2394 group[min] = group[j];
2395 min = group[j];
2396 } else
2397 group[group[j]] = min;
2401 /* Allocate an array of groups of variables, one for each variable
2402 * in "context", initialized to zero.
2404 static int *alloc_groups(__isl_keep isl_basic_set *context)
2406 isl_ctx *ctx;
2407 isl_size dim;
2409 dim = isl_basic_set_dim(context, isl_dim_set);
2410 if (dim < 0)
2411 return NULL;
2412 ctx = isl_basic_set_get_ctx(context);
2413 return isl_calloc_array(ctx, int, dim);
2416 /* Drop constraints from "bmap" that only involve variables that are
2417 * not related to any of the variables marked with a "-1" in "group".
2419 * We construct groups of variables that collect variables that
2420 * (indirectly) appear in some common constraint of "bmap".
2421 * Each group is identified by the first variable in the group,
2422 * except for the special group of variables that was already identified
2423 * in the input as -1 (or are related to those variables).
2424 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2425 * otherwise the group of i is the group of group[i].
2427 * We first initialize groups for the remaining variables.
2428 * Then we iterate over the constraints of "bmap" and update the
2429 * group of the variables in the constraint by the smallest group.
2430 * Finally, we resolve indirect references to groups by running over
2431 * the variables.
2433 * After computing the groups, we drop constraints that do not involve
2434 * any variables in the -1 group.
2436 __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
2437 __isl_take isl_basic_map *bmap, __isl_take int *group)
2439 isl_size dim;
2440 int i;
2441 int last;
2443 dim = isl_basic_map_dim(bmap, isl_dim_all);
2444 if (dim < 0)
2445 return isl_basic_map_free(bmap);
2447 last = -1;
2448 for (i = 0; i < dim; ++i)
2449 if (group[i] >= 0)
2450 last = group[i] = i;
2451 if (last < 0) {
2452 free(group);
2453 return bmap;
2456 for (i = 0; i < bmap->n_eq; ++i)
2457 update_groups(dim, group, bmap->eq[i] + 1);
2458 for (i = 0; i < bmap->n_ineq; ++i)
2459 update_groups(dim, group, bmap->ineq[i] + 1);
2461 for (i = 0; i < dim; ++i)
2462 if (group[i] >= 0)
2463 group[i] = group[group[i]];
2465 for (i = 0; i < dim; ++i)
2466 group[i] = group[i] == -1;
2468 bmap = drop_unrelated_constraints(bmap, group);
2470 free(group);
2471 return bmap;
2474 /* Drop constraints from "context" that are irrelevant for computing
2475 * the gist of "bset".
2477 * In particular, drop constraints in variables that are not related
2478 * to any of the variables involved in the constraints of "bset"
2479 * in the sense that there is no sequence of constraints that connects them.
2481 * We first mark all variables that appear in "bset" as belonging
2482 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2484 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2485 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2487 int *group;
2488 isl_size dim;
2489 int i, j;
2491 dim = isl_basic_set_dim(bset, isl_dim_set);
2492 if (!context || dim < 0)
2493 return isl_basic_set_free(context);
2495 group = alloc_groups(context);
2497 if (!group)
2498 return isl_basic_set_free(context);
2500 for (i = 0; i < dim; ++i) {
2501 for (j = 0; j < bset->n_eq; ++j)
2502 if (!isl_int_is_zero(bset->eq[j][1 + i]))
2503 break;
2504 if (j < bset->n_eq) {
2505 group[i] = -1;
2506 continue;
2508 for (j = 0; j < bset->n_ineq; ++j)
2509 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2510 break;
2511 if (j < bset->n_ineq)
2512 group[i] = -1;
2515 return isl_basic_map_drop_unrelated_constraints(context, group);
2518 /* Drop constraints from "context" that are irrelevant for computing
2519 * the gist of the inequalities "ineq".
2520 * Inequalities in "ineq" for which the corresponding element of row
2521 * is set to -1 have already been marked for removal and should be ignored.
2523 * In particular, drop constraints in variables that are not related
2524 * to any of the variables involved in "ineq"
2525 * in the sense that there is no sequence of constraints that connects them.
2527 * We first mark all variables that appear in "bset" as belonging
2528 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2530 static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2531 __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2533 int *group;
2534 isl_size dim;
2535 int i, j;
2536 isl_size n;
2538 dim = isl_basic_set_dim(context, isl_dim_set);
2539 n = isl_mat_rows(ineq);
2540 if (dim < 0 || n < 0)
2541 return isl_basic_set_free(context);
2543 group = alloc_groups(context);
2545 if (!group)
2546 return isl_basic_set_free(context);
2548 for (i = 0; i < dim; ++i) {
2549 for (j = 0; j < n; ++j) {
2550 if (row[j] < 0)
2551 continue;
2552 if (!isl_int_is_zero(ineq->row[j][1 + i]))
2553 break;
2555 if (j < n)
2556 group[i] = -1;
2559 return isl_basic_map_drop_unrelated_constraints(context, group);
2562 /* Do all "n" entries of "row" contain a negative value?
2564 static int all_neg(int *row, int n)
2566 int i;
2568 for (i = 0; i < n; ++i)
2569 if (row[i] >= 0)
2570 return 0;
2572 return 1;
2575 /* Update the inequalities in "bset" based on the information in "row"
2576 * and "tab".
2578 * In particular, the array "row" contains either -1, meaning that
2579 * the corresponding inequality of "bset" is redundant, or the index
2580 * of an inequality in "tab".
2582 * If the row entry is -1, then drop the inequality.
2583 * Otherwise, if the constraint is marked redundant in the tableau,
2584 * then drop the inequality. Similarly, if it is marked as an equality
2585 * in the tableau, then turn the inequality into an equality and
2586 * perform Gaussian elimination.
2588 static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2589 __isl_keep int *row, struct isl_tab *tab)
2591 int i;
2592 unsigned n_ineq;
2593 unsigned n_eq;
2594 int found_equality = 0;
2596 if (!bset)
2597 return NULL;
2598 if (tab && tab->empty)
2599 return isl_basic_set_set_to_empty(bset);
2601 n_ineq = bset->n_ineq;
2602 for (i = n_ineq - 1; i >= 0; --i) {
2603 if (row[i] < 0) {
2604 if (isl_basic_set_drop_inequality(bset, i) < 0)
2605 return isl_basic_set_free(bset);
2606 continue;
2608 if (!tab)
2609 continue;
2610 n_eq = tab->n_eq;
2611 if (isl_tab_is_equality(tab, n_eq + row[i])) {
2612 isl_basic_map_inequality_to_equality(bset, i);
2613 found_equality = 1;
2614 } else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2615 if (isl_basic_set_drop_inequality(bset, i) < 0)
2616 return isl_basic_set_free(bset);
2620 if (found_equality)
2621 bset = isl_basic_set_gauss(bset, NULL);
2622 bset = isl_basic_set_finalize(bset);
2623 return bset;
2626 /* Update the inequalities in "bset" based on the information in "row"
2627 * and "tab" and free all arguments (other than "bset").
2629 static __isl_give isl_basic_set *update_ineq_free(
2630 __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2631 __isl_take isl_basic_set *context, __isl_take int *row,
2632 struct isl_tab *tab)
2634 isl_mat_free(ineq);
2635 isl_basic_set_free(context);
2637 bset = update_ineq(bset, row, tab);
2639 free(row);
2640 isl_tab_free(tab);
2641 return bset;
2644 /* Remove all information from bset that is redundant in the context
2645 * of context.
2646 * "ineq" contains the (possibly transformed) inequalities of "bset",
2647 * in the same order.
2648 * The (explicit) equalities of "bset" are assumed to have been taken
2649 * into account by the transformation such that only the inequalities
2650 * are relevant.
2651 * "context" is assumed not to be empty.
2653 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2654 * A value of -1 means that the inequality is obviously redundant and may
2655 * not even appear in "tab".
2657 * We first mark the inequalities of "bset"
2658 * that are obviously redundant with respect to some inequality in "context".
2659 * Then we remove those constraints from "context" that have become
2660 * irrelevant for computing the gist of "bset".
2661 * Note that this removal of constraints cannot be replaced by
2662 * a factorization because factors in "bset" may still be connected
2663 * to each other through constraints in "context".
2665 * If there are any inequalities left, we construct a tableau for
2666 * the context and then add the inequalities of "bset".
2667 * Before adding these inequalities, we freeze all constraints such that
2668 * they won't be considered redundant in terms of the constraints of "bset".
2669 * Then we detect all redundant constraints (among the
2670 * constraints that weren't frozen), first by checking for redundancy in the
2671 * the tableau and then by checking if replacing a constraint by its negation
2672 * would lead to an empty set. This last step is fairly expensive
2673 * and could be optimized by more reuse of the tableau.
2674 * Finally, we update bset according to the results.
2676 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2677 __isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2679 int i, r;
2680 int *row = NULL;
2681 isl_ctx *ctx;
2682 isl_basic_set *combined = NULL;
2683 struct isl_tab *tab = NULL;
2684 unsigned n_eq, context_ineq;
2686 if (!bset || !ineq || !context)
2687 goto error;
2689 if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
2690 isl_basic_set_free(context);
2691 isl_mat_free(ineq);
2692 return bset;
2695 ctx = isl_basic_set_get_ctx(context);
2696 row = isl_calloc_array(ctx, int, bset->n_ineq);
2697 if (!row)
2698 goto error;
2700 if (mark_shifted_constraints(ineq, context, row) < 0)
2701 goto error;
2702 if (all_neg(row, bset->n_ineq))
2703 return update_ineq_free(bset, ineq, context, row, NULL);
2705 context = drop_irrelevant_constraints_marked(context, ineq, row);
2706 if (!context)
2707 goto error;
2708 if (isl_basic_set_plain_is_universe(context))
2709 return update_ineq_free(bset, ineq, context, row, NULL);
2711 n_eq = context->n_eq;
2712 context_ineq = context->n_ineq;
2713 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2714 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2715 tab = isl_tab_from_basic_set(combined, 0);
2716 for (i = 0; i < context_ineq; ++i)
2717 if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2718 goto error;
2719 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2720 goto error;
2721 r = context_ineq;
2722 for (i = 0; i < bset->n_ineq; ++i) {
2723 if (row[i] < 0)
2724 continue;
2725 combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2726 if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2727 goto error;
2728 row[i] = r++;
2730 if (isl_tab_detect_implicit_equalities(tab) < 0)
2731 goto error;
2732 if (isl_tab_detect_redundant(tab) < 0)
2733 goto error;
2734 for (i = bset->n_ineq - 1; i >= 0; --i) {
2735 isl_basic_set *test;
2736 int is_empty;
2738 if (row[i] < 0)
2739 continue;
2740 r = row[i];
2741 if (tab->con[n_eq + r].is_redundant)
2742 continue;
2743 test = isl_basic_set_dup(combined);
2744 test = isl_inequality_negate(test, r);
2745 test = isl_basic_set_update_from_tab(test, tab);
2746 is_empty = isl_basic_set_is_empty(test);
2747 isl_basic_set_free(test);
2748 if (is_empty < 0)
2749 goto error;
2750 if (is_empty)
2751 tab->con[n_eq + r].is_redundant = 1;
2753 bset = update_ineq_free(bset, ineq, context, row, tab);
2754 if (bset) {
2755 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2756 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2759 isl_basic_set_free(combined);
2760 return bset;
2761 error:
2762 free(row);
2763 isl_mat_free(ineq);
2764 isl_tab_free(tab);
2765 isl_basic_set_free(combined);
2766 isl_basic_set_free(context);
2767 isl_basic_set_free(bset);
2768 return NULL;
2771 /* Extract the inequalities of "bset" as an isl_mat.
2773 static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2775 isl_size total;
2776 isl_ctx *ctx;
2777 isl_mat *ineq;
2779 total = isl_basic_set_dim(bset, isl_dim_all);
2780 if (total < 0)
2781 return NULL;
2783 ctx = isl_basic_set_get_ctx(bset);
2784 ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2785 0, 1 + total);
2787 return ineq;
2790 /* Remove all information from "bset" that is redundant in the context
2791 * of "context", for the case where both "bset" and "context" are
2792 * full-dimensional.
2794 static __isl_give isl_basic_set *uset_gist_uncompressed(
2795 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2797 isl_mat *ineq;
2799 ineq = extract_ineq(bset);
2800 return uset_gist_full(bset, ineq, context);
2803 /* Replace "bset" by an empty basic set in the same space.
2805 static __isl_give isl_basic_set *replace_by_empty(
2806 __isl_take isl_basic_set *bset)
2808 isl_space *space;
2810 space = isl_basic_set_get_space(bset);
2811 isl_basic_set_free(bset);
2812 return isl_basic_set_empty(space);
2815 /* Remove all information from "bset" that is redundant in the context
2816 * of "context", for the case where the combined equalities of
2817 * "bset" and "context" allow for a compression that can be obtained
2818 * by preapplication of "T".
2819 * If the compression of "context" is empty, meaning that "bset" and
2820 * "context" do not intersect, then return the empty set.
2822 * "bset" itself is not transformed by "T". Instead, the inequalities
2823 * are extracted from "bset" and those are transformed by "T".
2824 * uset_gist_full then determines which of the transformed inequalities
2825 * are redundant with respect to the transformed "context" and removes
2826 * the corresponding inequalities from "bset".
2828 * After preapplying "T" to the inequalities, any common factor is
2829 * removed from the coefficients. If this results in a tightening
2830 * of the constant term, then the same tightening is applied to
2831 * the corresponding untransformed inequality in "bset".
2832 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2834 * g f'(x) + r >= 0
2836 * with 0 <= r < g, then it is equivalent to
2838 * f'(x) >= 0
2840 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2841 * subspace compressed by T since the latter would be transformed to
2843 * g f'(x) >= 0
2845 static __isl_give isl_basic_set *uset_gist_compressed(
2846 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2847 __isl_take isl_mat *T)
2849 isl_ctx *ctx;
2850 isl_mat *ineq;
2851 int i;
2852 isl_size n_row, n_col;
2853 isl_int rem;
2855 ineq = extract_ineq(bset);
2856 ineq = isl_mat_product(ineq, isl_mat_copy(T));
2857 context = isl_basic_set_preimage(context, T);
2859 if (!ineq || !context)
2860 goto error;
2861 if (isl_basic_set_plain_is_empty(context)) {
2862 isl_mat_free(ineq);
2863 isl_basic_set_free(context);
2864 return replace_by_empty(bset);
2867 ctx = isl_mat_get_ctx(ineq);
2868 n_row = isl_mat_rows(ineq);
2869 n_col = isl_mat_cols(ineq);
2870 if (n_row < 0 || n_col < 0)
2871 goto error;
2872 isl_int_init(rem);
2873 for (i = 0; i < n_row; ++i) {
2874 isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2875 if (isl_int_is_zero(ctx->normalize_gcd))
2876 continue;
2877 if (isl_int_is_one(ctx->normalize_gcd))
2878 continue;
2879 isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2880 ctx->normalize_gcd, n_col - 1);
2881 isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2882 isl_int_fdiv_q(ineq->row[i][0],
2883 ineq->row[i][0], ctx->normalize_gcd);
2884 if (isl_int_is_zero(rem))
2885 continue;
2886 bset = isl_basic_set_cow(bset);
2887 if (!bset)
2888 break;
2889 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2891 isl_int_clear(rem);
2893 return uset_gist_full(bset, ineq, context);
2894 error:
2895 isl_mat_free(ineq);
2896 isl_basic_set_free(context);
2897 isl_basic_set_free(bset);
2898 return NULL;
2901 /* Project "bset" onto the variables that are involved in "template".
2903 static __isl_give isl_basic_set *project_onto_involved(
2904 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
2906 int i;
2907 isl_size n;
2909 n = isl_basic_set_dim(template, isl_dim_set);
2910 if (n < 0 || !template)
2911 return isl_basic_set_free(bset);
2913 for (i = 0; i < n; ++i) {
2914 isl_bool involved;
2916 involved = isl_basic_set_involves_dims(template,
2917 isl_dim_set, i, 1);
2918 if (involved < 0)
2919 return isl_basic_set_free(bset);
2920 if (involved)
2921 continue;
2922 bset = isl_basic_set_eliminate_vars(bset, i, 1);
2925 return bset;
2928 /* Remove all information from bset that is redundant in the context
2929 * of context. In particular, equalities that are linear combinations
2930 * of those in context are removed. Then the inequalities that are
2931 * redundant in the context of the equalities and inequalities of
2932 * context are removed.
2934 * First of all, we drop those constraints from "context"
2935 * that are irrelevant for computing the gist of "bset".
2936 * Alternatively, we could factorize the intersection of "context" and "bset".
2938 * We first compute the intersection of the integer affine hulls
2939 * of "bset" and "context",
2940 * compute the gist inside this intersection and then reduce
2941 * the constraints with respect to the equalities of the context
2942 * that only involve variables already involved in the input.
2943 * If the intersection of the affine hulls turns out to be empty,
2944 * then return the empty set.
2946 * If two constraints are mutually redundant, then uset_gist_full
2947 * will remove the second of those constraints. We therefore first
2948 * sort the constraints so that constraints not involving existentially
2949 * quantified variables are given precedence over those that do.
2950 * We have to perform this sorting before the variable compression,
2951 * because that may effect the order of the variables.
2953 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2954 __isl_take isl_basic_set *context)
2956 isl_mat *eq;
2957 isl_mat *T;
2958 isl_basic_set *aff;
2959 isl_basic_set *aff_context;
2960 isl_size total;
2962 total = isl_basic_set_dim(bset, isl_dim_all);
2963 if (total < 0 || !context)
2964 goto error;
2966 context = drop_irrelevant_constraints(context, bset);
2968 bset = isl_basic_set_detect_equalities(bset);
2969 aff = isl_basic_set_copy(bset);
2970 aff = isl_basic_set_plain_affine_hull(aff);
2971 context = isl_basic_set_detect_equalities(context);
2972 aff_context = isl_basic_set_copy(context);
2973 aff_context = isl_basic_set_plain_affine_hull(aff_context);
2974 aff = isl_basic_set_intersect(aff, aff_context);
2975 if (!aff)
2976 goto error;
2977 if (isl_basic_set_plain_is_empty(aff)) {
2978 isl_basic_set_free(bset);
2979 isl_basic_set_free(context);
2980 return aff;
2982 bset = isl_basic_set_sort_constraints(bset);
2983 if (aff->n_eq == 0) {
2984 isl_basic_set_free(aff);
2985 return uset_gist_uncompressed(bset, context);
2987 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2988 eq = isl_mat_cow(eq);
2989 T = isl_mat_variable_compression(eq, NULL);
2990 isl_basic_set_free(aff);
2991 if (T && T->n_col == 0) {
2992 isl_mat_free(T);
2993 isl_basic_set_free(context);
2994 return replace_by_empty(bset);
2997 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2998 aff_context = project_onto_involved(aff_context, bset);
3000 bset = uset_gist_compressed(bset, context, T);
3001 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
3003 if (bset) {
3004 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
3005 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
3008 return bset;
3009 error:
3010 isl_basic_set_free(bset);
3011 isl_basic_set_free(context);
3012 return NULL;
3015 /* Return the number of equality constraints in "bmap" that involve
3016 * local variables. This function assumes that Gaussian elimination
3017 * has been applied to the equality constraints.
3019 static int n_div_eq(__isl_keep isl_basic_map *bmap)
3021 int i;
3022 isl_size total, n_div;
3024 if (!bmap)
3025 return -1;
3027 if (bmap->n_eq == 0)
3028 return 0;
3030 total = isl_basic_map_dim(bmap, isl_dim_all);
3031 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3032 if (total < 0 || n_div < 0)
3033 return -1;
3034 total -= n_div;
3036 for (i = 0; i < bmap->n_eq; ++i)
3037 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
3038 n_div) == -1)
3039 return i;
3041 return bmap->n_eq;
3044 /* Construct a basic map in "space" defined by the equality constraints in "eq".
3045 * The constraints are assumed not to involve any local variables.
3047 static __isl_give isl_basic_map *basic_map_from_equalities(
3048 __isl_take isl_space *space, __isl_take isl_mat *eq)
3050 int i, k;
3051 isl_size total;
3052 isl_basic_map *bmap = NULL;
3054 total = isl_space_dim(space, isl_dim_all);
3055 if (total < 0 || !eq)
3056 goto error;
3058 if (1 + total != eq->n_col)
3059 isl_die(isl_space_get_ctx(space), isl_error_internal,
3060 "unexpected number of columns", goto error);
3062 bmap = isl_basic_map_alloc_space(isl_space_copy(space),
3063 0, eq->n_row, 0);
3064 for (i = 0; i < eq->n_row; ++i) {
3065 k = isl_basic_map_alloc_equality(bmap);
3066 if (k < 0)
3067 goto error;
3068 isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
3071 isl_space_free(space);
3072 isl_mat_free(eq);
3073 return bmap;
3074 error:
3075 isl_space_free(space);
3076 isl_mat_free(eq);
3077 isl_basic_map_free(bmap);
3078 return NULL;
3081 /* Construct and return a variable compression based on the equality
3082 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
3083 * "n1" is the number of (initial) equality constraints in "bmap1"
3084 * that do involve local variables.
3085 * "n2" is the number of (initial) equality constraints in "bmap2"
3086 * that do involve local variables.
3087 * "total" is the total number of other variables.
3088 * This function assumes that Gaussian elimination
3089 * has been applied to the equality constraints in both "bmap1" and "bmap2"
3090 * such that the equality constraints not involving local variables
3091 * are those that start at "n1" or "n2".
3093 * If either of "bmap1" and "bmap2" does not have such equality constraints,
3094 * then simply compute the compression based on the equality constraints
3095 * in the other basic map.
3096 * Otherwise, combine the equality constraints from both into a new
3097 * basic map such that Gaussian elimination can be applied to this combination
3098 * and then construct a variable compression from the resulting
3099 * equality constraints.
3101 static __isl_give isl_mat *combined_variable_compression(
3102 __isl_keep isl_basic_map *bmap1, int n1,
3103 __isl_keep isl_basic_map *bmap2, int n2, int total)
3105 isl_ctx *ctx;
3106 isl_mat *E1, *E2, *V;
3107 isl_basic_map *bmap;
3109 ctx = isl_basic_map_get_ctx(bmap1);
3110 if (bmap1->n_eq == n1) {
3111 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
3112 n2, bmap2->n_eq - n2, 0, 1 + total);
3113 return isl_mat_variable_compression(E2, NULL);
3115 if (bmap2->n_eq == n2) {
3116 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
3117 n1, bmap1->n_eq - n1, 0, 1 + total);
3118 return isl_mat_variable_compression(E1, NULL);
3120 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
3121 n1, bmap1->n_eq - n1, 0, 1 + total);
3122 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
3123 n2, bmap2->n_eq - n2, 0, 1 + total);
3124 E1 = isl_mat_concat(E1, E2);
3125 bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
3126 bmap = isl_basic_map_gauss(bmap, NULL);
3127 if (!bmap)
3128 return NULL;
3129 E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
3130 V = isl_mat_variable_compression(E1, NULL);
3131 isl_basic_map_free(bmap);
3133 return V;
3136 /* Extract the stride constraints from "bmap", compressed
3137 * with respect to both the stride constraints in "context" and
3138 * the remaining equality constraints in both "bmap" and "context".
3139 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
3140 * "context_n_eq" is the number of (initial) stride constraints in "context".
3142 * Let x be all variables in "bmap" (and "context") other than the local
3143 * variables. First compute a variable compression
3145 * x = V x'
3147 * based on the non-stride equality constraints in "bmap" and "context".
3148 * Consider the stride constraints of "context",
3150 * A(x) + B(y) = 0
3152 * with y the local variables and plug in the variable compression,
3153 * resulting in
3155 * A(V x') + B(y) = 0
3157 * Use these constraints to compute a parameter compression on x'
3159 * x' = T x''
3161 * Now consider the stride constraints of "bmap"
3163 * C(x) + D(y) = 0
3165 * and plug in x = V*T x''.
3166 * That is, return A = [C*V*T D].
3168 static __isl_give isl_mat *extract_compressed_stride_constraints(
3169 __isl_keep isl_basic_map *bmap, int bmap_n_eq,
3170 __isl_keep isl_basic_map *context, int context_n_eq)
3172 isl_size total, n_div;
3173 isl_ctx *ctx;
3174 isl_mat *A, *B, *T, *V;
3176 total = isl_basic_map_dim(context, isl_dim_all);
3177 n_div = isl_basic_map_dim(context, isl_dim_div);
3178 if (total < 0 || n_div < 0)
3179 return NULL;
3180 total -= n_div;
3182 ctx = isl_basic_map_get_ctx(bmap);
3184 V = combined_variable_compression(bmap, bmap_n_eq,
3185 context, context_n_eq, total);
3187 A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
3188 B = isl_mat_sub_alloc6(ctx, context->eq,
3189 0, context_n_eq, 1 + total, n_div);
3190 A = isl_mat_product(A, isl_mat_copy(V));
3191 T = isl_mat_parameter_compression_ext(A, B);
3192 T = isl_mat_product(V, T);
3194 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3195 if (n_div < 0)
3196 T = isl_mat_free(T);
3197 else
3198 T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
3200 A = isl_mat_sub_alloc6(ctx, bmap->eq,
3201 0, bmap_n_eq, 0, 1 + total + n_div);
3202 A = isl_mat_product(A, T);
3204 return A;
3207 /* Remove the prime factors from *g that have an exponent that
3208 * is strictly smaller than the exponent in "c".
3209 * All exponents in *g are known to be smaller than or equal
3210 * to those in "c".
3212 * That is, if *g is equal to
3214 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3216 * and "c" is equal to
3218 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3220 * then update *g to
3222 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3223 * p_n^{e_n * (e_n = f_n)}
3225 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3226 * neither does the gcd of *g and c / *g.
3227 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3228 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3229 * Dividing *g by this gcd therefore strictly reduces the exponent
3230 * of the prime factors that need to be removed, while leaving the
3231 * other prime factors untouched.
3232 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3233 * removes all undesired factors, without removing any others.
3235 static void remove_incomplete_powers(isl_int *g, isl_int c)
3237 isl_int t;
3239 isl_int_init(t);
3240 for (;;) {
3241 isl_int_divexact(t, c, *g);
3242 isl_int_gcd(t, t, *g);
3243 if (isl_int_is_one(t))
3244 break;
3245 isl_int_divexact(*g, *g, t);
3247 isl_int_clear(t);
3250 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3251 * of the same stride constraints in a compressed space that exploits
3252 * all equalities in the context and the other equalities in "bmap".
3254 * If the stride constraints of "bmap" are of the form
3256 * C(x) + D(y) = 0
3258 * then A is of the form
3260 * B(x') + D(y) = 0
3262 * If any of these constraints involves only a single local variable y,
3263 * then the constraint appears as
3265 * f(x) + m y_i = 0
3267 * in "bmap" and as
3269 * h(x') + m y_i = 0
3271 * in "A".
3273 * Let g be the gcd of m and the coefficients of h.
3274 * Then, in particular, g is a divisor of the coefficients of h and
3276 * f(x) = h(x')
3278 * is known to be a multiple of g.
3279 * If some prime factor in m appears with the same exponent in g,
3280 * then it can be removed from m because f(x) is already known
3281 * to be a multiple of g and therefore in particular of this power
3282 * of the prime factors.
3283 * Prime factors that appear with a smaller exponent in g cannot
3284 * be removed from m.
3285 * Let g' be the divisor of g containing all prime factors that
3286 * appear with the same exponent in m and g, then
3288 * f(x) + m y_i = 0
3290 * can be replaced by
3292 * f(x) + m/g' y_i' = 0
3294 * Note that (if g' != 1) this changes the explicit representation
3295 * of y_i to that of y_i', so the integer division at position i
3296 * is marked unknown and later recomputed by a call to
3297 * isl_basic_map_gauss.
3299 static __isl_give isl_basic_map *reduce_stride_constraints(
3300 __isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
3302 int i;
3303 isl_size total, n_div;
3304 int any = 0;
3305 isl_int gcd;
3307 total = isl_basic_map_dim(bmap, isl_dim_all);
3308 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3309 if (total < 0 || n_div < 0 || !A)
3310 return isl_basic_map_free(bmap);
3311 total -= n_div;
3313 isl_int_init(gcd);
3314 for (i = 0; i < n; ++i) {
3315 int div;
3317 div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
3318 if (div < 0)
3319 isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
3320 "equality constraints modified unexpectedly",
3321 goto error);
3322 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
3323 n_div - div - 1) != -1)
3324 continue;
3325 if (isl_mat_row_gcd(A, i, &gcd) < 0)
3326 goto error;
3327 if (isl_int_is_one(gcd))
3328 continue;
3329 remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
3330 if (isl_int_is_one(gcd))
3331 continue;
3332 isl_int_divexact(bmap->eq[i][1 + total + div],
3333 bmap->eq[i][1 + total + div], gcd);
3334 bmap = isl_basic_map_mark_div_unknown(bmap, div);
3335 if (!bmap)
3336 goto error;
3337 any = 1;
3339 isl_int_clear(gcd);
3341 if (any)
3342 bmap = isl_basic_map_gauss(bmap, NULL);
3344 return bmap;
3345 error:
3346 isl_int_clear(gcd);
3347 isl_basic_map_free(bmap);
3348 return NULL;
3351 /* Simplify the stride constraints in "bmap" based on
3352 * the remaining equality constraints in "bmap" and all equality
3353 * constraints in "context".
3354 * Only do this if both "bmap" and "context" have stride constraints.
3356 * First extract a copy of the stride constraints in "bmap" in a compressed
3357 * space exploiting all the other equality constraints and then
3358 * use this compressed copy to simplify the original stride constraints.
3360 static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
3361 __isl_keep isl_basic_map *context)
3363 int bmap_n_eq, context_n_eq;
3364 isl_mat *A;
3366 if (!bmap || !context)
3367 return isl_basic_map_free(bmap);
3369 bmap_n_eq = n_div_eq(bmap);
3370 context_n_eq = n_div_eq(context);
3372 if (bmap_n_eq < 0 || context_n_eq < 0)
3373 return isl_basic_map_free(bmap);
3374 if (bmap_n_eq == 0 || context_n_eq == 0)
3375 return bmap;
3377 A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
3378 context, context_n_eq);
3379 bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
3381 isl_mat_free(A);
3383 return bmap;
3386 /* Return a basic map that has the same intersection with "context" as "bmap"
3387 * and that is as "simple" as possible.
3389 * The core computation is performed on the pure constraints.
3390 * When we add back the meaning of the integer divisions, we need
3391 * to (re)introduce the div constraints. If we happen to have
3392 * discovered that some of these integer divisions are equal to
3393 * some affine combination of other variables, then these div
3394 * constraints may end up getting simplified in terms of the equalities,
3395 * resulting in extra inequalities on the other variables that
3396 * may have been removed already or that may not even have been
3397 * part of the input. We try and remove those constraints of
3398 * this form that are most obviously redundant with respect to
3399 * the context. We also remove those div constraints that are
3400 * redundant with respect to the other constraints in the result.
3402 * The stride constraints among the equality constraints in "bmap" are
3403 * also simplified with respecting to the other equality constraints
3404 * in "bmap" and with respect to all equality constraints in "context".
3406 __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
3407 __isl_take isl_basic_map *context)
3409 isl_basic_set *bset, *eq;
3410 isl_basic_map *eq_bmap;
3411 isl_size total, n_div, n_div_bmap;
3412 unsigned extra, n_eq, n_ineq;
3414 if (!bmap || !context)
3415 goto error;
3417 if (isl_basic_map_plain_is_universe(bmap)) {
3418 isl_basic_map_free(context);
3419 return bmap;
3421 if (isl_basic_map_plain_is_empty(context)) {
3422 isl_space *space = isl_basic_map_get_space(bmap);
3423 isl_basic_map_free(bmap);
3424 isl_basic_map_free(context);
3425 return isl_basic_map_universe(space);
3427 if (isl_basic_map_plain_is_empty(bmap)) {
3428 isl_basic_map_free(context);
3429 return bmap;
3432 bmap = isl_basic_map_remove_redundancies(bmap);
3433 context = isl_basic_map_remove_redundancies(context);
3434 bmap = isl_basic_map_order_divs(bmap);
3435 context = isl_basic_map_align_divs(context, bmap);
3437 n_div = isl_basic_map_dim(context, isl_dim_div);
3438 total = isl_basic_map_dim(bmap, isl_dim_all);
3439 n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div);
3440 if (n_div < 0 || total < 0 || n_div_bmap < 0)
3441 goto error;
3442 extra = n_div - n_div_bmap;
3444 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
3445 bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
3446 bset = uset_gist(bset,
3447 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
3448 bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
3450 if (!bset || bset->n_eq == 0 || n_div == 0 ||
3451 isl_basic_set_plain_is_empty(bset)) {
3452 isl_basic_map_free(context);
3453 return isl_basic_map_overlying_set(bset, bmap);
3456 n_eq = bset->n_eq;
3457 n_ineq = bset->n_ineq;
3458 eq = isl_basic_set_copy(bset);
3459 eq = isl_basic_set_cow(eq);
3460 eq = isl_basic_set_free_inequality(eq, n_ineq);
3461 bset = isl_basic_set_free_equality(bset, n_eq);
3463 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
3464 eq_bmap = gist_strides(eq_bmap, context);
3465 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
3466 bmap = isl_basic_map_overlying_set(bset, bmap);
3467 bmap = isl_basic_map_intersect(bmap, eq_bmap);
3468 bmap = isl_basic_map_remove_redundancies(bmap);
3470 return bmap;
3471 error:
3472 isl_basic_map_free(bmap);
3473 isl_basic_map_free(context);
3474 return NULL;
3478 * Assumes context has no implicit divs.
3480 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
3481 __isl_take isl_basic_map *context)
3483 int i;
3485 if (!map || !context)
3486 goto error;
3488 if (isl_basic_map_plain_is_empty(context)) {
3489 isl_space *space = isl_map_get_space(map);
3490 isl_map_free(map);
3491 isl_basic_map_free(context);
3492 return isl_map_universe(space);
3495 context = isl_basic_map_remove_redundancies(context);
3496 map = isl_map_cow(map);
3497 if (isl_map_basic_map_check_equal_space(map, context) < 0)
3498 goto error;
3499 map = isl_map_compute_divs(map);
3500 if (!map)
3501 goto error;
3502 for (i = map->n - 1; i >= 0; --i) {
3503 map->p[i] = isl_basic_map_gist(map->p[i],
3504 isl_basic_map_copy(context));
3505 if (!map->p[i])
3506 goto error;
3507 if (isl_basic_map_plain_is_empty(map->p[i])) {
3508 isl_basic_map_free(map->p[i]);
3509 if (i != map->n - 1)
3510 map->p[i] = map->p[map->n - 1];
3511 map->n--;
3514 isl_basic_map_free(context);
3515 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3516 return map;
3517 error:
3518 isl_map_free(map);
3519 isl_basic_map_free(context);
3520 return NULL;
3523 /* Drop all inequalities from "bmap" that also appear in "context".
3524 * "context" is assumed to have only known local variables and
3525 * the initial local variables of "bmap" are assumed to be the same
3526 * as those of "context".
3527 * The constraints of both "bmap" and "context" are assumed
3528 * to have been sorted using isl_basic_map_sort_constraints.
3530 * Run through the inequality constraints of "bmap" and "context"
3531 * in sorted order.
3532 * If a constraint of "bmap" involves variables not in "context",
3533 * then it cannot appear in "context".
3534 * If a matching constraint is found, it is removed from "bmap".
3536 static __isl_give isl_basic_map *drop_inequalities(
3537 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3539 int i1, i2;
3540 isl_size total, bmap_total;
3541 unsigned extra;
3543 total = isl_basic_map_dim(context, isl_dim_all);
3544 bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3545 if (total < 0 || bmap_total < 0)
3546 return isl_basic_map_free(bmap);
3548 extra = bmap_total - total;
3550 i1 = bmap->n_ineq - 1;
3551 i2 = context->n_ineq - 1;
3552 while (bmap && i1 >= 0 && i2 >= 0) {
3553 int cmp;
3555 if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
3556 extra) != -1) {
3557 --i1;
3558 continue;
3560 cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
3561 context->ineq[i2]);
3562 if (cmp < 0) {
3563 --i2;
3564 continue;
3566 if (cmp > 0) {
3567 --i1;
3568 continue;
3570 if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
3571 bmap = isl_basic_map_cow(bmap);
3572 if (isl_basic_map_drop_inequality(bmap, i1) < 0)
3573 bmap = isl_basic_map_free(bmap);
3575 --i1;
3576 --i2;
3579 return bmap;
3582 /* Drop all equalities from "bmap" that also appear in "context".
3583 * "context" is assumed to have only known local variables and
3584 * the initial local variables of "bmap" are assumed to be the same
3585 * as those of "context".
3587 * Run through the equality constraints of "bmap" and "context"
3588 * in sorted order.
3589 * If a constraint of "bmap" involves variables not in "context",
3590 * then it cannot appear in "context".
3591 * If a matching constraint is found, it is removed from "bmap".
3593 static __isl_give isl_basic_map *drop_equalities(
3594 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3596 int i1, i2;
3597 isl_size total, bmap_total;
3598 unsigned extra;
3600 total = isl_basic_map_dim(context, isl_dim_all);
3601 bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3602 if (total < 0 || bmap_total < 0)
3603 return isl_basic_map_free(bmap);
3605 extra = bmap_total - total;
3607 i1 = bmap->n_eq - 1;
3608 i2 = context->n_eq - 1;
3610 while (bmap && i1 >= 0 && i2 >= 0) {
3611 int last1, last2;
3613 if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
3614 extra) != -1)
3615 break;
3616 last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
3617 last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
3618 if (last1 > last2) {
3619 --i2;
3620 continue;
3622 if (last1 < last2) {
3623 --i1;
3624 continue;
3626 if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
3627 bmap = isl_basic_map_cow(bmap);
3628 if (isl_basic_map_drop_equality(bmap, i1) < 0)
3629 bmap = isl_basic_map_free(bmap);
3631 --i1;
3632 --i2;
3635 return bmap;
3638 /* Remove the constraints in "context" from "bmap".
3639 * "context" is assumed to have explicit representations
3640 * for all local variables.
3642 * First align the divs of "bmap" to those of "context" and
3643 * sort the constraints. Then drop all constraints from "bmap"
3644 * that appear in "context".
3646 __isl_give isl_basic_map *isl_basic_map_plain_gist(
3647 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
3649 isl_bool done, known;
3651 done = isl_basic_map_plain_is_universe(context);
3652 if (done == isl_bool_false)
3653 done = isl_basic_map_plain_is_universe(bmap);
3654 if (done == isl_bool_false)
3655 done = isl_basic_map_plain_is_empty(context);
3656 if (done == isl_bool_false)
3657 done = isl_basic_map_plain_is_empty(bmap);
3658 if (done < 0)
3659 goto error;
3660 if (done) {
3661 isl_basic_map_free(context);
3662 return bmap;
3664 known = isl_basic_map_divs_known(context);
3665 if (known < 0)
3666 goto error;
3667 if (!known)
3668 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3669 "context has unknown divs", goto error);
3671 context = isl_basic_map_order_divs(context);
3672 bmap = isl_basic_map_align_divs(bmap, context);
3673 bmap = isl_basic_map_gauss(bmap, NULL);
3674 bmap = isl_basic_map_sort_constraints(bmap);
3675 context = isl_basic_map_sort_constraints(context);
3677 bmap = drop_inequalities(bmap, context);
3678 bmap = drop_equalities(bmap, context);
3680 isl_basic_map_free(context);
3681 bmap = isl_basic_map_finalize(bmap);
3682 return bmap;
3683 error:
3684 isl_basic_map_free(bmap);
3685 isl_basic_map_free(context);
3686 return NULL;
3689 /* Replace "map" by the disjunct at position "pos" and free "context".
3691 static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
3692 int pos, __isl_take isl_basic_map *context)
3694 isl_basic_map *bmap;
3696 bmap = isl_basic_map_copy(map->p[pos]);
3697 isl_map_free(map);
3698 isl_basic_map_free(context);
3699 return isl_map_from_basic_map(bmap);
3702 /* Remove the constraints in "context" from "map".
3703 * If any of the disjuncts in the result turns out to be the universe,
3704 * then return this universe.
3705 * "context" is assumed to have explicit representations
3706 * for all local variables.
3708 __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
3709 __isl_take isl_basic_map *context)
3711 int i;
3712 isl_bool univ, known;
3714 univ = isl_basic_map_plain_is_universe(context);
3715 if (univ < 0)
3716 goto error;
3717 if (univ) {
3718 isl_basic_map_free(context);
3719 return map;
3721 known = isl_basic_map_divs_known(context);
3722 if (known < 0)
3723 goto error;
3724 if (!known)
3725 isl_die(isl_map_get_ctx(map), isl_error_invalid,
3726 "context has unknown divs", goto error);
3728 map = isl_map_cow(map);
3729 if (!map)
3730 goto error;
3731 for (i = 0; i < map->n; ++i) {
3732 map->p[i] = isl_basic_map_plain_gist(map->p[i],
3733 isl_basic_map_copy(context));
3734 univ = isl_basic_map_plain_is_universe(map->p[i]);
3735 if (univ < 0)
3736 goto error;
3737 if (univ && map->n > 1)
3738 return replace_by_disjunct(map, i, context);
3741 isl_basic_map_free(context);
3742 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3743 if (map->n > 1)
3744 ISL_F_CLR(map, ISL_MAP_DISJOINT);
3745 return map;
3746 error:
3747 isl_map_free(map);
3748 isl_basic_map_free(context);
3749 return NULL;
3752 /* Remove the constraints in "context" from "set".
3753 * If any of the disjuncts in the result turns out to be the universe,
3754 * then return this universe.
3755 * "context" is assumed to have explicit representations
3756 * for all local variables.
3758 __isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
3759 __isl_take isl_basic_set *context)
3761 return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
3762 bset_to_bmap(context)));
3765 /* Remove the constraints in "context" from "map".
3766 * If any of the disjuncts in the result turns out to be the universe,
3767 * then return this universe.
3768 * "context" is assumed to consist of a single disjunct and
3769 * to have explicit representations for all local variables.
3771 __isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
3772 __isl_take isl_map *context)
3774 isl_basic_map *hull;
3776 hull = isl_map_unshifted_simple_hull(context);
3777 return isl_map_plain_gist_basic_map(map, hull);
3780 /* Replace "map" by a universe map in the same space and free "drop".
3782 static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
3783 __isl_take isl_map *drop)
3785 isl_map *res;
3787 res = isl_map_universe(isl_map_get_space(map));
3788 isl_map_free(map);
3789 isl_map_free(drop);
3790 return res;
3793 /* Return a map that has the same intersection with "context" as "map"
3794 * and that is as "simple" as possible.
3796 * If "map" is already the universe, then we cannot make it any simpler.
3797 * Similarly, if "context" is the universe, then we cannot exploit it
3798 * to simplify "map"
3799 * If "map" and "context" are identical to each other, then we can
3800 * return the corresponding universe.
3802 * If either "map" or "context" consists of multiple disjuncts,
3803 * then check if "context" happens to be a subset of "map",
3804 * in which case all constraints can be removed.
3805 * In case of multiple disjuncts, the standard procedure
3806 * may not be able to detect that all constraints can be removed.
3808 * If none of these cases apply, we have to work a bit harder.
3809 * During this computation, we make use of a single disjunct context,
3810 * so if the original context consists of more than one disjunct
3811 * then we need to approximate the context by a single disjunct set.
3812 * Simply taking the simple hull may drop constraints that are
3813 * only implicitly available in each disjunct. We therefore also
3814 * look for constraints among those defining "map" that are valid
3815 * for the context. These can then be used to simplify away
3816 * the corresponding constraints in "map".
3818 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3819 __isl_take isl_map *context)
3821 int equal;
3822 int is_universe;
3823 isl_size n_disjunct_map, n_disjunct_context;
3824 isl_bool subset;
3825 isl_basic_map *hull;
3827 is_universe = isl_map_plain_is_universe(map);
3828 if (is_universe >= 0 && !is_universe)
3829 is_universe = isl_map_plain_is_universe(context);
3830 if (is_universe < 0)
3831 goto error;
3832 if (is_universe) {
3833 isl_map_free(context);
3834 return map;
3837 isl_map_align_params_bin(&map, &context);
3838 equal = isl_map_plain_is_equal(map, context);
3839 if (equal < 0)
3840 goto error;
3841 if (equal)
3842 return replace_by_universe(map, context);
3844 n_disjunct_map = isl_map_n_basic_map(map);
3845 n_disjunct_context = isl_map_n_basic_map(context);
3846 if (n_disjunct_map < 0 || n_disjunct_context < 0)
3847 goto error;
3848 if (n_disjunct_map != 1 || n_disjunct_context != 1) {
3849 subset = isl_map_is_subset(context, map);
3850 if (subset < 0)
3851 goto error;
3852 if (subset)
3853 return replace_by_universe(map, context);
3856 context = isl_map_compute_divs(context);
3857 if (!context)
3858 goto error;
3859 if (n_disjunct_context == 1) {
3860 hull = isl_map_simple_hull(context);
3861 } else {
3862 isl_ctx *ctx;
3863 isl_map_list *list;
3865 ctx = isl_map_get_ctx(map);
3866 list = isl_map_list_alloc(ctx, 2);
3867 list = isl_map_list_add(list, isl_map_copy(context));
3868 list = isl_map_list_add(list, isl_map_copy(map));
3869 hull = isl_map_unshifted_simple_hull_from_map_list(context,
3870 list);
3872 return isl_map_gist_basic_map(map, hull);
3873 error:
3874 isl_map_free(map);
3875 isl_map_free(context);
3876 return NULL;
3879 __isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset,
3880 __isl_take isl_basic_set *context)
3882 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
3883 bset_to_bmap(context)));
3886 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
3887 __isl_take isl_basic_set *context)
3889 return set_from_map(isl_map_gist_basic_map(set_to_map(set),
3890 bset_to_bmap(context)));
3893 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
3894 __isl_take isl_basic_set *context)
3896 isl_space *space = isl_set_get_space(set);
3897 isl_basic_set *dom_context = isl_basic_set_universe(space);
3898 dom_context = isl_basic_set_intersect_params(dom_context, context);
3899 return isl_set_gist_basic_set(set, dom_context);
3902 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3903 __isl_take isl_set *context)
3905 return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
3908 /* Compute the gist of "bmap" with respect to the constraints "context"
3909 * on the domain.
3911 __isl_give isl_basic_map *isl_basic_map_gist_domain(
3912 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
3914 isl_space *space = isl_basic_map_get_space(bmap);
3915 isl_basic_map *bmap_context = isl_basic_map_universe(space);
3917 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
3918 return isl_basic_map_gist(bmap, bmap_context);
3921 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
3922 __isl_take isl_set *context)
3924 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3925 map_context = isl_map_intersect_domain(map_context, context);
3926 return isl_map_gist(map, map_context);
3929 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
3930 __isl_take isl_set *context)
3932 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3933 map_context = isl_map_intersect_range(map_context, context);
3934 return isl_map_gist(map, map_context);
3937 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
3938 __isl_take isl_set *context)
3940 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3941 map_context = isl_map_intersect_params(map_context, context);
3942 return isl_map_gist(map, map_context);
3945 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
3946 __isl_take isl_set *context)
3948 return isl_map_gist_params(set, context);
3951 /* Quick check to see if two basic maps are disjoint.
3952 * In particular, we reduce the equalities and inequalities of
3953 * one basic map in the context of the equalities of the other
3954 * basic map and check if we get a contradiction.
3956 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
3957 __isl_keep isl_basic_map *bmap2)
3959 struct isl_vec *v = NULL;
3960 int *elim = NULL;
3961 isl_size total;
3962 int i;
3964 if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0)
3965 return isl_bool_error;
3966 if (bmap1->n_div || bmap2->n_div)
3967 return isl_bool_false;
3968 if (!bmap1->n_eq && !bmap2->n_eq)
3969 return isl_bool_false;
3971 total = isl_space_dim(bmap1->dim, isl_dim_all);
3972 if (total < 0)
3973 return isl_bool_error;
3974 if (total == 0)
3975 return isl_bool_false;
3976 v = isl_vec_alloc(bmap1->ctx, 1 + total);
3977 if (!v)
3978 goto error;
3979 elim = isl_alloc_array(bmap1->ctx, int, total);
3980 if (!elim)
3981 goto error;
3982 compute_elimination_index(bmap1, elim, total);
3983 for (i = 0; i < bmap2->n_eq; ++i) {
3984 int reduced;
3985 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
3986 bmap1, elim, total);
3987 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
3988 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3989 goto disjoint;
3991 for (i = 0; i < bmap2->n_ineq; ++i) {
3992 int reduced;
3993 reduced = reduced_using_equalities(v->block.data,
3994 bmap2->ineq[i], bmap1, elim, total);
3995 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3996 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3997 goto disjoint;
3999 compute_elimination_index(bmap2, elim, total);
4000 for (i = 0; i < bmap1->n_ineq; ++i) {
4001 int reduced;
4002 reduced = reduced_using_equalities(v->block.data,
4003 bmap1->ineq[i], bmap2, elim, total);
4004 if (reduced && isl_int_is_neg(v->block.data[0]) &&
4005 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
4006 goto disjoint;
4008 isl_vec_free(v);
4009 free(elim);
4010 return isl_bool_false;
4011 disjoint:
4012 isl_vec_free(v);
4013 free(elim);
4014 return isl_bool_true;
4015 error:
4016 isl_vec_free(v);
4017 free(elim);
4018 return isl_bool_error;
4021 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
4022 __isl_keep isl_basic_set *bset2)
4024 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
4025 bset_to_bmap(bset2));
4028 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
4030 static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
4031 isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
4032 __isl_keep isl_basic_map *bmap2))
4034 int i, j;
4036 if (!map1 || !map2)
4037 return isl_bool_error;
4039 for (i = 0; i < map1->n; ++i) {
4040 for (j = 0; j < map2->n; ++j) {
4041 isl_bool d = test(map1->p[i], map2->p[j]);
4042 if (d != isl_bool_true)
4043 return d;
4047 return isl_bool_true;
4050 /* Are "map1" and "map2" obviously disjoint, based on information
4051 * that can be derived without looking at the individual basic maps?
4053 * In particular, if one of them is empty or if they live in different spaces
4054 * (ignoring parameters), then they are clearly disjoint.
4056 static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
4057 __isl_keep isl_map *map2)
4059 isl_bool disjoint;
4060 isl_bool match;
4062 if (!map1 || !map2)
4063 return isl_bool_error;
4065 disjoint = isl_map_plain_is_empty(map1);
4066 if (disjoint < 0 || disjoint)
4067 return disjoint;
4069 disjoint = isl_map_plain_is_empty(map2);
4070 if (disjoint < 0 || disjoint)
4071 return disjoint;
4073 match = isl_map_tuple_is_equal(map1, isl_dim_in, map2, isl_dim_in);
4074 if (match < 0 || !match)
4075 return match < 0 ? isl_bool_error : isl_bool_true;
4077 match = isl_map_tuple_is_equal(map1, isl_dim_out, map2, isl_dim_out);
4078 if (match < 0 || !match)
4079 return match < 0 ? isl_bool_error : isl_bool_true;
4081 return isl_bool_false;
4084 /* Are "map1" and "map2" obviously disjoint?
4086 * If one of them is empty or if they live in different spaces (ignoring
4087 * parameters), then they are clearly disjoint.
4088 * This is checked by isl_map_plain_is_disjoint_global.
4090 * If they have different parameters, then we skip any further tests.
4092 * If they are obviously equal, but not obviously empty, then we will
4093 * not be able to detect if they are disjoint.
4095 * Otherwise we check if each basic map in "map1" is obviously disjoint
4096 * from each basic map in "map2".
4098 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
4099 __isl_keep isl_map *map2)
4101 isl_bool disjoint;
4102 isl_bool intersect;
4103 isl_bool match;
4105 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
4106 if (disjoint < 0 || disjoint)
4107 return disjoint;
4109 match = isl_map_has_equal_params(map1, map2);
4110 if (match < 0 || !match)
4111 return match < 0 ? isl_bool_error : isl_bool_false;
4113 intersect = isl_map_plain_is_equal(map1, map2);
4114 if (intersect < 0 || intersect)
4115 return intersect < 0 ? isl_bool_error : isl_bool_false;
4117 return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
4120 /* Are "map1" and "map2" disjoint?
4121 * The parameters are assumed to have been aligned.
4123 * In particular, check whether all pairs of basic maps are disjoint.
4125 static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
4126 __isl_keep isl_map *map2)
4128 return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
4131 /* Are "map1" and "map2" disjoint?
4133 * They are disjoint if they are "obviously disjoint" or if one of them
4134 * is empty. Otherwise, they are not disjoint if one of them is universal.
4135 * If the two inputs are (obviously) equal and not empty, then they are
4136 * not disjoint.
4137 * If none of these cases apply, then check if all pairs of basic maps
4138 * are disjoint after aligning the parameters.
4140 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
4142 isl_bool disjoint;
4143 isl_bool intersect;
4145 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
4146 if (disjoint < 0 || disjoint)
4147 return disjoint;
4149 disjoint = isl_map_is_empty(map1);
4150 if (disjoint < 0 || disjoint)
4151 return disjoint;
4153 disjoint = isl_map_is_empty(map2);
4154 if (disjoint < 0 || disjoint)
4155 return disjoint;
4157 intersect = isl_map_plain_is_universe(map1);
4158 if (intersect < 0 || intersect)
4159 return isl_bool_not(intersect);
4161 intersect = isl_map_plain_is_universe(map2);
4162 if (intersect < 0 || intersect)
4163 return isl_bool_not(intersect);
4165 intersect = isl_map_plain_is_equal(map1, map2);
4166 if (intersect < 0 || intersect)
4167 return isl_bool_not(intersect);
4169 return isl_map_align_params_map_map_and_test(map1, map2,
4170 &isl_map_is_disjoint_aligned);
4173 /* Are "bmap1" and "bmap2" disjoint?
4175 * They are disjoint if they are "obviously disjoint" or if one of them
4176 * is empty. Otherwise, they are not disjoint if one of them is universal.
4177 * If none of these cases apply, we compute the intersection and see if
4178 * the result is empty.
4180 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
4181 __isl_keep isl_basic_map *bmap2)
4183 isl_bool disjoint;
4184 isl_bool intersect;
4185 isl_basic_map *test;
4187 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
4188 if (disjoint < 0 || disjoint)
4189 return disjoint;
4191 disjoint = isl_basic_map_is_empty(bmap1);
4192 if (disjoint < 0 || disjoint)
4193 return disjoint;
4195 disjoint = isl_basic_map_is_empty(bmap2);
4196 if (disjoint < 0 || disjoint)
4197 return disjoint;
4199 intersect = isl_basic_map_plain_is_universe(bmap1);
4200 if (intersect < 0 || intersect)
4201 return isl_bool_not(intersect);
4203 intersect = isl_basic_map_plain_is_universe(bmap2);
4204 if (intersect < 0 || intersect)
4205 return isl_bool_not(intersect);
4207 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
4208 isl_basic_map_copy(bmap2));
4209 disjoint = isl_basic_map_is_empty(test);
4210 isl_basic_map_free(test);
4212 return disjoint;
4215 /* Are "bset1" and "bset2" disjoint?
4217 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
4218 __isl_keep isl_basic_set *bset2)
4220 return isl_basic_map_is_disjoint(bset1, bset2);
4223 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
4224 __isl_keep isl_set *set2)
4226 return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
4229 /* Are "set1" and "set2" disjoint?
4231 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
4233 return isl_map_is_disjoint(set1, set2);
4236 /* Is "v" equal to 0, 1 or -1?
4238 static int is_zero_or_one(isl_int v)
4240 return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
4243 /* Are the "n" coefficients starting at "first" of inequality constraints
4244 * "i" and "j" of "bmap" opposite to each other?
4246 static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
4247 int first, int n)
4249 return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4252 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4253 * apart from the constant term?
4255 static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
4257 isl_size total;
4259 total = isl_basic_map_dim(bmap, isl_dim_all);
4260 if (total < 0)
4261 return isl_bool_error;
4262 return is_opposite_part(bmap, i, j, 1, total);
4265 /* Check if we can combine a given div with lower bound l and upper
4266 * bound u with some other div and if so return that other div.
4267 * Otherwise, return a position beyond the integer divisions.
4268 * Return -1 on error.
4270 * We first check that
4271 * - the bounds are opposites of each other (except for the constant
4272 * term)
4273 * - the bounds do not reference any other div
4274 * - no div is defined in terms of this div
4276 * Let m be the size of the range allowed on the div by the bounds.
4277 * That is, the bounds are of the form
4279 * e <= a <= e + m - 1
4281 * with e some expression in the other variables.
4282 * We look for another div b such that no third div is defined in terms
4283 * of this second div b and such that in any constraint that contains
4284 * a (except for the given lower and upper bound), also contains b
4285 * with a coefficient that is m times that of b.
4286 * That is, all constraints (except for the lower and upper bound)
4287 * are of the form
4289 * e + f (a + m b) >= 0
4291 * Furthermore, in the constraints that only contain b, the coefficient
4292 * of b should be equal to 1 or -1.
4293 * If so, we return b so that "a + m b" can be replaced by
4294 * a single div "c = a + m b".
4296 static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs,
4297 unsigned div, unsigned l, unsigned u)
4299 int i, j;
4300 unsigned n_div;
4301 isl_size v_div;
4302 int coalesce;
4303 isl_bool opp;
4305 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4306 if (n_div <= 1)
4307 return n_div;
4308 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4309 if (v_div < 0)
4310 return -1;
4311 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div, div) != -1)
4312 return n_div;
4313 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div + div + 1,
4314 n_div - div - 1) != -1)
4315 return n_div;
4316 opp = is_opposite(bmap, l, u);
4317 if (opp < 0 || !opp)
4318 return opp < 0 ? -1 : n_div;
4320 for (i = 0; i < n_div; ++i) {
4321 if (isl_int_is_zero(bmap->div[i][0]))
4322 continue;
4323 if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4324 return n_div;
4327 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4328 if (isl_int_is_neg(bmap->ineq[l][0])) {
4329 isl_int_sub(bmap->ineq[l][0],
4330 bmap->ineq[l][0], bmap->ineq[u][0]);
4331 bmap = isl_basic_map_copy(bmap);
4332 bmap = isl_basic_map_set_to_empty(bmap);
4333 isl_basic_map_free(bmap);
4334 return n_div;
4336 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4337 coalesce = n_div;
4338 for (i = 0; i < n_div; ++i) {
4339 if (i == div)
4340 continue;
4341 if (!pairs[i])
4342 continue;
4343 for (j = 0; j < n_div; ++j) {
4344 if (isl_int_is_zero(bmap->div[j][0]))
4345 continue;
4346 if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i]))
4347 break;
4349 if (j < n_div)
4350 continue;
4351 for (j = 0; j < bmap->n_ineq; ++j) {
4352 int valid;
4353 if (j == l || j == u)
4354 continue;
4355 if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) {
4356 if (is_zero_or_one(bmap->ineq[j][1 + v_div + i]))
4357 continue;
4358 break;
4360 if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i]))
4361 break;
4362 isl_int_mul(bmap->ineq[j][1 + v_div + div],
4363 bmap->ineq[j][1 + v_div + div],
4364 bmap->ineq[l][0]);
4365 valid = isl_int_eq(bmap->ineq[j][1 + v_div + div],
4366 bmap->ineq[j][1 + v_div + i]);
4367 isl_int_divexact(bmap->ineq[j][1 + v_div + div],
4368 bmap->ineq[j][1 + v_div + div],
4369 bmap->ineq[l][0]);
4370 if (!valid)
4371 break;
4373 if (j < bmap->n_ineq)
4374 continue;
4375 coalesce = i;
4376 break;
4378 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4379 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4380 return coalesce;
4383 /* Internal data structure used during the construction and/or evaluation of
4384 * an inequality that ensures that a pair of bounds always allows
4385 * for an integer value.
4387 * "tab" is the tableau in which the inequality is evaluated. It may
4388 * be NULL until it is actually needed.
4389 * "v" contains the inequality coefficients.
4390 * "g", "fl" and "fu" are temporary scalars used during the construction and
4391 * evaluation.
4393 struct test_ineq_data {
4394 struct isl_tab *tab;
4395 isl_vec *v;
4396 isl_int g;
4397 isl_int fl;
4398 isl_int fu;
4401 /* Free all the memory allocated by the fields of "data".
4403 static void test_ineq_data_clear(struct test_ineq_data *data)
4405 isl_tab_free(data->tab);
4406 isl_vec_free(data->v);
4407 isl_int_clear(data->g);
4408 isl_int_clear(data->fl);
4409 isl_int_clear(data->fu);
4412 /* Is the inequality stored in data->v satisfied by "bmap"?
4413 * That is, does it only attain non-negative values?
4414 * data->tab is a tableau corresponding to "bmap".
4416 static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
4417 struct test_ineq_data *data)
4419 isl_ctx *ctx;
4420 enum isl_lp_result res;
4422 ctx = isl_basic_map_get_ctx(bmap);
4423 if (!data->tab)
4424 data->tab = isl_tab_from_basic_map(bmap, 0);
4425 res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
4426 if (res == isl_lp_error)
4427 return isl_bool_error;
4428 return res == isl_lp_ok && isl_int_is_nonneg(data->g);
4431 /* Given a lower and an upper bound on div i, do they always allow
4432 * for an integer value of the given div?
4433 * Determine this property by constructing an inequality
4434 * such that the property is guaranteed when the inequality is nonnegative.
4435 * The lower bound is inequality l, while the upper bound is inequality u.
4436 * The constructed inequality is stored in data->v.
4438 * Let the upper bound be
4440 * -n_u a + e_u >= 0
4442 * and the lower bound
4444 * n_l a + e_l >= 0
4446 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4447 * We have
4449 * - f_u e_l <= f_u f_l g a <= f_l e_u
4451 * Since all variables are integer valued, this is equivalent to
4453 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4455 * If this interval is at least f_u f_l g, then it contains at least
4456 * one integer value for a.
4457 * That is, the test constraint is
4459 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4461 * or
4463 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4465 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4466 * then the constraint can be scaled down by a factor g',
4467 * with the constant term replaced by
4468 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4469 * Note that the result of applying Fourier-Motzkin to this pair
4470 * of constraints is
4472 * f_l e_u + f_u e_l >= 0
4474 * If the constant term of the scaled down version of this constraint,
4475 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4476 * term of the scaled down test constraint, then the test constraint
4477 * is known to hold and no explicit evaluation is required.
4478 * This is essentially the Omega test.
4480 * If the test constraint consists of only a constant term, then
4481 * it is sufficient to look at the sign of this constant term.
4483 static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
4484 int l, int u, struct test_ineq_data *data)
4486 unsigned offset;
4487 isl_size n_div;
4489 offset = isl_basic_map_offset(bmap, isl_dim_div);
4490 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4491 if (n_div < 0)
4492 return isl_bool_error;
4494 isl_int_gcd(data->g,
4495 bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
4496 isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
4497 isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
4498 isl_int_neg(data->fu, data->fu);
4499 isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
4500 data->fu, bmap->ineq[l], offset + n_div);
4501 isl_int_mul(data->g, data->g, data->fl);
4502 isl_int_mul(data->g, data->g, data->fu);
4503 isl_int_sub(data->g, data->g, data->fl);
4504 isl_int_sub(data->g, data->g, data->fu);
4505 isl_int_add_ui(data->g, data->g, 1);
4506 isl_int_sub(data->fl, data->v->el[0], data->g);
4508 isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
4509 if (isl_int_is_zero(data->g))
4510 return isl_int_is_nonneg(data->fl);
4511 if (isl_int_is_one(data->g)) {
4512 isl_int_set(data->v->el[0], data->fl);
4513 return test_ineq_is_satisfied(bmap, data);
4515 isl_int_fdiv_q(data->fl, data->fl, data->g);
4516 isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
4517 if (isl_int_eq(data->fl, data->v->el[0]))
4518 return isl_bool_true;
4519 isl_int_set(data->v->el[0], data->fl);
4520 isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
4521 offset - 1 + n_div);
4523 return test_ineq_is_satisfied(bmap, data);
4526 /* Remove more kinds of divs that are not strictly needed.
4527 * In particular, if all pairs of lower and upper bounds on a div
4528 * are such that they allow at least one integer value of the div,
4529 * then we can eliminate the div using Fourier-Motzkin without
4530 * introducing any spurious solutions.
4532 * If at least one of the two constraints has a unit coefficient for the div,
4533 * then the presence of such a value is guaranteed so there is no need to check.
4534 * In particular, the value attained by the bound with unit coefficient
4535 * can serve as this intermediate value.
4537 static __isl_give isl_basic_map *drop_more_redundant_divs(
4538 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
4540 isl_ctx *ctx;
4541 struct test_ineq_data data = { NULL, NULL };
4542 unsigned off;
4543 isl_size n_div;
4544 int remove = -1;
4546 isl_int_init(data.g);
4547 isl_int_init(data.fl);
4548 isl_int_init(data.fu);
4550 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4551 if (n_div < 0)
4552 goto error;
4554 ctx = isl_basic_map_get_ctx(bmap);
4555 off = isl_basic_map_offset(bmap, isl_dim_div);
4556 data.v = isl_vec_alloc(ctx, off + n_div);
4557 if (!data.v)
4558 goto error;
4560 while (n > 0) {
4561 int i, l, u;
4562 int best = -1;
4563 isl_bool has_int;
4565 for (i = 0; i < n_div; ++i) {
4566 if (!pairs[i])
4567 continue;
4568 if (best >= 0 && pairs[best] <= pairs[i])
4569 continue;
4570 best = i;
4573 i = best;
4574 for (l = 0; l < bmap->n_ineq; ++l) {
4575 if (!isl_int_is_pos(bmap->ineq[l][off + i]))
4576 continue;
4577 if (isl_int_is_one(bmap->ineq[l][off + i]))
4578 continue;
4579 for (u = 0; u < bmap->n_ineq; ++u) {
4580 if (!isl_int_is_neg(bmap->ineq[u][off + i]))
4581 continue;
4582 if (isl_int_is_negone(bmap->ineq[u][off + i]))
4583 continue;
4584 has_int = int_between_bounds(bmap, i, l, u,
4585 &data);
4586 if (has_int < 0)
4587 goto error;
4588 if (data.tab && data.tab->empty)
4589 break;
4590 if (!has_int)
4591 break;
4593 if (u < bmap->n_ineq)
4594 break;
4596 if (data.tab && data.tab->empty) {
4597 bmap = isl_basic_map_set_to_empty(bmap);
4598 break;
4600 if (l == bmap->n_ineq) {
4601 remove = i;
4602 break;
4604 pairs[i] = 0;
4605 --n;
4608 test_ineq_data_clear(&data);
4610 free(pairs);
4612 if (remove < 0)
4613 return bmap;
4615 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
4616 return isl_basic_map_drop_redundant_divs(bmap);
4617 error:
4618 free(pairs);
4619 isl_basic_map_free(bmap);
4620 test_ineq_data_clear(&data);
4621 return NULL;
4624 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4625 * and the upper bound u, div1 always occurs together with div2 in the form
4626 * (div1 + m div2), where m is the constant range on the variable div1
4627 * allowed by l and u, replace the pair div1 and div2 by a single
4628 * div that is equal to div1 + m div2.
4630 * The new div will appear in the location that contains div2.
4631 * We need to modify all constraints that contain
4632 * div2 = (div - div1) / m
4633 * The coefficient of div2 is known to be equal to 1 or -1.
4634 * (If a constraint does not contain div2, it will also not contain div1.)
4635 * If the constraint also contains div1, then we know they appear
4636 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4637 * i.e., the coefficient of div is f.
4639 * Otherwise, we first need to introduce div1 into the constraint.
4640 * Let l be
4642 * div1 + f >=0
4644 * and u
4646 * -div1 + f' >= 0
4648 * A lower bound on div2
4650 * div2 + t >= 0
4652 * can be replaced by
4654 * m div2 + div1 + m t + f >= 0
4656 * An upper bound
4658 * -div2 + t >= 0
4660 * can be replaced by
4662 * -(m div2 + div1) + m t + f' >= 0
4664 * These constraint are those that we would obtain from eliminating
4665 * div1 using Fourier-Motzkin.
4667 * After all constraints have been modified, we drop the lower and upper
4668 * bound and then drop div1.
4669 * Since the new div is only placed in the same location that used
4670 * to store div2, but otherwise has a different meaning, any possible
4671 * explicit representation of the original div2 is removed.
4673 static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
4674 unsigned div1, unsigned div2, unsigned l, unsigned u)
4676 isl_ctx *ctx;
4677 isl_int m;
4678 isl_size v_div;
4679 unsigned total;
4680 int i;
4682 ctx = isl_basic_map_get_ctx(bmap);
4684 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4685 if (v_div < 0)
4686 return isl_basic_map_free(bmap);
4687 total = 1 + v_div + bmap->n_div;
4689 isl_int_init(m);
4690 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
4691 isl_int_add_ui(m, m, 1);
4693 for (i = 0; i < bmap->n_ineq; ++i) {
4694 if (i == l || i == u)
4695 continue;
4696 if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2]))
4697 continue;
4698 if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) {
4699 if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2]))
4700 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4701 ctx->one, bmap->ineq[l], total);
4702 else
4703 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4704 ctx->one, bmap->ineq[u], total);
4706 isl_int_set(bmap->ineq[i][1 + v_div + div2],
4707 bmap->ineq[i][1 + v_div + div1]);
4708 isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0);
4711 isl_int_clear(m);
4712 if (l > u) {
4713 isl_basic_map_drop_inequality(bmap, l);
4714 isl_basic_map_drop_inequality(bmap, u);
4715 } else {
4716 isl_basic_map_drop_inequality(bmap, u);
4717 isl_basic_map_drop_inequality(bmap, l);
4719 bmap = isl_basic_map_mark_div_unknown(bmap, div2);
4720 bmap = isl_basic_map_drop_div(bmap, div1);
4721 return bmap;
4724 /* First check if we can coalesce any pair of divs and
4725 * then continue with dropping more redundant divs.
4727 * We loop over all pairs of lower and upper bounds on a div
4728 * with coefficient 1 and -1, respectively, check if there
4729 * is any other div "c" with which we can coalesce the div
4730 * and if so, perform the coalescing.
4732 static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
4733 __isl_take isl_basic_map *bmap, int *pairs, int n)
4735 int i, l, u;
4736 isl_size v_div;
4737 isl_size n_div;
4739 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4740 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4741 if (v_div < 0 || n_div < 0)
4742 return isl_basic_map_free(bmap);
4744 for (i = 0; i < n_div; ++i) {
4745 if (!pairs[i])
4746 continue;
4747 for (l = 0; l < bmap->n_ineq; ++l) {
4748 if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i]))
4749 continue;
4750 for (u = 0; u < bmap->n_ineq; ++u) {
4751 int c;
4753 if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i]))
4754 continue;
4755 c = div_find_coalesce(bmap, pairs, i, l, u);
4756 if (c < 0)
4757 goto error;
4758 if (c >= n_div)
4759 continue;
4760 free(pairs);
4761 bmap = coalesce_divs(bmap, i, c, l, u);
4762 return isl_basic_map_drop_redundant_divs(bmap);
4767 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
4768 free(pairs);
4769 return bmap;
4772 return drop_more_redundant_divs(bmap, pairs, n);
4773 error:
4774 free(pairs);
4775 isl_basic_map_free(bmap);
4776 return NULL;
4779 /* Are the "n" coefficients starting at "first" of inequality constraints
4780 * "i" and "j" of "bmap" equal to each other?
4782 static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
4783 int first, int n)
4785 return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4788 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4789 * apart from the constant term and the coefficient at position "pos"?
4791 static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
4792 int pos)
4794 isl_size total;
4796 total = isl_basic_map_dim(bmap, isl_dim_all);
4797 if (total < 0)
4798 return isl_bool_error;
4799 return is_parallel_part(bmap, i, j, 1, pos - 1) &&
4800 is_parallel_part(bmap, i, j, pos + 1, total - pos);
4803 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4804 * apart from the constant term and the coefficient at position "pos"?
4806 static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
4807 int pos)
4809 isl_size total;
4811 total = isl_basic_map_dim(bmap, isl_dim_all);
4812 if (total < 0)
4813 return isl_bool_error;
4814 return is_opposite_part(bmap, i, j, 1, pos - 1) &&
4815 is_opposite_part(bmap, i, j, pos + 1, total - pos);
4818 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4819 * been modified, simplying it if "simplify" is set.
4820 * Free the temporary data structure "pairs" that was associated
4821 * to the old version of "bmap".
4823 static __isl_give isl_basic_map *drop_redundant_divs_again(
4824 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
4826 if (simplify)
4827 bmap = isl_basic_map_simplify(bmap);
4828 free(pairs);
4829 return isl_basic_map_drop_redundant_divs(bmap);
4832 /* Is "div" the single unknown existentially quantified variable
4833 * in inequality constraint "ineq" of "bmap"?
4834 * "div" is known to have a non-zero coefficient in "ineq".
4836 static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
4837 int div)
4839 int i;
4840 isl_size n_div;
4841 unsigned o_div;
4842 isl_bool known;
4844 known = isl_basic_map_div_is_known(bmap, div);
4845 if (known < 0 || known)
4846 return isl_bool_not(known);
4847 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4848 if (n_div < 0)
4849 return isl_bool_error;
4850 if (n_div == 1)
4851 return isl_bool_true;
4852 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4853 for (i = 0; i < n_div; ++i) {
4854 isl_bool known;
4856 if (i == div)
4857 continue;
4858 if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
4859 continue;
4860 known = isl_basic_map_div_is_known(bmap, i);
4861 if (known < 0 || !known)
4862 return known;
4865 return isl_bool_true;
4868 /* Does integer division "div" have coefficient 1 in inequality constraint
4869 * "ineq" of "map"?
4871 static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
4873 unsigned o_div;
4875 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4876 if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
4877 return isl_bool_true;
4879 return isl_bool_false;
4882 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4883 * then try and drop redundant divs again,
4884 * freeing the temporary data structure "pairs" that was associated
4885 * to the old version of "bmap".
4887 static __isl_give isl_basic_map *set_eq_and_try_again(
4888 __isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
4890 bmap = isl_basic_map_cow(bmap);
4891 isl_basic_map_inequality_to_equality(bmap, ineq);
4892 return drop_redundant_divs_again(bmap, pairs, 1);
4895 /* Drop the integer division at position "div", along with the two
4896 * inequality constraints "ineq1" and "ineq2" in which it appears
4897 * from "bmap" and then try and drop redundant divs again,
4898 * freeing the temporary data structure "pairs" that was associated
4899 * to the old version of "bmap".
4901 static __isl_give isl_basic_map *drop_div_and_try_again(
4902 __isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
4903 __isl_take int *pairs)
4905 if (ineq1 > ineq2) {
4906 isl_basic_map_drop_inequality(bmap, ineq1);
4907 isl_basic_map_drop_inequality(bmap, ineq2);
4908 } else {
4909 isl_basic_map_drop_inequality(bmap, ineq2);
4910 isl_basic_map_drop_inequality(bmap, ineq1);
4912 bmap = isl_basic_map_drop_div(bmap, div);
4913 return drop_redundant_divs_again(bmap, pairs, 0);
4916 /* Given two inequality constraints
4918 * f(x) + n d + c >= 0, (ineq)
4920 * with d the variable at position "pos", and
4922 * f(x) + c0 >= 0, (lower)
4924 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4925 * determined by the first constraint.
4926 * That is, store
4928 * ceil((c0 - c)/n)
4930 * in *l.
4932 static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
4933 int ineq, int lower, int pos, isl_int *l)
4935 isl_int_neg(*l, bmap->ineq[ineq][0]);
4936 isl_int_add(*l, *l, bmap->ineq[lower][0]);
4937 isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
4940 /* Given two inequality constraints
4942 * f(x) + n d + c >= 0, (ineq)
4944 * with d the variable at position "pos", and
4946 * -f(x) - c0 >= 0, (upper)
4948 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4949 * determined by the first constraint.
4950 * That is, store
4952 * ceil((-c1 - c)/n)
4954 * in *u.
4956 static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
4957 int ineq, int upper, int pos, isl_int *u)
4959 isl_int_neg(*u, bmap->ineq[ineq][0]);
4960 isl_int_sub(*u, *u, bmap->ineq[upper][0]);
4961 isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
4964 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4965 * does the corresponding lower bound have a fixed value in "bmap"?
4967 * In particular, "ineq" is of the form
4969 * f(x) + n d + c >= 0
4971 * with n > 0, c the constant term and
4972 * d the existentially quantified variable "div".
4973 * That is, the lower bound is
4975 * ceil((-f(x) - c)/n)
4977 * Look for a pair of constraints
4979 * f(x) + c0 >= 0
4980 * -f(x) + c1 >= 0
4982 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4983 * That is, check that
4985 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4987 * If so, return the index of inequality f(x) + c0 >= 0.
4988 * Otherwise, return bmap->n_ineq.
4989 * Return -1 on error.
4991 static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
4993 int i;
4994 int lower = -1, upper = -1;
4995 unsigned o_div;
4996 isl_int l, u;
4997 int equal;
4999 o_div = isl_basic_map_offset(bmap, isl_dim_div);
5000 for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
5001 isl_bool par, opp;
5003 if (i == ineq)
5004 continue;
5005 if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
5006 continue;
5007 par = isl_bool_false;
5008 if (lower < 0)
5009 par = is_parallel_except(bmap, ineq, i, o_div + div);
5010 if (par < 0)
5011 return -1;
5012 if (par) {
5013 lower = i;
5014 continue;
5016 opp = isl_bool_false;
5017 if (upper < 0)
5018 opp = is_opposite_except(bmap, ineq, i, o_div + div);
5019 if (opp < 0)
5020 return -1;
5021 if (opp)
5022 upper = i;
5025 if (lower < 0 || upper < 0)
5026 return bmap->n_ineq;
5028 isl_int_init(l);
5029 isl_int_init(u);
5031 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
5032 lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
5034 equal = isl_int_eq(l, u);
5036 isl_int_clear(l);
5037 isl_int_clear(u);
5039 return equal ? lower : bmap->n_ineq;
5042 /* Given a lower bound constraint "ineq" on the existentially quantified
5043 * variable "div", such that the corresponding lower bound has
5044 * a fixed value in "bmap", assign this fixed value to the variable and
5045 * then try and drop redundant divs again,
5046 * freeing the temporary data structure "pairs" that was associated
5047 * to the old version of "bmap".
5048 * "lower" determines the constant value for the lower bound.
5050 * In particular, "ineq" is of the form
5052 * f(x) + n d + c >= 0,
5054 * while "lower" is of the form
5056 * f(x) + c0 >= 0
5058 * The lower bound is ceil((-f(x) - c)/n) and its constant value
5059 * is ceil((c0 - c)/n).
5061 static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
5062 int div, int ineq, int lower, int *pairs)
5064 isl_int c;
5065 unsigned o_div;
5067 isl_int_init(c);
5069 o_div = isl_basic_map_offset(bmap, isl_dim_div);
5070 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
5071 bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
5072 free(pairs);
5074 isl_int_clear(c);
5076 return isl_basic_map_drop_redundant_divs(bmap);
5079 /* Do any of the integer divisions of "bmap" involve integer division "div"?
5081 * The integer division "div" could only ever appear in any later
5082 * integer division (with an explicit representation).
5084 static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div)
5086 int i;
5087 isl_size v_div, n_div;
5089 v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
5090 n_div = isl_basic_map_dim(bmap, isl_dim_div);
5091 if (v_div < 0 || n_div < 0)
5092 return isl_bool_error;
5094 for (i = div + 1; i < n_div; ++i) {
5095 isl_bool unknown;
5097 unknown = isl_basic_map_div_is_marked_unknown(bmap, i);
5098 if (unknown < 0)
5099 return isl_bool_error;
5100 if (unknown)
5101 continue;
5102 if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
5103 return isl_bool_true;
5106 return isl_bool_false;
5109 /* Remove divs that are not strictly needed based on the inequality
5110 * constraints.
5111 * In particular, if a div only occurs positively (or negatively)
5112 * in constraints, then it can simply be dropped.
5113 * Also, if a div occurs in only two constraints and if moreover
5114 * those two constraints are opposite to each other, except for the constant
5115 * term and if the sum of the constant terms is such that for any value
5116 * of the other values, there is always at least one integer value of the
5117 * div, i.e., if one plus this sum is greater than or equal to
5118 * the (absolute value) of the coefficient of the div in the constraints,
5119 * then we can also simply drop the div.
5121 * If an existentially quantified variable does not have an explicit
5122 * representation, appears in only a single lower bound that does not
5123 * involve any other such existentially quantified variables and appears
5124 * in this lower bound with coefficient 1,
5125 * then fix the variable to the value of the lower bound. That is,
5126 * turn the inequality into an equality.
5127 * If for any value of the other variables, there is any value
5128 * for the existentially quantified variable satisfying the constraints,
5129 * then this lower bound also satisfies the constraints.
5130 * It is therefore safe to pick this lower bound.
5132 * The same reasoning holds even if the coefficient is not one.
5133 * However, fixing the variable to the value of the lower bound may
5134 * in general introduce an extra integer division, in which case
5135 * it may be better to pick another value.
5136 * If this integer division has a known constant value, then plugging
5137 * in this constant value removes the existentially quantified variable
5138 * completely. In particular, if the lower bound is of the form
5139 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
5140 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
5141 * then the existentially quantified variable can be assigned this
5142 * shared value.
5144 * We skip divs that appear in equalities or in the definition of other divs.
5145 * Divs that appear in the definition of other divs usually occur in at least
5146 * 4 constraints, but the constraints may have been simplified.
5148 * If any divs are left after these simple checks then we move on
5149 * to more complicated cases in drop_more_redundant_divs.
5151 static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
5152 __isl_take isl_basic_map *bmap)
5154 int i, j;
5155 isl_size off;
5156 int *pairs = NULL;
5157 int n = 0;
5158 isl_size n_ineq;
5160 if (!bmap)
5161 goto error;
5162 if (bmap->n_div == 0)
5163 return bmap;
5165 off = isl_basic_map_var_offset(bmap, isl_dim_div);
5166 if (off < 0)
5167 return isl_basic_map_free(bmap);
5168 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
5169 if (!pairs)
5170 goto error;
5172 n_ineq = isl_basic_map_n_inequality(bmap);
5173 if (n_ineq < 0)
5174 goto error;
5175 for (i = 0; i < bmap->n_div; ++i) {
5176 int pos, neg;
5177 int last_pos, last_neg;
5178 int redundant;
5179 int defined;
5180 isl_bool involves, opp, set_div;
5182 defined = !isl_int_is_zero(bmap->div[i][0]);
5183 involves = any_div_involves_div(bmap, i);
5184 if (involves < 0)
5185 goto error;
5186 if (involves)
5187 continue;
5188 for (j = 0; j < bmap->n_eq; ++j)
5189 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
5190 break;
5191 if (j < bmap->n_eq)
5192 continue;
5193 ++n;
5194 pos = neg = 0;
5195 for (j = 0; j < bmap->n_ineq; ++j) {
5196 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
5197 last_pos = j;
5198 ++pos;
5200 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
5201 last_neg = j;
5202 ++neg;
5205 pairs[i] = pos * neg;
5206 if (pairs[i] == 0) {
5207 for (j = bmap->n_ineq - 1; j >= 0; --j)
5208 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
5209 isl_basic_map_drop_inequality(bmap, j);
5210 bmap = isl_basic_map_drop_div(bmap, i);
5211 return drop_redundant_divs_again(bmap, pairs, 0);
5213 if (pairs[i] != 1)
5214 opp = isl_bool_false;
5215 else
5216 opp = is_opposite(bmap, last_pos, last_neg);
5217 if (opp < 0)
5218 goto error;
5219 if (!opp) {
5220 int lower;
5221 isl_bool single, one;
5223 if (pos != 1)
5224 continue;
5225 single = single_unknown(bmap, last_pos, i);
5226 if (single < 0)
5227 goto error;
5228 if (!single)
5229 continue;
5230 one = has_coef_one(bmap, i, last_pos);
5231 if (one < 0)
5232 goto error;
5233 if (one)
5234 return set_eq_and_try_again(bmap, last_pos,
5235 pairs);
5236 lower = lower_bound_is_cst(bmap, i, last_pos);
5237 if (lower < 0)
5238 goto error;
5239 if (lower < n_ineq)
5240 return fix_cst_lower(bmap, i, last_pos, lower,
5241 pairs);
5242 continue;
5245 isl_int_add(bmap->ineq[last_pos][0],
5246 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5247 isl_int_add_ui(bmap->ineq[last_pos][0],
5248 bmap->ineq[last_pos][0], 1);
5249 redundant = isl_int_ge(bmap->ineq[last_pos][0],
5250 bmap->ineq[last_pos][1+off+i]);
5251 isl_int_sub_ui(bmap->ineq[last_pos][0],
5252 bmap->ineq[last_pos][0], 1);
5253 isl_int_sub(bmap->ineq[last_pos][0],
5254 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5255 if (redundant)
5256 return drop_div_and_try_again(bmap, i,
5257 last_pos, last_neg, pairs);
5258 if (defined)
5259 set_div = isl_bool_false;
5260 else
5261 set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
5262 if (set_div < 0)
5263 return isl_basic_map_free(bmap);
5264 if (set_div) {
5265 bmap = set_div_from_lower_bound(bmap, i, last_pos);
5266 return drop_redundant_divs_again(bmap, pairs, 1);
5268 pairs[i] = 0;
5269 --n;
5272 if (n > 0)
5273 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
5275 free(pairs);
5276 return bmap;
5277 error:
5278 free(pairs);
5279 isl_basic_map_free(bmap);
5280 return NULL;
5283 /* Consider the coefficients at "c" as a row vector and replace
5284 * them with their product with "T". "T" is assumed to be a square matrix.
5286 static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
5288 isl_size n;
5289 isl_ctx *ctx;
5290 isl_vec *v;
5292 n = isl_mat_rows(T);
5293 if (n < 0)
5294 return isl_stat_error;
5295 if (isl_seq_first_non_zero(c, n) == -1)
5296 return isl_stat_ok;
5297 ctx = isl_mat_get_ctx(T);
5298 v = isl_vec_alloc(ctx, n);
5299 if (!v)
5300 return isl_stat_error;
5301 isl_seq_swp_or_cpy(v->el, c, n);
5302 v = isl_vec_mat_product(v, isl_mat_copy(T));
5303 if (!v)
5304 return isl_stat_error;
5305 isl_seq_swp_or_cpy(c, v->el, n);
5306 isl_vec_free(v);
5308 return isl_stat_ok;
5311 /* Plug in T for the variables in "bmap" starting at "pos".
5312 * T is a linear unimodular matrix, i.e., without constant term.
5314 static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
5315 __isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
5317 int i;
5318 isl_size n_row, n_col;
5320 bmap = isl_basic_map_cow(bmap);
5321 n_row = isl_mat_rows(T);
5322 n_col = isl_mat_cols(T);
5323 if (!bmap || n_row < 0 || n_col < 0)
5324 goto error;
5326 if (n_col != n_row)
5327 isl_die(isl_mat_get_ctx(T), isl_error_invalid,
5328 "expecting square matrix", goto error);
5330 if (isl_basic_map_check_range(bmap, isl_dim_all, pos, n_col) < 0)
5331 goto error;
5333 for (i = 0; i < bmap->n_eq; ++i)
5334 if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
5335 goto error;
5336 for (i = 0; i < bmap->n_ineq; ++i)
5337 if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
5338 goto error;
5339 for (i = 0; i < bmap->n_div; ++i) {
5340 if (isl_basic_map_div_is_marked_unknown(bmap, i))
5341 continue;
5342 if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
5343 goto error;
5346 isl_mat_free(T);
5347 return bmap;
5348 error:
5349 isl_basic_map_free(bmap);
5350 isl_mat_free(T);
5351 return NULL;
5354 /* Remove divs that are not strictly needed.
5356 * First look for an equality constraint involving two or more
5357 * existentially quantified variables without an explicit
5358 * representation. Replace the combination that appears
5359 * in the equality constraint by a single existentially quantified
5360 * variable such that the equality can be used to derive
5361 * an explicit representation for the variable.
5362 * If there are no more such equality constraints, then continue
5363 * with isl_basic_map_drop_redundant_divs_ineq.
5365 * In particular, if the equality constraint is of the form
5367 * f(x) + \sum_i c_i a_i = 0
5369 * with a_i existentially quantified variable without explicit
5370 * representation, then apply a transformation on the existentially
5371 * quantified variables to turn the constraint into
5373 * f(x) + g a_1' = 0
5375 * with g the gcd of the c_i.
5376 * In order to easily identify which existentially quantified variables
5377 * have a complete explicit representation, i.e., without being defined
5378 * in terms of other existentially quantified variables without
5379 * an explicit representation, the existentially quantified variables
5380 * are first sorted.
5382 * The variable transformation is computed by extending the row
5383 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5385 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5386 * [a_2'] [ a_2 ]
5387 * ... = U ....
5388 * [a_n'] [ a_n ]
5390 * with [c_1/g ... c_n/g] representing the first row of U.
5391 * The inverse of U is then plugged into the original constraints.
5392 * The call to isl_basic_map_simplify makes sure the explicit
5393 * representation for a_1' is extracted from the equality constraint.
5395 __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
5396 __isl_take isl_basic_map *bmap)
5398 int first;
5399 int i;
5400 unsigned o_div;
5401 isl_size n_div;
5402 int l;
5403 isl_ctx *ctx;
5404 isl_mat *T;
5406 if (!bmap)
5407 return NULL;
5408 if (isl_basic_map_divs_known(bmap))
5409 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5410 if (bmap->n_eq == 0)
5411 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5412 bmap = isl_basic_map_sort_divs(bmap);
5413 if (!bmap)
5414 return NULL;
5416 first = isl_basic_map_first_unknown_div(bmap);
5417 if (first < 0)
5418 return isl_basic_map_free(bmap);
5420 o_div = isl_basic_map_offset(bmap, isl_dim_div);
5421 n_div = isl_basic_map_dim(bmap, isl_dim_div);
5422 if (n_div < 0)
5423 return isl_basic_map_free(bmap);
5425 for (i = 0; i < bmap->n_eq; ++i) {
5426 l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
5427 n_div - (first));
5428 if (l < 0)
5429 continue;
5430 l += first;
5431 if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
5432 n_div - (l + 1)) == -1)
5433 continue;
5434 break;
5436 if (i >= bmap->n_eq)
5437 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5439 ctx = isl_basic_map_get_ctx(bmap);
5440 T = isl_mat_alloc(ctx, n_div - l, n_div - l);
5441 if (!T)
5442 return isl_basic_map_free(bmap);
5443 isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
5444 T = isl_mat_normalize_row(T, 0);
5445 T = isl_mat_unimodular_complete(T, 1);
5446 T = isl_mat_right_inverse(T);
5448 for (i = l; i < n_div; ++i)
5449 bmap = isl_basic_map_mark_div_unknown(bmap, i);
5450 bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
5451 bmap = isl_basic_map_simplify(bmap);
5453 return isl_basic_map_drop_redundant_divs(bmap);
5456 /* Does "bmap" satisfy any equality that involves more than 2 variables
5457 * and/or has coefficients different from -1 and 1?
5459 static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
5461 int i;
5462 isl_size total;
5464 total = isl_basic_map_dim(bmap, isl_dim_all);
5465 if (total < 0)
5466 return isl_bool_error;
5468 for (i = 0; i < bmap->n_eq; ++i) {
5469 int j, k;
5471 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
5472 if (j < 0)
5473 continue;
5474 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5475 !isl_int_is_negone(bmap->eq[i][1 + j]))
5476 return isl_bool_true;
5478 j += 1;
5479 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5480 if (k < 0)
5481 continue;
5482 j += k;
5483 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5484 !isl_int_is_negone(bmap->eq[i][1 + j]))
5485 return isl_bool_true;
5487 j += 1;
5488 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5489 if (k >= 0)
5490 return isl_bool_true;
5493 return isl_bool_false;
5496 /* Remove any common factor g from the constraint coefficients in "v".
5497 * The constant term is stored in the first position and is replaced
5498 * by floor(c/g). If any common factor is removed and if this results
5499 * in a tightening of the constraint, then set *tightened.
5501 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
5502 int *tightened)
5504 isl_ctx *ctx;
5506 if (!v)
5507 return NULL;
5508 ctx = isl_vec_get_ctx(v);
5509 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
5510 if (isl_int_is_zero(ctx->normalize_gcd))
5511 return v;
5512 if (isl_int_is_one(ctx->normalize_gcd))
5513 return v;
5514 v = isl_vec_cow(v);
5515 if (!v)
5516 return NULL;
5517 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
5518 *tightened = 1;
5519 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
5520 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
5521 v->size - 1);
5522 return v;
5525 /* Internal representation used by isl_basic_map_reduce_coefficients.
5527 * "total" is the total dimensionality of the original basic map.
5528 * "v" is a temporary vector of size 1 + total that can be used
5529 * to store constraint coefficients.
5530 * "T" is the variable compression.
5531 * "T2" is the inverse transformation.
5532 * "tightened" is set if any constant term got tightened
5533 * while reducing the coefficients.
5535 struct isl_reduce_coefficients_data {
5536 isl_size total;
5537 isl_vec *v;
5538 isl_mat *T;
5539 isl_mat *T2;
5540 int tightened;
5543 /* Free all memory allocated in "data".
5545 static void isl_reduce_coefficients_data_clear(
5546 struct isl_reduce_coefficients_data *data)
5548 data->T = isl_mat_free(data->T);
5549 data->T2 = isl_mat_free(data->T2);
5550 data->v = isl_vec_free(data->v);
5553 /* Initialize "data" for "bmap", freeing all allocated memory
5554 * if anything goes wrong.
5556 * In particular, construct a variable compression
5557 * from the equality constraints of "bmap" and
5558 * allocate a temporary vector.
5560 static isl_stat isl_reduce_coefficients_data_init(
5561 __isl_keep isl_basic_map *bmap,
5562 struct isl_reduce_coefficients_data *data)
5564 isl_ctx *ctx;
5565 isl_mat *eq;
5567 data->v = NULL;
5568 data->T = NULL;
5569 data->T2 = NULL;
5570 data->tightened = 0;
5572 data->total = isl_basic_map_dim(bmap, isl_dim_all);
5573 if (data->total < 0)
5574 return isl_stat_error;
5575 ctx = isl_basic_map_get_ctx(bmap);
5576 data->v = isl_vec_alloc(ctx, 1 + data->total);
5577 if (!data->v)
5578 return isl_stat_error;
5580 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq,
5581 0, 1 + data->total);
5582 data->T = isl_mat_variable_compression(eq, &data->T2);
5583 if (!data->T || !data->T2)
5584 goto error;
5586 return isl_stat_ok;
5587 error:
5588 isl_reduce_coefficients_data_clear(data);
5589 return isl_stat_error;
5592 /* Reduce the coefficients of "bmap" by applying the variable compression
5593 * in "data".
5594 * In particular, apply the variable compression to each constraint,
5595 * factor out any common factor in the non-constant coefficients and
5596 * then apply the inverse of the compression.
5598 * Only apply the reduction on a single copy of the basic map
5599 * since the reduction may leave the result in an inconsistent state.
5600 * In particular, the constraints may not be gaussed.
5602 static __isl_give isl_basic_map *reduce_coefficients(
5603 __isl_take isl_basic_map *bmap,
5604 struct isl_reduce_coefficients_data *data)
5606 int i;
5607 isl_size total;
5609 total = isl_basic_map_dim(bmap, isl_dim_all);
5610 if (total < 0)
5611 return isl_basic_map_free(bmap);
5612 if (total != data->total)
5613 isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
5614 "total dimensionality changed unexpectedly",
5615 return isl_basic_map_free(bmap));
5617 bmap = isl_basic_map_cow(bmap);
5618 if (!bmap)
5619 return NULL;
5621 for (i = 0; i < bmap->n_ineq; ++i) {
5622 isl_seq_cpy(data->v->el, bmap->ineq[i], 1 + data->total);
5623 data->v = isl_vec_mat_product(data->v, isl_mat_copy(data->T));
5624 data->v = normalize_constraint(data->v, &data->tightened);
5625 data->v = isl_vec_mat_product(data->v, isl_mat_copy(data->T2));
5626 if (!data->v)
5627 return isl_basic_map_free(bmap);
5628 isl_seq_cpy(bmap->ineq[i], data->v->el, 1 + data->total);
5631 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
5633 return bmap;
5636 /* If "bmap" is an integer set that satisfies any equality involving
5637 * more than 2 variables and/or has coefficients different from -1 and 1,
5638 * then use variable compression to reduce the coefficients by removing
5639 * any (hidden) common factor.
5640 * In particular, apply the variable compression to each constraint,
5641 * factor out any common factor in the non-constant coefficients and
5642 * then apply the inverse of the compression.
5643 * At the end, we mark the basic map as having reduced constants.
5644 * If this flag is still set on the next invocation of this function,
5645 * then we skip the computation.
5647 * Removing a common factor may result in a tightening of some of
5648 * the constraints. If this happens, then we may end up with two
5649 * opposite inequalities that can be replaced by an equality.
5650 * We therefore call isl_basic_map_detect_inequality_pairs,
5651 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5652 * and isl_basic_map_gauss if such a pair was found.
5653 * This call to isl_basic_map_gauss may undo much of the effect
5654 * of the reduction on which isl_map_coalesce depends.
5655 * In particular, constraints in terms of (compressed) local variables
5656 * get reformulated in terms of the set variables again.
5657 * The reduction is therefore applied again afterwards.
5658 * This has to be done before the call to eliminate_divs_eq, however,
5659 * since that may remove some local variables, while
5660 * the data used during the reduction is formulated in terms
5661 * of the original variables.
5663 * Tightening may also result in some other constraints becoming
5664 * (rationally) redundant with respect to the tightened constraint
5665 * (in combination with other constraints). The basic map may
5666 * therefore no longer be assumed to have no redundant constraints.
5668 * Note that this function may leave the result in an inconsistent state.
5669 * In particular, the constraints may not be gaussed.
5670 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5671 * for some of the test cases to pass successfully.
5672 * Any potential modification of the representation is therefore only
5673 * performed on a single copy of the basic map.
5675 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
5676 __isl_take isl_basic_map *bmap)
5678 struct isl_reduce_coefficients_data data;
5679 isl_bool multi;
5681 if (!bmap)
5682 return NULL;
5683 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
5684 return bmap;
5685 if (isl_basic_map_is_rational(bmap))
5686 return bmap;
5687 if (bmap->n_eq == 0)
5688 return bmap;
5689 multi = has_multiple_var_equality(bmap);
5690 if (multi < 0)
5691 return isl_basic_map_free(bmap);
5692 if (!multi)
5693 return bmap;
5695 if (isl_reduce_coefficients_data_init(bmap, &data) < 0)
5696 return isl_basic_map_free(bmap);
5698 if (data.T->n_col == 0) {
5699 isl_reduce_coefficients_data_clear(&data);
5700 return isl_basic_map_set_to_empty(bmap);
5703 bmap = reduce_coefficients(bmap, &data);
5704 if (!bmap)
5705 goto error;
5707 if (data.tightened) {
5708 int progress = 0;
5710 ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
5711 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
5712 if (progress) {
5713 bmap = isl_basic_map_gauss(bmap, NULL);
5714 bmap = reduce_coefficients(bmap, &data);
5715 bmap = eliminate_divs_eq(bmap, &progress);
5719 isl_reduce_coefficients_data_clear(&data);
5721 return bmap;
5722 error:
5723 isl_reduce_coefficients_data_clear(&data);
5724 return isl_basic_map_free(bmap);
5727 /* Shift the integer division at position "div" of "bmap"
5728 * by "shift" times the variable at position "pos".
5729 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5730 * corresponds to the constant term.
5732 * That is, if the integer division has the form
5734 * floor(f(x)/d)
5736 * then replace it by
5738 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5740 __isl_give isl_basic_map *isl_basic_map_shift_div(
5741 __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
5743 int i;
5744 isl_size total, n_div;
5746 if (isl_int_is_zero(shift))
5747 return bmap;
5748 total = isl_basic_map_dim(bmap, isl_dim_all);
5749 n_div = isl_basic_map_dim(bmap, isl_dim_div);
5750 total -= n_div;
5751 if (total < 0 || n_div < 0)
5752 return isl_basic_map_free(bmap);
5754 isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
5756 for (i = 0; i < bmap->n_eq; ++i) {
5757 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
5758 continue;
5759 isl_int_submul(bmap->eq[i][pos],
5760 shift, bmap->eq[i][1 + total + div]);
5762 for (i = 0; i < bmap->n_ineq; ++i) {
5763 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
5764 continue;
5765 isl_int_submul(bmap->ineq[i][pos],
5766 shift, bmap->ineq[i][1 + total + div]);
5768 for (i = 0; i < bmap->n_div; ++i) {
5769 if (isl_int_is_zero(bmap->div[i][0]))
5770 continue;
5771 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
5772 continue;
5773 isl_int_submul(bmap->div[i][1 + pos],
5774 shift, bmap->div[i][1 + 1 + total + div]);
5777 return bmap;