2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
24 #include <isl/schedule_node.h>
27 enum isl_restriction_type
{
28 isl_restriction_type_empty
,
29 isl_restriction_type_none
,
30 isl_restriction_type_input
,
31 isl_restriction_type_output
34 struct isl_restriction
{
35 enum isl_restriction_type type
;
41 /* Create a restriction of the given type.
43 static __isl_give isl_restriction
*isl_restriction_alloc(
44 __isl_take isl_map
*source_map
, enum isl_restriction_type type
)
47 isl_restriction
*restr
;
52 ctx
= isl_map_get_ctx(source_map
);
53 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
59 isl_map_free(source_map
);
62 isl_map_free(source_map
);
66 /* Create a restriction that doesn't restrict anything.
68 __isl_give isl_restriction
*isl_restriction_none(__isl_take isl_map
*source_map
)
70 return isl_restriction_alloc(source_map
, isl_restriction_type_none
);
73 /* Create a restriction that removes everything.
75 __isl_give isl_restriction
*isl_restriction_empty(
76 __isl_take isl_map
*source_map
)
78 return isl_restriction_alloc(source_map
, isl_restriction_type_empty
);
81 /* Create a restriction on the input of the maximization problem
82 * based on the given source and sink restrictions.
84 __isl_give isl_restriction
*isl_restriction_input(
85 __isl_take isl_set
*source_restr
, __isl_take isl_set
*sink_restr
)
88 isl_restriction
*restr
;
90 if (!source_restr
|| !sink_restr
)
93 ctx
= isl_set_get_ctx(source_restr
);
94 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
98 restr
->type
= isl_restriction_type_input
;
99 restr
->source
= source_restr
;
100 restr
->sink
= sink_restr
;
104 isl_set_free(source_restr
);
105 isl_set_free(sink_restr
);
109 /* Create a restriction on the output of the maximization problem
110 * based on the given source restriction.
112 __isl_give isl_restriction
*isl_restriction_output(
113 __isl_take isl_set
*source_restr
)
116 isl_restriction
*restr
;
121 ctx
= isl_set_get_ctx(source_restr
);
122 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
126 restr
->type
= isl_restriction_type_output
;
127 restr
->source
= source_restr
;
131 isl_set_free(source_restr
);
135 __isl_null isl_restriction
*isl_restriction_free(
136 __isl_take isl_restriction
*restr
)
141 isl_set_free(restr
->source
);
142 isl_set_free(restr
->sink
);
147 isl_ctx
*isl_restriction_get_ctx(__isl_keep isl_restriction
*restr
)
149 return restr
? isl_set_get_ctx(restr
->source
) : NULL
;
152 /* A private structure to keep track of a mapping together with
153 * a user-specified identifier and a boolean indicating whether
154 * the map represents a must or may access/dependence.
156 struct isl_labeled_map
{
162 /* A structure containing the input for dependence analysis:
164 * - n_must + n_may (<= max_source) sources
165 * - a function for determining the relative order of sources and sink
166 * The must sources are placed before the may sources.
168 * domain_map is an auxiliary map that maps the sink access relation
169 * to the domain of this access relation.
170 * This field is only needed when restrict_fn is set and
171 * the field itself is set by isl_access_info_compute_flow.
173 * restrict_fn is a callback that (if not NULL) will be called
174 * right before any lexicographical maximization.
176 struct isl_access_info
{
178 struct isl_labeled_map sink
;
179 isl_access_level_before level_before
;
181 isl_access_restrict restrict_fn
;
187 struct isl_labeled_map source
[1];
190 /* A structure containing the output of dependence analysis:
191 * - n_source dependences
192 * - a wrapped subset of the sink for which definitely no source could be found
193 * - a wrapped subset of the sink for which possibly no source could be found
196 isl_set
*must_no_source
;
197 isl_set
*may_no_source
;
199 struct isl_labeled_map
*dep
;
202 /* Construct an isl_access_info structure and fill it up with
203 * the given data. The number of sources is set to 0.
205 __isl_give isl_access_info
*isl_access_info_alloc(__isl_take isl_map
*sink
,
206 void *sink_user
, isl_access_level_before fn
, int max_source
)
209 struct isl_access_info
*acc
;
214 ctx
= isl_map_get_ctx(sink
);
215 isl_assert(ctx
, max_source
>= 0, goto error
);
217 acc
= isl_calloc(ctx
, struct isl_access_info
,
218 sizeof(struct isl_access_info
) +
219 (max_source
- 1) * sizeof(struct isl_labeled_map
));
223 acc
->sink
.map
= sink
;
224 acc
->sink
.data
= sink_user
;
225 acc
->level_before
= fn
;
226 acc
->max_source
= max_source
;
236 /* Free the given isl_access_info structure.
238 __isl_null isl_access_info
*isl_access_info_free(
239 __isl_take isl_access_info
*acc
)
245 isl_map_free(acc
->domain_map
);
246 isl_map_free(acc
->sink
.map
);
247 for (i
= 0; i
< acc
->n_must
+ acc
->n_may
; ++i
)
248 isl_map_free(acc
->source
[i
].map
);
253 isl_ctx
*isl_access_info_get_ctx(__isl_keep isl_access_info
*acc
)
255 return acc
? isl_map_get_ctx(acc
->sink
.map
) : NULL
;
258 __isl_give isl_access_info
*isl_access_info_set_restrict(
259 __isl_take isl_access_info
*acc
, isl_access_restrict fn
, void *user
)
263 acc
->restrict_fn
= fn
;
264 acc
->restrict_user
= user
;
268 /* Add another source to an isl_access_info structure, making
269 * sure the "must" sources are placed before the "may" sources.
270 * This function may be called at most max_source times on a
271 * given isl_access_info structure, with max_source as specified
272 * in the call to isl_access_info_alloc that constructed the structure.
274 __isl_give isl_access_info
*isl_access_info_add_source(
275 __isl_take isl_access_info
*acc
, __isl_take isl_map
*source
,
276 int must
, void *source_user
)
282 ctx
= isl_map_get_ctx(acc
->sink
.map
);
283 isl_assert(ctx
, acc
->n_must
+ acc
->n_may
< acc
->max_source
, goto error
);
287 acc
->source
[acc
->n_must
+ acc
->n_may
] =
288 acc
->source
[acc
->n_must
];
289 acc
->source
[acc
->n_must
].map
= source
;
290 acc
->source
[acc
->n_must
].data
= source_user
;
291 acc
->source
[acc
->n_must
].must
= 1;
294 acc
->source
[acc
->n_must
+ acc
->n_may
].map
= source
;
295 acc
->source
[acc
->n_must
+ acc
->n_may
].data
= source_user
;
296 acc
->source
[acc
->n_must
+ acc
->n_may
].must
= 0;
302 isl_map_free(source
);
303 isl_access_info_free(acc
);
307 /* A helper struct carrying the isl_access_info and an error condition.
309 struct access_sort_info
{
310 isl_access_info
*access_info
;
314 /* Return -n, 0 or n (with n a positive value), depending on whether
315 * the source access identified by p1 should be sorted before, together
316 * or after that identified by p2.
318 * If p1 appears before p2, then it should be sorted first.
319 * For more generic initial schedules, it is possible that neither
320 * p1 nor p2 appears before the other, or at least not in any obvious way.
321 * We therefore also check if p2 appears before p1, in which case p2
322 * should be sorted first.
323 * If not, we try to order the two statements based on the description
324 * of the iteration domains. This results in an arbitrary, but fairly
327 * In case of an error, sort_info.error is set to true and all elements are
328 * reported to be equal.
330 static int access_sort_cmp(const void *p1
, const void *p2
, void *user
)
332 struct access_sort_info
*sort_info
= user
;
333 isl_access_info
*acc
= sort_info
->access_info
;
335 if (sort_info
->error
)
338 const struct isl_labeled_map
*i1
, *i2
;
341 i1
= (const struct isl_labeled_map
*) p1
;
342 i2
= (const struct isl_labeled_map
*) p2
;
344 level1
= acc
->level_before(i1
->data
, i2
->data
);
350 level2
= acc
->level_before(i2
->data
, i1
->data
);
356 h1
= isl_map_get_hash(i1
->map
);
357 h2
= isl_map_get_hash(i2
->map
);
358 return h1
> h2
? 1 : h1
< h2
? -1 : 0;
360 sort_info
->error
= 1;
365 /* Sort the must source accesses in their textual order.
367 static __isl_give isl_access_info
*isl_access_info_sort_sources(
368 __isl_take isl_access_info
*acc
)
370 struct access_sort_info sort_info
;
372 sort_info
.access_info
= acc
;
377 if (acc
->n_must
<= 1)
380 if (isl_sort(acc
->source
, acc
->n_must
, sizeof(struct isl_labeled_map
),
381 access_sort_cmp
, &sort_info
) < 0)
382 return isl_access_info_free(acc
);
384 return isl_access_info_free(acc
);
389 /* Align the parameters of the two spaces if needed and then call
392 static __isl_give isl_space
*space_align_and_join(__isl_take isl_space
*left
,
393 __isl_take isl_space
*right
)
395 if (isl_space_match(left
, isl_dim_param
, right
, isl_dim_param
))
396 return isl_space_join(left
, right
);
398 left
= isl_space_align_params(left
, isl_space_copy(right
));
399 right
= isl_space_align_params(right
, isl_space_copy(left
));
400 return isl_space_join(left
, right
);
403 /* Initialize an empty isl_flow structure corresponding to a given
404 * isl_access_info structure.
405 * For each must access, two dependences are created (initialized
406 * to the empty relation), one for the resulting must dependences
407 * and one for the resulting may dependences. May accesses can
408 * only lead to may dependences, so only one dependence is created
410 * This function is private as isl_flow structures are only supposed
411 * to be created by isl_access_info_compute_flow.
413 static __isl_give isl_flow
*isl_flow_alloc(__isl_keep isl_access_info
*acc
)
417 struct isl_flow
*dep
;
422 ctx
= isl_map_get_ctx(acc
->sink
.map
);
423 dep
= isl_calloc_type(ctx
, struct isl_flow
);
427 n
= 2 * acc
->n_must
+ acc
->n_may
;
428 dep
->dep
= isl_calloc_array(ctx
, struct isl_labeled_map
, n
);
433 for (i
= 0; i
< acc
->n_must
; ++i
) {
435 dim
= space_align_and_join(
436 isl_map_get_space(acc
->source
[i
].map
),
437 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
438 dep
->dep
[2 * i
].map
= isl_map_empty(dim
);
439 dep
->dep
[2 * i
+ 1].map
= isl_map_copy(dep
->dep
[2 * i
].map
);
440 dep
->dep
[2 * i
].data
= acc
->source
[i
].data
;
441 dep
->dep
[2 * i
+ 1].data
= acc
->source
[i
].data
;
442 dep
->dep
[2 * i
].must
= 1;
443 dep
->dep
[2 * i
+ 1].must
= 0;
444 if (!dep
->dep
[2 * i
].map
|| !dep
->dep
[2 * i
+ 1].map
)
447 for (i
= acc
->n_must
; i
< acc
->n_must
+ acc
->n_may
; ++i
) {
449 dim
= space_align_and_join(
450 isl_map_get_space(acc
->source
[i
].map
),
451 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
452 dep
->dep
[acc
->n_must
+ i
].map
= isl_map_empty(dim
);
453 dep
->dep
[acc
->n_must
+ i
].data
= acc
->source
[i
].data
;
454 dep
->dep
[acc
->n_must
+ i
].must
= 0;
455 if (!dep
->dep
[acc
->n_must
+ i
].map
)
465 /* Iterate over all sources and for each resulting flow dependence
466 * that is not empty, call the user specfied function.
467 * The second argument in this function call identifies the source,
468 * while the third argument correspond to the final argument of
469 * the isl_flow_foreach call.
471 isl_stat
isl_flow_foreach(__isl_keep isl_flow
*deps
,
472 isl_stat (*fn
)(__isl_take isl_map
*dep
, int must
, void *dep_user
,
479 return isl_stat_error
;
481 for (i
= 0; i
< deps
->n_source
; ++i
) {
482 if (isl_map_plain_is_empty(deps
->dep
[i
].map
))
484 if (fn(isl_map_copy(deps
->dep
[i
].map
), deps
->dep
[i
].must
,
485 deps
->dep
[i
].data
, user
) < 0)
486 return isl_stat_error
;
492 /* Return a copy of the subset of the sink for which no source could be found.
494 __isl_give isl_map
*isl_flow_get_no_source(__isl_keep isl_flow
*deps
, int must
)
500 return isl_set_unwrap(isl_set_copy(deps
->must_no_source
));
502 return isl_set_unwrap(isl_set_copy(deps
->may_no_source
));
505 void isl_flow_free(__isl_take isl_flow
*deps
)
511 isl_set_free(deps
->must_no_source
);
512 isl_set_free(deps
->may_no_source
);
514 for (i
= 0; i
< deps
->n_source
; ++i
)
515 isl_map_free(deps
->dep
[i
].map
);
521 isl_ctx
*isl_flow_get_ctx(__isl_keep isl_flow
*deps
)
523 return deps
? isl_set_get_ctx(deps
->must_no_source
) : NULL
;
526 /* Return a map that enforces that the domain iteration occurs after
527 * the range iteration at the given level.
528 * If level is odd, then the domain iteration should occur after
529 * the target iteration in their shared level/2 outermost loops.
530 * In this case we simply need to enforce that these outermost
531 * loop iterations are the same.
532 * If level is even, then the loop iterator of the domain should
533 * be greater than the loop iterator of the range at the last
534 * of the level/2 shared loops, i.e., loop level/2 - 1.
536 static __isl_give isl_map
*after_at_level(__isl_take isl_space
*dim
, int level
)
538 struct isl_basic_map
*bmap
;
541 bmap
= isl_basic_map_equal(dim
, level
/2);
543 bmap
= isl_basic_map_more_at(dim
, level
/2 - 1);
545 return isl_map_from_basic_map(bmap
);
548 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
549 * but first check if the user has set acc->restrict_fn and if so
550 * update either the input or the output of the maximization problem
551 * with respect to the resulting restriction.
553 * Since the user expects a mapping from sink iterations to source iterations,
554 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
555 * to accessed array elements, we first need to project out the accessed
556 * sink array elements by applying acc->domain_map.
557 * Similarly, the sink restriction specified by the user needs to be
558 * converted back to the wrapped map.
560 static __isl_give isl_map
*restricted_partial_lexmax(
561 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*dep
,
562 int source
, __isl_take isl_set
*sink
, __isl_give isl_set
**empty
)
565 isl_restriction
*restr
;
566 isl_set
*sink_domain
;
570 if (!acc
->restrict_fn
)
571 return isl_map_partial_lexmax(dep
, sink
, empty
);
573 source_map
= isl_map_copy(dep
);
574 source_map
= isl_map_apply_domain(source_map
,
575 isl_map_copy(acc
->domain_map
));
576 sink_domain
= isl_set_copy(sink
);
577 sink_domain
= isl_set_apply(sink_domain
, isl_map_copy(acc
->domain_map
));
578 restr
= acc
->restrict_fn(source_map
, sink_domain
,
579 acc
->source
[source
].data
, acc
->restrict_user
);
580 isl_set_free(sink_domain
);
581 isl_map_free(source_map
);
585 if (restr
->type
== isl_restriction_type_input
) {
586 dep
= isl_map_intersect_range(dep
, isl_set_copy(restr
->source
));
587 sink_restr
= isl_set_copy(restr
->sink
);
588 sink_restr
= isl_set_apply(sink_restr
,
589 isl_map_reverse(isl_map_copy(acc
->domain_map
)));
590 sink
= isl_set_intersect(sink
, sink_restr
);
591 } else if (restr
->type
== isl_restriction_type_empty
) {
592 isl_space
*space
= isl_map_get_space(dep
);
594 dep
= isl_map_empty(space
);
597 res
= isl_map_partial_lexmax(dep
, sink
, empty
);
599 if (restr
->type
== isl_restriction_type_output
)
600 res
= isl_map_intersect_range(res
, isl_set_copy(restr
->source
));
602 isl_restriction_free(restr
);
611 /* Compute the last iteration of must source j that precedes the sink
612 * at the given level for sink iterations in set_C.
613 * The subset of set_C for which no such iteration can be found is returned
616 static struct isl_map
*last_source(struct isl_access_info
*acc
,
617 struct isl_set
*set_C
,
618 int j
, int level
, struct isl_set
**empty
)
620 struct isl_map
*read_map
;
621 struct isl_map
*write_map
;
622 struct isl_map
*dep_map
;
623 struct isl_map
*after
;
624 struct isl_map
*result
;
626 read_map
= isl_map_copy(acc
->sink
.map
);
627 write_map
= isl_map_copy(acc
->source
[j
].map
);
628 write_map
= isl_map_reverse(write_map
);
629 dep_map
= isl_map_apply_range(read_map
, write_map
);
630 after
= after_at_level(isl_map_get_space(dep_map
), level
);
631 dep_map
= isl_map_intersect(dep_map
, after
);
632 result
= restricted_partial_lexmax(acc
, dep_map
, j
, set_C
, empty
);
633 result
= isl_map_reverse(result
);
638 /* For a given mapping between iterations of must source j and iterations
639 * of the sink, compute the last iteration of must source k preceding
640 * the sink at level before_level for any of the sink iterations,
641 * but following the corresponding iteration of must source j at level
644 static struct isl_map
*last_later_source(struct isl_access_info
*acc
,
645 struct isl_map
*old_map
,
646 int j
, int before_level
,
647 int k
, int after_level
,
648 struct isl_set
**empty
)
651 struct isl_set
*set_C
;
652 struct isl_map
*read_map
;
653 struct isl_map
*write_map
;
654 struct isl_map
*dep_map
;
655 struct isl_map
*after_write
;
656 struct isl_map
*before_read
;
657 struct isl_map
*result
;
659 set_C
= isl_map_range(isl_map_copy(old_map
));
660 read_map
= isl_map_copy(acc
->sink
.map
);
661 write_map
= isl_map_copy(acc
->source
[k
].map
);
663 write_map
= isl_map_reverse(write_map
);
664 dep_map
= isl_map_apply_range(read_map
, write_map
);
665 dim
= space_align_and_join(isl_map_get_space(acc
->source
[k
].map
),
666 isl_space_reverse(isl_map_get_space(acc
->source
[j
].map
)));
667 after_write
= after_at_level(dim
, after_level
);
668 after_write
= isl_map_apply_range(after_write
, old_map
);
669 after_write
= isl_map_reverse(after_write
);
670 dep_map
= isl_map_intersect(dep_map
, after_write
);
671 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
672 dep_map
= isl_map_intersect(dep_map
, before_read
);
673 result
= restricted_partial_lexmax(acc
, dep_map
, k
, set_C
, empty
);
674 result
= isl_map_reverse(result
);
679 /* Given a shared_level between two accesses, return 1 if the
680 * the first can precede the second at the requested target_level.
681 * If the target level is odd, i.e., refers to a statement level
682 * dimension, then first needs to precede second at the requested
683 * level, i.e., shared_level must be equal to target_level.
684 * If the target level is odd, then the two loops should share
685 * at least the requested number of outer loops.
687 static int can_precede_at_level(int shared_level
, int target_level
)
689 if (shared_level
< target_level
)
691 if ((target_level
% 2) && shared_level
> target_level
)
696 /* Given a possible flow dependence temp_rel[j] between source j and the sink
697 * at level sink_level, remove those elements for which
698 * there is an iteration of another source k < j that is closer to the sink.
699 * The flow dependences temp_rel[k] are updated with the improved sources.
700 * Any improved source needs to precede the sink at the same level
701 * and needs to follow source j at the same or a deeper level.
702 * The lower this level, the later the execution date of source k.
703 * We therefore consider lower levels first.
705 * If temp_rel[j] is empty, then there can be no improvement and
706 * we return immediately.
708 * This function returns 0 in case it was executed successfully and
709 * -1 in case of errors during the execution of this function.
711 static int intermediate_sources(__isl_keep isl_access_info
*acc
,
712 struct isl_map
**temp_rel
, int j
, int sink_level
)
715 int depth
= 2 * isl_map_dim(acc
->source
[j
].map
, isl_dim_in
) + 1;
717 if (isl_map_plain_is_empty(temp_rel
[j
]))
720 for (k
= j
- 1; k
>= 0; --k
) {
722 plevel
= acc
->level_before(acc
->source
[k
].data
, acc
->sink
.data
);
725 if (!can_precede_at_level(plevel
, sink_level
))
728 plevel2
= acc
->level_before(acc
->source
[j
].data
,
729 acc
->source
[k
].data
);
733 for (level
= sink_level
; level
<= depth
; ++level
) {
735 struct isl_set
*trest
;
736 struct isl_map
*copy
;
738 if (!can_precede_at_level(plevel2
, level
))
741 copy
= isl_map_copy(temp_rel
[j
]);
742 T
= last_later_source(acc
, copy
, j
, sink_level
, k
,
744 if (isl_map_plain_is_empty(T
)) {
749 temp_rel
[j
] = isl_map_intersect_range(temp_rel
[j
], trest
);
750 temp_rel
[k
] = isl_map_union_disjoint(temp_rel
[k
], T
);
757 /* Compute all iterations of may source j that precedes the sink at the given
758 * level for sink iterations in set_C.
760 static __isl_give isl_map
*all_sources(__isl_keep isl_access_info
*acc
,
761 __isl_take isl_set
*set_C
, int j
, int level
)
768 read_map
= isl_map_copy(acc
->sink
.map
);
769 read_map
= isl_map_intersect_domain(read_map
, set_C
);
770 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
771 write_map
= isl_map_reverse(write_map
);
772 dep_map
= isl_map_apply_range(read_map
, write_map
);
773 after
= after_at_level(isl_map_get_space(dep_map
), level
);
774 dep_map
= isl_map_intersect(dep_map
, after
);
776 return isl_map_reverse(dep_map
);
779 /* For a given mapping between iterations of must source k and iterations
780 * of the sink, compute the all iteration of may source j preceding
781 * the sink at level before_level for any of the sink iterations,
782 * but following the corresponding iteration of must source k at level
785 static __isl_give isl_map
*all_later_sources(__isl_keep isl_access_info
*acc
,
786 __isl_take isl_map
*old_map
,
787 int j
, int before_level
, int k
, int after_level
)
794 isl_map
*after_write
;
795 isl_map
*before_read
;
797 set_C
= isl_map_range(isl_map_copy(old_map
));
798 read_map
= isl_map_copy(acc
->sink
.map
);
799 read_map
= isl_map_intersect_domain(read_map
, set_C
);
800 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
802 write_map
= isl_map_reverse(write_map
);
803 dep_map
= isl_map_apply_range(read_map
, write_map
);
804 dim
= isl_space_join(isl_map_get_space(acc
->source
[acc
->n_must
+ j
].map
),
805 isl_space_reverse(isl_map_get_space(acc
->source
[k
].map
)));
806 after_write
= after_at_level(dim
, after_level
);
807 after_write
= isl_map_apply_range(after_write
, old_map
);
808 after_write
= isl_map_reverse(after_write
);
809 dep_map
= isl_map_intersect(dep_map
, after_write
);
810 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
811 dep_map
= isl_map_intersect(dep_map
, before_read
);
812 return isl_map_reverse(dep_map
);
815 /* Given the must and may dependence relations for the must accesses
816 * for level sink_level, check if there are any accesses of may access j
817 * that occur in between and return their union.
818 * If some of these accesses are intermediate with respect to
819 * (previously thought to be) must dependences, then these
820 * must dependences are turned into may dependences.
822 static __isl_give isl_map
*all_intermediate_sources(
823 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*map
,
824 struct isl_map
**must_rel
, struct isl_map
**may_rel
,
825 int j
, int sink_level
)
828 int depth
= 2 * isl_map_dim(acc
->source
[acc
->n_must
+ j
].map
,
831 for (k
= 0; k
< acc
->n_must
; ++k
) {
834 if (isl_map_plain_is_empty(may_rel
[k
]) &&
835 isl_map_plain_is_empty(must_rel
[k
]))
838 plevel
= acc
->level_before(acc
->source
[k
].data
,
839 acc
->source
[acc
->n_must
+ j
].data
);
841 return isl_map_free(map
);
843 for (level
= sink_level
; level
<= depth
; ++level
) {
848 if (!can_precede_at_level(plevel
, level
))
851 copy
= isl_map_copy(may_rel
[k
]);
852 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
853 map
= isl_map_union(map
, T
);
855 copy
= isl_map_copy(must_rel
[k
]);
856 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
857 ran
= isl_map_range(isl_map_copy(T
));
858 map
= isl_map_union(map
, T
);
859 may_rel
[k
] = isl_map_union_disjoint(may_rel
[k
],
860 isl_map_intersect_range(isl_map_copy(must_rel
[k
]),
862 T
= isl_map_from_domain_and_range(
864 isl_space_domain(isl_map_get_space(must_rel
[k
]))),
866 must_rel
[k
] = isl_map_subtract(must_rel
[k
], T
);
873 /* Compute dependences for the case where all accesses are "may"
874 * accesses, which boils down to computing memory based dependences.
875 * The generic algorithm would also work in this case, but it would
876 * be overkill to use it.
878 static __isl_give isl_flow
*compute_mem_based_dependences(
879 __isl_keep isl_access_info
*acc
)
886 res
= isl_flow_alloc(acc
);
890 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
891 maydo
= isl_set_copy(mustdo
);
893 for (i
= 0; i
< acc
->n_may
; ++i
) {
900 plevel
= acc
->level_before(acc
->source
[i
].data
, acc
->sink
.data
);
904 is_before
= plevel
& 1;
907 dim
= isl_map_get_space(res
->dep
[i
].map
);
909 before
= isl_map_lex_le_first(dim
, plevel
);
911 before
= isl_map_lex_lt_first(dim
, plevel
);
912 dep
= isl_map_apply_range(isl_map_copy(acc
->source
[i
].map
),
913 isl_map_reverse(isl_map_copy(acc
->sink
.map
)));
914 dep
= isl_map_intersect(dep
, before
);
915 mustdo
= isl_set_subtract(mustdo
,
916 isl_map_range(isl_map_copy(dep
)));
917 res
->dep
[i
].map
= isl_map_union(res
->dep
[i
].map
, dep
);
920 res
->may_no_source
= isl_set_subtract(maydo
, isl_set_copy(mustdo
));
921 res
->must_no_source
= mustdo
;
925 isl_set_free(mustdo
);
931 /* Compute dependences for the case where there is at least one
934 * The core algorithm considers all levels in which a source may precede
935 * the sink, where a level may either be a statement level or a loop level.
936 * The outermost statement level is 1, the first loop level is 2, etc...
937 * The algorithm basically does the following:
938 * for all levels l of the read access from innermost to outermost
939 * for all sources w that may precede the sink access at that level
940 * compute the last iteration of the source that precedes the sink access
942 * add result to possible last accesses at level l of source w
943 * for all sources w2 that we haven't considered yet at this level that may
944 * also precede the sink access
945 * for all levels l2 of w from l to innermost
946 * for all possible last accesses dep of w at l
947 * compute last iteration of w2 between the source and sink
949 * add result to possible last accesses at level l of write w2
950 * and replace possible last accesses dep by the remainder
953 * The above algorithm is applied to the must access. During the course
954 * of the algorithm, we keep track of sink iterations that still
955 * need to be considered. These iterations are split into those that
956 * haven't been matched to any source access (mustdo) and those that have only
957 * been matched to may accesses (maydo).
958 * At the end of each level, we also consider the may accesses.
959 * In particular, we consider may accesses that precede the remaining
960 * sink iterations, moving elements from mustdo to maydo when appropriate,
961 * and may accesses that occur between a must source and a sink of any
962 * dependences found at the current level, turning must dependences into
963 * may dependences when appropriate.
966 static __isl_give isl_flow
*compute_val_based_dependences(
967 __isl_keep isl_access_info
*acc
)
971 isl_set
*mustdo
= NULL
;
972 isl_set
*maydo
= NULL
;
975 isl_map
**must_rel
= NULL
;
976 isl_map
**may_rel
= NULL
;
981 res
= isl_flow_alloc(acc
);
984 ctx
= isl_map_get_ctx(acc
->sink
.map
);
986 depth
= 2 * isl_map_dim(acc
->sink
.map
, isl_dim_in
) + 1;
987 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
988 maydo
= isl_set_empty(isl_set_get_space(mustdo
));
989 if (!mustdo
|| !maydo
)
991 if (isl_set_plain_is_empty(mustdo
))
994 must_rel
= isl_calloc_array(ctx
, struct isl_map
*, acc
->n_must
);
995 may_rel
= isl_calloc_array(ctx
, struct isl_map
*, acc
->n_must
);
996 if (!must_rel
|| !may_rel
)
999 for (level
= depth
; level
>= 1; --level
) {
1000 for (j
= acc
->n_must
-1; j
>=0; --j
) {
1002 space
= isl_map_get_space(res
->dep
[2 * j
].map
);
1003 must_rel
[j
] = isl_map_empty(space
);
1004 may_rel
[j
] = isl_map_copy(must_rel
[j
]);
1007 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1009 struct isl_set
*rest
;
1012 plevel
= acc
->level_before(acc
->source
[j
].data
,
1016 if (!can_precede_at_level(plevel
, level
))
1019 T
= last_source(acc
, mustdo
, j
, level
, &rest
);
1020 must_rel
[j
] = isl_map_union_disjoint(must_rel
[j
], T
);
1023 if (intermediate_sources(acc
, must_rel
, j
, level
))
1026 T
= last_source(acc
, maydo
, j
, level
, &rest
);
1027 may_rel
[j
] = isl_map_union_disjoint(may_rel
[j
], T
);
1030 if (intermediate_sources(acc
, may_rel
, j
, level
))
1033 if (isl_set_plain_is_empty(mustdo
) &&
1034 isl_set_plain_is_empty(maydo
))
1037 for (j
= j
- 1; j
>= 0; --j
) {
1040 plevel
= acc
->level_before(acc
->source
[j
].data
,
1044 if (!can_precede_at_level(plevel
, level
))
1047 if (intermediate_sources(acc
, must_rel
, j
, level
))
1049 if (intermediate_sources(acc
, may_rel
, j
, level
))
1053 for (j
= 0; j
< acc
->n_may
; ++j
) {
1058 plevel
= acc
->level_before(acc
->source
[acc
->n_must
+ j
].data
,
1062 if (!can_precede_at_level(plevel
, level
))
1065 T
= all_sources(acc
, isl_set_copy(maydo
), j
, level
);
1066 res
->dep
[2 * acc
->n_must
+ j
].map
=
1067 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1068 T
= all_sources(acc
, isl_set_copy(mustdo
), j
, level
);
1069 ran
= isl_map_range(isl_map_copy(T
));
1070 res
->dep
[2 * acc
->n_must
+ j
].map
=
1071 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1072 mustdo
= isl_set_subtract(mustdo
, isl_set_copy(ran
));
1073 maydo
= isl_set_union_disjoint(maydo
, ran
);
1075 T
= res
->dep
[2 * acc
->n_must
+ j
].map
;
1076 T
= all_intermediate_sources(acc
, T
, must_rel
, may_rel
,
1078 res
->dep
[2 * acc
->n_must
+ j
].map
= T
;
1081 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1082 res
->dep
[2 * j
].map
=
1083 isl_map_union_disjoint(res
->dep
[2 * j
].map
,
1085 res
->dep
[2 * j
+ 1].map
=
1086 isl_map_union_disjoint(res
->dep
[2 * j
+ 1].map
,
1090 if (isl_set_plain_is_empty(mustdo
) &&
1091 isl_set_plain_is_empty(maydo
))
1098 res
->must_no_source
= mustdo
;
1099 res
->may_no_source
= maydo
;
1103 for (j
= 0; j
< acc
->n_must
; ++j
)
1104 isl_map_free(must_rel
[j
]);
1106 for (j
= 0; j
< acc
->n_must
; ++j
)
1107 isl_map_free(may_rel
[j
]);
1109 isl_set_free(mustdo
);
1110 isl_set_free(maydo
);
1116 /* Given a "sink" access, a list of n "source" accesses,
1117 * compute for each iteration of the sink access
1118 * and for each element accessed by that iteration,
1119 * the source access in the list that last accessed the
1120 * element accessed by the sink access before this sink access.
1121 * Each access is given as a map from the loop iterators
1122 * to the array indices.
1123 * The result is a list of n relations between source and sink
1124 * iterations and a subset of the domain of the sink access,
1125 * corresponding to those iterations that access an element
1126 * not previously accessed.
1128 * To deal with multi-valued sink access relations, the sink iteration
1129 * domain is first extended with dimensions that correspond to the data
1130 * space. However, these extra dimensions are not projected out again.
1131 * It is up to the caller to decide whether these dimensions should be kept.
1133 static __isl_give isl_flow
*access_info_compute_flow_core(
1134 __isl_take isl_access_info
*acc
)
1136 struct isl_flow
*res
= NULL
;
1141 acc
->sink
.map
= isl_map_range_map(acc
->sink
.map
);
1145 if (acc
->n_must
== 0)
1146 res
= compute_mem_based_dependences(acc
);
1148 acc
= isl_access_info_sort_sources(acc
);
1149 res
= compute_val_based_dependences(acc
);
1151 acc
= isl_access_info_free(acc
);
1154 if (!res
->must_no_source
|| !res
->may_no_source
)
1158 isl_access_info_free(acc
);
1163 /* Given a "sink" access, a list of n "source" accesses,
1164 * compute for each iteration of the sink access
1165 * and for each element accessed by that iteration,
1166 * the source access in the list that last accessed the
1167 * element accessed by the sink access before this sink access.
1168 * Each access is given as a map from the loop iterators
1169 * to the array indices.
1170 * The result is a list of n relations between source and sink
1171 * iterations and a subset of the domain of the sink access,
1172 * corresponding to those iterations that access an element
1173 * not previously accessed.
1175 * To deal with multi-valued sink access relations,
1176 * access_info_compute_flow_core extends the sink iteration domain
1177 * with dimensions that correspond to the data space. These extra dimensions
1178 * are projected out from the result of access_info_compute_flow_core.
1180 __isl_give isl_flow
*isl_access_info_compute_flow(__isl_take isl_access_info
*acc
)
1183 struct isl_flow
*res
;
1188 acc
->domain_map
= isl_map_domain_map(isl_map_copy(acc
->sink
.map
));
1189 res
= access_info_compute_flow_core(acc
);
1193 for (j
= 0; j
< res
->n_source
; ++j
) {
1194 res
->dep
[j
].map
= isl_map_range_factor_domain(res
->dep
[j
].map
);
1195 if (!res
->dep
[j
].map
)
1206 /* Keep track of some information about a schedule for a given
1207 * access. In particular, keep track of which dimensions
1208 * have a constant value and of the actual constant values.
1210 struct isl_sched_info
{
1215 static void sched_info_free(__isl_take
struct isl_sched_info
*info
)
1219 isl_vec_free(info
->cst
);
1224 /* Extract information on the constant dimensions of the schedule
1225 * for a given access. The "map" is of the form
1229 * with S the schedule domain, D the iteration domain and A the data domain.
1231 static __isl_give
struct isl_sched_info
*sched_info_alloc(
1232 __isl_keep isl_map
*map
)
1236 struct isl_sched_info
*info
;
1242 dim
= isl_space_unwrap(isl_space_domain(isl_map_get_space(map
)));
1245 n
= isl_space_dim(dim
, isl_dim_in
);
1246 isl_space_free(dim
);
1248 ctx
= isl_map_get_ctx(map
);
1249 info
= isl_alloc_type(ctx
, struct isl_sched_info
);
1252 info
->is_cst
= isl_alloc_array(ctx
, int, n
);
1253 info
->cst
= isl_vec_alloc(ctx
, n
);
1254 if (n
&& (!info
->is_cst
|| !info
->cst
))
1257 for (i
= 0; i
< n
; ++i
) {
1260 v
= isl_map_plain_get_val_if_fixed(map
, isl_dim_in
, i
);
1263 info
->is_cst
[i
] = !isl_val_is_nan(v
);
1264 if (info
->is_cst
[i
])
1265 info
->cst
= isl_vec_set_element_val(info
->cst
, i
, v
);
1272 sched_info_free(info
);
1276 /* This structure represents the input for a dependence analysis computation.
1278 * "sink" represents the sink accesses.
1279 * "must_source" represents the definite source accesses.
1280 * "may_source" represents the possible source accesses.
1282 * "schedule" or "schedule_map" represents the execution order.
1283 * Exactly one of these fields should be NULL. The other field
1284 * determines the execution order.
1286 * The domains of these four maps refer to the same iteration spaces(s).
1287 * The ranges of the first three maps also refer to the same data space(s).
1289 * After a call to isl_union_access_info_introduce_schedule,
1290 * the "schedule_map" field no longer contains useful information.
1292 struct isl_union_access_info
{
1293 isl_union_map
*sink
;
1294 isl_union_map
*must_source
;
1295 isl_union_map
*may_source
;
1297 isl_schedule
*schedule
;
1298 isl_union_map
*schedule_map
;
1301 /* Free "access" and return NULL.
1303 __isl_null isl_union_access_info
*isl_union_access_info_free(
1304 __isl_take isl_union_access_info
*access
)
1309 isl_union_map_free(access
->sink
);
1310 isl_union_map_free(access
->must_source
);
1311 isl_union_map_free(access
->may_source
);
1312 isl_schedule_free(access
->schedule
);
1313 isl_union_map_free(access
->schedule_map
);
1319 /* Return the isl_ctx to which "access" belongs.
1321 isl_ctx
*isl_union_access_info_get_ctx(__isl_keep isl_union_access_info
*access
)
1323 return access
? isl_union_map_get_ctx(access
->sink
) : NULL
;
1326 /* Create a new isl_union_access_info with the given sink accesses and
1327 * and no source accesses or schedule information.
1329 * By default, we use the schedule field of the isl_union_access_info,
1330 * but this may be overridden by a call
1331 * to isl_union_access_info_set_schedule_map.
1333 __isl_give isl_union_access_info
*isl_union_access_info_from_sink(
1334 __isl_take isl_union_map
*sink
)
1338 isl_union_map
*empty
;
1339 isl_union_access_info
*access
;
1343 ctx
= isl_union_map_get_ctx(sink
);
1344 access
= isl_alloc_type(ctx
, isl_union_access_info
);
1348 space
= isl_union_map_get_space(sink
);
1349 empty
= isl_union_map_empty(isl_space_copy(space
));
1350 access
->sink
= sink
;
1351 access
->must_source
= isl_union_map_copy(empty
);
1352 access
->may_source
= empty
;
1353 access
->schedule
= isl_schedule_empty(space
);
1354 access
->schedule_map
= NULL
;
1356 if (!access
->sink
|| !access
->must_source
||
1357 !access
->may_source
|| !access
->schedule
)
1358 return isl_union_access_info_free(access
);
1362 isl_union_map_free(sink
);
1366 /* Replace the definite source accesses of "access" by "must_source".
1368 __isl_give isl_union_access_info
*isl_union_access_info_set_must_source(
1369 __isl_take isl_union_access_info
*access
,
1370 __isl_take isl_union_map
*must_source
)
1372 if (!access
|| !must_source
)
1375 isl_union_map_free(access
->must_source
);
1376 access
->must_source
= must_source
;
1380 isl_union_access_info_free(access
);
1381 isl_union_map_free(must_source
);
1385 /* Replace the possible source accesses of "access" by "may_source".
1387 __isl_give isl_union_access_info
*isl_union_access_info_set_may_source(
1388 __isl_take isl_union_access_info
*access
,
1389 __isl_take isl_union_map
*may_source
)
1391 if (!access
|| !may_source
)
1394 isl_union_map_free(access
->may_source
);
1395 access
->may_source
= may_source
;
1399 isl_union_access_info_free(access
);
1400 isl_union_map_free(may_source
);
1404 /* Replace the schedule of "access" by "schedule".
1405 * Also free the schedule_map in case it was set last.
1407 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule(
1408 __isl_take isl_union_access_info
*access
,
1409 __isl_take isl_schedule
*schedule
)
1411 if (!access
|| !schedule
)
1414 access
->schedule_map
= isl_union_map_free(access
->schedule_map
);
1415 isl_schedule_free(access
->schedule
);
1416 access
->schedule
= schedule
;
1420 isl_union_access_info_free(access
);
1421 isl_schedule_free(schedule
);
1425 /* Replace the schedule map of "access" by "schedule_map".
1426 * Also free the schedule in case it was set last.
1428 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule_map(
1429 __isl_take isl_union_access_info
*access
,
1430 __isl_take isl_union_map
*schedule_map
)
1432 if (!access
|| !schedule_map
)
1435 isl_union_map_free(access
->schedule_map
);
1436 access
->schedule
= isl_schedule_free(access
->schedule
);
1437 access
->schedule_map
= schedule_map
;
1441 isl_union_access_info_free(access
);
1442 isl_union_map_free(schedule_map
);
1446 __isl_give isl_union_access_info
*isl_union_access_info_copy(
1447 __isl_keep isl_union_access_info
*access
)
1449 isl_union_access_info
*copy
;
1453 copy
= isl_union_access_info_from_sink(
1454 isl_union_map_copy(access
->sink
));
1455 copy
= isl_union_access_info_set_must_source(copy
,
1456 isl_union_map_copy(access
->must_source
));
1457 copy
= isl_union_access_info_set_may_source(copy
,
1458 isl_union_map_copy(access
->may_source
));
1459 if (access
->schedule
)
1460 copy
= isl_union_access_info_set_schedule(copy
,
1461 isl_schedule_copy(access
->schedule
));
1463 copy
= isl_union_access_info_set_schedule_map(copy
,
1464 isl_union_map_copy(access
->schedule_map
));
1469 /* Print a key-value pair of a YAML mapping to "p",
1470 * with key "name" and value "umap".
1472 static __isl_give isl_printer
*print_union_map_field(__isl_take isl_printer
*p
,
1473 const char *name
, __isl_keep isl_union_map
*umap
)
1475 p
= isl_printer_print_str(p
, name
);
1476 p
= isl_printer_yaml_next(p
);
1477 p
= isl_printer_print_str(p
, "\"");
1478 p
= isl_printer_print_union_map(p
, umap
);
1479 p
= isl_printer_print_str(p
, "\"");
1480 p
= isl_printer_yaml_next(p
);
1485 /* Print the information contained in "access" to "p".
1486 * The information is printed as a YAML document.
1488 __isl_give isl_printer
*isl_printer_print_union_access_info(
1489 __isl_take isl_printer
*p
, __isl_keep isl_union_access_info
*access
)
1492 return isl_printer_free(p
);
1494 p
= isl_printer_yaml_start_mapping(p
);
1495 p
= print_union_map_field(p
, "sink", access
->sink
);
1496 p
= print_union_map_field(p
, "must_source", access
->must_source
);
1497 p
= print_union_map_field(p
, "may_source", access
->may_source
);
1498 if (access
->schedule
) {
1499 p
= isl_printer_print_str(p
, "schedule");
1500 p
= isl_printer_yaml_next(p
);
1501 p
= isl_printer_print_schedule(p
, access
->schedule
);
1502 p
= isl_printer_yaml_next(p
);
1504 p
= print_union_map_field(p
, "schedule_map",
1505 access
->schedule_map
);
1507 p
= isl_printer_yaml_end_mapping(p
);
1512 /* Return a string representation of the information in "access".
1513 * The information is printed in flow format.
1515 __isl_give
char *isl_union_access_info_to_str(
1516 __isl_keep isl_union_access_info
*access
)
1524 p
= isl_printer_to_str(isl_union_access_info_get_ctx(access
));
1525 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_FLOW
);
1526 p
= isl_printer_print_union_access_info(p
, access
);
1527 s
= isl_printer_get_str(p
);
1528 isl_printer_free(p
);
1533 /* Update the fields of "access" such that they all have the same parameters,
1534 * keeping in mind that the schedule_map field may be NULL and ignoring
1535 * the schedule field.
1537 static __isl_give isl_union_access_info
*isl_union_access_info_align_params(
1538 __isl_take isl_union_access_info
*access
)
1545 space
= isl_union_map_get_space(access
->sink
);
1546 space
= isl_space_align_params(space
,
1547 isl_union_map_get_space(access
->must_source
));
1548 space
= isl_space_align_params(space
,
1549 isl_union_map_get_space(access
->may_source
));
1550 if (access
->schedule_map
)
1551 space
= isl_space_align_params(space
,
1552 isl_union_map_get_space(access
->schedule_map
));
1553 access
->sink
= isl_union_map_align_params(access
->sink
,
1554 isl_space_copy(space
));
1555 access
->must_source
= isl_union_map_align_params(access
->must_source
,
1556 isl_space_copy(space
));
1557 access
->may_source
= isl_union_map_align_params(access
->may_source
,
1558 isl_space_copy(space
));
1559 if (!access
->schedule_map
) {
1560 isl_space_free(space
);
1562 access
->schedule_map
=
1563 isl_union_map_align_params(access
->schedule_map
, space
);
1564 if (!access
->schedule_map
)
1565 return isl_union_access_info_free(access
);
1568 if (!access
->sink
|| !access
->must_source
|| !access
->may_source
)
1569 return isl_union_access_info_free(access
);
1574 /* Prepend the schedule dimensions to the iteration domains.
1576 * That is, if the schedule is of the form
1580 * while the access relations are of the form
1584 * then the updated access relations are of the form
1588 * The schedule map is also replaced by the map
1592 * that is used during the internal computation.
1593 * Neither the original schedule map nor this updated schedule map
1594 * are used after the call to this function.
1596 static __isl_give isl_union_access_info
*
1597 isl_union_access_info_introduce_schedule(
1598 __isl_take isl_union_access_info
*access
)
1605 sm
= isl_union_map_reverse(access
->schedule_map
);
1606 sm
= isl_union_map_range_map(sm
);
1607 access
->sink
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1609 access
->may_source
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1610 access
->may_source
);
1611 access
->must_source
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1612 access
->must_source
);
1613 access
->schedule_map
= sm
;
1615 if (!access
->sink
|| !access
->must_source
||
1616 !access
->may_source
|| !access
->schedule_map
)
1617 return isl_union_access_info_free(access
);
1622 /* This structure represents the result of a dependence analysis computation.
1624 * "must_dep" represents the full definite dependences
1625 * "may_dep" represents the full non-definite dependences.
1626 * Both are of the form
1628 * [Source] -> [[Sink -> Data]]
1630 * (after the schedule dimensions have been projected out).
1631 * "must_no_source" represents the subset of the sink accesses for which
1632 * definitely no source was found.
1633 * "may_no_source" represents the subset of the sink accesses for which
1634 * possibly, but not definitely, no source was found.
1636 struct isl_union_flow
{
1637 isl_union_map
*must_dep
;
1638 isl_union_map
*may_dep
;
1639 isl_union_map
*must_no_source
;
1640 isl_union_map
*may_no_source
;
1643 /* Return the isl_ctx to which "flow" belongs.
1645 isl_ctx
*isl_union_flow_get_ctx(__isl_keep isl_union_flow
*flow
)
1647 return flow
? isl_union_map_get_ctx(flow
->must_dep
) : NULL
;
1650 /* Free "flow" and return NULL.
1652 __isl_null isl_union_flow
*isl_union_flow_free(__isl_take isl_union_flow
*flow
)
1656 isl_union_map_free(flow
->must_dep
);
1657 isl_union_map_free(flow
->may_dep
);
1658 isl_union_map_free(flow
->must_no_source
);
1659 isl_union_map_free(flow
->may_no_source
);
1664 void isl_union_flow_dump(__isl_keep isl_union_flow
*flow
)
1669 fprintf(stderr
, "must dependences: ");
1670 isl_union_map_dump(flow
->must_dep
);
1671 fprintf(stderr
, "may dependences: ");
1672 isl_union_map_dump(flow
->may_dep
);
1673 fprintf(stderr
, "must no source: ");
1674 isl_union_map_dump(flow
->must_no_source
);
1675 fprintf(stderr
, "may no source: ");
1676 isl_union_map_dump(flow
->may_no_source
);
1679 /* Return the full definite dependences in "flow", with accessed elements.
1681 __isl_give isl_union_map
*isl_union_flow_get_full_must_dependence(
1682 __isl_keep isl_union_flow
*flow
)
1686 return isl_union_map_copy(flow
->must_dep
);
1689 /* Return the full possible dependences in "flow", including the definite
1690 * dependences, with accessed elements.
1692 __isl_give isl_union_map
*isl_union_flow_get_full_may_dependence(
1693 __isl_keep isl_union_flow
*flow
)
1697 return isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
1698 isl_union_map_copy(flow
->may_dep
));
1701 /* Return the definite dependences in "flow", without the accessed elements.
1703 __isl_give isl_union_map
*isl_union_flow_get_must_dependence(
1704 __isl_keep isl_union_flow
*flow
)
1710 dep
= isl_union_map_copy(flow
->must_dep
);
1711 return isl_union_map_range_factor_domain(dep
);
1714 /* Return the possible dependences in "flow", including the definite
1715 * dependences, without the accessed elements.
1717 __isl_give isl_union_map
*isl_union_flow_get_may_dependence(
1718 __isl_keep isl_union_flow
*flow
)
1724 dep
= isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
1725 isl_union_map_copy(flow
->may_dep
));
1726 return isl_union_map_range_factor_domain(dep
);
1729 /* Return the non-definite dependences in "flow".
1731 static __isl_give isl_union_map
*isl_union_flow_get_non_must_dependence(
1732 __isl_keep isl_union_flow
*flow
)
1736 return isl_union_map_copy(flow
->may_dep
);
1739 /* Return the subset of the sink accesses for which definitely
1740 * no source was found.
1742 __isl_give isl_union_map
*isl_union_flow_get_must_no_source(
1743 __isl_keep isl_union_flow
*flow
)
1747 return isl_union_map_copy(flow
->must_no_source
);
1750 /* Return the subset of the sink accesses for which possibly
1751 * no source was found, including those for which definitely
1752 * no source was found.
1754 __isl_give isl_union_map
*isl_union_flow_get_may_no_source(
1755 __isl_keep isl_union_flow
*flow
)
1759 return isl_union_map_union(isl_union_map_copy(flow
->must_no_source
),
1760 isl_union_map_copy(flow
->may_no_source
));
1763 /* Return the subset of the sink accesses for which possibly, but not
1764 * definitely, no source was found.
1766 static __isl_give isl_union_map
*isl_union_flow_get_non_must_no_source(
1767 __isl_keep isl_union_flow
*flow
)
1771 return isl_union_map_copy(flow
->may_no_source
);
1774 /* Create a new isl_union_flow object, initialized with empty
1775 * dependence relations and sink subsets.
1777 static __isl_give isl_union_flow
*isl_union_flow_alloc(
1778 __isl_take isl_space
*space
)
1781 isl_union_map
*empty
;
1782 isl_union_flow
*flow
;
1786 ctx
= isl_space_get_ctx(space
);
1787 flow
= isl_alloc_type(ctx
, isl_union_flow
);
1791 empty
= isl_union_map_empty(space
);
1792 flow
->must_dep
= isl_union_map_copy(empty
);
1793 flow
->may_dep
= isl_union_map_copy(empty
);
1794 flow
->must_no_source
= isl_union_map_copy(empty
);
1795 flow
->may_no_source
= empty
;
1797 if (!flow
->must_dep
|| !flow
->may_dep
||
1798 !flow
->must_no_source
|| !flow
->may_no_source
)
1799 return isl_union_flow_free(flow
);
1803 isl_space_free(space
);
1807 /* Copy this isl_union_flow object.
1809 __isl_give isl_union_flow
*isl_union_flow_copy(__isl_keep isl_union_flow
*flow
)
1811 isl_union_flow
*copy
;
1816 copy
= isl_union_flow_alloc(isl_union_map_get_space(flow
->must_dep
));
1821 copy
->must_dep
= isl_union_map_union(copy
->must_dep
,
1822 isl_union_map_copy(flow
->must_dep
));
1823 copy
->may_dep
= isl_union_map_union(copy
->may_dep
,
1824 isl_union_map_copy(flow
->may_dep
));
1825 copy
->must_no_source
= isl_union_map_union(copy
->must_no_source
,
1826 isl_union_map_copy(flow
->must_no_source
));
1827 copy
->may_no_source
= isl_union_map_union(copy
->may_no_source
,
1828 isl_union_map_copy(flow
->may_no_source
));
1830 if (!copy
->must_dep
|| !copy
->may_dep
||
1831 !copy
->must_no_source
|| !copy
->may_no_source
)
1832 return isl_union_flow_free(copy
);
1837 /* Drop the schedule dimensions from the iteration domains in "flow".
1838 * In particular, the schedule dimensions have been prepended
1839 * to the iteration domains prior to the dependence analysis by
1840 * replacing the iteration domain D, by the wrapped map [S -> D].
1841 * Replace these wrapped maps by the original D.
1843 * In particular, the dependences computed by access_info_compute_flow_core
1846 * [S -> D] -> [[S' -> D'] -> A]
1848 * The schedule dimensions are projected out by first currying the range,
1851 * [S -> D] -> [S' -> [D' -> A]]
1853 * and then computing the factor range
1857 static __isl_give isl_union_flow
*isl_union_flow_drop_schedule(
1858 __isl_take isl_union_flow
*flow
)
1863 flow
->must_dep
= isl_union_map_range_curry(flow
->must_dep
);
1864 flow
->must_dep
= isl_union_map_factor_range(flow
->must_dep
);
1865 flow
->may_dep
= isl_union_map_range_curry(flow
->may_dep
);
1866 flow
->may_dep
= isl_union_map_factor_range(flow
->may_dep
);
1867 flow
->must_no_source
=
1868 isl_union_map_domain_factor_range(flow
->must_no_source
);
1869 flow
->may_no_source
=
1870 isl_union_map_domain_factor_range(flow
->may_no_source
);
1872 if (!flow
->must_dep
|| !flow
->may_dep
||
1873 !flow
->must_no_source
|| !flow
->may_no_source
)
1874 return isl_union_flow_free(flow
);
1879 struct isl_compute_flow_data
{
1880 isl_union_map
*must_source
;
1881 isl_union_map
*may_source
;
1882 isl_union_flow
*flow
;
1887 struct isl_sched_info
*sink_info
;
1888 struct isl_sched_info
**source_info
;
1889 isl_access_info
*accesses
;
1892 static isl_stat
count_matching_array(__isl_take isl_map
*map
, void *user
)
1896 struct isl_compute_flow_data
*data
;
1898 data
= (struct isl_compute_flow_data
*)user
;
1900 dim
= isl_space_range(isl_map_get_space(map
));
1902 eq
= isl_space_is_equal(dim
, data
->dim
);
1904 isl_space_free(dim
);
1908 return isl_stat_error
;
1915 static isl_stat
collect_matching_array(__isl_take isl_map
*map
, void *user
)
1919 struct isl_sched_info
*info
;
1920 struct isl_compute_flow_data
*data
;
1922 data
= (struct isl_compute_flow_data
*)user
;
1924 dim
= isl_space_range(isl_map_get_space(map
));
1926 eq
= isl_space_is_equal(dim
, data
->dim
);
1928 isl_space_free(dim
);
1937 info
= sched_info_alloc(map
);
1938 data
->source_info
[data
->count
] = info
;
1940 data
->accesses
= isl_access_info_add_source(data
->accesses
,
1941 map
, data
->must
, info
);
1948 return isl_stat_error
;
1951 /* Determine the shared nesting level and the "textual order" of
1952 * the given accesses.
1954 * We first determine the minimal schedule dimension for both accesses.
1956 * If among those dimensions, we can find one where both have a fixed
1957 * value and if moreover those values are different, then the previous
1958 * dimension is the last shared nesting level and the textual order
1959 * is determined based on the order of the fixed values.
1960 * If no such fixed values can be found, then we set the shared
1961 * nesting level to the minimal schedule dimension, with no textual ordering.
1963 static int before(void *first
, void *second
)
1965 struct isl_sched_info
*info1
= first
;
1966 struct isl_sched_info
*info2
= second
;
1970 n1
= isl_vec_size(info1
->cst
);
1971 n2
= isl_vec_size(info2
->cst
);
1976 for (i
= 0; i
< n1
; ++i
) {
1980 if (!info1
->is_cst
[i
])
1982 if (!info2
->is_cst
[i
])
1984 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
1988 r
= 2 * i
+ (cmp
< 0);
1996 /* Given a sink access, look for all the source accesses that access
1997 * the same array and perform dataflow analysis on them using
1998 * isl_access_info_compute_flow_core.
2000 static isl_stat
compute_flow(__isl_take isl_map
*map
, void *user
)
2004 struct isl_compute_flow_data
*data
;
2008 data
= (struct isl_compute_flow_data
*)user
;
2011 ctx
= isl_map_get_ctx(map
);
2013 data
->accesses
= NULL
;
2014 data
->sink_info
= NULL
;
2015 data
->source_info
= NULL
;
2017 data
->dim
= isl_space_range(isl_map_get_space(map
));
2019 if (isl_union_map_foreach_map(data
->must_source
,
2020 &count_matching_array
, data
) < 0)
2022 if (isl_union_map_foreach_map(data
->may_source
,
2023 &count_matching_array
, data
) < 0)
2026 data
->sink_info
= sched_info_alloc(map
);
2027 data
->source_info
= isl_calloc_array(ctx
, struct isl_sched_info
*,
2030 data
->accesses
= isl_access_info_alloc(isl_map_copy(map
),
2031 data
->sink_info
, &before
, data
->count
);
2032 if (!data
->sink_info
|| (data
->count
&& !data
->source_info
) ||
2037 if (isl_union_map_foreach_map(data
->must_source
,
2038 &collect_matching_array
, data
) < 0)
2041 if (isl_union_map_foreach_map(data
->may_source
,
2042 &collect_matching_array
, data
) < 0)
2045 flow
= access_info_compute_flow_core(data
->accesses
);
2046 data
->accesses
= NULL
;
2051 df
->must_no_source
= isl_union_map_union(df
->must_no_source
,
2052 isl_union_map_from_map(isl_flow_get_no_source(flow
, 1)));
2053 df
->may_no_source
= isl_union_map_union(df
->may_no_source
,
2054 isl_union_map_from_map(isl_flow_get_no_source(flow
, 0)));
2056 for (i
= 0; i
< flow
->n_source
; ++i
) {
2058 dep
= isl_union_map_from_map(isl_map_copy(flow
->dep
[i
].map
));
2059 if (flow
->dep
[i
].must
)
2060 df
->must_dep
= isl_union_map_union(df
->must_dep
, dep
);
2062 df
->may_dep
= isl_union_map_union(df
->may_dep
, dep
);
2065 isl_flow_free(flow
);
2067 sched_info_free(data
->sink_info
);
2068 if (data
->source_info
) {
2069 for (i
= 0; i
< data
->count
; ++i
)
2070 sched_info_free(data
->source_info
[i
]);
2071 free(data
->source_info
);
2073 isl_space_free(data
->dim
);
2078 isl_access_info_free(data
->accesses
);
2079 sched_info_free(data
->sink_info
);
2080 if (data
->source_info
) {
2081 for (i
= 0; i
< data
->count
; ++i
)
2082 sched_info_free(data
->source_info
[i
]);
2083 free(data
->source_info
);
2085 isl_space_free(data
->dim
);
2088 return isl_stat_error
;
2091 /* Remove the must accesses from the may accesses.
2093 * A must access always trumps a may access, so there is no need
2094 * for a must access to also be considered as a may access. Doing so
2095 * would only cost extra computations only to find out that
2096 * the duplicated may access does not make any difference.
2098 static __isl_give isl_union_access_info
*isl_union_access_info_normalize(
2099 __isl_take isl_union_access_info
*access
)
2103 access
->may_source
= isl_union_map_subtract(access
->may_source
,
2104 isl_union_map_copy(access
->must_source
));
2105 if (!access
->may_source
)
2106 return isl_union_access_info_free(access
);
2111 /* Given a description of the "sink" accesses, the "source" accesses and
2112 * a schedule, compute for each instance of a sink access
2113 * and for each element accessed by that instance,
2114 * the possible or definite source accesses that last accessed the
2115 * element accessed by the sink access before this sink access
2116 * in the sense that there is no intermediate definite source access.
2118 * The must_no_source and may_no_source elements of the result
2119 * are subsets of access->sink. The elements must_dep and may_dep
2120 * map domain elements of access->{may,must)_source to
2121 * domain elements of access->sink.
2123 * This function is used when only the schedule map representation
2126 * We first prepend the schedule dimensions to the domain
2127 * of the accesses so that we can easily compare their relative order.
2128 * Then we consider each sink access individually in compute_flow.
2130 static __isl_give isl_union_flow
*compute_flow_union_map(
2131 __isl_take isl_union_access_info
*access
)
2133 struct isl_compute_flow_data data
;
2135 access
= isl_union_access_info_align_params(access
);
2136 access
= isl_union_access_info_introduce_schedule(access
);
2140 data
.must_source
= access
->must_source
;
2141 data
.may_source
= access
->may_source
;
2143 data
.flow
= isl_union_flow_alloc(isl_union_map_get_space(access
->sink
));
2145 if (isl_union_map_foreach_map(access
->sink
, &compute_flow
, &data
) < 0)
2148 data
.flow
= isl_union_flow_drop_schedule(data
.flow
);
2150 isl_union_access_info_free(access
);
2153 isl_union_access_info_free(access
);
2154 isl_union_flow_free(data
.flow
);
2158 /* A schedule access relation.
2160 * The access relation "access" is of the form [S -> D] -> A,
2161 * where S corresponds to the prefix schedule at "node".
2162 * "must" is only relevant for source accesses and indicates
2163 * whether the access is a must source or a may source.
2165 struct isl_scheduled_access
{
2168 isl_schedule_node
*node
;
2171 /* Data structure for keeping track of individual scheduled sink and source
2172 * accesses when computing dependence analysis based on a schedule tree.
2174 * "n_sink" is the number of used entries in "sink"
2175 * "n_source" is the number of used entries in "source"
2177 * "set_sink", "must" and "node" are only used inside collect_sink_source,
2178 * to keep track of the current node and
2179 * of what extract_sink_source needs to do.
2181 struct isl_compute_flow_schedule_data
{
2182 isl_union_access_info
*access
;
2187 struct isl_scheduled_access
*sink
;
2188 struct isl_scheduled_access
*source
;
2192 isl_schedule_node
*node
;
2195 /* Align the parameters of all sinks with all sources.
2197 * If there are no sinks or no sources, then no alignment is needed.
2199 static void isl_compute_flow_schedule_data_align_params(
2200 struct isl_compute_flow_schedule_data
*data
)
2205 if (data
->n_sink
== 0 || data
->n_source
== 0)
2208 space
= isl_map_get_space(data
->sink
[0].access
);
2210 for (i
= 1; i
< data
->n_sink
; ++i
)
2211 space
= isl_space_align_params(space
,
2212 isl_map_get_space(data
->sink
[i
].access
));
2213 for (i
= 0; i
< data
->n_source
; ++i
)
2214 space
= isl_space_align_params(space
,
2215 isl_map_get_space(data
->source
[i
].access
));
2217 for (i
= 0; i
< data
->n_sink
; ++i
)
2218 data
->sink
[i
].access
=
2219 isl_map_align_params(data
->sink
[i
].access
,
2220 isl_space_copy(space
));
2221 for (i
= 0; i
< data
->n_source
; ++i
)
2222 data
->source
[i
].access
=
2223 isl_map_align_params(data
->source
[i
].access
,
2224 isl_space_copy(space
));
2226 isl_space_free(space
);
2229 /* Free all the memory referenced from "data".
2230 * Do not free "data" itself as it may be allocated on the stack.
2232 static void isl_compute_flow_schedule_data_clear(
2233 struct isl_compute_flow_schedule_data
*data
)
2240 for (i
= 0; i
< data
->n_sink
; ++i
) {
2241 isl_map_free(data
->sink
[i
].access
);
2242 isl_schedule_node_free(data
->sink
[i
].node
);
2245 for (i
= 0; i
< data
->n_source
; ++i
) {
2246 isl_map_free(data
->source
[i
].access
);
2247 isl_schedule_node_free(data
->source
[i
].node
);
2253 /* isl_schedule_foreach_schedule_node_top_down callback for counting
2254 * (an upper bound on) the number of sinks and sources.
2256 * Sinks and sources are only extracted at leaves of the tree,
2257 * so we skip the node if it is not a leaf.
2258 * Otherwise we increment data->n_sink and data->n_source with
2259 * the number of spaces in the sink and source access domains
2260 * that reach this node.
2262 static isl_bool
count_sink_source(__isl_keep isl_schedule_node
*node
,
2265 struct isl_compute_flow_schedule_data
*data
= user
;
2266 isl_union_set
*domain
;
2267 isl_union_map
*umap
;
2268 isl_bool r
= isl_bool_false
;
2270 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2271 return isl_bool_true
;
2273 domain
= isl_schedule_node_get_universe_domain(node
);
2275 umap
= isl_union_map_copy(data
->access
->sink
);
2276 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2277 data
->n_sink
+= isl_union_map_n_map(umap
);
2278 isl_union_map_free(umap
);
2282 umap
= isl_union_map_copy(data
->access
->must_source
);
2283 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2284 data
->n_source
+= isl_union_map_n_map(umap
);
2285 isl_union_map_free(umap
);
2289 umap
= isl_union_map_copy(data
->access
->may_source
);
2290 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2291 data
->n_source
+= isl_union_map_n_map(umap
);
2292 isl_union_map_free(umap
);
2296 isl_union_set_free(domain
);
2301 /* Add a single scheduled sink or source (depending on data->set_sink)
2302 * with scheduled access relation "map", must property data->must and
2303 * schedule node data->node to the list of sinks or sources.
2305 static isl_stat
extract_sink_source(__isl_take isl_map
*map
, void *user
)
2307 struct isl_compute_flow_schedule_data
*data
= user
;
2308 struct isl_scheduled_access
*access
;
2311 access
= data
->sink
+ data
->n_sink
++;
2313 access
= data
->source
+ data
->n_source
++;
2315 access
->access
= map
;
2316 access
->must
= data
->must
;
2317 access
->node
= isl_schedule_node_copy(data
->node
);
2322 /* isl_schedule_foreach_schedule_node_top_down callback for collecting
2323 * individual scheduled source and sink accesses (taking into account
2324 * the domain of the schedule).
2326 * We only collect accesses at the leaves of the schedule tree.
2327 * We prepend the schedule dimensions at the leaf to the iteration
2328 * domains of the source and sink accesses and then extract
2329 * the individual accesses (per space).
2331 * In particular, if the prefix schedule at the node is of the form
2335 * while the access relations are of the form
2339 * then the updated access relations are of the form
2343 * Note that S consists of a single space such that introducing S
2344 * in the access relations does not increase the number of spaces.
2346 static isl_bool
collect_sink_source(__isl_keep isl_schedule_node
*node
,
2349 struct isl_compute_flow_schedule_data
*data
= user
;
2350 isl_union_map
*prefix
;
2351 isl_union_map
*umap
;
2352 isl_bool r
= isl_bool_false
;
2354 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2355 return isl_bool_true
;
2359 prefix
= isl_schedule_node_get_prefix_schedule_relation(node
);
2360 prefix
= isl_union_map_reverse(prefix
);
2361 prefix
= isl_union_map_range_map(prefix
);
2364 umap
= isl_union_map_copy(data
->access
->sink
);
2365 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2366 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2368 isl_union_map_free(umap
);
2372 umap
= isl_union_map_copy(data
->access
->must_source
);
2373 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2374 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2376 isl_union_map_free(umap
);
2380 umap
= isl_union_map_copy(data
->access
->may_source
);
2381 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2382 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2384 isl_union_map_free(umap
);
2386 isl_union_map_free(prefix
);
2391 /* isl_access_info_compute_flow callback for determining whether
2392 * the shared nesting level and the ordering within that level
2393 * for two scheduled accesses for use in compute_single_flow.
2395 * The tokens passed to this function refer to the leaves
2396 * in the schedule tree where the accesses take place.
2398 * If n is the shared number of loops, then we need to return
2399 * "2 * n + 1" if "first" precedes "second" inside the innermost
2400 * shared loop and "2 * n" otherwise.
2402 * The innermost shared ancestor may be the leaves themselves
2403 * if the accesses take place in the same leaf. Otherwise,
2404 * it is either a set node or a sequence node. Only in the case
2405 * of a sequence node do we consider one access to precede the other.
2407 static int before_node(void *first
, void *second
)
2409 isl_schedule_node
*node1
= first
;
2410 isl_schedule_node
*node2
= second
;
2411 isl_schedule_node
*shared
;
2415 shared
= isl_schedule_node_get_shared_ancestor(node1
, node2
);
2419 depth
= isl_schedule_node_get_schedule_depth(shared
);
2420 if (isl_schedule_node_get_type(shared
) == isl_schedule_node_sequence
) {
2423 pos1
= isl_schedule_node_get_ancestor_child_position(node1
,
2425 pos2
= isl_schedule_node_get_ancestor_child_position(node2
,
2427 before
= pos1
< pos2
;
2430 isl_schedule_node_free(shared
);
2432 return 2 * depth
+ before
;
2435 /* Add the scheduled sources from "data" that access
2436 * the same data space as "sink" to "access".
2438 static __isl_give isl_access_info
*add_matching_sources(
2439 __isl_take isl_access_info
*access
, struct isl_scheduled_access
*sink
,
2440 struct isl_compute_flow_schedule_data
*data
)
2445 space
= isl_space_range(isl_map_get_space(sink
->access
));
2446 for (i
= 0; i
< data
->n_source
; ++i
) {
2447 struct isl_scheduled_access
*source
;
2448 isl_space
*source_space
;
2451 source
= &data
->source
[i
];
2452 source_space
= isl_map_get_space(source
->access
);
2453 source_space
= isl_space_range(source_space
);
2454 eq
= isl_space_is_equal(space
, source_space
);
2455 isl_space_free(source_space
);
2462 access
= isl_access_info_add_source(access
,
2463 isl_map_copy(source
->access
), source
->must
, source
->node
);
2466 isl_space_free(space
);
2469 isl_space_free(space
);
2470 isl_access_info_free(access
);
2474 /* Given a scheduled sink access relation "sink", compute the corresponding
2475 * dependences on the sources in "data" and add the computed dependences
2478 * The dependences computed by access_info_compute_flow_core are of the form
2480 * [S -> I] -> [[S' -> I'] -> A]
2482 * The schedule dimensions are projected out by first currying the range,
2485 * [S -> I] -> [S' -> [I' -> A]]
2487 * and then computing the factor range
2491 static __isl_give isl_union_flow
*compute_single_flow(
2492 __isl_take isl_union_flow
*uf
, struct isl_scheduled_access
*sink
,
2493 struct isl_compute_flow_schedule_data
*data
)
2496 isl_access_info
*access
;
2503 access
= isl_access_info_alloc(isl_map_copy(sink
->access
), sink
->node
,
2504 &before_node
, data
->n_source
);
2505 access
= add_matching_sources(access
, sink
, data
);
2507 flow
= access_info_compute_flow_core(access
);
2509 return isl_union_flow_free(uf
);
2511 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 1));
2512 uf
->must_no_source
= isl_union_map_union(uf
->must_no_source
,
2513 isl_union_map_from_map(map
));
2514 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 0));
2515 uf
->may_no_source
= isl_union_map_union(uf
->may_no_source
,
2516 isl_union_map_from_map(map
));
2518 for (i
= 0; i
< flow
->n_source
; ++i
) {
2521 map
= isl_map_range_curry(isl_map_copy(flow
->dep
[i
].map
));
2522 map
= isl_map_factor_range(map
);
2523 dep
= isl_union_map_from_map(map
);
2524 if (flow
->dep
[i
].must
)
2525 uf
->must_dep
= isl_union_map_union(uf
->must_dep
, dep
);
2527 uf
->may_dep
= isl_union_map_union(uf
->may_dep
, dep
);
2530 isl_flow_free(flow
);
2535 /* Given a description of the "sink" accesses, the "source" accesses and
2536 * a schedule, compute for each instance of a sink access
2537 * and for each element accessed by that instance,
2538 * the possible or definite source accesses that last accessed the
2539 * element accessed by the sink access before this sink access
2540 * in the sense that there is no intermediate definite source access.
2541 * Only consider dependences between statement instances that belong
2542 * to the domain of the schedule.
2544 * The must_no_source and may_no_source elements of the result
2545 * are subsets of access->sink. The elements must_dep and may_dep
2546 * map domain elements of access->{may,must)_source to
2547 * domain elements of access->sink.
2549 * This function is used when a schedule tree representation
2552 * We extract the individual scheduled source and sink access relations
2553 * (taking into account the domain of the schedule) and
2554 * then compute dependences for each scheduled sink individually.
2556 static __isl_give isl_union_flow
*compute_flow_schedule(
2557 __isl_take isl_union_access_info
*access
)
2559 struct isl_compute_flow_schedule_data data
= { access
};
2562 isl_union_flow
*flow
;
2564 ctx
= isl_union_access_info_get_ctx(access
);
2568 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
2569 &count_sink_source
, &data
) < 0)
2572 n
= data
.n_sink
+ data
.n_source
;
2573 data
.sink
= isl_calloc_array(ctx
, struct isl_scheduled_access
, n
);
2574 if (n
&& !data
.sink
)
2576 data
.source
= data
.sink
+ data
.n_sink
;
2580 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
2581 &collect_sink_source
, &data
) < 0)
2584 flow
= isl_union_flow_alloc(isl_union_map_get_space(access
->sink
));
2586 isl_compute_flow_schedule_data_align_params(&data
);
2588 for (i
= 0; i
< data
.n_sink
; ++i
)
2589 flow
= compute_single_flow(flow
, &data
.sink
[i
], &data
);
2591 isl_compute_flow_schedule_data_clear(&data
);
2593 isl_union_access_info_free(access
);
2596 isl_union_access_info_free(access
);
2597 isl_compute_flow_schedule_data_clear(&data
);
2601 /* Given a description of the "sink" accesses, the "source" accesses and
2602 * a schedule, compute for each instance of a sink access
2603 * and for each element accessed by that instance,
2604 * the possible or definite source accesses that last accessed the
2605 * element accessed by the sink access before this sink access
2606 * in the sense that there is no intermediate definite source access.
2608 * The must_no_source and may_no_source elements of the result
2609 * are subsets of access->sink. The elements must_dep and may_dep
2610 * map domain elements of access->{may,must)_source to
2611 * domain elements of access->sink.
2613 * We check whether the schedule is available as a schedule tree
2614 * or a schedule map and call the correpsonding function to perform
2617 __isl_give isl_union_flow
*isl_union_access_info_compute_flow(
2618 __isl_take isl_union_access_info
*access
)
2620 access
= isl_union_access_info_normalize(access
);
2623 if (access
->schedule
)
2624 return compute_flow_schedule(access
);
2626 return compute_flow_union_map(access
);
2629 /* Print the information contained in "flow" to "p".
2630 * The information is printed as a YAML document.
2632 __isl_give isl_printer
*isl_printer_print_union_flow(
2633 __isl_take isl_printer
*p
, __isl_keep isl_union_flow
*flow
)
2635 isl_union_map
*umap
;
2638 return isl_printer_free(p
);
2640 p
= isl_printer_yaml_start_mapping(p
);
2641 p
= print_union_map_field(p
, "must_dependence", flow
->must_dep
);
2642 umap
= isl_union_flow_get_may_dependence(flow
);
2643 p
= print_union_map_field(p
, "may_dependence", umap
);
2644 isl_union_map_free(umap
);
2645 p
= print_union_map_field(p
, "must_no_source", flow
->must_no_source
);
2646 umap
= isl_union_flow_get_may_no_source(flow
);
2647 p
= print_union_map_field(p
, "may_no_source", umap
);
2648 isl_union_map_free(umap
);
2649 p
= isl_printer_yaml_end_mapping(p
);
2654 /* Return a string representation of the information in "flow".
2655 * The information is printed in flow format.
2657 __isl_give
char *isl_union_flow_to_str(__isl_keep isl_union_flow
*flow
)
2665 p
= isl_printer_to_str(isl_union_flow_get_ctx(flow
));
2666 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_FLOW
);
2667 p
= isl_printer_print_union_flow(p
, flow
);
2668 s
= isl_printer_get_str(p
);
2669 isl_printer_free(p
);
2674 /* Given a collection of "sink" and "source" accesses,
2675 * compute for each iteration of a sink access
2676 * and for each element accessed by that iteration,
2677 * the source access in the list that last accessed the
2678 * element accessed by the sink access before this sink access.
2679 * Each access is given as a map from the loop iterators
2680 * to the array indices.
2681 * The result is a relations between source and sink
2682 * iterations and a subset of the domain of the sink accesses,
2683 * corresponding to those iterations that access an element
2684 * not previously accessed.
2686 * We collect the inputs in an isl_union_access_info object,
2687 * call isl_union_access_info_compute_flow and extract
2688 * the outputs from the result.
2690 int isl_union_map_compute_flow(__isl_take isl_union_map
*sink
,
2691 __isl_take isl_union_map
*must_source
,
2692 __isl_take isl_union_map
*may_source
,
2693 __isl_take isl_union_map
*schedule
,
2694 __isl_give isl_union_map
**must_dep
, __isl_give isl_union_map
**may_dep
,
2695 __isl_give isl_union_map
**must_no_source
,
2696 __isl_give isl_union_map
**may_no_source
)
2698 isl_union_access_info
*access
;
2699 isl_union_flow
*flow
;
2701 access
= isl_union_access_info_from_sink(sink
);
2702 access
= isl_union_access_info_set_must_source(access
, must_source
);
2703 access
= isl_union_access_info_set_may_source(access
, may_source
);
2704 access
= isl_union_access_info_set_schedule_map(access
, schedule
);
2705 flow
= isl_union_access_info_compute_flow(access
);
2708 *must_dep
= isl_union_flow_get_must_dependence(flow
);
2710 *may_dep
= isl_union_flow_get_non_must_dependence(flow
);
2712 *must_no_source
= isl_union_flow_get_must_no_source(flow
);
2714 *may_no_source
= isl_union_flow_get_non_must_no_source(flow
);
2716 isl_union_flow_free(flow
);
2718 if ((must_dep
&& !*must_dep
) || (may_dep
&& !*may_dep
) ||
2719 (must_no_source
&& !*must_no_source
) ||
2720 (may_no_source
&& !*may_no_source
))
2726 *must_dep
= isl_union_map_free(*must_dep
);
2728 *may_dep
= isl_union_map_free(*may_dep
);
2730 *must_no_source
= isl_union_map_free(*must_no_source
);
2732 *may_no_source
= isl_union_map_free(*may_no_source
);