isl_stream: maintain private ungetc buffer
[isl.git] / isl_tab.c
blobe45ee880ffc6d7ab94437050db846d5e48392412
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_mat_private.h>
11 #include "isl_map_private.h"
12 #include "isl_tab.h"
13 #include <isl/seq.h>
16 * The implementation of tableaus in this file was inspired by Section 8
17 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
18 * prover for program checking".
21 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
22 unsigned n_row, unsigned n_var, unsigned M)
24 int i;
25 struct isl_tab *tab;
26 unsigned off = 2 + M;
28 tab = isl_calloc_type(ctx, struct isl_tab);
29 if (!tab)
30 return NULL;
31 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
32 if (!tab->mat)
33 goto error;
34 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
35 if (!tab->var)
36 goto error;
37 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
38 if (!tab->con)
39 goto error;
40 tab->col_var = isl_alloc_array(ctx, int, n_var);
41 if (!tab->col_var)
42 goto error;
43 tab->row_var = isl_alloc_array(ctx, int, n_row);
44 if (!tab->row_var)
45 goto error;
46 for (i = 0; i < n_var; ++i) {
47 tab->var[i].index = i;
48 tab->var[i].is_row = 0;
49 tab->var[i].is_nonneg = 0;
50 tab->var[i].is_zero = 0;
51 tab->var[i].is_redundant = 0;
52 tab->var[i].frozen = 0;
53 tab->var[i].negated = 0;
54 tab->col_var[i] = i;
56 tab->n_row = 0;
57 tab->n_con = 0;
58 tab->n_eq = 0;
59 tab->max_con = n_row;
60 tab->n_col = n_var;
61 tab->n_var = n_var;
62 tab->max_var = n_var;
63 tab->n_param = 0;
64 tab->n_div = 0;
65 tab->n_dead = 0;
66 tab->n_redundant = 0;
67 tab->strict_redundant = 0;
68 tab->need_undo = 0;
69 tab->rational = 0;
70 tab->empty = 0;
71 tab->in_undo = 0;
72 tab->M = M;
73 tab->cone = 0;
74 tab->bottom.type = isl_tab_undo_bottom;
75 tab->bottom.next = NULL;
76 tab->top = &tab->bottom;
78 tab->n_zero = 0;
79 tab->n_unbounded = 0;
80 tab->basis = NULL;
82 return tab;
83 error:
84 isl_tab_free(tab);
85 return NULL;
88 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
90 unsigned off;
92 if (!tab)
93 return -1;
95 off = 2 + tab->M;
97 if (tab->max_con < tab->n_con + n_new) {
98 struct isl_tab_var *con;
100 con = isl_realloc_array(tab->mat->ctx, tab->con,
101 struct isl_tab_var, tab->max_con + n_new);
102 if (!con)
103 return -1;
104 tab->con = con;
105 tab->max_con += n_new;
107 if (tab->mat->n_row < tab->n_row + n_new) {
108 int *row_var;
110 tab->mat = isl_mat_extend(tab->mat,
111 tab->n_row + n_new, off + tab->n_col);
112 if (!tab->mat)
113 return -1;
114 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
115 int, tab->mat->n_row);
116 if (!row_var)
117 return -1;
118 tab->row_var = row_var;
119 if (tab->row_sign) {
120 enum isl_tab_row_sign *s;
121 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
122 enum isl_tab_row_sign, tab->mat->n_row);
123 if (!s)
124 return -1;
125 tab->row_sign = s;
128 return 0;
131 /* Make room for at least n_new extra variables.
132 * Return -1 if anything went wrong.
134 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
136 struct isl_tab_var *var;
137 unsigned off = 2 + tab->M;
139 if (tab->max_var < tab->n_var + n_new) {
140 var = isl_realloc_array(tab->mat->ctx, tab->var,
141 struct isl_tab_var, tab->n_var + n_new);
142 if (!var)
143 return -1;
144 tab->var = var;
145 tab->max_var += n_new;
148 if (tab->mat->n_col < off + tab->n_col + n_new) {
149 int *p;
151 tab->mat = isl_mat_extend(tab->mat,
152 tab->mat->n_row, off + tab->n_col + n_new);
153 if (!tab->mat)
154 return -1;
155 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
156 int, tab->n_col + n_new);
157 if (!p)
158 return -1;
159 tab->col_var = p;
162 return 0;
165 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
167 if (isl_tab_extend_cons(tab, n_new) >= 0)
168 return tab;
170 isl_tab_free(tab);
171 return NULL;
174 static void free_undo(struct isl_tab *tab)
176 struct isl_tab_undo *undo, *next;
178 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
179 next = undo->next;
180 free(undo);
182 tab->top = undo;
185 void isl_tab_free(struct isl_tab *tab)
187 if (!tab)
188 return;
189 free_undo(tab);
190 isl_mat_free(tab->mat);
191 isl_vec_free(tab->dual);
192 isl_basic_map_free(tab->bmap);
193 free(tab->var);
194 free(tab->con);
195 free(tab->row_var);
196 free(tab->col_var);
197 free(tab->row_sign);
198 isl_mat_free(tab->samples);
199 free(tab->sample_index);
200 isl_mat_free(tab->basis);
201 free(tab);
204 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
206 int i;
207 struct isl_tab *dup;
208 unsigned off;
210 if (!tab)
211 return NULL;
213 off = 2 + tab->M;
214 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
215 if (!dup)
216 return NULL;
217 dup->mat = isl_mat_dup(tab->mat);
218 if (!dup->mat)
219 goto error;
220 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
221 if (!dup->var)
222 goto error;
223 for (i = 0; i < tab->n_var; ++i)
224 dup->var[i] = tab->var[i];
225 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
226 if (!dup->con)
227 goto error;
228 for (i = 0; i < tab->n_con; ++i)
229 dup->con[i] = tab->con[i];
230 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
231 if (!dup->col_var)
232 goto error;
233 for (i = 0; i < tab->n_col; ++i)
234 dup->col_var[i] = tab->col_var[i];
235 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
236 if (!dup->row_var)
237 goto error;
238 for (i = 0; i < tab->n_row; ++i)
239 dup->row_var[i] = tab->row_var[i];
240 if (tab->row_sign) {
241 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
242 tab->mat->n_row);
243 if (!dup->row_sign)
244 goto error;
245 for (i = 0; i < tab->n_row; ++i)
246 dup->row_sign[i] = tab->row_sign[i];
248 if (tab->samples) {
249 dup->samples = isl_mat_dup(tab->samples);
250 if (!dup->samples)
251 goto error;
252 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
253 tab->samples->n_row);
254 if (!dup->sample_index)
255 goto error;
256 dup->n_sample = tab->n_sample;
257 dup->n_outside = tab->n_outside;
259 dup->n_row = tab->n_row;
260 dup->n_con = tab->n_con;
261 dup->n_eq = tab->n_eq;
262 dup->max_con = tab->max_con;
263 dup->n_col = tab->n_col;
264 dup->n_var = tab->n_var;
265 dup->max_var = tab->max_var;
266 dup->n_param = tab->n_param;
267 dup->n_div = tab->n_div;
268 dup->n_dead = tab->n_dead;
269 dup->n_redundant = tab->n_redundant;
270 dup->rational = tab->rational;
271 dup->empty = tab->empty;
272 dup->strict_redundant = 0;
273 dup->need_undo = 0;
274 dup->in_undo = 0;
275 dup->M = tab->M;
276 tab->cone = tab->cone;
277 dup->bottom.type = isl_tab_undo_bottom;
278 dup->bottom.next = NULL;
279 dup->top = &dup->bottom;
281 dup->n_zero = tab->n_zero;
282 dup->n_unbounded = tab->n_unbounded;
283 dup->basis = isl_mat_dup(tab->basis);
285 return dup;
286 error:
287 isl_tab_free(dup);
288 return NULL;
291 /* Construct the coefficient matrix of the product tableau
292 * of two tableaus.
293 * mat{1,2} is the coefficient matrix of tableau {1,2}
294 * row{1,2} is the number of rows in tableau {1,2}
295 * col{1,2} is the number of columns in tableau {1,2}
296 * off is the offset to the coefficient column (skipping the
297 * denominator, the constant term and the big parameter if any)
298 * r{1,2} is the number of redundant rows in tableau {1,2}
299 * d{1,2} is the number of dead columns in tableau {1,2}
301 * The order of the rows and columns in the result is as explained
302 * in isl_tab_product.
304 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
305 struct isl_mat *mat2, unsigned row1, unsigned row2,
306 unsigned col1, unsigned col2,
307 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
309 int i;
310 struct isl_mat *prod;
311 unsigned n;
313 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
314 off + col1 + col2);
315 if (!prod)
316 return NULL;
318 n = 0;
319 for (i = 0; i < r1; ++i) {
320 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
321 isl_seq_clr(prod->row[n + i] + off + d1, d2);
322 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
323 mat1->row[i] + off + d1, col1 - d1);
324 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
327 n += r1;
328 for (i = 0; i < r2; ++i) {
329 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
330 isl_seq_clr(prod->row[n + i] + off, d1);
331 isl_seq_cpy(prod->row[n + i] + off + d1,
332 mat2->row[i] + off, d2);
333 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
334 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
335 mat2->row[i] + off + d2, col2 - d2);
338 n += r2;
339 for (i = 0; i < row1 - r1; ++i) {
340 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
341 isl_seq_clr(prod->row[n + i] + off + d1, d2);
342 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
343 mat1->row[r1 + i] + off + d1, col1 - d1);
344 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
347 n += row1 - r1;
348 for (i = 0; i < row2 - r2; ++i) {
349 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
350 isl_seq_clr(prod->row[n + i] + off, d1);
351 isl_seq_cpy(prod->row[n + i] + off + d1,
352 mat2->row[r2 + i] + off, d2);
353 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
354 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
355 mat2->row[r2 + i] + off + d2, col2 - d2);
358 return prod;
361 /* Update the row or column index of a variable that corresponds
362 * to a variable in the first input tableau.
364 static void update_index1(struct isl_tab_var *var,
365 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
367 if (var->index == -1)
368 return;
369 if (var->is_row && var->index >= r1)
370 var->index += r2;
371 if (!var->is_row && var->index >= d1)
372 var->index += d2;
375 /* Update the row or column index of a variable that corresponds
376 * to a variable in the second input tableau.
378 static void update_index2(struct isl_tab_var *var,
379 unsigned row1, unsigned col1,
380 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
382 if (var->index == -1)
383 return;
384 if (var->is_row) {
385 if (var->index < r2)
386 var->index += r1;
387 else
388 var->index += row1;
389 } else {
390 if (var->index < d2)
391 var->index += d1;
392 else
393 var->index += col1;
397 /* Create a tableau that represents the Cartesian product of the sets
398 * represented by tableaus tab1 and tab2.
399 * The order of the rows in the product is
400 * - redundant rows of tab1
401 * - redundant rows of tab2
402 * - non-redundant rows of tab1
403 * - non-redundant rows of tab2
404 * The order of the columns is
405 * - denominator
406 * - constant term
407 * - coefficient of big parameter, if any
408 * - dead columns of tab1
409 * - dead columns of tab2
410 * - live columns of tab1
411 * - live columns of tab2
412 * The order of the variables and the constraints is a concatenation
413 * of order in the two input tableaus.
415 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
417 int i;
418 struct isl_tab *prod;
419 unsigned off;
420 unsigned r1, r2, d1, d2;
422 if (!tab1 || !tab2)
423 return NULL;
425 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
426 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
427 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
428 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
429 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
430 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
431 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
432 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
433 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
435 off = 2 + tab1->M;
436 r1 = tab1->n_redundant;
437 r2 = tab2->n_redundant;
438 d1 = tab1->n_dead;
439 d2 = tab2->n_dead;
440 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
441 if (!prod)
442 return NULL;
443 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
444 tab1->n_row, tab2->n_row,
445 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
446 if (!prod->mat)
447 goto error;
448 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
449 tab1->max_var + tab2->max_var);
450 if (!prod->var)
451 goto error;
452 for (i = 0; i < tab1->n_var; ++i) {
453 prod->var[i] = tab1->var[i];
454 update_index1(&prod->var[i], r1, r2, d1, d2);
456 for (i = 0; i < tab2->n_var; ++i) {
457 prod->var[tab1->n_var + i] = tab2->var[i];
458 update_index2(&prod->var[tab1->n_var + i],
459 tab1->n_row, tab1->n_col,
460 r1, r2, d1, d2);
462 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
463 tab1->max_con + tab2->max_con);
464 if (!prod->con)
465 goto error;
466 for (i = 0; i < tab1->n_con; ++i) {
467 prod->con[i] = tab1->con[i];
468 update_index1(&prod->con[i], r1, r2, d1, d2);
470 for (i = 0; i < tab2->n_con; ++i) {
471 prod->con[tab1->n_con + i] = tab2->con[i];
472 update_index2(&prod->con[tab1->n_con + i],
473 tab1->n_row, tab1->n_col,
474 r1, r2, d1, d2);
476 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
477 tab1->n_col + tab2->n_col);
478 if (!prod->col_var)
479 goto error;
480 for (i = 0; i < tab1->n_col; ++i) {
481 int pos = i < d1 ? i : i + d2;
482 prod->col_var[pos] = tab1->col_var[i];
484 for (i = 0; i < tab2->n_col; ++i) {
485 int pos = i < d2 ? d1 + i : tab1->n_col + i;
486 int t = tab2->col_var[i];
487 if (t >= 0)
488 t += tab1->n_var;
489 else
490 t -= tab1->n_con;
491 prod->col_var[pos] = t;
493 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
494 tab1->mat->n_row + tab2->mat->n_row);
495 if (!prod->row_var)
496 goto error;
497 for (i = 0; i < tab1->n_row; ++i) {
498 int pos = i < r1 ? i : i + r2;
499 prod->row_var[pos] = tab1->row_var[i];
501 for (i = 0; i < tab2->n_row; ++i) {
502 int pos = i < r2 ? r1 + i : tab1->n_row + i;
503 int t = tab2->row_var[i];
504 if (t >= 0)
505 t += tab1->n_var;
506 else
507 t -= tab1->n_con;
508 prod->row_var[pos] = t;
510 prod->samples = NULL;
511 prod->sample_index = NULL;
512 prod->n_row = tab1->n_row + tab2->n_row;
513 prod->n_con = tab1->n_con + tab2->n_con;
514 prod->n_eq = 0;
515 prod->max_con = tab1->max_con + tab2->max_con;
516 prod->n_col = tab1->n_col + tab2->n_col;
517 prod->n_var = tab1->n_var + tab2->n_var;
518 prod->max_var = tab1->max_var + tab2->max_var;
519 prod->n_param = 0;
520 prod->n_div = 0;
521 prod->n_dead = tab1->n_dead + tab2->n_dead;
522 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
523 prod->rational = tab1->rational;
524 prod->empty = tab1->empty || tab2->empty;
525 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
526 prod->need_undo = 0;
527 prod->in_undo = 0;
528 prod->M = tab1->M;
529 prod->cone = tab1->cone;
530 prod->bottom.type = isl_tab_undo_bottom;
531 prod->bottom.next = NULL;
532 prod->top = &prod->bottom;
534 prod->n_zero = 0;
535 prod->n_unbounded = 0;
536 prod->basis = NULL;
538 return prod;
539 error:
540 isl_tab_free(prod);
541 return NULL;
544 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
546 if (i >= 0)
547 return &tab->var[i];
548 else
549 return &tab->con[~i];
552 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
554 return var_from_index(tab, tab->row_var[i]);
557 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
559 return var_from_index(tab, tab->col_var[i]);
562 /* Check if there are any upper bounds on column variable "var",
563 * i.e., non-negative rows where var appears with a negative coefficient.
564 * Return 1 if there are no such bounds.
566 static int max_is_manifestly_unbounded(struct isl_tab *tab,
567 struct isl_tab_var *var)
569 int i;
570 unsigned off = 2 + tab->M;
572 if (var->is_row)
573 return 0;
574 for (i = tab->n_redundant; i < tab->n_row; ++i) {
575 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
576 continue;
577 if (isl_tab_var_from_row(tab, i)->is_nonneg)
578 return 0;
580 return 1;
583 /* Check if there are any lower bounds on column variable "var",
584 * i.e., non-negative rows where var appears with a positive coefficient.
585 * Return 1 if there are no such bounds.
587 static int min_is_manifestly_unbounded(struct isl_tab *tab,
588 struct isl_tab_var *var)
590 int i;
591 unsigned off = 2 + tab->M;
593 if (var->is_row)
594 return 0;
595 for (i = tab->n_redundant; i < tab->n_row; ++i) {
596 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
597 continue;
598 if (isl_tab_var_from_row(tab, i)->is_nonneg)
599 return 0;
601 return 1;
604 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
606 unsigned off = 2 + tab->M;
608 if (tab->M) {
609 int s;
610 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
611 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
612 s = isl_int_sgn(t);
613 if (s)
614 return s;
616 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
617 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
618 return isl_int_sgn(t);
621 /* Given the index of a column "c", return the index of a row
622 * that can be used to pivot the column in, with either an increase
623 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
624 * If "var" is not NULL, then the row returned will be different from
625 * the one associated with "var".
627 * Each row in the tableau is of the form
629 * x_r = a_r0 + \sum_i a_ri x_i
631 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
632 * impose any limit on the increase or decrease in the value of x_c
633 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
634 * for the row with the smallest (most stringent) such bound.
635 * Note that the common denominator of each row drops out of the fraction.
636 * To check if row j has a smaller bound than row r, i.e.,
637 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
638 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
639 * where -sign(a_jc) is equal to "sgn".
641 static int pivot_row(struct isl_tab *tab,
642 struct isl_tab_var *var, int sgn, int c)
644 int j, r, tsgn;
645 isl_int t;
646 unsigned off = 2 + tab->M;
648 isl_int_init(t);
649 r = -1;
650 for (j = tab->n_redundant; j < tab->n_row; ++j) {
651 if (var && j == var->index)
652 continue;
653 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
654 continue;
655 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
656 continue;
657 if (r < 0) {
658 r = j;
659 continue;
661 tsgn = sgn * row_cmp(tab, r, j, c, t);
662 if (tsgn < 0 || (tsgn == 0 &&
663 tab->row_var[j] < tab->row_var[r]))
664 r = j;
666 isl_int_clear(t);
667 return r;
670 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
671 * (sgn < 0) the value of row variable var.
672 * If not NULL, then skip_var is a row variable that should be ignored
673 * while looking for a pivot row. It is usually equal to var.
675 * As the given row in the tableau is of the form
677 * x_r = a_r0 + \sum_i a_ri x_i
679 * we need to find a column such that the sign of a_ri is equal to "sgn"
680 * (such that an increase in x_i will have the desired effect) or a
681 * column with a variable that may attain negative values.
682 * If a_ri is positive, then we need to move x_i in the same direction
683 * to obtain the desired effect. Otherwise, x_i has to move in the
684 * opposite direction.
686 static void find_pivot(struct isl_tab *tab,
687 struct isl_tab_var *var, struct isl_tab_var *skip_var,
688 int sgn, int *row, int *col)
690 int j, r, c;
691 isl_int *tr;
693 *row = *col = -1;
695 isl_assert(tab->mat->ctx, var->is_row, return);
696 tr = tab->mat->row[var->index] + 2 + tab->M;
698 c = -1;
699 for (j = tab->n_dead; j < tab->n_col; ++j) {
700 if (isl_int_is_zero(tr[j]))
701 continue;
702 if (isl_int_sgn(tr[j]) != sgn &&
703 var_from_col(tab, j)->is_nonneg)
704 continue;
705 if (c < 0 || tab->col_var[j] < tab->col_var[c])
706 c = j;
708 if (c < 0)
709 return;
711 sgn *= isl_int_sgn(tr[c]);
712 r = pivot_row(tab, skip_var, sgn, c);
713 *row = r < 0 ? var->index : r;
714 *col = c;
717 /* Return 1 if row "row" represents an obviously redundant inequality.
718 * This means
719 * - it represents an inequality or a variable
720 * - that is the sum of a non-negative sample value and a positive
721 * combination of zero or more non-negative constraints.
723 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
725 int i;
726 unsigned off = 2 + tab->M;
728 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
729 return 0;
731 if (isl_int_is_neg(tab->mat->row[row][1]))
732 return 0;
733 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
734 return 0;
735 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
736 return 0;
738 for (i = tab->n_dead; i < tab->n_col; ++i) {
739 if (isl_int_is_zero(tab->mat->row[row][off + i]))
740 continue;
741 if (tab->col_var[i] >= 0)
742 return 0;
743 if (isl_int_is_neg(tab->mat->row[row][off + i]))
744 return 0;
745 if (!var_from_col(tab, i)->is_nonneg)
746 return 0;
748 return 1;
751 static void swap_rows(struct isl_tab *tab, int row1, int row2)
753 int t;
754 enum isl_tab_row_sign s;
756 t = tab->row_var[row1];
757 tab->row_var[row1] = tab->row_var[row2];
758 tab->row_var[row2] = t;
759 isl_tab_var_from_row(tab, row1)->index = row1;
760 isl_tab_var_from_row(tab, row2)->index = row2;
761 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
763 if (!tab->row_sign)
764 return;
765 s = tab->row_sign[row1];
766 tab->row_sign[row1] = tab->row_sign[row2];
767 tab->row_sign[row2] = s;
770 static int push_union(struct isl_tab *tab,
771 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
772 static int push_union(struct isl_tab *tab,
773 enum isl_tab_undo_type type, union isl_tab_undo_val u)
775 struct isl_tab_undo *undo;
777 if (!tab->need_undo)
778 return 0;
780 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
781 if (!undo)
782 return -1;
783 undo->type = type;
784 undo->u = u;
785 undo->next = tab->top;
786 tab->top = undo;
788 return 0;
791 int isl_tab_push_var(struct isl_tab *tab,
792 enum isl_tab_undo_type type, struct isl_tab_var *var)
794 union isl_tab_undo_val u;
795 if (var->is_row)
796 u.var_index = tab->row_var[var->index];
797 else
798 u.var_index = tab->col_var[var->index];
799 return push_union(tab, type, u);
802 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
804 union isl_tab_undo_val u = { 0 };
805 return push_union(tab, type, u);
808 /* Push a record on the undo stack describing the current basic
809 * variables, so that the this state can be restored during rollback.
811 int isl_tab_push_basis(struct isl_tab *tab)
813 int i;
814 union isl_tab_undo_val u;
816 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
817 if (!u.col_var)
818 return -1;
819 for (i = 0; i < tab->n_col; ++i)
820 u.col_var[i] = tab->col_var[i];
821 return push_union(tab, isl_tab_undo_saved_basis, u);
824 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
826 union isl_tab_undo_val u;
827 u.callback = callback;
828 return push_union(tab, isl_tab_undo_callback, u);
831 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
833 if (!tab)
834 return NULL;
836 tab->n_sample = 0;
837 tab->n_outside = 0;
838 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
839 if (!tab->samples)
840 goto error;
841 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
842 if (!tab->sample_index)
843 goto error;
844 return tab;
845 error:
846 isl_tab_free(tab);
847 return NULL;
850 struct isl_tab *isl_tab_add_sample(struct isl_tab *tab,
851 __isl_take isl_vec *sample)
853 if (!tab || !sample)
854 goto error;
856 if (tab->n_sample + 1 > tab->samples->n_row) {
857 int *t = isl_realloc_array(tab->mat->ctx,
858 tab->sample_index, int, tab->n_sample + 1);
859 if (!t)
860 goto error;
861 tab->sample_index = t;
864 tab->samples = isl_mat_extend(tab->samples,
865 tab->n_sample + 1, tab->samples->n_col);
866 if (!tab->samples)
867 goto error;
869 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
870 isl_vec_free(sample);
871 tab->sample_index[tab->n_sample] = tab->n_sample;
872 tab->n_sample++;
874 return tab;
875 error:
876 isl_vec_free(sample);
877 isl_tab_free(tab);
878 return NULL;
881 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
883 if (s != tab->n_outside) {
884 int t = tab->sample_index[tab->n_outside];
885 tab->sample_index[tab->n_outside] = tab->sample_index[s];
886 tab->sample_index[s] = t;
887 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
889 tab->n_outside++;
890 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
891 isl_tab_free(tab);
892 return NULL;
895 return tab;
898 /* Record the current number of samples so that we can remove newer
899 * samples during a rollback.
901 int isl_tab_save_samples(struct isl_tab *tab)
903 union isl_tab_undo_val u;
905 if (!tab)
906 return -1;
908 u.n = tab->n_sample;
909 return push_union(tab, isl_tab_undo_saved_samples, u);
912 /* Mark row with index "row" as being redundant.
913 * If we may need to undo the operation or if the row represents
914 * a variable of the original problem, the row is kept,
915 * but no longer considered when looking for a pivot row.
916 * Otherwise, the row is simply removed.
918 * The row may be interchanged with some other row. If it
919 * is interchanged with a later row, return 1. Otherwise return 0.
920 * If the rows are checked in order in the calling function,
921 * then a return value of 1 means that the row with the given
922 * row number may now contain a different row that hasn't been checked yet.
924 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
926 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
927 var->is_redundant = 1;
928 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
929 if (tab->need_undo || tab->row_var[row] >= 0) {
930 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
931 var->is_nonneg = 1;
932 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
933 return -1;
935 if (row != tab->n_redundant)
936 swap_rows(tab, row, tab->n_redundant);
937 tab->n_redundant++;
938 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
939 } else {
940 if (row != tab->n_row - 1)
941 swap_rows(tab, row, tab->n_row - 1);
942 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
943 tab->n_row--;
944 return 1;
948 int isl_tab_mark_empty(struct isl_tab *tab)
950 if (!tab)
951 return -1;
952 if (!tab->empty && tab->need_undo)
953 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
954 return -1;
955 tab->empty = 1;
956 return 0;
959 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
961 struct isl_tab_var *var;
963 if (!tab)
964 return -1;
966 var = &tab->con[con];
967 if (var->frozen)
968 return 0;
969 if (var->index < 0)
970 return 0;
971 var->frozen = 1;
973 if (tab->need_undo)
974 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
976 return 0;
979 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
980 * the original sign of the pivot element.
981 * We only keep track of row signs during PILP solving and in this case
982 * we only pivot a row with negative sign (meaning the value is always
983 * non-positive) using a positive pivot element.
985 * For each row j, the new value of the parametric constant is equal to
987 * a_j0 - a_jc a_r0/a_rc
989 * where a_j0 is the original parametric constant, a_rc is the pivot element,
990 * a_r0 is the parametric constant of the pivot row and a_jc is the
991 * pivot column entry of the row j.
992 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
993 * remains the same if a_jc has the same sign as the row j or if
994 * a_jc is zero. In all other cases, we reset the sign to "unknown".
996 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
998 int i;
999 struct isl_mat *mat = tab->mat;
1000 unsigned off = 2 + tab->M;
1002 if (!tab->row_sign)
1003 return;
1005 if (tab->row_sign[row] == 0)
1006 return;
1007 isl_assert(mat->ctx, row_sgn > 0, return);
1008 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1009 tab->row_sign[row] = isl_tab_row_pos;
1010 for (i = 0; i < tab->n_row; ++i) {
1011 int s;
1012 if (i == row)
1013 continue;
1014 s = isl_int_sgn(mat->row[i][off + col]);
1015 if (!s)
1016 continue;
1017 if (!tab->row_sign[i])
1018 continue;
1019 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1020 continue;
1021 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1022 continue;
1023 tab->row_sign[i] = isl_tab_row_unknown;
1027 /* Given a row number "row" and a column number "col", pivot the tableau
1028 * such that the associated variables are interchanged.
1029 * The given row in the tableau expresses
1031 * x_r = a_r0 + \sum_i a_ri x_i
1033 * or
1035 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1037 * Substituting this equality into the other rows
1039 * x_j = a_j0 + \sum_i a_ji x_i
1041 * with a_jc \ne 0, we obtain
1043 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1045 * The tableau
1047 * n_rc/d_r n_ri/d_r
1048 * n_jc/d_j n_ji/d_j
1050 * where i is any other column and j is any other row,
1051 * is therefore transformed into
1053 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1054 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1056 * The transformation is performed along the following steps
1058 * d_r/n_rc n_ri/n_rc
1059 * n_jc/d_j n_ji/d_j
1061 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1062 * n_jc/d_j n_ji/d_j
1064 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1065 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1067 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1068 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1070 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1071 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1073 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1074 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1077 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1079 int i, j;
1080 int sgn;
1081 int t;
1082 struct isl_mat *mat = tab->mat;
1083 struct isl_tab_var *var;
1084 unsigned off = 2 + tab->M;
1086 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1087 sgn = isl_int_sgn(mat->row[row][0]);
1088 if (sgn < 0) {
1089 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1090 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1091 } else
1092 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1093 if (j == off - 1 + col)
1094 continue;
1095 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1097 if (!isl_int_is_one(mat->row[row][0]))
1098 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1099 for (i = 0; i < tab->n_row; ++i) {
1100 if (i == row)
1101 continue;
1102 if (isl_int_is_zero(mat->row[i][off + col]))
1103 continue;
1104 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1105 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1106 if (j == off - 1 + col)
1107 continue;
1108 isl_int_mul(mat->row[i][1 + j],
1109 mat->row[i][1 + j], mat->row[row][0]);
1110 isl_int_addmul(mat->row[i][1 + j],
1111 mat->row[i][off + col], mat->row[row][1 + j]);
1113 isl_int_mul(mat->row[i][off + col],
1114 mat->row[i][off + col], mat->row[row][off + col]);
1115 if (!isl_int_is_one(mat->row[i][0]))
1116 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1118 t = tab->row_var[row];
1119 tab->row_var[row] = tab->col_var[col];
1120 tab->col_var[col] = t;
1121 var = isl_tab_var_from_row(tab, row);
1122 var->is_row = 1;
1123 var->index = row;
1124 var = var_from_col(tab, col);
1125 var->is_row = 0;
1126 var->index = col;
1127 update_row_sign(tab, row, col, sgn);
1128 if (tab->in_undo)
1129 return 0;
1130 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1131 if (isl_int_is_zero(mat->row[i][off + col]))
1132 continue;
1133 if (!isl_tab_var_from_row(tab, i)->frozen &&
1134 isl_tab_row_is_redundant(tab, i)) {
1135 int redo = isl_tab_mark_redundant(tab, i);
1136 if (redo < 0)
1137 return -1;
1138 if (redo)
1139 --i;
1142 return 0;
1145 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1146 * or down (sgn < 0) to a row. The variable is assumed not to be
1147 * unbounded in the specified direction.
1148 * If sgn = 0, then the variable is unbounded in both directions,
1149 * and we pivot with any row we can find.
1151 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1152 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1154 int r;
1155 unsigned off = 2 + tab->M;
1157 if (var->is_row)
1158 return 0;
1160 if (sign == 0) {
1161 for (r = tab->n_redundant; r < tab->n_row; ++r)
1162 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1163 break;
1164 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1165 } else {
1166 r = pivot_row(tab, NULL, sign, var->index);
1167 isl_assert(tab->mat->ctx, r >= 0, return -1);
1170 return isl_tab_pivot(tab, r, var->index);
1173 static void check_table(struct isl_tab *tab)
1175 int i;
1177 if (tab->empty)
1178 return;
1179 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1180 struct isl_tab_var *var;
1181 var = isl_tab_var_from_row(tab, i);
1182 if (!var->is_nonneg)
1183 continue;
1184 if (tab->M) {
1185 isl_assert(tab->mat->ctx,
1186 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1187 if (isl_int_is_pos(tab->mat->row[i][2]))
1188 continue;
1190 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1191 abort());
1195 /* Return the sign of the maximal value of "var".
1196 * If the sign is not negative, then on return from this function,
1197 * the sample value will also be non-negative.
1199 * If "var" is manifestly unbounded wrt positive values, we are done.
1200 * Otherwise, we pivot the variable up to a row if needed
1201 * Then we continue pivoting down until either
1202 * - no more down pivots can be performed
1203 * - the sample value is positive
1204 * - the variable is pivoted into a manifestly unbounded column
1206 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1208 int row, col;
1210 if (max_is_manifestly_unbounded(tab, var))
1211 return 1;
1212 if (to_row(tab, var, 1) < 0)
1213 return -2;
1214 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1215 find_pivot(tab, var, var, 1, &row, &col);
1216 if (row == -1)
1217 return isl_int_sgn(tab->mat->row[var->index][1]);
1218 if (isl_tab_pivot(tab, row, col) < 0)
1219 return -2;
1220 if (!var->is_row) /* manifestly unbounded */
1221 return 1;
1223 return 1;
1226 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1228 struct isl_tab_var *var;
1230 if (!tab)
1231 return -2;
1233 var = &tab->con[con];
1234 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1235 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1237 return sign_of_max(tab, var);
1240 static int row_is_neg(struct isl_tab *tab, int row)
1242 if (!tab->M)
1243 return isl_int_is_neg(tab->mat->row[row][1]);
1244 if (isl_int_is_pos(tab->mat->row[row][2]))
1245 return 0;
1246 if (isl_int_is_neg(tab->mat->row[row][2]))
1247 return 1;
1248 return isl_int_is_neg(tab->mat->row[row][1]);
1251 static int row_sgn(struct isl_tab *tab, int row)
1253 if (!tab->M)
1254 return isl_int_sgn(tab->mat->row[row][1]);
1255 if (!isl_int_is_zero(tab->mat->row[row][2]))
1256 return isl_int_sgn(tab->mat->row[row][2]);
1257 else
1258 return isl_int_sgn(tab->mat->row[row][1]);
1261 /* Perform pivots until the row variable "var" has a non-negative
1262 * sample value or until no more upward pivots can be performed.
1263 * Return the sign of the sample value after the pivots have been
1264 * performed.
1266 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1268 int row, col;
1270 while (row_is_neg(tab, var->index)) {
1271 find_pivot(tab, var, var, 1, &row, &col);
1272 if (row == -1)
1273 break;
1274 if (isl_tab_pivot(tab, row, col) < 0)
1275 return -2;
1276 if (!var->is_row) /* manifestly unbounded */
1277 return 1;
1279 return row_sgn(tab, var->index);
1282 /* Perform pivots until we are sure that the row variable "var"
1283 * can attain non-negative values. After return from this
1284 * function, "var" is still a row variable, but its sample
1285 * value may not be non-negative, even if the function returns 1.
1287 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1289 int row, col;
1291 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1292 find_pivot(tab, var, var, 1, &row, &col);
1293 if (row == -1)
1294 break;
1295 if (row == var->index) /* manifestly unbounded */
1296 return 1;
1297 if (isl_tab_pivot(tab, row, col) < 0)
1298 return -1;
1300 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1303 /* Return a negative value if "var" can attain negative values.
1304 * Return a non-negative value otherwise.
1306 * If "var" is manifestly unbounded wrt negative values, we are done.
1307 * Otherwise, if var is in a column, we can pivot it down to a row.
1308 * Then we continue pivoting down until either
1309 * - the pivot would result in a manifestly unbounded column
1310 * => we don't perform the pivot, but simply return -1
1311 * - no more down pivots can be performed
1312 * - the sample value is negative
1313 * If the sample value becomes negative and the variable is supposed
1314 * to be nonnegative, then we undo the last pivot.
1315 * However, if the last pivot has made the pivoting variable
1316 * obviously redundant, then it may have moved to another row.
1317 * In that case we look for upward pivots until we reach a non-negative
1318 * value again.
1320 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1322 int row, col;
1323 struct isl_tab_var *pivot_var = NULL;
1325 if (min_is_manifestly_unbounded(tab, var))
1326 return -1;
1327 if (!var->is_row) {
1328 col = var->index;
1329 row = pivot_row(tab, NULL, -1, col);
1330 pivot_var = var_from_col(tab, col);
1331 if (isl_tab_pivot(tab, row, col) < 0)
1332 return -2;
1333 if (var->is_redundant)
1334 return 0;
1335 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1336 if (var->is_nonneg) {
1337 if (!pivot_var->is_redundant &&
1338 pivot_var->index == row) {
1339 if (isl_tab_pivot(tab, row, col) < 0)
1340 return -2;
1341 } else
1342 if (restore_row(tab, var) < -1)
1343 return -2;
1345 return -1;
1348 if (var->is_redundant)
1349 return 0;
1350 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1351 find_pivot(tab, var, var, -1, &row, &col);
1352 if (row == var->index)
1353 return -1;
1354 if (row == -1)
1355 return isl_int_sgn(tab->mat->row[var->index][1]);
1356 pivot_var = var_from_col(tab, col);
1357 if (isl_tab_pivot(tab, row, col) < 0)
1358 return -2;
1359 if (var->is_redundant)
1360 return 0;
1362 if (pivot_var && var->is_nonneg) {
1363 /* pivot back to non-negative value */
1364 if (!pivot_var->is_redundant && pivot_var->index == row) {
1365 if (isl_tab_pivot(tab, row, col) < 0)
1366 return -2;
1367 } else
1368 if (restore_row(tab, var) < -1)
1369 return -2;
1371 return -1;
1374 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1376 if (tab->M) {
1377 if (isl_int_is_pos(tab->mat->row[row][2]))
1378 return 0;
1379 if (isl_int_is_neg(tab->mat->row[row][2]))
1380 return 1;
1382 return isl_int_is_neg(tab->mat->row[row][1]) &&
1383 isl_int_abs_ge(tab->mat->row[row][1],
1384 tab->mat->row[row][0]);
1387 /* Return 1 if "var" can attain values <= -1.
1388 * Return 0 otherwise.
1390 * The sample value of "var" is assumed to be non-negative when the
1391 * the function is called. If 1 is returned then the constraint
1392 * is not redundant and the sample value is made non-negative again before
1393 * the function returns.
1395 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1397 int row, col;
1398 struct isl_tab_var *pivot_var;
1400 if (min_is_manifestly_unbounded(tab, var))
1401 return 1;
1402 if (!var->is_row) {
1403 col = var->index;
1404 row = pivot_row(tab, NULL, -1, col);
1405 pivot_var = var_from_col(tab, col);
1406 if (isl_tab_pivot(tab, row, col) < 0)
1407 return -1;
1408 if (var->is_redundant)
1409 return 0;
1410 if (row_at_most_neg_one(tab, var->index)) {
1411 if (var->is_nonneg) {
1412 if (!pivot_var->is_redundant &&
1413 pivot_var->index == row) {
1414 if (isl_tab_pivot(tab, row, col) < 0)
1415 return -1;
1416 } else
1417 if (restore_row(tab, var) < -1)
1418 return -1;
1420 return 1;
1423 if (var->is_redundant)
1424 return 0;
1425 do {
1426 find_pivot(tab, var, var, -1, &row, &col);
1427 if (row == var->index) {
1428 if (restore_row(tab, var) < -1)
1429 return -1;
1430 return 1;
1432 if (row == -1)
1433 return 0;
1434 pivot_var = var_from_col(tab, col);
1435 if (isl_tab_pivot(tab, row, col) < 0)
1436 return -1;
1437 if (var->is_redundant)
1438 return 0;
1439 } while (!row_at_most_neg_one(tab, var->index));
1440 if (var->is_nonneg) {
1441 /* pivot back to non-negative value */
1442 if (!pivot_var->is_redundant && pivot_var->index == row)
1443 if (isl_tab_pivot(tab, row, col) < 0)
1444 return -1;
1445 if (restore_row(tab, var) < -1)
1446 return -1;
1448 return 1;
1451 /* Return 1 if "var" can attain values >= 1.
1452 * Return 0 otherwise.
1454 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1456 int row, col;
1457 isl_int *r;
1459 if (max_is_manifestly_unbounded(tab, var))
1460 return 1;
1461 if (to_row(tab, var, 1) < 0)
1462 return -1;
1463 r = tab->mat->row[var->index];
1464 while (isl_int_lt(r[1], r[0])) {
1465 find_pivot(tab, var, var, 1, &row, &col);
1466 if (row == -1)
1467 return isl_int_ge(r[1], r[0]);
1468 if (row == var->index) /* manifestly unbounded */
1469 return 1;
1470 if (isl_tab_pivot(tab, row, col) < 0)
1471 return -1;
1473 return 1;
1476 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1478 int t;
1479 unsigned off = 2 + tab->M;
1480 t = tab->col_var[col1];
1481 tab->col_var[col1] = tab->col_var[col2];
1482 tab->col_var[col2] = t;
1483 var_from_col(tab, col1)->index = col1;
1484 var_from_col(tab, col2)->index = col2;
1485 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1488 /* Mark column with index "col" as representing a zero variable.
1489 * If we may need to undo the operation the column is kept,
1490 * but no longer considered.
1491 * Otherwise, the column is simply removed.
1493 * The column may be interchanged with some other column. If it
1494 * is interchanged with a later column, return 1. Otherwise return 0.
1495 * If the columns are checked in order in the calling function,
1496 * then a return value of 1 means that the column with the given
1497 * column number may now contain a different column that
1498 * hasn't been checked yet.
1500 int isl_tab_kill_col(struct isl_tab *tab, int col)
1502 var_from_col(tab, col)->is_zero = 1;
1503 if (tab->need_undo) {
1504 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1505 var_from_col(tab, col)) < 0)
1506 return -1;
1507 if (col != tab->n_dead)
1508 swap_cols(tab, col, tab->n_dead);
1509 tab->n_dead++;
1510 return 0;
1511 } else {
1512 if (col != tab->n_col - 1)
1513 swap_cols(tab, col, tab->n_col - 1);
1514 var_from_col(tab, tab->n_col - 1)->index = -1;
1515 tab->n_col--;
1516 return 1;
1520 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1522 unsigned off = 2 + tab->M;
1524 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1525 tab->mat->row[row][0]))
1526 return 0;
1527 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1528 tab->n_col - tab->n_dead) != -1)
1529 return 0;
1531 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1532 tab->mat->row[row][0]);
1535 /* For integer tableaus, check if any of the coordinates are stuck
1536 * at a non-integral value.
1538 static int tab_is_manifestly_empty(struct isl_tab *tab)
1540 int i;
1542 if (tab->empty)
1543 return 1;
1544 if (tab->rational)
1545 return 0;
1547 for (i = 0; i < tab->n_var; ++i) {
1548 if (!tab->var[i].is_row)
1549 continue;
1550 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1551 return 1;
1554 return 0;
1557 /* Row variable "var" is non-negative and cannot attain any values
1558 * larger than zero. This means that the coefficients of the unrestricted
1559 * column variables are zero and that the coefficients of the non-negative
1560 * column variables are zero or negative.
1561 * Each of the non-negative variables with a negative coefficient can
1562 * then also be written as the negative sum of non-negative variables
1563 * and must therefore also be zero.
1565 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1566 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1568 int j;
1569 struct isl_mat *mat = tab->mat;
1570 unsigned off = 2 + tab->M;
1572 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1573 var->is_zero = 1;
1574 if (tab->need_undo)
1575 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1576 return -1;
1577 for (j = tab->n_dead; j < tab->n_col; ++j) {
1578 int recheck;
1579 if (isl_int_is_zero(mat->row[var->index][off + j]))
1580 continue;
1581 isl_assert(tab->mat->ctx,
1582 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1583 recheck = isl_tab_kill_col(tab, j);
1584 if (recheck < 0)
1585 return -1;
1586 if (recheck)
1587 --j;
1589 if (isl_tab_mark_redundant(tab, var->index) < 0)
1590 return -1;
1591 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1592 return -1;
1593 return 0;
1596 /* Add a constraint to the tableau and allocate a row for it.
1597 * Return the index into the constraint array "con".
1599 int isl_tab_allocate_con(struct isl_tab *tab)
1601 int r;
1603 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1604 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1606 r = tab->n_con;
1607 tab->con[r].index = tab->n_row;
1608 tab->con[r].is_row = 1;
1609 tab->con[r].is_nonneg = 0;
1610 tab->con[r].is_zero = 0;
1611 tab->con[r].is_redundant = 0;
1612 tab->con[r].frozen = 0;
1613 tab->con[r].negated = 0;
1614 tab->row_var[tab->n_row] = ~r;
1616 tab->n_row++;
1617 tab->n_con++;
1618 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1619 return -1;
1621 return r;
1624 /* Add a variable to the tableau and allocate a column for it.
1625 * Return the index into the variable array "var".
1627 int isl_tab_allocate_var(struct isl_tab *tab)
1629 int r;
1630 int i;
1631 unsigned off = 2 + tab->M;
1633 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1634 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1636 r = tab->n_var;
1637 tab->var[r].index = tab->n_col;
1638 tab->var[r].is_row = 0;
1639 tab->var[r].is_nonneg = 0;
1640 tab->var[r].is_zero = 0;
1641 tab->var[r].is_redundant = 0;
1642 tab->var[r].frozen = 0;
1643 tab->var[r].negated = 0;
1644 tab->col_var[tab->n_col] = r;
1646 for (i = 0; i < tab->n_row; ++i)
1647 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1649 tab->n_var++;
1650 tab->n_col++;
1651 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1652 return -1;
1654 return r;
1657 /* Add a row to the tableau. The row is given as an affine combination
1658 * of the original variables and needs to be expressed in terms of the
1659 * column variables.
1661 * We add each term in turn.
1662 * If r = n/d_r is the current sum and we need to add k x, then
1663 * if x is a column variable, we increase the numerator of
1664 * this column by k d_r
1665 * if x = f/d_x is a row variable, then the new representation of r is
1667 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1668 * --- + --- = ------------------- = -------------------
1669 * d_r d_r d_r d_x/g m
1671 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1673 * If tab->M is set, then, internally, each variable x is represented
1674 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1676 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1678 int i;
1679 int r;
1680 isl_int *row;
1681 isl_int a, b;
1682 unsigned off = 2 + tab->M;
1684 r = isl_tab_allocate_con(tab);
1685 if (r < 0)
1686 return -1;
1688 isl_int_init(a);
1689 isl_int_init(b);
1690 row = tab->mat->row[tab->con[r].index];
1691 isl_int_set_si(row[0], 1);
1692 isl_int_set(row[1], line[0]);
1693 isl_seq_clr(row + 2, tab->M + tab->n_col);
1694 for (i = 0; i < tab->n_var; ++i) {
1695 if (tab->var[i].is_zero)
1696 continue;
1697 if (tab->var[i].is_row) {
1698 isl_int_lcm(a,
1699 row[0], tab->mat->row[tab->var[i].index][0]);
1700 isl_int_swap(a, row[0]);
1701 isl_int_divexact(a, row[0], a);
1702 isl_int_divexact(b,
1703 row[0], tab->mat->row[tab->var[i].index][0]);
1704 isl_int_mul(b, b, line[1 + i]);
1705 isl_seq_combine(row + 1, a, row + 1,
1706 b, tab->mat->row[tab->var[i].index] + 1,
1707 1 + tab->M + tab->n_col);
1708 } else
1709 isl_int_addmul(row[off + tab->var[i].index],
1710 line[1 + i], row[0]);
1711 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1712 isl_int_submul(row[2], line[1 + i], row[0]);
1714 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1715 isl_int_clear(a);
1716 isl_int_clear(b);
1718 if (tab->row_sign)
1719 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1721 return r;
1724 static int drop_row(struct isl_tab *tab, int row)
1726 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1727 if (row != tab->n_row - 1)
1728 swap_rows(tab, row, tab->n_row - 1);
1729 tab->n_row--;
1730 tab->n_con--;
1731 return 0;
1734 static int drop_col(struct isl_tab *tab, int col)
1736 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1737 if (col != tab->n_col - 1)
1738 swap_cols(tab, col, tab->n_col - 1);
1739 tab->n_col--;
1740 tab->n_var--;
1741 return 0;
1744 /* Add inequality "ineq" and check if it conflicts with the
1745 * previously added constraints or if it is obviously redundant.
1747 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1749 int r;
1750 int sgn;
1751 isl_int cst;
1753 if (!tab)
1754 return -1;
1755 if (tab->bmap) {
1756 struct isl_basic_map *bmap = tab->bmap;
1758 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1759 isl_assert(tab->mat->ctx,
1760 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1761 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1762 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1763 return -1;
1764 if (!tab->bmap)
1765 return -1;
1767 if (tab->cone) {
1768 isl_int_init(cst);
1769 isl_int_swap(ineq[0], cst);
1771 r = isl_tab_add_row(tab, ineq);
1772 if (tab->cone) {
1773 isl_int_swap(ineq[0], cst);
1774 isl_int_clear(cst);
1776 if (r < 0)
1777 return -1;
1778 tab->con[r].is_nonneg = 1;
1779 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1780 return -1;
1781 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1782 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1783 return -1;
1784 return 0;
1787 sgn = restore_row(tab, &tab->con[r]);
1788 if (sgn < -1)
1789 return -1;
1790 if (sgn < 0)
1791 return isl_tab_mark_empty(tab);
1792 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1793 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1794 return -1;
1795 return 0;
1798 /* Pivot a non-negative variable down until it reaches the value zero
1799 * and then pivot the variable into a column position.
1801 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1802 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1804 int i;
1805 int row, col;
1806 unsigned off = 2 + tab->M;
1808 if (!var->is_row)
1809 return 0;
1811 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1812 find_pivot(tab, var, NULL, -1, &row, &col);
1813 isl_assert(tab->mat->ctx, row != -1, return -1);
1814 if (isl_tab_pivot(tab, row, col) < 0)
1815 return -1;
1816 if (!var->is_row)
1817 return 0;
1820 for (i = tab->n_dead; i < tab->n_col; ++i)
1821 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1822 break;
1824 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1825 if (isl_tab_pivot(tab, var->index, i) < 0)
1826 return -1;
1828 return 0;
1831 /* We assume Gaussian elimination has been performed on the equalities.
1832 * The equalities can therefore never conflict.
1833 * Adding the equalities is currently only really useful for a later call
1834 * to isl_tab_ineq_type.
1836 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1838 int i;
1839 int r;
1841 if (!tab)
1842 return NULL;
1843 r = isl_tab_add_row(tab, eq);
1844 if (r < 0)
1845 goto error;
1847 r = tab->con[r].index;
1848 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1849 tab->n_col - tab->n_dead);
1850 isl_assert(tab->mat->ctx, i >= 0, goto error);
1851 i += tab->n_dead;
1852 if (isl_tab_pivot(tab, r, i) < 0)
1853 goto error;
1854 if (isl_tab_kill_col(tab, i) < 0)
1855 goto error;
1856 tab->n_eq++;
1858 return tab;
1859 error:
1860 isl_tab_free(tab);
1861 return NULL;
1864 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1866 unsigned off = 2 + tab->M;
1868 if (!isl_int_is_zero(tab->mat->row[row][1]))
1869 return 0;
1870 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1871 return 0;
1872 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1873 tab->n_col - tab->n_dead) == -1;
1876 /* Add an equality that is known to be valid for the given tableau.
1878 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1880 struct isl_tab_var *var;
1881 int r;
1883 if (!tab)
1884 return -1;
1885 r = isl_tab_add_row(tab, eq);
1886 if (r < 0)
1887 return -1;
1889 var = &tab->con[r];
1890 r = var->index;
1891 if (row_is_manifestly_zero(tab, r)) {
1892 var->is_zero = 1;
1893 if (isl_tab_mark_redundant(tab, r) < 0)
1894 return -1;
1895 return 0;
1898 if (isl_int_is_neg(tab->mat->row[r][1])) {
1899 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1900 1 + tab->n_col);
1901 var->negated = 1;
1903 var->is_nonneg = 1;
1904 if (to_col(tab, var) < 0)
1905 return -1;
1906 var->is_nonneg = 0;
1907 if (isl_tab_kill_col(tab, var->index) < 0)
1908 return -1;
1910 return 0;
1913 static int add_zero_row(struct isl_tab *tab)
1915 int r;
1916 isl_int *row;
1918 r = isl_tab_allocate_con(tab);
1919 if (r < 0)
1920 return -1;
1922 row = tab->mat->row[tab->con[r].index];
1923 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1924 isl_int_set_si(row[0], 1);
1926 return r;
1929 /* Add equality "eq" and check if it conflicts with the
1930 * previously added constraints or if it is obviously redundant.
1932 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1934 struct isl_tab_undo *snap = NULL;
1935 struct isl_tab_var *var;
1936 int r;
1937 int row;
1938 int sgn;
1939 isl_int cst;
1941 if (!tab)
1942 return -1;
1943 isl_assert(tab->mat->ctx, !tab->M, return -1);
1945 if (tab->need_undo)
1946 snap = isl_tab_snap(tab);
1948 if (tab->cone) {
1949 isl_int_init(cst);
1950 isl_int_swap(eq[0], cst);
1952 r = isl_tab_add_row(tab, eq);
1953 if (tab->cone) {
1954 isl_int_swap(eq[0], cst);
1955 isl_int_clear(cst);
1957 if (r < 0)
1958 return -1;
1960 var = &tab->con[r];
1961 row = var->index;
1962 if (row_is_manifestly_zero(tab, row)) {
1963 if (snap) {
1964 if (isl_tab_rollback(tab, snap) < 0)
1965 return -1;
1966 } else
1967 drop_row(tab, row);
1968 return 0;
1971 if (tab->bmap) {
1972 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1973 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1974 return -1;
1975 isl_seq_neg(eq, eq, 1 + tab->n_var);
1976 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1977 isl_seq_neg(eq, eq, 1 + tab->n_var);
1978 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1979 return -1;
1980 if (!tab->bmap)
1981 return -1;
1982 if (add_zero_row(tab) < 0)
1983 return -1;
1986 sgn = isl_int_sgn(tab->mat->row[row][1]);
1988 if (sgn > 0) {
1989 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
1990 1 + tab->n_col);
1991 var->negated = 1;
1992 sgn = -1;
1995 if (sgn < 0) {
1996 sgn = sign_of_max(tab, var);
1997 if (sgn < -1)
1998 return -1;
1999 if (sgn < 0) {
2000 if (isl_tab_mark_empty(tab) < 0)
2001 return -1;
2002 return 0;
2006 var->is_nonneg = 1;
2007 if (to_col(tab, var) < 0)
2008 return -1;
2009 var->is_nonneg = 0;
2010 if (isl_tab_kill_col(tab, var->index) < 0)
2011 return -1;
2013 return 0;
2016 /* Construct and return an inequality that expresses an upper bound
2017 * on the given div.
2018 * In particular, if the div is given by
2020 * d = floor(e/m)
2022 * then the inequality expresses
2024 * m d <= e
2026 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2028 unsigned total;
2029 unsigned div_pos;
2030 struct isl_vec *ineq;
2032 if (!bmap)
2033 return NULL;
2035 total = isl_basic_map_total_dim(bmap);
2036 div_pos = 1 + total - bmap->n_div + div;
2038 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2039 if (!ineq)
2040 return NULL;
2042 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2043 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2044 return ineq;
2047 /* For a div d = floor(f/m), add the constraints
2049 * f - m d >= 0
2050 * -(f-(m-1)) + m d >= 0
2052 * Note that the second constraint is the negation of
2054 * f - m d >= m
2056 * If add_ineq is not NULL, then this function is used
2057 * instead of isl_tab_add_ineq to effectively add the inequalities.
2059 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2060 int (*add_ineq)(void *user, isl_int *), void *user)
2062 unsigned total;
2063 unsigned div_pos;
2064 struct isl_vec *ineq;
2066 total = isl_basic_map_total_dim(tab->bmap);
2067 div_pos = 1 + total - tab->bmap->n_div + div;
2069 ineq = ineq_for_div(tab->bmap, div);
2070 if (!ineq)
2071 goto error;
2073 if (add_ineq) {
2074 if (add_ineq(user, ineq->el) < 0)
2075 goto error;
2076 } else {
2077 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2078 goto error;
2081 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2082 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2083 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2084 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2086 if (add_ineq) {
2087 if (add_ineq(user, ineq->el) < 0)
2088 goto error;
2089 } else {
2090 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2091 goto error;
2094 isl_vec_free(ineq);
2096 return 0;
2097 error:
2098 isl_vec_free(ineq);
2099 return -1;
2102 /* Check whether the div described by "div" is obviously non-negative.
2103 * If we are using a big parameter, then we will encode the div
2104 * as div' = M + div, which is always non-negative.
2105 * Otherwise, we check whether div is a non-negative affine combination
2106 * of non-negative variables.
2108 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2110 int i;
2112 if (tab->M)
2113 return 1;
2115 if (isl_int_is_neg(div->el[1]))
2116 return 0;
2118 for (i = 0; i < tab->n_var; ++i) {
2119 if (isl_int_is_neg(div->el[2 + i]))
2120 return 0;
2121 if (isl_int_is_zero(div->el[2 + i]))
2122 continue;
2123 if (!tab->var[i].is_nonneg)
2124 return 0;
2127 return 1;
2130 /* Add an extra div, prescribed by "div" to the tableau and
2131 * the associated bmap (which is assumed to be non-NULL).
2133 * If add_ineq is not NULL, then this function is used instead
2134 * of isl_tab_add_ineq to add the div constraints.
2135 * This complication is needed because the code in isl_tab_pip
2136 * wants to perform some extra processing when an inequality
2137 * is added to the tableau.
2139 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2140 int (*add_ineq)(void *user, isl_int *), void *user)
2142 int r;
2143 int k;
2144 int nonneg;
2146 if (!tab || !div)
2147 return -1;
2149 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2151 nonneg = div_is_nonneg(tab, div);
2153 if (isl_tab_extend_cons(tab, 3) < 0)
2154 return -1;
2155 if (isl_tab_extend_vars(tab, 1) < 0)
2156 return -1;
2157 r = isl_tab_allocate_var(tab);
2158 if (r < 0)
2159 return -1;
2161 if (nonneg)
2162 tab->var[r].is_nonneg = 1;
2164 tab->bmap = isl_basic_map_extend_dim(tab->bmap,
2165 isl_basic_map_get_dim(tab->bmap), 1, 0, 2);
2166 k = isl_basic_map_alloc_div(tab->bmap);
2167 if (k < 0)
2168 return -1;
2169 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2170 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2171 return -1;
2173 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2174 return -1;
2176 return r;
2179 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
2181 int i;
2182 struct isl_tab *tab;
2184 if (!bmap)
2185 return NULL;
2186 tab = isl_tab_alloc(bmap->ctx,
2187 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2188 isl_basic_map_total_dim(bmap), 0);
2189 if (!tab)
2190 return NULL;
2191 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2192 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2193 if (isl_tab_mark_empty(tab) < 0)
2194 goto error;
2195 return tab;
2197 for (i = 0; i < bmap->n_eq; ++i) {
2198 tab = add_eq(tab, bmap->eq[i]);
2199 if (!tab)
2200 return tab;
2202 for (i = 0; i < bmap->n_ineq; ++i) {
2203 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2204 goto error;
2205 if (tab->empty)
2206 return tab;
2208 return tab;
2209 error:
2210 isl_tab_free(tab);
2211 return NULL;
2214 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
2216 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
2219 /* Construct a tableau corresponding to the recession cone of "bset".
2221 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2222 int parametric)
2224 isl_int cst;
2225 int i;
2226 struct isl_tab *tab;
2227 unsigned offset = 0;
2229 if (!bset)
2230 return NULL;
2231 if (parametric)
2232 offset = isl_basic_set_dim(bset, isl_dim_param);
2233 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2234 isl_basic_set_total_dim(bset) - offset, 0);
2235 if (!tab)
2236 return NULL;
2237 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2238 tab->cone = 1;
2240 isl_int_init(cst);
2241 for (i = 0; i < bset->n_eq; ++i) {
2242 isl_int_swap(bset->eq[i][offset], cst);
2243 if (offset > 0) {
2244 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2245 goto error;
2246 } else
2247 tab = add_eq(tab, bset->eq[i]);
2248 isl_int_swap(bset->eq[i][offset], cst);
2249 if (!tab)
2250 goto done;
2252 for (i = 0; i < bset->n_ineq; ++i) {
2253 int r;
2254 isl_int_swap(bset->ineq[i][offset], cst);
2255 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2256 isl_int_swap(bset->ineq[i][offset], cst);
2257 if (r < 0)
2258 goto error;
2259 tab->con[r].is_nonneg = 1;
2260 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2261 goto error;
2263 done:
2264 isl_int_clear(cst);
2265 return tab;
2266 error:
2267 isl_int_clear(cst);
2268 isl_tab_free(tab);
2269 return NULL;
2272 /* Assuming "tab" is the tableau of a cone, check if the cone is
2273 * bounded, i.e., if it is empty or only contains the origin.
2275 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2277 int i;
2279 if (!tab)
2280 return -1;
2281 if (tab->empty)
2282 return 1;
2283 if (tab->n_dead == tab->n_col)
2284 return 1;
2286 for (;;) {
2287 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2288 struct isl_tab_var *var;
2289 int sgn;
2290 var = isl_tab_var_from_row(tab, i);
2291 if (!var->is_nonneg)
2292 continue;
2293 sgn = sign_of_max(tab, var);
2294 if (sgn < -1)
2295 return -1;
2296 if (sgn != 0)
2297 return 0;
2298 if (close_row(tab, var) < 0)
2299 return -1;
2300 break;
2302 if (tab->n_dead == tab->n_col)
2303 return 1;
2304 if (i == tab->n_row)
2305 return 0;
2309 int isl_tab_sample_is_integer(struct isl_tab *tab)
2311 int i;
2313 if (!tab)
2314 return -1;
2316 for (i = 0; i < tab->n_var; ++i) {
2317 int row;
2318 if (!tab->var[i].is_row)
2319 continue;
2320 row = tab->var[i].index;
2321 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2322 tab->mat->row[row][0]))
2323 return 0;
2325 return 1;
2328 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2330 int i;
2331 struct isl_vec *vec;
2333 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2334 if (!vec)
2335 return NULL;
2337 isl_int_set_si(vec->block.data[0], 1);
2338 for (i = 0; i < tab->n_var; ++i) {
2339 if (!tab->var[i].is_row)
2340 isl_int_set_si(vec->block.data[1 + i], 0);
2341 else {
2342 int row = tab->var[i].index;
2343 isl_int_divexact(vec->block.data[1 + i],
2344 tab->mat->row[row][1], tab->mat->row[row][0]);
2348 return vec;
2351 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2353 int i;
2354 struct isl_vec *vec;
2355 isl_int m;
2357 if (!tab)
2358 return NULL;
2360 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2361 if (!vec)
2362 return NULL;
2364 isl_int_init(m);
2366 isl_int_set_si(vec->block.data[0], 1);
2367 for (i = 0; i < tab->n_var; ++i) {
2368 int row;
2369 if (!tab->var[i].is_row) {
2370 isl_int_set_si(vec->block.data[1 + i], 0);
2371 continue;
2373 row = tab->var[i].index;
2374 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2375 isl_int_divexact(m, tab->mat->row[row][0], m);
2376 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2377 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2378 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2380 vec = isl_vec_normalize(vec);
2382 isl_int_clear(m);
2383 return vec;
2386 /* Update "bmap" based on the results of the tableau "tab".
2387 * In particular, implicit equalities are made explicit, redundant constraints
2388 * are removed and if the sample value happens to be integer, it is stored
2389 * in "bmap" (unless "bmap" already had an integer sample).
2391 * The tableau is assumed to have been created from "bmap" using
2392 * isl_tab_from_basic_map.
2394 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2395 struct isl_tab *tab)
2397 int i;
2398 unsigned n_eq;
2400 if (!bmap)
2401 return NULL;
2402 if (!tab)
2403 return bmap;
2405 n_eq = tab->n_eq;
2406 if (tab->empty)
2407 bmap = isl_basic_map_set_to_empty(bmap);
2408 else
2409 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2410 if (isl_tab_is_equality(tab, n_eq + i))
2411 isl_basic_map_inequality_to_equality(bmap, i);
2412 else if (isl_tab_is_redundant(tab, n_eq + i))
2413 isl_basic_map_drop_inequality(bmap, i);
2415 if (bmap->n_eq != n_eq)
2416 isl_basic_map_gauss(bmap, NULL);
2417 if (!tab->rational &&
2418 !bmap->sample && isl_tab_sample_is_integer(tab))
2419 bmap->sample = extract_integer_sample(tab);
2420 return bmap;
2423 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2424 struct isl_tab *tab)
2426 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2427 (struct isl_basic_map *)bset, tab);
2430 /* Given a non-negative variable "var", add a new non-negative variable
2431 * that is the opposite of "var", ensuring that var can only attain the
2432 * value zero.
2433 * If var = n/d is a row variable, then the new variable = -n/d.
2434 * If var is a column variables, then the new variable = -var.
2435 * If the new variable cannot attain non-negative values, then
2436 * the resulting tableau is empty.
2437 * Otherwise, we know the value will be zero and we close the row.
2439 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2441 unsigned r;
2442 isl_int *row;
2443 int sgn;
2444 unsigned off = 2 + tab->M;
2446 if (var->is_zero)
2447 return 0;
2448 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2449 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2451 if (isl_tab_extend_cons(tab, 1) < 0)
2452 return -1;
2454 r = tab->n_con;
2455 tab->con[r].index = tab->n_row;
2456 tab->con[r].is_row = 1;
2457 tab->con[r].is_nonneg = 0;
2458 tab->con[r].is_zero = 0;
2459 tab->con[r].is_redundant = 0;
2460 tab->con[r].frozen = 0;
2461 tab->con[r].negated = 0;
2462 tab->row_var[tab->n_row] = ~r;
2463 row = tab->mat->row[tab->n_row];
2465 if (var->is_row) {
2466 isl_int_set(row[0], tab->mat->row[var->index][0]);
2467 isl_seq_neg(row + 1,
2468 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2469 } else {
2470 isl_int_set_si(row[0], 1);
2471 isl_seq_clr(row + 1, 1 + tab->n_col);
2472 isl_int_set_si(row[off + var->index], -1);
2475 tab->n_row++;
2476 tab->n_con++;
2477 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2478 return -1;
2480 sgn = sign_of_max(tab, &tab->con[r]);
2481 if (sgn < -1)
2482 return -1;
2483 if (sgn < 0) {
2484 if (isl_tab_mark_empty(tab) < 0)
2485 return -1;
2486 return 0;
2488 tab->con[r].is_nonneg = 1;
2489 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2490 return -1;
2491 /* sgn == 0 */
2492 if (close_row(tab, &tab->con[r]) < 0)
2493 return -1;
2495 return 0;
2498 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2499 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2500 * by r' = r + 1 >= 0.
2501 * If r is a row variable, we simply increase the constant term by one
2502 * (taking into account the denominator).
2503 * If r is a column variable, then we need to modify each row that
2504 * refers to r = r' - 1 by substituting this equality, effectively
2505 * subtracting the coefficient of the column from the constant.
2506 * We should only do this if the minimum is manifestly unbounded,
2507 * however. Otherwise, we may end up with negative sample values
2508 * for non-negative variables.
2509 * So, if r is a column variable with a minimum that is not
2510 * manifestly unbounded, then we need to move it to a row.
2511 * However, the sample value of this row may be negative,
2512 * even after the relaxation, so we need to restore it.
2513 * We therefore prefer to pivot a column up to a row, if possible.
2515 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
2517 struct isl_tab_var *var;
2518 unsigned off = 2 + tab->M;
2520 if (!tab)
2521 return NULL;
2523 var = &tab->con[con];
2525 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2526 if (to_row(tab, var, 1) < 0)
2527 goto error;
2528 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2529 if (to_row(tab, var, -1) < 0)
2530 goto error;
2532 if (var->is_row) {
2533 isl_int_add(tab->mat->row[var->index][1],
2534 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2535 if (restore_row(tab, var) < 0)
2536 goto error;
2537 } else {
2538 int i;
2540 for (i = 0; i < tab->n_row; ++i) {
2541 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2542 continue;
2543 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2544 tab->mat->row[i][off + var->index]);
2549 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2550 goto error;
2552 return tab;
2553 error:
2554 isl_tab_free(tab);
2555 return NULL;
2558 int isl_tab_select_facet(struct isl_tab *tab, int con)
2560 if (!tab)
2561 return -1;
2563 return cut_to_hyperplane(tab, &tab->con[con]);
2566 static int may_be_equality(struct isl_tab *tab, int row)
2568 unsigned off = 2 + tab->M;
2569 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2570 : isl_int_lt(tab->mat->row[row][1],
2571 tab->mat->row[row][0]);
2574 /* Check for (near) equalities among the constraints.
2575 * A constraint is an equality if it is non-negative and if
2576 * its maximal value is either
2577 * - zero (in case of rational tableaus), or
2578 * - strictly less than 1 (in case of integer tableaus)
2580 * We first mark all non-redundant and non-dead variables that
2581 * are not frozen and not obviously not an equality.
2582 * Then we iterate over all marked variables if they can attain
2583 * any values larger than zero or at least one.
2584 * If the maximal value is zero, we mark any column variables
2585 * that appear in the row as being zero and mark the row as being redundant.
2586 * Otherwise, if the maximal value is strictly less than one (and the
2587 * tableau is integer), then we restrict the value to being zero
2588 * by adding an opposite non-negative variable.
2590 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2592 int i;
2593 unsigned n_marked;
2595 if (!tab)
2596 return -1;
2597 if (tab->empty)
2598 return 0;
2599 if (tab->n_dead == tab->n_col)
2600 return 0;
2602 n_marked = 0;
2603 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2604 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2605 var->marked = !var->frozen && var->is_nonneg &&
2606 may_be_equality(tab, i);
2607 if (var->marked)
2608 n_marked++;
2610 for (i = tab->n_dead; i < tab->n_col; ++i) {
2611 struct isl_tab_var *var = var_from_col(tab, i);
2612 var->marked = !var->frozen && var->is_nonneg;
2613 if (var->marked)
2614 n_marked++;
2616 while (n_marked) {
2617 struct isl_tab_var *var;
2618 int sgn;
2619 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2620 var = isl_tab_var_from_row(tab, i);
2621 if (var->marked)
2622 break;
2624 if (i == tab->n_row) {
2625 for (i = tab->n_dead; i < tab->n_col; ++i) {
2626 var = var_from_col(tab, i);
2627 if (var->marked)
2628 break;
2630 if (i == tab->n_col)
2631 break;
2633 var->marked = 0;
2634 n_marked--;
2635 sgn = sign_of_max(tab, var);
2636 if (sgn < 0)
2637 return -1;
2638 if (sgn == 0) {
2639 if (close_row(tab, var) < 0)
2640 return -1;
2641 } else if (!tab->rational && !at_least_one(tab, var)) {
2642 if (cut_to_hyperplane(tab, var) < 0)
2643 return -1;
2644 return isl_tab_detect_implicit_equalities(tab);
2646 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2647 var = isl_tab_var_from_row(tab, i);
2648 if (!var->marked)
2649 continue;
2650 if (may_be_equality(tab, i))
2651 continue;
2652 var->marked = 0;
2653 n_marked--;
2657 return 0;
2660 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2662 if (!tab)
2663 return -1;
2664 if (tab->rational) {
2665 int sgn = sign_of_min(tab, var);
2666 if (sgn < -1)
2667 return -1;
2668 return sgn >= 0;
2669 } else {
2670 int irred = isl_tab_min_at_most_neg_one(tab, var);
2671 if (irred < 0)
2672 return -1;
2673 return !irred;
2677 /* Check for (near) redundant constraints.
2678 * A constraint is redundant if it is non-negative and if
2679 * its minimal value (temporarily ignoring the non-negativity) is either
2680 * - zero (in case of rational tableaus), or
2681 * - strictly larger than -1 (in case of integer tableaus)
2683 * We first mark all non-redundant and non-dead variables that
2684 * are not frozen and not obviously negatively unbounded.
2685 * Then we iterate over all marked variables if they can attain
2686 * any values smaller than zero or at most negative one.
2687 * If not, we mark the row as being redundant (assuming it hasn't
2688 * been detected as being obviously redundant in the mean time).
2690 int isl_tab_detect_redundant(struct isl_tab *tab)
2692 int i;
2693 unsigned n_marked;
2695 if (!tab)
2696 return -1;
2697 if (tab->empty)
2698 return 0;
2699 if (tab->n_redundant == tab->n_row)
2700 return 0;
2702 n_marked = 0;
2703 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2704 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2705 var->marked = !var->frozen && var->is_nonneg;
2706 if (var->marked)
2707 n_marked++;
2709 for (i = tab->n_dead; i < tab->n_col; ++i) {
2710 struct isl_tab_var *var = var_from_col(tab, i);
2711 var->marked = !var->frozen && var->is_nonneg &&
2712 !min_is_manifestly_unbounded(tab, var);
2713 if (var->marked)
2714 n_marked++;
2716 while (n_marked) {
2717 struct isl_tab_var *var;
2718 int red;
2719 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2720 var = isl_tab_var_from_row(tab, i);
2721 if (var->marked)
2722 break;
2724 if (i == tab->n_row) {
2725 for (i = tab->n_dead; i < tab->n_col; ++i) {
2726 var = var_from_col(tab, i);
2727 if (var->marked)
2728 break;
2730 if (i == tab->n_col)
2731 break;
2733 var->marked = 0;
2734 n_marked--;
2735 red = con_is_redundant(tab, var);
2736 if (red < 0)
2737 return -1;
2738 if (red && !var->is_redundant)
2739 if (isl_tab_mark_redundant(tab, var->index) < 0)
2740 return -1;
2741 for (i = tab->n_dead; i < tab->n_col; ++i) {
2742 var = var_from_col(tab, i);
2743 if (!var->marked)
2744 continue;
2745 if (!min_is_manifestly_unbounded(tab, var))
2746 continue;
2747 var->marked = 0;
2748 n_marked--;
2752 return 0;
2755 int isl_tab_is_equality(struct isl_tab *tab, int con)
2757 int row;
2758 unsigned off;
2760 if (!tab)
2761 return -1;
2762 if (tab->con[con].is_zero)
2763 return 1;
2764 if (tab->con[con].is_redundant)
2765 return 0;
2766 if (!tab->con[con].is_row)
2767 return tab->con[con].index < tab->n_dead;
2769 row = tab->con[con].index;
2771 off = 2 + tab->M;
2772 return isl_int_is_zero(tab->mat->row[row][1]) &&
2773 (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) &&
2774 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2775 tab->n_col - tab->n_dead) == -1;
2778 /* Return the minimal value of the affine expression "f" with denominator
2779 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2780 * the expression cannot attain arbitrarily small values.
2781 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2782 * The return value reflects the nature of the result (empty, unbounded,
2783 * minimal value returned in *opt).
2785 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2786 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2787 unsigned flags)
2789 int r;
2790 enum isl_lp_result res = isl_lp_ok;
2791 struct isl_tab_var *var;
2792 struct isl_tab_undo *snap;
2794 if (!tab)
2795 return isl_lp_error;
2797 if (tab->empty)
2798 return isl_lp_empty;
2800 snap = isl_tab_snap(tab);
2801 r = isl_tab_add_row(tab, f);
2802 if (r < 0)
2803 return isl_lp_error;
2804 var = &tab->con[r];
2805 for (;;) {
2806 int row, col;
2807 find_pivot(tab, var, var, -1, &row, &col);
2808 if (row == var->index) {
2809 res = isl_lp_unbounded;
2810 break;
2812 if (row == -1)
2813 break;
2814 if (isl_tab_pivot(tab, row, col) < 0)
2815 return isl_lp_error;
2817 isl_int_mul(tab->mat->row[var->index][0],
2818 tab->mat->row[var->index][0], denom);
2819 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2820 int i;
2822 isl_vec_free(tab->dual);
2823 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2824 if (!tab->dual)
2825 return isl_lp_error;
2826 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
2827 for (i = 0; i < tab->n_con; ++i) {
2828 int pos;
2829 if (tab->con[i].is_row) {
2830 isl_int_set_si(tab->dual->el[1 + i], 0);
2831 continue;
2833 pos = 2 + tab->M + tab->con[i].index;
2834 if (tab->con[i].negated)
2835 isl_int_neg(tab->dual->el[1 + i],
2836 tab->mat->row[var->index][pos]);
2837 else
2838 isl_int_set(tab->dual->el[1 + i],
2839 tab->mat->row[var->index][pos]);
2842 if (opt && res == isl_lp_ok) {
2843 if (opt_denom) {
2844 isl_int_set(*opt, tab->mat->row[var->index][1]);
2845 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
2846 } else
2847 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
2848 tab->mat->row[var->index][0]);
2850 if (isl_tab_rollback(tab, snap) < 0)
2851 return isl_lp_error;
2852 return res;
2855 int isl_tab_is_redundant(struct isl_tab *tab, int con)
2857 if (!tab)
2858 return -1;
2859 if (tab->con[con].is_zero)
2860 return 0;
2861 if (tab->con[con].is_redundant)
2862 return 1;
2863 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
2866 /* Take a snapshot of the tableau that can be restored by s call to
2867 * isl_tab_rollback.
2869 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
2871 if (!tab)
2872 return NULL;
2873 tab->need_undo = 1;
2874 return tab->top;
2877 /* Undo the operation performed by isl_tab_relax.
2879 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
2880 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
2882 unsigned off = 2 + tab->M;
2884 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2885 if (to_row(tab, var, 1) < 0)
2886 return -1;
2888 if (var->is_row) {
2889 isl_int_sub(tab->mat->row[var->index][1],
2890 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2891 if (var->is_nonneg) {
2892 int sgn = restore_row(tab, var);
2893 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
2895 } else {
2896 int i;
2898 for (i = 0; i < tab->n_row; ++i) {
2899 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2900 continue;
2901 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
2902 tab->mat->row[i][off + var->index]);
2907 return 0;
2910 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
2911 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
2913 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
2914 switch(undo->type) {
2915 case isl_tab_undo_nonneg:
2916 var->is_nonneg = 0;
2917 break;
2918 case isl_tab_undo_redundant:
2919 var->is_redundant = 0;
2920 tab->n_redundant--;
2921 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
2922 break;
2923 case isl_tab_undo_freeze:
2924 var->frozen = 0;
2925 break;
2926 case isl_tab_undo_zero:
2927 var->is_zero = 0;
2928 if (!var->is_row)
2929 tab->n_dead--;
2930 break;
2931 case isl_tab_undo_allocate:
2932 if (undo->u.var_index >= 0) {
2933 isl_assert(tab->mat->ctx, !var->is_row, return -1);
2934 drop_col(tab, var->index);
2935 break;
2937 if (!var->is_row) {
2938 if (!max_is_manifestly_unbounded(tab, var)) {
2939 if (to_row(tab, var, 1) < 0)
2940 return -1;
2941 } else if (!min_is_manifestly_unbounded(tab, var)) {
2942 if (to_row(tab, var, -1) < 0)
2943 return -1;
2944 } else
2945 if (to_row(tab, var, 0) < 0)
2946 return -1;
2948 drop_row(tab, var->index);
2949 break;
2950 case isl_tab_undo_relax:
2951 return unrelax(tab, var);
2954 return 0;
2957 /* Restore the tableau to the state where the basic variables
2958 * are those in "col_var".
2959 * We first construct a list of variables that are currently in
2960 * the basis, but shouldn't. Then we iterate over all variables
2961 * that should be in the basis and for each one that is currently
2962 * not in the basis, we exchange it with one of the elements of the
2963 * list constructed before.
2964 * We can always find an appropriate variable to pivot with because
2965 * the current basis is mapped to the old basis by a non-singular
2966 * matrix and so we can never end up with a zero row.
2968 static int restore_basis(struct isl_tab *tab, int *col_var)
2970 int i, j;
2971 int n_extra = 0;
2972 int *extra = NULL; /* current columns that contain bad stuff */
2973 unsigned off = 2 + tab->M;
2975 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
2976 if (!extra)
2977 goto error;
2978 for (i = 0; i < tab->n_col; ++i) {
2979 for (j = 0; j < tab->n_col; ++j)
2980 if (tab->col_var[i] == col_var[j])
2981 break;
2982 if (j < tab->n_col)
2983 continue;
2984 extra[n_extra++] = i;
2986 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
2987 struct isl_tab_var *var;
2988 int row;
2990 for (j = 0; j < tab->n_col; ++j)
2991 if (col_var[i] == tab->col_var[j])
2992 break;
2993 if (j < tab->n_col)
2994 continue;
2995 var = var_from_index(tab, col_var[i]);
2996 row = var->index;
2997 for (j = 0; j < n_extra; ++j)
2998 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
2999 break;
3000 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3001 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3002 goto error;
3003 extra[j] = extra[--n_extra];
3006 free(extra);
3007 free(col_var);
3008 return 0;
3009 error:
3010 free(extra);
3011 free(col_var);
3012 return -1;
3015 /* Remove all samples with index n or greater, i.e., those samples
3016 * that were added since we saved this number of samples in
3017 * isl_tab_save_samples.
3019 static void drop_samples_since(struct isl_tab *tab, int n)
3021 int i;
3023 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3024 if (tab->sample_index[i] < n)
3025 continue;
3027 if (i != tab->n_sample - 1) {
3028 int t = tab->sample_index[tab->n_sample-1];
3029 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3030 tab->sample_index[i] = t;
3031 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3033 tab->n_sample--;
3037 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3038 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3040 switch (undo->type) {
3041 case isl_tab_undo_empty:
3042 tab->empty = 0;
3043 break;
3044 case isl_tab_undo_nonneg:
3045 case isl_tab_undo_redundant:
3046 case isl_tab_undo_freeze:
3047 case isl_tab_undo_zero:
3048 case isl_tab_undo_allocate:
3049 case isl_tab_undo_relax:
3050 return perform_undo_var(tab, undo);
3051 case isl_tab_undo_bmap_eq:
3052 return isl_basic_map_free_equality(tab->bmap, 1);
3053 case isl_tab_undo_bmap_ineq:
3054 return isl_basic_map_free_inequality(tab->bmap, 1);
3055 case isl_tab_undo_bmap_div:
3056 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
3057 return -1;
3058 if (tab->samples)
3059 tab->samples->n_col--;
3060 break;
3061 case isl_tab_undo_saved_basis:
3062 if (restore_basis(tab, undo->u.col_var) < 0)
3063 return -1;
3064 break;
3065 case isl_tab_undo_drop_sample:
3066 tab->n_outside--;
3067 break;
3068 case isl_tab_undo_saved_samples:
3069 drop_samples_since(tab, undo->u.n);
3070 break;
3071 case isl_tab_undo_callback:
3072 return undo->u.callback->run(undo->u.callback);
3073 default:
3074 isl_assert(tab->mat->ctx, 0, return -1);
3076 return 0;
3079 /* Return the tableau to the state it was in when the snapshot "snap"
3080 * was taken.
3082 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3084 struct isl_tab_undo *undo, *next;
3086 if (!tab)
3087 return -1;
3089 tab->in_undo = 1;
3090 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3091 next = undo->next;
3092 if (undo == snap)
3093 break;
3094 if (perform_undo(tab, undo) < 0) {
3095 tab->top = undo;
3096 free_undo(tab);
3097 tab->in_undo = 0;
3098 return -1;
3100 free(undo);
3102 tab->in_undo = 0;
3103 tab->top = undo;
3104 if (!undo)
3105 return -1;
3106 return 0;
3109 /* The given row "row" represents an inequality violated by all
3110 * points in the tableau. Check for some special cases of such
3111 * separating constraints.
3112 * In particular, if the row has been reduced to the constant -1,
3113 * then we know the inequality is adjacent (but opposite) to
3114 * an equality in the tableau.
3115 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3116 * of the tableau and c a positive constant, then the inequality
3117 * is adjacent (but opposite) to the inequality r'.
3119 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3121 int pos;
3122 unsigned off = 2 + tab->M;
3124 if (tab->rational)
3125 return isl_ineq_separate;
3127 if (!isl_int_is_one(tab->mat->row[row][0]))
3128 return isl_ineq_separate;
3130 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3131 tab->n_col - tab->n_dead);
3132 if (pos == -1) {
3133 if (isl_int_is_negone(tab->mat->row[row][1]))
3134 return isl_ineq_adj_eq;
3135 else
3136 return isl_ineq_separate;
3139 if (!isl_int_eq(tab->mat->row[row][1],
3140 tab->mat->row[row][off + tab->n_dead + pos]))
3141 return isl_ineq_separate;
3143 pos = isl_seq_first_non_zero(
3144 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3145 tab->n_col - tab->n_dead - pos - 1);
3147 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3150 /* Check the effect of inequality "ineq" on the tableau "tab".
3151 * The result may be
3152 * isl_ineq_redundant: satisfied by all points in the tableau
3153 * isl_ineq_separate: satisfied by no point in the tableau
3154 * isl_ineq_cut: satisfied by some by not all points
3155 * isl_ineq_adj_eq: adjacent to an equality
3156 * isl_ineq_adj_ineq: adjacent to an inequality.
3158 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3160 enum isl_ineq_type type = isl_ineq_error;
3161 struct isl_tab_undo *snap = NULL;
3162 int con;
3163 int row;
3165 if (!tab)
3166 return isl_ineq_error;
3168 if (isl_tab_extend_cons(tab, 1) < 0)
3169 return isl_ineq_error;
3171 snap = isl_tab_snap(tab);
3173 con = isl_tab_add_row(tab, ineq);
3174 if (con < 0)
3175 goto error;
3177 row = tab->con[con].index;
3178 if (isl_tab_row_is_redundant(tab, row))
3179 type = isl_ineq_redundant;
3180 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3181 (tab->rational ||
3182 isl_int_abs_ge(tab->mat->row[row][1],
3183 tab->mat->row[row][0]))) {
3184 int nonneg = at_least_zero(tab, &tab->con[con]);
3185 if (nonneg < 0)
3186 goto error;
3187 if (nonneg)
3188 type = isl_ineq_cut;
3189 else
3190 type = separation_type(tab, row);
3191 } else {
3192 int red = con_is_redundant(tab, &tab->con[con]);
3193 if (red < 0)
3194 goto error;
3195 if (!red)
3196 type = isl_ineq_cut;
3197 else
3198 type = isl_ineq_redundant;
3201 if (isl_tab_rollback(tab, snap))
3202 return isl_ineq_error;
3203 return type;
3204 error:
3205 return isl_ineq_error;
3208 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3210 if (!tab || !bmap)
3211 goto error;
3213 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
3214 isl_assert(tab->mat->ctx,
3215 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
3217 tab->bmap = bmap;
3219 return 0;
3220 error:
3221 isl_basic_map_free(bmap);
3222 return -1;
3225 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3227 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3230 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3232 if (!tab)
3233 return NULL;
3235 return (isl_basic_set *)tab->bmap;
3238 void isl_tab_dump(struct isl_tab *tab, FILE *out, int indent)
3240 unsigned r, c;
3241 int i;
3243 if (!tab) {
3244 fprintf(out, "%*snull tab\n", indent, "");
3245 return;
3247 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3248 tab->n_redundant, tab->n_dead);
3249 if (tab->rational)
3250 fprintf(out, ", rational");
3251 if (tab->empty)
3252 fprintf(out, ", empty");
3253 fprintf(out, "\n");
3254 fprintf(out, "%*s[", indent, "");
3255 for (i = 0; i < tab->n_var; ++i) {
3256 if (i)
3257 fprintf(out, (i == tab->n_param ||
3258 i == tab->n_var - tab->n_div) ? "; "
3259 : ", ");
3260 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3261 tab->var[i].index,
3262 tab->var[i].is_zero ? " [=0]" :
3263 tab->var[i].is_redundant ? " [R]" : "");
3265 fprintf(out, "]\n");
3266 fprintf(out, "%*s[", indent, "");
3267 for (i = 0; i < tab->n_con; ++i) {
3268 if (i)
3269 fprintf(out, ", ");
3270 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3271 tab->con[i].index,
3272 tab->con[i].is_zero ? " [=0]" :
3273 tab->con[i].is_redundant ? " [R]" : "");
3275 fprintf(out, "]\n");
3276 fprintf(out, "%*s[", indent, "");
3277 for (i = 0; i < tab->n_row; ++i) {
3278 const char *sign = "";
3279 if (i)
3280 fprintf(out, ", ");
3281 if (tab->row_sign) {
3282 if (tab->row_sign[i] == isl_tab_row_unknown)
3283 sign = "?";
3284 else if (tab->row_sign[i] == isl_tab_row_neg)
3285 sign = "-";
3286 else if (tab->row_sign[i] == isl_tab_row_pos)
3287 sign = "+";
3288 else
3289 sign = "+-";
3291 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3292 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3294 fprintf(out, "]\n");
3295 fprintf(out, "%*s[", indent, "");
3296 for (i = 0; i < tab->n_col; ++i) {
3297 if (i)
3298 fprintf(out, ", ");
3299 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3300 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3302 fprintf(out, "]\n");
3303 r = tab->mat->n_row;
3304 tab->mat->n_row = tab->n_row;
3305 c = tab->mat->n_col;
3306 tab->mat->n_col = 2 + tab->M + tab->n_col;
3307 isl_mat_dump(tab->mat, out, indent);
3308 tab->mat->n_row = r;
3309 tab->mat->n_col = c;
3310 if (tab->bmap)
3311 isl_basic_map_print_internal(tab->bmap, out, indent);