2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
12 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
15 * B.P. 105 - 78153 Le Chesnay, France
18 #include "isl_map_private.h"
20 #include <isl/options.h>
22 #include <isl_mat_private.h>
23 #include <isl_local_space_private.h>
24 #include <isl_vec_private.h>
26 #define STATUS_ERROR -1
27 #define STATUS_REDUNDANT 1
28 #define STATUS_VALID 2
29 #define STATUS_SEPARATE 3
31 #define STATUS_ADJ_EQ 5
32 #define STATUS_ADJ_INEQ 6
34 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
36 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
39 case isl_ineq_error
: return STATUS_ERROR
;
40 case isl_ineq_redundant
: return STATUS_VALID
;
41 case isl_ineq_separate
: return STATUS_SEPARATE
;
42 case isl_ineq_cut
: return STATUS_CUT
;
43 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
44 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
48 /* Compute the position of the equalities of basic map "bmap_i"
49 * with respect to the basic map represented by "tab_j".
50 * The resulting array has twice as many entries as the number
51 * of equalities corresponding to the two inequalties to which
52 * each equality corresponds.
54 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
55 struct isl_tab
*tab_j
)
58 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
64 dim
= isl_basic_map_total_dim(bmap_i
);
65 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
66 for (l
= 0; l
< 2; ++l
) {
67 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
68 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
69 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
72 if (eq
[2 * k
] == STATUS_SEPARATE
||
73 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
83 /* Compute the position of the inequalities of basic map "bmap_i"
84 * (also represented by "tab_i", if not NULL) with respect to the basic map
85 * represented by "tab_j".
87 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
88 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
91 unsigned n_eq
= bmap_i
->n_eq
;
92 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
97 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
98 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
99 ineq
[k
] = STATUS_REDUNDANT
;
102 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
103 if (ineq
[k
] == STATUS_ERROR
)
105 if (ineq
[k
] == STATUS_SEPARATE
)
115 static int any(int *con
, unsigned len
, int status
)
119 for (i
= 0; i
< len
; ++i
)
120 if (con
[i
] == status
)
125 static int count(int *con
, unsigned len
, int status
)
130 for (i
= 0; i
< len
; ++i
)
131 if (con
[i
] == status
)
136 static int all(int *con
, unsigned len
, int status
)
140 for (i
= 0; i
< len
; ++i
) {
141 if (con
[i
] == STATUS_REDUNDANT
)
143 if (con
[i
] != status
)
149 /* Internal information associated to a basic map in a map
150 * that is to be coalesced by isl_map_coalesce.
152 * "bmap" is the basic map itself (or NULL if "removed" is set)
153 * "tab" is the corresponding tableau (or NULL if "removed" is set)
154 * "removed" is set if this basic map has been removed from the map
156 struct isl_coalesce_info
{
162 /* Free all the allocated memory in an array
163 * of "n" isl_coalesce_info elements.
165 static void clear_coalesce_info(int n
, struct isl_coalesce_info
*info
)
172 for (i
= 0; i
< n
; ++i
) {
173 isl_basic_map_free(info
[i
].bmap
);
174 isl_tab_free(info
[i
].tab
);
180 /* Drop the basic map represented by "info".
181 * That is, clear the memory associated to the entry and
182 * mark it as having been removed.
184 static void drop(struct isl_coalesce_info
*info
)
186 info
->bmap
= isl_basic_map_free(info
->bmap
);
187 isl_tab_free(info
->tab
);
192 /* Exchange the information in "info1" with that in "info2".
194 static void exchange(struct isl_coalesce_info
*info1
,
195 struct isl_coalesce_info
*info2
)
197 struct isl_coalesce_info info
;
204 /* This type represents the kind of change that has been performed
205 * while trying to coalesce two basic maps.
207 * isl_change_none: nothing was changed
208 * isl_change_drop_first: the first basic map was removed
209 * isl_change_drop_second: the second basic map was removed
210 * isl_change_fuse: the two basic maps were replaced by a new basic map.
213 isl_change_error
= -1,
215 isl_change_drop_first
,
216 isl_change_drop_second
,
220 /* Replace the pair of basic maps i and j by the basic map bounded
221 * by the valid constraints in both basic maps and the constraints
222 * in extra (if not NULL).
223 * Place the fused basic map in the position that is the smallest of i and j.
225 * If "detect_equalities" is set, then look for equalities encoded
226 * as pairs of inequalities.
228 static enum isl_change
fuse(int i
, int j
, struct isl_coalesce_info
*info
,
229 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
,
230 __isl_keep isl_mat
*extra
, int detect_equalities
)
233 struct isl_basic_map
*fused
= NULL
;
234 struct isl_tab
*fused_tab
= NULL
;
235 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
236 unsigned extra_rows
= extra
? extra
->n_row
: 0;
239 return fuse(j
, i
, info
, eq_j
, ineq_j
, eq_i
, ineq_i
, extra
,
242 fused
= isl_basic_map_alloc_space(isl_space_copy(info
[i
].bmap
->dim
),
244 info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
,
245 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
+ extra_rows
);
249 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
250 if (eq_i
&& (eq_i
[2 * k
] != STATUS_VALID
||
251 eq_i
[2 * k
+ 1] != STATUS_VALID
))
253 l
= isl_basic_map_alloc_equality(fused
);
256 isl_seq_cpy(fused
->eq
[l
], info
[i
].bmap
->eq
[k
], 1 + total
);
259 for (k
= 0; k
< info
[j
].bmap
->n_eq
; ++k
) {
260 if (eq_j
&& (eq_j
[2 * k
] != STATUS_VALID
||
261 eq_j
[2 * k
+ 1] != STATUS_VALID
))
263 l
= isl_basic_map_alloc_equality(fused
);
266 isl_seq_cpy(fused
->eq
[l
], info
[j
].bmap
->eq
[k
], 1 + total
);
269 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
270 if (ineq_i
[k
] != STATUS_VALID
)
272 l
= isl_basic_map_alloc_inequality(fused
);
275 isl_seq_cpy(fused
->ineq
[l
], info
[i
].bmap
->ineq
[k
], 1 + total
);
278 for (k
= 0; k
< info
[j
].bmap
->n_ineq
; ++k
) {
279 if (ineq_j
[k
] != STATUS_VALID
)
281 l
= isl_basic_map_alloc_inequality(fused
);
284 isl_seq_cpy(fused
->ineq
[l
], info
[j
].bmap
->ineq
[k
], 1 + total
);
287 for (k
= 0; k
< info
[i
].bmap
->n_div
; ++k
) {
288 int l
= isl_basic_map_alloc_div(fused
);
291 isl_seq_cpy(fused
->div
[l
], info
[i
].bmap
->div
[k
], 1 + 1 + total
);
294 for (k
= 0; k
< extra_rows
; ++k
) {
295 l
= isl_basic_map_alloc_inequality(fused
);
298 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
301 if (detect_equalities
)
302 fused
= isl_basic_map_detect_inequality_pairs(fused
, NULL
);
303 fused
= isl_basic_map_gauss(fused
, NULL
);
304 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
305 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) &&
306 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
307 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
309 fused_tab
= isl_tab_from_basic_map(fused
, 0);
310 if (isl_tab_detect_redundant(fused_tab
) < 0)
313 isl_basic_map_free(info
[i
].bmap
);
314 info
[i
].bmap
= fused
;
315 isl_tab_free(info
[i
].tab
);
316 info
[i
].tab
= fused_tab
;
319 return isl_change_fuse
;
321 isl_tab_free(fused_tab
);
322 isl_basic_map_free(fused
);
323 return isl_change_error
;
326 /* Given a pair of basic maps i and j such that all constraints are either
327 * "valid" or "cut", check if the facets corresponding to the "cut"
328 * constraints of i lie entirely within basic map j.
329 * If so, replace the pair by the basic map consisting of the valid
330 * constraints in both basic maps.
331 * Checking whether the facet lies entirely within basic map j
332 * is performed by checking whether the constraints of basic map j
333 * are valid for the facet. These tests are performed on a rational
334 * tableau to avoid the theoretical possibility that a constraint
335 * that was considered to be a cut constraint for the entire basic map i
336 * happens to be considered to be a valid constraint for the facet,
337 * even though it cuts off the same rational points.
339 * To see that we are not introducing any extra points, call the
340 * two basic maps A and B and the resulting map U and let x
341 * be an element of U \setminus ( A \cup B ).
342 * A line connecting x with an element of A \cup B meets a facet F
343 * of either A or B. Assume it is a facet of B and let c_1 be
344 * the corresponding facet constraint. We have c_1(x) < 0 and
345 * so c_1 is a cut constraint. This implies that there is some
346 * (possibly rational) point x' satisfying the constraints of A
347 * and the opposite of c_1 as otherwise c_1 would have been marked
348 * valid for A. The line connecting x and x' meets a facet of A
349 * in a (possibly rational) point that also violates c_1, but this
350 * is impossible since all cut constraints of B are valid for all
352 * In case F is a facet of A rather than B, then we can apply the
353 * above reasoning to find a facet of B separating x from A \cup B first.
355 static enum isl_change
check_facets(int i
, int j
,
356 struct isl_coalesce_info
*info
, int *ineq_i
, int *ineq_j
)
359 struct isl_tab_undo
*snap
, *snap2
;
360 unsigned n_eq
= info
[i
].bmap
->n_eq
;
362 snap
= isl_tab_snap(info
[i
].tab
);
363 if (isl_tab_mark_rational(info
[i
].tab
) < 0)
364 return isl_change_error
;
365 snap2
= isl_tab_snap(info
[i
].tab
);
367 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
368 if (ineq_i
[k
] != STATUS_CUT
)
370 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
371 return isl_change_error
;
372 for (l
= 0; l
< info
[j
].bmap
->n_ineq
; ++l
) {
374 if (ineq_j
[l
] != STATUS_CUT
)
376 stat
= status_in(info
[j
].bmap
->ineq
[l
], info
[i
].tab
);
377 if (stat
!= STATUS_VALID
)
380 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
381 return isl_change_error
;
382 if (l
< info
[j
].bmap
->n_ineq
)
386 if (k
< info
[i
].bmap
->n_ineq
) {
387 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
388 return isl_change_error
;
389 return isl_change_none
;
391 return fuse(i
, j
, info
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
, 0);
394 /* Check if "bmap" contains the basic map represented
395 * by the tableau "tab".
397 static int contains(__isl_keep isl_basic_map
*bmap
, int *ineq_i
,
403 dim
= isl_basic_map_total_dim(bmap
);
404 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
405 for (l
= 0; l
< 2; ++l
) {
407 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1+dim
);
408 stat
= status_in(bmap
->eq
[k
], tab
);
409 if (stat
!= STATUS_VALID
)
414 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
416 if (ineq_i
[k
] == STATUS_REDUNDANT
)
418 stat
= status_in(bmap
->ineq
[k
], tab
);
419 if (stat
!= STATUS_VALID
)
425 /* Basic map "i" has an inequality (say "k") that is adjacent
426 * to some inequality of basic map "j". All the other inequalities
428 * Check if basic map "j" forms an extension of basic map "i".
430 * Note that this function is only called if some of the equalities or
431 * inequalities of basic map "j" do cut basic map "i". The function is
432 * correct even if there are no such cut constraints, but in that case
433 * the additional checks performed by this function are overkill.
435 * In particular, we replace constraint k, say f >= 0, by constraint
436 * f <= -1, add the inequalities of "j" that are valid for "i"
437 * and check if the result is a subset of basic map "j".
438 * If so, then we know that this result is exactly equal to basic map "j"
439 * since all its constraints are valid for basic map "j".
440 * By combining the valid constraints of "i" (all equalities and all
441 * inequalities except "k") and the valid constraints of "j" we therefore
442 * obtain a basic map that is equal to their union.
443 * In this case, there is no need to perform a rollback of the tableau
444 * since it is going to be destroyed in fuse().
450 * |_______| _ |_________\
462 static enum isl_change
is_adj_ineq_extension(int i
, int j
,
463 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
464 int *eq_j
, int *ineq_j
)
467 struct isl_tab_undo
*snap
;
468 unsigned n_eq
= info
[i
].bmap
->n_eq
;
469 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
472 if (isl_tab_extend_cons(info
[i
].tab
, 1 + info
[j
].bmap
->n_ineq
) < 0)
473 return isl_change_error
;
475 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
)
476 if (ineq_i
[k
] == STATUS_ADJ_INEQ
)
478 if (k
>= info
[i
].bmap
->n_ineq
)
479 isl_die(isl_basic_map_get_ctx(info
[i
].bmap
), isl_error_internal
,
480 "ineq_i should have exactly one STATUS_ADJ_INEQ",
481 return isl_change_error
);
483 snap
= isl_tab_snap(info
[i
].tab
);
485 if (isl_tab_unrestrict(info
[i
].tab
, n_eq
+ k
) < 0)
486 return isl_change_error
;
488 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
489 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
490 r
= isl_tab_add_ineq(info
[i
].tab
, info
[i
].bmap
->ineq
[k
]);
491 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
492 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
494 return isl_change_error
;
496 for (k
= 0; k
< info
[j
].bmap
->n_ineq
; ++k
) {
497 if (ineq_j
[k
] != STATUS_VALID
)
499 if (isl_tab_add_ineq(info
[i
].tab
, info
[j
].bmap
->ineq
[k
]) < 0)
500 return isl_change_error
;
503 if (contains(info
[j
].bmap
, ineq_j
, info
[i
].tab
))
504 return fuse(i
, j
, info
, eq_i
, ineq_i
, eq_j
, ineq_j
, NULL
, 0);
506 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
507 return isl_change_error
;
509 return isl_change_none
;
513 /* Both basic maps have at least one inequality with and adjacent
514 * (but opposite) inequality in the other basic map.
515 * Check that there are no cut constraints and that there is only
516 * a single pair of adjacent inequalities.
517 * If so, we can replace the pair by a single basic map described
518 * by all but the pair of adjacent inequalities.
519 * Any additional points introduced lie strictly between the two
520 * adjacent hyperplanes and can therefore be integral.
529 * The test for a single pair of adjancent inequalities is important
530 * for avoiding the combination of two basic maps like the following
540 * If there are some cut constraints on one side, then we may
541 * still be able to fuse the two basic maps, but we need to perform
542 * some additional checks in is_adj_ineq_extension.
544 static enum isl_change
check_adj_ineq(int i
, int j
,
545 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
546 int *eq_j
, int *ineq_j
)
548 int count_i
, count_j
;
551 count_i
= count(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
);
552 count_j
= count(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
);
554 if (count_i
!= 1 && count_j
!= 1)
555 return isl_change_none
;
557 cut_i
= any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
) ||
558 any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
559 cut_j
= any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
) ||
560 any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_CUT
);
562 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
563 return fuse(i
, j
, info
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
, 0);
565 if (count_i
== 1 && !cut_i
)
566 return is_adj_ineq_extension(i
, j
, info
,
567 eq_i
, ineq_i
, eq_j
, ineq_j
);
569 if (count_j
== 1 && !cut_j
)
570 return is_adj_ineq_extension(j
, i
, info
,
571 eq_j
, ineq_j
, eq_i
, ineq_i
);
573 return isl_change_none
;
576 /* Basic map "i" has an inequality "k" that is adjacent to some equality
577 * of basic map "j". All the other inequalities are valid for "j".
578 * Check if basic map "j" forms an extension of basic map "i".
580 * In particular, we relax constraint "k", compute the corresponding
581 * facet and check whether it is included in the other basic map.
582 * If so, we know that relaxing the constraint extends the basic
583 * map with exactly the other basic map (we already know that this
584 * other basic map is included in the extension, because there
585 * were no "cut" inequalities in "i") and we can replace the
586 * two basic maps by this extension.
587 * Place this extension in the position that is the smallest of i and j.
595 static enum isl_change
is_adj_eq_extension(int i
, int j
, int k
,
596 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
597 int *eq_j
, int *ineq_j
)
599 int change
= isl_change_none
;
601 struct isl_tab_undo
*snap
, *snap2
;
602 unsigned n_eq
= info
[i
].bmap
->n_eq
;
604 if (isl_tab_is_equality(info
[i
].tab
, n_eq
+ k
))
605 return isl_change_none
;
607 snap
= isl_tab_snap(info
[i
].tab
);
608 if (isl_tab_relax(info
[i
].tab
, n_eq
+ k
) < 0)
609 return isl_change_error
;
610 snap2
= isl_tab_snap(info
[i
].tab
);
611 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
612 return isl_change_error
;
613 super
= contains(info
[j
].bmap
, ineq_j
, info
[i
].tab
);
615 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
616 return isl_change_error
;
617 info
[i
].bmap
= isl_basic_map_cow(info
[i
].bmap
);
619 return isl_change_error
;
620 isl_int_add_ui(info
[i
].bmap
->ineq
[k
][0],
621 info
[i
].bmap
->ineq
[k
][0], 1);
622 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_FINAL
);
625 exchange(&info
[i
], &info
[j
]);
626 change
= isl_change_fuse
;
628 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
629 return isl_change_error
;
634 /* Data structure that keeps track of the wrapping constraints
635 * and of information to bound the coefficients of those constraints.
637 * bound is set if we want to apply a bound on the coefficients
638 * mat contains the wrapping constraints
639 * max is the bound on the coefficients (if bound is set)
647 /* Update wraps->max to be greater than or equal to the coefficients
648 * in the equalities and inequalities of bmap that can be removed if we end up
651 static void wraps_update_max(struct isl_wraps
*wraps
,
652 __isl_keep isl_basic_map
*bmap
, int *eq
, int *ineq
)
656 unsigned total
= isl_basic_map_total_dim(bmap
);
660 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
661 if (eq
[2 * k
] == STATUS_VALID
&&
662 eq
[2 * k
+ 1] == STATUS_VALID
)
664 isl_seq_abs_max(bmap
->eq
[k
] + 1, total
, &max_k
);
665 if (isl_int_abs_gt(max_k
, wraps
->max
))
666 isl_int_set(wraps
->max
, max_k
);
669 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
670 if (ineq
[k
] == STATUS_VALID
|| ineq
[k
] == STATUS_REDUNDANT
)
672 isl_seq_abs_max(bmap
->ineq
[k
] + 1, total
, &max_k
);
673 if (isl_int_abs_gt(max_k
, wraps
->max
))
674 isl_int_set(wraps
->max
, max_k
);
677 isl_int_clear(max_k
);
680 /* Initialize the isl_wraps data structure.
681 * If we want to bound the coefficients of the wrapping constraints,
682 * we set wraps->max to the largest coefficient
683 * in the equalities and inequalities that can be removed if we end up
686 static void wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
687 struct isl_coalesce_info
*info
, int i
, int j
,
688 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
696 ctx
= isl_mat_get_ctx(mat
);
697 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
700 isl_int_init(wraps
->max
);
701 isl_int_set_si(wraps
->max
, 0);
702 wraps_update_max(wraps
, info
[i
].bmap
, eq_i
, ineq_i
);
703 wraps_update_max(wraps
, info
[j
].bmap
, eq_j
, ineq_j
);
706 /* Free the contents of the isl_wraps data structure.
708 static void wraps_free(struct isl_wraps
*wraps
)
710 isl_mat_free(wraps
->mat
);
712 isl_int_clear(wraps
->max
);
715 /* Is the wrapping constraint in row "row" allowed?
717 * If wraps->bound is set, we check that none of the coefficients
718 * is greater than wraps->max.
720 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
727 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
728 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
734 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
735 * wrap the constraint around "bound" such that it includes the whole
736 * set "set" and append the resulting constraint to "wraps".
737 * "wraps" is assumed to have been pre-allocated to the appropriate size.
738 * wraps->n_row is the number of actual wrapped constraints that have
740 * If any of the wrapping problems results in a constraint that is
741 * identical to "bound", then this means that "set" is unbounded in such
742 * way that no wrapping is possible. If this happens then wraps->n_row
744 * Similarly, if we want to bound the coefficients of the wrapping
745 * constraints and a newly added wrapping constraint does not
746 * satisfy the bound, then wraps->n_row is also reset to zero.
748 static int add_wraps(struct isl_wraps
*wraps
, __isl_keep isl_basic_map
*bmap
,
749 struct isl_tab
*tab
, isl_int
*bound
, __isl_keep isl_set
*set
)
753 unsigned total
= isl_basic_map_total_dim(bmap
);
755 w
= wraps
->mat
->n_row
;
757 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
758 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], 1 + total
))
760 if (isl_seq_eq(bound
, bmap
->ineq
[l
], 1 + total
))
762 if (isl_tab_is_redundant(tab
, bmap
->n_eq
+ l
))
765 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
766 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->ineq
[l
]))
768 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
770 if (!allow_wrap(wraps
, w
))
774 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
775 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], 1 + total
))
777 if (isl_seq_eq(bound
, bmap
->eq
[l
], 1 + total
))
780 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
781 isl_seq_neg(wraps
->mat
->row
[w
+ 1], bmap
->eq
[l
], 1 + total
);
782 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
],
783 wraps
->mat
->row
[w
+ 1]))
785 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
787 if (!allow_wrap(wraps
, w
))
791 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, 1 + total
);
792 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], bmap
->eq
[l
]))
794 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, 1 + total
))
796 if (!allow_wrap(wraps
, w
))
801 wraps
->mat
->n_row
= w
;
804 wraps
->mat
->n_row
= 0;
808 /* Check if the constraints in "wraps" from "first" until the last
809 * are all valid for the basic set represented by "tab".
810 * If not, wraps->n_row is set to zero.
812 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
817 for (i
= first
; i
< wraps
->n_row
; ++i
) {
818 enum isl_ineq_type type
;
819 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
820 if (type
== isl_ineq_error
)
822 if (type
== isl_ineq_redundant
)
831 /* Return a set that corresponds to the non-redundant constraints
832 * (as recorded in tab) of bmap.
834 * It's important to remove the redundant constraints as some
835 * of the other constraints may have been modified after the
836 * constraints were marked redundant.
837 * In particular, a constraint may have been relaxed.
838 * Redundant constraints are ignored when a constraint is relaxed
839 * and should therefore continue to be ignored ever after.
840 * Otherwise, the relaxation might be thwarted by some of
843 * Update the underlying set to ensure that the dimension doesn't change.
844 * Otherwise the integer divisions could get dropped if the tab
845 * turns out to be empty.
847 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
852 bmap
= isl_basic_map_copy(bmap
);
853 bset
= isl_basic_map_underlying_set(bmap
);
854 bset
= isl_basic_set_cow(bset
);
855 bset
= isl_basic_set_update_from_tab(bset
, tab
);
856 return isl_set_from_basic_set(bset
);
859 /* Given a basic set i with a constraint k that is adjacent to
860 * basic set j, check if we can wrap
861 * both the facet corresponding to k and basic map j
862 * around their ridges to include the other set.
863 * If so, replace the pair of basic sets by their union.
865 * All constraints of i (except k) are assumed to be valid for j.
866 * This means that there is no real need to wrap the ridges of
867 * the faces of basic map i around basic map j but since we do,
868 * we have to check that the resulting wrapping constraints are valid for i.
877 static enum isl_change
can_wrap_in_facet(int i
, int j
, int k
,
878 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
879 int *eq_j
, int *ineq_j
)
881 enum isl_change change
= isl_change_none
;
882 struct isl_wraps wraps
;
885 struct isl_set
*set_i
= NULL
;
886 struct isl_set
*set_j
= NULL
;
887 struct isl_vec
*bound
= NULL
;
888 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
889 struct isl_tab_undo
*snap
;
892 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
893 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
894 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
895 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
896 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
898 wraps_init(&wraps
, mat
, info
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
899 bound
= isl_vec_alloc(ctx
, 1 + total
);
900 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
903 isl_seq_cpy(bound
->el
, info
[i
].bmap
->ineq
[k
], 1 + total
);
904 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
906 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
907 wraps
.mat
->n_row
= 1;
909 if (add_wraps(&wraps
, info
[j
].bmap
, info
[j
].tab
, bound
->el
, set_i
) < 0)
911 if (!wraps
.mat
->n_row
)
914 snap
= isl_tab_snap(info
[i
].tab
);
916 if (isl_tab_select_facet(info
[i
].tab
, info
[i
].bmap
->n_eq
+ k
) < 0)
918 if (isl_tab_detect_redundant(info
[i
].tab
) < 0)
921 isl_seq_neg(bound
->el
, info
[i
].bmap
->ineq
[k
], 1 + total
);
923 n
= wraps
.mat
->n_row
;
924 if (add_wraps(&wraps
, info
[i
].bmap
, info
[i
].tab
, bound
->el
, set_j
) < 0)
927 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
929 if (check_wraps(wraps
.mat
, n
, info
[i
].tab
) < 0)
931 if (!wraps
.mat
->n_row
)
934 change
= fuse(i
, j
, info
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
, 0);
950 return isl_change_error
;
953 /* Given a pair of basic maps i and j such that j sticks out
954 * of i at n cut constraints, each time by at most one,
955 * try to compute wrapping constraints and replace the two
956 * basic maps by a single basic map.
957 * The other constraints of i are assumed to be valid for j.
959 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
960 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
961 * of basic map j that bound the part of basic map j that sticks out
962 * of the cut constraint.
963 * In particular, we first intersect basic map j with t(x) + 1 = 0.
964 * If the result is empty, then t(x) >= 0 was actually a valid constraint
965 * (with respect to the integer points), so we add t(x) >= 0 instead.
966 * Otherwise, we wrap the constraints of basic map j that are not
967 * redundant in this intersection over the union of the two basic maps.
969 * If any wrapping fails, i.e., if we cannot wrap to touch
970 * the union, then we give up.
971 * Otherwise, the pair of basic maps is replaced by their union.
973 static enum isl_change
wrap_in_facets(int i
, int j
, int *cuts
, int n
,
974 struct isl_coalesce_info
*info
,
975 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
977 enum isl_change change
= isl_change_none
;
978 struct isl_wraps wraps
;
982 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
985 struct isl_tab_undo
*snap
;
987 if (isl_tab_extend_cons(info
[j
].tab
, 1) < 0)
990 max_wrap
= 1 + 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
993 set
= isl_set_union(set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
),
994 set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
));
995 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
996 mat
= isl_mat_alloc(ctx
, max_wrap
, 1 + total
);
997 wraps_init(&wraps
, mat
, info
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
998 if (!set
|| !wraps
.mat
)
1001 snap
= isl_tab_snap(info
[j
].tab
);
1003 wraps
.mat
->n_row
= 0;
1005 for (k
= 0; k
< n
; ++k
) {
1006 w
= wraps
.mat
->n_row
++;
1007 isl_seq_cpy(wraps
.mat
->row
[w
],
1008 info
[i
].bmap
->ineq
[cuts
[k
]], 1 + total
);
1009 isl_int_add_ui(wraps
.mat
->row
[w
][0], wraps
.mat
->row
[w
][0], 1);
1010 if (isl_tab_add_eq(info
[j
].tab
, wraps
.mat
->row
[w
]) < 0)
1012 if (isl_tab_detect_redundant(info
[j
].tab
) < 0)
1015 if (info
[j
].tab
->empty
)
1016 isl_int_sub_ui(wraps
.mat
->row
[w
][0],
1017 wraps
.mat
->row
[w
][0], 1);
1018 else if (add_wraps(&wraps
, info
[j
].bmap
, info
[j
].tab
,
1019 wraps
.mat
->row
[w
], set
) < 0)
1022 if (isl_tab_rollback(info
[j
].tab
, snap
) < 0)
1025 if (!wraps
.mat
->n_row
)
1030 change
= fuse(i
, j
, info
,
1031 eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
, 0);
1040 return isl_change_error
;
1043 /* Given two basic sets i and j such that i has no cut equalities,
1044 * check if relaxing all the cut inequalities of i by one turns
1045 * them into valid constraint for j and check if we can wrap in
1046 * the bits that are sticking out.
1047 * If so, replace the pair by their union.
1049 * We first check if all relaxed cut inequalities of i are valid for j
1050 * and then try to wrap in the intersections of the relaxed cut inequalities
1053 * During this wrapping, we consider the points of j that lie at a distance
1054 * of exactly 1 from i. In particular, we ignore the points that lie in
1055 * between this lower-dimensional space and the basic map i.
1056 * We can therefore only apply this to integer maps.
1082 * Wrapping can fail if the result of wrapping one of the facets
1083 * around its edges does not produce any new facet constraint.
1084 * In particular, this happens when we try to wrap in unbounded sets.
1086 * _______________________________________________________________________
1090 * |_| |_________________________________________________________________
1093 * The following is not an acceptable result of coalescing the above two
1094 * sets as it includes extra integer points.
1095 * _______________________________________________________________________
1100 * \______________________________________________________________________
1102 static enum isl_change
can_wrap_in_set(int i
, int j
,
1103 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
1104 int *eq_j
, int *ineq_j
)
1106 enum isl_change change
= isl_change_none
;
1112 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) ||
1113 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
1114 return isl_change_none
;
1116 n
= count(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_CUT
);
1118 return isl_change_none
;
1120 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1121 cuts
= isl_alloc_array(ctx
, int, n
);
1123 return isl_change_error
;
1125 for (k
= 0, m
= 0; m
< n
; ++k
) {
1126 enum isl_ineq_type type
;
1128 if (ineq_i
[k
] != STATUS_CUT
)
1131 isl_int_add_ui(info
[i
].bmap
->ineq
[k
][0],
1132 info
[i
].bmap
->ineq
[k
][0], 1);
1133 type
= isl_tab_ineq_type(info
[j
].tab
, info
[i
].bmap
->ineq
[k
]);
1134 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0],
1135 info
[i
].bmap
->ineq
[k
][0], 1);
1136 if (type
== isl_ineq_error
)
1138 if (type
!= isl_ineq_redundant
)
1145 change
= wrap_in_facets(i
, j
, cuts
, n
, info
,
1146 eq_i
, ineq_i
, eq_j
, ineq_j
);
1153 return isl_change_error
;
1156 /* Check if either i or j has only cut inequalities that can
1157 * be used to wrap in (a facet of) the other basic set.
1158 * if so, replace the pair by their union.
1160 static enum isl_change
check_wrap(int i
, int j
, struct isl_coalesce_info
*info
,
1161 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
1163 enum isl_change change
= isl_change_none
;
1165 if (!any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
))
1166 change
= can_wrap_in_set(i
, j
, info
,
1167 eq_i
, ineq_i
, eq_j
, ineq_j
);
1168 if (change
!= isl_change_none
)
1171 if (!any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
))
1172 change
= can_wrap_in_set(j
, i
, info
,
1173 eq_j
, ineq_j
, eq_i
, ineq_i
);
1177 /* At least one of the basic maps has an equality that is adjacent
1178 * to inequality. Make sure that only one of the basic maps has
1179 * such an equality and that the other basic map has exactly one
1180 * inequality adjacent to an equality.
1181 * We call the basic map that has the inequality "i" and the basic
1182 * map that has the equality "j".
1183 * If "i" has any "cut" (in)equality, then relaxing the inequality
1184 * by one would not result in a basic map that contains the other
1187 static enum isl_change
check_adj_eq(int i
, int j
,
1188 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
1189 int *eq_j
, int *ineq_j
)
1191 enum isl_change change
= isl_change_none
;
1194 if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
) &&
1195 any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
))
1196 /* ADJ EQ TOO MANY */
1197 return isl_change_none
;
1199 if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
))
1200 return check_adj_eq(j
, i
, info
, eq_j
, ineq_j
, eq_i
, ineq_i
);
1202 /* j has an equality adjacent to an inequality in i */
1204 if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
))
1205 return isl_change_none
;
1206 if (any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_CUT
))
1208 return isl_change_none
;
1209 if (count(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
1210 any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_EQ
) ||
1211 any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
) ||
1212 any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
))
1213 /* ADJ EQ TOO MANY */
1214 return isl_change_none
;
1216 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
)
1217 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
1220 change
= is_adj_eq_extension(i
, j
, k
, info
,
1221 eq_i
, ineq_i
, eq_j
, ineq_j
);
1222 if (change
!= isl_change_none
)
1225 if (count(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
) != 1)
1226 return isl_change_none
;
1228 change
= can_wrap_in_facet(i
, j
, k
, info
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1233 /* The two basic maps lie on adjacent hyperplanes. In particular,
1234 * basic map "i" has an equality that lies parallel to basic map "j".
1235 * Check if we can wrap the facets around the parallel hyperplanes
1236 * to include the other set.
1238 * We perform basically the same operations as can_wrap_in_facet,
1239 * except that we don't need to select a facet of one of the sets.
1245 * If there is more than one equality of "i" adjacent to an equality of "j",
1246 * then the result will satisfy one or more equalities that are a linear
1247 * combination of these equalities. These will be encoded as pairs
1248 * of inequalities in the wrapping constraints and need to be made
1251 static enum isl_change
check_eq_adj_eq(int i
, int j
,
1252 struct isl_coalesce_info
*info
, int *eq_i
, int *ineq_i
,
1253 int *eq_j
, int *ineq_j
)
1256 enum isl_change change
= isl_change_none
;
1257 int detect_equalities
= 0;
1258 struct isl_wraps wraps
;
1261 struct isl_set
*set_i
= NULL
;
1262 struct isl_set
*set_j
= NULL
;
1263 struct isl_vec
*bound
= NULL
;
1264 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1266 if (count(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_EQ
) != 1)
1267 detect_equalities
= 1;
1269 for (k
= 0; k
< 2 * info
[i
].bmap
->n_eq
; ++k
)
1270 if (eq_i
[k
] == STATUS_ADJ_EQ
)
1273 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1274 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
1275 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1276 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1277 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1279 wraps_init(&wraps
, mat
, info
, i
, j
, eq_i
, ineq_i
, eq_j
, ineq_j
);
1280 bound
= isl_vec_alloc(ctx
, 1 + total
);
1281 if (!set_i
|| !set_j
|| !wraps
.mat
|| !bound
)
1285 isl_seq_neg(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
1287 isl_seq_cpy(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
1288 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1290 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1291 wraps
.mat
->n_row
= 1;
1293 if (add_wraps(&wraps
, info
[j
].bmap
, info
[j
].tab
, bound
->el
, set_i
) < 0)
1295 if (!wraps
.mat
->n_row
)
1298 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1299 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1301 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
1304 if (add_wraps(&wraps
, info
[i
].bmap
, info
[i
].tab
, bound
->el
, set_j
) < 0)
1306 if (!wraps
.mat
->n_row
)
1309 change
= fuse(i
, j
, info
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
.mat
,
1313 error
: change
= isl_change_error
;
1318 isl_set_free(set_i
);
1319 isl_set_free(set_j
);
1320 isl_vec_free(bound
);
1325 /* Check if the union of the given pair of basic maps
1326 * can be represented by a single basic map.
1327 * If so, replace the pair by the single basic map and return
1328 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
1329 * Otherwise, return isl_change_none.
1330 * The two basic maps are assumed to live in the same local space.
1332 * We first check the effect of each constraint of one basic map
1333 * on the other basic map.
1334 * The constraint may be
1335 * redundant the constraint is redundant in its own
1336 * basic map and should be ignore and removed
1338 * valid all (integer) points of the other basic map
1339 * satisfy the constraint
1340 * separate no (integer) point of the other basic map
1341 * satisfies the constraint
1342 * cut some but not all points of the other basic map
1343 * satisfy the constraint
1344 * adj_eq the given constraint is adjacent (on the outside)
1345 * to an equality of the other basic map
1346 * adj_ineq the given constraint is adjacent (on the outside)
1347 * to an inequality of the other basic map
1349 * We consider seven cases in which we can replace the pair by a single
1350 * basic map. We ignore all "redundant" constraints.
1352 * 1. all constraints of one basic map are valid
1353 * => the other basic map is a subset and can be removed
1355 * 2. all constraints of both basic maps are either "valid" or "cut"
1356 * and the facets corresponding to the "cut" constraints
1357 * of one of the basic maps lies entirely inside the other basic map
1358 * => the pair can be replaced by a basic map consisting
1359 * of the valid constraints in both basic maps
1361 * 3. there is a single pair of adjacent inequalities
1362 * (all other constraints are "valid")
1363 * => the pair can be replaced by a basic map consisting
1364 * of the valid constraints in both basic maps
1366 * 4. one basic map has a single adjacent inequality, while the other
1367 * constraints are "valid". The other basic map has some
1368 * "cut" constraints, but replacing the adjacent inequality by
1369 * its opposite and adding the valid constraints of the other
1370 * basic map results in a subset of the other basic map
1371 * => the pair can be replaced by a basic map consisting
1372 * of the valid constraints in both basic maps
1374 * 5. there is a single adjacent pair of an inequality and an equality,
1375 * the other constraints of the basic map containing the inequality are
1376 * "valid". Moreover, if the inequality the basic map is relaxed
1377 * and then turned into an equality, then resulting facet lies
1378 * entirely inside the other basic map
1379 * => the pair can be replaced by the basic map containing
1380 * the inequality, with the inequality relaxed.
1382 * 6. there is a single adjacent pair of an inequality and an equality,
1383 * the other constraints of the basic map containing the inequality are
1384 * "valid". Moreover, the facets corresponding to both
1385 * the inequality and the equality can be wrapped around their
1386 * ridges to include the other basic map
1387 * => the pair can be replaced by a basic map consisting
1388 * of the valid constraints in both basic maps together
1389 * with all wrapping constraints
1391 * 7. one of the basic maps extends beyond the other by at most one.
1392 * Moreover, the facets corresponding to the cut constraints and
1393 * the pieces of the other basic map at offset one from these cut
1394 * constraints can be wrapped around their ridges to include
1395 * the union of the two basic maps
1396 * => the pair can be replaced by a basic map consisting
1397 * of the valid constraints in both basic maps together
1398 * with all wrapping constraints
1400 * 8. the two basic maps live in adjacent hyperplanes. In principle
1401 * such sets can always be combined through wrapping, but we impose
1402 * that there is only one such pair, to avoid overeager coalescing.
1404 * Throughout the computation, we maintain a collection of tableaus
1405 * corresponding to the basic maps. When the basic maps are dropped
1406 * or combined, the tableaus are modified accordingly.
1408 static enum isl_change
coalesce_local_pair(int i
, int j
,
1409 struct isl_coalesce_info
*info
)
1411 enum isl_change change
= isl_change_none
;
1417 eq_i
= eq_status_in(info
[i
].bmap
, info
[j
].tab
);
1418 if (info
[i
].bmap
->n_eq
&& !eq_i
)
1420 if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_ERROR
))
1422 if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_SEPARATE
))
1425 eq_j
= eq_status_in(info
[j
].bmap
, info
[i
].tab
);
1426 if (info
[j
].bmap
->n_eq
&& !eq_j
)
1428 if (any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_ERROR
))
1430 if (any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_SEPARATE
))
1433 ineq_i
= ineq_status_in(info
[i
].bmap
, info
[i
].tab
, info
[j
].tab
);
1434 if (info
[i
].bmap
->n_ineq
&& !ineq_i
)
1436 if (any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_ERROR
))
1438 if (any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_SEPARATE
))
1441 ineq_j
= ineq_status_in(info
[j
].bmap
, info
[j
].tab
, info
[i
].tab
);
1442 if (info
[j
].bmap
->n_ineq
&& !ineq_j
)
1444 if (any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_ERROR
))
1446 if (any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_SEPARATE
))
1449 if (all(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_VALID
) &&
1450 all(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_VALID
)) {
1452 change
= isl_change_drop_second
;
1453 } else if (all(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
1454 all(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_VALID
)) {
1456 change
= isl_change_drop_first
;
1457 } else if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_EQ
)) {
1458 change
= check_eq_adj_eq(i
, j
, info
,
1459 eq_i
, ineq_i
, eq_j
, ineq_j
);
1460 } else if (any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_EQ
)) {
1461 change
= check_eq_adj_eq(j
, i
, info
,
1462 eq_j
, ineq_j
, eq_i
, ineq_i
);
1463 } else if (any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_ADJ_INEQ
) ||
1464 any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_ADJ_INEQ
)) {
1465 change
= check_adj_eq(i
, j
, info
,
1466 eq_i
, ineq_i
, eq_j
, ineq_j
);
1467 } else if (any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_EQ
) ||
1468 any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_EQ
)) {
1471 } else if (any(ineq_i
, info
[i
].bmap
->n_ineq
, STATUS_ADJ_INEQ
) ||
1472 any(ineq_j
, info
[j
].bmap
->n_ineq
, STATUS_ADJ_INEQ
)) {
1473 change
= check_adj_ineq(i
, j
, info
,
1474 eq_i
, ineq_i
, eq_j
, ineq_j
);
1476 if (!any(eq_i
, 2 * info
[i
].bmap
->n_eq
, STATUS_CUT
) &&
1477 !any(eq_j
, 2 * info
[j
].bmap
->n_eq
, STATUS_CUT
))
1478 change
= check_facets(i
, j
, info
, ineq_i
, ineq_j
);
1479 if (change
== isl_change_none
)
1480 change
= check_wrap(i
, j
, info
,
1481 eq_i
, ineq_i
, eq_j
, ineq_j
);
1495 return isl_change_error
;
1498 /* Do the two basic maps live in the same local space, i.e.,
1499 * do they have the same (known) divs?
1500 * If either basic map has any unknown divs, then we can only assume
1501 * that they do not live in the same local space.
1503 static int same_divs(__isl_keep isl_basic_map
*bmap1
,
1504 __isl_keep isl_basic_map
*bmap2
)
1510 if (!bmap1
|| !bmap2
)
1512 if (bmap1
->n_div
!= bmap2
->n_div
)
1515 if (bmap1
->n_div
== 0)
1518 known
= isl_basic_map_divs_known(bmap1
);
1519 if (known
< 0 || !known
)
1521 known
= isl_basic_map_divs_known(bmap2
);
1522 if (known
< 0 || !known
)
1525 total
= isl_basic_map_total_dim(bmap1
);
1526 for (i
= 0; i
< bmap1
->n_div
; ++i
)
1527 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
1533 /* Does "bmap" contain the basic map represented by the tableau "tab"
1534 * after expanding the divs of "bmap" to match those of "tab"?
1535 * The expansion is performed using the divs "div" and expansion "exp"
1536 * computed by the caller.
1537 * Then we check if all constraints of the expanded "bmap" are valid for "tab".
1539 static int contains_with_expanded_divs(__isl_keep isl_basic_map
*bmap
,
1540 struct isl_tab
*tab
, __isl_keep isl_mat
*div
, int *exp
)
1546 bmap
= isl_basic_map_copy(bmap
);
1547 bmap
= isl_basic_set_expand_divs(bmap
, isl_mat_copy(div
), exp
);
1552 eq_i
= eq_status_in(bmap
, tab
);
1553 if (bmap
->n_eq
&& !eq_i
)
1555 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_ERROR
))
1557 if (any(eq_i
, 2 * bmap
->n_eq
, STATUS_SEPARATE
))
1560 ineq_i
= ineq_status_in(bmap
, NULL
, tab
);
1561 if (bmap
->n_ineq
&& !ineq_i
)
1563 if (any(ineq_i
, bmap
->n_ineq
, STATUS_ERROR
))
1565 if (any(ineq_i
, bmap
->n_ineq
, STATUS_SEPARATE
))
1568 if (all(eq_i
, 2 * bmap
->n_eq
, STATUS_VALID
) &&
1569 all(ineq_i
, bmap
->n_ineq
, STATUS_VALID
))
1573 isl_basic_map_free(bmap
);
1578 isl_basic_map_free(bmap
);
1584 /* Does "bmap_i" contain the basic map represented by "info_j"
1585 * after aligning the divs of "bmap_i" to those of "info_j".
1586 * Note that this can only succeed if the number of divs of "bmap_i"
1587 * is smaller than (or equal to) the number of divs of "info_j".
1589 * We first check if the divs of "bmap_i" are all known and form a subset
1590 * of those of "bmap_j". If so, we pass control over to
1591 * contains_with_expanded_divs.
1593 static int contains_after_aligning_divs(__isl_keep isl_basic_map
*bmap_i
,
1594 struct isl_coalesce_info
*info_j
)
1597 isl_mat
*div_i
, *div_j
, *div
;
1603 known
= isl_basic_map_divs_known(bmap_i
);
1604 if (known
< 0 || !known
)
1607 ctx
= isl_basic_map_get_ctx(bmap_i
);
1609 div_i
= isl_basic_map_get_divs(bmap_i
);
1610 div_j
= isl_basic_map_get_divs(info_j
->bmap
);
1612 if (!div_i
|| !div_j
)
1615 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
1616 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
1617 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
1620 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
1624 if (div
->n_row
== div_j
->n_row
)
1625 subset
= contains_with_expanded_divs(bmap_i
,
1626 info_j
->tab
, div
, exp1
);
1632 isl_mat_free(div_i
);
1633 isl_mat_free(div_j
);
1640 isl_mat_free(div_i
);
1641 isl_mat_free(div_j
);
1647 /* Check if the basic map "j" is a subset of basic map "i",
1648 * if "i" has fewer divs that "j".
1649 * If so, remove basic map "j".
1651 * If the two basic maps have the same number of divs, then
1652 * they must necessarily be different. Otherwise, we would have
1653 * called coalesce_local_pair. We therefore don't try anything
1656 static int coalesced_subset(int i
, int j
, struct isl_coalesce_info
*info
)
1660 if (info
[i
].bmap
->n_div
>= info
[j
].bmap
->n_div
)
1663 superset
= contains_after_aligning_divs(info
[i
].bmap
, &info
[j
]);
1672 /* Check if one of the basic maps is a subset of the other and, if so,
1674 * Note that we only perform any test if the number of divs is different
1675 * in the two basic maps. In case the number of divs is the same,
1676 * we have already established that the divs are different
1677 * in the two basic maps.
1678 * In particular, if the number of divs of basic map i is smaller than
1679 * the number of divs of basic map j, then we check if j is a subset of i
1682 static enum isl_change
check_coalesce_subset(int i
, int j
,
1683 struct isl_coalesce_info
*info
)
1687 changed
= coalesced_subset(i
, j
, info
);
1688 if (changed
< 0 || changed
)
1689 return changed
< 0 ? isl_change_error
: isl_change_drop_second
;
1691 changed
= coalesced_subset(j
, i
, info
);
1692 if (changed
< 0 || changed
)
1693 return changed
< 0 ? isl_change_error
: isl_change_drop_first
;
1695 return isl_change_none
;
1698 /* Check if the union of the given pair of basic maps
1699 * can be represented by a single basic map.
1700 * If so, replace the pair by the single basic map and return
1701 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
1702 * Otherwise, return isl_change_none.
1704 * We first check if the two basic maps live in the same local space.
1705 * If so, we do the complete check. Otherwise, we check if one is
1706 * an obvious subset of the other.
1708 static enum isl_change
coalesce_pair(int i
, int j
,
1709 struct isl_coalesce_info
*info
)
1713 same
= same_divs(info
[i
].bmap
, info
[j
].bmap
);
1715 return isl_change_error
;
1717 return coalesce_local_pair(i
, j
, info
);
1719 return check_coalesce_subset(i
, j
, info
);
1722 /* Pairwise coalesce the basic maps described by the "n" elements of "info",
1723 * skipping basic maps that have been removed (either before or within
1726 * For each basic map i, we check if it can be coalesced with respect
1727 * to any previously considered basic map j.
1728 * If i gets dropped (because it was a subset of some j), then
1729 * we can move on to the next basic map.
1730 * If j gets dropped, we need to continue checking against the other
1731 * previously considered basic maps.
1732 * If the two basic maps got fused, then we recheck the fused basic map
1733 * against the previously considered basic maps.
1735 static int coalesce(isl_ctx
*ctx
, int n
, struct isl_coalesce_info
*info
)
1739 for (i
= n
- 2; i
>= 0; --i
) {
1740 if (info
[i
].removed
)
1742 for (j
= i
+ 1; j
< n
; ++j
) {
1743 enum isl_change changed
;
1745 if (info
[j
].removed
)
1747 if (info
[i
].removed
)
1748 isl_die(ctx
, isl_error_internal
,
1749 "basic map unexpectedly removed",
1751 changed
= coalesce_pair(i
, j
, info
);
1753 case isl_change_error
:
1755 case isl_change_none
:
1756 case isl_change_drop_second
:
1758 case isl_change_drop_first
:
1761 case isl_change_fuse
:
1771 /* Update the basic maps in "map" based on the information in "info".
1772 * In particular, remove the basic maps that have been marked removed and
1773 * update the others based on the information in the corresponding tableau.
1774 * Since we detected implicit equalities without calling
1775 * isl_basic_map_gauss, we need to do it now.
1777 static __isl_give isl_map
*update_basic_maps(__isl_take isl_map
*map
,
1778 int n
, struct isl_coalesce_info
*info
)
1785 for (i
= n
- 1; i
>= 0; --i
) {
1786 if (info
[i
].removed
) {
1787 isl_basic_map_free(map
->p
[i
]);
1788 if (i
!= map
->n
- 1)
1789 map
->p
[i
] = map
->p
[map
->n
- 1];
1794 info
[i
].bmap
= isl_basic_map_update_from_tab(info
[i
].bmap
,
1796 info
[i
].bmap
= isl_basic_map_gauss(info
[i
].bmap
, NULL
);
1797 info
[i
].bmap
= isl_basic_map_finalize(info
[i
].bmap
);
1799 return isl_map_free(map
);
1800 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
1801 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
1802 isl_basic_map_free(map
->p
[i
]);
1803 map
->p
[i
] = info
[i
].bmap
;
1804 info
[i
].bmap
= NULL
;
1810 /* For each pair of basic maps in the map, check if the union of the two
1811 * can be represented by a single basic map.
1812 * If so, replace the pair by the single basic map and start over.
1814 * Since we are constructing the tableaus of the basic maps anyway,
1815 * we exploit them to detect implicit equalities and redundant constraints.
1816 * This also helps the coalescing as it can ignore the redundant constraints.
1817 * In order to avoid confusion, we make all implicit equalities explicit
1818 * in the basic maps. We don't call isl_basic_map_gauss, though,
1819 * as that may affect the number of constraints.
1820 * This means that we have to call isl_basic_map_gauss at the end
1821 * of the computation (in update_basic_maps) to ensure that
1822 * the basic maps are not left in an unexpected state.
1824 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
1829 struct isl_coalesce_info
*info
= NULL
;
1831 map
= isl_map_remove_empty_parts(map
);
1838 ctx
= isl_map_get_ctx(map
);
1839 map
= isl_map_sort_divs(map
);
1840 map
= isl_map_cow(map
);
1847 info
= isl_calloc_array(map
->ctx
, struct isl_coalesce_info
, n
);
1851 for (i
= 0; i
< map
->n
; ++i
) {
1852 info
[i
].bmap
= isl_basic_map_copy(map
->p
[i
]);
1853 info
[i
].tab
= isl_tab_from_basic_map(info
[i
].bmap
, 0);
1856 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
1857 if (isl_tab_detect_implicit_equalities(info
[i
].tab
) < 0)
1859 info
[i
].bmap
= isl_tab_make_equalities_explicit(info
[i
].tab
,
1863 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
1864 if (isl_tab_detect_redundant(info
[i
].tab
) < 0)
1867 for (i
= map
->n
- 1; i
>= 0; --i
)
1868 if (info
[i
].tab
->empty
)
1871 if (coalesce(ctx
, n
, info
) < 0)
1874 map
= update_basic_maps(map
, n
, info
);
1876 clear_coalesce_info(n
, info
);
1880 clear_coalesce_info(n
, info
);
1885 /* For each pair of basic sets in the set, check if the union of the two
1886 * can be represented by a single basic set.
1887 * If so, replace the pair by the single basic set and start over.
1889 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
1891 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);