add isl_union_map_power
[isl.git] / basis_reduction_templ.c
blob4f6145d42ad339bce63cfcee0d4964b9dae54e28
1 /*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
13 #include <stdlib.h>
14 #include <isl_map_private.h>
15 #include "isl_basis_reduction.h"
17 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
19 int i;
21 for (i = 0; i < n; ++i)
22 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
25 /* Compute a reduced basis for the set represented by the tableau "tab".
26 * tab->basis, which must be initialized by the calling function to an affine
27 * unimodular basis, is updated to reflect the reduced basis.
28 * The first tab->n_zero rows of the basis (ignoring the constant row)
29 * are assumed to correspond to equalities and are left untouched.
30 * tab->n_zero is updated to reflect any additional equalities that
31 * have been detected in the first rows of the new basis.
32 * The final tab->n_unbounded rows of the basis are assumed to correspond
33 * to unbounded directions and are also left untouched.
34 * In particular this means that the remaining rows are assumed to
35 * correspond to bounded directions.
37 * This function implements the algorithm described in
38 * "An Implementation of the Generalized Basis Reduction Algorithm
39 * for Integer Programming" of Cook el al. to compute a reduced basis.
40 * We use \epsilon = 1/4.
42 * If ctx->opt->gbr_only_first is set, the user is only interested
43 * in the first direction. In this case we stop the basis reduction when
44 * the width in the first direction becomes smaller than 2.
46 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
48 unsigned dim;
49 struct isl_ctx *ctx;
50 struct isl_mat *B;
51 int unbounded;
52 int i;
53 GBR_LP *lp = NULL;
54 GBR_type F_old, alpha, F_new;
55 int row;
56 isl_int tmp;
57 struct isl_vec *b_tmp;
58 GBR_type *F = NULL;
59 GBR_type *alpha_buffer[2] = { NULL, NULL };
60 GBR_type *alpha_saved;
61 GBR_type F_saved;
62 int use_saved = 0;
63 isl_int mu[2];
64 GBR_type mu_F[2];
65 GBR_type two;
66 GBR_type one;
67 int empty = 0;
68 int fixed = 0;
69 int fixed_saved = 0;
70 int mu_fixed[2];
71 int n_bounded;
72 int gbr_only_first;
74 if (!tab)
75 return NULL;
77 if (tab->empty)
78 return tab;
80 ctx = tab->mat->ctx;
81 gbr_only_first = ctx->opt->gbr_only_first;
82 dim = tab->n_var;
83 B = tab->basis;
84 if (!B)
85 return tab;
87 n_bounded = dim - tab->n_unbounded;
88 if (n_bounded <= tab->n_zero + 1)
89 return tab;
91 isl_int_init(tmp);
92 isl_int_init(mu[0]);
93 isl_int_init(mu[1]);
95 GBR_init(alpha);
96 GBR_init(F_old);
97 GBR_init(F_new);
98 GBR_init(F_saved);
99 GBR_init(mu_F[0]);
100 GBR_init(mu_F[1]);
101 GBR_init(two);
102 GBR_init(one);
104 b_tmp = isl_vec_alloc(ctx, dim);
105 if (!b_tmp)
106 goto error;
108 F = isl_alloc_array(ctx, GBR_type, n_bounded);
109 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
110 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
111 alpha_saved = alpha_buffer[0];
113 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
114 goto error;
116 for (i = 0; i < n_bounded; ++i) {
117 GBR_init(F[i]);
118 GBR_init(alpha_buffer[0][i]);
119 GBR_init(alpha_buffer[1][i]);
122 GBR_set_ui(two, 2);
123 GBR_set_ui(one, 1);
125 lp = GBR_lp_init(tab);
126 if (!lp)
127 goto error;
129 i = tab->n_zero;
131 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
132 ctx->stats->gbr_solved_lps++;
133 unbounded = GBR_lp_solve(lp);
134 isl_assert(ctx, !unbounded, goto error);
135 GBR_lp_get_obj_val(lp, &F[i]);
137 if (GBR_lt(F[i], one)) {
138 if (!GBR_is_zero(F[i])) {
139 empty = GBR_lp_cut(lp, B->row[1+i]+1);
140 if (empty)
141 goto done;
142 GBR_set_ui(F[i], 0);
144 tab->n_zero++;
147 do {
148 if (i+1 == tab->n_zero) {
149 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
150 ctx->stats->gbr_solved_lps++;
151 unbounded = GBR_lp_solve(lp);
152 isl_assert(ctx, !unbounded, goto error);
153 GBR_lp_get_obj_val(lp, &F_new);
154 fixed = GBR_lp_is_fixed(lp);
155 GBR_set_ui(alpha, 0);
156 } else
157 if (use_saved) {
158 row = GBR_lp_next_row(lp);
159 GBR_set(F_new, F_saved);
160 fixed = fixed_saved;
161 GBR_set(alpha, alpha_saved[i]);
162 } else {
163 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
164 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
165 ctx->stats->gbr_solved_lps++;
166 unbounded = GBR_lp_solve(lp);
167 isl_assert(ctx, !unbounded, goto error);
168 GBR_lp_get_obj_val(lp, &F_new);
169 fixed = GBR_lp_is_fixed(lp);
171 GBR_lp_get_alpha(lp, row, &alpha);
173 if (i > 0)
174 save_alpha(lp, row-i, i, alpha_saved);
176 if (GBR_lp_del_row(lp) < 0)
177 goto error;
179 GBR_set(F[i+1], F_new);
181 GBR_floor(mu[0], alpha);
182 GBR_ceil(mu[1], alpha);
184 if (isl_int_eq(mu[0], mu[1]))
185 isl_int_set(tmp, mu[0]);
186 else {
187 int j;
189 for (j = 0; j <= 1; ++j) {
190 isl_int_set(tmp, mu[j]);
191 isl_seq_combine(b_tmp->el,
192 ctx->one, B->row[1+i+1]+1,
193 tmp, B->row[1+i]+1, dim);
194 GBR_lp_set_obj(lp, b_tmp->el, dim);
195 ctx->stats->gbr_solved_lps++;
196 unbounded = GBR_lp_solve(lp);
197 isl_assert(ctx, !unbounded, goto error);
198 GBR_lp_get_obj_val(lp, &mu_F[j]);
199 mu_fixed[j] = GBR_lp_is_fixed(lp);
200 if (i > 0)
201 save_alpha(lp, row-i, i, alpha_buffer[j]);
204 if (GBR_lt(mu_F[0], mu_F[1]))
205 j = 0;
206 else
207 j = 1;
209 isl_int_set(tmp, mu[j]);
210 GBR_set(F_new, mu_F[j]);
211 fixed = mu_fixed[j];
212 alpha_saved = alpha_buffer[j];
214 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
215 tmp, B->row[1+i]+1, dim);
217 if (i+1 == tab->n_zero && fixed) {
218 if (!GBR_is_zero(F[i+1])) {
219 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
220 if (empty)
221 goto done;
222 GBR_set_ui(F[i+1], 0);
224 tab->n_zero++;
227 GBR_set(F_old, F[i]);
229 use_saved = 0;
230 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
231 GBR_set_ui(mu_F[0], 4);
232 GBR_mul(mu_F[0], mu_F[0], F_new);
233 GBR_set_ui(mu_F[1], 3);
234 GBR_mul(mu_F[1], mu_F[1], F_old);
235 if (GBR_lt(mu_F[0], mu_F[1])) {
236 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
237 if (i > tab->n_zero) {
238 use_saved = 1;
239 GBR_set(F_saved, F_new);
240 fixed_saved = fixed;
241 if (GBR_lp_del_row(lp) < 0)
242 goto error;
243 --i;
244 } else {
245 GBR_set(F[tab->n_zero], F_new);
246 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
247 break;
249 if (fixed) {
250 if (!GBR_is_zero(F[tab->n_zero])) {
251 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
252 if (empty)
253 goto done;
254 GBR_set_ui(F[tab->n_zero], 0);
256 tab->n_zero++;
259 } else {
260 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
261 ++i;
263 } while (i < n_bounded - 1);
265 if (0) {
266 done:
267 if (empty < 0) {
268 error:
269 isl_mat_free(B);
270 B = NULL;
274 GBR_lp_delete(lp);
276 if (alpha_buffer[1])
277 for (i = 0; i < n_bounded; ++i) {
278 GBR_clear(F[i]);
279 GBR_clear(alpha_buffer[0][i]);
280 GBR_clear(alpha_buffer[1][i]);
282 free(F);
283 free(alpha_buffer[0]);
284 free(alpha_buffer[1]);
286 isl_vec_free(b_tmp);
288 GBR_clear(alpha);
289 GBR_clear(F_old);
290 GBR_clear(F_new);
291 GBR_clear(F_saved);
292 GBR_clear(mu_F[0]);
293 GBR_clear(mu_F[1]);
294 GBR_clear(two);
295 GBR_clear(one);
297 isl_int_clear(tmp);
298 isl_int_clear(mu[0]);
299 isl_int_clear(mu[1]);
301 tab->basis = B;
303 return tab;
306 /* Compute an affine form of a reduced basis of the given basic
307 * non-parametric set, which is assumed to be bounded and not
308 * include any integer divisions.
309 * The first column and the first row correspond to the constant term.
311 * If the input contains any equalities, we first create an initial
312 * basis with the equalities first. Otherwise, we start off with
313 * the identity matrix.
315 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
317 struct isl_mat *basis;
318 struct isl_tab *tab;
320 if (!bset)
321 return NULL;
323 if (isl_basic_set_dim(bset, isl_dim_div) != 0)
324 isl_die(bset->ctx, isl_error_invalid,
325 "no integer division allowed", return NULL);
326 if (isl_basic_set_dim(bset, isl_dim_param) != 0)
327 isl_die(bset->ctx, isl_error_invalid,
328 "no parameters allowed", return NULL);
330 tab = isl_tab_from_basic_set(bset);
331 if (!tab)
332 return NULL;
334 if (bset->n_eq == 0)
335 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
336 else {
337 isl_mat *eq;
338 unsigned nvar = isl_basic_set_total_dim(bset);
339 eq = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq,
340 1, nvar);
341 eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
342 tab->basis = isl_mat_lin_to_aff(tab->basis);
343 tab->n_zero = bset->n_eq;
344 isl_mat_free(eq);
346 tab = isl_tab_compute_reduced_basis(tab);
347 if (!tab)
348 return NULL;
350 basis = isl_mat_copy(tab->basis);
352 isl_tab_free(tab);
354 return basis;