add isl_multi_aff_pullback_multi_aff
[isl.git] / isl_affine_hull.c
blobd3d3b7deb9d469feb80da03b7287da7bff3dd3d5
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include <isl/seq.h>
13 #include <isl/set.h>
14 #include <isl/lp.h>
15 #include <isl/map.h>
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
18 #include "isl_tab.h"
19 #include <isl_mat_private.h>
21 struct isl_basic_map *isl_basic_map_implicit_equalities(
22 struct isl_basic_map *bmap)
24 struct isl_tab *tab;
26 if (!bmap)
27 return bmap;
29 bmap = isl_basic_map_gauss(bmap, NULL);
30 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
31 return bmap;
32 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
33 return bmap;
34 if (bmap->n_ineq <= 1)
35 return bmap;
37 tab = isl_tab_from_basic_map(bmap, 0);
38 if (isl_tab_detect_implicit_equalities(tab) < 0)
39 goto error;
40 bmap = isl_basic_map_update_from_tab(bmap, tab);
41 isl_tab_free(tab);
42 bmap = isl_basic_map_gauss(bmap, NULL);
43 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
44 return bmap;
45 error:
46 isl_tab_free(tab);
47 isl_basic_map_free(bmap);
48 return NULL;
51 struct isl_basic_set *isl_basic_set_implicit_equalities(
52 struct isl_basic_set *bset)
54 return (struct isl_basic_set *)
55 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
58 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
60 int i;
62 if (!map)
63 return map;
65 for (i = 0; i < map->n; ++i) {
66 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
67 if (!map->p[i])
68 goto error;
71 return map;
72 error:
73 isl_map_free(map);
74 return NULL;
77 /* Make eq[row][col] of both bmaps equal so we can add the row
78 * add the column to the common matrix.
79 * Note that because of the echelon form, the columns of row row
80 * after column col are zero.
82 static void set_common_multiple(
83 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
84 unsigned row, unsigned col)
86 isl_int m, c;
88 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
89 return;
91 isl_int_init(c);
92 isl_int_init(m);
93 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
94 isl_int_divexact(c, m, bset1->eq[row][col]);
95 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
96 isl_int_divexact(c, m, bset2->eq[row][col]);
97 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
98 isl_int_clear(c);
99 isl_int_clear(m);
102 /* Delete a given equality, moving all the following equalities one up.
104 static void delete_row(struct isl_basic_set *bset, unsigned row)
106 isl_int *t;
107 int r;
109 t = bset->eq[row];
110 bset->n_eq--;
111 for (r = row; r < bset->n_eq; ++r)
112 bset->eq[r] = bset->eq[r+1];
113 bset->eq[bset->n_eq] = t;
116 /* Make first row entries in column col of bset1 identical to
117 * those of bset2, using the fact that entry bset1->eq[row][col]=a
118 * is non-zero. Initially, these elements of bset1 are all zero.
119 * For each row i < row, we set
120 * A[i] = a * A[i] + B[i][col] * A[row]
121 * B[i] = a * B[i]
122 * so that
123 * A[i][col] = B[i][col] = a * old(B[i][col])
125 static void construct_column(
126 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
127 unsigned row, unsigned col)
129 int r;
130 isl_int a;
131 isl_int b;
132 unsigned total;
134 isl_int_init(a);
135 isl_int_init(b);
136 total = 1 + isl_basic_set_n_dim(bset1);
137 for (r = 0; r < row; ++r) {
138 if (isl_int_is_zero(bset2->eq[r][col]))
139 continue;
140 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
141 isl_int_divexact(a, bset1->eq[row][col], b);
142 isl_int_divexact(b, bset2->eq[r][col], b);
143 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
144 b, bset1->eq[row], total);
145 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
147 isl_int_clear(a);
148 isl_int_clear(b);
149 delete_row(bset1, row);
152 /* Make first row entries in column col of bset1 identical to
153 * those of bset2, using only these entries of the two matrices.
154 * Let t be the last row with different entries.
155 * For each row i < t, we set
156 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
157 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
158 * so that
159 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
161 static int transform_column(
162 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
163 unsigned row, unsigned col)
165 int i, t;
166 isl_int a, b, g;
167 unsigned total;
169 for (t = row-1; t >= 0; --t)
170 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
171 break;
172 if (t < 0)
173 return 0;
175 total = 1 + isl_basic_set_n_dim(bset1);
176 isl_int_init(a);
177 isl_int_init(b);
178 isl_int_init(g);
179 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
180 for (i = 0; i < t; ++i) {
181 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
182 isl_int_gcd(g, a, b);
183 isl_int_divexact(a, a, g);
184 isl_int_divexact(g, b, g);
185 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
186 total);
187 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
188 total);
190 isl_int_clear(a);
191 isl_int_clear(b);
192 isl_int_clear(g);
193 delete_row(bset1, t);
194 delete_row(bset2, t);
195 return 1;
198 /* The implementation is based on Section 5.2 of Michael Karr,
199 * "Affine Relationships Among Variables of a Program",
200 * except that the echelon form we use starts from the last column
201 * and that we are dealing with integer coefficients.
203 static struct isl_basic_set *affine_hull(
204 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
206 unsigned total;
207 int col;
208 int row;
210 if (!bset1 || !bset2)
211 goto error;
213 total = 1 + isl_basic_set_n_dim(bset1);
215 row = 0;
216 for (col = total-1; col >= 0; --col) {
217 int is_zero1 = row >= bset1->n_eq ||
218 isl_int_is_zero(bset1->eq[row][col]);
219 int is_zero2 = row >= bset2->n_eq ||
220 isl_int_is_zero(bset2->eq[row][col]);
221 if (!is_zero1 && !is_zero2) {
222 set_common_multiple(bset1, bset2, row, col);
223 ++row;
224 } else if (!is_zero1 && is_zero2) {
225 construct_column(bset1, bset2, row, col);
226 } else if (is_zero1 && !is_zero2) {
227 construct_column(bset2, bset1, row, col);
228 } else {
229 if (transform_column(bset1, bset2, row, col))
230 --row;
233 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
234 isl_basic_set_free(bset2);
235 bset1 = isl_basic_set_normalize_constraints(bset1);
236 return bset1;
237 error:
238 isl_basic_set_free(bset1);
239 isl_basic_set_free(bset2);
240 return NULL;
243 /* Find an integer point in the set represented by "tab"
244 * that lies outside of the equality "eq" e(x) = 0.
245 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
246 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
247 * The point, if found, is returned.
248 * If no point can be found, a zero-length vector is returned.
250 * Before solving an ILP problem, we first check if simply
251 * adding the normal of the constraint to one of the known
252 * integer points in the basic set represented by "tab"
253 * yields another point inside the basic set.
255 * The caller of this function ensures that the tableau is bounded or
256 * that tab->basis and tab->n_unbounded have been set appropriately.
258 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
260 struct isl_ctx *ctx;
261 struct isl_vec *sample = NULL;
262 struct isl_tab_undo *snap;
263 unsigned dim;
265 if (!tab)
266 return NULL;
267 ctx = tab->mat->ctx;
269 dim = tab->n_var;
270 sample = isl_vec_alloc(ctx, 1 + dim);
271 if (!sample)
272 return NULL;
273 isl_int_set_si(sample->el[0], 1);
274 isl_seq_combine(sample->el + 1,
275 ctx->one, tab->bmap->sample->el + 1,
276 up ? ctx->one : ctx->negone, eq + 1, dim);
277 if (isl_basic_map_contains(tab->bmap, sample))
278 return sample;
279 isl_vec_free(sample);
280 sample = NULL;
282 snap = isl_tab_snap(tab);
284 if (!up)
285 isl_seq_neg(eq, eq, 1 + dim);
286 isl_int_sub_ui(eq[0], eq[0], 1);
288 if (isl_tab_extend_cons(tab, 1) < 0)
289 goto error;
290 if (isl_tab_add_ineq(tab, eq) < 0)
291 goto error;
293 sample = isl_tab_sample(tab);
295 isl_int_add_ui(eq[0], eq[0], 1);
296 if (!up)
297 isl_seq_neg(eq, eq, 1 + dim);
299 if (sample && isl_tab_rollback(tab, snap) < 0)
300 goto error;
302 return sample;
303 error:
304 isl_vec_free(sample);
305 return NULL;
308 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
310 int i;
312 bset = isl_basic_set_cow(bset);
313 if (!bset)
314 return NULL;
315 isl_assert(bset->ctx, bset->n_div == 0, goto error);
317 for (i = 0; i < bset->n_eq; ++i)
318 isl_int_set_si(bset->eq[i][0], 0);
320 for (i = 0; i < bset->n_ineq; ++i)
321 isl_int_set_si(bset->ineq[i][0], 0);
323 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
324 return isl_basic_set_implicit_equalities(bset);
325 error:
326 isl_basic_set_free(bset);
327 return NULL;
330 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
332 int i;
334 if (!set)
335 return NULL;
336 if (set->n == 0)
337 return set;
339 set = isl_set_remove_divs(set);
340 set = isl_set_cow(set);
341 if (!set)
342 return NULL;
344 for (i = 0; i < set->n; ++i) {
345 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
346 if (!set->p[i])
347 goto error;
350 return set;
351 error:
352 isl_set_free(set);
353 return NULL;
356 /* Move "sample" to a point that is one up (or down) from the original
357 * point in dimension "pos".
359 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
361 if (up)
362 isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
363 else
364 isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
367 /* Check if any points that are adjacent to "sample" also belong to "bset".
368 * If so, add them to "hull" and return the updated hull.
370 * Before checking whether and adjacent point belongs to "bset", we first
371 * check whether it already belongs to "hull" as this test is typically
372 * much cheaper.
374 static __isl_give isl_basic_set *add_adjacent_points(
375 __isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
376 __isl_keep isl_basic_set *bset)
378 int i, up;
379 int dim;
381 if (!sample)
382 goto error;
384 dim = isl_basic_set_dim(hull, isl_dim_set);
386 for (i = 0; i < dim; ++i) {
387 for (up = 0; up <= 1; ++up) {
388 int contains;
389 isl_basic_set *point;
391 adjacent_point(sample, i, up);
392 contains = isl_basic_set_contains(hull, sample);
393 if (contains < 0)
394 goto error;
395 if (contains) {
396 adjacent_point(sample, i, !up);
397 continue;
399 contains = isl_basic_set_contains(bset, sample);
400 if (contains < 0)
401 goto error;
402 if (contains) {
403 point = isl_basic_set_from_vec(
404 isl_vec_copy(sample));
405 hull = affine_hull(hull, point);
407 adjacent_point(sample, i, !up);
408 if (contains)
409 break;
413 isl_vec_free(sample);
415 return hull;
416 error:
417 isl_vec_free(sample);
418 isl_basic_set_free(hull);
419 return NULL;
422 /* Extend an initial (under-)approximation of the affine hull of basic
423 * set represented by the tableau "tab"
424 * by looking for points that do not satisfy one of the equalities
425 * in the current approximation and adding them to that approximation
426 * until no such points can be found any more.
428 * The caller of this function ensures that "tab" is bounded or
429 * that tab->basis and tab->n_unbounded have been set appropriately.
431 * "bset" may be either NULL or the basic set represented by "tab".
432 * If "bset" is not NULL, we check for any point we find if any
433 * of its adjacent points also belong to "bset".
435 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
436 __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
438 int i, j;
439 unsigned dim;
441 if (!tab || !hull)
442 goto error;
444 dim = tab->n_var;
446 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
447 goto error;
449 for (i = 0; i < dim; ++i) {
450 struct isl_vec *sample;
451 struct isl_basic_set *point;
452 for (j = 0; j < hull->n_eq; ++j) {
453 sample = outside_point(tab, hull->eq[j], 1);
454 if (!sample)
455 goto error;
456 if (sample->size > 0)
457 break;
458 isl_vec_free(sample);
459 sample = outside_point(tab, hull->eq[j], 0);
460 if (!sample)
461 goto error;
462 if (sample->size > 0)
463 break;
464 isl_vec_free(sample);
466 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
467 goto error;
469 if (j == hull->n_eq)
470 break;
471 if (tab->samples)
472 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
473 if (!tab)
474 goto error;
475 if (bset)
476 hull = add_adjacent_points(hull, isl_vec_copy(sample),
477 bset);
478 point = isl_basic_set_from_vec(sample);
479 hull = affine_hull(hull, point);
480 if (!hull)
481 return NULL;
484 return hull;
485 error:
486 isl_basic_set_free(hull);
487 return NULL;
490 /* Drop all constraints in bmap that involve any of the dimensions
491 * first to first+n-1.
493 static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving(
494 __isl_take isl_basic_map *bmap, unsigned first, unsigned n)
496 int i;
498 if (n == 0)
499 return bmap;
501 bmap = isl_basic_map_cow(bmap);
503 if (!bmap)
504 return NULL;
506 for (i = bmap->n_eq - 1; i >= 0; --i) {
507 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1)
508 continue;
509 isl_basic_map_drop_equality(bmap, i);
512 for (i = bmap->n_ineq - 1; i >= 0; --i) {
513 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1)
514 continue;
515 isl_basic_map_drop_inequality(bmap, i);
518 return bmap;
521 /* Drop all constraints in bset that involve any of the dimensions
522 * first to first+n-1.
524 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
525 __isl_take isl_basic_set *bset, unsigned first, unsigned n)
527 return isl_basic_map_drop_constraints_involving(bset, first, n);
530 /* Drop all constraints in bmap that do not involve any of the dimensions
531 * first to first + n - 1 of the given type.
533 __isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims(
534 __isl_take isl_basic_map *bmap,
535 enum isl_dim_type type, unsigned first, unsigned n)
537 int i;
538 unsigned dim;
540 if (n == 0)
541 return isl_basic_map_set_to_empty(bmap);
542 bmap = isl_basic_map_cow(bmap);
543 if (!bmap)
544 return NULL;
546 dim = isl_basic_map_dim(bmap, type);
547 if (first + n > dim || first + n < first)
548 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
549 "index out of bounds", return isl_basic_map_free(bmap));
551 first += isl_basic_map_offset(bmap, type) - 1;
553 for (i = bmap->n_eq - 1; i >= 0; --i) {
554 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) != -1)
555 continue;
556 isl_basic_map_drop_equality(bmap, i);
559 for (i = bmap->n_ineq - 1; i >= 0; --i) {
560 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) != -1)
561 continue;
562 isl_basic_map_drop_inequality(bmap, i);
565 return bmap;
568 /* Drop all constraints in bset that do not involve any of the dimensions
569 * first to first + n - 1 of the given type.
571 __isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims(
572 __isl_take isl_basic_set *bset,
573 enum isl_dim_type type, unsigned first, unsigned n)
575 return isl_basic_map_drop_constraints_not_involving_dims(bset,
576 type, first, n);
579 /* Drop all constraints in bmap that involve any of the dimensions
580 * first to first + n - 1 of the given type.
582 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims(
583 __isl_take isl_basic_map *bmap,
584 enum isl_dim_type type, unsigned first, unsigned n)
586 unsigned dim;
588 if (!bmap)
589 return NULL;
590 if (n == 0)
591 return bmap;
593 dim = isl_basic_map_dim(bmap, type);
594 if (first + n > dim || first + n < first)
595 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
596 "index out of bounds", return isl_basic_map_free(bmap));
598 bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n);
599 first += isl_basic_map_offset(bmap, type) - 1;
600 return isl_basic_map_drop_constraints_involving(bmap, first, n);
603 /* Drop all constraints in bset that involve any of the dimensions
604 * first to first + n - 1 of the given type.
606 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims(
607 __isl_take isl_basic_set *bset,
608 enum isl_dim_type type, unsigned first, unsigned n)
610 return isl_basic_map_drop_constraints_involving_dims(bset,
611 type, first, n);
614 /* Drop all constraints in map that involve any of the dimensions
615 * first to first + n - 1 of the given type.
617 __isl_give isl_map *isl_map_drop_constraints_involving_dims(
618 __isl_take isl_map *map,
619 enum isl_dim_type type, unsigned first, unsigned n)
621 int i;
622 unsigned dim;
624 if (!map)
625 return NULL;
626 if (n == 0)
627 return map;
629 dim = isl_map_dim(map, type);
630 if (first + n > dim || first + n < first)
631 isl_die(isl_map_get_ctx(map), isl_error_invalid,
632 "index out of bounds", return isl_map_free(map));
634 map = isl_map_cow(map);
635 if (!map)
636 return NULL;
638 for (i = 0; i < map->n; ++i) {
639 map->p[i] = isl_basic_map_drop_constraints_involving_dims(
640 map->p[i], type, first, n);
641 if (!map->p[i])
642 return isl_map_free(map);
645 return map;
648 /* Drop all constraints in set that involve any of the dimensions
649 * first to first + n - 1 of the given type.
651 __isl_give isl_set *isl_set_drop_constraints_involving_dims(
652 __isl_take isl_set *set,
653 enum isl_dim_type type, unsigned first, unsigned n)
655 return isl_map_drop_constraints_involving_dims(set, type, first, n);
658 /* Construct an initial underapproximatino of the hull of "bset"
659 * from "sample" and any of its adjacent points that also belong to "bset".
661 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
662 __isl_take isl_vec *sample)
664 isl_basic_set *hull;
666 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
667 hull = add_adjacent_points(hull, sample, bset);
669 return hull;
672 /* Look for all equalities satisfied by the integer points in bset,
673 * which is assumed to be bounded.
675 * The equalities are obtained by successively looking for
676 * a point that is affinely independent of the points found so far.
677 * In particular, for each equality satisfied by the points so far,
678 * we check if there is any point on a hyperplane parallel to the
679 * corresponding hyperplane shifted by at least one (in either direction).
681 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
683 struct isl_vec *sample = NULL;
684 struct isl_basic_set *hull;
685 struct isl_tab *tab = NULL;
686 unsigned dim;
688 if (isl_basic_set_plain_is_empty(bset))
689 return bset;
691 dim = isl_basic_set_n_dim(bset);
693 if (bset->sample && bset->sample->size == 1 + dim) {
694 int contains = isl_basic_set_contains(bset, bset->sample);
695 if (contains < 0)
696 goto error;
697 if (contains) {
698 if (dim == 0)
699 return bset;
700 sample = isl_vec_copy(bset->sample);
701 } else {
702 isl_vec_free(bset->sample);
703 bset->sample = NULL;
707 tab = isl_tab_from_basic_set(bset, 1);
708 if (!tab)
709 goto error;
710 if (tab->empty) {
711 isl_tab_free(tab);
712 isl_vec_free(sample);
713 return isl_basic_set_set_to_empty(bset);
716 if (!sample) {
717 struct isl_tab_undo *snap;
718 snap = isl_tab_snap(tab);
719 sample = isl_tab_sample(tab);
720 if (isl_tab_rollback(tab, snap) < 0)
721 goto error;
722 isl_vec_free(tab->bmap->sample);
723 tab->bmap->sample = isl_vec_copy(sample);
726 if (!sample)
727 goto error;
728 if (sample->size == 0) {
729 isl_tab_free(tab);
730 isl_vec_free(sample);
731 return isl_basic_set_set_to_empty(bset);
734 hull = initialize_hull(bset, sample);
736 hull = extend_affine_hull(tab, hull, bset);
737 isl_basic_set_free(bset);
738 isl_tab_free(tab);
740 return hull;
741 error:
742 isl_vec_free(sample);
743 isl_tab_free(tab);
744 isl_basic_set_free(bset);
745 return NULL;
748 /* Given an unbounded tableau and an integer point satisfying the tableau,
749 * construct an initial affine hull containing the recession cone
750 * shifted to the given point.
752 * The unbounded directions are taken from the last rows of the basis,
753 * which is assumed to have been initialized appropriately.
755 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
756 __isl_take isl_vec *vec)
758 int i;
759 int k;
760 struct isl_basic_set *bset = NULL;
761 struct isl_ctx *ctx;
762 unsigned dim;
764 if (!vec || !tab)
765 return NULL;
766 ctx = vec->ctx;
767 isl_assert(ctx, vec->size != 0, goto error);
769 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
770 if (!bset)
771 goto error;
772 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
773 for (i = 0; i < dim; ++i) {
774 k = isl_basic_set_alloc_equality(bset);
775 if (k < 0)
776 goto error;
777 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
778 vec->size - 1);
779 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
780 vec->size - 1, &bset->eq[k][0]);
781 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
783 bset->sample = vec;
784 bset = isl_basic_set_gauss(bset, NULL);
786 return bset;
787 error:
788 isl_basic_set_free(bset);
789 isl_vec_free(vec);
790 return NULL;
793 /* Given a tableau of a set and a tableau of the corresponding
794 * recession cone, detect and add all equalities to the tableau.
795 * If the tableau is bounded, then we can simply keep the
796 * tableau in its state after the return from extend_affine_hull.
797 * However, if the tableau is unbounded, then
798 * isl_tab_set_initial_basis_with_cone will add some additional
799 * constraints to the tableau that have to be removed again.
800 * In this case, we therefore rollback to the state before
801 * any constraints were added and then add the equalities back in.
803 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
804 struct isl_tab *tab_cone)
806 int j;
807 struct isl_vec *sample;
808 struct isl_basic_set *hull;
809 struct isl_tab_undo *snap;
811 if (!tab || !tab_cone)
812 goto error;
814 snap = isl_tab_snap(tab);
816 isl_mat_free(tab->basis);
817 tab->basis = NULL;
819 isl_assert(tab->mat->ctx, tab->bmap, goto error);
820 isl_assert(tab->mat->ctx, tab->samples, goto error);
821 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
822 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
824 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
825 goto error;
827 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
828 if (!sample)
829 goto error;
831 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
833 isl_vec_free(tab->bmap->sample);
834 tab->bmap->sample = isl_vec_copy(sample);
836 if (tab->n_unbounded == 0)
837 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
838 else
839 hull = initial_hull(tab, isl_vec_copy(sample));
841 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
842 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
843 hull = affine_hull(hull,
844 isl_basic_set_from_vec(isl_vec_copy(sample)));
847 isl_vec_free(sample);
849 hull = extend_affine_hull(tab, hull, NULL);
850 if (!hull)
851 goto error;
853 if (tab->n_unbounded == 0) {
854 isl_basic_set_free(hull);
855 return tab;
858 if (isl_tab_rollback(tab, snap) < 0)
859 goto error;
861 if (hull->n_eq > tab->n_zero) {
862 for (j = 0; j < hull->n_eq; ++j) {
863 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
864 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
865 goto error;
869 isl_basic_set_free(hull);
871 return tab;
872 error:
873 isl_tab_free(tab);
874 return NULL;
877 /* Compute the affine hull of "bset", where "cone" is the recession cone
878 * of "bset".
880 * We first compute a unimodular transformation that puts the unbounded
881 * directions in the last dimensions. In particular, we take a transformation
882 * that maps all equalities to equalities (in HNF) on the first dimensions.
883 * Let x be the original dimensions and y the transformed, with y_1 bounded
884 * and y_2 unbounded.
886 * [ y_1 ] [ y_1 ] [ Q_1 ]
887 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
889 * Let's call the input basic set S. We compute S' = preimage(S, U)
890 * and drop the final dimensions including any constraints involving them.
891 * This results in set S''.
892 * Then we compute the affine hull A'' of S''.
893 * Let F y_1 >= g be the constraint system of A''. In the transformed
894 * space the y_2 are unbounded, so we can add them back without any constraints,
895 * resulting in
897 * [ y_1 ]
898 * [ F 0 ] [ y_2 ] >= g
899 * or
900 * [ Q_1 ]
901 * [ F 0 ] [ Q_2 ] x >= g
902 * or
903 * F Q_1 x >= g
905 * The affine hull in the original space is then obtained as
906 * A = preimage(A'', Q_1).
908 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
909 struct isl_basic_set *cone)
911 unsigned total;
912 unsigned cone_dim;
913 struct isl_basic_set *hull;
914 struct isl_mat *M, *U, *Q;
916 if (!bset || !cone)
917 goto error;
919 total = isl_basic_set_total_dim(cone);
920 cone_dim = total - cone->n_eq;
922 M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
923 M = isl_mat_left_hermite(M, 0, &U, &Q);
924 if (!M)
925 goto error;
926 isl_mat_free(M);
928 U = isl_mat_lin_to_aff(U);
929 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
931 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
932 cone_dim);
933 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
935 Q = isl_mat_lin_to_aff(Q);
936 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
938 if (bset && bset->sample && bset->sample->size == 1 + total)
939 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
941 hull = uset_affine_hull_bounded(bset);
943 if (!hull)
944 isl_mat_free(U);
945 else {
946 struct isl_vec *sample = isl_vec_copy(hull->sample);
947 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
948 if (sample && sample->size > 0)
949 sample = isl_mat_vec_product(U, sample);
950 else
951 isl_mat_free(U);
952 hull = isl_basic_set_preimage(hull, Q);
953 if (hull) {
954 isl_vec_free(hull->sample);
955 hull->sample = sample;
956 } else
957 isl_vec_free(sample);
960 isl_basic_set_free(cone);
962 return hull;
963 error:
964 isl_basic_set_free(bset);
965 isl_basic_set_free(cone);
966 return NULL;
969 /* Look for all equalities satisfied by the integer points in bset,
970 * which is assumed not to have any explicit equalities.
972 * The equalities are obtained by successively looking for
973 * a point that is affinely independent of the points found so far.
974 * In particular, for each equality satisfied by the points so far,
975 * we check if there is any point on a hyperplane parallel to the
976 * corresponding hyperplane shifted by at least one (in either direction).
978 * Before looking for any outside points, we first compute the recession
979 * cone. The directions of this recession cone will always be part
980 * of the affine hull, so there is no need for looking for any points
981 * in these directions.
982 * In particular, if the recession cone is full-dimensional, then
983 * the affine hull is simply the whole universe.
985 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
987 struct isl_basic_set *cone;
989 if (isl_basic_set_plain_is_empty(bset))
990 return bset;
992 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
993 if (!cone)
994 goto error;
995 if (cone->n_eq == 0) {
996 struct isl_basic_set *hull;
997 isl_basic_set_free(cone);
998 hull = isl_basic_set_universe_like(bset);
999 isl_basic_set_free(bset);
1000 return hull;
1003 if (cone->n_eq < isl_basic_set_total_dim(cone))
1004 return affine_hull_with_cone(bset, cone);
1006 isl_basic_set_free(cone);
1007 return uset_affine_hull_bounded(bset);
1008 error:
1009 isl_basic_set_free(bset);
1010 return NULL;
1013 /* Look for all equalities satisfied by the integer points in bmap
1014 * that are independent of the equalities already explicitly available
1015 * in bmap.
1017 * We first remove all equalities already explicitly available,
1018 * then look for additional equalities in the reduced space
1019 * and then transform the result to the original space.
1020 * The original equalities are _not_ added to this set. This is
1021 * the responsibility of the calling function.
1022 * The resulting basic set has all meaning about the dimensions removed.
1023 * In particular, dimensions that correspond to existential variables
1024 * in bmap and that are found to be fixed are not removed.
1026 static struct isl_basic_set *equalities_in_underlying_set(
1027 struct isl_basic_map *bmap)
1029 struct isl_mat *T1 = NULL;
1030 struct isl_mat *T2 = NULL;
1031 struct isl_basic_set *bset = NULL;
1032 struct isl_basic_set *hull = NULL;
1034 bset = isl_basic_map_underlying_set(bmap);
1035 if (!bset)
1036 return NULL;
1037 if (bset->n_eq)
1038 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
1039 if (!bset)
1040 goto error;
1042 hull = uset_affine_hull(bset);
1043 if (!T2)
1044 return hull;
1046 if (!hull) {
1047 isl_mat_free(T1);
1048 isl_mat_free(T2);
1049 } else {
1050 struct isl_vec *sample = isl_vec_copy(hull->sample);
1051 if (sample && sample->size > 0)
1052 sample = isl_mat_vec_product(T1, sample);
1053 else
1054 isl_mat_free(T1);
1055 hull = isl_basic_set_preimage(hull, T2);
1056 if (hull) {
1057 isl_vec_free(hull->sample);
1058 hull->sample = sample;
1059 } else
1060 isl_vec_free(sample);
1063 return hull;
1064 error:
1065 isl_mat_free(T2);
1066 isl_basic_set_free(bset);
1067 isl_basic_set_free(hull);
1068 return NULL;
1071 /* Detect and make explicit all equalities satisfied by the (integer)
1072 * points in bmap.
1074 struct isl_basic_map *isl_basic_map_detect_equalities(
1075 struct isl_basic_map *bmap)
1077 int i, j;
1078 struct isl_basic_set *hull = NULL;
1080 if (!bmap)
1081 return NULL;
1082 if (bmap->n_ineq == 0)
1083 return bmap;
1084 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1085 return bmap;
1086 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
1087 return bmap;
1088 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
1089 return isl_basic_map_implicit_equalities(bmap);
1091 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
1092 if (!hull)
1093 goto error;
1094 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
1095 isl_basic_set_free(hull);
1096 return isl_basic_map_set_to_empty(bmap);
1098 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
1099 hull->n_eq, 0);
1100 for (i = 0; i < hull->n_eq; ++i) {
1101 j = isl_basic_map_alloc_equality(bmap);
1102 if (j < 0)
1103 goto error;
1104 isl_seq_cpy(bmap->eq[j], hull->eq[i],
1105 1 + isl_basic_set_total_dim(hull));
1107 isl_vec_free(bmap->sample);
1108 bmap->sample = isl_vec_copy(hull->sample);
1109 isl_basic_set_free(hull);
1110 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
1111 bmap = isl_basic_map_simplify(bmap);
1112 return isl_basic_map_finalize(bmap);
1113 error:
1114 isl_basic_set_free(hull);
1115 isl_basic_map_free(bmap);
1116 return NULL;
1119 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1120 __isl_take isl_basic_set *bset)
1122 return (isl_basic_set *)
1123 isl_basic_map_detect_equalities((isl_basic_map *)bset);
1126 __isl_give isl_map *isl_map_inline_foreach_basic_map(__isl_take isl_map *map,
1127 __isl_give isl_basic_map *(*fn)(__isl_take isl_basic_map *bmap))
1129 struct isl_basic_map *bmap;
1130 int i;
1132 if (!map)
1133 return NULL;
1135 for (i = 0; i < map->n; ++i) {
1136 bmap = isl_basic_map_copy(map->p[i]);
1137 bmap = fn(bmap);
1138 if (!bmap)
1139 goto error;
1140 isl_basic_map_free(map->p[i]);
1141 map->p[i] = bmap;
1144 return map;
1145 error:
1146 isl_map_free(map);
1147 return NULL;
1150 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
1152 return isl_map_inline_foreach_basic_map(map,
1153 &isl_basic_map_detect_equalities);
1156 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
1158 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
1161 /* After computing the rational affine hull (by detecting the implicit
1162 * equalities), we compute the additional equalities satisfied by
1163 * the integer points (if any) and add the original equalities back in.
1165 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
1167 bmap = isl_basic_map_detect_equalities(bmap);
1168 bmap = isl_basic_map_cow(bmap);
1169 if (bmap)
1170 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
1171 bmap = isl_basic_map_finalize(bmap);
1172 return bmap;
1175 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1177 return (struct isl_basic_set *)
1178 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
1181 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
1183 int i;
1184 struct isl_basic_map *model = NULL;
1185 struct isl_basic_map *hull = NULL;
1186 struct isl_set *set;
1188 map = isl_map_detect_equalities(map);
1189 map = isl_map_align_divs(map);
1191 if (!map)
1192 return NULL;
1194 if (map->n == 0) {
1195 hull = isl_basic_map_empty_like_map(map);
1196 isl_map_free(map);
1197 return hull;
1200 model = isl_basic_map_copy(map->p[0]);
1201 set = isl_map_underlying_set(map);
1202 set = isl_set_cow(set);
1203 if (!set)
1204 goto error;
1206 for (i = 0; i < set->n; ++i) {
1207 set->p[i] = isl_basic_set_cow(set->p[i]);
1208 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
1209 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
1210 if (!set->p[i])
1211 goto error;
1213 set = isl_set_remove_empty_parts(set);
1214 if (set->n == 0) {
1215 hull = isl_basic_map_empty_like(model);
1216 isl_basic_map_free(model);
1217 } else {
1218 struct isl_basic_set *bset;
1219 while (set->n > 1) {
1220 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1221 if (!set->p[0])
1222 goto error;
1224 bset = isl_basic_set_copy(set->p[0]);
1225 hull = isl_basic_map_overlying_set(bset, model);
1227 isl_set_free(set);
1228 hull = isl_basic_map_simplify(hull);
1229 return isl_basic_map_finalize(hull);
1230 error:
1231 isl_basic_map_free(model);
1232 isl_set_free(set);
1233 return NULL;
1236 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1238 return (struct isl_basic_set *)
1239 isl_map_affine_hull((struct isl_map *)set);