2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
15 #include <isl_dim_private.h>
16 #include <isl_morph.h>
17 #include <isl_vertices_private.h>
18 #include <isl_mat_private.h>
24 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
25 __isl_take isl_vertices
*vertices
);
27 __isl_give isl_vertices
*isl_vertices_copy(__isl_keep isl_vertices
*vertices
)
36 void isl_vertices_free(__isl_take isl_vertices
*vertices
)
43 if (--vertices
->ref
> 0)
46 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
47 isl_basic_set_free(vertices
->v
[i
].vertex
);
48 isl_basic_set_free(vertices
->v
[i
].dom
);
52 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
53 free(vertices
->c
[i
].vertices
);
54 isl_basic_set_free(vertices
->c
[i
].dom
);
58 isl_basic_set_free(vertices
->bset
);
62 struct isl_vertex_list
{
64 struct isl_vertex_list
*next
;
67 static void free_vertex_list(struct isl_vertex_list
*list
)
69 struct isl_vertex_list
*next
;
71 for (; list
; list
= next
) {
73 isl_basic_set_free(list
->v
.vertex
);
74 isl_basic_set_free(list
->v
.dom
);
79 static __isl_give isl_vertices
*vertices_from_list(__isl_keep isl_basic_set
*bset
,
80 int n_vertices
, struct isl_vertex_list
*list
)
83 struct isl_vertex_list
*next
;
84 isl_vertices
*vertices
;
86 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
90 vertices
->bset
= isl_basic_set_copy(bset
);
91 vertices
->v
= isl_alloc_array(bset
->ctx
, struct isl_vertex
, n_vertices
);
94 vertices
->n_vertices
= n_vertices
;
96 for (i
= 0; list
; list
= next
, i
++) {
98 vertices
->v
[i
] = list
->v
;
105 free_vertex_list(list
);
109 /* Prepend a vertex to the linked list "list" based on the equalities in "tab".
111 static int add_vertex(struct isl_vertex_list
**list
,
112 __isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
116 struct isl_vertex_list
*v
= NULL
;
118 if (isl_tab_detect_implicit_equalities(tab
) < 0)
121 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
122 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
124 v
= isl_calloc_type(tab
->mat
->ctx
, struct isl_vertex_list
);
128 v
->v
.vertex
= isl_basic_set_copy(bset
);
129 v
->v
.vertex
= isl_basic_set_cow(v
->v
.vertex
);
130 v
->v
.vertex
= isl_basic_set_update_from_tab(v
->v
.vertex
, tab
);
131 v
->v
.vertex
= isl_basic_set_simplify(v
->v
.vertex
);
132 v
->v
.vertex
= isl_basic_set_finalize(v
->v
.vertex
);
135 isl_assert(bset
->ctx
, v
->v
.vertex
->n_eq
>= nvar
, goto error
);
136 v
->v
.dom
= isl_basic_set_copy(v
->v
.vertex
);
137 v
->v
.dom
= isl_basic_set_project_out(v
->v
.dom
, isl_dim_set
, 0, nvar
);
150 /* Compute the parametric vertices and the chamber decomposition
151 * of an empty parametric polytope.
153 static __isl_give isl_vertices
*vertices_empty(__isl_keep isl_basic_set
*bset
)
155 isl_vertices
*vertices
;
161 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
163 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
166 vertices
->bset
= isl_basic_set_copy(bset
);
169 vertices
->n_vertices
= 0;
170 vertices
->n_chambers
= 0;
175 /* Compute the parametric vertices and the chamber decomposition
176 * of the parametric polytope defined using the same constraints
177 * as "bset" in the 0D case.
178 * There is exactly one 0D vertex and a single chamber containing
181 static __isl_give isl_vertices
*vertices_0D(__isl_keep isl_basic_set
*bset
)
183 isl_vertices
*vertices
;
189 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
191 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
195 vertices
->bset
= isl_basic_set_copy(bset
);
197 vertices
->v
= isl_calloc_array(bset
->ctx
, struct isl_vertex
, 1);
200 vertices
->n_vertices
= 1;
201 vertices
->v
[0].vertex
= isl_basic_set_copy(bset
);
202 if (!vertices
->v
[0].vertex
)
205 vertices
->c
= isl_calloc_array(bset
->ctx
, struct isl_chamber
, 1);
208 vertices
->n_chambers
= 1;
209 vertices
->c
[0].n_vertices
= 1;
210 vertices
->c
[0].vertices
= isl_calloc_array(bset
->ctx
, int, 1);
211 if (!vertices
->c
[0].vertices
)
213 vertices
->c
[0].dom
= isl_basic_set_copy(bset
);
214 if (!vertices
->c
[0].dom
)
219 isl_vertices_free(vertices
);
223 static int isl_mat_rank(__isl_keep isl_mat
*mat
)
228 H
= isl_mat_left_hermite(isl_mat_copy(mat
), 0, NULL
, NULL
);
232 for (col
= 0; col
< H
->n_col
; ++col
) {
233 for (row
= 0; row
< H
->n_row
; ++row
)
234 if (!isl_int_is_zero(H
->row
[row
][col
]))
245 /* Is the row pointed to by "f" linearly independent of the "n" first
248 static int is_independent(__isl_keep isl_mat
*facets
, int n
, isl_int
*f
)
252 if (isl_seq_first_non_zero(f
, facets
->n_col
) < 0)
255 isl_seq_cpy(facets
->row
[n
], f
, facets
->n_col
);
256 facets
->n_row
= n
+ 1;
257 rank
= isl_mat_rank(facets
);
261 return rank
== n
+ 1;
264 /* Check whether we can select constraint "level", given the current selection
265 * reflected by facets in "tab", the rows of "facets" and the earlier
266 * "selected" elements of "selection".
268 * If the constraint is (strictly) redundant in the tableau, selecting it would
269 * result in an empty tableau, so it can't be selected.
270 * If the set variable part of the constraint is not linearly indepedent
271 * of the set variable parts of the already selected constraints,
272 * the constraint cannot be selected.
273 * If selecting the constraint results in an empty tableau, the constraint
274 * cannot be selected.
275 * Finally, if selecting the constraint results in some explicitly
276 * deselected constraints turning into equalities, then the corresponding
277 * vertices have already been generated, so the constraint cannot be selected.
279 static int can_select(__isl_keep isl_basic_set
*bset
, int level
,
280 struct isl_tab
*tab
, __isl_keep isl_mat
*facets
, int selected
,
286 struct isl_tab_undo
*snap
;
288 if (isl_tab_is_redundant(tab
, level
))
291 ovar
= isl_dim_offset(bset
->dim
, isl_dim_set
);
293 indep
= is_independent(facets
, selected
, bset
->ineq
[level
] + 1 + ovar
);
299 snap
= isl_tab_snap(tab
);
300 if (isl_tab_select_facet(tab
, level
) < 0)
304 if (isl_tab_rollback(tab
, snap
) < 0)
309 for (i
= 0; i
< level
; ++i
) {
312 if (selection
[i
] != DESELECTED
)
315 if (isl_tab_is_equality(tab
, i
))
317 else if (isl_tab_is_redundant(tab
, i
))
320 sgn
= isl_tab_sign_of_max(tab
, i
);
324 if (isl_tab_rollback(tab
, snap
) < 0)
333 /* Compute the parametric vertices and the chamber decomposition
334 * of a parametric polytope that is not full-dimensional.
336 * Simply map the parametric polytope to a lower dimensional space
337 * and map the resulting vertices back.
339 static __isl_give isl_vertices
*lower_dim_vertices(
340 __isl_keep isl_basic_set
*bset
)
343 isl_vertices
*vertices
;
345 bset
= isl_basic_set_copy(bset
);
346 morph
= isl_basic_set_full_compression(bset
);
347 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
349 vertices
= isl_basic_set_compute_vertices(bset
);
350 isl_basic_set_free(bset
);
352 morph
= isl_morph_inverse(morph
);
354 vertices
= isl_morph_vertices(morph
, vertices
);
359 /* Compute the parametric vertices and the chamber decomposition
360 * of the parametric polytope defined using the same constraints
361 * as "bset". "bset" is assumed to have no existentially quantified
364 * The vertices themselves are computed in a fairly simplistic way.
365 * We simply run through all combinations of d constraints,
366 * with d the number of set variables, and check if those d constraints
367 * define a vertex. To avoid the generation of duplicate vertices,
368 * which we may happen if a vertex is defined by more that d constraints,
369 * we make sure we only generate the vertex for the d constraints with
372 * We set up a tableau and keep track of which facets have been
373 * selected. The tableau is marked strict_redundant so that we can be
374 * sure that any constraint that is marked redundant (and that is not
375 * also marked zero) is not an equality.
376 * If a constraint is marked DESELECTED, it means the constraint was
377 * SELECTED before (in combination with the same selection of earlier
378 * constraints). If such a deselected constraint turns out to be an
379 * equality, then any vertex that may still be found with the current
380 * selection has already been generated when the constraint was selected.
381 * A constraint is marked UNSELECTED when there is no way selecting
382 * the constraint could lead to a vertex (in combination with the current
383 * selection of earlier constraints).
385 * The set variable coefficients of the selected constraints are stored
386 * in the facets matrix.
388 __isl_give isl_vertices
*isl_basic_set_compute_vertices(
389 __isl_keep isl_basic_set
*bset
)
397 struct isl_tab_undo
**snap
;
399 struct isl_vertex_list
*list
= NULL
;
401 isl_vertices
*vertices
;
406 if (isl_basic_set_fast_is_empty(bset
))
407 return vertices_empty(bset
);
410 return lower_dim_vertices(bset
);
412 isl_assert(bset
->ctx
, isl_basic_set_dim(bset
, isl_dim_div
) == 0,
415 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
416 return vertices_0D(bset
);
418 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
420 bset
= isl_basic_set_copy(bset
);
421 bset
= isl_basic_set_set_rational(bset
);
425 tab
= isl_tab_from_basic_set(bset
);
428 tab
->strict_redundant
= 1;
431 vertices
= vertices_empty(bset
);
432 isl_basic_set_free(bset
);
437 selection
= isl_alloc_array(bset
->ctx
, int, bset
->n_ineq
);
438 snap
= isl_alloc_array(bset
->ctx
, struct isl_tab_undo
*, bset
->n_ineq
);
439 facets
= isl_mat_alloc(bset
->ctx
, nvar
, nvar
);
440 if (!selection
|| !snap
|| !facets
)
448 if (level
>= bset
->n_ineq
||
449 (!init
&& selection
[level
] != SELECTED
)) {
456 snap
[level
] = isl_tab_snap(tab
);
457 ok
= can_select(bset
, level
, tab
, facets
, selected
,
462 selection
[level
] = SELECTED
;
465 selection
[level
] = UNSELECTED
;
467 selection
[level
] = DESELECTED
;
469 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
472 if (selected
== nvar
) {
473 if (tab
->n_dead
== nvar
) {
474 if (add_vertex(&list
, bset
, tab
) < 0)
485 isl_mat_free(facets
);
491 vertices
= vertices_from_list(bset
, n_vertices
, list
);
493 vertices
= compute_chambers(bset
, vertices
);
497 isl_mat_free(facets
);
501 isl_basic_set_free(bset
);
505 struct isl_chamber_list
{
506 struct isl_chamber c
;
507 struct isl_chamber_list
*next
;
510 static void free_chamber_list(struct isl_chamber_list
*list
)
512 struct isl_chamber_list
*next
;
514 for (; list
; list
= next
) {
516 isl_basic_set_free(list
->c
.dom
);
517 free(list
->c
.vertices
);
522 /* Check whether the basic set "bset" is a superset of the basic set described
523 * by "tab", i.e., check whether all constraints of "bset" are redundant.
525 static int bset_covers_tab(__isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
532 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
533 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, bset
->ineq
[i
]);
535 case isl_ineq_error
: return -1;
536 case isl_ineq_redundant
: continue;
544 static __isl_give isl_vertices
*vertices_add_chambers(
545 __isl_take isl_vertices
*vertices
, int n_chambers
,
546 struct isl_chamber_list
*list
)
550 struct isl_chamber_list
*next
;
552 ctx
= isl_vertices_get_ctx(vertices
);
553 vertices
->c
= isl_alloc_array(ctx
, struct isl_chamber
, n_chambers
);
556 vertices
->n_chambers
= n_chambers
;
558 for (i
= 0; list
; list
= next
, i
++) {
560 vertices
->c
[i
] = list
->c
;
566 isl_vertices_free(vertices
);
567 free_chamber_list(list
);
571 /* Can "tab" be intersected with "bset" without resulting in
572 * a lower-dimensional set.
574 static int can_intersect(struct isl_tab
*tab
, __isl_keep isl_basic_set
*bset
)
577 struct isl_tab_undo
*snap
;
579 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
582 snap
= isl_tab_snap(tab
);
584 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
585 if (isl_tab_ineq_type(tab
, bset
->ineq
[i
]) == isl_ineq_redundant
)
587 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
591 if (isl_tab_detect_implicit_equalities(tab
) < 0)
594 if (isl_tab_rollback(tab
, snap
) < 0)
602 static int add_chamber(struct isl_chamber_list
**list
,
603 __isl_keep isl_vertices
*vertices
, struct isl_tab
*tab
, int *selection
)
608 struct isl_tab_undo
*snap
;
609 struct isl_chamber_list
*c
= NULL
;
611 for (i
= 0; i
< vertices
->n_vertices
; ++i
)
615 snap
= isl_tab_snap(tab
);
617 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
618 tab
->con
[i
].frozen
= 0;
621 if (isl_tab_detect_redundant(tab
) < 0)
624 c
= isl_calloc_type(tab
->mat
->ctx
, struct isl_chamber_list
);
627 c
->c
.vertices
= isl_alloc_array(tab
->mat
->ctx
, int, n_vertices
);
630 c
->c
.dom
= isl_basic_set_from_basic_map(isl_basic_map_copy(tab
->bmap
));
631 c
->c
.dom
= isl_basic_set_set_rational(c
->c
.dom
);
632 c
->c
.dom
= isl_basic_set_cow(c
->c
.dom
);
633 c
->c
.dom
= isl_basic_set_update_from_tab(c
->c
.dom
, tab
);
634 c
->c
.dom
= isl_basic_set_simplify(c
->c
.dom
);
635 c
->c
.dom
= isl_basic_set_finalize(c
->c
.dom
);
639 c
->c
.n_vertices
= n_vertices
;
641 for (i
= 0, j
= 0; i
< vertices
->n_vertices
; ++i
)
643 c
->c
.vertices
[j
] = i
;
650 for (i
= 0; i
< n_frozen
; ++i
)
651 tab
->con
[i
].frozen
= 1;
653 if (isl_tab_rollback(tab
, snap
) < 0)
658 free_chamber_list(c
);
662 struct isl_facet_todo
{
663 struct isl_tab
*tab
; /* A tableau representation of the facet */
664 isl_basic_set
*bset
; /* A normalized basic set representation */
665 isl_vec
*constraint
; /* Constraint pointing to the other side */
666 struct isl_facet_todo
*next
;
669 static void free_todo(struct isl_facet_todo
*todo
)
672 struct isl_facet_todo
*next
= todo
->next
;
674 isl_tab_free(todo
->tab
);
675 isl_basic_set_free(todo
->bset
);
676 isl_vec_free(todo
->constraint
);
683 static struct isl_facet_todo
*create_todo(struct isl_tab
*tab
, int con
)
687 struct isl_tab_undo
*snap
;
688 struct isl_facet_todo
*todo
;
690 snap
= isl_tab_snap(tab
);
692 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
693 tab
->con
[i
].frozen
= 0;
696 if (isl_tab_detect_redundant(tab
) < 0)
699 todo
= isl_calloc_type(tab
->mat
->ctx
, struct isl_facet_todo
);
703 todo
->constraint
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
704 if (!todo
->constraint
)
706 isl_seq_neg(todo
->constraint
->el
, tab
->bmap
->ineq
[con
], 1 + tab
->n_var
);
707 todo
->bset
= isl_basic_set_from_basic_map(isl_basic_map_copy(tab
->bmap
));
708 todo
->bset
= isl_basic_set_set_rational(todo
->bset
);
709 todo
->bset
= isl_basic_set_cow(todo
->bset
);
710 todo
->bset
= isl_basic_set_update_from_tab(todo
->bset
, tab
);
711 todo
->bset
= isl_basic_set_simplify(todo
->bset
);
712 todo
->bset
= isl_basic_set_sort_constraints(todo
->bset
);
715 ISL_F_SET(todo
->bset
, ISL_BASIC_SET_NORMALIZED
);
716 todo
->tab
= isl_tab_dup(tab
);
720 for (i
= 0; i
< n_frozen
; ++i
)
721 tab
->con
[i
].frozen
= 1;
723 if (isl_tab_rollback(tab
, snap
) < 0)
732 /* Create todo items for all interior facets of the chamber represented
733 * by "tab" and collect them in "next".
735 static int init_todo(struct isl_facet_todo
**next
, struct isl_tab
*tab
)
738 struct isl_tab_undo
*snap
;
739 struct isl_facet_todo
*todo
;
741 snap
= isl_tab_snap(tab
);
743 for (i
= 0; i
< tab
->n_con
; ++i
) {
744 if (tab
->con
[i
].frozen
)
746 if (tab
->con
[i
].is_redundant
)
749 if (isl_tab_select_facet(tab
, i
) < 0)
752 todo
= create_todo(tab
, i
);
759 if (isl_tab_rollback(tab
, snap
) < 0)
766 /* Does the linked list contain a todo item that is the opposite of "todo".
767 * If so, return 1 and remove the opposite todo item.
769 static int has_opposite(struct isl_facet_todo
*todo
,
770 struct isl_facet_todo
**list
)
772 for (; *list
; list
= &(*list
)->next
) {
774 eq
= isl_basic_set_fast_is_equal(todo
->bset
, (*list
)->bset
);
789 /* Create todo items for all interior facets of the chamber represented
790 * by "tab" and collect them in first->next, taking care to cancel
791 * opposite todo items.
793 static int update_todo(struct isl_facet_todo
*first
, struct isl_tab
*tab
)
796 struct isl_tab_undo
*snap
;
797 struct isl_facet_todo
*todo
;
799 snap
= isl_tab_snap(tab
);
801 for (i
= 0; i
< tab
->n_con
; ++i
) {
804 if (tab
->con
[i
].frozen
)
806 if (tab
->con
[i
].is_redundant
)
809 if (isl_tab_select_facet(tab
, i
) < 0)
812 todo
= create_todo(tab
, i
);
816 drop
= has_opposite(todo
, &first
->next
);
823 todo
->next
= first
->next
;
827 if (isl_tab_rollback(tab
, snap
) < 0)
834 /* Compute the chamber decomposition of the parametric polytope respresented
835 * by "bset" given the parametric vertices and their activity domains.
837 * We are only interested in full-dimensional chambers.
838 * Each of these chambers is the intersection of the activity domains of
839 * one or more vertices and the union of all chambers is equal to the
840 * projection of the entire parametric polytope onto the parameter space.
842 * We first create an initial chamber by intersecting as many activity
843 * domains as possible without ending up with an empty or lower-dimensional
844 * set. As a minor optimization, we only consider those activity domains
845 * that contain some arbitrary point.
847 * For each of interior facets of the chamber, we construct a todo item,
848 * containing the facet and a constraint containing the other side of the facet,
849 * for constructing the chamber on the other side.
850 * While their are any todo items left, we pick a todo item and
851 * create the required chamber by intersecting all activity domains
852 * that contain the facet and have a full-dimensional intersection with
853 * the other side of the facet. For each of the interior facets, we
854 * again create todo items, taking care to cancel opposite todo items.
856 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
857 __isl_take isl_vertices
*vertices
)
861 isl_vec
*sample
= NULL
;
862 struct isl_tab
*tab
= NULL
;
863 struct isl_tab_undo
*snap
;
865 int *selection
= NULL
;
867 struct isl_chamber_list
*list
= NULL
;
868 struct isl_facet_todo
*todo
= NULL
;
870 if (!bset
|| !vertices
)
873 ctx
= isl_vertices_get_ctx(vertices
);
874 selection
= isl_alloc_array(ctx
, int, vertices
->n_vertices
);
878 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
879 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, 0, nvar
);
881 tab
= isl_tab_from_basic_set(bset
);
882 for (i
= 0; i
< bset
->n_ineq
; ++i
)
883 if (isl_tab_freeze_constraint(tab
, i
) < 0)
885 if (isl_tab_track_bset(tab
, bset
) < 0)
888 snap
= isl_tab_snap(tab
);
890 sample
= isl_tab_get_sample_value(tab
);
892 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
893 selection
[i
] = isl_basic_set_contains(vertices
->v
[i
].dom
, sample
);
894 if (selection
[i
] < 0)
898 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
899 if (selection
[i
] < 0)
903 if (isl_tab_detect_redundant(tab
) < 0)
906 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
910 if (init_todo(&todo
, tab
) < 0)
914 struct isl_facet_todo
*next
;
916 if (isl_tab_rollback(tab
, snap
) < 0)
919 if (isl_tab_add_ineq(tab
, todo
->constraint
->el
) < 0)
921 if (isl_tab_freeze_constraint(tab
, tab
->n_con
- 1) < 0)
924 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
925 selection
[i
] = bset_covers_tab(vertices
->v
[i
].dom
,
927 if (selection
[i
] < 0)
931 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
932 if (selection
[i
] < 0)
936 if (isl_tab_detect_redundant(tab
) < 0)
939 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
943 if (update_todo(todo
, tab
) < 0)
952 isl_vec_free(sample
);
957 vertices
= vertices_add_chambers(vertices
, n_chambers
, list
);
959 for (i
= 0; vertices
&& i
< vertices
->n_vertices
; ++i
) {
960 isl_basic_set_free(vertices
->v
[i
].dom
);
961 vertices
->v
[i
].dom
= NULL
;
966 free_chamber_list(list
);
968 isl_vec_free(sample
);
972 isl_basic_set_free(bset
);
973 isl_vertices_free(vertices
);
977 isl_ctx
*isl_vertex_get_ctx(__isl_keep isl_vertex
*vertex
)
979 return vertex
? isl_vertices_get_ctx(vertex
->vertices
) : NULL
;
982 int isl_vertex_get_id(__isl_keep isl_vertex
*vertex
)
984 return vertex
? vertex
->id
: -1;
987 __isl_give isl_basic_set
*isl_vertex_get_domain(__isl_keep isl_vertex
*vertex
)
989 struct isl_vertex
*v
;
994 v
= &vertex
->vertices
->v
[vertex
->id
];
997 nvar
= isl_basic_set_dim(v
->vertex
, isl_dim_set
);
998 v
->dom
= isl_basic_set_copy(v
->vertex
);
999 v
->dom
= isl_basic_set_project_out(v
->dom
, isl_dim_set
, 0, nvar
);
1002 return isl_basic_set_copy(v
->dom
);
1005 __isl_give isl_basic_set
*isl_vertex_get_expr(__isl_keep isl_vertex
*vertex
)
1007 struct isl_vertex
*v
;
1012 v
= &vertex
->vertices
->v
[vertex
->id
];
1014 return isl_basic_set_copy(v
->vertex
);
1017 static __isl_give isl_vertex
*isl_vertex_alloc(__isl_take isl_vertices
*vertices
,
1026 ctx
= isl_vertices_get_ctx(vertices
);
1027 vertex
= isl_alloc_type(ctx
, isl_vertex
);
1031 vertex
->vertices
= vertices
;
1036 isl_vertices_free(vertices
);
1040 void isl_vertex_free(__isl_take isl_vertex
*vertex
)
1044 isl_vertices_free(vertex
->vertices
);
1048 __isl_give isl_basic_set
*isl_basic_set_set_integral(__isl_take isl_basic_set
*bset
)
1053 if (!ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
1056 bset
= isl_basic_set_cow(bset
);
1060 ISL_F_CLR(bset
, ISL_BASIC_MAP_RATIONAL
);
1062 return isl_basic_set_finalize(bset
);
1065 isl_ctx
*isl_cell_get_ctx(__isl_keep isl_cell
*cell
)
1067 return cell
? cell
->dom
->ctx
: NULL
;
1070 __isl_give isl_basic_set
*isl_cell_get_domain(__isl_keep isl_cell
*cell
)
1072 return cell
? isl_basic_set_copy(cell
->dom
) : NULL
;
1075 static __isl_give isl_cell
*isl_cell_alloc(__isl_take isl_vertices
*vertices
,
1076 __isl_take isl_basic_set
*dom
, int id
)
1079 isl_cell
*cell
= NULL
;
1081 if (!vertices
|| !dom
)
1084 cell
= isl_calloc_type(dom
->ctx
, isl_cell
);
1088 cell
->n_vertices
= vertices
->c
[id
].n_vertices
;
1089 cell
->ids
= isl_alloc_array(dom
->ctx
, int, cell
->n_vertices
);
1092 for (i
= 0; i
< cell
->n_vertices
; ++i
)
1093 cell
->ids
[i
] = vertices
->c
[id
].vertices
[i
];
1094 cell
->vertices
= vertices
;
1099 isl_cell_free(cell
);
1100 isl_vertices_free(vertices
);
1101 isl_basic_set_free(dom
);
1105 void isl_cell_free(__isl_take isl_cell
*cell
)
1110 isl_vertices_free(cell
->vertices
);
1112 isl_basic_set_free(cell
->dom
);
1116 /* Create a tableau of the cone obtained by first homogenizing the given
1117 * polytope and then making all inequalities strict by setting the
1118 * constant term to -1.
1120 static struct isl_tab
*tab_for_shifted_cone(__isl_keep isl_basic_set
*bset
)
1124 struct isl_tab
*tab
;
1128 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_ineq
+ 1,
1129 1 + isl_basic_set_total_dim(bset
), 0);
1132 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
1133 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_EMPTY
)) {
1134 if (isl_tab_mark_empty(tab
) < 0)
1139 c
= isl_vec_alloc(bset
->ctx
, 1 + 1 + isl_basic_set_total_dim(bset
));
1143 isl_int_set_si(c
->el
[0], 0);
1144 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1145 isl_seq_cpy(c
->el
+ 1, bset
->eq
[i
], c
->size
- 1);
1146 if (isl_tab_add_eq(tab
, c
->el
) < 0)
1150 isl_int_set_si(c
->el
[0], -1);
1151 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1152 isl_seq_cpy(c
->el
+ 1, bset
->ineq
[i
], c
->size
- 1);
1153 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1161 isl_seq_clr(c
->el
+ 1, c
->size
- 1);
1162 isl_int_set_si(c
->el
[1], 1);
1163 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1174 /* Compute an interior point of "bset" by selecting an interior
1175 * point in homogeneous space and projecting the point back down.
1177 static __isl_give isl_vec
*isl_basic_set_interior_point(
1178 __isl_keep isl_basic_set
*bset
)
1181 struct isl_tab
*tab
;
1183 tab
= tab_for_shifted_cone(bset
);
1184 vec
= isl_tab_get_sample_value(tab
);
1189 isl_seq_cpy(vec
->el
, vec
->el
+ 1, vec
->size
- 1);
1195 /* Call "fn" on all chambers of the parametric polytope with the shared
1196 * facets of neighboring chambers only appearing in one of the chambers.
1198 * We pick an interior point from one of the chambers and then make
1199 * all constraints that do not satisfy this point strict.
1201 int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices
*vertices
,
1202 int (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1212 if (vertices
->n_chambers
== 0)
1215 if (vertices
->n_chambers
== 1) {
1216 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[0].dom
);
1217 dom
= isl_basic_set_set_integral(dom
);
1218 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, 0);
1221 return fn(cell
, user
);
1224 vec
= isl_basic_set_interior_point(vertices
->c
[0].dom
);
1230 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1232 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1233 dom
= isl_basic_set_cow(dom
);
1236 for (j
= 0; i
&& j
< dom
->n_ineq
; ++j
) {
1237 isl_seq_inner_product(vec
->el
, dom
->ineq
[j
], vec
->size
,
1239 if (!isl_int_is_neg(v
))
1241 isl_int_sub_ui(dom
->ineq
[j
][0], dom
->ineq
[j
][0], 1);
1243 dom
= isl_basic_set_set_integral(dom
);
1244 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1262 int isl_vertices_foreach_cell(__isl_keep isl_vertices
*vertices
,
1263 int (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1271 if (vertices
->n_chambers
== 0)
1274 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1276 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1278 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1290 int isl_vertices_foreach_vertex(__isl_keep isl_vertices
*vertices
,
1291 int (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1299 if (vertices
->n_vertices
== 0)
1302 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1305 vertex
= isl_vertex_alloc(isl_vertices_copy(vertices
), i
);
1309 r
= fn(vertex
, user
);
1317 int isl_cell_foreach_vertex(__isl_keep isl_cell
*cell
,
1318 int (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1326 if (cell
->n_vertices
== 0)
1329 for (i
= 0; i
< cell
->n_vertices
; ++i
) {
1332 vertex
= isl_vertex_alloc(isl_vertices_copy(cell
->vertices
),
1337 r
= fn(vertex
, user
);
1345 isl_ctx
*isl_vertices_get_ctx(__isl_keep isl_vertices
*vertices
)
1347 return vertices
? vertices
->bset
->ctx
: NULL
;
1350 int isl_vertices_get_n_vertices(__isl_keep isl_vertices
*vertices
)
1352 return vertices
? vertices
->n_vertices
: -1;
1355 __isl_give isl_vertices
*isl_morph_vertices(__isl_take isl_morph
*morph
,
1356 __isl_take isl_vertices
*vertices
)
1359 isl_morph
*param_morph
= NULL
;
1361 if (!morph
|| !vertices
)
1364 isl_assert(vertices
->bset
->ctx
, vertices
->ref
== 1, goto error
);
1366 param_morph
= isl_morph_copy(morph
);
1367 param_morph
= isl_morph_remove_dom_dims(param_morph
, isl_dim_set
,
1368 0, isl_morph_dom_dim(morph
, isl_dim_set
));
1369 param_morph
= isl_morph_remove_ran_dims(param_morph
, isl_dim_set
,
1370 0, isl_morph_ran_dim(morph
, isl_dim_set
));
1372 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1373 vertices
->v
[i
].dom
= isl_morph_basic_set(
1374 isl_morph_copy(param_morph
), vertices
->v
[i
].dom
);
1375 vertices
->v
[i
].vertex
= isl_morph_basic_set(
1376 isl_morph_copy(morph
), vertices
->v
[i
].vertex
);
1377 if (!vertices
->v
[i
].vertex
)
1381 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1382 vertices
->c
[i
].dom
= isl_morph_basic_set(
1383 isl_morph_copy(param_morph
), vertices
->c
[i
].dom
);
1384 if (!vertices
->c
[i
].dom
)
1388 isl_morph_free(param_morph
);
1389 isl_morph_free(morph
);
1392 isl_morph_free(param_morph
);
1393 isl_morph_free(morph
);
1394 isl_vertices_free(vertices
);
1398 /* Construct a simplex isl_cell spanned by the vertices with indices in
1399 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1401 static int call_on_simplex(__isl_keep isl_cell
*cell
,
1402 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1403 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1407 struct isl_cell
*simplex
;
1409 ctx
= isl_cell_get_ctx(cell
);
1411 simplex
= isl_calloc_type(ctx
, struct isl_cell
);
1414 simplex
->vertices
= isl_vertices_copy(cell
->vertices
);
1415 if (!simplex
->vertices
)
1417 simplex
->dom
= isl_basic_set_copy(cell
->dom
);
1420 simplex
->n_vertices
= n_simplex
+ n_other
;
1421 simplex
->ids
= isl_alloc_array(ctx
, int, simplex
->n_vertices
);
1425 for (i
= 0; i
< n_simplex
; ++i
)
1426 simplex
->ids
[i
] = simplex_ids
[i
];
1427 for (i
= 0; i
< n_other
; ++i
)
1428 simplex
->ids
[n_simplex
+ i
] = other_ids
[i
];
1430 return fn(simplex
, user
);
1432 isl_cell_free(simplex
);
1436 /* Check whether the parametric vertex described by "vertex"
1437 * lies on the facet corresponding to constraint "facet" of "bset".
1438 * The isl_vec "v" is a temporary vector than can be used by this function.
1440 * We eliminate the variables from the facet constraint using the
1441 * equalities defining the vertex and check if the result is identical
1444 * It would probably be better to keep track of the constraints defining
1445 * a vertex during the vertex construction so that we could simply look
1448 static int vertex_on_facet(__isl_keep isl_basic_set
*vertex
,
1449 __isl_keep isl_basic_set
*bset
, int facet
, __isl_keep isl_vec
*v
)
1454 isl_seq_cpy(v
->el
, bset
->ineq
[facet
], v
->size
);
1457 for (i
= 0; i
< vertex
->n_eq
; ++i
) {
1458 int k
= isl_seq_last_non_zero(vertex
->eq
[i
], v
->size
);
1459 isl_seq_elim(v
->el
, vertex
->eq
[i
], k
, v
->size
, &m
);
1463 return isl_seq_first_non_zero(v
->el
, v
->size
) == -1;
1466 /* Triangulate the polytope spanned by the vertices with ids
1467 * in "simplex_ids" and "other_ids" and call "fn" on each of
1468 * the resulting simplices.
1469 * If the input polytope is already a simplex, we simply call "fn".
1470 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1471 * Then we consider each facet of "bset" that does not contain the point
1472 * we just picked, but does contain some of the other points in "other_ids"
1473 * and call ourselves recursively on the polytope spanned by the new
1474 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1476 static int triangulate(__isl_keep isl_cell
*cell
, __isl_keep isl_vec
*v
,
1477 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1478 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1484 isl_basic_set
*vertex
;
1485 isl_basic_set
*bset
;
1487 ctx
= isl_cell_get_ctx(cell
);
1488 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1489 nparam
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_param
);
1491 if (n_simplex
+ n_other
== d
+ 1)
1492 return call_on_simplex(cell
, simplex_ids
, n_simplex
,
1493 other_ids
, n_other
, fn
, user
);
1495 simplex_ids
[n_simplex
] = other_ids
[0];
1496 vertex
= cell
->vertices
->v
[other_ids
[0]].vertex
;
1497 bset
= cell
->vertices
->bset
;
1499 ids
= isl_alloc_array(ctx
, int, n_other
- 1);
1500 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1501 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + nparam
, d
) == -1)
1503 if (vertex_on_facet(vertex
, bset
, i
, v
))
1506 for (j
= 1, k
= 0; j
< n_other
; ++j
) {
1508 ov
= cell
->vertices
->v
[other_ids
[j
]].vertex
;
1509 if (vertex_on_facet(ov
, bset
, i
, v
))
1510 ids
[k
++] = other_ids
[j
];
1515 if (triangulate(cell
, v
, simplex_ids
, n_simplex
+ 1,
1516 ids
, k
, fn
, user
) < 0)
1527 /* Triangulate the given cell and call "fn" on each of the resulting
1530 int isl_cell_foreach_simplex(__isl_take isl_cell
*cell
,
1531 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1537 int *simplex_ids
= NULL
;
1542 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1543 total
= isl_basic_set_total_dim(cell
->vertices
->bset
);
1545 if (cell
->n_vertices
== d
+ 1)
1546 return fn(cell
, user
);
1548 ctx
= isl_cell_get_ctx(cell
);
1549 simplex_ids
= isl_alloc_array(ctx
, int, d
+ 1);
1553 v
= isl_vec_alloc(ctx
, 1 + total
);
1557 r
= triangulate(cell
, v
, simplex_ids
, 0,
1558 cell
->ids
, cell
->n_vertices
, fn
, user
);
1563 isl_cell_free(cell
);
1569 isl_cell_free(cell
);