isl_scheduler.c: update_edge: improve error handling
[isl.git] / isl_tab.c
blob5961106dfd353918b09ac22fcd1c9e398f6834c6
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 #include <isl_ctx_private.h>
13 #include <isl_mat_private.h>
14 #include <isl_vec_private.h>
15 #include "isl_map_private.h"
16 #include "isl_tab.h"
17 #include <isl_seq.h>
18 #include <isl_config.h>
21 * The implementation of tableaus in this file was inspired by Section 8
22 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
23 * prover for program checking".
26 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
27 unsigned n_row, unsigned n_var, unsigned M)
29 int i;
30 struct isl_tab *tab;
31 unsigned off = 2 + M;
33 tab = isl_calloc_type(ctx, struct isl_tab);
34 if (!tab)
35 return NULL;
36 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
37 if (!tab->mat)
38 goto error;
39 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
40 if (n_var && !tab->var)
41 goto error;
42 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
43 if (n_row && !tab->con)
44 goto error;
45 tab->col_var = isl_alloc_array(ctx, int, n_var);
46 if (n_var && !tab->col_var)
47 goto error;
48 tab->row_var = isl_alloc_array(ctx, int, n_row);
49 if (n_row && !tab->row_var)
50 goto error;
51 for (i = 0; i < n_var; ++i) {
52 tab->var[i].index = i;
53 tab->var[i].is_row = 0;
54 tab->var[i].is_nonneg = 0;
55 tab->var[i].is_zero = 0;
56 tab->var[i].is_redundant = 0;
57 tab->var[i].frozen = 0;
58 tab->var[i].negated = 0;
59 tab->col_var[i] = i;
61 tab->n_row = 0;
62 tab->n_con = 0;
63 tab->n_eq = 0;
64 tab->max_con = n_row;
65 tab->n_col = n_var;
66 tab->n_var = n_var;
67 tab->max_var = n_var;
68 tab->n_param = 0;
69 tab->n_div = 0;
70 tab->n_dead = 0;
71 tab->n_redundant = 0;
72 tab->strict_redundant = 0;
73 tab->need_undo = 0;
74 tab->rational = 0;
75 tab->empty = 0;
76 tab->in_undo = 0;
77 tab->M = M;
78 tab->cone = 0;
79 tab->bottom.type = isl_tab_undo_bottom;
80 tab->bottom.next = NULL;
81 tab->top = &tab->bottom;
83 tab->n_zero = 0;
84 tab->n_unbounded = 0;
85 tab->basis = NULL;
87 return tab;
88 error:
89 isl_tab_free(tab);
90 return NULL;
93 isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
95 return tab ? isl_mat_get_ctx(tab->mat) : NULL;
98 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
100 unsigned off;
102 if (!tab)
103 return -1;
105 off = 2 + tab->M;
107 if (tab->max_con < tab->n_con + n_new) {
108 struct isl_tab_var *con;
110 con = isl_realloc_array(tab->mat->ctx, tab->con,
111 struct isl_tab_var, tab->max_con + n_new);
112 if (!con)
113 return -1;
114 tab->con = con;
115 tab->max_con += n_new;
117 if (tab->mat->n_row < tab->n_row + n_new) {
118 int *row_var;
120 tab->mat = isl_mat_extend(tab->mat,
121 tab->n_row + n_new, off + tab->n_col);
122 if (!tab->mat)
123 return -1;
124 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
125 int, tab->mat->n_row);
126 if (!row_var)
127 return -1;
128 tab->row_var = row_var;
129 if (tab->row_sign) {
130 enum isl_tab_row_sign *s;
131 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
132 enum isl_tab_row_sign, tab->mat->n_row);
133 if (!s)
134 return -1;
135 tab->row_sign = s;
138 return 0;
141 /* Make room for at least n_new extra variables.
142 * Return -1 if anything went wrong.
144 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
146 struct isl_tab_var *var;
147 unsigned off = 2 + tab->M;
149 if (tab->max_var < tab->n_var + n_new) {
150 var = isl_realloc_array(tab->mat->ctx, tab->var,
151 struct isl_tab_var, tab->n_var + n_new);
152 if (!var)
153 return -1;
154 tab->var = var;
155 tab->max_var = tab->n_var + n_new;
158 if (tab->mat->n_col < off + tab->n_col + n_new) {
159 int *p;
161 tab->mat = isl_mat_extend(tab->mat,
162 tab->mat->n_row, off + tab->n_col + n_new);
163 if (!tab->mat)
164 return -1;
165 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
166 int, tab->n_col + n_new);
167 if (!p)
168 return -1;
169 tab->col_var = p;
172 return 0;
175 static void free_undo_record(struct isl_tab_undo *undo)
177 switch (undo->type) {
178 case isl_tab_undo_saved_basis:
179 free(undo->u.col_var);
180 break;
181 default:;
183 free(undo);
186 static void free_undo(struct isl_tab *tab)
188 struct isl_tab_undo *undo, *next;
190 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
191 next = undo->next;
192 free_undo_record(undo);
194 tab->top = undo;
197 void isl_tab_free(struct isl_tab *tab)
199 if (!tab)
200 return;
201 free_undo(tab);
202 isl_mat_free(tab->mat);
203 isl_vec_free(tab->dual);
204 isl_basic_map_free(tab->bmap);
205 free(tab->var);
206 free(tab->con);
207 free(tab->row_var);
208 free(tab->col_var);
209 free(tab->row_sign);
210 isl_mat_free(tab->samples);
211 free(tab->sample_index);
212 isl_mat_free(tab->basis);
213 free(tab);
216 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
218 int i;
219 struct isl_tab *dup;
220 unsigned off;
222 if (!tab)
223 return NULL;
225 off = 2 + tab->M;
226 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
227 if (!dup)
228 return NULL;
229 dup->mat = isl_mat_dup(tab->mat);
230 if (!dup->mat)
231 goto error;
232 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
233 if (tab->max_var && !dup->var)
234 goto error;
235 for (i = 0; i < tab->n_var; ++i)
236 dup->var[i] = tab->var[i];
237 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
238 if (tab->max_con && !dup->con)
239 goto error;
240 for (i = 0; i < tab->n_con; ++i)
241 dup->con[i] = tab->con[i];
242 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
243 if ((tab->mat->n_col - off) && !dup->col_var)
244 goto error;
245 for (i = 0; i < tab->n_col; ++i)
246 dup->col_var[i] = tab->col_var[i];
247 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
248 if (tab->mat->n_row && !dup->row_var)
249 goto error;
250 for (i = 0; i < tab->n_row; ++i)
251 dup->row_var[i] = tab->row_var[i];
252 if (tab->row_sign) {
253 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
254 tab->mat->n_row);
255 if (tab->mat->n_row && !dup->row_sign)
256 goto error;
257 for (i = 0; i < tab->n_row; ++i)
258 dup->row_sign[i] = tab->row_sign[i];
260 if (tab->samples) {
261 dup->samples = isl_mat_dup(tab->samples);
262 if (!dup->samples)
263 goto error;
264 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
265 tab->samples->n_row);
266 if (tab->samples->n_row && !dup->sample_index)
267 goto error;
268 dup->n_sample = tab->n_sample;
269 dup->n_outside = tab->n_outside;
271 dup->n_row = tab->n_row;
272 dup->n_con = tab->n_con;
273 dup->n_eq = tab->n_eq;
274 dup->max_con = tab->max_con;
275 dup->n_col = tab->n_col;
276 dup->n_var = tab->n_var;
277 dup->max_var = tab->max_var;
278 dup->n_param = tab->n_param;
279 dup->n_div = tab->n_div;
280 dup->n_dead = tab->n_dead;
281 dup->n_redundant = tab->n_redundant;
282 dup->rational = tab->rational;
283 dup->empty = tab->empty;
284 dup->strict_redundant = 0;
285 dup->need_undo = 0;
286 dup->in_undo = 0;
287 dup->M = tab->M;
288 tab->cone = tab->cone;
289 dup->bottom.type = isl_tab_undo_bottom;
290 dup->bottom.next = NULL;
291 dup->top = &dup->bottom;
293 dup->n_zero = tab->n_zero;
294 dup->n_unbounded = tab->n_unbounded;
295 dup->basis = isl_mat_dup(tab->basis);
297 return dup;
298 error:
299 isl_tab_free(dup);
300 return NULL;
303 /* Construct the coefficient matrix of the product tableau
304 * of two tableaus.
305 * mat{1,2} is the coefficient matrix of tableau {1,2}
306 * row{1,2} is the number of rows in tableau {1,2}
307 * col{1,2} is the number of columns in tableau {1,2}
308 * off is the offset to the coefficient column (skipping the
309 * denominator, the constant term and the big parameter if any)
310 * r{1,2} is the number of redundant rows in tableau {1,2}
311 * d{1,2} is the number of dead columns in tableau {1,2}
313 * The order of the rows and columns in the result is as explained
314 * in isl_tab_product.
316 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
317 struct isl_mat *mat2, unsigned row1, unsigned row2,
318 unsigned col1, unsigned col2,
319 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
321 int i;
322 struct isl_mat *prod;
323 unsigned n;
325 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
326 off + col1 + col2);
327 if (!prod)
328 return NULL;
330 n = 0;
331 for (i = 0; i < r1; ++i) {
332 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
333 isl_seq_clr(prod->row[n + i] + off + d1, d2);
334 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
335 mat1->row[i] + off + d1, col1 - d1);
336 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
339 n += r1;
340 for (i = 0; i < r2; ++i) {
341 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
342 isl_seq_clr(prod->row[n + i] + off, d1);
343 isl_seq_cpy(prod->row[n + i] + off + d1,
344 mat2->row[i] + off, d2);
345 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
346 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
347 mat2->row[i] + off + d2, col2 - d2);
350 n += r2;
351 for (i = 0; i < row1 - r1; ++i) {
352 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
353 isl_seq_clr(prod->row[n + i] + off + d1, d2);
354 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
355 mat1->row[r1 + i] + off + d1, col1 - d1);
356 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
359 n += row1 - r1;
360 for (i = 0; i < row2 - r2; ++i) {
361 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
362 isl_seq_clr(prod->row[n + i] + off, d1);
363 isl_seq_cpy(prod->row[n + i] + off + d1,
364 mat2->row[r2 + i] + off, d2);
365 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
366 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
367 mat2->row[r2 + i] + off + d2, col2 - d2);
370 return prod;
373 /* Update the row or column index of a variable that corresponds
374 * to a variable in the first input tableau.
376 static void update_index1(struct isl_tab_var *var,
377 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
379 if (var->index == -1)
380 return;
381 if (var->is_row && var->index >= r1)
382 var->index += r2;
383 if (!var->is_row && var->index >= d1)
384 var->index += d2;
387 /* Update the row or column index of a variable that corresponds
388 * to a variable in the second input tableau.
390 static void update_index2(struct isl_tab_var *var,
391 unsigned row1, unsigned col1,
392 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
394 if (var->index == -1)
395 return;
396 if (var->is_row) {
397 if (var->index < r2)
398 var->index += r1;
399 else
400 var->index += row1;
401 } else {
402 if (var->index < d2)
403 var->index += d1;
404 else
405 var->index += col1;
409 /* Create a tableau that represents the Cartesian product of the sets
410 * represented by tableaus tab1 and tab2.
411 * The order of the rows in the product is
412 * - redundant rows of tab1
413 * - redundant rows of tab2
414 * - non-redundant rows of tab1
415 * - non-redundant rows of tab2
416 * The order of the columns is
417 * - denominator
418 * - constant term
419 * - coefficient of big parameter, if any
420 * - dead columns of tab1
421 * - dead columns of tab2
422 * - live columns of tab1
423 * - live columns of tab2
424 * The order of the variables and the constraints is a concatenation
425 * of order in the two input tableaus.
427 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
429 int i;
430 struct isl_tab *prod;
431 unsigned off;
432 unsigned r1, r2, d1, d2;
434 if (!tab1 || !tab2)
435 return NULL;
437 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
438 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
439 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
440 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
441 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
442 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
443 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
444 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
445 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
447 off = 2 + tab1->M;
448 r1 = tab1->n_redundant;
449 r2 = tab2->n_redundant;
450 d1 = tab1->n_dead;
451 d2 = tab2->n_dead;
452 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
453 if (!prod)
454 return NULL;
455 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
456 tab1->n_row, tab2->n_row,
457 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
458 if (!prod->mat)
459 goto error;
460 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
461 tab1->max_var + tab2->max_var);
462 if ((tab1->max_var + tab2->max_var) && !prod->var)
463 goto error;
464 for (i = 0; i < tab1->n_var; ++i) {
465 prod->var[i] = tab1->var[i];
466 update_index1(&prod->var[i], r1, r2, d1, d2);
468 for (i = 0; i < tab2->n_var; ++i) {
469 prod->var[tab1->n_var + i] = tab2->var[i];
470 update_index2(&prod->var[tab1->n_var + i],
471 tab1->n_row, tab1->n_col,
472 r1, r2, d1, d2);
474 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
475 tab1->max_con + tab2->max_con);
476 if ((tab1->max_con + tab2->max_con) && !prod->con)
477 goto error;
478 for (i = 0; i < tab1->n_con; ++i) {
479 prod->con[i] = tab1->con[i];
480 update_index1(&prod->con[i], r1, r2, d1, d2);
482 for (i = 0; i < tab2->n_con; ++i) {
483 prod->con[tab1->n_con + i] = tab2->con[i];
484 update_index2(&prod->con[tab1->n_con + i],
485 tab1->n_row, tab1->n_col,
486 r1, r2, d1, d2);
488 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
489 tab1->n_col + tab2->n_col);
490 if ((tab1->n_col + tab2->n_col) && !prod->col_var)
491 goto error;
492 for (i = 0; i < tab1->n_col; ++i) {
493 int pos = i < d1 ? i : i + d2;
494 prod->col_var[pos] = tab1->col_var[i];
496 for (i = 0; i < tab2->n_col; ++i) {
497 int pos = i < d2 ? d1 + i : tab1->n_col + i;
498 int t = tab2->col_var[i];
499 if (t >= 0)
500 t += tab1->n_var;
501 else
502 t -= tab1->n_con;
503 prod->col_var[pos] = t;
505 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
506 tab1->mat->n_row + tab2->mat->n_row);
507 if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
508 goto error;
509 for (i = 0; i < tab1->n_row; ++i) {
510 int pos = i < r1 ? i : i + r2;
511 prod->row_var[pos] = tab1->row_var[i];
513 for (i = 0; i < tab2->n_row; ++i) {
514 int pos = i < r2 ? r1 + i : tab1->n_row + i;
515 int t = tab2->row_var[i];
516 if (t >= 0)
517 t += tab1->n_var;
518 else
519 t -= tab1->n_con;
520 prod->row_var[pos] = t;
522 prod->samples = NULL;
523 prod->sample_index = NULL;
524 prod->n_row = tab1->n_row + tab2->n_row;
525 prod->n_con = tab1->n_con + tab2->n_con;
526 prod->n_eq = 0;
527 prod->max_con = tab1->max_con + tab2->max_con;
528 prod->n_col = tab1->n_col + tab2->n_col;
529 prod->n_var = tab1->n_var + tab2->n_var;
530 prod->max_var = tab1->max_var + tab2->max_var;
531 prod->n_param = 0;
532 prod->n_div = 0;
533 prod->n_dead = tab1->n_dead + tab2->n_dead;
534 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
535 prod->rational = tab1->rational;
536 prod->empty = tab1->empty || tab2->empty;
537 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
538 prod->need_undo = 0;
539 prod->in_undo = 0;
540 prod->M = tab1->M;
541 prod->cone = tab1->cone;
542 prod->bottom.type = isl_tab_undo_bottom;
543 prod->bottom.next = NULL;
544 prod->top = &prod->bottom;
546 prod->n_zero = 0;
547 prod->n_unbounded = 0;
548 prod->basis = NULL;
550 return prod;
551 error:
552 isl_tab_free(prod);
553 return NULL;
556 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
558 if (i >= 0)
559 return &tab->var[i];
560 else
561 return &tab->con[~i];
564 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
566 return var_from_index(tab, tab->row_var[i]);
569 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
571 return var_from_index(tab, tab->col_var[i]);
574 /* Check if there are any upper bounds on column variable "var",
575 * i.e., non-negative rows where var appears with a negative coefficient.
576 * Return 1 if there are no such bounds.
578 static int max_is_manifestly_unbounded(struct isl_tab *tab,
579 struct isl_tab_var *var)
581 int i;
582 unsigned off = 2 + tab->M;
584 if (var->is_row)
585 return 0;
586 for (i = tab->n_redundant; i < tab->n_row; ++i) {
587 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
588 continue;
589 if (isl_tab_var_from_row(tab, i)->is_nonneg)
590 return 0;
592 return 1;
595 /* Check if there are any lower bounds on column variable "var",
596 * i.e., non-negative rows where var appears with a positive coefficient.
597 * Return 1 if there are no such bounds.
599 static int min_is_manifestly_unbounded(struct isl_tab *tab,
600 struct isl_tab_var *var)
602 int i;
603 unsigned off = 2 + tab->M;
605 if (var->is_row)
606 return 0;
607 for (i = tab->n_redundant; i < tab->n_row; ++i) {
608 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
609 continue;
610 if (isl_tab_var_from_row(tab, i)->is_nonneg)
611 return 0;
613 return 1;
616 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
618 unsigned off = 2 + tab->M;
620 if (tab->M) {
621 int s;
622 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
623 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
624 s = isl_int_sgn(t);
625 if (s)
626 return s;
628 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
629 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
630 return isl_int_sgn(t);
633 /* Given the index of a column "c", return the index of a row
634 * that can be used to pivot the column in, with either an increase
635 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
636 * If "var" is not NULL, then the row returned will be different from
637 * the one associated with "var".
639 * Each row in the tableau is of the form
641 * x_r = a_r0 + \sum_i a_ri x_i
643 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
644 * impose any limit on the increase or decrease in the value of x_c
645 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
646 * for the row with the smallest (most stringent) such bound.
647 * Note that the common denominator of each row drops out of the fraction.
648 * To check if row j has a smaller bound than row r, i.e.,
649 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
650 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
651 * where -sign(a_jc) is equal to "sgn".
653 static int pivot_row(struct isl_tab *tab,
654 struct isl_tab_var *var, int sgn, int c)
656 int j, r, tsgn;
657 isl_int t;
658 unsigned off = 2 + tab->M;
660 isl_int_init(t);
661 r = -1;
662 for (j = tab->n_redundant; j < tab->n_row; ++j) {
663 if (var && j == var->index)
664 continue;
665 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
666 continue;
667 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
668 continue;
669 if (r < 0) {
670 r = j;
671 continue;
673 tsgn = sgn * row_cmp(tab, r, j, c, t);
674 if (tsgn < 0 || (tsgn == 0 &&
675 tab->row_var[j] < tab->row_var[r]))
676 r = j;
678 isl_int_clear(t);
679 return r;
682 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
683 * (sgn < 0) the value of row variable var.
684 * If not NULL, then skip_var is a row variable that should be ignored
685 * while looking for a pivot row. It is usually equal to var.
687 * As the given row in the tableau is of the form
689 * x_r = a_r0 + \sum_i a_ri x_i
691 * we need to find a column such that the sign of a_ri is equal to "sgn"
692 * (such that an increase in x_i will have the desired effect) or a
693 * column with a variable that may attain negative values.
694 * If a_ri is positive, then we need to move x_i in the same direction
695 * to obtain the desired effect. Otherwise, x_i has to move in the
696 * opposite direction.
698 static void find_pivot(struct isl_tab *tab,
699 struct isl_tab_var *var, struct isl_tab_var *skip_var,
700 int sgn, int *row, int *col)
702 int j, r, c;
703 isl_int *tr;
705 *row = *col = -1;
707 isl_assert(tab->mat->ctx, var->is_row, return);
708 tr = tab->mat->row[var->index] + 2 + tab->M;
710 c = -1;
711 for (j = tab->n_dead; j < tab->n_col; ++j) {
712 if (isl_int_is_zero(tr[j]))
713 continue;
714 if (isl_int_sgn(tr[j]) != sgn &&
715 var_from_col(tab, j)->is_nonneg)
716 continue;
717 if (c < 0 || tab->col_var[j] < tab->col_var[c])
718 c = j;
720 if (c < 0)
721 return;
723 sgn *= isl_int_sgn(tr[c]);
724 r = pivot_row(tab, skip_var, sgn, c);
725 *row = r < 0 ? var->index : r;
726 *col = c;
729 /* Return 1 if row "row" represents an obviously redundant inequality.
730 * This means
731 * - it represents an inequality or a variable
732 * - that is the sum of a non-negative sample value and a positive
733 * combination of zero or more non-negative constraints.
735 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
737 int i;
738 unsigned off = 2 + tab->M;
740 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
741 return 0;
743 if (isl_int_is_neg(tab->mat->row[row][1]))
744 return 0;
745 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
746 return 0;
747 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
748 return 0;
750 for (i = tab->n_dead; i < tab->n_col; ++i) {
751 if (isl_int_is_zero(tab->mat->row[row][off + i]))
752 continue;
753 if (tab->col_var[i] >= 0)
754 return 0;
755 if (isl_int_is_neg(tab->mat->row[row][off + i]))
756 return 0;
757 if (!var_from_col(tab, i)->is_nonneg)
758 return 0;
760 return 1;
763 static void swap_rows(struct isl_tab *tab, int row1, int row2)
765 int t;
766 enum isl_tab_row_sign s;
768 t = tab->row_var[row1];
769 tab->row_var[row1] = tab->row_var[row2];
770 tab->row_var[row2] = t;
771 isl_tab_var_from_row(tab, row1)->index = row1;
772 isl_tab_var_from_row(tab, row2)->index = row2;
773 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
775 if (!tab->row_sign)
776 return;
777 s = tab->row_sign[row1];
778 tab->row_sign[row1] = tab->row_sign[row2];
779 tab->row_sign[row2] = s;
782 static int push_union(struct isl_tab *tab,
783 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
784 static int push_union(struct isl_tab *tab,
785 enum isl_tab_undo_type type, union isl_tab_undo_val u)
787 struct isl_tab_undo *undo;
789 if (!tab)
790 return -1;
791 if (!tab->need_undo)
792 return 0;
794 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
795 if (!undo)
796 return -1;
797 undo->type = type;
798 undo->u = u;
799 undo->next = tab->top;
800 tab->top = undo;
802 return 0;
805 int isl_tab_push_var(struct isl_tab *tab,
806 enum isl_tab_undo_type type, struct isl_tab_var *var)
808 union isl_tab_undo_val u;
809 if (var->is_row)
810 u.var_index = tab->row_var[var->index];
811 else
812 u.var_index = tab->col_var[var->index];
813 return push_union(tab, type, u);
816 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
818 union isl_tab_undo_val u = { 0 };
819 return push_union(tab, type, u);
822 /* Push a record on the undo stack describing the current basic
823 * variables, so that the this state can be restored during rollback.
825 int isl_tab_push_basis(struct isl_tab *tab)
827 int i;
828 union isl_tab_undo_val u;
830 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
831 if (tab->n_col && !u.col_var)
832 return -1;
833 for (i = 0; i < tab->n_col; ++i)
834 u.col_var[i] = tab->col_var[i];
835 return push_union(tab, isl_tab_undo_saved_basis, u);
838 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
840 union isl_tab_undo_val u;
841 u.callback = callback;
842 return push_union(tab, isl_tab_undo_callback, u);
845 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
847 if (!tab)
848 return NULL;
850 tab->n_sample = 0;
851 tab->n_outside = 0;
852 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
853 if (!tab->samples)
854 goto error;
855 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
856 if (!tab->sample_index)
857 goto error;
858 return tab;
859 error:
860 isl_tab_free(tab);
861 return NULL;
864 int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
866 if (!tab || !sample)
867 goto error;
869 if (tab->n_sample + 1 > tab->samples->n_row) {
870 int *t = isl_realloc_array(tab->mat->ctx,
871 tab->sample_index, int, tab->n_sample + 1);
872 if (!t)
873 goto error;
874 tab->sample_index = t;
877 tab->samples = isl_mat_extend(tab->samples,
878 tab->n_sample + 1, tab->samples->n_col);
879 if (!tab->samples)
880 goto error;
882 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
883 isl_vec_free(sample);
884 tab->sample_index[tab->n_sample] = tab->n_sample;
885 tab->n_sample++;
887 return 0;
888 error:
889 isl_vec_free(sample);
890 return -1;
893 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
895 if (s != tab->n_outside) {
896 int t = tab->sample_index[tab->n_outside];
897 tab->sample_index[tab->n_outside] = tab->sample_index[s];
898 tab->sample_index[s] = t;
899 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
901 tab->n_outside++;
902 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
903 isl_tab_free(tab);
904 return NULL;
907 return tab;
910 /* Record the current number of samples so that we can remove newer
911 * samples during a rollback.
913 int isl_tab_save_samples(struct isl_tab *tab)
915 union isl_tab_undo_val u;
917 if (!tab)
918 return -1;
920 u.n = tab->n_sample;
921 return push_union(tab, isl_tab_undo_saved_samples, u);
924 /* Mark row with index "row" as being redundant.
925 * If we may need to undo the operation or if the row represents
926 * a variable of the original problem, the row is kept,
927 * but no longer considered when looking for a pivot row.
928 * Otherwise, the row is simply removed.
930 * The row may be interchanged with some other row. If it
931 * is interchanged with a later row, return 1. Otherwise return 0.
932 * If the rows are checked in order in the calling function,
933 * then a return value of 1 means that the row with the given
934 * row number may now contain a different row that hasn't been checked yet.
936 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
938 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
939 var->is_redundant = 1;
940 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
941 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
942 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
943 var->is_nonneg = 1;
944 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
945 return -1;
947 if (row != tab->n_redundant)
948 swap_rows(tab, row, tab->n_redundant);
949 tab->n_redundant++;
950 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
951 } else {
952 if (row != tab->n_row - 1)
953 swap_rows(tab, row, tab->n_row - 1);
954 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
955 tab->n_row--;
956 return 1;
960 int isl_tab_mark_empty(struct isl_tab *tab)
962 if (!tab)
963 return -1;
964 if (!tab->empty && tab->need_undo)
965 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
966 return -1;
967 tab->empty = 1;
968 return 0;
971 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
973 struct isl_tab_var *var;
975 if (!tab)
976 return -1;
978 var = &tab->con[con];
979 if (var->frozen)
980 return 0;
981 if (var->index < 0)
982 return 0;
983 var->frozen = 1;
985 if (tab->need_undo)
986 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
988 return 0;
991 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
992 * the original sign of the pivot element.
993 * We only keep track of row signs during PILP solving and in this case
994 * we only pivot a row with negative sign (meaning the value is always
995 * non-positive) using a positive pivot element.
997 * For each row j, the new value of the parametric constant is equal to
999 * a_j0 - a_jc a_r0/a_rc
1001 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1002 * a_r0 is the parametric constant of the pivot row and a_jc is the
1003 * pivot column entry of the row j.
1004 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1005 * remains the same if a_jc has the same sign as the row j or if
1006 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1008 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1010 int i;
1011 struct isl_mat *mat = tab->mat;
1012 unsigned off = 2 + tab->M;
1014 if (!tab->row_sign)
1015 return;
1017 if (tab->row_sign[row] == 0)
1018 return;
1019 isl_assert(mat->ctx, row_sgn > 0, return);
1020 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1021 tab->row_sign[row] = isl_tab_row_pos;
1022 for (i = 0; i < tab->n_row; ++i) {
1023 int s;
1024 if (i == row)
1025 continue;
1026 s = isl_int_sgn(mat->row[i][off + col]);
1027 if (!s)
1028 continue;
1029 if (!tab->row_sign[i])
1030 continue;
1031 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1032 continue;
1033 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1034 continue;
1035 tab->row_sign[i] = isl_tab_row_unknown;
1039 /* Given a row number "row" and a column number "col", pivot the tableau
1040 * such that the associated variables are interchanged.
1041 * The given row in the tableau expresses
1043 * x_r = a_r0 + \sum_i a_ri x_i
1045 * or
1047 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1049 * Substituting this equality into the other rows
1051 * x_j = a_j0 + \sum_i a_ji x_i
1053 * with a_jc \ne 0, we obtain
1055 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1057 * The tableau
1059 * n_rc/d_r n_ri/d_r
1060 * n_jc/d_j n_ji/d_j
1062 * where i is any other column and j is any other row,
1063 * is therefore transformed into
1065 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1066 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1068 * The transformation is performed along the following steps
1070 * d_r/n_rc n_ri/n_rc
1071 * n_jc/d_j n_ji/d_j
1073 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1074 * n_jc/d_j n_ji/d_j
1076 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1077 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1079 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1080 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1082 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1083 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1085 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1086 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1089 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1091 int i, j;
1092 int sgn;
1093 int t;
1094 isl_ctx *ctx;
1095 struct isl_mat *mat = tab->mat;
1096 struct isl_tab_var *var;
1097 unsigned off = 2 + tab->M;
1099 ctx = isl_tab_get_ctx(tab);
1100 if (isl_ctx_next_operation(ctx) < 0)
1101 return -1;
1103 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1104 sgn = isl_int_sgn(mat->row[row][0]);
1105 if (sgn < 0) {
1106 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1107 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1108 } else
1109 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1110 if (j == off - 1 + col)
1111 continue;
1112 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1114 if (!isl_int_is_one(mat->row[row][0]))
1115 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1116 for (i = 0; i < tab->n_row; ++i) {
1117 if (i == row)
1118 continue;
1119 if (isl_int_is_zero(mat->row[i][off + col]))
1120 continue;
1121 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1122 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1123 if (j == off - 1 + col)
1124 continue;
1125 isl_int_mul(mat->row[i][1 + j],
1126 mat->row[i][1 + j], mat->row[row][0]);
1127 isl_int_addmul(mat->row[i][1 + j],
1128 mat->row[i][off + col], mat->row[row][1 + j]);
1130 isl_int_mul(mat->row[i][off + col],
1131 mat->row[i][off + col], mat->row[row][off + col]);
1132 if (!isl_int_is_one(mat->row[i][0]))
1133 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1135 t = tab->row_var[row];
1136 tab->row_var[row] = tab->col_var[col];
1137 tab->col_var[col] = t;
1138 var = isl_tab_var_from_row(tab, row);
1139 var->is_row = 1;
1140 var->index = row;
1141 var = var_from_col(tab, col);
1142 var->is_row = 0;
1143 var->index = col;
1144 update_row_sign(tab, row, col, sgn);
1145 if (tab->in_undo)
1146 return 0;
1147 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1148 if (isl_int_is_zero(mat->row[i][off + col]))
1149 continue;
1150 if (!isl_tab_var_from_row(tab, i)->frozen &&
1151 isl_tab_row_is_redundant(tab, i)) {
1152 int redo = isl_tab_mark_redundant(tab, i);
1153 if (redo < 0)
1154 return -1;
1155 if (redo)
1156 --i;
1159 return 0;
1162 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1163 * or down (sgn < 0) to a row. The variable is assumed not to be
1164 * unbounded in the specified direction.
1165 * If sgn = 0, then the variable is unbounded in both directions,
1166 * and we pivot with any row we can find.
1168 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1169 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1171 int r;
1172 unsigned off = 2 + tab->M;
1174 if (var->is_row)
1175 return 0;
1177 if (sign == 0) {
1178 for (r = tab->n_redundant; r < tab->n_row; ++r)
1179 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1180 break;
1181 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1182 } else {
1183 r = pivot_row(tab, NULL, sign, var->index);
1184 isl_assert(tab->mat->ctx, r >= 0, return -1);
1187 return isl_tab_pivot(tab, r, var->index);
1190 /* Check whether all variables that are marked as non-negative
1191 * also have a non-negative sample value. This function is not
1192 * called from the current code but is useful during debugging.
1194 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1195 static void check_table(struct isl_tab *tab)
1197 int i;
1199 if (tab->empty)
1200 return;
1201 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1202 struct isl_tab_var *var;
1203 var = isl_tab_var_from_row(tab, i);
1204 if (!var->is_nonneg)
1205 continue;
1206 if (tab->M) {
1207 isl_assert(tab->mat->ctx,
1208 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1209 if (isl_int_is_pos(tab->mat->row[i][2]))
1210 continue;
1212 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1213 abort());
1217 /* Return the sign of the maximal value of "var".
1218 * If the sign is not negative, then on return from this function,
1219 * the sample value will also be non-negative.
1221 * If "var" is manifestly unbounded wrt positive values, we are done.
1222 * Otherwise, we pivot the variable up to a row if needed
1223 * Then we continue pivoting down until either
1224 * - no more down pivots can be performed
1225 * - the sample value is positive
1226 * - the variable is pivoted into a manifestly unbounded column
1228 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1230 int row, col;
1232 if (max_is_manifestly_unbounded(tab, var))
1233 return 1;
1234 if (to_row(tab, var, 1) < 0)
1235 return -2;
1236 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1237 find_pivot(tab, var, var, 1, &row, &col);
1238 if (row == -1)
1239 return isl_int_sgn(tab->mat->row[var->index][1]);
1240 if (isl_tab_pivot(tab, row, col) < 0)
1241 return -2;
1242 if (!var->is_row) /* manifestly unbounded */
1243 return 1;
1245 return 1;
1248 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1250 struct isl_tab_var *var;
1252 if (!tab)
1253 return -2;
1255 var = &tab->con[con];
1256 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1257 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1259 return sign_of_max(tab, var);
1262 static int row_is_neg(struct isl_tab *tab, int row)
1264 if (!tab->M)
1265 return isl_int_is_neg(tab->mat->row[row][1]);
1266 if (isl_int_is_pos(tab->mat->row[row][2]))
1267 return 0;
1268 if (isl_int_is_neg(tab->mat->row[row][2]))
1269 return 1;
1270 return isl_int_is_neg(tab->mat->row[row][1]);
1273 static int row_sgn(struct isl_tab *tab, int row)
1275 if (!tab->M)
1276 return isl_int_sgn(tab->mat->row[row][1]);
1277 if (!isl_int_is_zero(tab->mat->row[row][2]))
1278 return isl_int_sgn(tab->mat->row[row][2]);
1279 else
1280 return isl_int_sgn(tab->mat->row[row][1]);
1283 /* Perform pivots until the row variable "var" has a non-negative
1284 * sample value or until no more upward pivots can be performed.
1285 * Return the sign of the sample value after the pivots have been
1286 * performed.
1288 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1290 int row, col;
1292 while (row_is_neg(tab, var->index)) {
1293 find_pivot(tab, var, var, 1, &row, &col);
1294 if (row == -1)
1295 break;
1296 if (isl_tab_pivot(tab, row, col) < 0)
1297 return -2;
1298 if (!var->is_row) /* manifestly unbounded */
1299 return 1;
1301 return row_sgn(tab, var->index);
1304 /* Perform pivots until we are sure that the row variable "var"
1305 * can attain non-negative values. After return from this
1306 * function, "var" is still a row variable, but its sample
1307 * value may not be non-negative, even if the function returns 1.
1309 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1311 int row, col;
1313 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1314 find_pivot(tab, var, var, 1, &row, &col);
1315 if (row == -1)
1316 break;
1317 if (row == var->index) /* manifestly unbounded */
1318 return 1;
1319 if (isl_tab_pivot(tab, row, col) < 0)
1320 return -1;
1322 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1325 /* Return a negative value if "var" can attain negative values.
1326 * Return a non-negative value otherwise.
1328 * If "var" is manifestly unbounded wrt negative values, we are done.
1329 * Otherwise, if var is in a column, we can pivot it down to a row.
1330 * Then we continue pivoting down until either
1331 * - the pivot would result in a manifestly unbounded column
1332 * => we don't perform the pivot, but simply return -1
1333 * - no more down pivots can be performed
1334 * - the sample value is negative
1335 * If the sample value becomes negative and the variable is supposed
1336 * to be nonnegative, then we undo the last pivot.
1337 * However, if the last pivot has made the pivoting variable
1338 * obviously redundant, then it may have moved to another row.
1339 * In that case we look for upward pivots until we reach a non-negative
1340 * value again.
1342 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1344 int row, col;
1345 struct isl_tab_var *pivot_var = NULL;
1347 if (min_is_manifestly_unbounded(tab, var))
1348 return -1;
1349 if (!var->is_row) {
1350 col = var->index;
1351 row = pivot_row(tab, NULL, -1, col);
1352 pivot_var = var_from_col(tab, col);
1353 if (isl_tab_pivot(tab, row, col) < 0)
1354 return -2;
1355 if (var->is_redundant)
1356 return 0;
1357 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1358 if (var->is_nonneg) {
1359 if (!pivot_var->is_redundant &&
1360 pivot_var->index == row) {
1361 if (isl_tab_pivot(tab, row, col) < 0)
1362 return -2;
1363 } else
1364 if (restore_row(tab, var) < -1)
1365 return -2;
1367 return -1;
1370 if (var->is_redundant)
1371 return 0;
1372 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1373 find_pivot(tab, var, var, -1, &row, &col);
1374 if (row == var->index)
1375 return -1;
1376 if (row == -1)
1377 return isl_int_sgn(tab->mat->row[var->index][1]);
1378 pivot_var = var_from_col(tab, col);
1379 if (isl_tab_pivot(tab, row, col) < 0)
1380 return -2;
1381 if (var->is_redundant)
1382 return 0;
1384 if (pivot_var && var->is_nonneg) {
1385 /* pivot back to non-negative value */
1386 if (!pivot_var->is_redundant && pivot_var->index == row) {
1387 if (isl_tab_pivot(tab, row, col) < 0)
1388 return -2;
1389 } else
1390 if (restore_row(tab, var) < -1)
1391 return -2;
1393 return -1;
1396 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1398 if (tab->M) {
1399 if (isl_int_is_pos(tab->mat->row[row][2]))
1400 return 0;
1401 if (isl_int_is_neg(tab->mat->row[row][2]))
1402 return 1;
1404 return isl_int_is_neg(tab->mat->row[row][1]) &&
1405 isl_int_abs_ge(tab->mat->row[row][1],
1406 tab->mat->row[row][0]);
1409 /* Return 1 if "var" can attain values <= -1.
1410 * Return 0 otherwise.
1412 * The sample value of "var" is assumed to be non-negative when the
1413 * the function is called. If 1 is returned then the constraint
1414 * is not redundant and the sample value is made non-negative again before
1415 * the function returns.
1417 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1419 int row, col;
1420 struct isl_tab_var *pivot_var;
1422 if (min_is_manifestly_unbounded(tab, var))
1423 return 1;
1424 if (!var->is_row) {
1425 col = var->index;
1426 row = pivot_row(tab, NULL, -1, col);
1427 pivot_var = var_from_col(tab, col);
1428 if (isl_tab_pivot(tab, row, col) < 0)
1429 return -1;
1430 if (var->is_redundant)
1431 return 0;
1432 if (row_at_most_neg_one(tab, var->index)) {
1433 if (var->is_nonneg) {
1434 if (!pivot_var->is_redundant &&
1435 pivot_var->index == row) {
1436 if (isl_tab_pivot(tab, row, col) < 0)
1437 return -1;
1438 } else
1439 if (restore_row(tab, var) < -1)
1440 return -1;
1442 return 1;
1445 if (var->is_redundant)
1446 return 0;
1447 do {
1448 find_pivot(tab, var, var, -1, &row, &col);
1449 if (row == var->index) {
1450 if (restore_row(tab, var) < -1)
1451 return -1;
1452 return 1;
1454 if (row == -1)
1455 return 0;
1456 pivot_var = var_from_col(tab, col);
1457 if (isl_tab_pivot(tab, row, col) < 0)
1458 return -1;
1459 if (var->is_redundant)
1460 return 0;
1461 } while (!row_at_most_neg_one(tab, var->index));
1462 if (var->is_nonneg) {
1463 /* pivot back to non-negative value */
1464 if (!pivot_var->is_redundant && pivot_var->index == row)
1465 if (isl_tab_pivot(tab, row, col) < 0)
1466 return -1;
1467 if (restore_row(tab, var) < -1)
1468 return -1;
1470 return 1;
1473 /* Return 1 if "var" can attain values >= 1.
1474 * Return 0 otherwise.
1476 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1478 int row, col;
1479 isl_int *r;
1481 if (max_is_manifestly_unbounded(tab, var))
1482 return 1;
1483 if (to_row(tab, var, 1) < 0)
1484 return -1;
1485 r = tab->mat->row[var->index];
1486 while (isl_int_lt(r[1], r[0])) {
1487 find_pivot(tab, var, var, 1, &row, &col);
1488 if (row == -1)
1489 return isl_int_ge(r[1], r[0]);
1490 if (row == var->index) /* manifestly unbounded */
1491 return 1;
1492 if (isl_tab_pivot(tab, row, col) < 0)
1493 return -1;
1495 return 1;
1498 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1500 int t;
1501 unsigned off = 2 + tab->M;
1502 t = tab->col_var[col1];
1503 tab->col_var[col1] = tab->col_var[col2];
1504 tab->col_var[col2] = t;
1505 var_from_col(tab, col1)->index = col1;
1506 var_from_col(tab, col2)->index = col2;
1507 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1510 /* Mark column with index "col" as representing a zero variable.
1511 * If we may need to undo the operation the column is kept,
1512 * but no longer considered.
1513 * Otherwise, the column is simply removed.
1515 * The column may be interchanged with some other column. If it
1516 * is interchanged with a later column, return 1. Otherwise return 0.
1517 * If the columns are checked in order in the calling function,
1518 * then a return value of 1 means that the column with the given
1519 * column number may now contain a different column that
1520 * hasn't been checked yet.
1522 int isl_tab_kill_col(struct isl_tab *tab, int col)
1524 var_from_col(tab, col)->is_zero = 1;
1525 if (tab->need_undo) {
1526 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1527 var_from_col(tab, col)) < 0)
1528 return -1;
1529 if (col != tab->n_dead)
1530 swap_cols(tab, col, tab->n_dead);
1531 tab->n_dead++;
1532 return 0;
1533 } else {
1534 if (col != tab->n_col - 1)
1535 swap_cols(tab, col, tab->n_col - 1);
1536 var_from_col(tab, tab->n_col - 1)->index = -1;
1537 tab->n_col--;
1538 return 1;
1542 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1544 unsigned off = 2 + tab->M;
1546 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1547 tab->mat->row[row][0]))
1548 return 0;
1549 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1550 tab->n_col - tab->n_dead) != -1)
1551 return 0;
1553 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1554 tab->mat->row[row][0]);
1557 /* For integer tableaus, check if any of the coordinates are stuck
1558 * at a non-integral value.
1560 static int tab_is_manifestly_empty(struct isl_tab *tab)
1562 int i;
1564 if (tab->empty)
1565 return 1;
1566 if (tab->rational)
1567 return 0;
1569 for (i = 0; i < tab->n_var; ++i) {
1570 if (!tab->var[i].is_row)
1571 continue;
1572 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1573 return 1;
1576 return 0;
1579 /* Row variable "var" is non-negative and cannot attain any values
1580 * larger than zero. This means that the coefficients of the unrestricted
1581 * column variables are zero and that the coefficients of the non-negative
1582 * column variables are zero or negative.
1583 * Each of the non-negative variables with a negative coefficient can
1584 * then also be written as the negative sum of non-negative variables
1585 * and must therefore also be zero.
1587 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1588 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1590 int j;
1591 struct isl_mat *mat = tab->mat;
1592 unsigned off = 2 + tab->M;
1594 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1595 var->is_zero = 1;
1596 if (tab->need_undo)
1597 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1598 return -1;
1599 for (j = tab->n_dead; j < tab->n_col; ++j) {
1600 int recheck;
1601 if (isl_int_is_zero(mat->row[var->index][off + j]))
1602 continue;
1603 isl_assert(tab->mat->ctx,
1604 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1605 recheck = isl_tab_kill_col(tab, j);
1606 if (recheck < 0)
1607 return -1;
1608 if (recheck)
1609 --j;
1611 if (isl_tab_mark_redundant(tab, var->index) < 0)
1612 return -1;
1613 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1614 return -1;
1615 return 0;
1618 /* Add a constraint to the tableau and allocate a row for it.
1619 * Return the index into the constraint array "con".
1621 int isl_tab_allocate_con(struct isl_tab *tab)
1623 int r;
1625 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1626 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1628 r = tab->n_con;
1629 tab->con[r].index = tab->n_row;
1630 tab->con[r].is_row = 1;
1631 tab->con[r].is_nonneg = 0;
1632 tab->con[r].is_zero = 0;
1633 tab->con[r].is_redundant = 0;
1634 tab->con[r].frozen = 0;
1635 tab->con[r].negated = 0;
1636 tab->row_var[tab->n_row] = ~r;
1638 tab->n_row++;
1639 tab->n_con++;
1640 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1641 return -1;
1643 return r;
1646 /* Add a variable to the tableau and allocate a column for it.
1647 * Return the index into the variable array "var".
1649 int isl_tab_allocate_var(struct isl_tab *tab)
1651 int r;
1652 int i;
1653 unsigned off = 2 + tab->M;
1655 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1656 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1658 r = tab->n_var;
1659 tab->var[r].index = tab->n_col;
1660 tab->var[r].is_row = 0;
1661 tab->var[r].is_nonneg = 0;
1662 tab->var[r].is_zero = 0;
1663 tab->var[r].is_redundant = 0;
1664 tab->var[r].frozen = 0;
1665 tab->var[r].negated = 0;
1666 tab->col_var[tab->n_col] = r;
1668 for (i = 0; i < tab->n_row; ++i)
1669 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1671 tab->n_var++;
1672 tab->n_col++;
1673 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1674 return -1;
1676 return r;
1679 /* Add a row to the tableau. The row is given as an affine combination
1680 * of the original variables and needs to be expressed in terms of the
1681 * column variables.
1683 * We add each term in turn.
1684 * If r = n/d_r is the current sum and we need to add k x, then
1685 * if x is a column variable, we increase the numerator of
1686 * this column by k d_r
1687 * if x = f/d_x is a row variable, then the new representation of r is
1689 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1690 * --- + --- = ------------------- = -------------------
1691 * d_r d_r d_r d_x/g m
1693 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1695 * If tab->M is set, then, internally, each variable x is represented
1696 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1698 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1700 int i;
1701 int r;
1702 isl_int *row;
1703 isl_int a, b;
1704 unsigned off = 2 + tab->M;
1706 r = isl_tab_allocate_con(tab);
1707 if (r < 0)
1708 return -1;
1710 isl_int_init(a);
1711 isl_int_init(b);
1712 row = tab->mat->row[tab->con[r].index];
1713 isl_int_set_si(row[0], 1);
1714 isl_int_set(row[1], line[0]);
1715 isl_seq_clr(row + 2, tab->M + tab->n_col);
1716 for (i = 0; i < tab->n_var; ++i) {
1717 if (tab->var[i].is_zero)
1718 continue;
1719 if (tab->var[i].is_row) {
1720 isl_int_lcm(a,
1721 row[0], tab->mat->row[tab->var[i].index][0]);
1722 isl_int_swap(a, row[0]);
1723 isl_int_divexact(a, row[0], a);
1724 isl_int_divexact(b,
1725 row[0], tab->mat->row[tab->var[i].index][0]);
1726 isl_int_mul(b, b, line[1 + i]);
1727 isl_seq_combine(row + 1, a, row + 1,
1728 b, tab->mat->row[tab->var[i].index] + 1,
1729 1 + tab->M + tab->n_col);
1730 } else
1731 isl_int_addmul(row[off + tab->var[i].index],
1732 line[1 + i], row[0]);
1733 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1734 isl_int_submul(row[2], line[1 + i], row[0]);
1736 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1737 isl_int_clear(a);
1738 isl_int_clear(b);
1740 if (tab->row_sign)
1741 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1743 return r;
1746 static int drop_row(struct isl_tab *tab, int row)
1748 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1749 if (row != tab->n_row - 1)
1750 swap_rows(tab, row, tab->n_row - 1);
1751 tab->n_row--;
1752 tab->n_con--;
1753 return 0;
1756 static int drop_col(struct isl_tab *tab, int col)
1758 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1759 if (col != tab->n_col - 1)
1760 swap_cols(tab, col, tab->n_col - 1);
1761 tab->n_col--;
1762 tab->n_var--;
1763 return 0;
1766 /* Add inequality "ineq" and check if it conflicts with the
1767 * previously added constraints or if it is obviously redundant.
1769 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1771 int r;
1772 int sgn;
1773 isl_int cst;
1775 if (!tab)
1776 return -1;
1777 if (tab->bmap) {
1778 struct isl_basic_map *bmap = tab->bmap;
1780 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1781 isl_assert(tab->mat->ctx,
1782 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1783 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1784 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1785 return -1;
1786 if (!tab->bmap)
1787 return -1;
1789 if (tab->cone) {
1790 isl_int_init(cst);
1791 isl_int_swap(ineq[0], cst);
1793 r = isl_tab_add_row(tab, ineq);
1794 if (tab->cone) {
1795 isl_int_swap(ineq[0], cst);
1796 isl_int_clear(cst);
1798 if (r < 0)
1799 return -1;
1800 tab->con[r].is_nonneg = 1;
1801 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1802 return -1;
1803 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1804 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1805 return -1;
1806 return 0;
1809 sgn = restore_row(tab, &tab->con[r]);
1810 if (sgn < -1)
1811 return -1;
1812 if (sgn < 0)
1813 return isl_tab_mark_empty(tab);
1814 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1815 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1816 return -1;
1817 return 0;
1820 /* Pivot a non-negative variable down until it reaches the value zero
1821 * and then pivot the variable into a column position.
1823 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1824 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1826 int i;
1827 int row, col;
1828 unsigned off = 2 + tab->M;
1830 if (!var->is_row)
1831 return 0;
1833 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1834 find_pivot(tab, var, NULL, -1, &row, &col);
1835 isl_assert(tab->mat->ctx, row != -1, return -1);
1836 if (isl_tab_pivot(tab, row, col) < 0)
1837 return -1;
1838 if (!var->is_row)
1839 return 0;
1842 for (i = tab->n_dead; i < tab->n_col; ++i)
1843 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1844 break;
1846 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1847 if (isl_tab_pivot(tab, var->index, i) < 0)
1848 return -1;
1850 return 0;
1853 /* We assume Gaussian elimination has been performed on the equalities.
1854 * The equalities can therefore never conflict.
1855 * Adding the equalities is currently only really useful for a later call
1856 * to isl_tab_ineq_type.
1858 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1860 int i;
1861 int r;
1863 if (!tab)
1864 return NULL;
1865 r = isl_tab_add_row(tab, eq);
1866 if (r < 0)
1867 goto error;
1869 r = tab->con[r].index;
1870 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1871 tab->n_col - tab->n_dead);
1872 isl_assert(tab->mat->ctx, i >= 0, goto error);
1873 i += tab->n_dead;
1874 if (isl_tab_pivot(tab, r, i) < 0)
1875 goto error;
1876 if (isl_tab_kill_col(tab, i) < 0)
1877 goto error;
1878 tab->n_eq++;
1880 return tab;
1881 error:
1882 isl_tab_free(tab);
1883 return NULL;
1886 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1888 unsigned off = 2 + tab->M;
1890 if (!isl_int_is_zero(tab->mat->row[row][1]))
1891 return 0;
1892 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1893 return 0;
1894 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1895 tab->n_col - tab->n_dead) == -1;
1898 /* Add an equality that is known to be valid for the given tableau.
1900 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1902 struct isl_tab_var *var;
1903 int r;
1905 if (!tab)
1906 return -1;
1907 r = isl_tab_add_row(tab, eq);
1908 if (r < 0)
1909 return -1;
1911 var = &tab->con[r];
1912 r = var->index;
1913 if (row_is_manifestly_zero(tab, r)) {
1914 var->is_zero = 1;
1915 if (isl_tab_mark_redundant(tab, r) < 0)
1916 return -1;
1917 return 0;
1920 if (isl_int_is_neg(tab->mat->row[r][1])) {
1921 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1922 1 + tab->n_col);
1923 var->negated = 1;
1925 var->is_nonneg = 1;
1926 if (to_col(tab, var) < 0)
1927 return -1;
1928 var->is_nonneg = 0;
1929 if (isl_tab_kill_col(tab, var->index) < 0)
1930 return -1;
1932 return 0;
1935 static int add_zero_row(struct isl_tab *tab)
1937 int r;
1938 isl_int *row;
1940 r = isl_tab_allocate_con(tab);
1941 if (r < 0)
1942 return -1;
1944 row = tab->mat->row[tab->con[r].index];
1945 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1946 isl_int_set_si(row[0], 1);
1948 return r;
1951 /* Add equality "eq" and check if it conflicts with the
1952 * previously added constraints or if it is obviously redundant.
1954 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1956 struct isl_tab_undo *snap = NULL;
1957 struct isl_tab_var *var;
1958 int r;
1959 int row;
1960 int sgn;
1961 isl_int cst;
1963 if (!tab)
1964 return -1;
1965 isl_assert(tab->mat->ctx, !tab->M, return -1);
1967 if (tab->need_undo)
1968 snap = isl_tab_snap(tab);
1970 if (tab->cone) {
1971 isl_int_init(cst);
1972 isl_int_swap(eq[0], cst);
1974 r = isl_tab_add_row(tab, eq);
1975 if (tab->cone) {
1976 isl_int_swap(eq[0], cst);
1977 isl_int_clear(cst);
1979 if (r < 0)
1980 return -1;
1982 var = &tab->con[r];
1983 row = var->index;
1984 if (row_is_manifestly_zero(tab, row)) {
1985 if (snap) {
1986 if (isl_tab_rollback(tab, snap) < 0)
1987 return -1;
1988 } else
1989 drop_row(tab, row);
1990 return 0;
1993 if (tab->bmap) {
1994 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1995 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1996 return -1;
1997 isl_seq_neg(eq, eq, 1 + tab->n_var);
1998 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1999 isl_seq_neg(eq, eq, 1 + tab->n_var);
2000 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2001 return -1;
2002 if (!tab->bmap)
2003 return -1;
2004 if (add_zero_row(tab) < 0)
2005 return -1;
2008 sgn = isl_int_sgn(tab->mat->row[row][1]);
2010 if (sgn > 0) {
2011 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2012 1 + tab->n_col);
2013 var->negated = 1;
2014 sgn = -1;
2017 if (sgn < 0) {
2018 sgn = sign_of_max(tab, var);
2019 if (sgn < -1)
2020 return -1;
2021 if (sgn < 0) {
2022 if (isl_tab_mark_empty(tab) < 0)
2023 return -1;
2024 return 0;
2028 var->is_nonneg = 1;
2029 if (to_col(tab, var) < 0)
2030 return -1;
2031 var->is_nonneg = 0;
2032 if (isl_tab_kill_col(tab, var->index) < 0)
2033 return -1;
2035 return 0;
2038 /* Construct and return an inequality that expresses an upper bound
2039 * on the given div.
2040 * In particular, if the div is given by
2042 * d = floor(e/m)
2044 * then the inequality expresses
2046 * m d <= e
2048 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2050 unsigned total;
2051 unsigned div_pos;
2052 struct isl_vec *ineq;
2054 if (!bmap)
2055 return NULL;
2057 total = isl_basic_map_total_dim(bmap);
2058 div_pos = 1 + total - bmap->n_div + div;
2060 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2061 if (!ineq)
2062 return NULL;
2064 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2065 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2066 return ineq;
2069 /* For a div d = floor(f/m), add the constraints
2071 * f - m d >= 0
2072 * -(f-(m-1)) + m d >= 0
2074 * Note that the second constraint is the negation of
2076 * f - m d >= m
2078 * If add_ineq is not NULL, then this function is used
2079 * instead of isl_tab_add_ineq to effectively add the inequalities.
2081 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2082 int (*add_ineq)(void *user, isl_int *), void *user)
2084 unsigned total;
2085 unsigned div_pos;
2086 struct isl_vec *ineq;
2088 total = isl_basic_map_total_dim(tab->bmap);
2089 div_pos = 1 + total - tab->bmap->n_div + div;
2091 ineq = ineq_for_div(tab->bmap, div);
2092 if (!ineq)
2093 goto error;
2095 if (add_ineq) {
2096 if (add_ineq(user, ineq->el) < 0)
2097 goto error;
2098 } else {
2099 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2100 goto error;
2103 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2104 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2105 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2106 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2108 if (add_ineq) {
2109 if (add_ineq(user, ineq->el) < 0)
2110 goto error;
2111 } else {
2112 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2113 goto error;
2116 isl_vec_free(ineq);
2118 return 0;
2119 error:
2120 isl_vec_free(ineq);
2121 return -1;
2124 /* Check whether the div described by "div" is obviously non-negative.
2125 * If we are using a big parameter, then we will encode the div
2126 * as div' = M + div, which is always non-negative.
2127 * Otherwise, we check whether div is a non-negative affine combination
2128 * of non-negative variables.
2130 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2132 int i;
2134 if (tab->M)
2135 return 1;
2137 if (isl_int_is_neg(div->el[1]))
2138 return 0;
2140 for (i = 0; i < tab->n_var; ++i) {
2141 if (isl_int_is_neg(div->el[2 + i]))
2142 return 0;
2143 if (isl_int_is_zero(div->el[2 + i]))
2144 continue;
2145 if (!tab->var[i].is_nonneg)
2146 return 0;
2149 return 1;
2152 /* Add an extra div, prescribed by "div" to the tableau and
2153 * the associated bmap (which is assumed to be non-NULL).
2155 * If add_ineq is not NULL, then this function is used instead
2156 * of isl_tab_add_ineq to add the div constraints.
2157 * This complication is needed because the code in isl_tab_pip
2158 * wants to perform some extra processing when an inequality
2159 * is added to the tableau.
2161 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2162 int (*add_ineq)(void *user, isl_int *), void *user)
2164 int r;
2165 int k;
2166 int nonneg;
2168 if (!tab || !div)
2169 return -1;
2171 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2173 nonneg = div_is_nonneg(tab, div);
2175 if (isl_tab_extend_cons(tab, 3) < 0)
2176 return -1;
2177 if (isl_tab_extend_vars(tab, 1) < 0)
2178 return -1;
2179 r = isl_tab_allocate_var(tab);
2180 if (r < 0)
2181 return -1;
2183 if (nonneg)
2184 tab->var[r].is_nonneg = 1;
2186 tab->bmap = isl_basic_map_extend_space(tab->bmap,
2187 isl_basic_map_get_space(tab->bmap), 1, 0, 2);
2188 k = isl_basic_map_alloc_div(tab->bmap);
2189 if (k < 0)
2190 return -1;
2191 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2192 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2193 return -1;
2195 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2196 return -1;
2198 return r;
2201 /* If "track" is set, then we want to keep track of all constraints in tab
2202 * in its bmap field. This field is initialized from a copy of "bmap",
2203 * so we need to make sure that all constraints in "bmap" also appear
2204 * in the constructed tab.
2206 __isl_give struct isl_tab *isl_tab_from_basic_map(
2207 __isl_keep isl_basic_map *bmap, int track)
2209 int i;
2210 struct isl_tab *tab;
2212 if (!bmap)
2213 return NULL;
2214 tab = isl_tab_alloc(bmap->ctx,
2215 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2216 isl_basic_map_total_dim(bmap), 0);
2217 if (!tab)
2218 return NULL;
2219 tab->preserve = track;
2220 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2221 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2222 if (isl_tab_mark_empty(tab) < 0)
2223 goto error;
2224 goto done;
2226 for (i = 0; i < bmap->n_eq; ++i) {
2227 tab = add_eq(tab, bmap->eq[i]);
2228 if (!tab)
2229 return tab;
2231 for (i = 0; i < bmap->n_ineq; ++i) {
2232 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2233 goto error;
2234 if (tab->empty)
2235 goto done;
2237 done:
2238 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2239 goto error;
2240 return tab;
2241 error:
2242 isl_tab_free(tab);
2243 return NULL;
2246 __isl_give struct isl_tab *isl_tab_from_basic_set(
2247 __isl_keep isl_basic_set *bset, int track)
2249 return isl_tab_from_basic_map(bset, track);
2252 /* Construct a tableau corresponding to the recession cone of "bset".
2254 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2255 int parametric)
2257 isl_int cst;
2258 int i;
2259 struct isl_tab *tab;
2260 unsigned offset = 0;
2262 if (!bset)
2263 return NULL;
2264 if (parametric)
2265 offset = isl_basic_set_dim(bset, isl_dim_param);
2266 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2267 isl_basic_set_total_dim(bset) - offset, 0);
2268 if (!tab)
2269 return NULL;
2270 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2271 tab->cone = 1;
2273 isl_int_init(cst);
2274 for (i = 0; i < bset->n_eq; ++i) {
2275 isl_int_swap(bset->eq[i][offset], cst);
2276 if (offset > 0) {
2277 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2278 goto error;
2279 } else
2280 tab = add_eq(tab, bset->eq[i]);
2281 isl_int_swap(bset->eq[i][offset], cst);
2282 if (!tab)
2283 goto done;
2285 for (i = 0; i < bset->n_ineq; ++i) {
2286 int r;
2287 isl_int_swap(bset->ineq[i][offset], cst);
2288 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2289 isl_int_swap(bset->ineq[i][offset], cst);
2290 if (r < 0)
2291 goto error;
2292 tab->con[r].is_nonneg = 1;
2293 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2294 goto error;
2296 done:
2297 isl_int_clear(cst);
2298 return tab;
2299 error:
2300 isl_int_clear(cst);
2301 isl_tab_free(tab);
2302 return NULL;
2305 /* Assuming "tab" is the tableau of a cone, check if the cone is
2306 * bounded, i.e., if it is empty or only contains the origin.
2308 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2310 int i;
2312 if (!tab)
2313 return -1;
2314 if (tab->empty)
2315 return 1;
2316 if (tab->n_dead == tab->n_col)
2317 return 1;
2319 for (;;) {
2320 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2321 struct isl_tab_var *var;
2322 int sgn;
2323 var = isl_tab_var_from_row(tab, i);
2324 if (!var->is_nonneg)
2325 continue;
2326 sgn = sign_of_max(tab, var);
2327 if (sgn < -1)
2328 return -1;
2329 if (sgn != 0)
2330 return 0;
2331 if (close_row(tab, var) < 0)
2332 return -1;
2333 break;
2335 if (tab->n_dead == tab->n_col)
2336 return 1;
2337 if (i == tab->n_row)
2338 return 0;
2342 int isl_tab_sample_is_integer(struct isl_tab *tab)
2344 int i;
2346 if (!tab)
2347 return -1;
2349 for (i = 0; i < tab->n_var; ++i) {
2350 int row;
2351 if (!tab->var[i].is_row)
2352 continue;
2353 row = tab->var[i].index;
2354 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2355 tab->mat->row[row][0]))
2356 return 0;
2358 return 1;
2361 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2363 int i;
2364 struct isl_vec *vec;
2366 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2367 if (!vec)
2368 return NULL;
2370 isl_int_set_si(vec->block.data[0], 1);
2371 for (i = 0; i < tab->n_var; ++i) {
2372 if (!tab->var[i].is_row)
2373 isl_int_set_si(vec->block.data[1 + i], 0);
2374 else {
2375 int row = tab->var[i].index;
2376 isl_int_divexact(vec->block.data[1 + i],
2377 tab->mat->row[row][1], tab->mat->row[row][0]);
2381 return vec;
2384 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2386 int i;
2387 struct isl_vec *vec;
2388 isl_int m;
2390 if (!tab)
2391 return NULL;
2393 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2394 if (!vec)
2395 return NULL;
2397 isl_int_init(m);
2399 isl_int_set_si(vec->block.data[0], 1);
2400 for (i = 0; i < tab->n_var; ++i) {
2401 int row;
2402 if (!tab->var[i].is_row) {
2403 isl_int_set_si(vec->block.data[1 + i], 0);
2404 continue;
2406 row = tab->var[i].index;
2407 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2408 isl_int_divexact(m, tab->mat->row[row][0], m);
2409 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2410 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2411 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2413 vec = isl_vec_normalize(vec);
2415 isl_int_clear(m);
2416 return vec;
2419 /* Update "bmap" based on the results of the tableau "tab".
2420 * In particular, implicit equalities are made explicit, redundant constraints
2421 * are removed and if the sample value happens to be integer, it is stored
2422 * in "bmap" (unless "bmap" already had an integer sample).
2424 * The tableau is assumed to have been created from "bmap" using
2425 * isl_tab_from_basic_map.
2427 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2428 struct isl_tab *tab)
2430 int i;
2431 unsigned n_eq;
2433 if (!bmap)
2434 return NULL;
2435 if (!tab)
2436 return bmap;
2438 n_eq = tab->n_eq;
2439 if (tab->empty)
2440 bmap = isl_basic_map_set_to_empty(bmap);
2441 else
2442 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2443 if (isl_tab_is_equality(tab, n_eq + i))
2444 isl_basic_map_inequality_to_equality(bmap, i);
2445 else if (isl_tab_is_redundant(tab, n_eq + i))
2446 isl_basic_map_drop_inequality(bmap, i);
2448 if (bmap->n_eq != n_eq)
2449 isl_basic_map_gauss(bmap, NULL);
2450 if (!tab->rational &&
2451 !bmap->sample && isl_tab_sample_is_integer(tab))
2452 bmap->sample = extract_integer_sample(tab);
2453 return bmap;
2456 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2457 struct isl_tab *tab)
2459 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2460 (struct isl_basic_map *)bset, tab);
2463 /* Given a non-negative variable "var", add a new non-negative variable
2464 * that is the opposite of "var", ensuring that var can only attain the
2465 * value zero.
2466 * If var = n/d is a row variable, then the new variable = -n/d.
2467 * If var is a column variables, then the new variable = -var.
2468 * If the new variable cannot attain non-negative values, then
2469 * the resulting tableau is empty.
2470 * Otherwise, we know the value will be zero and we close the row.
2472 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2474 unsigned r;
2475 isl_int *row;
2476 int sgn;
2477 unsigned off = 2 + tab->M;
2479 if (var->is_zero)
2480 return 0;
2481 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2482 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2484 if (isl_tab_extend_cons(tab, 1) < 0)
2485 return -1;
2487 r = tab->n_con;
2488 tab->con[r].index = tab->n_row;
2489 tab->con[r].is_row = 1;
2490 tab->con[r].is_nonneg = 0;
2491 tab->con[r].is_zero = 0;
2492 tab->con[r].is_redundant = 0;
2493 tab->con[r].frozen = 0;
2494 tab->con[r].negated = 0;
2495 tab->row_var[tab->n_row] = ~r;
2496 row = tab->mat->row[tab->n_row];
2498 if (var->is_row) {
2499 isl_int_set(row[0], tab->mat->row[var->index][0]);
2500 isl_seq_neg(row + 1,
2501 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2502 } else {
2503 isl_int_set_si(row[0], 1);
2504 isl_seq_clr(row + 1, 1 + tab->n_col);
2505 isl_int_set_si(row[off + var->index], -1);
2508 tab->n_row++;
2509 tab->n_con++;
2510 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2511 return -1;
2513 sgn = sign_of_max(tab, &tab->con[r]);
2514 if (sgn < -1)
2515 return -1;
2516 if (sgn < 0) {
2517 if (isl_tab_mark_empty(tab) < 0)
2518 return -1;
2519 return 0;
2521 tab->con[r].is_nonneg = 1;
2522 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2523 return -1;
2524 /* sgn == 0 */
2525 if (close_row(tab, &tab->con[r]) < 0)
2526 return -1;
2528 return 0;
2531 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2532 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2533 * by r' = r + 1 >= 0.
2534 * If r is a row variable, we simply increase the constant term by one
2535 * (taking into account the denominator).
2536 * If r is a column variable, then we need to modify each row that
2537 * refers to r = r' - 1 by substituting this equality, effectively
2538 * subtracting the coefficient of the column from the constant.
2539 * We should only do this if the minimum is manifestly unbounded,
2540 * however. Otherwise, we may end up with negative sample values
2541 * for non-negative variables.
2542 * So, if r is a column variable with a minimum that is not
2543 * manifestly unbounded, then we need to move it to a row.
2544 * However, the sample value of this row may be negative,
2545 * even after the relaxation, so we need to restore it.
2546 * We therefore prefer to pivot a column up to a row, if possible.
2548 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
2550 struct isl_tab_var *var;
2551 unsigned off = 2 + tab->M;
2553 if (!tab)
2554 return NULL;
2556 var = &tab->con[con];
2558 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2559 isl_die(tab->mat->ctx, isl_error_invalid,
2560 "cannot relax redundant constraint", goto error);
2561 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2562 isl_die(tab->mat->ctx, isl_error_invalid,
2563 "cannot relax dead constraint", goto error);
2565 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2566 if (to_row(tab, var, 1) < 0)
2567 goto error;
2568 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2569 if (to_row(tab, var, -1) < 0)
2570 goto error;
2572 if (var->is_row) {
2573 isl_int_add(tab->mat->row[var->index][1],
2574 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2575 if (restore_row(tab, var) < 0)
2576 goto error;
2577 } else {
2578 int i;
2580 for (i = 0; i < tab->n_row; ++i) {
2581 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2582 continue;
2583 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2584 tab->mat->row[i][off + var->index]);
2589 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2590 goto error;
2592 return tab;
2593 error:
2594 isl_tab_free(tab);
2595 return NULL;
2598 /* Remove the sign constraint from constraint "con".
2600 * If the constraint variable was originally marked non-negative,
2601 * then we make sure we mark it non-negative again during rollback.
2603 int isl_tab_unrestrict(struct isl_tab *tab, int con)
2605 struct isl_tab_var *var;
2607 if (!tab)
2608 return -1;
2610 var = &tab->con[con];
2611 if (!var->is_nonneg)
2612 return 0;
2614 var->is_nonneg = 0;
2615 if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2616 return -1;
2618 return 0;
2621 int isl_tab_select_facet(struct isl_tab *tab, int con)
2623 if (!tab)
2624 return -1;
2626 return cut_to_hyperplane(tab, &tab->con[con]);
2629 static int may_be_equality(struct isl_tab *tab, int row)
2631 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2632 : isl_int_lt(tab->mat->row[row][1],
2633 tab->mat->row[row][0]);
2636 /* Check for (near) equalities among the constraints.
2637 * A constraint is an equality if it is non-negative and if
2638 * its maximal value is either
2639 * - zero (in case of rational tableaus), or
2640 * - strictly less than 1 (in case of integer tableaus)
2642 * We first mark all non-redundant and non-dead variables that
2643 * are not frozen and not obviously not an equality.
2644 * Then we iterate over all marked variables if they can attain
2645 * any values larger than zero or at least one.
2646 * If the maximal value is zero, we mark any column variables
2647 * that appear in the row as being zero and mark the row as being redundant.
2648 * Otherwise, if the maximal value is strictly less than one (and the
2649 * tableau is integer), then we restrict the value to being zero
2650 * by adding an opposite non-negative variable.
2652 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2654 int i;
2655 unsigned n_marked;
2657 if (!tab)
2658 return -1;
2659 if (tab->empty)
2660 return 0;
2661 if (tab->n_dead == tab->n_col)
2662 return 0;
2664 n_marked = 0;
2665 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2666 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2667 var->marked = !var->frozen && var->is_nonneg &&
2668 may_be_equality(tab, i);
2669 if (var->marked)
2670 n_marked++;
2672 for (i = tab->n_dead; i < tab->n_col; ++i) {
2673 struct isl_tab_var *var = var_from_col(tab, i);
2674 var->marked = !var->frozen && var->is_nonneg;
2675 if (var->marked)
2676 n_marked++;
2678 while (n_marked) {
2679 struct isl_tab_var *var;
2680 int sgn;
2681 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2682 var = isl_tab_var_from_row(tab, i);
2683 if (var->marked)
2684 break;
2686 if (i == tab->n_row) {
2687 for (i = tab->n_dead; i < tab->n_col; ++i) {
2688 var = var_from_col(tab, i);
2689 if (var->marked)
2690 break;
2692 if (i == tab->n_col)
2693 break;
2695 var->marked = 0;
2696 n_marked--;
2697 sgn = sign_of_max(tab, var);
2698 if (sgn < 0)
2699 return -1;
2700 if (sgn == 0) {
2701 if (close_row(tab, var) < 0)
2702 return -1;
2703 } else if (!tab->rational && !at_least_one(tab, var)) {
2704 if (cut_to_hyperplane(tab, var) < 0)
2705 return -1;
2706 return isl_tab_detect_implicit_equalities(tab);
2708 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2709 var = isl_tab_var_from_row(tab, i);
2710 if (!var->marked)
2711 continue;
2712 if (may_be_equality(tab, i))
2713 continue;
2714 var->marked = 0;
2715 n_marked--;
2719 return 0;
2722 /* Update the element of row_var or col_var that corresponds to
2723 * constraint tab->con[i] to a move from position "old" to position "i".
2725 static int update_con_after_move(struct isl_tab *tab, int i, int old)
2727 int *p;
2728 int index;
2730 index = tab->con[i].index;
2731 if (index == -1)
2732 return 0;
2733 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
2734 if (p[index] != ~old)
2735 isl_die(tab->mat->ctx, isl_error_internal,
2736 "broken internal state", return -1);
2737 p[index] = ~i;
2739 return 0;
2742 /* Rotate the "n" constraints starting at "first" to the right,
2743 * putting the last constraint in the position of the first constraint.
2745 static int rotate_constraints(struct isl_tab *tab, int first, int n)
2747 int i, last;
2748 struct isl_tab_var var;
2750 if (n <= 1)
2751 return 0;
2753 last = first + n - 1;
2754 var = tab->con[last];
2755 for (i = last; i > first; --i) {
2756 tab->con[i] = tab->con[i - 1];
2757 if (update_con_after_move(tab, i, i - 1) < 0)
2758 return -1;
2760 tab->con[first] = var;
2761 if (update_con_after_move(tab, first, last) < 0)
2762 return -1;
2764 return 0;
2767 /* Make the equalities that are implicit in "bmap" but that have been
2768 * detected in the corresponding "tab" explicit in "bmap" and update
2769 * "tab" to reflect the new order of the constraints.
2771 * In particular, if inequality i is an implicit equality then
2772 * isl_basic_map_inequality_to_equality will move the inequality
2773 * in front of the other equality and it will move the last inequality
2774 * in the position of inequality i.
2775 * In the tableau, the inequalities of "bmap" are stored after the equalities
2776 * and so the original order
2778 * E E E E E A A A I B B B B L
2780 * is changed into
2782 * I E E E E E A A A L B B B B
2784 * where I is the implicit equality, the E are equalities,
2785 * the A inequalities before I, the B inequalities after I and
2786 * L the last inequality.
2787 * We therefore need to rotate to the right two sets of constraints,
2788 * those up to and including I and those after I.
2790 * If "tab" contains any constraints that are not in "bmap" then they
2791 * appear after those in "bmap" and they should be left untouched.
2793 * Note that this function leaves "bmap" in a temporary state
2794 * as it does not call isl_basic_map_gauss. Calling this function
2795 * is the responsibility of the caller.
2797 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
2798 __isl_take isl_basic_map *bmap)
2800 int i;
2802 if (!tab || !bmap)
2803 return isl_basic_map_free(bmap);
2804 if (tab->empty)
2805 return bmap;
2807 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2808 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
2809 continue;
2810 isl_basic_map_inequality_to_equality(bmap, i);
2811 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
2812 return isl_basic_map_free(bmap);
2813 if (rotate_constraints(tab, tab->n_eq + i + 1,
2814 bmap->n_ineq - i) < 0)
2815 return isl_basic_map_free(bmap);
2816 tab->n_eq++;
2819 return bmap;
2822 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2824 if (!tab)
2825 return -1;
2826 if (tab->rational) {
2827 int sgn = sign_of_min(tab, var);
2828 if (sgn < -1)
2829 return -1;
2830 return sgn >= 0;
2831 } else {
2832 int irred = isl_tab_min_at_most_neg_one(tab, var);
2833 if (irred < 0)
2834 return -1;
2835 return !irred;
2839 /* Check for (near) redundant constraints.
2840 * A constraint is redundant if it is non-negative and if
2841 * its minimal value (temporarily ignoring the non-negativity) is either
2842 * - zero (in case of rational tableaus), or
2843 * - strictly larger than -1 (in case of integer tableaus)
2845 * We first mark all non-redundant and non-dead variables that
2846 * are not frozen and not obviously negatively unbounded.
2847 * Then we iterate over all marked variables if they can attain
2848 * any values smaller than zero or at most negative one.
2849 * If not, we mark the row as being redundant (assuming it hasn't
2850 * been detected as being obviously redundant in the mean time).
2852 int isl_tab_detect_redundant(struct isl_tab *tab)
2854 int i;
2855 unsigned n_marked;
2857 if (!tab)
2858 return -1;
2859 if (tab->empty)
2860 return 0;
2861 if (tab->n_redundant == tab->n_row)
2862 return 0;
2864 n_marked = 0;
2865 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2866 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2867 var->marked = !var->frozen && var->is_nonneg;
2868 if (var->marked)
2869 n_marked++;
2871 for (i = tab->n_dead; i < tab->n_col; ++i) {
2872 struct isl_tab_var *var = var_from_col(tab, i);
2873 var->marked = !var->frozen && var->is_nonneg &&
2874 !min_is_manifestly_unbounded(tab, var);
2875 if (var->marked)
2876 n_marked++;
2878 while (n_marked) {
2879 struct isl_tab_var *var;
2880 int red;
2881 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2882 var = isl_tab_var_from_row(tab, i);
2883 if (var->marked)
2884 break;
2886 if (i == tab->n_row) {
2887 for (i = tab->n_dead; i < tab->n_col; ++i) {
2888 var = var_from_col(tab, i);
2889 if (var->marked)
2890 break;
2892 if (i == tab->n_col)
2893 break;
2895 var->marked = 0;
2896 n_marked--;
2897 red = con_is_redundant(tab, var);
2898 if (red < 0)
2899 return -1;
2900 if (red && !var->is_redundant)
2901 if (isl_tab_mark_redundant(tab, var->index) < 0)
2902 return -1;
2903 for (i = tab->n_dead; i < tab->n_col; ++i) {
2904 var = var_from_col(tab, i);
2905 if (!var->marked)
2906 continue;
2907 if (!min_is_manifestly_unbounded(tab, var))
2908 continue;
2909 var->marked = 0;
2910 n_marked--;
2914 return 0;
2917 int isl_tab_is_equality(struct isl_tab *tab, int con)
2919 int row;
2920 unsigned off;
2922 if (!tab)
2923 return -1;
2924 if (tab->con[con].is_zero)
2925 return 1;
2926 if (tab->con[con].is_redundant)
2927 return 0;
2928 if (!tab->con[con].is_row)
2929 return tab->con[con].index < tab->n_dead;
2931 row = tab->con[con].index;
2933 off = 2 + tab->M;
2934 return isl_int_is_zero(tab->mat->row[row][1]) &&
2935 (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) &&
2936 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2937 tab->n_col - tab->n_dead) == -1;
2940 /* Return the minimal value of the affine expression "f" with denominator
2941 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2942 * the expression cannot attain arbitrarily small values.
2943 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2944 * The return value reflects the nature of the result (empty, unbounded,
2945 * minimal value returned in *opt).
2947 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2948 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2949 unsigned flags)
2951 int r;
2952 enum isl_lp_result res = isl_lp_ok;
2953 struct isl_tab_var *var;
2954 struct isl_tab_undo *snap;
2956 if (!tab)
2957 return isl_lp_error;
2959 if (tab->empty)
2960 return isl_lp_empty;
2962 snap = isl_tab_snap(tab);
2963 r = isl_tab_add_row(tab, f);
2964 if (r < 0)
2965 return isl_lp_error;
2966 var = &tab->con[r];
2967 for (;;) {
2968 int row, col;
2969 find_pivot(tab, var, var, -1, &row, &col);
2970 if (row == var->index) {
2971 res = isl_lp_unbounded;
2972 break;
2974 if (row == -1)
2975 break;
2976 if (isl_tab_pivot(tab, row, col) < 0)
2977 return isl_lp_error;
2979 isl_int_mul(tab->mat->row[var->index][0],
2980 tab->mat->row[var->index][0], denom);
2981 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2982 int i;
2984 isl_vec_free(tab->dual);
2985 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2986 if (!tab->dual)
2987 return isl_lp_error;
2988 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
2989 for (i = 0; i < tab->n_con; ++i) {
2990 int pos;
2991 if (tab->con[i].is_row) {
2992 isl_int_set_si(tab->dual->el[1 + i], 0);
2993 continue;
2995 pos = 2 + tab->M + tab->con[i].index;
2996 if (tab->con[i].negated)
2997 isl_int_neg(tab->dual->el[1 + i],
2998 tab->mat->row[var->index][pos]);
2999 else
3000 isl_int_set(tab->dual->el[1 + i],
3001 tab->mat->row[var->index][pos]);
3004 if (opt && res == isl_lp_ok) {
3005 if (opt_denom) {
3006 isl_int_set(*opt, tab->mat->row[var->index][1]);
3007 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
3008 } else
3009 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
3010 tab->mat->row[var->index][0]);
3012 if (isl_tab_rollback(tab, snap) < 0)
3013 return isl_lp_error;
3014 return res;
3017 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3019 if (!tab)
3020 return -1;
3021 if (tab->con[con].is_zero)
3022 return 0;
3023 if (tab->con[con].is_redundant)
3024 return 1;
3025 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3028 /* Take a snapshot of the tableau that can be restored by s call to
3029 * isl_tab_rollback.
3031 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3033 if (!tab)
3034 return NULL;
3035 tab->need_undo = 1;
3036 return tab->top;
3039 /* Undo the operation performed by isl_tab_relax.
3041 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
3042 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3044 unsigned off = 2 + tab->M;
3046 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3047 if (to_row(tab, var, 1) < 0)
3048 return -1;
3050 if (var->is_row) {
3051 isl_int_sub(tab->mat->row[var->index][1],
3052 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3053 if (var->is_nonneg) {
3054 int sgn = restore_row(tab, var);
3055 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
3057 } else {
3058 int i;
3060 for (i = 0; i < tab->n_row; ++i) {
3061 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3062 continue;
3063 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3064 tab->mat->row[i][off + var->index]);
3069 return 0;
3072 /* Undo the operation performed by isl_tab_unrestrict.
3074 * In particular, mark the variable as being non-negative and make
3075 * sure the sample value respects this constraint.
3077 static int ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3079 var->is_nonneg = 1;
3081 if (var->is_row && restore_row(tab, var) < -1)
3082 return -1;
3084 return 0;
3087 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3088 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3090 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3091 switch (undo->type) {
3092 case isl_tab_undo_nonneg:
3093 var->is_nonneg = 0;
3094 break;
3095 case isl_tab_undo_redundant:
3096 var->is_redundant = 0;
3097 tab->n_redundant--;
3098 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
3099 break;
3100 case isl_tab_undo_freeze:
3101 var->frozen = 0;
3102 break;
3103 case isl_tab_undo_zero:
3104 var->is_zero = 0;
3105 if (!var->is_row)
3106 tab->n_dead--;
3107 break;
3108 case isl_tab_undo_allocate:
3109 if (undo->u.var_index >= 0) {
3110 isl_assert(tab->mat->ctx, !var->is_row, return -1);
3111 drop_col(tab, var->index);
3112 break;
3114 if (!var->is_row) {
3115 if (!max_is_manifestly_unbounded(tab, var)) {
3116 if (to_row(tab, var, 1) < 0)
3117 return -1;
3118 } else if (!min_is_manifestly_unbounded(tab, var)) {
3119 if (to_row(tab, var, -1) < 0)
3120 return -1;
3121 } else
3122 if (to_row(tab, var, 0) < 0)
3123 return -1;
3125 drop_row(tab, var->index);
3126 break;
3127 case isl_tab_undo_relax:
3128 return unrelax(tab, var);
3129 case isl_tab_undo_unrestrict:
3130 return ununrestrict(tab, var);
3131 default:
3132 isl_die(tab->mat->ctx, isl_error_internal,
3133 "perform_undo_var called on invalid undo record",
3134 return -1);
3137 return 0;
3140 /* Restore the tableau to the state where the basic variables
3141 * are those in "col_var".
3142 * We first construct a list of variables that are currently in
3143 * the basis, but shouldn't. Then we iterate over all variables
3144 * that should be in the basis and for each one that is currently
3145 * not in the basis, we exchange it with one of the elements of the
3146 * list constructed before.
3147 * We can always find an appropriate variable to pivot with because
3148 * the current basis is mapped to the old basis by a non-singular
3149 * matrix and so we can never end up with a zero row.
3151 static int restore_basis(struct isl_tab *tab, int *col_var)
3153 int i, j;
3154 int n_extra = 0;
3155 int *extra = NULL; /* current columns that contain bad stuff */
3156 unsigned off = 2 + tab->M;
3158 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3159 if (tab->n_col && !extra)
3160 goto error;
3161 for (i = 0; i < tab->n_col; ++i) {
3162 for (j = 0; j < tab->n_col; ++j)
3163 if (tab->col_var[i] == col_var[j])
3164 break;
3165 if (j < tab->n_col)
3166 continue;
3167 extra[n_extra++] = i;
3169 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3170 struct isl_tab_var *var;
3171 int row;
3173 for (j = 0; j < tab->n_col; ++j)
3174 if (col_var[i] == tab->col_var[j])
3175 break;
3176 if (j < tab->n_col)
3177 continue;
3178 var = var_from_index(tab, col_var[i]);
3179 row = var->index;
3180 for (j = 0; j < n_extra; ++j)
3181 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3182 break;
3183 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3184 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3185 goto error;
3186 extra[j] = extra[--n_extra];
3189 free(extra);
3190 return 0;
3191 error:
3192 free(extra);
3193 return -1;
3196 /* Remove all samples with index n or greater, i.e., those samples
3197 * that were added since we saved this number of samples in
3198 * isl_tab_save_samples.
3200 static void drop_samples_since(struct isl_tab *tab, int n)
3202 int i;
3204 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3205 if (tab->sample_index[i] < n)
3206 continue;
3208 if (i != tab->n_sample - 1) {
3209 int t = tab->sample_index[tab->n_sample-1];
3210 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3211 tab->sample_index[i] = t;
3212 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3214 tab->n_sample--;
3218 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3219 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3221 switch (undo->type) {
3222 case isl_tab_undo_empty:
3223 tab->empty = 0;
3224 break;
3225 case isl_tab_undo_nonneg:
3226 case isl_tab_undo_redundant:
3227 case isl_tab_undo_freeze:
3228 case isl_tab_undo_zero:
3229 case isl_tab_undo_allocate:
3230 case isl_tab_undo_relax:
3231 case isl_tab_undo_unrestrict:
3232 return perform_undo_var(tab, undo);
3233 case isl_tab_undo_bmap_eq:
3234 return isl_basic_map_free_equality(tab->bmap, 1);
3235 case isl_tab_undo_bmap_ineq:
3236 return isl_basic_map_free_inequality(tab->bmap, 1);
3237 case isl_tab_undo_bmap_div:
3238 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
3239 return -1;
3240 if (tab->samples)
3241 tab->samples->n_col--;
3242 break;
3243 case isl_tab_undo_saved_basis:
3244 if (restore_basis(tab, undo->u.col_var) < 0)
3245 return -1;
3246 break;
3247 case isl_tab_undo_drop_sample:
3248 tab->n_outside--;
3249 break;
3250 case isl_tab_undo_saved_samples:
3251 drop_samples_since(tab, undo->u.n);
3252 break;
3253 case isl_tab_undo_callback:
3254 return undo->u.callback->run(undo->u.callback);
3255 default:
3256 isl_assert(tab->mat->ctx, 0, return -1);
3258 return 0;
3261 /* Return the tableau to the state it was in when the snapshot "snap"
3262 * was taken.
3264 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3266 struct isl_tab_undo *undo, *next;
3268 if (!tab)
3269 return -1;
3271 tab->in_undo = 1;
3272 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3273 next = undo->next;
3274 if (undo == snap)
3275 break;
3276 if (perform_undo(tab, undo) < 0) {
3277 tab->top = undo;
3278 free_undo(tab);
3279 tab->in_undo = 0;
3280 return -1;
3282 free_undo_record(undo);
3284 tab->in_undo = 0;
3285 tab->top = undo;
3286 if (!undo)
3287 return -1;
3288 return 0;
3291 /* The given row "row" represents an inequality violated by all
3292 * points in the tableau. Check for some special cases of such
3293 * separating constraints.
3294 * In particular, if the row has been reduced to the constant -1,
3295 * then we know the inequality is adjacent (but opposite) to
3296 * an equality in the tableau.
3297 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3298 * of the tableau and c a positive constant, then the inequality
3299 * is adjacent (but opposite) to the inequality r'.
3301 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3303 int pos;
3304 unsigned off = 2 + tab->M;
3306 if (tab->rational)
3307 return isl_ineq_separate;
3309 if (!isl_int_is_one(tab->mat->row[row][0]))
3310 return isl_ineq_separate;
3312 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3313 tab->n_col - tab->n_dead);
3314 if (pos == -1) {
3315 if (isl_int_is_negone(tab->mat->row[row][1]))
3316 return isl_ineq_adj_eq;
3317 else
3318 return isl_ineq_separate;
3321 if (!isl_int_eq(tab->mat->row[row][1],
3322 tab->mat->row[row][off + tab->n_dead + pos]))
3323 return isl_ineq_separate;
3325 pos = isl_seq_first_non_zero(
3326 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3327 tab->n_col - tab->n_dead - pos - 1);
3329 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3332 /* Check the effect of inequality "ineq" on the tableau "tab".
3333 * The result may be
3334 * isl_ineq_redundant: satisfied by all points in the tableau
3335 * isl_ineq_separate: satisfied by no point in the tableau
3336 * isl_ineq_cut: satisfied by some by not all points
3337 * isl_ineq_adj_eq: adjacent to an equality
3338 * isl_ineq_adj_ineq: adjacent to an inequality.
3340 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3342 enum isl_ineq_type type = isl_ineq_error;
3343 struct isl_tab_undo *snap = NULL;
3344 int con;
3345 int row;
3347 if (!tab)
3348 return isl_ineq_error;
3350 if (isl_tab_extend_cons(tab, 1) < 0)
3351 return isl_ineq_error;
3353 snap = isl_tab_snap(tab);
3355 con = isl_tab_add_row(tab, ineq);
3356 if (con < 0)
3357 goto error;
3359 row = tab->con[con].index;
3360 if (isl_tab_row_is_redundant(tab, row))
3361 type = isl_ineq_redundant;
3362 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3363 (tab->rational ||
3364 isl_int_abs_ge(tab->mat->row[row][1],
3365 tab->mat->row[row][0]))) {
3366 int nonneg = at_least_zero(tab, &tab->con[con]);
3367 if (nonneg < 0)
3368 goto error;
3369 if (nonneg)
3370 type = isl_ineq_cut;
3371 else
3372 type = separation_type(tab, row);
3373 } else {
3374 int red = con_is_redundant(tab, &tab->con[con]);
3375 if (red < 0)
3376 goto error;
3377 if (!red)
3378 type = isl_ineq_cut;
3379 else
3380 type = isl_ineq_redundant;
3383 if (isl_tab_rollback(tab, snap))
3384 return isl_ineq_error;
3385 return type;
3386 error:
3387 return isl_ineq_error;
3390 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3392 bmap = isl_basic_map_cow(bmap);
3393 if (!tab || !bmap)
3394 goto error;
3396 if (tab->empty) {
3397 bmap = isl_basic_map_set_to_empty(bmap);
3398 if (!bmap)
3399 goto error;
3400 tab->bmap = bmap;
3401 return 0;
3404 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
3405 isl_assert(tab->mat->ctx,
3406 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
3408 tab->bmap = bmap;
3410 return 0;
3411 error:
3412 isl_basic_map_free(bmap);
3413 return -1;
3416 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3418 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3421 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3423 if (!tab)
3424 return NULL;
3426 return (isl_basic_set *)tab->bmap;
3429 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
3430 FILE *out, int indent)
3432 unsigned r, c;
3433 int i;
3435 if (!tab) {
3436 fprintf(out, "%*snull tab\n", indent, "");
3437 return;
3439 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3440 tab->n_redundant, tab->n_dead);
3441 if (tab->rational)
3442 fprintf(out, ", rational");
3443 if (tab->empty)
3444 fprintf(out, ", empty");
3445 fprintf(out, "\n");
3446 fprintf(out, "%*s[", indent, "");
3447 for (i = 0; i < tab->n_var; ++i) {
3448 if (i)
3449 fprintf(out, (i == tab->n_param ||
3450 i == tab->n_var - tab->n_div) ? "; "
3451 : ", ");
3452 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3453 tab->var[i].index,
3454 tab->var[i].is_zero ? " [=0]" :
3455 tab->var[i].is_redundant ? " [R]" : "");
3457 fprintf(out, "]\n");
3458 fprintf(out, "%*s[", indent, "");
3459 for (i = 0; i < tab->n_con; ++i) {
3460 if (i)
3461 fprintf(out, ", ");
3462 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3463 tab->con[i].index,
3464 tab->con[i].is_zero ? " [=0]" :
3465 tab->con[i].is_redundant ? " [R]" : "");
3467 fprintf(out, "]\n");
3468 fprintf(out, "%*s[", indent, "");
3469 for (i = 0; i < tab->n_row; ++i) {
3470 const char *sign = "";
3471 if (i)
3472 fprintf(out, ", ");
3473 if (tab->row_sign) {
3474 if (tab->row_sign[i] == isl_tab_row_unknown)
3475 sign = "?";
3476 else if (tab->row_sign[i] == isl_tab_row_neg)
3477 sign = "-";
3478 else if (tab->row_sign[i] == isl_tab_row_pos)
3479 sign = "+";
3480 else
3481 sign = "+-";
3483 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3484 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3486 fprintf(out, "]\n");
3487 fprintf(out, "%*s[", indent, "");
3488 for (i = 0; i < tab->n_col; ++i) {
3489 if (i)
3490 fprintf(out, ", ");
3491 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3492 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3494 fprintf(out, "]\n");
3495 r = tab->mat->n_row;
3496 tab->mat->n_row = tab->n_row;
3497 c = tab->mat->n_col;
3498 tab->mat->n_col = 2 + tab->M + tab->n_col;
3499 isl_mat_print_internal(tab->mat, out, indent);
3500 tab->mat->n_row = r;
3501 tab->mat->n_col = c;
3502 if (tab->bmap)
3503 isl_basic_map_print_internal(tab->bmap, out, indent);
3506 void isl_tab_dump(__isl_keep struct isl_tab *tab)
3508 isl_tab_print_internal(tab, stderr, 0);