add isl_qpolynomial_dim
[isl.git] / isl_tab.c
blobcbf442f9eb683e86b6423550fb02c524409eff98
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_mat.h"
11 #include "isl_map_private.h"
12 #include "isl_tab.h"
13 #include "isl_seq.h"
16 * The implementation of tableaus in this file was inspired by Section 8
17 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
18 * prover for program checking".
21 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
22 unsigned n_row, unsigned n_var, unsigned M)
24 int i;
25 struct isl_tab *tab;
26 unsigned off = 2 + M;
28 tab = isl_calloc_type(ctx, struct isl_tab);
29 if (!tab)
30 return NULL;
31 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
32 if (!tab->mat)
33 goto error;
34 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
35 if (!tab->var)
36 goto error;
37 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
38 if (!tab->con)
39 goto error;
40 tab->col_var = isl_alloc_array(ctx, int, n_var);
41 if (!tab->col_var)
42 goto error;
43 tab->row_var = isl_alloc_array(ctx, int, n_row);
44 if (!tab->row_var)
45 goto error;
46 for (i = 0; i < n_var; ++i) {
47 tab->var[i].index = i;
48 tab->var[i].is_row = 0;
49 tab->var[i].is_nonneg = 0;
50 tab->var[i].is_zero = 0;
51 tab->var[i].is_redundant = 0;
52 tab->var[i].frozen = 0;
53 tab->var[i].negated = 0;
54 tab->col_var[i] = i;
56 tab->n_row = 0;
57 tab->n_con = 0;
58 tab->n_eq = 0;
59 tab->max_con = n_row;
60 tab->n_col = n_var;
61 tab->n_var = n_var;
62 tab->max_var = n_var;
63 tab->n_param = 0;
64 tab->n_div = 0;
65 tab->n_dead = 0;
66 tab->n_redundant = 0;
67 tab->need_undo = 0;
68 tab->rational = 0;
69 tab->empty = 0;
70 tab->in_undo = 0;
71 tab->M = M;
72 tab->cone = 0;
73 tab->bottom.type = isl_tab_undo_bottom;
74 tab->bottom.next = NULL;
75 tab->top = &tab->bottom;
77 tab->n_zero = 0;
78 tab->n_unbounded = 0;
79 tab->basis = NULL;
81 return tab;
82 error:
83 isl_tab_free(tab);
84 return NULL;
87 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
89 unsigned off = 2 + tab->M;
91 if (!tab)
92 return -1;
94 if (tab->max_con < tab->n_con + n_new) {
95 struct isl_tab_var *con;
97 con = isl_realloc_array(tab->mat->ctx, tab->con,
98 struct isl_tab_var, tab->max_con + n_new);
99 if (!con)
100 return -1;
101 tab->con = con;
102 tab->max_con += n_new;
104 if (tab->mat->n_row < tab->n_row + n_new) {
105 int *row_var;
107 tab->mat = isl_mat_extend(tab->mat,
108 tab->n_row + n_new, off + tab->n_col);
109 if (!tab->mat)
110 return -1;
111 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
112 int, tab->mat->n_row);
113 if (!row_var)
114 return -1;
115 tab->row_var = row_var;
116 if (tab->row_sign) {
117 enum isl_tab_row_sign *s;
118 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
119 enum isl_tab_row_sign, tab->mat->n_row);
120 if (!s)
121 return -1;
122 tab->row_sign = s;
125 return 0;
128 /* Make room for at least n_new extra variables.
129 * Return -1 if anything went wrong.
131 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
133 struct isl_tab_var *var;
134 unsigned off = 2 + tab->M;
136 if (tab->max_var < tab->n_var + n_new) {
137 var = isl_realloc_array(tab->mat->ctx, tab->var,
138 struct isl_tab_var, tab->n_var + n_new);
139 if (!var)
140 return -1;
141 tab->var = var;
142 tab->max_var += n_new;
145 if (tab->mat->n_col < off + tab->n_col + n_new) {
146 int *p;
148 tab->mat = isl_mat_extend(tab->mat,
149 tab->mat->n_row, off + tab->n_col + n_new);
150 if (!tab->mat)
151 return -1;
152 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
153 int, tab->n_col + n_new);
154 if (!p)
155 return -1;
156 tab->col_var = p;
159 return 0;
162 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
164 if (isl_tab_extend_cons(tab, n_new) >= 0)
165 return tab;
167 isl_tab_free(tab);
168 return NULL;
171 static void free_undo(struct isl_tab *tab)
173 struct isl_tab_undo *undo, *next;
175 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
176 next = undo->next;
177 free(undo);
179 tab->top = undo;
182 void isl_tab_free(struct isl_tab *tab)
184 if (!tab)
185 return;
186 free_undo(tab);
187 isl_mat_free(tab->mat);
188 isl_vec_free(tab->dual);
189 isl_basic_map_free(tab->bmap);
190 free(tab->var);
191 free(tab->con);
192 free(tab->row_var);
193 free(tab->col_var);
194 free(tab->row_sign);
195 isl_mat_free(tab->samples);
196 free(tab->sample_index);
197 isl_mat_free(tab->basis);
198 free(tab);
201 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
203 int i;
204 struct isl_tab *dup;
205 unsigned off;
207 if (!tab)
208 return NULL;
210 off = 2 + tab->M;
211 dup = isl_calloc_type(tab->ctx, struct isl_tab);
212 if (!dup)
213 return NULL;
214 dup->mat = isl_mat_dup(tab->mat);
215 if (!dup->mat)
216 goto error;
217 dup->var = isl_alloc_array(tab->ctx, struct isl_tab_var, tab->max_var);
218 if (!dup->var)
219 goto error;
220 for (i = 0; i < tab->n_var; ++i)
221 dup->var[i] = tab->var[i];
222 dup->con = isl_alloc_array(tab->ctx, struct isl_tab_var, tab->max_con);
223 if (!dup->con)
224 goto error;
225 for (i = 0; i < tab->n_con; ++i)
226 dup->con[i] = tab->con[i];
227 dup->col_var = isl_alloc_array(tab->ctx, int, tab->mat->n_col - off);
228 if (!dup->col_var)
229 goto error;
230 for (i = 0; i < tab->n_col; ++i)
231 dup->col_var[i] = tab->col_var[i];
232 dup->row_var = isl_alloc_array(tab->ctx, int, tab->mat->n_row);
233 if (!dup->row_var)
234 goto error;
235 for (i = 0; i < tab->n_row; ++i)
236 dup->row_var[i] = tab->row_var[i];
237 if (tab->row_sign) {
238 dup->row_sign = isl_alloc_array(tab->ctx, enum isl_tab_row_sign,
239 tab->mat->n_row);
240 if (!dup->row_sign)
241 goto error;
242 for (i = 0; i < tab->n_row; ++i)
243 dup->row_sign[i] = tab->row_sign[i];
245 if (tab->samples) {
246 dup->samples = isl_mat_dup(tab->samples);
247 if (!dup->samples)
248 goto error;
249 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
250 tab->samples->n_row);
251 if (!dup->sample_index)
252 goto error;
253 dup->n_sample = tab->n_sample;
254 dup->n_outside = tab->n_outside;
256 dup->n_row = tab->n_row;
257 dup->n_con = tab->n_con;
258 dup->n_eq = tab->n_eq;
259 dup->max_con = tab->max_con;
260 dup->n_col = tab->n_col;
261 dup->n_var = tab->n_var;
262 dup->max_var = tab->max_var;
263 dup->n_param = tab->n_param;
264 dup->n_div = tab->n_div;
265 dup->n_dead = tab->n_dead;
266 dup->n_redundant = tab->n_redundant;
267 dup->rational = tab->rational;
268 dup->empty = tab->empty;
269 dup->need_undo = 0;
270 dup->in_undo = 0;
271 dup->M = tab->M;
272 tab->cone = tab->cone;
273 dup->bottom.type = isl_tab_undo_bottom;
274 dup->bottom.next = NULL;
275 dup->top = &dup->bottom;
277 dup->n_zero = tab->n_zero;
278 dup->n_unbounded = tab->n_unbounded;
279 dup->basis = isl_mat_dup(tab->basis);
281 return dup;
282 error:
283 isl_tab_free(dup);
284 return NULL;
287 /* Construct the coefficient matrix of the product tableau
288 * of two tableaus.
289 * mat{1,2} is the coefficient matrix of tableau {1,2}
290 * row{1,2} is the number of rows in tableau {1,2}
291 * col{1,2} is the number of columns in tableau {1,2}
292 * off is the offset to the coefficient column (skipping the
293 * denominator, the constant term and the big parameter if any)
294 * r{1,2} is the number of redundant rows in tableau {1,2}
295 * d{1,2} is the number of dead columns in tableau {1,2}
297 * The order of the rows and columns in the result is as explained
298 * in isl_tab_product.
300 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
301 struct isl_mat *mat2, unsigned row1, unsigned row2,
302 unsigned col1, unsigned col2,
303 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
305 int i;
306 struct isl_mat *prod;
307 unsigned n;
309 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
310 off + col1 + col2);
312 n = 0;
313 for (i = 0; i < r1; ++i) {
314 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
315 isl_seq_clr(prod->row[n + i] + off + d1, d2);
316 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
317 mat1->row[i] + off + d1, col1 - d1);
318 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
321 n += r1;
322 for (i = 0; i < r2; ++i) {
323 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
324 isl_seq_clr(prod->row[n + i] + off, d1);
325 isl_seq_cpy(prod->row[n + i] + off + d1,
326 mat2->row[i] + off, d2);
327 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
328 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
329 mat2->row[i] + off + d2, col2 - d2);
332 n += r2;
333 for (i = 0; i < row1 - r1; ++i) {
334 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
335 isl_seq_clr(prod->row[n + i] + off + d1, d2);
336 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
337 mat1->row[r1 + i] + off + d1, col1 - d1);
338 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
341 n += row1 - r1;
342 for (i = 0; i < row2 - r2; ++i) {
343 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
344 isl_seq_clr(prod->row[n + i] + off, d1);
345 isl_seq_cpy(prod->row[n + i] + off + d1,
346 mat2->row[r2 + i] + off, d2);
347 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
348 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
349 mat2->row[r2 + i] + off + d2, col2 - d2);
352 return prod;
355 /* Update the row or column index of a variable that corresponds
356 * to a variable in the first input tableau.
358 static void update_index1(struct isl_tab_var *var,
359 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
361 if (var->index == -1)
362 return;
363 if (var->is_row && var->index >= r1)
364 var->index += r2;
365 if (!var->is_row && var->index >= d1)
366 var->index += d2;
369 /* Update the row or column index of a variable that corresponds
370 * to a variable in the second input tableau.
372 static void update_index2(struct isl_tab_var *var,
373 unsigned row1, unsigned col1,
374 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
376 if (var->index == -1)
377 return;
378 if (var->is_row) {
379 if (var->index < r2)
380 var->index += r1;
381 else
382 var->index += row1;
383 } else {
384 if (var->index < d2)
385 var->index += d1;
386 else
387 var->index += col1;
391 /* Create a tableau that represents the Cartesian product of the sets
392 * represented by tableaus tab1 and tab2.
393 * The order of the rows in the product is
394 * - redundant rows of tab1
395 * - redundant rows of tab2
396 * - non-redundant rows of tab1
397 * - non-redundant rows of tab2
398 * The order of the columns is
399 * - denominator
400 * - constant term
401 * - coefficient of big parameter, if any
402 * - dead columns of tab1
403 * - dead columns of tab2
404 * - live columns of tab1
405 * - live columns of tab2
406 * The order of the variables and the constraints is a concatenation
407 * of order in the two input tableaus.
409 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
411 int i;
412 struct isl_tab *prod;
413 unsigned off;
414 unsigned r1, r2, d1, d2;
416 if (!tab1 || !tab2)
417 return NULL;
419 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
420 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
421 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
422 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
423 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
424 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
425 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
426 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
427 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
429 off = 2 + tab1->M;
430 r1 = tab1->n_redundant;
431 r2 = tab2->n_redundant;
432 d1 = tab1->n_dead;
433 d2 = tab2->n_dead;
434 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
435 if (!prod)
436 return NULL;
437 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
438 tab1->n_row, tab2->n_row,
439 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
440 if (!prod->mat)
441 goto error;
442 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
443 tab1->max_var + tab2->max_var);
444 if (!prod->var)
445 goto error;
446 for (i = 0; i < tab1->n_var; ++i) {
447 prod->var[i] = tab1->var[i];
448 update_index1(&prod->var[i], r1, r2, d1, d2);
450 for (i = 0; i < tab2->n_var; ++i) {
451 prod->var[tab1->n_var + i] = tab2->var[i];
452 update_index2(&prod->var[tab1->n_var + i],
453 tab1->n_row, tab1->n_col,
454 r1, r2, d1, d2);
456 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
457 tab1->max_con + tab2->max_con);
458 if (!prod->con)
459 goto error;
460 for (i = 0; i < tab1->n_con; ++i) {
461 prod->con[i] = tab1->con[i];
462 update_index1(&prod->con[i], r1, r2, d1, d2);
464 for (i = 0; i < tab2->n_con; ++i) {
465 prod->con[tab1->n_con + i] = tab2->con[i];
466 update_index2(&prod->con[tab1->n_con + i],
467 tab1->n_row, tab1->n_col,
468 r1, r2, d1, d2);
470 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
471 tab1->n_col + tab2->n_col);
472 if (!prod->col_var)
473 goto error;
474 for (i = 0; i < tab1->n_col; ++i) {
475 int pos = i < d1 ? i : i + d2;
476 prod->col_var[pos] = tab1->col_var[i];
478 for (i = 0; i < tab2->n_col; ++i) {
479 int pos = i < d2 ? d1 + i : tab1->n_col + i;
480 int t = tab2->col_var[i];
481 if (t >= 0)
482 t += tab1->n_var;
483 else
484 t -= tab1->n_con;
485 prod->col_var[pos] = t;
487 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
488 tab1->mat->n_row + tab2->mat->n_row);
489 if (!prod->row_var)
490 goto error;
491 for (i = 0; i < tab1->n_row; ++i) {
492 int pos = i < r1 ? i : i + r2;
493 prod->row_var[pos] = tab1->row_var[i];
495 for (i = 0; i < tab2->n_row; ++i) {
496 int pos = i < r2 ? r1 + i : tab1->n_row + i;
497 int t = tab2->row_var[i];
498 if (t >= 0)
499 t += tab1->n_var;
500 else
501 t -= tab1->n_con;
502 prod->row_var[pos] = t;
504 prod->samples = NULL;
505 prod->sample_index = NULL;
506 prod->n_row = tab1->n_row + tab2->n_row;
507 prod->n_con = tab1->n_con + tab2->n_con;
508 prod->n_eq = 0;
509 prod->max_con = tab1->max_con + tab2->max_con;
510 prod->n_col = tab1->n_col + tab2->n_col;
511 prod->n_var = tab1->n_var + tab2->n_var;
512 prod->max_var = tab1->max_var + tab2->max_var;
513 prod->n_param = 0;
514 prod->n_div = 0;
515 prod->n_dead = tab1->n_dead + tab2->n_dead;
516 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
517 prod->rational = tab1->rational;
518 prod->empty = tab1->empty || tab2->empty;
519 prod->need_undo = 0;
520 prod->in_undo = 0;
521 prod->M = tab1->M;
522 prod->cone = tab1->cone;
523 prod->bottom.type = isl_tab_undo_bottom;
524 prod->bottom.next = NULL;
525 prod->top = &prod->bottom;
527 prod->n_zero = 0;
528 prod->n_unbounded = 0;
529 prod->basis = NULL;
531 return prod;
532 error:
533 isl_tab_free(prod);
534 return NULL;
537 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
539 if (i >= 0)
540 return &tab->var[i];
541 else
542 return &tab->con[~i];
545 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
547 return var_from_index(tab, tab->row_var[i]);
550 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
552 return var_from_index(tab, tab->col_var[i]);
555 /* Check if there are any upper bounds on column variable "var",
556 * i.e., non-negative rows where var appears with a negative coefficient.
557 * Return 1 if there are no such bounds.
559 static int max_is_manifestly_unbounded(struct isl_tab *tab,
560 struct isl_tab_var *var)
562 int i;
563 unsigned off = 2 + tab->M;
565 if (var->is_row)
566 return 0;
567 for (i = tab->n_redundant; i < tab->n_row; ++i) {
568 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
569 continue;
570 if (isl_tab_var_from_row(tab, i)->is_nonneg)
571 return 0;
573 return 1;
576 /* Check if there are any lower bounds on column variable "var",
577 * i.e., non-negative rows where var appears with a positive coefficient.
578 * Return 1 if there are no such bounds.
580 static int min_is_manifestly_unbounded(struct isl_tab *tab,
581 struct isl_tab_var *var)
583 int i;
584 unsigned off = 2 + tab->M;
586 if (var->is_row)
587 return 0;
588 for (i = tab->n_redundant; i < tab->n_row; ++i) {
589 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
590 continue;
591 if (isl_tab_var_from_row(tab, i)->is_nonneg)
592 return 0;
594 return 1;
597 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
599 unsigned off = 2 + tab->M;
601 if (tab->M) {
602 int s;
603 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
604 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
605 s = isl_int_sgn(t);
606 if (s)
607 return s;
609 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
610 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
611 return isl_int_sgn(t);
614 /* Given the index of a column "c", return the index of a row
615 * that can be used to pivot the column in, with either an increase
616 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
617 * If "var" is not NULL, then the row returned will be different from
618 * the one associated with "var".
620 * Each row in the tableau is of the form
622 * x_r = a_r0 + \sum_i a_ri x_i
624 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
625 * impose any limit on the increase or decrease in the value of x_c
626 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
627 * for the row with the smallest (most stringent) such bound.
628 * Note that the common denominator of each row drops out of the fraction.
629 * To check if row j has a smaller bound than row r, i.e.,
630 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
631 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
632 * where -sign(a_jc) is equal to "sgn".
634 static int pivot_row(struct isl_tab *tab,
635 struct isl_tab_var *var, int sgn, int c)
637 int j, r, tsgn;
638 isl_int t;
639 unsigned off = 2 + tab->M;
641 isl_int_init(t);
642 r = -1;
643 for (j = tab->n_redundant; j < tab->n_row; ++j) {
644 if (var && j == var->index)
645 continue;
646 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
647 continue;
648 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
649 continue;
650 if (r < 0) {
651 r = j;
652 continue;
654 tsgn = sgn * row_cmp(tab, r, j, c, t);
655 if (tsgn < 0 || (tsgn == 0 &&
656 tab->row_var[j] < tab->row_var[r]))
657 r = j;
659 isl_int_clear(t);
660 return r;
663 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
664 * (sgn < 0) the value of row variable var.
665 * If not NULL, then skip_var is a row variable that should be ignored
666 * while looking for a pivot row. It is usually equal to var.
668 * As the given row in the tableau is of the form
670 * x_r = a_r0 + \sum_i a_ri x_i
672 * we need to find a column such that the sign of a_ri is equal to "sgn"
673 * (such that an increase in x_i will have the desired effect) or a
674 * column with a variable that may attain negative values.
675 * If a_ri is positive, then we need to move x_i in the same direction
676 * to obtain the desired effect. Otherwise, x_i has to move in the
677 * opposite direction.
679 static void find_pivot(struct isl_tab *tab,
680 struct isl_tab_var *var, struct isl_tab_var *skip_var,
681 int sgn, int *row, int *col)
683 int j, r, c;
684 isl_int *tr;
686 *row = *col = -1;
688 isl_assert(tab->mat->ctx, var->is_row, return);
689 tr = tab->mat->row[var->index] + 2 + tab->M;
691 c = -1;
692 for (j = tab->n_dead; j < tab->n_col; ++j) {
693 if (isl_int_is_zero(tr[j]))
694 continue;
695 if (isl_int_sgn(tr[j]) != sgn &&
696 var_from_col(tab, j)->is_nonneg)
697 continue;
698 if (c < 0 || tab->col_var[j] < tab->col_var[c])
699 c = j;
701 if (c < 0)
702 return;
704 sgn *= isl_int_sgn(tr[c]);
705 r = pivot_row(tab, skip_var, sgn, c);
706 *row = r < 0 ? var->index : r;
707 *col = c;
710 /* Return 1 if row "row" represents an obviously redundant inequality.
711 * This means
712 * - it represents an inequality or a variable
713 * - that is the sum of a non-negative sample value and a positive
714 * combination of zero or more non-negative constraints.
716 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
718 int i;
719 unsigned off = 2 + tab->M;
721 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
722 return 0;
724 if (isl_int_is_neg(tab->mat->row[row][1]))
725 return 0;
726 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
727 return 0;
729 for (i = tab->n_dead; i < tab->n_col; ++i) {
730 if (isl_int_is_zero(tab->mat->row[row][off + i]))
731 continue;
732 if (tab->col_var[i] >= 0)
733 return 0;
734 if (isl_int_is_neg(tab->mat->row[row][off + i]))
735 return 0;
736 if (!var_from_col(tab, i)->is_nonneg)
737 return 0;
739 return 1;
742 static void swap_rows(struct isl_tab *tab, int row1, int row2)
744 int t;
745 enum isl_tab_row_sign s;
747 t = tab->row_var[row1];
748 tab->row_var[row1] = tab->row_var[row2];
749 tab->row_var[row2] = t;
750 isl_tab_var_from_row(tab, row1)->index = row1;
751 isl_tab_var_from_row(tab, row2)->index = row2;
752 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
754 if (!tab->row_sign)
755 return;
756 s = tab->row_sign[row1];
757 tab->row_sign[row1] = tab->row_sign[row2];
758 tab->row_sign[row2] = s;
761 static int push_union(struct isl_tab *tab,
762 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
763 static int push_union(struct isl_tab *tab,
764 enum isl_tab_undo_type type, union isl_tab_undo_val u)
766 struct isl_tab_undo *undo;
768 if (!tab->need_undo)
769 return 0;
771 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
772 if (!undo)
773 return -1;
774 undo->type = type;
775 undo->u = u;
776 undo->next = tab->top;
777 tab->top = undo;
779 return 0;
782 int isl_tab_push_var(struct isl_tab *tab,
783 enum isl_tab_undo_type type, struct isl_tab_var *var)
785 union isl_tab_undo_val u;
786 if (var->is_row)
787 u.var_index = tab->row_var[var->index];
788 else
789 u.var_index = tab->col_var[var->index];
790 return push_union(tab, type, u);
793 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
795 union isl_tab_undo_val u = { 0 };
796 return push_union(tab, type, u);
799 /* Push a record on the undo stack describing the current basic
800 * variables, so that the this state can be restored during rollback.
802 int isl_tab_push_basis(struct isl_tab *tab)
804 int i;
805 union isl_tab_undo_val u;
807 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
808 if (!u.col_var)
809 return -1;
810 for (i = 0; i < tab->n_col; ++i)
811 u.col_var[i] = tab->col_var[i];
812 return push_union(tab, isl_tab_undo_saved_basis, u);
815 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
817 union isl_tab_undo_val u;
818 u.callback = callback;
819 return push_union(tab, isl_tab_undo_callback, u);
822 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
824 if (!tab)
825 return NULL;
827 tab->n_sample = 0;
828 tab->n_outside = 0;
829 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
830 if (!tab->samples)
831 goto error;
832 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
833 if (!tab->sample_index)
834 goto error;
835 return tab;
836 error:
837 isl_tab_free(tab);
838 return NULL;
841 struct isl_tab *isl_tab_add_sample(struct isl_tab *tab,
842 __isl_take isl_vec *sample)
844 if (!tab || !sample)
845 goto error;
847 if (tab->n_sample + 1 > tab->samples->n_row) {
848 int *t = isl_realloc_array(tab->mat->ctx,
849 tab->sample_index, int, tab->n_sample + 1);
850 if (!t)
851 goto error;
852 tab->sample_index = t;
855 tab->samples = isl_mat_extend(tab->samples,
856 tab->n_sample + 1, tab->samples->n_col);
857 if (!tab->samples)
858 goto error;
860 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
861 isl_vec_free(sample);
862 tab->sample_index[tab->n_sample] = tab->n_sample;
863 tab->n_sample++;
865 return tab;
866 error:
867 isl_vec_free(sample);
868 isl_tab_free(tab);
869 return NULL;
872 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
874 if (s != tab->n_outside) {
875 int t = tab->sample_index[tab->n_outside];
876 tab->sample_index[tab->n_outside] = tab->sample_index[s];
877 tab->sample_index[s] = t;
878 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
880 tab->n_outside++;
881 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
882 isl_tab_free(tab);
883 return NULL;
886 return tab;
889 /* Record the current number of samples so that we can remove newer
890 * samples during a rollback.
892 int isl_tab_save_samples(struct isl_tab *tab)
894 union isl_tab_undo_val u;
896 if (!tab)
897 return -1;
899 u.n = tab->n_sample;
900 return push_union(tab, isl_tab_undo_saved_samples, u);
903 /* Mark row with index "row" as being redundant.
904 * If we may need to undo the operation or if the row represents
905 * a variable of the original problem, the row is kept,
906 * but no longer considered when looking for a pivot row.
907 * Otherwise, the row is simply removed.
909 * The row may be interchanged with some other row. If it
910 * is interchanged with a later row, return 1. Otherwise return 0.
911 * If the rows are checked in order in the calling function,
912 * then a return value of 1 means that the row with the given
913 * row number may now contain a different row that hasn't been checked yet.
915 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
917 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
918 var->is_redundant = 1;
919 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
920 if (tab->need_undo || tab->row_var[row] >= 0) {
921 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
922 var->is_nonneg = 1;
923 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
924 return -1;
926 if (row != tab->n_redundant)
927 swap_rows(tab, row, tab->n_redundant);
928 tab->n_redundant++;
929 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
930 } else {
931 if (row != tab->n_row - 1)
932 swap_rows(tab, row, tab->n_row - 1);
933 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
934 tab->n_row--;
935 return 1;
939 int isl_tab_mark_empty(struct isl_tab *tab)
941 if (!tab)
942 return -1;
943 if (!tab->empty && tab->need_undo)
944 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
945 return -1;
946 tab->empty = 1;
947 return 0;
950 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
952 struct isl_tab_var *var;
954 if (!tab)
955 return -1;
957 var = &tab->con[con];
958 if (var->frozen)
959 return 0;
960 if (var->index < 0)
961 return 0;
962 var->frozen = 1;
964 if (tab->need_undo)
965 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
967 return 0;
970 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
971 * the original sign of the pivot element.
972 * We only keep track of row signs during PILP solving and in this case
973 * we only pivot a row with negative sign (meaning the value is always
974 * non-positive) using a positive pivot element.
976 * For each row j, the new value of the parametric constant is equal to
978 * a_j0 - a_jc a_r0/a_rc
980 * where a_j0 is the original parametric constant, a_rc is the pivot element,
981 * a_r0 is the parametric constant of the pivot row and a_jc is the
982 * pivot column entry of the row j.
983 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
984 * remains the same if a_jc has the same sign as the row j or if
985 * a_jc is zero. In all other cases, we reset the sign to "unknown".
987 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
989 int i;
990 struct isl_mat *mat = tab->mat;
991 unsigned off = 2 + tab->M;
993 if (!tab->row_sign)
994 return;
996 if (tab->row_sign[row] == 0)
997 return;
998 isl_assert(mat->ctx, row_sgn > 0, return);
999 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1000 tab->row_sign[row] = isl_tab_row_pos;
1001 for (i = 0; i < tab->n_row; ++i) {
1002 int s;
1003 if (i == row)
1004 continue;
1005 s = isl_int_sgn(mat->row[i][off + col]);
1006 if (!s)
1007 continue;
1008 if (!tab->row_sign[i])
1009 continue;
1010 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1011 continue;
1012 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1013 continue;
1014 tab->row_sign[i] = isl_tab_row_unknown;
1018 /* Given a row number "row" and a column number "col", pivot the tableau
1019 * such that the associated variables are interchanged.
1020 * The given row in the tableau expresses
1022 * x_r = a_r0 + \sum_i a_ri x_i
1024 * or
1026 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1028 * Substituting this equality into the other rows
1030 * x_j = a_j0 + \sum_i a_ji x_i
1032 * with a_jc \ne 0, we obtain
1034 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1036 * The tableau
1038 * n_rc/d_r n_ri/d_r
1039 * n_jc/d_j n_ji/d_j
1041 * where i is any other column and j is any other row,
1042 * is therefore transformed into
1044 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1045 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1047 * The transformation is performed along the following steps
1049 * d_r/n_rc n_ri/n_rc
1050 * n_jc/d_j n_ji/d_j
1052 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1053 * n_jc/d_j n_ji/d_j
1055 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1056 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1058 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1059 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1061 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1062 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1064 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1065 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1068 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1070 int i, j;
1071 int sgn;
1072 int t;
1073 struct isl_mat *mat = tab->mat;
1074 struct isl_tab_var *var;
1075 unsigned off = 2 + tab->M;
1077 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1078 sgn = isl_int_sgn(mat->row[row][0]);
1079 if (sgn < 0) {
1080 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1081 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1082 } else
1083 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1084 if (j == off - 1 + col)
1085 continue;
1086 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1088 if (!isl_int_is_one(mat->row[row][0]))
1089 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1090 for (i = 0; i < tab->n_row; ++i) {
1091 if (i == row)
1092 continue;
1093 if (isl_int_is_zero(mat->row[i][off + col]))
1094 continue;
1095 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1096 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1097 if (j == off - 1 + col)
1098 continue;
1099 isl_int_mul(mat->row[i][1 + j],
1100 mat->row[i][1 + j], mat->row[row][0]);
1101 isl_int_addmul(mat->row[i][1 + j],
1102 mat->row[i][off + col], mat->row[row][1 + j]);
1104 isl_int_mul(mat->row[i][off + col],
1105 mat->row[i][off + col], mat->row[row][off + col]);
1106 if (!isl_int_is_one(mat->row[i][0]))
1107 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1109 t = tab->row_var[row];
1110 tab->row_var[row] = tab->col_var[col];
1111 tab->col_var[col] = t;
1112 var = isl_tab_var_from_row(tab, row);
1113 var->is_row = 1;
1114 var->index = row;
1115 var = var_from_col(tab, col);
1116 var->is_row = 0;
1117 var->index = col;
1118 update_row_sign(tab, row, col, sgn);
1119 if (tab->in_undo)
1120 return 0;
1121 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1122 if (isl_int_is_zero(mat->row[i][off + col]))
1123 continue;
1124 if (!isl_tab_var_from_row(tab, i)->frozen &&
1125 isl_tab_row_is_redundant(tab, i)) {
1126 int redo = isl_tab_mark_redundant(tab, i);
1127 if (redo < 0)
1128 return -1;
1129 if (redo)
1130 --i;
1133 return 0;
1136 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1137 * or down (sgn < 0) to a row. The variable is assumed not to be
1138 * unbounded in the specified direction.
1139 * If sgn = 0, then the variable is unbounded in both directions,
1140 * and we pivot with any row we can find.
1142 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1143 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1145 int r;
1146 unsigned off = 2 + tab->M;
1148 if (var->is_row)
1149 return 0;
1151 if (sign == 0) {
1152 for (r = tab->n_redundant; r < tab->n_row; ++r)
1153 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1154 break;
1155 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1156 } else {
1157 r = pivot_row(tab, NULL, sign, var->index);
1158 isl_assert(tab->mat->ctx, r >= 0, return -1);
1161 return isl_tab_pivot(tab, r, var->index);
1164 static void check_table(struct isl_tab *tab)
1166 int i;
1168 if (tab->empty)
1169 return;
1170 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1171 struct isl_tab_var *var;
1172 var = isl_tab_var_from_row(tab, i);
1173 if (!var->is_nonneg)
1174 continue;
1175 if (tab->M) {
1176 assert(!isl_int_is_neg(tab->mat->row[i][2]));
1177 if (isl_int_is_pos(tab->mat->row[i][2]))
1178 continue;
1180 assert(!isl_int_is_neg(tab->mat->row[i][1]));
1184 /* Return the sign of the maximal value of "var".
1185 * If the sign is not negative, then on return from this function,
1186 * the sample value will also be non-negative.
1188 * If "var" is manifestly unbounded wrt positive values, we are done.
1189 * Otherwise, we pivot the variable up to a row if needed
1190 * Then we continue pivoting down until either
1191 * - no more down pivots can be performed
1192 * - the sample value is positive
1193 * - the variable is pivoted into a manifestly unbounded column
1195 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1197 int row, col;
1199 if (max_is_manifestly_unbounded(tab, var))
1200 return 1;
1201 if (to_row(tab, var, 1) < 0)
1202 return -2;
1203 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1204 find_pivot(tab, var, var, 1, &row, &col);
1205 if (row == -1)
1206 return isl_int_sgn(tab->mat->row[var->index][1]);
1207 if (isl_tab_pivot(tab, row, col) < 0)
1208 return -2;
1209 if (!var->is_row) /* manifestly unbounded */
1210 return 1;
1212 return 1;
1215 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1217 struct isl_tab_var *var;
1219 if (!tab)
1220 return -2;
1222 var = &tab->con[con];
1223 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1224 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1226 return sign_of_max(tab, var);
1229 static int row_is_neg(struct isl_tab *tab, int row)
1231 if (!tab->M)
1232 return isl_int_is_neg(tab->mat->row[row][1]);
1233 if (isl_int_is_pos(tab->mat->row[row][2]))
1234 return 0;
1235 if (isl_int_is_neg(tab->mat->row[row][2]))
1236 return 1;
1237 return isl_int_is_neg(tab->mat->row[row][1]);
1240 static int row_sgn(struct isl_tab *tab, int row)
1242 if (!tab->M)
1243 return isl_int_sgn(tab->mat->row[row][1]);
1244 if (!isl_int_is_zero(tab->mat->row[row][2]))
1245 return isl_int_sgn(tab->mat->row[row][2]);
1246 else
1247 return isl_int_sgn(tab->mat->row[row][1]);
1250 /* Perform pivots until the row variable "var" has a non-negative
1251 * sample value or until no more upward pivots can be performed.
1252 * Return the sign of the sample value after the pivots have been
1253 * performed.
1255 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1257 int row, col;
1259 while (row_is_neg(tab, var->index)) {
1260 find_pivot(tab, var, var, 1, &row, &col);
1261 if (row == -1)
1262 break;
1263 if (isl_tab_pivot(tab, row, col) < 0)
1264 return -2;
1265 if (!var->is_row) /* manifestly unbounded */
1266 return 1;
1268 return row_sgn(tab, var->index);
1271 /* Perform pivots until we are sure that the row variable "var"
1272 * can attain non-negative values. After return from this
1273 * function, "var" is still a row variable, but its sample
1274 * value may not be non-negative, even if the function returns 1.
1276 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1278 int row, col;
1280 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1281 find_pivot(tab, var, var, 1, &row, &col);
1282 if (row == -1)
1283 break;
1284 if (row == var->index) /* manifestly unbounded */
1285 return 1;
1286 if (isl_tab_pivot(tab, row, col) < 0)
1287 return -1;
1289 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1292 /* Return a negative value if "var" can attain negative values.
1293 * Return a non-negative value otherwise.
1295 * If "var" is manifestly unbounded wrt negative values, we are done.
1296 * Otherwise, if var is in a column, we can pivot it down to a row.
1297 * Then we continue pivoting down until either
1298 * - the pivot would result in a manifestly unbounded column
1299 * => we don't perform the pivot, but simply return -1
1300 * - no more down pivots can be performed
1301 * - the sample value is negative
1302 * If the sample value becomes negative and the variable is supposed
1303 * to be nonnegative, then we undo the last pivot.
1304 * However, if the last pivot has made the pivoting variable
1305 * obviously redundant, then it may have moved to another row.
1306 * In that case we look for upward pivots until we reach a non-negative
1307 * value again.
1309 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1311 int row, col;
1312 struct isl_tab_var *pivot_var = NULL;
1314 if (min_is_manifestly_unbounded(tab, var))
1315 return -1;
1316 if (!var->is_row) {
1317 col = var->index;
1318 row = pivot_row(tab, NULL, -1, col);
1319 pivot_var = var_from_col(tab, col);
1320 if (isl_tab_pivot(tab, row, col) < 0)
1321 return -2;
1322 if (var->is_redundant)
1323 return 0;
1324 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1325 if (var->is_nonneg) {
1326 if (!pivot_var->is_redundant &&
1327 pivot_var->index == row) {
1328 if (isl_tab_pivot(tab, row, col) < 0)
1329 return -2;
1330 } else
1331 if (restore_row(tab, var) < -1)
1332 return -2;
1334 return -1;
1337 if (var->is_redundant)
1338 return 0;
1339 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1340 find_pivot(tab, var, var, -1, &row, &col);
1341 if (row == var->index)
1342 return -1;
1343 if (row == -1)
1344 return isl_int_sgn(tab->mat->row[var->index][1]);
1345 pivot_var = var_from_col(tab, col);
1346 if (isl_tab_pivot(tab, row, col) < 0)
1347 return -2;
1348 if (var->is_redundant)
1349 return 0;
1351 if (pivot_var && var->is_nonneg) {
1352 /* pivot back to non-negative value */
1353 if (!pivot_var->is_redundant && pivot_var->index == row) {
1354 if (isl_tab_pivot(tab, row, col) < 0)
1355 return -2;
1356 } else
1357 if (restore_row(tab, var) < -1)
1358 return -2;
1360 return -1;
1363 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1365 if (tab->M) {
1366 if (isl_int_is_pos(tab->mat->row[row][2]))
1367 return 0;
1368 if (isl_int_is_neg(tab->mat->row[row][2]))
1369 return 1;
1371 return isl_int_is_neg(tab->mat->row[row][1]) &&
1372 isl_int_abs_ge(tab->mat->row[row][1],
1373 tab->mat->row[row][0]);
1376 /* Return 1 if "var" can attain values <= -1.
1377 * Return 0 otherwise.
1379 * The sample value of "var" is assumed to be non-negative when the
1380 * the function is called. If 1 is returned then the constraint
1381 * is not redundant and the sample value is made non-negative again before
1382 * the function returns.
1384 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1386 int row, col;
1387 struct isl_tab_var *pivot_var;
1389 if (min_is_manifestly_unbounded(tab, var))
1390 return 1;
1391 if (!var->is_row) {
1392 col = var->index;
1393 row = pivot_row(tab, NULL, -1, col);
1394 pivot_var = var_from_col(tab, col);
1395 if (isl_tab_pivot(tab, row, col) < 0)
1396 return -1;
1397 if (var->is_redundant)
1398 return 0;
1399 if (row_at_most_neg_one(tab, var->index)) {
1400 if (var->is_nonneg) {
1401 if (!pivot_var->is_redundant &&
1402 pivot_var->index == row) {
1403 if (isl_tab_pivot(tab, row, col) < 0)
1404 return -1;
1405 } else
1406 if (restore_row(tab, var) < -1)
1407 return -1;
1409 return 1;
1412 if (var->is_redundant)
1413 return 0;
1414 do {
1415 find_pivot(tab, var, var, -1, &row, &col);
1416 if (row == var->index) {
1417 if (restore_row(tab, var) < -1)
1418 return -1;
1419 return 1;
1421 if (row == -1)
1422 return 0;
1423 pivot_var = var_from_col(tab, col);
1424 if (isl_tab_pivot(tab, row, col) < 0)
1425 return -1;
1426 if (var->is_redundant)
1427 return 0;
1428 } while (!row_at_most_neg_one(tab, var->index));
1429 if (var->is_nonneg) {
1430 /* pivot back to non-negative value */
1431 if (!pivot_var->is_redundant && pivot_var->index == row)
1432 if (isl_tab_pivot(tab, row, col) < 0)
1433 return -1;
1434 if (restore_row(tab, var) < -1)
1435 return -1;
1437 return 1;
1440 /* Return 1 if "var" can attain values >= 1.
1441 * Return 0 otherwise.
1443 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1445 int row, col;
1446 isl_int *r;
1448 if (max_is_manifestly_unbounded(tab, var))
1449 return 1;
1450 if (to_row(tab, var, 1) < 0)
1451 return -1;
1452 r = tab->mat->row[var->index];
1453 while (isl_int_lt(r[1], r[0])) {
1454 find_pivot(tab, var, var, 1, &row, &col);
1455 if (row == -1)
1456 return isl_int_ge(r[1], r[0]);
1457 if (row == var->index) /* manifestly unbounded */
1458 return 1;
1459 if (isl_tab_pivot(tab, row, col) < 0)
1460 return -1;
1462 return 1;
1465 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1467 int t;
1468 unsigned off = 2 + tab->M;
1469 t = tab->col_var[col1];
1470 tab->col_var[col1] = tab->col_var[col2];
1471 tab->col_var[col2] = t;
1472 var_from_col(tab, col1)->index = col1;
1473 var_from_col(tab, col2)->index = col2;
1474 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1477 /* Mark column with index "col" as representing a zero variable.
1478 * If we may need to undo the operation the column is kept,
1479 * but no longer considered.
1480 * Otherwise, the column is simply removed.
1482 * The column may be interchanged with some other column. If it
1483 * is interchanged with a later column, return 1. Otherwise return 0.
1484 * If the columns are checked in order in the calling function,
1485 * then a return value of 1 means that the column with the given
1486 * column number may now contain a different column that
1487 * hasn't been checked yet.
1489 int isl_tab_kill_col(struct isl_tab *tab, int col)
1491 var_from_col(tab, col)->is_zero = 1;
1492 if (tab->need_undo) {
1493 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1494 var_from_col(tab, col)) < 0)
1495 return -1;
1496 if (col != tab->n_dead)
1497 swap_cols(tab, col, tab->n_dead);
1498 tab->n_dead++;
1499 return 0;
1500 } else {
1501 if (col != tab->n_col - 1)
1502 swap_cols(tab, col, tab->n_col - 1);
1503 var_from_col(tab, tab->n_col - 1)->index = -1;
1504 tab->n_col--;
1505 return 1;
1509 /* Row variable "var" is non-negative and cannot attain any values
1510 * larger than zero. This means that the coefficients of the unrestricted
1511 * column variables are zero and that the coefficients of the non-negative
1512 * column variables are zero or negative.
1513 * Each of the non-negative variables with a negative coefficient can
1514 * then also be written as the negative sum of non-negative variables
1515 * and must therefore also be zero.
1517 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1518 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1520 int j;
1521 struct isl_mat *mat = tab->mat;
1522 unsigned off = 2 + tab->M;
1524 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1525 var->is_zero = 1;
1526 if (tab->need_undo)
1527 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1528 return -1;
1529 for (j = tab->n_dead; j < tab->n_col; ++j) {
1530 if (isl_int_is_zero(mat->row[var->index][off + j]))
1531 continue;
1532 isl_assert(tab->mat->ctx,
1533 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1534 if (isl_tab_kill_col(tab, j))
1535 --j;
1537 if (isl_tab_mark_redundant(tab, var->index) < 0)
1538 return -1;
1539 return 0;
1542 /* Add a constraint to the tableau and allocate a row for it.
1543 * Return the index into the constraint array "con".
1545 int isl_tab_allocate_con(struct isl_tab *tab)
1547 int r;
1549 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1550 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1552 r = tab->n_con;
1553 tab->con[r].index = tab->n_row;
1554 tab->con[r].is_row = 1;
1555 tab->con[r].is_nonneg = 0;
1556 tab->con[r].is_zero = 0;
1557 tab->con[r].is_redundant = 0;
1558 tab->con[r].frozen = 0;
1559 tab->con[r].negated = 0;
1560 tab->row_var[tab->n_row] = ~r;
1562 tab->n_row++;
1563 tab->n_con++;
1564 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1565 return -1;
1567 return r;
1570 /* Add a variable to the tableau and allocate a column for it.
1571 * Return the index into the variable array "var".
1573 int isl_tab_allocate_var(struct isl_tab *tab)
1575 int r;
1576 int i;
1577 unsigned off = 2 + tab->M;
1579 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1580 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1582 r = tab->n_var;
1583 tab->var[r].index = tab->n_col;
1584 tab->var[r].is_row = 0;
1585 tab->var[r].is_nonneg = 0;
1586 tab->var[r].is_zero = 0;
1587 tab->var[r].is_redundant = 0;
1588 tab->var[r].frozen = 0;
1589 tab->var[r].negated = 0;
1590 tab->col_var[tab->n_col] = r;
1592 for (i = 0; i < tab->n_row; ++i)
1593 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1595 tab->n_var++;
1596 tab->n_col++;
1597 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1598 return -1;
1600 return r;
1603 /* Add a row to the tableau. The row is given as an affine combination
1604 * of the original variables and needs to be expressed in terms of the
1605 * column variables.
1607 * We add each term in turn.
1608 * If r = n/d_r is the current sum and we need to add k x, then
1609 * if x is a column variable, we increase the numerator of
1610 * this column by k d_r
1611 * if x = f/d_x is a row variable, then the new representation of r is
1613 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1614 * --- + --- = ------------------- = -------------------
1615 * d_r d_r d_r d_x/g m
1617 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1619 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1621 int i;
1622 int r;
1623 isl_int *row;
1624 isl_int a, b;
1625 unsigned off = 2 + tab->M;
1627 r = isl_tab_allocate_con(tab);
1628 if (r < 0)
1629 return -1;
1631 isl_int_init(a);
1632 isl_int_init(b);
1633 row = tab->mat->row[tab->con[r].index];
1634 isl_int_set_si(row[0], 1);
1635 isl_int_set(row[1], line[0]);
1636 isl_seq_clr(row + 2, tab->M + tab->n_col);
1637 for (i = 0; i < tab->n_var; ++i) {
1638 if (tab->var[i].is_zero)
1639 continue;
1640 if (tab->var[i].is_row) {
1641 isl_int_lcm(a,
1642 row[0], tab->mat->row[tab->var[i].index][0]);
1643 isl_int_swap(a, row[0]);
1644 isl_int_divexact(a, row[0], a);
1645 isl_int_divexact(b,
1646 row[0], tab->mat->row[tab->var[i].index][0]);
1647 isl_int_mul(b, b, line[1 + i]);
1648 isl_seq_combine(row + 1, a, row + 1,
1649 b, tab->mat->row[tab->var[i].index] + 1,
1650 1 + tab->M + tab->n_col);
1651 } else
1652 isl_int_addmul(row[off + tab->var[i].index],
1653 line[1 + i], row[0]);
1654 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1655 isl_int_submul(row[2], line[1 + i], row[0]);
1657 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1658 isl_int_clear(a);
1659 isl_int_clear(b);
1661 if (tab->row_sign)
1662 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1664 return r;
1667 static int drop_row(struct isl_tab *tab, int row)
1669 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1670 if (row != tab->n_row - 1)
1671 swap_rows(tab, row, tab->n_row - 1);
1672 tab->n_row--;
1673 tab->n_con--;
1674 return 0;
1677 static int drop_col(struct isl_tab *tab, int col)
1679 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1680 if (col != tab->n_col - 1)
1681 swap_cols(tab, col, tab->n_col - 1);
1682 tab->n_col--;
1683 tab->n_var--;
1684 return 0;
1687 /* Add inequality "ineq" and check if it conflicts with the
1688 * previously added constraints or if it is obviously redundant.
1690 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1692 int r;
1693 int sgn;
1694 isl_int cst;
1696 if (!tab)
1697 return -1;
1698 if (tab->bmap) {
1699 struct isl_basic_map *bmap = tab->bmap;
1701 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1702 isl_assert(tab->mat->ctx,
1703 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1704 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1705 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1706 return -1;
1707 if (!tab->bmap)
1708 return -1;
1710 if (tab->cone) {
1711 isl_int_init(cst);
1712 isl_int_swap(ineq[0], cst);
1714 r = isl_tab_add_row(tab, ineq);
1715 if (tab->cone) {
1716 isl_int_swap(ineq[0], cst);
1717 isl_int_clear(cst);
1719 if (r < 0)
1720 return -1;
1721 tab->con[r].is_nonneg = 1;
1722 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1723 return -1;
1724 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1725 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1726 return -1;
1727 return 0;
1730 sgn = restore_row(tab, &tab->con[r]);
1731 if (sgn < -1)
1732 return -1;
1733 if (sgn < 0)
1734 return isl_tab_mark_empty(tab);
1735 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1736 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1737 return -1;
1738 return 0;
1741 /* Pivot a non-negative variable down until it reaches the value zero
1742 * and then pivot the variable into a column position.
1744 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1745 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1747 int i;
1748 int row, col;
1749 unsigned off = 2 + tab->M;
1751 if (!var->is_row)
1752 return 0;
1754 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1755 find_pivot(tab, var, NULL, -1, &row, &col);
1756 isl_assert(tab->mat->ctx, row != -1, return -1);
1757 if (isl_tab_pivot(tab, row, col) < 0)
1758 return -1;
1759 if (!var->is_row)
1760 return 0;
1763 for (i = tab->n_dead; i < tab->n_col; ++i)
1764 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1765 break;
1767 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1768 if (isl_tab_pivot(tab, var->index, i) < 0)
1769 return -1;
1771 return 0;
1774 /* We assume Gaussian elimination has been performed on the equalities.
1775 * The equalities can therefore never conflict.
1776 * Adding the equalities is currently only really useful for a later call
1777 * to isl_tab_ineq_type.
1779 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1781 int i;
1782 int r;
1784 if (!tab)
1785 return NULL;
1786 r = isl_tab_add_row(tab, eq);
1787 if (r < 0)
1788 goto error;
1790 r = tab->con[r].index;
1791 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1792 tab->n_col - tab->n_dead);
1793 isl_assert(tab->mat->ctx, i >= 0, goto error);
1794 i += tab->n_dead;
1795 if (isl_tab_pivot(tab, r, i) < 0)
1796 goto error;
1797 if (isl_tab_kill_col(tab, i) < 0)
1798 goto error;
1799 tab->n_eq++;
1801 return tab;
1802 error:
1803 isl_tab_free(tab);
1804 return NULL;
1807 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1809 unsigned off = 2 + tab->M;
1811 if (!isl_int_is_zero(tab->mat->row[row][1]))
1812 return 0;
1813 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1814 return 0;
1815 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1816 tab->n_col - tab->n_dead) == -1;
1819 /* Add an equality that is known to be valid for the given tableau.
1821 struct isl_tab *isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1823 struct isl_tab_var *var;
1824 int r;
1826 if (!tab)
1827 return NULL;
1828 r = isl_tab_add_row(tab, eq);
1829 if (r < 0)
1830 goto error;
1832 var = &tab->con[r];
1833 r = var->index;
1834 if (row_is_manifestly_zero(tab, r)) {
1835 var->is_zero = 1;
1836 if (isl_tab_mark_redundant(tab, r) < 0)
1837 goto error;
1838 return tab;
1841 if (isl_int_is_neg(tab->mat->row[r][1])) {
1842 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1843 1 + tab->n_col);
1844 var->negated = 1;
1846 var->is_nonneg = 1;
1847 if (to_col(tab, var) < 0)
1848 goto error;
1849 var->is_nonneg = 0;
1850 if (isl_tab_kill_col(tab, var->index) < 0)
1851 goto error;
1853 return tab;
1854 error:
1855 isl_tab_free(tab);
1856 return NULL;
1859 static int add_zero_row(struct isl_tab *tab)
1861 int r;
1862 isl_int *row;
1864 r = isl_tab_allocate_con(tab);
1865 if (r < 0)
1866 return -1;
1868 row = tab->mat->row[tab->con[r].index];
1869 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1870 isl_int_set_si(row[0], 1);
1872 return r;
1875 /* Add equality "eq" and check if it conflicts with the
1876 * previously added constraints or if it is obviously redundant.
1878 struct isl_tab *isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1880 struct isl_tab_undo *snap = NULL;
1881 struct isl_tab_var *var;
1882 int r;
1883 int row;
1884 int sgn;
1885 isl_int cst;
1887 if (!tab)
1888 return NULL;
1889 isl_assert(tab->mat->ctx, !tab->M, goto error);
1891 if (tab->need_undo)
1892 snap = isl_tab_snap(tab);
1894 if (tab->cone) {
1895 isl_int_init(cst);
1896 isl_int_swap(eq[0], cst);
1898 r = isl_tab_add_row(tab, eq);
1899 if (tab->cone) {
1900 isl_int_swap(eq[0], cst);
1901 isl_int_clear(cst);
1903 if (r < 0)
1904 goto error;
1906 var = &tab->con[r];
1907 row = var->index;
1908 if (row_is_manifestly_zero(tab, row)) {
1909 if (snap) {
1910 if (isl_tab_rollback(tab, snap) < 0)
1911 goto error;
1912 } else
1913 drop_row(tab, row);
1914 return tab;
1917 if (tab->bmap) {
1918 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1919 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1920 goto error;
1921 isl_seq_neg(eq, eq, 1 + tab->n_var);
1922 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1923 isl_seq_neg(eq, eq, 1 + tab->n_var);
1924 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1925 goto error;
1926 if (!tab->bmap)
1927 goto error;
1928 if (add_zero_row(tab) < 0)
1929 goto error;
1932 sgn = isl_int_sgn(tab->mat->row[row][1]);
1934 if (sgn > 0) {
1935 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
1936 1 + tab->n_col);
1937 var->negated = 1;
1938 sgn = -1;
1941 if (sgn < 0) {
1942 sgn = sign_of_max(tab, var);
1943 if (sgn < -1)
1944 goto error;
1945 if (sgn < 0) {
1946 if (isl_tab_mark_empty(tab) < 0)
1947 goto error;
1948 return tab;
1952 var->is_nonneg = 1;
1953 if (to_col(tab, var) < 0)
1954 goto error;
1955 var->is_nonneg = 0;
1956 if (isl_tab_kill_col(tab, var->index) < 0)
1957 goto error;
1959 return tab;
1960 error:
1961 isl_tab_free(tab);
1962 return NULL;
1965 /* Construct and return an inequality that expresses an upper bound
1966 * on the given div.
1967 * In particular, if the div is given by
1969 * d = floor(e/m)
1971 * then the inequality expresses
1973 * m d <= e
1975 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
1977 unsigned total;
1978 unsigned div_pos;
1979 struct isl_vec *ineq;
1981 if (!bmap)
1982 return NULL;
1984 total = isl_basic_map_total_dim(bmap);
1985 div_pos = 1 + total - bmap->n_div + div;
1987 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
1988 if (!ineq)
1989 return NULL;
1991 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
1992 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
1993 return ineq;
1996 /* For a div d = floor(f/m), add the constraints
1998 * f - m d >= 0
1999 * -(f-(m-1)) + m d >= 0
2001 * Note that the second constraint is the negation of
2003 * f - m d >= m
2005 * If add_ineq is not NULL, then this function is used
2006 * instead of isl_tab_add_ineq to effectively add the inequalities.
2008 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2009 int (*add_ineq)(void *user, isl_int *), void *user)
2011 unsigned total;
2012 unsigned div_pos;
2013 struct isl_vec *ineq;
2015 total = isl_basic_map_total_dim(tab->bmap);
2016 div_pos = 1 + total - tab->bmap->n_div + div;
2018 ineq = ineq_for_div(tab->bmap, div);
2019 if (!ineq)
2020 goto error;
2022 if (add_ineq) {
2023 if (add_ineq(user, ineq->el) < 0)
2024 goto error;
2025 } else {
2026 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2027 goto error;
2030 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2031 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2032 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2033 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2035 if (add_ineq) {
2036 if (add_ineq(user, ineq->el) < 0)
2037 goto error;
2038 } else {
2039 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2040 goto error;
2043 isl_vec_free(ineq);
2045 return 0;
2046 error:
2047 isl_vec_free(ineq);
2048 return -1;
2051 /* Add an extra div, prescrived by "div" to the tableau and
2052 * the associated bmap (which is assumed to be non-NULL).
2054 * If add_ineq is not NULL, then this function is used instead
2055 * of isl_tab_add_ineq to add the div constraints.
2056 * This complication is needed because the code in isl_tab_pip
2057 * wants to perform some extra processing when an inequality
2058 * is added to the tableau.
2060 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2061 int (*add_ineq)(void *user, isl_int *), void *user)
2063 int i;
2064 int r;
2065 int k;
2066 int nonneg;
2068 if (!tab || !div)
2069 return -1;
2071 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2073 for (i = 0; i < tab->n_var; ++i) {
2074 if (isl_int_is_neg(div->el[2 + i]))
2075 break;
2076 if (isl_int_is_zero(div->el[2 + i]))
2077 continue;
2078 if (!tab->var[i].is_nonneg)
2079 break;
2081 nonneg = i == tab->n_var && !isl_int_is_neg(div->el[1]);
2083 if (isl_tab_extend_cons(tab, 3) < 0)
2084 return -1;
2085 if (isl_tab_extend_vars(tab, 1) < 0)
2086 return -1;
2087 r = isl_tab_allocate_var(tab);
2088 if (r < 0)
2089 return -1;
2091 if (nonneg)
2092 tab->var[r].is_nonneg = 1;
2094 tab->bmap = isl_basic_map_extend_dim(tab->bmap,
2095 isl_basic_map_get_dim(tab->bmap), 1, 0, 2);
2096 k = isl_basic_map_alloc_div(tab->bmap);
2097 if (k < 0)
2098 return -1;
2099 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2100 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2101 return -1;
2103 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2104 return -1;
2106 return r;
2109 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
2111 int i;
2112 struct isl_tab *tab;
2114 if (!bmap)
2115 return NULL;
2116 tab = isl_tab_alloc(bmap->ctx,
2117 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2118 isl_basic_map_total_dim(bmap), 0);
2119 if (!tab)
2120 return NULL;
2121 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2122 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2123 if (isl_tab_mark_empty(tab) < 0)
2124 goto error;
2125 return tab;
2127 for (i = 0; i < bmap->n_eq; ++i) {
2128 tab = add_eq(tab, bmap->eq[i]);
2129 if (!tab)
2130 return tab;
2132 for (i = 0; i < bmap->n_ineq; ++i) {
2133 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2134 goto error;
2135 if (tab->empty)
2136 return tab;
2138 return tab;
2139 error:
2140 isl_tab_free(tab);
2141 return NULL;
2144 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
2146 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
2149 /* Construct a tableau corresponding to the recession cone of "bset".
2151 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2152 int parametric)
2154 isl_int cst;
2155 int i;
2156 struct isl_tab *tab;
2157 unsigned offset = 0;
2159 if (!bset)
2160 return NULL;
2161 if (parametric)
2162 offset = isl_basic_set_dim(bset, isl_dim_param);
2163 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2164 isl_basic_set_total_dim(bset) - offset, 0);
2165 if (!tab)
2166 return NULL;
2167 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2168 tab->cone = 1;
2170 isl_int_init(cst);
2171 for (i = 0; i < bset->n_eq; ++i) {
2172 isl_int_swap(bset->eq[i][offset], cst);
2173 if (offset > 0)
2174 tab = isl_tab_add_eq(tab, bset->eq[i] + offset);
2175 else
2176 tab = add_eq(tab, bset->eq[i]);
2177 isl_int_swap(bset->eq[i][offset], cst);
2178 if (!tab)
2179 goto done;
2181 for (i = 0; i < bset->n_ineq; ++i) {
2182 int r;
2183 isl_int_swap(bset->ineq[i][offset], cst);
2184 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2185 isl_int_swap(bset->ineq[i][offset], cst);
2186 if (r < 0)
2187 goto error;
2188 tab->con[r].is_nonneg = 1;
2189 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2190 goto error;
2192 done:
2193 isl_int_clear(cst);
2194 return tab;
2195 error:
2196 isl_int_clear(cst);
2197 isl_tab_free(tab);
2198 return NULL;
2201 /* Assuming "tab" is the tableau of a cone, check if the cone is
2202 * bounded, i.e., if it is empty or only contains the origin.
2204 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2206 int i;
2208 if (!tab)
2209 return -1;
2210 if (tab->empty)
2211 return 1;
2212 if (tab->n_dead == tab->n_col)
2213 return 1;
2215 for (;;) {
2216 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2217 struct isl_tab_var *var;
2218 int sgn;
2219 var = isl_tab_var_from_row(tab, i);
2220 if (!var->is_nonneg)
2221 continue;
2222 sgn = sign_of_max(tab, var);
2223 if (sgn < -1)
2224 return -1;
2225 if (sgn != 0)
2226 return 0;
2227 if (close_row(tab, var) < 0)
2228 return -1;
2229 break;
2231 if (tab->n_dead == tab->n_col)
2232 return 1;
2233 if (i == tab->n_row)
2234 return 0;
2238 int isl_tab_sample_is_integer(struct isl_tab *tab)
2240 int i;
2242 if (!tab)
2243 return -1;
2245 for (i = 0; i < tab->n_var; ++i) {
2246 int row;
2247 if (!tab->var[i].is_row)
2248 continue;
2249 row = tab->var[i].index;
2250 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2251 tab->mat->row[row][0]))
2252 return 0;
2254 return 1;
2257 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2259 int i;
2260 struct isl_vec *vec;
2262 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2263 if (!vec)
2264 return NULL;
2266 isl_int_set_si(vec->block.data[0], 1);
2267 for (i = 0; i < tab->n_var; ++i) {
2268 if (!tab->var[i].is_row)
2269 isl_int_set_si(vec->block.data[1 + i], 0);
2270 else {
2271 int row = tab->var[i].index;
2272 isl_int_divexact(vec->block.data[1 + i],
2273 tab->mat->row[row][1], tab->mat->row[row][0]);
2277 return vec;
2280 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2282 int i;
2283 struct isl_vec *vec;
2284 isl_int m;
2286 if (!tab)
2287 return NULL;
2289 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2290 if (!vec)
2291 return NULL;
2293 isl_int_init(m);
2295 isl_int_set_si(vec->block.data[0], 1);
2296 for (i = 0; i < tab->n_var; ++i) {
2297 int row;
2298 if (!tab->var[i].is_row) {
2299 isl_int_set_si(vec->block.data[1 + i], 0);
2300 continue;
2302 row = tab->var[i].index;
2303 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2304 isl_int_divexact(m, tab->mat->row[row][0], m);
2305 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2306 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2307 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2309 vec = isl_vec_normalize(vec);
2311 isl_int_clear(m);
2312 return vec;
2315 /* Update "bmap" based on the results of the tableau "tab".
2316 * In particular, implicit equalities are made explicit, redundant constraints
2317 * are removed and if the sample value happens to be integer, it is stored
2318 * in "bmap" (unless "bmap" already had an integer sample).
2320 * The tableau is assumed to have been created from "bmap" using
2321 * isl_tab_from_basic_map.
2323 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2324 struct isl_tab *tab)
2326 int i;
2327 unsigned n_eq;
2329 if (!bmap)
2330 return NULL;
2331 if (!tab)
2332 return bmap;
2334 n_eq = tab->n_eq;
2335 if (tab->empty)
2336 bmap = isl_basic_map_set_to_empty(bmap);
2337 else
2338 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2339 if (isl_tab_is_equality(tab, n_eq + i))
2340 isl_basic_map_inequality_to_equality(bmap, i);
2341 else if (isl_tab_is_redundant(tab, n_eq + i))
2342 isl_basic_map_drop_inequality(bmap, i);
2344 if (bmap->n_eq != n_eq)
2345 isl_basic_map_gauss(bmap, NULL);
2346 if (!tab->rational &&
2347 !bmap->sample && isl_tab_sample_is_integer(tab))
2348 bmap->sample = extract_integer_sample(tab);
2349 return bmap;
2352 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2353 struct isl_tab *tab)
2355 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2356 (struct isl_basic_map *)bset, tab);
2359 /* Given a non-negative variable "var", add a new non-negative variable
2360 * that is the opposite of "var", ensuring that var can only attain the
2361 * value zero.
2362 * If var = n/d is a row variable, then the new variable = -n/d.
2363 * If var is a column variables, then the new variable = -var.
2364 * If the new variable cannot attain non-negative values, then
2365 * the resulting tableau is empty.
2366 * Otherwise, we know the value will be zero and we close the row.
2368 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2370 unsigned r;
2371 isl_int *row;
2372 int sgn;
2373 unsigned off = 2 + tab->M;
2375 if (var->is_zero)
2376 return 0;
2377 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2378 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2380 if (isl_tab_extend_cons(tab, 1) < 0)
2381 return -1;
2383 r = tab->n_con;
2384 tab->con[r].index = tab->n_row;
2385 tab->con[r].is_row = 1;
2386 tab->con[r].is_nonneg = 0;
2387 tab->con[r].is_zero = 0;
2388 tab->con[r].is_redundant = 0;
2389 tab->con[r].frozen = 0;
2390 tab->con[r].negated = 0;
2391 tab->row_var[tab->n_row] = ~r;
2392 row = tab->mat->row[tab->n_row];
2394 if (var->is_row) {
2395 isl_int_set(row[0], tab->mat->row[var->index][0]);
2396 isl_seq_neg(row + 1,
2397 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2398 } else {
2399 isl_int_set_si(row[0], 1);
2400 isl_seq_clr(row + 1, 1 + tab->n_col);
2401 isl_int_set_si(row[off + var->index], -1);
2404 tab->n_row++;
2405 tab->n_con++;
2406 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2407 return -1;
2409 sgn = sign_of_max(tab, &tab->con[r]);
2410 if (sgn < -1)
2411 return -1;
2412 if (sgn < 0) {
2413 if (isl_tab_mark_empty(tab) < 0)
2414 return -1;
2415 return 0;
2417 tab->con[r].is_nonneg = 1;
2418 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2419 return -1;
2420 /* sgn == 0 */
2421 if (close_row(tab, &tab->con[r]) < 0)
2422 return -1;
2424 return 0;
2427 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2428 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2429 * by r' = r + 1 >= 0.
2430 * If r is a row variable, we simply increase the constant term by one
2431 * (taking into account the denominator).
2432 * If r is a column variable, then we need to modify each row that
2433 * refers to r = r' - 1 by substituting this equality, effectively
2434 * subtracting the coefficient of the column from the constant.
2435 * We should only do this if the minimum is manifestly unbounded,
2436 * however. Otherwise, we may end up with negative sample values
2437 * for non-negative variables.
2438 * So, if r is a column variable with a minimum that is not
2439 * manifestly unbounded, then we need to move it to a row.
2440 * However, the sample value of this row may be negative,
2441 * even after the relaxation, so we need to restore it.
2442 * We therefore prefer to pivot a column up to a row, if possible.
2444 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
2446 struct isl_tab_var *var;
2447 unsigned off = 2 + tab->M;
2449 if (!tab)
2450 return NULL;
2452 var = &tab->con[con];
2454 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2455 if (to_row(tab, var, 1) < 0)
2456 goto error;
2457 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2458 if (to_row(tab, var, -1) < 0)
2459 goto error;
2461 if (var->is_row) {
2462 isl_int_add(tab->mat->row[var->index][1],
2463 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2464 if (restore_row(tab, var) < 0)
2465 goto error;
2466 } else {
2467 int i;
2469 for (i = 0; i < tab->n_row; ++i) {
2470 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2471 continue;
2472 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2473 tab->mat->row[i][off + var->index]);
2478 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2479 goto error;
2481 return tab;
2482 error:
2483 isl_tab_free(tab);
2484 return NULL;
2487 int isl_tab_select_facet(struct isl_tab *tab, int con)
2489 if (!tab)
2490 return -1;
2492 return cut_to_hyperplane(tab, &tab->con[con]);
2495 static int may_be_equality(struct isl_tab *tab, int row)
2497 unsigned off = 2 + tab->M;
2498 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2499 : isl_int_lt(tab->mat->row[row][1],
2500 tab->mat->row[row][0])) &&
2501 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2502 tab->n_col - tab->n_dead) != -1;
2505 /* Check for (near) equalities among the constraints.
2506 * A constraint is an equality if it is non-negative and if
2507 * its maximal value is either
2508 * - zero (in case of rational tableaus), or
2509 * - strictly less than 1 (in case of integer tableaus)
2511 * We first mark all non-redundant and non-dead variables that
2512 * are not frozen and not obviously not an equality.
2513 * Then we iterate over all marked variables if they can attain
2514 * any values larger than zero or at least one.
2515 * If the maximal value is zero, we mark any column variables
2516 * that appear in the row as being zero and mark the row as being redundant.
2517 * Otherwise, if the maximal value is strictly less than one (and the
2518 * tableau is integer), then we restrict the value to being zero
2519 * by adding an opposite non-negative variable.
2521 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2523 int i;
2524 unsigned n_marked;
2526 if (!tab)
2527 return -1;
2528 if (tab->empty)
2529 return 0;
2530 if (tab->n_dead == tab->n_col)
2531 return 0;
2533 n_marked = 0;
2534 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2535 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2536 var->marked = !var->frozen && var->is_nonneg &&
2537 may_be_equality(tab, i);
2538 if (var->marked)
2539 n_marked++;
2541 for (i = tab->n_dead; i < tab->n_col; ++i) {
2542 struct isl_tab_var *var = var_from_col(tab, i);
2543 var->marked = !var->frozen && var->is_nonneg;
2544 if (var->marked)
2545 n_marked++;
2547 while (n_marked) {
2548 struct isl_tab_var *var;
2549 int sgn;
2550 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2551 var = isl_tab_var_from_row(tab, i);
2552 if (var->marked)
2553 break;
2555 if (i == tab->n_row) {
2556 for (i = tab->n_dead; i < tab->n_col; ++i) {
2557 var = var_from_col(tab, i);
2558 if (var->marked)
2559 break;
2561 if (i == tab->n_col)
2562 break;
2564 var->marked = 0;
2565 n_marked--;
2566 sgn = sign_of_max(tab, var);
2567 if (sgn < 0)
2568 return -1;
2569 if (sgn == 0) {
2570 if (close_row(tab, var) < 0)
2571 return -1;
2572 } else if (!tab->rational && !at_least_one(tab, var)) {
2573 if (cut_to_hyperplane(tab, var) < 0)
2574 return -1;
2575 return isl_tab_detect_implicit_equalities(tab);
2577 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2578 var = isl_tab_var_from_row(tab, i);
2579 if (!var->marked)
2580 continue;
2581 if (may_be_equality(tab, i))
2582 continue;
2583 var->marked = 0;
2584 n_marked--;
2588 return 0;
2591 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2593 if (!tab)
2594 return -1;
2595 if (tab->rational) {
2596 int sgn = sign_of_min(tab, var);
2597 if (sgn < -1)
2598 return -1;
2599 return sgn >= 0;
2600 } else {
2601 int irred = isl_tab_min_at_most_neg_one(tab, var);
2602 if (irred < 0)
2603 return -1;
2604 return !irred;
2608 /* Check for (near) redundant constraints.
2609 * A constraint is redundant if it is non-negative and if
2610 * its minimal value (temporarily ignoring the non-negativity) is either
2611 * - zero (in case of rational tableaus), or
2612 * - strictly larger than -1 (in case of integer tableaus)
2614 * We first mark all non-redundant and non-dead variables that
2615 * are not frozen and not obviously negatively unbounded.
2616 * Then we iterate over all marked variables if they can attain
2617 * any values smaller than zero or at most negative one.
2618 * If not, we mark the row as being redundant (assuming it hasn't
2619 * been detected as being obviously redundant in the mean time).
2621 int isl_tab_detect_redundant(struct isl_tab *tab)
2623 int i;
2624 unsigned n_marked;
2626 if (!tab)
2627 return -1;
2628 if (tab->empty)
2629 return 0;
2630 if (tab->n_redundant == tab->n_row)
2631 return 0;
2633 n_marked = 0;
2634 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2635 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2636 var->marked = !var->frozen && var->is_nonneg;
2637 if (var->marked)
2638 n_marked++;
2640 for (i = tab->n_dead; i < tab->n_col; ++i) {
2641 struct isl_tab_var *var = var_from_col(tab, i);
2642 var->marked = !var->frozen && var->is_nonneg &&
2643 !min_is_manifestly_unbounded(tab, var);
2644 if (var->marked)
2645 n_marked++;
2647 while (n_marked) {
2648 struct isl_tab_var *var;
2649 int red;
2650 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2651 var = isl_tab_var_from_row(tab, i);
2652 if (var->marked)
2653 break;
2655 if (i == tab->n_row) {
2656 for (i = tab->n_dead; i < tab->n_col; ++i) {
2657 var = var_from_col(tab, i);
2658 if (var->marked)
2659 break;
2661 if (i == tab->n_col)
2662 break;
2664 var->marked = 0;
2665 n_marked--;
2666 red = con_is_redundant(tab, var);
2667 if (red < 0)
2668 return -1;
2669 if (red && !var->is_redundant)
2670 if (isl_tab_mark_redundant(tab, var->index) < 0)
2671 return -1;
2672 for (i = tab->n_dead; i < tab->n_col; ++i) {
2673 var = var_from_col(tab, i);
2674 if (!var->marked)
2675 continue;
2676 if (!min_is_manifestly_unbounded(tab, var))
2677 continue;
2678 var->marked = 0;
2679 n_marked--;
2683 return 0;
2686 int isl_tab_is_equality(struct isl_tab *tab, int con)
2688 int row;
2689 unsigned off;
2691 if (!tab)
2692 return -1;
2693 if (tab->con[con].is_zero)
2694 return 1;
2695 if (tab->con[con].is_redundant)
2696 return 0;
2697 if (!tab->con[con].is_row)
2698 return tab->con[con].index < tab->n_dead;
2700 row = tab->con[con].index;
2702 off = 2 + tab->M;
2703 return isl_int_is_zero(tab->mat->row[row][1]) &&
2704 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
2705 tab->n_col - tab->n_dead) == -1;
2708 /* Return the minimial value of the affine expression "f" with denominator
2709 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2710 * the expression cannot attain arbitrarily small values.
2711 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2712 * The return value reflects the nature of the result (empty, unbounded,
2713 * minmimal value returned in *opt).
2715 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2716 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2717 unsigned flags)
2719 int r;
2720 enum isl_lp_result res = isl_lp_ok;
2721 struct isl_tab_var *var;
2722 struct isl_tab_undo *snap;
2724 if (tab->empty)
2725 return isl_lp_empty;
2727 snap = isl_tab_snap(tab);
2728 r = isl_tab_add_row(tab, f);
2729 if (r < 0)
2730 return isl_lp_error;
2731 var = &tab->con[r];
2732 isl_int_mul(tab->mat->row[var->index][0],
2733 tab->mat->row[var->index][0], denom);
2734 for (;;) {
2735 int row, col;
2736 find_pivot(tab, var, var, -1, &row, &col);
2737 if (row == var->index) {
2738 res = isl_lp_unbounded;
2739 break;
2741 if (row == -1)
2742 break;
2743 if (isl_tab_pivot(tab, row, col) < 0)
2744 return isl_lp_error;
2746 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2747 int i;
2749 isl_vec_free(tab->dual);
2750 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2751 if (!tab->dual)
2752 return isl_lp_error;
2753 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
2754 for (i = 0; i < tab->n_con; ++i) {
2755 int pos;
2756 if (tab->con[i].is_row) {
2757 isl_int_set_si(tab->dual->el[1 + i], 0);
2758 continue;
2760 pos = 2 + tab->M + tab->con[i].index;
2761 if (tab->con[i].negated)
2762 isl_int_neg(tab->dual->el[1 + i],
2763 tab->mat->row[var->index][pos]);
2764 else
2765 isl_int_set(tab->dual->el[1 + i],
2766 tab->mat->row[var->index][pos]);
2769 if (opt && res == isl_lp_ok) {
2770 if (opt_denom) {
2771 isl_int_set(*opt, tab->mat->row[var->index][1]);
2772 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
2773 } else
2774 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
2775 tab->mat->row[var->index][0]);
2777 if (isl_tab_rollback(tab, snap) < 0)
2778 return isl_lp_error;
2779 return res;
2782 int isl_tab_is_redundant(struct isl_tab *tab, int con)
2784 if (!tab)
2785 return -1;
2786 if (tab->con[con].is_zero)
2787 return 0;
2788 if (tab->con[con].is_redundant)
2789 return 1;
2790 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
2793 /* Take a snapshot of the tableau that can be restored by s call to
2794 * isl_tab_rollback.
2796 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
2798 if (!tab)
2799 return NULL;
2800 tab->need_undo = 1;
2801 return tab->top;
2804 /* Undo the operation performed by isl_tab_relax.
2806 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
2807 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
2809 unsigned off = 2 + tab->M;
2811 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2812 if (to_row(tab, var, 1) < 0)
2813 return -1;
2815 if (var->is_row) {
2816 isl_int_sub(tab->mat->row[var->index][1],
2817 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2818 if (var->is_nonneg) {
2819 int sgn = restore_row(tab, var);
2820 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
2822 } else {
2823 int i;
2825 for (i = 0; i < tab->n_row; ++i) {
2826 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2827 continue;
2828 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
2829 tab->mat->row[i][off + var->index]);
2834 return 0;
2837 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
2838 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
2840 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
2841 switch(undo->type) {
2842 case isl_tab_undo_nonneg:
2843 var->is_nonneg = 0;
2844 break;
2845 case isl_tab_undo_redundant:
2846 var->is_redundant = 0;
2847 tab->n_redundant--;
2848 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
2849 break;
2850 case isl_tab_undo_freeze:
2851 var->frozen = 0;
2852 break;
2853 case isl_tab_undo_zero:
2854 var->is_zero = 0;
2855 if (!var->is_row)
2856 tab->n_dead--;
2857 break;
2858 case isl_tab_undo_allocate:
2859 if (undo->u.var_index >= 0) {
2860 isl_assert(tab->mat->ctx, !var->is_row, return -1);
2861 drop_col(tab, var->index);
2862 break;
2864 if (!var->is_row) {
2865 if (!max_is_manifestly_unbounded(tab, var)) {
2866 if (to_row(tab, var, 1) < 0)
2867 return -1;
2868 } else if (!min_is_manifestly_unbounded(tab, var)) {
2869 if (to_row(tab, var, -1) < 0)
2870 return -1;
2871 } else
2872 if (to_row(tab, var, 0) < 0)
2873 return -1;
2875 drop_row(tab, var->index);
2876 break;
2877 case isl_tab_undo_relax:
2878 return unrelax(tab, var);
2881 return 0;
2884 /* Restore the tableau to the state where the basic variables
2885 * are those in "col_var".
2886 * We first construct a list of variables that are currently in
2887 * the basis, but shouldn't. Then we iterate over all variables
2888 * that should be in the basis and for each one that is currently
2889 * not in the basis, we exchange it with one of the elements of the
2890 * list constructed before.
2891 * We can always find an appropriate variable to pivot with because
2892 * the current basis is mapped to the old basis by a non-singular
2893 * matrix and so we can never end up with a zero row.
2895 static int restore_basis(struct isl_tab *tab, int *col_var)
2897 int i, j;
2898 int n_extra = 0;
2899 int *extra = NULL; /* current columns that contain bad stuff */
2900 unsigned off = 2 + tab->M;
2902 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
2903 if (!extra)
2904 goto error;
2905 for (i = 0; i < tab->n_col; ++i) {
2906 for (j = 0; j < tab->n_col; ++j)
2907 if (tab->col_var[i] == col_var[j])
2908 break;
2909 if (j < tab->n_col)
2910 continue;
2911 extra[n_extra++] = i;
2913 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
2914 struct isl_tab_var *var;
2915 int row;
2917 for (j = 0; j < tab->n_col; ++j)
2918 if (col_var[i] == tab->col_var[j])
2919 break;
2920 if (j < tab->n_col)
2921 continue;
2922 var = var_from_index(tab, col_var[i]);
2923 row = var->index;
2924 for (j = 0; j < n_extra; ++j)
2925 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
2926 break;
2927 isl_assert(tab->mat->ctx, j < n_extra, goto error);
2928 if (isl_tab_pivot(tab, row, extra[j]) < 0)
2929 goto error;
2930 extra[j] = extra[--n_extra];
2933 free(extra);
2934 free(col_var);
2935 return 0;
2936 error:
2937 free(extra);
2938 free(col_var);
2939 return -1;
2942 /* Remove all samples with index n or greater, i.e., those samples
2943 * that were added since we saved this number of samples in
2944 * isl_tab_save_samples.
2946 static void drop_samples_since(struct isl_tab *tab, int n)
2948 int i;
2950 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
2951 if (tab->sample_index[i] < n)
2952 continue;
2954 if (i != tab->n_sample - 1) {
2955 int t = tab->sample_index[tab->n_sample-1];
2956 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
2957 tab->sample_index[i] = t;
2958 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
2960 tab->n_sample--;
2964 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
2965 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
2967 switch (undo->type) {
2968 case isl_tab_undo_empty:
2969 tab->empty = 0;
2970 break;
2971 case isl_tab_undo_nonneg:
2972 case isl_tab_undo_redundant:
2973 case isl_tab_undo_freeze:
2974 case isl_tab_undo_zero:
2975 case isl_tab_undo_allocate:
2976 case isl_tab_undo_relax:
2977 return perform_undo_var(tab, undo);
2978 case isl_tab_undo_bmap_eq:
2979 return isl_basic_map_free_equality(tab->bmap, 1);
2980 case isl_tab_undo_bmap_ineq:
2981 return isl_basic_map_free_inequality(tab->bmap, 1);
2982 case isl_tab_undo_bmap_div:
2983 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
2984 return -1;
2985 if (tab->samples)
2986 tab->samples->n_col--;
2987 break;
2988 case isl_tab_undo_saved_basis:
2989 if (restore_basis(tab, undo->u.col_var) < 0)
2990 return -1;
2991 break;
2992 case isl_tab_undo_drop_sample:
2993 tab->n_outside--;
2994 break;
2995 case isl_tab_undo_saved_samples:
2996 drop_samples_since(tab, undo->u.n);
2997 break;
2998 case isl_tab_undo_callback:
2999 return undo->u.callback->run(undo->u.callback);
3000 default:
3001 isl_assert(tab->mat->ctx, 0, return -1);
3003 return 0;
3006 /* Return the tableau to the state it was in when the snapshot "snap"
3007 * was taken.
3009 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3011 struct isl_tab_undo *undo, *next;
3013 if (!tab)
3014 return -1;
3016 tab->in_undo = 1;
3017 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3018 next = undo->next;
3019 if (undo == snap)
3020 break;
3021 if (perform_undo(tab, undo) < 0) {
3022 free_undo(tab);
3023 tab->in_undo = 0;
3024 return -1;
3026 free(undo);
3028 tab->in_undo = 0;
3029 tab->top = undo;
3030 if (!undo)
3031 return -1;
3032 return 0;
3035 /* The given row "row" represents an inequality violated by all
3036 * points in the tableau. Check for some special cases of such
3037 * separating constraints.
3038 * In particular, if the row has been reduced to the constant -1,
3039 * then we know the inequality is adjacent (but opposite) to
3040 * an equality in the tableau.
3041 * If the row has been reduced to r = -1 -r', with r' an inequality
3042 * of the tableau, then the inequality is adjacent (but opposite)
3043 * to the inequality r'.
3045 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3047 int pos;
3048 unsigned off = 2 + tab->M;
3050 if (tab->rational)
3051 return isl_ineq_separate;
3053 if (!isl_int_is_one(tab->mat->row[row][0]))
3054 return isl_ineq_separate;
3055 if (!isl_int_is_negone(tab->mat->row[row][1]))
3056 return isl_ineq_separate;
3058 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3059 tab->n_col - tab->n_dead);
3060 if (pos == -1)
3061 return isl_ineq_adj_eq;
3063 if (!isl_int_is_negone(tab->mat->row[row][off + tab->n_dead + pos]))
3064 return isl_ineq_separate;
3066 pos = isl_seq_first_non_zero(
3067 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3068 tab->n_col - tab->n_dead - pos - 1);
3070 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3073 /* Check the effect of inequality "ineq" on the tableau "tab".
3074 * The result may be
3075 * isl_ineq_redundant: satisfied by all points in the tableau
3076 * isl_ineq_separate: satisfied by no point in the tableau
3077 * isl_ineq_cut: satisfied by some by not all points
3078 * isl_ineq_adj_eq: adjacent to an equality
3079 * isl_ineq_adj_ineq: adjacent to an inequality.
3081 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3083 enum isl_ineq_type type = isl_ineq_error;
3084 struct isl_tab_undo *snap = NULL;
3085 int con;
3086 int row;
3088 if (!tab)
3089 return isl_ineq_error;
3091 if (isl_tab_extend_cons(tab, 1) < 0)
3092 return isl_ineq_error;
3094 snap = isl_tab_snap(tab);
3096 con = isl_tab_add_row(tab, ineq);
3097 if (con < 0)
3098 goto error;
3100 row = tab->con[con].index;
3101 if (isl_tab_row_is_redundant(tab, row))
3102 type = isl_ineq_redundant;
3103 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3104 (tab->rational ||
3105 isl_int_abs_ge(tab->mat->row[row][1],
3106 tab->mat->row[row][0]))) {
3107 int nonneg = at_least_zero(tab, &tab->con[con]);
3108 if (nonneg < 0)
3109 goto error;
3110 if (nonneg)
3111 type = isl_ineq_cut;
3112 else
3113 type = separation_type(tab, row);
3114 } else {
3115 int red = con_is_redundant(tab, &tab->con[con]);
3116 if (red < 0)
3117 goto error;
3118 if (!red)
3119 type = isl_ineq_cut;
3120 else
3121 type = isl_ineq_redundant;
3124 if (isl_tab_rollback(tab, snap))
3125 return isl_ineq_error;
3126 return type;
3127 error:
3128 return isl_ineq_error;
3131 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3133 if (!tab || !bmap)
3134 goto error;
3136 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
3137 isl_assert(tab->mat->ctx,
3138 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
3140 tab->bmap = bmap;
3142 return 0;
3143 error:
3144 isl_basic_map_free(bmap);
3145 return -1;
3148 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3150 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3153 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3155 if (!tab)
3156 return NULL;
3158 return (isl_basic_set *)tab->bmap;
3161 void isl_tab_dump(struct isl_tab *tab, FILE *out, int indent)
3163 unsigned r, c;
3164 int i;
3166 if (!tab) {
3167 fprintf(out, "%*snull tab\n", indent, "");
3168 return;
3170 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3171 tab->n_redundant, tab->n_dead);
3172 if (tab->rational)
3173 fprintf(out, ", rational");
3174 if (tab->empty)
3175 fprintf(out, ", empty");
3176 fprintf(out, "\n");
3177 fprintf(out, "%*s[", indent, "");
3178 for (i = 0; i < tab->n_var; ++i) {
3179 if (i)
3180 fprintf(out, (i == tab->n_param ||
3181 i == tab->n_var - tab->n_div) ? "; "
3182 : ", ");
3183 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3184 tab->var[i].index,
3185 tab->var[i].is_zero ? " [=0]" :
3186 tab->var[i].is_redundant ? " [R]" : "");
3188 fprintf(out, "]\n");
3189 fprintf(out, "%*s[", indent, "");
3190 for (i = 0; i < tab->n_con; ++i) {
3191 if (i)
3192 fprintf(out, ", ");
3193 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3194 tab->con[i].index,
3195 tab->con[i].is_zero ? " [=0]" :
3196 tab->con[i].is_redundant ? " [R]" : "");
3198 fprintf(out, "]\n");
3199 fprintf(out, "%*s[", indent, "");
3200 for (i = 0; i < tab->n_row; ++i) {
3201 const char *sign = "";
3202 if (i)
3203 fprintf(out, ", ");
3204 if (tab->row_sign) {
3205 if (tab->row_sign[i] == isl_tab_row_unknown)
3206 sign = "?";
3207 else if (tab->row_sign[i] == isl_tab_row_neg)
3208 sign = "-";
3209 else if (tab->row_sign[i] == isl_tab_row_pos)
3210 sign = "+";
3211 else
3212 sign = "+-";
3214 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3215 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3217 fprintf(out, "]\n");
3218 fprintf(out, "%*s[", indent, "");
3219 for (i = 0; i < tab->n_col; ++i) {
3220 if (i)
3221 fprintf(out, ", ");
3222 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3223 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3225 fprintf(out, "]\n");
3226 r = tab->mat->n_row;
3227 tab->mat->n_row = tab->n_row;
3228 c = tab->mat->n_col;
3229 tab->mat->n_col = 2 + tab->M + tab->n_col;
3230 isl_mat_dump(tab->mat, out, indent);
3231 tab->mat->n_row = r;
3232 tab->mat->n_col = c;
3233 if (tab->bmap)
3234 isl_basic_map_dump(tab->bmap, out, indent);