2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
14 #include <isl/space.h>
15 #include <isl/constraint.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
30 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
31 __isl_take isl_val
*d
)
33 aff
= isl_aff_neg(aff
);
34 aff
= isl_aff_add_constant_val(aff
, d
);
35 aff
= isl_aff_add_constant_si(aff
, -1);
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "cst" is the constant term of the expression in which the added term
44 * appears. It may be modified by isl_ast_expr_add_term.
46 * "v" is the coefficient of the term that is being constructed and
47 * is set internally by isl_ast_expr_add_term.
49 struct isl_ast_add_term_data
{
55 /* Given the numerator "aff" of the argument of an integer division
56 * with denominator "d", check if it can be made non-negative over
57 * data->build->domain by stealing part of the constant term of
58 * the expression in which the integer division appears.
60 * In particular, the outer expression is of the form
62 * v * floor(aff/d) + cst
64 * We already know that "aff" itself may attain negative values.
65 * Here we check if aff + d*floor(cst/v) is non-negative, such
66 * that we could rewrite the expression to
68 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
70 * Note that aff + d*floor(cst/v) can only possibly be non-negative
71 * if data->cst and data->v have the same sign.
72 * Similarly, if floor(cst/v) is zero, then there is no point in
75 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
76 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
83 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
86 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
87 shift
= isl_val_floor(shift
);
88 is_zero
= isl_val_is_zero(shift
);
89 if (is_zero
< 0 || is_zero
) {
91 return is_zero
< 0 ? -1 : 0;
93 shift
= isl_val_mul(shift
, isl_val_copy(d
));
94 shifted
= isl_aff_copy(aff
);
95 shifted
= isl_aff_add_constant_val(shifted
, shift
);
96 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
97 isl_aff_free(shifted
);
102 /* Given the numerator "aff" of the argument of an integer division
103 * with denominator "d", steal part of the constant term of
104 * the expression in which the integer division appears to make it
105 * non-negative over data->build->domain.
107 * In particular, the outer expression is of the form
109 * v * floor(aff/d) + cst
111 * We know that "aff" itself may attain negative values,
112 * but that aff + d*floor(cst/v) is non-negative.
113 * Find the minimal positive value that we need to add to "aff"
114 * to make it positive and adjust data->cst accordingly.
115 * That is, compute the minimal value "m" of "aff" over
116 * data->build->domain and take
124 * and rewrite the expression to
126 * v * floor((aff + s*d)/d) + (cst - v*s)
128 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
129 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
134 domain
= isl_ast_build_get_domain(data
->build
);
135 shift
= isl_set_min_val(domain
, aff
);
136 isl_set_free(domain
);
138 shift
= isl_val_neg(shift
);
139 shift
= isl_val_div(shift
, isl_val_copy(d
));
140 shift
= isl_val_ceil(shift
);
142 t
= isl_val_copy(shift
);
143 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
144 data
->cst
= isl_val_sub(data
->cst
, t
);
146 shift
= isl_val_mul(shift
, isl_val_copy(d
));
147 return isl_aff_add_constant_val(aff
, shift
);
150 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
151 * The result is simplified in terms of data->build->domain.
152 * This function may change (the sign of) data->v.
154 * "ls" is known to be non-NULL.
156 * Let the div be of the form floor(e/d).
157 * If the ast_build_prefer_pdiv option is set then we check if "e"
158 * is non-negative, so that we can generate
160 * (pdiv_q, expr(e), expr(d))
164 * (fdiv_q, expr(e), expr(d))
166 * If the ast_build_prefer_pdiv option is set and
167 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
168 * If so, we can rewrite
170 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
172 * and still use pdiv_q, while changing the sign of data->v.
174 * Otherwise, we check if
178 * is non-negative and if so, replace floor(e/d) by
180 * floor((e + s*d)/d) - s
182 * with s the minimal shift that makes the argument non-negative.
184 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
185 __isl_keep isl_local_space
*ls
, int pos
)
187 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
189 isl_ast_expr
*num
, *den
;
191 enum isl_ast_expr_op_type type
;
193 aff
= isl_local_space_get_div(ls
, pos
);
194 d
= isl_aff_get_denominator_val(aff
);
195 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
196 den
= isl_ast_expr_from_val(isl_val_copy(d
));
198 type
= isl_ast_expr_op_fdiv_q
;
199 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
200 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
201 if (non_neg
>= 0 && !non_neg
) {
202 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
204 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
205 if (non_neg
>= 0 && non_neg
) {
206 data
->v
= isl_val_neg(data
->v
);
212 if (non_neg
>= 0 && !non_neg
) {
213 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
214 if (non_neg
>= 0 && non_neg
)
215 aff
= steal_from_cst(aff
, d
, data
);
218 aff
= isl_aff_free(aff
);
220 type
= isl_ast_expr_op_pdiv_q
;
224 num
= isl_ast_expr_from_aff(aff
, data
->build
);
225 return isl_ast_expr_alloc_binary(type
, num
, den
);
228 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
229 * The result is simplified in terms of data->build->domain.
230 * This function may change (the sign of) data->v.
232 * The isl_ast_expr is constructed based on the type of the dimension.
233 * - divs are constructed by var_div
234 * - set variables are constructed from the iterator isl_ids in data->build
235 * - parameters are constructed from the isl_ids in "ls"
237 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
238 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
240 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
243 if (type
== isl_dim_div
)
244 return var_div(data
, ls
, pos
);
246 if (type
== isl_dim_set
) {
247 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
248 return isl_ast_expr_from_id(id
);
251 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
252 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
254 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
255 return isl_ast_expr_from_id(id
);
258 /* Does "expr" represent the zero integer?
260 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
264 if (expr
->type
!= isl_ast_expr_int
)
266 return isl_val_is_zero(expr
->u
.v
);
269 /* Create an expression representing the sum of "expr1" and "expr2",
270 * provided neither of the two expressions is identically zero.
272 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
273 __isl_take isl_ast_expr
*expr2
)
275 if (!expr1
|| !expr2
)
278 if (ast_expr_is_zero(expr1
)) {
279 isl_ast_expr_free(expr1
);
283 if (ast_expr_is_zero(expr2
)) {
284 isl_ast_expr_free(expr2
);
288 return isl_ast_expr_add(expr1
, expr2
);
290 isl_ast_expr_free(expr1
);
291 isl_ast_expr_free(expr2
);
295 /* Subtract expr2 from expr1.
297 * If expr2 is zero, we simply return expr1.
298 * If expr1 is zero, we return
300 * (isl_ast_expr_op_minus, expr2)
302 * Otherwise, we return
304 * (isl_ast_expr_op_sub, expr1, expr2)
306 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
307 __isl_take isl_ast_expr
*expr2
)
309 if (!expr1
|| !expr2
)
312 if (ast_expr_is_zero(expr2
)) {
313 isl_ast_expr_free(expr2
);
317 if (ast_expr_is_zero(expr1
)) {
318 isl_ast_expr_free(expr1
);
319 return isl_ast_expr_neg(expr2
);
322 return isl_ast_expr_sub(expr1
, expr2
);
324 isl_ast_expr_free(expr1
);
325 isl_ast_expr_free(expr2
);
329 /* Return an isl_ast_expr that represents
333 * v is assumed to be non-negative.
334 * The result is simplified in terms of build->domain.
336 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
337 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
338 __isl_keep isl_ast_build
*build
)
346 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
348 c
= isl_ast_expr_from_val(isl_val_copy(d
));
349 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_pdiv_r
, expr
, c
);
351 if (!isl_val_is_one(v
)) {
352 c
= isl_ast_expr_from_val(isl_val_copy(v
));
353 expr
= isl_ast_expr_mul(c
, expr
);
359 /* Create an isl_ast_expr that scales "expr" by "v".
361 * If v is 1, we simply return expr.
362 * If v is -1, we return
364 * (isl_ast_expr_op_minus, expr)
366 * Otherwise, we return
368 * (isl_ast_expr_op_mul, expr(v), expr)
370 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
371 __isl_take isl_val
*v
)
377 if (isl_val_is_one(v
)) {
382 if (isl_val_is_negone(v
)) {
384 expr
= isl_ast_expr_neg(expr
);
386 c
= isl_ast_expr_from_val(v
);
387 expr
= isl_ast_expr_mul(c
, expr
);
393 isl_ast_expr_free(expr
);
397 /* Add an expression for "*v" times the specified dimension of "ls"
399 * If the dimension is an integer division, then this function
400 * may modify data->cst in order to make the numerator non-negative.
401 * The result is simplified in terms of data->build->domain.
403 * Let e be the expression for the specified dimension,
404 * multiplied by the absolute value of "*v".
405 * If "*v" is negative, we create
407 * (isl_ast_expr_op_sub, expr, e)
409 * except when expr is trivially zero, in which case we create
411 * (isl_ast_expr_op_minus, e)
415 * If "*v" is positive, we simply create
417 * (isl_ast_expr_op_add, expr, e)
420 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
421 __isl_take isl_ast_expr
*expr
,
422 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
423 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
431 term
= var(data
, ls
, type
, pos
);
434 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
436 term
= scale(term
, v
);
437 return ast_expr_sub(expr
, term
);
439 term
= scale(term
, v
);
440 return ast_expr_add(expr
, term
);
444 /* Add an expression for "v" to expr.
446 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
447 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
449 isl_ast_expr
*expr_int
;
454 if (isl_val_is_zero(v
)) {
459 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
461 expr_int
= isl_ast_expr_from_val(v
);
462 return ast_expr_sub(expr
, expr_int
);
464 expr_int
= isl_ast_expr_from_val(v
);
465 return ast_expr_add(expr
, expr_int
);
468 isl_ast_expr_free(expr
);
473 /* Internal data structure used inside extract_modulos.
475 * If any modulo expressions are detected in "aff", then the
476 * expression is removed from "aff" and added to either "pos" or "neg"
477 * depending on the sign of the coefficient of the modulo expression
480 * "add" is an expression that needs to be added to "aff" at the end of
481 * the computation. It is NULL as long as no modulos have been extracted.
483 * "i" is the position in "aff" of the div under investigation
484 * "v" is the coefficient in "aff" of the div
485 * "div" is the argument of the div, with the denominator removed
486 * "d" is the original denominator of the argument of the div
488 * "nonneg" is an affine expression that is non-negative over "build"
489 * and that can be used to extract a modulo expression from "div".
490 * In particular, if "sign" is 1, then the coefficients of "nonneg"
491 * are equal to those of "div" modulo "d". If "sign" is -1, then
492 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
493 * If "sign" is 0, then no such affine expression has been found (yet).
495 struct isl_extract_mod_data
{
496 isl_ast_build
*build
;
517 * represent (a special case of) a test for some linear expression
520 * In particular, is it of the form
526 static isl_bool
is_even_test(struct isl_extract_mod_data
*data
,
527 __isl_keep isl_aff
*arg
)
532 res
= isl_val_eq_si(data
->d
, 2);
536 cst
= isl_aff_get_constant_val(arg
);
537 res
= isl_val_eq_si(cst
, -1);
543 /* Given that data->v * div_i in data->aff is equal to
545 * f * (term - (arg mod d))
547 * with data->d * f = data->v and "arg" non-negative on data->build, add
553 * abs(f) * (arg mod d)
555 * to data->neg or data->pos depending on the sign of -f.
557 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
558 * with "lin" some linear expression, first replace
560 * f * (term - ((lin - 1) mod 2))
564 * -f * (1 - term - (lin mod 2))
566 * These two are equal because
568 * ((lin - 1) mod 2) + (lin mod 2) = 1
570 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
572 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
573 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
579 even
= is_even_test(data
, arg
);
581 arg
= isl_aff_free(arg
);
583 term
= oppose_div_arg(term
, isl_val_copy(data
->d
));
584 data
->v
= isl_val_neg(data
->v
);
585 arg
= isl_aff_set_constant_si(arg
, 0);
588 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
589 s
= isl_val_sgn(data
->v
);
590 data
->v
= isl_val_abs(data
->v
);
591 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
594 data
->neg
= ast_expr_add(data
->neg
, expr
);
596 data
->pos
= ast_expr_add(data
->pos
, expr
);
597 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
598 isl_dim_div
, data
->i
, 0);
600 data
->v
= isl_val_neg(data
->v
);
601 term
= isl_aff_scale_val(term
, isl_val_copy(data
->v
));
606 data
->add
= isl_aff_add(data
->add
, term
);
613 /* Given that data->v * div_i in data->aff is of the form
615 * f * d * floor(div/d)
617 * with div nonnegative on data->build, rewrite it as
619 * f * (div - (div mod d)) = f * div - f * (div mod d)
627 * abs(f) * (div mod d)
629 * to data->neg or data->pos depending on the sign of -f.
631 static int extract_mod(struct isl_extract_mod_data
*data
)
633 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
634 isl_aff_copy(data
->div
));
637 /* Given that data->v * div_i in data->aff is of the form
639 * f * d * floor(div/d) (1)
641 * check if div is non-negative on data->build and, if so,
642 * extract the corresponding modulo from data->aff.
643 * If not, then check if
647 * is non-negative on data->build. If so, replace (1) by
649 * -f * d * floor((-div + d - 1)/d)
651 * and extract the corresponding modulo from data->aff.
653 * This function may modify data->div.
655 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
659 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
663 return extract_mod(data
);
665 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
666 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
670 data
->v
= isl_val_neg(data
->v
);
671 return extract_mod(data
);
676 data
->aff
= isl_aff_free(data
->aff
);
680 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
681 * for use in extracting a modulo expression?
683 * We currently only consider the constant term of the affine expression.
684 * In particular, we prefer the affine expression with the smallest constant
686 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
687 * then we would pick x >= 0
689 * More detailed heuristics could be used if it turns out that there is a need.
691 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
692 __isl_keep isl_constraint
*c
)
700 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
701 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
702 simpler
= isl_val_lt(v1
, v2
);
709 /* Check if the coefficients of "c" are either equal or opposite to those
710 * of data->div modulo data->d. If so, and if "c" is "simpler" than
711 * data->nonneg, then replace data->nonneg by the affine expression of "c"
712 * and set data->sign accordingly.
714 * Both "c" and data->div are assumed not to involve any integer divisions.
716 * Before we start the actual comparison, we first quickly check if
717 * "c" and data->div have the same non-zero coefficients.
718 * If not, then we assume that "c" is not of the desired form.
719 * Note that while the coefficients of data->div can be reasonably expected
720 * not to involve any coefficients that are multiples of d, "c" may
721 * very well involve such coefficients. This means that we may actually
724 * If the constant term is "too large", then the constraint is rejected,
725 * where "too large" is fairly arbitrarily set to 1 << 15.
726 * We do this to avoid picking up constraints that bound a variable
727 * by a very large number, say the largest or smallest possible
728 * variable in the representation of some integer type.
730 static isl_stat
check_parallel_or_opposite(__isl_take isl_constraint
*c
,
733 struct isl_extract_mod_data
*data
= user
;
734 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
735 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
738 int parallel
= 1, opposite
= 1;
740 for (t
= 0; t
< 2; ++t
) {
741 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
743 return isl_stat_error
;
744 for (i
= 0; i
< n
[t
]; ++i
) {
747 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
748 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
750 parallel
= opposite
= 0;
754 if (parallel
|| opposite
) {
757 v
= isl_val_abs(isl_constraint_get_constant_val(c
));
758 if (isl_val_cmp_si(v
, 1 << 15) > 0)
759 parallel
= opposite
= 0;
763 for (t
= 0; t
< 2; ++t
) {
764 for (i
= 0; i
< n
[t
]; ++i
) {
767 if (!parallel
&& !opposite
)
769 v1
= isl_constraint_get_coefficient_val(c
,
771 v2
= isl_aff_get_coefficient_val(data
->div
,
774 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
775 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
776 v1
= isl_val_add(v1
, isl_val_copy(v2
));
779 v1
= isl_val_add(v1
, isl_val_copy(v2
));
780 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
787 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
788 isl_aff_free(data
->nonneg
);
789 data
->nonneg
= isl_constraint_get_aff(c
);
790 data
->sign
= parallel
? 1 : -1;
793 isl_constraint_free(c
);
795 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
796 return isl_stat_error
;
801 /* Given that data->v * div_i in data->aff is of the form
803 * f * d * floor(div/d) (1)
805 * see if we can find an expression div' that is non-negative over data->build
806 * and that is related to div through
812 * div' = -div + d - 1 + d * e
814 * with e some affine expression.
815 * If so, we write (1) as
817 * f * div + f * (div' mod d)
821 * -f * (-div + d - 1) - f * (div' mod d)
823 * exploiting (in the second case) the fact that
825 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
828 * We first try to find an appropriate expression for div'
829 * from the constraints of data->build->domain (which is therefore
830 * guaranteed to be non-negative on data->build), where we remove
831 * any integer divisions from the constraints and skip this step
832 * if "div" itself involves any integer divisions.
833 * If we cannot find an appropriate expression this way, then
834 * we pass control to extract_nonneg_mod where check
835 * if div or "-div + d -1" themselves happen to be
836 * non-negative on data->build.
838 * While looking for an appropriate constraint in data->build->domain,
839 * we ignore the constant term, so after finding such a constraint,
840 * we still need to fix up the constant term.
841 * In particular, if a is the constant term of "div"
842 * (or d - 1 - the constant term of "div" if data->sign < 0)
843 * and b is the constant term of the constraint, then we need to find
844 * a non-negative constant c such that
846 * b + c \equiv a mod d
852 * and add it to b to obtain the constant term of div'.
853 * If this constant term is "too negative", then we add an appropriate
854 * multiple of d to make it positive.
857 * Note that the above is only a very simple heuristic for finding an
858 * appropriate expression. We could try a bit harder by also considering
859 * sums of constraints that involve disjoint sets of variables or
860 * we could consider arbitrary linear combinations of constraints,
861 * although that could potentially be much more expensive as it involves
862 * the solution of an LP problem.
864 * In particular, if v_i is a column vector representing constraint i,
865 * w represents div and e_i is the i-th unit vector, then we are looking
866 * for a solution of the constraints
868 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
870 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
871 * If we are not just interested in a non-negative expression, but
872 * also in one with a minimal range, then we don't just want
873 * c = \sum_i lambda_i v_i to be non-negative over the domain,
874 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
875 * that we want to minimize and we now also have to take into account
876 * the constant terms of the constraints.
877 * Alternatively, we could first compute the dual of the domain
878 * and plug in the constraints on the coefficients.
880 static int try_extract_mod(struct isl_extract_mod_data
*data
)
890 n
= isl_aff_dim(data
->div
, isl_dim_div
);
894 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
895 return extract_nonneg_mod(data
);
897 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
898 hull
= isl_basic_set_remove_divs(hull
);
901 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
903 isl_basic_set_free(hull
);
905 if (!data
->sign
|| r
< 0) {
906 isl_aff_free(data
->nonneg
);
909 return extract_nonneg_mod(data
);
912 v1
= isl_aff_get_constant_val(data
->div
);
913 v2
= isl_aff_get_constant_val(data
->nonneg
);
914 if (data
->sign
< 0) {
915 v1
= isl_val_neg(v1
);
916 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
917 v1
= isl_val_sub_ui(v1
, 1);
919 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
920 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
921 v1
= isl_val_add(v1
, v2
);
922 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
923 v2
= isl_val_ceil(v2
);
924 if (isl_val_is_neg(v2
)) {
925 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
926 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
928 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
931 if (data
->sign
< 0) {
932 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
933 data
->v
= isl_val_neg(data
->v
);
936 return extract_term_and_mod(data
,
937 isl_aff_copy(data
->div
), data
->nonneg
);
939 data
->aff
= isl_aff_free(data
->aff
);
943 /* Check if "data->aff" involves any (implicit) modulo computations based
945 * If so, remove them from aff and add expressions corresponding
946 * to those modulo computations to data->pos and/or data->neg.
948 * "aff" is assumed to be an integer affine expression.
950 * In particular, check if (v * div_j) is of the form
952 * f * m * floor(a / m)
954 * and, if so, rewrite it as
956 * f * (a - (a mod m)) = f * a - f * (a mod m)
958 * and extract out -f * (a mod m).
959 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
960 * If f < 0, we add ((-f) * (a mod m)) to *pos.
962 * Note that in order to represent "a mod m" as
964 * (isl_ast_expr_op_pdiv_r, a, m)
966 * we need to make sure that a is non-negative.
967 * If not, we check if "-a + m - 1" is non-negative.
968 * If so, we can rewrite
970 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
972 * and still extract a modulo.
974 static int extract_modulo(struct isl_extract_mod_data
*data
)
976 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
977 data
->d
= isl_aff_get_denominator_val(data
->div
);
978 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
979 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
980 if (try_extract_mod(data
) < 0)
981 data
->aff
= isl_aff_free(data
->aff
);
983 isl_aff_free(data
->div
);
984 isl_val_free(data
->d
);
988 /* Check if "aff" involves any (implicit) modulo computations.
989 * If so, remove them from aff and add expressions corresponding
990 * to those modulo computations to *pos and/or *neg.
991 * We only do this if the option ast_build_prefer_pdiv is set.
993 * "aff" is assumed to be an integer affine expression.
995 * A modulo expression is of the form
997 * a mod m = a - m * floor(a / m)
999 * To detect them in aff, we look for terms of the form
1001 * f * m * floor(a / m)
1005 * f * (a - (a mod m)) = f * a - f * (a mod m)
1007 * and extract out -f * (a mod m).
1008 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1009 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1011 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
1012 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
1013 __isl_keep isl_ast_build
*build
)
1015 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
1022 ctx
= isl_aff_get_ctx(aff
);
1023 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
1026 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
1028 return isl_aff_free(aff
);
1029 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
1030 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
1031 isl_dim_div
, data
.i
);
1033 return isl_aff_free(aff
);
1034 if (isl_val_is_zero(data
.v
) ||
1035 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
1036 isl_val_free(data
.v
);
1039 if (extract_modulo(&data
) < 0)
1040 data
.aff
= isl_aff_free(data
.aff
);
1041 isl_val_free(data
.v
);
1047 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
1054 /* Check if aff involves any non-integer coefficients.
1055 * If so, split aff into
1057 * aff = aff1 + (aff2 / d)
1059 * with both aff1 and aff2 having only integer coefficients.
1060 * Return aff1 and add (aff2 / d) to *expr.
1062 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
1063 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
1067 isl_aff
*rat
= NULL
;
1068 isl_local_space
*ls
= NULL
;
1069 isl_ast_expr
*rat_expr
;
1071 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1072 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1076 d
= isl_aff_get_denominator_val(aff
);
1079 if (isl_val_is_one(d
)) {
1084 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1086 ls
= isl_aff_get_domain_local_space(aff
);
1087 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1089 for (i
= 0; i
< 3; ++i
) {
1090 n
= isl_aff_dim(aff
, t
[i
]);
1093 for (j
= 0; j
< n
; ++j
) {
1096 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1099 if (isl_val_is_divisible_by(v
, d
)) {
1103 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1105 rat_j
= isl_aff_scale_val(rat_j
, v
);
1106 rat
= isl_aff_add(rat
, rat_j
);
1110 v
= isl_aff_get_constant_val(aff
);
1111 if (isl_val_is_divisible_by(v
, d
)) {
1116 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1117 rat
= isl_aff_add(rat
, rat_0
);
1120 isl_local_space_free(ls
);
1122 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1123 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1125 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1126 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1127 *expr
= ast_expr_add(*expr
, rat_expr
);
1132 isl_local_space_free(ls
);
1138 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1139 * The result is simplified in terms of build->domain.
1141 * We first extract hidden modulo computations from the affine expression
1142 * and then add terms for each variable with a non-zero coefficient.
1143 * Finally, if the affine expression has a non-trivial denominator,
1144 * we divide the resulting isl_ast_expr by this denominator.
1146 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1147 __isl_keep isl_ast_build
*build
)
1152 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1153 isl_ast_expr
*expr
, *expr_neg
;
1154 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1155 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1156 isl_local_space
*ls
;
1157 struct isl_ast_add_term_data data
;
1162 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1163 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1165 aff
= extract_rational(aff
, &expr
, build
);
1167 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1168 expr
= ast_expr_sub(expr
, expr_neg
);
1170 ls
= isl_aff_get_domain_local_space(aff
);
1173 data
.cst
= isl_aff_get_constant_val(aff
);
1174 for (i
= 0; i
< 3; ++i
) {
1175 n
= isl_aff_dim(aff
, t
[i
]);
1177 expr
= isl_ast_expr_free(expr
);
1178 for (j
= 0; j
< n
; ++j
) {
1179 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1181 expr
= isl_ast_expr_free(expr
);
1182 if (isl_val_is_zero(v
)) {
1186 expr
= isl_ast_expr_add_term(expr
,
1187 ls
, l
[i
], j
, v
, &data
);
1191 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1193 isl_local_space_free(ls
);
1198 /* Add terms to "expr" for each variable in "aff" with a coefficient
1199 * with sign equal to "sign".
1200 * The result is simplified in terms of data->build->domain.
1202 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1203 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1207 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1208 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1209 isl_local_space
*ls
;
1211 ls
= isl_aff_get_domain_local_space(aff
);
1213 for (i
= 0; i
< 3; ++i
) {
1214 isl_size n
= isl_aff_dim(aff
, t
[i
]);
1216 expr
= isl_ast_expr_free(expr
);
1217 for (j
= 0; j
< n
; ++j
) {
1218 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1219 if (sign
* isl_val_sgn(v
) <= 0) {
1224 expr
= isl_ast_expr_add_term(expr
,
1225 ls
, l
[i
], j
, v
, data
);
1229 isl_local_space_free(ls
);
1234 /* Should the constant term "v" be considered positive?
1236 * A positive constant will be added to "pos" by the caller,
1237 * while a negative constant will be added to "neg".
1238 * If either "pos" or "neg" is exactly zero, then we prefer
1239 * to add the constant "v" to that side, irrespective of the sign of "v".
1240 * This results in slightly shorter expressions and may reduce the risk
1243 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1244 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1246 if (ast_expr_is_zero(pos
))
1248 if (ast_expr_is_zero(neg
))
1250 return isl_val_is_pos(v
);
1253 /* Check if the equality
1257 * represents a stride constraint on the integer division "pos".
1259 * In particular, if the integer division "pos" is equal to
1263 * then check if aff is equal to
1269 * If so, the equality is exactly
1273 * Note that in principle we could also accept
1277 * where e and e' differ by a constant.
1279 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1285 div
= isl_aff_get_div(aff
, pos
);
1286 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1287 d
= isl_aff_get_denominator_val(div
);
1288 eq
= isl_val_abs_eq(c
, d
);
1289 if (eq
>= 0 && eq
) {
1290 aff
= isl_aff_copy(aff
);
1291 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1292 div
= isl_aff_scale_val(div
, d
);
1293 if (isl_val_is_pos(c
))
1294 div
= isl_aff_neg(div
);
1295 eq
= isl_aff_plain_is_equal(div
, aff
);
1305 /* Are all coefficients of "aff" (zero or) negative?
1307 static isl_bool
all_negative_coefficients(__isl_keep isl_aff
*aff
)
1312 n
= isl_aff_dim(aff
, isl_dim_param
);
1314 return isl_bool_error
;
1315 for (i
= 0; i
< n
; ++i
)
1316 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1317 return isl_bool_false
;
1319 n
= isl_aff_dim(aff
, isl_dim_in
);
1321 return isl_bool_error
;
1322 for (i
= 0; i
< n
; ++i
)
1323 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1324 return isl_bool_false
;
1326 return isl_bool_true
;
1329 /* Give an equality of the form
1331 * aff = e - d floor(e/d) = 0
1335 * aff = -e + d floor(e/d) = 0
1337 * with the integer division "pos" equal to floor(e/d),
1338 * construct the AST expression
1340 * (isl_ast_expr_op_eq,
1341 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1343 * If e only has negative coefficients, then construct
1345 * (isl_ast_expr_op_eq,
1346 * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
1350 static __isl_give isl_ast_expr
*extract_stride_constraint(
1351 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1356 isl_ast_expr
*expr
, *cst
;
1361 ctx
= isl_aff_get_ctx(aff
);
1363 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1364 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1366 all_neg
= all_negative_coefficients(aff
);
1368 aff
= isl_aff_free(aff
);
1370 aff
= isl_aff_neg(aff
);
1372 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1373 expr
= isl_ast_expr_from_aff(aff
, build
);
1375 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r
, expr
, cst
);
1376 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1377 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_eq
, expr
, cst
);
1382 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1383 * The result is simplified in terms of build->domain.
1385 * We first check if the constraint is an equality of the form
1387 * e - d floor(e/d) = 0
1393 * If so, we convert it to
1395 * (isl_ast_expr_op_eq,
1396 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1398 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1399 * We first extract hidden modulo computations from "a"
1400 * and then collect all the terms with a positive coefficient in cons_pos
1401 * and the terms with a negative coefficient in cons_neg.
1403 * The result is then of the form
1405 * (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
1409 * (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
1411 * However, if the first expression is an integer constant (and the second
1412 * is not), then we swap the two expressions. This ensures that we construct,
1413 * e.g., "i <= 5" rather than "5 >= i".
1415 * Furthermore, is there are no terms with positive coefficients (or no terms
1416 * with negative coefficients), then the constant term is added to "pos"
1417 * (or "neg"), ignoring the sign of the constant term.
1419 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1420 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1425 isl_ast_expr
*expr_pos
;
1426 isl_ast_expr
*expr_neg
;
1430 enum isl_ast_expr_op_type type
;
1431 struct isl_ast_add_term_data data
;
1436 aff
= isl_constraint_get_aff(constraint
);
1437 eq
= isl_constraint_is_equality(constraint
);
1438 isl_constraint_free(constraint
);
1440 n
= isl_aff_dim(aff
, isl_dim_div
);
1442 aff
= isl_aff_free(aff
);
1444 for (i
= 0; i
< n
; ++i
) {
1446 is_stride
= is_stride_constraint(aff
, i
);
1450 return extract_stride_constraint(aff
, i
, build
);
1453 ctx
= isl_aff_get_ctx(aff
);
1454 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1455 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1457 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1460 data
.cst
= isl_aff_get_constant_val(aff
);
1461 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1462 data
.cst
= isl_val_neg(data
.cst
);
1463 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1464 data
.cst
= isl_val_neg(data
.cst
);
1466 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1467 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1469 data
.cst
= isl_val_neg(data
.cst
);
1470 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1473 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1474 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1475 type
= eq
? isl_ast_expr_op_eq
: isl_ast_expr_op_le
;
1476 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1478 type
= eq
? isl_ast_expr_op_eq
: isl_ast_expr_op_ge
;
1479 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1489 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1490 * as a callback to isl_constraint_list_sort.
1491 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1492 * apart, then use isl_constraint_plain_cmp instead.
1494 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1495 __isl_keep isl_constraint
*b
, void *user
)
1499 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1502 return isl_constraint_plain_cmp(a
, b
);
1505 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1506 * The result is simplified in terms of build->domain.
1508 * If "bset" is not bounded by any constraint, then we construct
1509 * the expression "1", i.e., "true".
1511 * Otherwise, we sort the constraints, putting constraints that involve
1512 * integer divisions after those that do not, and construct an "and"
1513 * of the ast expressions of the individual constraints.
1515 * Each constraint is added to the generated constraints of the build
1516 * after it has been converted to an AST expression so that it can be used
1517 * to simplify the following constraints. This may change the truth value
1518 * of subsequent constraints that do not satisfy the earlier constraints,
1519 * but this does not affect the outcome of the conjunction as it is
1520 * only true if all the conjuncts are true (no matter in what order
1521 * they are evaluated). In particular, the constraints that do not
1522 * involve integer divisions may serve to simplify some constraints
1523 * that do involve integer divisions.
1525 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1526 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1531 isl_constraint_list
*list
;
1535 list
= isl_basic_set_get_constraint_list(bset
);
1536 isl_basic_set_free(bset
);
1537 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1538 n
= isl_constraint_list_n_constraint(list
);
1542 isl_ctx
*ctx
= isl_constraint_list_get_ctx(list
);
1543 isl_constraint_list_free(list
);
1544 return isl_ast_expr_alloc_int_si(ctx
, 1);
1547 build
= isl_ast_build_copy(build
);
1549 c
= isl_constraint_list_get_constraint(list
, 0);
1550 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1551 set
= isl_set_from_basic_set(bset
);
1552 res
= isl_ast_expr_from_constraint(c
, build
);
1553 build
= isl_ast_build_restrict_generated(build
, set
);
1555 for (i
= 1; i
< n
; ++i
) {
1558 c
= isl_constraint_list_get_constraint(list
, i
);
1559 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1560 set
= isl_set_from_basic_set(bset
);
1561 expr
= isl_ast_expr_from_constraint(c
, build
);
1562 build
= isl_ast_build_restrict_generated(build
, set
);
1563 res
= isl_ast_expr_and(res
, expr
);
1566 isl_constraint_list_free(list
);
1567 isl_ast_build_free(build
);
1571 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1572 * The result is simplified in terms of build->domain.
1574 * If "set" is an (obviously) empty set, then return the expression "0".
1576 * If there are multiple disjuncts in the description of the set,
1577 * then subsequent disjuncts are simplified in a context where
1578 * the previous disjuncts have been removed from build->domain.
1579 * In particular, constraints that ensure that there is no overlap
1580 * with these previous disjuncts, can be removed.
1581 * This is mostly useful for disjuncts that are only defined by
1582 * a single constraint (relative to the build domain) as the opposite
1583 * of that single constraint can then be removed from the other disjuncts.
1584 * In order not to increase the number of disjuncts in the build domain
1585 * after subtracting the previous disjuncts of "set", the simple hull
1586 * is computed after taking the difference with each of these disjuncts.
1587 * This means that constraints that prevent overlap with a union
1588 * of multiple previous disjuncts are not removed.
1590 * "set" lives in the internal schedule space.
1592 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1593 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1597 isl_basic_set
*bset
;
1598 isl_basic_set_list
*list
;
1602 list
= isl_set_get_basic_set_list(set
);
1605 n
= isl_basic_set_list_n_basic_set(list
);
1609 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1610 isl_basic_set_list_free(list
);
1611 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1614 domain
= isl_ast_build_get_domain(build
);
1616 bset
= isl_basic_set_list_get_basic_set(list
, 0);
1617 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1618 res
= isl_ast_build_expr_from_basic_set(build
, bset
);
1620 for (i
= 1; i
< n
; ++i
) {
1624 rest
= isl_set_subtract(isl_set_copy(domain
), set
);
1625 rest
= isl_set_from_basic_set(isl_set_simple_hull(rest
));
1626 domain
= isl_set_intersect(domain
, rest
);
1627 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1628 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1629 bset
= isl_basic_set_gist(bset
,
1630 isl_set_simple_hull(isl_set_copy(domain
)));
1631 expr
= isl_ast_build_expr_from_basic_set(build
, bset
);
1632 res
= isl_ast_expr_or(res
, expr
);
1635 isl_set_free(domain
);
1637 isl_basic_set_list_free(list
);
1641 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1642 * The result is simplified in terms of build->domain.
1644 * If "set" is an (obviously) empty set, then return the expression "0".
1646 * "set" lives in the external schedule space.
1648 * The internal AST expression generation assumes that there are
1649 * no unknown divs, so make sure an explicit representation is available.
1650 * Since the set comes from the outside, it may have constraints that
1651 * are redundant with respect to the build domain. Remove them first.
1653 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1654 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1658 needs_map
= isl_ast_build_need_schedule_map(build
);
1659 if (needs_map
< 0) {
1660 set
= isl_set_free(set
);
1661 } else if (needs_map
) {
1663 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1664 set
= isl_set_preimage_multi_aff(set
, ma
);
1667 set
= isl_set_compute_divs(set
);
1668 set
= isl_ast_build_compute_gist(build
, set
);
1669 return isl_ast_build_expr_from_set_internal(build
, set
);
1672 /* State of data about previous pieces in
1673 * isl_ast_build_expr_from_pw_aff_internal.
1675 * isl_state_none: no data about previous pieces
1676 * isl_state_single: data about a single previous piece
1677 * isl_state_min: data represents minimum of several pieces
1678 * isl_state_max: data represents maximum of several pieces
1680 enum isl_from_pw_aff_state
{
1687 /* Internal date structure representing a single piece in the input of
1688 * isl_ast_build_expr_from_pw_aff_internal.
1690 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1691 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1692 * single previous subpiece.
1693 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1694 * a sequence of several previous subpieces that are equal to the minimum
1695 * of the entries in "aff_list" over the union of "set_list"
1696 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1697 * a sequence of several previous subpieces that are equal to the maximum
1698 * of the entries in "aff_list" over the union of "set_list"
1700 * During the construction of the pieces, "set" is NULL.
1701 * After the construction, "set" is set to the union of the elements
1702 * in "set_list", at which point "set_list" is set to NULL.
1704 struct isl_from_pw_aff_piece
{
1705 enum isl_from_pw_aff_state state
;
1707 isl_set_list
*set_list
;
1708 isl_aff_list
*aff_list
;
1711 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1713 * "build" specifies the domain against which the result is simplified.
1714 * "dom" is the domain of the entire isl_pw_aff.
1716 * "n" is the number of pieces constructed already.
1717 * In particular, during the construction of the pieces, "n" points to
1718 * the piece that is being constructed. After the construction of the
1719 * pieces, "n" is set to the total number of pieces.
1720 * "max" is the total number of allocated entries.
1721 * "p" contains the individual pieces.
1723 struct isl_from_pw_aff_data
{
1724 isl_ast_build
*build
;
1729 struct isl_from_pw_aff_piece
*p
;
1732 /* Initialize "data" based on "build" and "pa".
1734 static isl_stat
isl_from_pw_aff_data_init(struct isl_from_pw_aff_data
*data
,
1735 __isl_keep isl_ast_build
*build
, __isl_keep isl_pw_aff
*pa
)
1740 ctx
= isl_pw_aff_get_ctx(pa
);
1741 n
= isl_pw_aff_n_piece(pa
);
1743 return isl_stat_error
;
1745 isl_die(ctx
, isl_error_invalid
,
1746 "cannot handle void expression", return isl_stat_error
);
1748 data
->p
= isl_calloc_array(ctx
, struct isl_from_pw_aff_piece
, n
);
1750 return isl_stat_error
;
1751 data
->build
= build
;
1752 data
->dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1758 /* Free all memory allocated for "data".
1760 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data
*data
)
1764 isl_set_free(data
->dom
);
1768 for (i
= 0; i
< data
->max
; ++i
) {
1769 isl_set_free(data
->p
[i
].set
);
1770 isl_set_list_free(data
->p
[i
].set_list
);
1771 isl_aff_list_free(data
->p
[i
].aff_list
);
1776 /* Initialize the current entry of "data" to an unused piece.
1778 static void set_none(struct isl_from_pw_aff_data
*data
)
1780 data
->p
[data
->n
].state
= isl_state_none
;
1781 data
->p
[data
->n
].set_list
= NULL
;
1782 data
->p
[data
->n
].aff_list
= NULL
;
1785 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1787 static void set_single(struct isl_from_pw_aff_data
*data
,
1788 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1790 data
->p
[data
->n
].state
= isl_state_single
;
1791 data
->p
[data
->n
].set_list
= isl_set_list_from_set(set
);
1792 data
->p
[data
->n
].aff_list
= isl_aff_list_from_aff(aff
);
1795 /* Extend the current entry of "data" with "set" and "aff"
1796 * as a minimum expression.
1798 static isl_stat
extend_min(struct isl_from_pw_aff_data
*data
,
1799 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1802 data
->p
[n
].state
= isl_state_min
;
1803 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1804 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1806 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1807 return isl_stat_error
;
1811 /* Extend the current entry of "data" with "set" and "aff"
1812 * as a maximum expression.
1814 static isl_stat
extend_max(struct isl_from_pw_aff_data
*data
,
1815 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1818 data
->p
[n
].state
= isl_state_max
;
1819 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1820 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1822 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1823 return isl_stat_error
;
1827 /* Extend the domain of the current entry of "data", which is assumed
1828 * to contain a single subpiece, with "set". If "replace" is set,
1829 * then also replace the affine function by "aff". Otherwise,
1830 * simply free "aff".
1832 static isl_stat
extend_domain(struct isl_from_pw_aff_data
*data
,
1833 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
, int replace
)
1838 set_n
= isl_set_list_get_set(data
->p
[n
].set_list
, 0);
1839 set_n
= isl_set_union(set_n
, set
);
1840 data
->p
[n
].set_list
=
1841 isl_set_list_set_set(data
->p
[n
].set_list
, 0, set_n
);
1844 data
->p
[n
].aff_list
=
1845 isl_aff_list_set_aff(data
->p
[n
].aff_list
, 0, aff
);
1849 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1850 return isl_stat_error
;
1854 /* Construct an isl_ast_expr from "list" within "build".
1855 * If "state" is isl_state_single, then "list" contains a single entry and
1856 * an isl_ast_expr is constructed for that entry.
1857 * Otherwise a min or max expression is constructed from "list"
1858 * depending on "state".
1860 static __isl_give isl_ast_expr
*ast_expr_from_aff_list(
1861 __isl_take isl_aff_list
*list
, enum isl_from_pw_aff_state state
,
1862 __isl_keep isl_ast_build
*build
)
1867 isl_ast_expr
*expr
= NULL
;
1868 enum isl_ast_expr_op_type op_type
;
1870 if (state
== isl_state_single
) {
1871 aff
= isl_aff_list_get_aff(list
, 0);
1872 isl_aff_list_free(list
);
1873 return isl_ast_expr_from_aff(aff
, build
);
1875 n
= isl_aff_list_n_aff(list
);
1878 op_type
= state
== isl_state_min
? isl_ast_expr_op_min
1879 : isl_ast_expr_op_max
;
1880 expr
= isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build
), op_type
, n
);
1884 for (i
= 0; i
< n
; ++i
) {
1885 isl_ast_expr
*expr_i
;
1887 aff
= isl_aff_list_get_aff(list
, i
);
1888 expr_i
= isl_ast_expr_from_aff(aff
, build
);
1891 expr
->u
.op
.args
[i
] = expr_i
;
1894 isl_aff_list_free(list
);
1897 isl_aff_list_free(list
);
1898 isl_ast_expr_free(expr
);
1902 /* Extend the expression in "next" to take into account
1903 * the piece at position "pos" in "data", allowing for a further extension
1904 * for the next piece(s).
1905 * In particular, "next" is set to a select operation that selects
1906 * an isl_ast_expr corresponding to data->aff_list on data->set and
1907 * to an expression that will be filled in by later calls.
1908 * Return a pointer to this location.
1909 * Afterwards, the state of "data" is set to isl_state_none.
1911 * The constraints of data->set are added to the generated
1912 * constraints of the build such that they can be exploited to simplify
1913 * the AST expression constructed from data->aff_list.
1915 static isl_ast_expr
**add_intermediate_piece(struct isl_from_pw_aff_data
*data
,
1916 int pos
, isl_ast_expr
**next
)
1919 isl_ast_build
*build
;
1920 isl_ast_expr
*ternary
, *arg
;
1921 isl_set
*set
, *gist
;
1923 set
= data
->p
[pos
].set
;
1924 data
->p
[pos
].set
= NULL
;
1925 ctx
= isl_ast_build_get_ctx(data
->build
);
1926 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_expr_op_select
, 3);
1927 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1928 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1929 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1930 build
= isl_ast_build_copy(data
->build
);
1931 build
= isl_ast_build_restrict_generated(build
, set
);
1932 arg
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1933 data
->p
[pos
].state
, build
);
1934 data
->p
[pos
].aff_list
= NULL
;
1935 isl_ast_build_free(build
);
1936 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1937 data
->p
[pos
].state
= isl_state_none
;
1942 return &ternary
->u
.op
.args
[2];
1945 /* Extend the expression in "next" to take into account
1946 * the final piece, located at position "pos" in "data".
1947 * In particular, "next" is set to evaluate data->aff_list
1948 * and the domain is ignored.
1949 * Return isl_stat_ok on success and isl_stat_error on failure.
1951 * The constraints of data->set are however added to the generated
1952 * constraints of the build such that they can be exploited to simplify
1953 * the AST expression constructed from data->aff_list.
1955 static isl_stat
add_last_piece(struct isl_from_pw_aff_data
*data
,
1956 int pos
, isl_ast_expr
**next
)
1958 isl_ast_build
*build
;
1960 if (data
->p
[pos
].state
== isl_state_none
)
1961 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1962 "cannot handle void expression", return isl_stat_error
);
1964 build
= isl_ast_build_copy(data
->build
);
1965 build
= isl_ast_build_restrict_generated(build
, data
->p
[pos
].set
);
1966 data
->p
[pos
].set
= NULL
;
1967 *next
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1968 data
->p
[pos
].state
, build
);
1969 data
->p
[pos
].aff_list
= NULL
;
1970 isl_ast_build_free(build
);
1971 data
->p
[pos
].state
= isl_state_none
;
1973 return isl_stat_error
;
1978 /* Return -1 if the piece "p1" should be sorted before "p2"
1979 * and 1 if it should be sorted after "p2".
1980 * Return 0 if they do not need to be sorted in a specific order.
1982 * Pieces are sorted according to the number of disjuncts
1985 static int sort_pieces_cmp(const void *p1
, const void *p2
, void *arg
)
1987 const struct isl_from_pw_aff_piece
*piece1
= p1
;
1988 const struct isl_from_pw_aff_piece
*piece2
= p2
;
1991 n1
= isl_set_n_basic_set(piece1
->set
);
1992 n2
= isl_set_n_basic_set(piece2
->set
);
1997 /* Construct an isl_ast_expr from the pieces in "data".
1998 * Return the result or NULL on failure.
2000 * When this function is called, data->n points to the current piece.
2001 * If this is an effective piece, then first increment data->n such
2002 * that data->n contains the number of pieces.
2003 * The "set_list" fields are subsequently replaced by the corresponding
2004 * "set" fields, after which the pieces are sorted according to
2005 * the number of disjuncts in these "set" fields.
2007 * Construct intermediate AST expressions for the initial pieces and
2008 * finish off with the final pieces.
2010 static isl_ast_expr
*build_pieces(struct isl_from_pw_aff_data
*data
)
2013 isl_ast_expr
*res
= NULL
;
2014 isl_ast_expr
**next
= &res
;
2016 if (data
->p
[data
->n
].state
!= isl_state_none
)
2019 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
2020 "cannot handle void expression", return NULL
);
2022 for (i
= 0; i
< data
->n
; ++i
) {
2023 data
->p
[i
].set
= isl_set_list_union(data
->p
[i
].set_list
);
2024 if (data
->p
[i
].state
!= isl_state_single
)
2025 data
->p
[i
].set
= isl_set_coalesce(data
->p
[i
].set
);
2026 data
->p
[i
].set_list
= NULL
;
2029 if (isl_sort(data
->p
, data
->n
, sizeof(data
->p
[0]),
2030 &sort_pieces_cmp
, NULL
) < 0)
2031 return isl_ast_expr_free(res
);
2033 for (i
= 0; i
+ 1 < data
->n
; ++i
) {
2034 next
= add_intermediate_piece(data
, i
, next
);
2036 return isl_ast_expr_free(res
);
2039 if (add_last_piece(data
, data
->n
- 1, next
) < 0)
2040 return isl_ast_expr_free(res
);
2045 /* Is the domain of the current entry of "data", which is assumed
2046 * to contain a single subpiece, a subset of "set"?
2048 static isl_bool
single_is_subset(struct isl_from_pw_aff_data
*data
,
2049 __isl_keep isl_set
*set
)
2054 set_n
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, 0);
2055 subset
= isl_set_is_subset(set_n
, set
);
2056 isl_set_free(set_n
);
2061 /* Is "aff" a rational expression, i.e., does it have a denominator
2062 * different from one?
2064 static isl_bool
aff_is_rational(__isl_keep isl_aff
*aff
)
2069 den
= isl_aff_get_denominator_val(aff
);
2070 rational
= isl_bool_not(isl_val_is_one(den
));
2076 /* Does "list" consist of a single rational affine expression?
2078 static isl_bool
is_single_rational_aff(__isl_keep isl_aff_list
*list
)
2084 n
= isl_aff_list_n_aff(list
);
2086 return isl_bool_error
;
2088 return isl_bool_false
;
2089 aff
= isl_aff_list_get_aff(list
, 0);
2090 rational
= aff_is_rational(aff
);
2096 /* Can the list of subpieces in the last piece of "data" be extended with
2097 * "set" and "aff" based on "test"?
2098 * In particular, is it the case for each entry (set_i, aff_i) that
2100 * test(aff, aff_i) holds on set_i, and
2101 * test(aff_i, aff) holds on set?
2103 * "test" returns the set of elements where the tests holds, meaning
2104 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2106 * This function is used to detect min/max expressions.
2107 * If the ast_build_detect_min_max option is turned off, then
2108 * do not even try and perform any detection and return false instead.
2110 * Rational affine expressions are not considered for min/max expressions
2111 * since the combined expression will be defined on the union of the domains,
2112 * while a rational expression may only yield integer values
2113 * on its own definition domain.
2115 static isl_bool
extends(struct isl_from_pw_aff_data
*data
,
2116 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
,
2117 __isl_give isl_basic_set
*(*test
)(__isl_take isl_aff
*aff1
,
2118 __isl_take isl_aff
*aff2
))
2122 isl_bool is_rational
;
2126 is_rational
= aff_is_rational(aff
);
2127 if (is_rational
>= 0 && !is_rational
)
2128 is_rational
= is_single_rational_aff(data
->p
[data
->n
].aff_list
);
2129 if (is_rational
< 0 || is_rational
)
2130 return isl_bool_not(is_rational
);
2132 ctx
= isl_ast_build_get_ctx(data
->build
);
2133 if (!isl_options_get_ast_build_detect_min_max(ctx
))
2134 return isl_bool_false
;
2136 n
= isl_set_list_n_set(data
->p
[data
->n
].set_list
);
2138 return isl_bool_error
;
2140 dom
= isl_ast_build_get_domain(data
->build
);
2141 set
= isl_set_intersect(dom
, isl_set_copy(set
));
2143 for (i
= 0; i
< n
; ++i
) {
2146 isl_set
*dom
, *required
;
2149 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2150 valid
= isl_set_from_basic_set(test(isl_aff_copy(aff
), aff_i
));
2151 required
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, i
);
2152 dom
= isl_ast_build_get_domain(data
->build
);
2153 required
= isl_set_intersect(dom
, required
);
2154 is_valid
= isl_set_is_subset(required
, valid
);
2155 isl_set_free(required
);
2156 isl_set_free(valid
);
2157 if (is_valid
< 0 || !is_valid
) {
2162 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2163 valid
= isl_set_from_basic_set(test(aff_i
, isl_aff_copy(aff
)));
2164 is_valid
= isl_set_is_subset(set
, valid
);
2165 isl_set_free(valid
);
2166 if (is_valid
< 0 || !is_valid
) {
2173 return isl_bool_true
;
2176 /* Can the list of pieces in "data" be extended with "set" and "aff"
2177 * to form/preserve a minimum expression?
2178 * In particular, is it the case for each entry (set_i, aff_i) that
2180 * aff >= aff_i on set_i, and
2181 * aff_i >= aff on set?
2183 static isl_bool
extends_min(struct isl_from_pw_aff_data
*data
,
2184 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2186 return extends(data
, set
, aff
, &isl_aff_ge_basic_set
);
2189 /* Can the list of pieces in "data" be extended with "set" and "aff"
2190 * to form/preserve a maximum expression?
2191 * In particular, is it the case for each entry (set_i, aff_i) that
2193 * aff <= aff_i on set_i, and
2194 * aff_i <= aff on set?
2196 static isl_bool
extends_max(struct isl_from_pw_aff_data
*data
,
2197 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2199 return extends(data
, set
, aff
, &isl_aff_le_basic_set
);
2202 /* This function is called during the construction of an isl_ast_expr
2203 * that evaluates an isl_pw_aff.
2204 * If the last piece of "data" contains a single subpiece and
2205 * if its affine function is equal to "aff" on a part of the domain
2206 * that includes either "set" or the domain of that single subpiece,
2207 * then extend the domain of that single subpiece with "set".
2208 * If it was the original domain of the single subpiece where
2209 * the two affine functions are equal, then also replace
2210 * the affine function of the single subpiece by "aff".
2211 * If the last piece of "data" contains either a single subpiece
2212 * or a minimum, then check if this minimum expression can be extended
2214 * If so, extend the sequence and return.
2215 * Perform the same operation for maximum expressions.
2216 * If no such extension can be performed, then move to the next piece
2217 * in "data" (if the current piece contains any data), and then store
2218 * the current subpiece in the current piece of "data" for later handling.
2220 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
2221 __isl_take isl_aff
*aff
, void *user
)
2223 struct isl_from_pw_aff_data
*data
= user
;
2225 enum isl_from_pw_aff_state state
;
2227 state
= data
->p
[data
->n
].state
;
2228 if (state
== isl_state_single
) {
2231 isl_bool subset1
, subset2
= isl_bool_false
;
2232 aff0
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, 0);
2233 eq
= isl_aff_eq_set(isl_aff_copy(aff
), aff0
);
2234 subset1
= isl_set_is_subset(set
, eq
);
2235 if (subset1
>= 0 && !subset1
)
2236 subset2
= single_is_subset(data
, eq
);
2238 if (subset1
< 0 || subset2
< 0)
2241 return extend_domain(data
, set
, aff
, 0);
2243 return extend_domain(data
, set
, aff
, 1);
2245 if (state
== isl_state_single
|| state
== isl_state_min
) {
2246 test
= extends_min(data
, set
, aff
);
2250 return extend_min(data
, set
, aff
);
2252 if (state
== isl_state_single
|| state
== isl_state_max
) {
2253 test
= extends_max(data
, set
, aff
);
2257 return extend_max(data
, set
, aff
);
2259 if (state
!= isl_state_none
)
2261 set_single(data
, set
, aff
);
2267 return isl_stat_error
;
2270 /* Construct an isl_ast_expr that evaluates "pa".
2271 * The result is simplified in terms of build->domain.
2273 * The domain of "pa" lives in the internal schedule space.
2275 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
2276 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2278 struct isl_from_pw_aff_data data
= { NULL
};
2279 isl_ast_expr
*res
= NULL
;
2281 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
2282 pa
= isl_pw_aff_coalesce(pa
);
2286 if (isl_from_pw_aff_data_init(&data
, build
, pa
) < 0)
2290 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) >= 0)
2291 res
= build_pieces(&data
);
2293 isl_pw_aff_free(pa
);
2294 isl_from_pw_aff_data_clear(&data
);
2297 isl_pw_aff_free(pa
);
2298 isl_from_pw_aff_data_clear(&data
);
2302 /* Construct an isl_ast_expr that evaluates "pa".
2303 * The result is simplified in terms of build->domain.
2305 * The domain of "pa" lives in the external schedule space.
2307 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
2308 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2313 needs_map
= isl_ast_build_need_schedule_map(build
);
2314 if (needs_map
< 0) {
2315 pa
= isl_pw_aff_free(pa
);
2316 } else if (needs_map
) {
2318 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2319 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
2321 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2325 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2328 * The domain of "mpa" is assumed to live in the internal schedule domain.
2330 static __isl_give isl_multi_pw_aff
*set_iterator_names(
2331 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2336 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
2338 return isl_multi_pw_aff_free(mpa
);
2339 for (i
= 0; i
< n
; ++i
) {
2342 id
= isl_ast_build_get_iterator_id(build
, i
);
2343 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
2349 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2350 * the remaining arguments derived from "mpa".
2351 * That is, construct a call or access expression that calls/accesses "arg0"
2352 * with arguments/indices specified by "mpa".
2354 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
2355 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2356 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
2363 ctx
= isl_ast_build_get_ctx(build
);
2365 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
2366 expr
= n
>= 0 ? isl_ast_expr_alloc_op(ctx
, type
, 1 + n
) : NULL
;
2367 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
2368 for (i
= 0; i
< n
; ++i
) {
2372 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
2373 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2374 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
2377 isl_multi_pw_aff_free(mpa
);
2381 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2382 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2383 __isl_take isl_multi_pw_aff
*mpa
);
2385 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2386 * The range of "mpa" is assumed to be wrapped relation.
2387 * The domain of this wrapped relation specifies the structure being
2388 * accessed, while the range of this wrapped relation spacifies the
2389 * member of the structure being accessed.
2391 * The domain of "mpa" is assumed to live in the internal schedule domain.
2393 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
2394 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2397 isl_multi_pw_aff
*domain
;
2398 isl_ast_expr
*domain_expr
, *expr
;
2399 enum isl_ast_expr_op_type type
= isl_ast_expr_op_access
;
2401 domain
= isl_multi_pw_aff_copy(mpa
);
2402 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
2403 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
2405 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
2406 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2407 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2408 "missing field name", goto error
);
2409 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2410 expr
= isl_ast_expr_from_id(id
);
2411 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_member
,
2413 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2415 isl_multi_pw_aff_free(mpa
);
2419 /* Construct an isl_ast_expr of type "type" that calls or accesses
2420 * the element specified by "mpa".
2421 * The first argument is obtained from the output tuple name.
2422 * The remaining arguments are given by the piecewise affine expressions.
2424 * If the range of "mpa" is a mapped relation, then we assume it
2425 * represents an access to a member of a structure.
2427 * The domain of "mpa" is assumed to live in the internal schedule domain.
2429 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2430 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2431 __isl_take isl_multi_pw_aff
*mpa
)
2440 if (type
== isl_ast_expr_op_access
&&
2441 isl_multi_pw_aff_range_is_wrapping(mpa
))
2442 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
2444 mpa
= set_iterator_names(build
, mpa
);
2448 ctx
= isl_ast_build_get_ctx(build
);
2450 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2451 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2453 id
= isl_id_alloc(ctx
, "", NULL
);
2455 expr
= isl_ast_expr_from_id(id
);
2456 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2458 isl_multi_pw_aff_free(mpa
);
2462 /* Construct an isl_ast_expr of type "type" that calls or accesses
2463 * the element specified by "pma".
2464 * The first argument is obtained from the output tuple name.
2465 * The remaining arguments are given by the piecewise affine expressions.
2467 * The domain of "pma" is assumed to live in the internal schedule domain.
2469 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
2470 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2471 __isl_take isl_pw_multi_aff
*pma
)
2473 isl_multi_pw_aff
*mpa
;
2475 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2476 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2479 /* Construct an isl_ast_expr of type "type" that calls or accesses
2480 * the element specified by "mpa".
2481 * The first argument is obtained from the output tuple name.
2482 * The remaining arguments are given by the piecewise affine expressions.
2484 * The domain of "mpa" is assumed to live in the external schedule domain.
2486 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
2487 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2488 __isl_take isl_multi_pw_aff
*mpa
)
2493 isl_space
*space_build
, *space_mpa
;
2495 space_build
= isl_ast_build_get_space(build
, 0);
2496 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
2497 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
2498 space_mpa
, isl_dim_in
);
2499 isl_space_free(space_build
);
2500 isl_space_free(space_mpa
);
2504 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2505 "spaces don't match", goto error
);
2507 needs_map
= isl_ast_build_need_schedule_map(build
);
2512 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2513 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
2516 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2519 isl_multi_pw_aff_free(mpa
);
2523 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2524 * The name of the function is obtained from the output tuple name.
2525 * The arguments are given by the piecewise affine expressions.
2527 * The domain of "mpa" is assumed to live in the external schedule domain.
2529 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
2530 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2532 return isl_ast_build_from_multi_pw_aff(build
,
2533 isl_ast_expr_op_call
, mpa
);
2536 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2537 * The name of the array is obtained from the output tuple name.
2538 * The index expressions are given by the piecewise affine expressions.
2540 * The domain of "mpa" is assumed to live in the external schedule domain.
2542 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
2543 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2545 return isl_ast_build_from_multi_pw_aff(build
,
2546 isl_ast_expr_op_access
, mpa
);
2549 /* Construct an isl_ast_expr of type "type" that calls or accesses
2550 * the element specified by "pma".
2551 * The first argument is obtained from the output tuple name.
2552 * The remaining arguments are given by the piecewise affine expressions.
2554 * The domain of "pma" is assumed to live in the external schedule domain.
2556 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
2557 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2558 __isl_take isl_pw_multi_aff
*pma
)
2560 isl_multi_pw_aff
*mpa
;
2562 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2563 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
2566 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2567 * The name of the function is obtained from the output tuple name.
2568 * The arguments are given by the piecewise affine expressions.
2570 * The domain of "pma" is assumed to live in the external schedule domain.
2572 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
2573 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2575 return isl_ast_build_from_pw_multi_aff(build
,
2576 isl_ast_expr_op_call
, pma
);
2579 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2580 * The name of the array is obtained from the output tuple name.
2581 * The index expressions are given by the piecewise affine expressions.
2583 * The domain of "pma" is assumed to live in the external schedule domain.
2585 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
2586 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2588 return isl_ast_build_from_pw_multi_aff(build
,
2589 isl_ast_expr_op_access
, pma
);
2592 /* Construct an isl_ast_expr that calls the domain element
2593 * specified by "executed".
2595 * "executed" is assumed to be single-valued, with a domain that lives
2596 * in the internal schedule space.
2598 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
2599 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
2601 isl_pw_multi_aff
*iteration
;
2604 iteration
= isl_pw_multi_aff_from_map(executed
);
2605 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
2606 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
2607 isl_ast_build_get_domain(build
));
2608 expr
= isl_ast_build_from_pw_multi_aff_internal(build
,
2609 isl_ast_expr_op_call
, iteration
);
2610 return isl_ast_node_alloc_user(expr
);