add isl_basic_set_is_universe
[isl.git] / isl_convex_hull.c
blob50795617df2718a8022ff3cf9f3aedd8a7124607
1 #include "isl_lp.h"
2 #include "isl_map.h"
3 #include "isl_map_private.h"
4 #include "isl_mat.h"
5 #include "isl_set.h"
6 #include "isl_seq.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
10 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
12 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
14 isl_int *t;
16 if (i != j) {
17 t = bmap->ineq[i];
18 bmap->ineq[i] = bmap->ineq[j];
19 bmap->ineq[j] = t;
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
29 isl_int *c, isl_int *opt_n, isl_int *opt_d)
31 enum isl_lp_result res;
32 unsigned total;
33 int i, j;
35 if (!bmap)
36 return -1;
38 total = isl_basic_map_total_dim(*bmap);
39 for (i = 0; i < total; ++i) {
40 int sign;
41 if (isl_int_is_zero(c[1+i]))
42 continue;
43 sign = isl_int_sgn(c[1+i]);
44 for (j = 0; j < (*bmap)->n_ineq; ++j)
45 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
46 break;
47 if (j == (*bmap)->n_ineq)
48 break;
50 if (i < total)
51 return 0;
53 res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d);
54 if (res == isl_lp_unbounded)
55 return 0;
56 if (res == isl_lp_error)
57 return -1;
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
60 return 0;
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
78 * of a facet.
80 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
82 struct isl_tab *tab;
84 if (!bmap)
85 return NULL;
87 bmap = isl_basic_map_gauss(bmap, NULL);
88 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
89 return bmap;
90 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
91 return bmap;
92 if (bmap->n_ineq <= 1)
93 return bmap;
95 tab = isl_tab_from_basic_map(bmap);
96 tab = isl_tab_detect_equalities(bmap->ctx, tab);
97 tab = isl_tab_detect_redundant(bmap->ctx, tab);
98 bmap = isl_basic_map_update_from_tab(bmap, tab);
99 isl_tab_free(bmap->ctx, tab);
100 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
101 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
102 return bmap;
105 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
107 return (struct isl_basic_set *)
108 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set,
116 isl_int *c, unsigned len)
118 int first;
119 int j;
120 isl_int opt;
121 isl_int opt_denom;
123 isl_int_init(opt);
124 isl_int_init(opt_denom);
125 first = 1;
126 for (j = 0; j < set->n; ++j) {
127 enum isl_lp_result res;
129 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
130 continue;
132 res = isl_solve_lp((struct isl_basic_map*)set->p[j],
133 0, c, ctx->one, &opt, &opt_denom);
134 if (res == isl_lp_unbounded)
135 break;
136 if (res == isl_lp_error)
137 goto error;
138 if (res == isl_lp_empty) {
139 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
140 if (!set->p[j])
141 goto error;
142 continue;
144 if (!isl_int_is_one(opt_denom))
145 isl_seq_scale(c, c, opt_denom, len);
146 if (first || isl_int_is_neg(opt))
147 isl_int_sub(c[0], c[0], opt);
148 first = 0;
150 isl_int_clear(opt);
151 isl_int_clear(opt_denom);
152 return j >= set->n;
153 error:
154 isl_int_clear(opt);
155 isl_int_clear(opt_denom);
156 return -1;
159 /* Check if "c" is a direction that is independent of the previously found "n"
160 * bounds in "dirs".
161 * If so, add it to the list, with the negative of the lower bound
162 * in the constant position, i.e., such that c corresponds to a bounding
163 * hyperplane (but not necessarily a facet).
164 * Assumes set "set" is bounded.
166 static int is_independent_bound(struct isl_ctx *ctx,
167 struct isl_set *set, isl_int *c,
168 struct isl_mat *dirs, int n)
170 int is_bound;
171 int i = 0;
173 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
174 if (n != 0) {
175 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
176 if (pos < 0)
177 return 0;
178 for (i = 0; i < n; ++i) {
179 int pos_i;
180 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
181 if (pos_i < pos)
182 continue;
183 if (pos_i > pos)
184 break;
185 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
186 dirs->n_col-1, NULL);
187 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
188 if (pos < 0)
189 return 0;
193 is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col);
194 if (is_bound != 1)
195 return is_bound;
196 if (i < n) {
197 int k;
198 isl_int *t = dirs->row[n];
199 for (k = n; k > i; --k)
200 dirs->row[k] = dirs->row[k-1];
201 dirs->row[i] = t;
203 return 1;
206 /* Compute and return a maximal set of linearly independent bounds
207 * on the set "set", based on the constraints of the basic sets
208 * in "set".
210 static struct isl_mat *independent_bounds(struct isl_ctx *ctx,
211 struct isl_set *set)
213 int i, j, n;
214 struct isl_mat *dirs = NULL;
215 unsigned dim = isl_set_n_dim(set);
217 dirs = isl_mat_alloc(ctx, dim, 1+dim);
218 if (!dirs)
219 goto error;
221 n = 0;
222 for (i = 0; n < dim && i < set->n; ++i) {
223 int f;
224 struct isl_basic_set *bset = set->p[i];
226 for (j = 0; n < dim && j < bset->n_eq; ++j) {
227 f = is_independent_bound(ctx, set, bset->eq[j],
228 dirs, n);
229 if (f < 0)
230 goto error;
231 if (f)
232 ++n;
234 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
235 f = is_independent_bound(ctx, set, bset->ineq[j],
236 dirs, n);
237 if (f < 0)
238 goto error;
239 if (f)
240 ++n;
243 dirs->n_row = n;
244 return dirs;
245 error:
246 isl_mat_free(ctx, dirs);
247 return NULL;
250 static struct isl_basic_set *isl_basic_set_set_rational(
251 struct isl_basic_set *bset)
253 if (!bset)
254 return NULL;
256 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
257 return bset;
259 bset = isl_basic_set_cow(bset);
260 if (!bset)
261 return NULL;
263 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
265 return isl_basic_set_finalize(bset);
268 static struct isl_set *isl_set_set_rational(struct isl_set *set)
270 int i;
272 set = isl_set_cow(set);
273 if (!set)
274 return NULL;
275 for (i = 0; i < set->n; ++i) {
276 set->p[i] = isl_basic_set_set_rational(set->p[i]);
277 if (!set->p[i])
278 goto error;
280 return set;
281 error:
282 isl_set_free(set);
283 return NULL;
286 static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx,
287 struct isl_basic_set *bset, isl_int *c)
289 int i;
290 unsigned total;
291 unsigned dim;
293 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
294 return bset;
296 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
297 isl_assert(ctx, bset->n_div == 0, goto error);
298 dim = isl_basic_set_n_dim(bset);
299 bset = isl_basic_set_cow(bset);
300 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
301 i = isl_basic_set_alloc_equality(bset);
302 if (i < 0)
303 goto error;
304 isl_seq_cpy(bset->eq[i], c, 1 + dim);
305 return bset;
306 error:
307 isl_basic_set_free(bset);
308 return NULL;
311 static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx,
312 struct isl_set *set, isl_int *c)
314 int i;
316 set = isl_set_cow(set);
317 if (!set)
318 return NULL;
319 for (i = 0; i < set->n; ++i) {
320 set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c);
321 if (!set->p[i])
322 goto error;
324 return set;
325 error:
326 isl_set_free(set);
327 return NULL;
330 /* Given a union of basic sets, construct the constraints for wrapping
331 * a facet around one of its ridges.
332 * In particular, if each of n the d-dimensional basic sets i in "set"
333 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
334 * and is defined by the constraints
335 * [ 1 ]
336 * A_i [ x ] >= 0
338 * then the resulting set is of dimension n*(1+d) and has as constraints
340 * [ a_i ]
341 * A_i [ x_i ] >= 0
343 * a_i >= 0
345 * \sum_i x_{i,1} = 1
347 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
349 struct isl_basic_set *lp;
350 unsigned n_eq;
351 unsigned n_ineq;
352 int i, j, k;
353 unsigned dim, lp_dim;
355 if (!set)
356 return NULL;
358 dim = 1 + isl_set_n_dim(set);
359 n_eq = 1;
360 n_ineq = set->n;
361 for (i = 0; i < set->n; ++i) {
362 n_eq += set->p[i]->n_eq;
363 n_ineq += set->p[i]->n_ineq;
365 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
366 if (!lp)
367 return NULL;
368 lp_dim = isl_basic_set_n_dim(lp);
369 k = isl_basic_set_alloc_equality(lp);
370 isl_int_set_si(lp->eq[k][0], -1);
371 for (i = 0; i < set->n; ++i) {
372 isl_int_set_si(lp->eq[k][1+dim*i], 0);
373 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
374 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
376 for (i = 0; i < set->n; ++i) {
377 k = isl_basic_set_alloc_inequality(lp);
378 isl_seq_clr(lp->ineq[k], 1+lp_dim);
379 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
381 for (j = 0; j < set->p[i]->n_eq; ++j) {
382 k = isl_basic_set_alloc_equality(lp);
383 isl_seq_clr(lp->eq[k], 1+dim*i);
384 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
385 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
388 for (j = 0; j < set->p[i]->n_ineq; ++j) {
389 k = isl_basic_set_alloc_inequality(lp);
390 isl_seq_clr(lp->ineq[k], 1+dim*i);
391 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
392 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
395 return lp;
398 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
399 * of that facet, compute the other facet of the convex hull that contains
400 * the ridge.
402 * We first transform the set such that the facet constraint becomes
404 * x_1 >= 0
406 * I.e., the facet lies in
408 * x_1 = 0
410 * and on that facet, the constraint that defines the ridge is
412 * x_2 >= 0
414 * (This transformation is not strictly needed, all that is needed is
415 * that the ridge contains the origin.)
417 * Since the ridge contains the origin, the cone of the convex hull
418 * will be of the form
420 * x_1 >= 0
421 * x_2 >= a x_1
423 * with this second constraint defining the new facet.
424 * The constant a is obtained by settting x_1 in the cone of the
425 * convex hull to 1 and minimizing x_2.
426 * Now, each element in the cone of the convex hull is the sum
427 * of elements in the cones of the basic sets.
428 * If a_i is the dilation factor of basic set i, then the problem
429 * we need to solve is
431 * min \sum_i x_{i,2}
432 * st
433 * \sum_i x_{i,1} = 1
434 * a_i >= 0
435 * [ a_i ]
436 * A [ x_i ] >= 0
438 * with
439 * [ 1 ]
440 * A_i [ x_i ] >= 0
442 * the constraints of each (transformed) basic set.
443 * If a = n/d, then the constraint defining the new facet (in the transformed
444 * space) is
446 * -n x_1 + d x_2 >= 0
448 * In the original space, we need to take the same combination of the
449 * corresponding constraints "facet" and "ridge".
451 * Note that a is always finite, since we only apply the wrapping
452 * technique to a union of polytopes.
454 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
456 int i;
457 struct isl_mat *T = NULL;
458 struct isl_basic_set *lp = NULL;
459 struct isl_vec *obj;
460 enum isl_lp_result res;
461 isl_int num, den;
462 unsigned dim;
464 set = isl_set_copy(set);
466 dim = 1 + isl_set_n_dim(set);
467 T = isl_mat_alloc(set->ctx, 3, dim);
468 if (!T)
469 goto error;
470 isl_int_set_si(T->row[0][0], 1);
471 isl_seq_clr(T->row[0]+1, dim - 1);
472 isl_seq_cpy(T->row[1], facet, dim);
473 isl_seq_cpy(T->row[2], ridge, dim);
474 T = isl_mat_right_inverse(set->ctx, T);
475 set = isl_set_preimage(set, T);
476 T = NULL;
477 if (!set)
478 goto error;
479 lp = wrap_constraints(set);
480 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
481 if (!obj)
482 goto error;
483 isl_int_set_si(obj->block.data[0], 0);
484 for (i = 0; i < set->n; ++i) {
485 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
486 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
487 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
489 isl_int_init(num);
490 isl_int_init(den);
491 res = isl_solve_lp((struct isl_basic_map *)lp, 0,
492 obj->block.data, set->ctx->one, &num, &den);
493 if (res == isl_lp_ok) {
494 isl_int_neg(num, num);
495 isl_seq_combine(facet, num, facet, den, ridge, dim);
497 isl_int_clear(num);
498 isl_int_clear(den);
499 isl_vec_free(set->ctx, obj);
500 isl_basic_set_free(lp);
501 isl_set_free(set);
502 isl_assert(set->ctx, res == isl_lp_ok, return NULL);
503 return facet;
504 error:
505 isl_basic_set_free(lp);
506 isl_mat_free(set->ctx, T);
507 isl_set_free(set);
508 return NULL;
511 /* Given a set of d linearly independent bounding constraints of the
512 * convex hull of "set", compute the constraint of a facet of "set".
514 * We first compute the intersection with the first bounding hyperplane
515 * and remove the component corresponding to this hyperplane from
516 * other bounds (in homogeneous space).
517 * We then wrap around one of the remaining bounding constraints
518 * and continue the process until all bounding constraints have been
519 * taken into account.
520 * The resulting linear combination of the bounding constraints will
521 * correspond to a facet of the convex hull.
523 static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx,
524 struct isl_set *set, struct isl_mat *bounds)
526 struct isl_set *slice = NULL;
527 struct isl_basic_set *face = NULL;
528 struct isl_mat *m, *U, *Q;
529 int i;
530 unsigned dim = isl_set_n_dim(set);
532 isl_assert(ctx, set->n > 0, goto error);
533 isl_assert(ctx, bounds->n_row == dim, goto error);
535 while (bounds->n_row > 1) {
536 slice = isl_set_copy(set);
537 slice = isl_set_add_equality(ctx, slice, bounds->row[0]);
538 face = isl_set_affine_hull(slice);
539 if (!face)
540 goto error;
541 if (face->n_eq == 1) {
542 isl_basic_set_free(face);
543 break;
545 m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim);
546 if (!m)
547 goto error;
548 isl_int_set_si(m->row[0][0], 1);
549 isl_seq_clr(m->row[0]+1, dim);
550 for (i = 0; i < face->n_eq; ++i)
551 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
552 U = isl_mat_right_inverse(ctx, m);
553 Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U));
554 U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq,
555 dim - face->n_eq);
556 Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq,
557 dim - face->n_eq);
558 U = isl_mat_drop_cols(ctx, U, 0, 1);
559 Q = isl_mat_drop_rows(ctx, Q, 0, 1);
560 bounds = isl_mat_product(ctx, bounds, U);
561 bounds = isl_mat_product(ctx, bounds, Q);
562 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
563 bounds->n_col) == -1) {
564 bounds->n_row--;
565 isl_assert(ctx, bounds->n_row > 1, goto error);
567 if (!wrap_facet(set, bounds->row[0],
568 bounds->row[bounds->n_row-1]))
569 goto error;
570 isl_basic_set_free(face);
571 bounds->n_row--;
573 return bounds;
574 error:
575 isl_basic_set_free(face);
576 isl_mat_free(ctx, bounds);
577 return NULL;
580 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
581 * compute a hyperplane description of the facet, i.e., compute the facets
582 * of the facet.
584 * We compute an affine transformation that transforms the constraint
586 * [ 1 ]
587 * c [ x ] = 0
589 * to the constraint
591 * z_1 = 0
593 * by computing the right inverse U of a matrix that starts with the rows
595 * [ 1 0 ]
596 * [ c ]
598 * Then
599 * [ 1 ] [ 1 ]
600 * [ x ] = U [ z ]
601 * and
602 * [ 1 ] [ 1 ]
603 * [ z ] = Q [ x ]
605 * with Q = U^{-1}
606 * Since z_1 is zero, we can drop this variable as well as the corresponding
607 * column of U to obtain
609 * [ 1 ] [ 1 ]
610 * [ x ] = U' [ z' ]
611 * and
612 * [ 1 ] [ 1 ]
613 * [ z' ] = Q' [ x ]
615 * with Q' equal to Q, but without the corresponding row.
616 * After computing the facets of the facet in the z' space,
617 * we convert them back to the x space through Q.
619 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
621 struct isl_mat *m, *U, *Q;
622 struct isl_basic_set *facet = NULL;
623 struct isl_ctx *ctx;
624 unsigned dim;
626 ctx = set->ctx;
627 set = isl_set_copy(set);
628 dim = isl_set_n_dim(set);
629 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
630 if (!m)
631 goto error;
632 isl_int_set_si(m->row[0][0], 1);
633 isl_seq_clr(m->row[0]+1, dim);
634 isl_seq_cpy(m->row[1], c, 1+dim);
635 U = isl_mat_right_inverse(set->ctx, m);
636 Q = isl_mat_right_inverse(set->ctx, isl_mat_copy(set->ctx, U));
637 U = isl_mat_drop_cols(set->ctx, U, 1, 1);
638 Q = isl_mat_drop_rows(set->ctx, Q, 1, 1);
639 set = isl_set_preimage(set, U);
640 facet = uset_convex_hull_wrap_bounded(set);
641 facet = isl_basic_set_preimage(facet, Q);
642 isl_assert(ctx, facet->n_eq == 0, goto error);
643 return facet;
644 error:
645 isl_basic_set_free(facet);
646 isl_set_free(set);
647 return NULL;
650 /* Given an initial facet constraint, compute the remaining facets.
651 * We do this by running through all facets found so far and computing
652 * the adjacent facets through wrapping, adding those facets that we
653 * hadn't already found before.
655 * For each facet we have found so far, we first compute its facets
656 * in the resulting convex hull. That is, we compute the ridges
657 * of the resulting convex hull contained in the facet.
658 * We also compute the corresponding facet in the current approximation
659 * of the convex hull. There is no need to wrap around the ridges
660 * in this facet since that would result in a facet that is already
661 * present in the current approximation.
663 * This function can still be significantly optimized by checking which of
664 * the facets of the basic sets are also facets of the convex hull and
665 * using all the facets so far to help in constructing the facets of the
666 * facets
667 * and/or
668 * using the technique in section "3.1 Ridge Generation" of
669 * "Extended Convex Hull" by Fukuda et al.
671 static struct isl_basic_set *extend(struct isl_basic_set *hull,
672 struct isl_set *set)
674 int i, j, f;
675 int k;
676 struct isl_basic_set *facet = NULL;
677 struct isl_basic_set *hull_facet = NULL;
678 unsigned total;
679 unsigned dim;
681 isl_assert(set->ctx, set->n > 0, goto error);
683 dim = isl_set_n_dim(set);
685 for (i = 0; i < hull->n_ineq; ++i) {
686 facet = compute_facet(set, hull->ineq[i]);
687 facet = isl_basic_set_add_equality(facet->ctx, facet, hull->ineq[i]);
688 facet = isl_basic_set_gauss(facet, NULL);
689 facet = isl_basic_set_normalize_constraints(facet);
690 hull_facet = isl_basic_set_copy(hull);
691 hull_facet = isl_basic_set_add_equality(hull_facet->ctx, hull_facet, hull->ineq[i]);
692 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
693 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
694 if (!facet)
695 goto error;
696 hull = isl_basic_set_cow(hull);
697 hull = isl_basic_set_extend_dim(hull,
698 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
699 for (j = 0; j < facet->n_ineq; ++j) {
700 for (f = 0; f < hull_facet->n_ineq; ++f)
701 if (isl_seq_eq(facet->ineq[j],
702 hull_facet->ineq[f], 1 + dim))
703 break;
704 if (f < hull_facet->n_ineq)
705 continue;
706 k = isl_basic_set_alloc_inequality(hull);
707 if (k < 0)
708 goto error;
709 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
710 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
711 goto error;
713 isl_basic_set_free(hull_facet);
714 isl_basic_set_free(facet);
716 hull = isl_basic_set_simplify(hull);
717 hull = isl_basic_set_finalize(hull);
718 return hull;
719 error:
720 isl_basic_set_free(hull_facet);
721 isl_basic_set_free(facet);
722 isl_basic_set_free(hull);
723 return NULL;
726 /* Special case for computing the convex hull of a one dimensional set.
727 * We simply collect the lower and upper bounds of each basic set
728 * and the biggest of those.
730 static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx,
731 struct isl_set *set)
733 struct isl_mat *c = NULL;
734 isl_int *lower = NULL;
735 isl_int *upper = NULL;
736 int i, j, k;
737 isl_int a, b;
738 struct isl_basic_set *hull;
740 for (i = 0; i < set->n; ++i) {
741 set->p[i] = isl_basic_set_simplify(set->p[i]);
742 if (!set->p[i])
743 goto error;
745 set = isl_set_remove_empty_parts(set);
746 if (!set)
747 goto error;
748 isl_assert(ctx, set->n > 0, goto error);
749 c = isl_mat_alloc(ctx, 2, 2);
750 if (!c)
751 goto error;
753 if (set->p[0]->n_eq > 0) {
754 isl_assert(ctx, set->p[0]->n_eq == 1, goto error);
755 lower = c->row[0];
756 upper = c->row[1];
757 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
758 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
759 isl_seq_neg(upper, set->p[0]->eq[0], 2);
760 } else {
761 isl_seq_neg(lower, set->p[0]->eq[0], 2);
762 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
764 } else {
765 for (j = 0; j < set->p[0]->n_ineq; ++j) {
766 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
767 lower = c->row[0];
768 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
769 } else {
770 upper = c->row[1];
771 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
776 isl_int_init(a);
777 isl_int_init(b);
778 for (i = 0; i < set->n; ++i) {
779 struct isl_basic_set *bset = set->p[i];
780 int has_lower = 0;
781 int has_upper = 0;
783 for (j = 0; j < bset->n_eq; ++j) {
784 has_lower = 1;
785 has_upper = 1;
786 if (lower) {
787 isl_int_mul(a, lower[0], bset->eq[j][1]);
788 isl_int_mul(b, lower[1], bset->eq[j][0]);
789 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
790 isl_seq_cpy(lower, bset->eq[j], 2);
791 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
792 isl_seq_neg(lower, bset->eq[j], 2);
794 if (upper) {
795 isl_int_mul(a, upper[0], bset->eq[j][1]);
796 isl_int_mul(b, upper[1], bset->eq[j][0]);
797 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
798 isl_seq_neg(upper, bset->eq[j], 2);
799 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
800 isl_seq_cpy(upper, bset->eq[j], 2);
803 for (j = 0; j < bset->n_ineq; ++j) {
804 if (isl_int_is_pos(bset->ineq[j][1]))
805 has_lower = 1;
806 if (isl_int_is_neg(bset->ineq[j][1]))
807 has_upper = 1;
808 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
809 isl_int_mul(a, lower[0], bset->ineq[j][1]);
810 isl_int_mul(b, lower[1], bset->ineq[j][0]);
811 if (isl_int_lt(a, b))
812 isl_seq_cpy(lower, bset->ineq[j], 2);
814 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
815 isl_int_mul(a, upper[0], bset->ineq[j][1]);
816 isl_int_mul(b, upper[1], bset->ineq[j][0]);
817 if (isl_int_gt(a, b))
818 isl_seq_cpy(upper, bset->ineq[j], 2);
821 if (!has_lower)
822 lower = NULL;
823 if (!has_upper)
824 upper = NULL;
826 isl_int_clear(a);
827 isl_int_clear(b);
829 hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2);
830 hull = isl_basic_set_set_rational(hull);
831 if (!hull)
832 goto error;
833 if (lower) {
834 k = isl_basic_set_alloc_inequality(hull);
835 isl_seq_cpy(hull->ineq[k], lower, 2);
837 if (upper) {
838 k = isl_basic_set_alloc_inequality(hull);
839 isl_seq_cpy(hull->ineq[k], upper, 2);
841 hull = isl_basic_set_finalize(hull);
842 isl_set_free(set);
843 isl_mat_free(ctx, c);
844 return hull;
845 error:
846 isl_set_free(set);
847 isl_mat_free(ctx, c);
848 return NULL;
851 /* Project out final n dimensions using Fourier-Motzkin */
852 static struct isl_set *set_project_out(struct isl_ctx *ctx,
853 struct isl_set *set, unsigned n)
855 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
858 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
860 struct isl_basic_set *convex_hull;
862 if (!set)
863 return NULL;
865 if (isl_set_is_empty(set))
866 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
867 else
868 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
869 isl_set_free(set);
870 return convex_hull;
873 /* Compute the convex hull of a pair of basic sets without any parameters or
874 * integer divisions using Fourier-Motzkin elimination.
875 * The convex hull is the set of all points that can be written as
876 * the sum of points from both basic sets (in homogeneous coordinates).
877 * We set up the constraints in a space with dimensions for each of
878 * the three sets and then project out the dimensions corresponding
879 * to the two original basic sets, retaining only those corresponding
880 * to the convex hull.
882 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
883 struct isl_basic_set *bset2)
885 int i, j, k;
886 struct isl_basic_set *bset[2];
887 struct isl_basic_set *hull = NULL;
888 unsigned dim;
890 if (!bset1 || !bset2)
891 goto error;
893 dim = isl_basic_set_n_dim(bset1);
894 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
895 1 + dim + bset1->n_eq + bset2->n_eq,
896 2 + bset1->n_ineq + bset2->n_ineq);
897 bset[0] = bset1;
898 bset[1] = bset2;
899 for (i = 0; i < 2; ++i) {
900 for (j = 0; j < bset[i]->n_eq; ++j) {
901 k = isl_basic_set_alloc_equality(hull);
902 if (k < 0)
903 goto error;
904 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
905 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
906 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
907 1+dim);
909 for (j = 0; j < bset[i]->n_ineq; ++j) {
910 k = isl_basic_set_alloc_inequality(hull);
911 if (k < 0)
912 goto error;
913 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
914 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
915 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
916 bset[i]->ineq[j], 1+dim);
918 k = isl_basic_set_alloc_inequality(hull);
919 if (k < 0)
920 goto error;
921 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
922 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
924 for (j = 0; j < 1+dim; ++j) {
925 k = isl_basic_set_alloc_equality(hull);
926 if (k < 0)
927 goto error;
928 isl_seq_clr(hull->eq[k], 1+2+3*dim);
929 isl_int_set_si(hull->eq[k][j], -1);
930 isl_int_set_si(hull->eq[k][1+dim+j], 1);
931 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
933 hull = isl_basic_set_set_rational(hull);
934 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
935 hull = isl_basic_set_convex_hull(hull);
936 isl_basic_set_free(bset1);
937 isl_basic_set_free(bset2);
938 return hull;
939 error:
940 isl_basic_set_free(bset1);
941 isl_basic_set_free(bset2);
942 isl_basic_set_free(hull);
943 return NULL;
946 /* Compute the convex hull of a set without any parameters or
947 * integer divisions using Fourier-Motzkin elimination.
948 * In each step, we combined two basic sets until only one
949 * basic set is left.
951 static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set)
953 struct isl_basic_set *convex_hull = NULL;
955 convex_hull = isl_set_copy_basic_set(set);
956 set = isl_set_drop_basic_set(set, convex_hull);
957 if (!set)
958 goto error;
959 while (set->n > 0) {
960 struct isl_basic_set *t;
961 t = isl_set_copy_basic_set(set);
962 if (!t)
963 goto error;
964 set = isl_set_drop_basic_set(set, t);
965 if (!set)
966 goto error;
967 convex_hull = convex_hull_pair(convex_hull, t);
969 isl_set_free(set);
970 return convex_hull;
971 error:
972 isl_set_free(set);
973 isl_basic_set_free(convex_hull);
974 return NULL;
977 /* Compute an initial hull for wrapping containing a single initial
978 * facet by first computing bounds on the set and then using these
979 * bounds to construct an initial facet.
980 * This function is a remnant of an older implementation where the
981 * bounds were also used to check whether the set was bounded.
982 * Since this function will now only be called when we know the
983 * set to be bounded, the initial facet should probably be constructed
984 * by simply using the coordinate directions instead.
986 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
987 struct isl_set *set)
989 struct isl_mat *bounds = NULL;
990 unsigned dim;
991 int k;
993 if (!hull)
994 goto error;
995 bounds = independent_bounds(set->ctx, set);
996 if (!bounds)
997 goto error;
998 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
999 bounds = initial_facet_constraint(set->ctx, set, bounds);
1000 if (!bounds)
1001 goto error;
1002 k = isl_basic_set_alloc_inequality(hull);
1003 if (k < 0)
1004 goto error;
1005 dim = isl_set_n_dim(set);
1006 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1007 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1008 isl_mat_free(set->ctx, bounds);
1010 return hull;
1011 error:
1012 isl_basic_set_free(hull);
1013 isl_mat_free(set->ctx, bounds);
1014 return NULL;
1017 struct max_constraint {
1018 struct isl_mat *c;
1019 int count;
1020 int ineq;
1023 static int max_constraint_equal(const void *entry, const void *val)
1025 struct max_constraint *a = (struct max_constraint *)entry;
1026 isl_int *b = (isl_int *)val;
1028 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1031 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1032 isl_int *con, unsigned len, int n, int ineq)
1034 struct isl_hash_table_entry *entry;
1035 struct max_constraint *c;
1036 uint32_t c_hash;
1038 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1039 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1040 con + 1, 0);
1041 if (!entry)
1042 return;
1043 c = entry->data;
1044 if (c->count < n) {
1045 isl_hash_table_remove(ctx, table, entry);
1046 return;
1048 c->count++;
1049 if (isl_int_gt(c->c->row[0][0], con[0]))
1050 return;
1051 if (isl_int_eq(c->c->row[0][0], con[0])) {
1052 if (ineq)
1053 c->ineq = ineq;
1054 return;
1056 c->c = isl_mat_cow(ctx, c->c);
1057 isl_int_set(c->c->row[0][0], con[0]);
1058 c->ineq = ineq;
1061 /* Check whether the constraint hash table "table" constains the constraint
1062 * "con".
1064 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1065 isl_int *con, unsigned len, int n)
1067 struct isl_hash_table_entry *entry;
1068 struct max_constraint *c;
1069 uint32_t c_hash;
1071 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1072 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1073 con + 1, 0);
1074 if (!entry)
1075 return 0;
1076 c = entry->data;
1077 if (c->count < n)
1078 return 0;
1079 return isl_int_eq(c->c->row[0][0], con[0]);
1082 /* Check for inequality constraints of a basic set without equalities
1083 * such that the same or more stringent copies of the constraint appear
1084 * in all of the basic sets. Such constraints are necessarily facet
1085 * constraints of the convex hull.
1087 * If the resulting basic set is by chance identical to one of
1088 * the basic sets in "set", then we know that this basic set contains
1089 * all other basic sets and is therefore the convex hull of set.
1090 * In this case we set *is_hull to 1.
1092 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1093 struct isl_set *set, int *is_hull)
1095 int i, j, s, n;
1096 int min_constraints;
1097 int best;
1098 struct max_constraint *constraints = NULL;
1099 struct isl_hash_table *table = NULL;
1100 unsigned total;
1102 *is_hull = 0;
1104 for (i = 0; i < set->n; ++i)
1105 if (set->p[i]->n_eq == 0)
1106 break;
1107 if (i >= set->n)
1108 return hull;
1109 min_constraints = set->p[i]->n_ineq;
1110 best = i;
1111 for (i = best + 1; i < set->n; ++i) {
1112 if (set->p[i]->n_eq != 0)
1113 continue;
1114 if (set->p[i]->n_ineq >= min_constraints)
1115 continue;
1116 min_constraints = set->p[i]->n_ineq;
1117 best = i;
1119 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1120 min_constraints);
1121 if (!constraints)
1122 return hull;
1123 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1124 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1125 goto error;
1127 total = isl_dim_total(set->dim);
1128 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1129 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1130 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1131 if (!constraints[i].c)
1132 goto error;
1133 constraints[i].ineq = 1;
1135 for (i = 0; i < min_constraints; ++i) {
1136 struct isl_hash_table_entry *entry;
1137 uint32_t c_hash;
1138 c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total,
1139 isl_hash_init());
1140 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1141 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1142 if (!entry)
1143 goto error;
1144 isl_assert(hull->ctx, !entry->data, goto error);
1145 entry->data = &constraints[i];
1148 n = 0;
1149 for (s = 0; s < set->n; ++s) {
1150 if (s == best)
1151 continue;
1153 for (i = 0; i < set->p[s]->n_eq; ++i) {
1154 isl_int *eq = set->p[s]->eq[i];
1155 for (j = 0; j < 2; ++j) {
1156 isl_seq_neg(eq, eq, 1 + total);
1157 update_constraint(hull->ctx, table,
1158 eq, total, n, 0);
1161 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1162 isl_int *ineq = set->p[s]->ineq[i];
1163 update_constraint(hull->ctx, table, ineq, total, n,
1164 set->p[s]->n_eq == 0);
1166 ++n;
1169 for (i = 0; i < min_constraints; ++i) {
1170 if (constraints[i].count < n)
1171 continue;
1172 if (!constraints[i].ineq)
1173 continue;
1174 j = isl_basic_set_alloc_inequality(hull);
1175 if (j < 0)
1176 goto error;
1177 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1180 for (s = 0; s < set->n; ++s) {
1181 if (set->p[s]->n_eq)
1182 continue;
1183 if (set->p[s]->n_ineq != hull->n_ineq)
1184 continue;
1185 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1186 isl_int *ineq = set->p[s]->ineq[i];
1187 if (!has_constraint(hull->ctx, table, ineq, total, n))
1188 break;
1190 if (i == set->p[s]->n_ineq)
1191 *is_hull = 1;
1194 isl_hash_table_clear(table);
1195 for (i = 0; i < min_constraints; ++i)
1196 isl_mat_free(hull->ctx, constraints[i].c);
1197 free(constraints);
1198 free(table);
1199 return hull;
1200 error:
1201 isl_hash_table_clear(table);
1202 free(table);
1203 if (constraints)
1204 for (i = 0; i < min_constraints; ++i)
1205 isl_mat_free(hull->ctx, constraints[i].c);
1206 free(constraints);
1207 return hull;
1210 /* Create a template for the convex hull of "set" and fill it up
1211 * obvious facet constraints, if any. If the result happens to
1212 * be the convex hull of "set" then *is_hull is set to 1.
1214 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1216 struct isl_basic_set *hull;
1217 unsigned n_ineq;
1218 int i;
1220 n_ineq = 1;
1221 for (i = 0; i < set->n; ++i) {
1222 n_ineq += set->p[i]->n_eq;
1223 n_ineq += set->p[i]->n_ineq;
1225 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1226 hull = isl_basic_set_set_rational(hull);
1227 if (!hull)
1228 return NULL;
1229 return common_constraints(hull, set, is_hull);
1232 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1234 struct isl_basic_set *hull;
1235 int is_hull;
1237 hull = proto_hull(set, &is_hull);
1238 if (hull && !is_hull) {
1239 if (hull->n_ineq == 0)
1240 hull = initial_hull(hull, set);
1241 hull = extend(hull, set);
1243 isl_set_free(set);
1245 return hull;
1248 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
1250 struct isl_tab *tab;
1251 int bounded;
1253 tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset);
1254 bounded = isl_tab_cone_is_bounded(bset->ctx, tab);
1255 isl_tab_free(bset->ctx, tab);
1256 return bounded;
1259 static int isl_set_is_bounded(struct isl_set *set)
1261 int i;
1263 for (i = 0; i < set->n; ++i) {
1264 int bounded = isl_basic_set_is_bounded(set->p[i]);
1265 if (!bounded || bounded < 0)
1266 return bounded;
1268 return 1;
1271 /* Compute the convex hull of a set without any parameters or
1272 * integer divisions. Depending on whether the set is bounded,
1273 * we pass control to the wrapping based convex hull or
1274 * the Fourier-Motzkin elimination based convex hull.
1275 * We also handle a few special cases before checking the boundedness.
1277 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1279 int i;
1280 struct isl_basic_set *convex_hull = NULL;
1282 if (isl_set_n_dim(set) == 0)
1283 return convex_hull_0d(set);
1285 set = isl_set_coalesce(set);
1286 set = isl_set_set_rational(set);
1288 if (!set)
1289 goto error;
1290 if (!set)
1291 return NULL;
1292 if (set->n == 1) {
1293 convex_hull = isl_basic_set_copy(set->p[0]);
1294 isl_set_free(set);
1295 return convex_hull;
1297 if (isl_set_n_dim(set) == 1)
1298 return convex_hull_1d(set->ctx, set);
1300 if (!isl_set_is_bounded(set))
1301 return uset_convex_hull_elim(set);
1303 return uset_convex_hull_wrap(set);
1304 error:
1305 isl_set_free(set);
1306 isl_basic_set_free(convex_hull);
1307 return NULL;
1310 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1311 * without parameters or divs and where the convex hull of set is
1312 * known to be full-dimensional.
1314 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1316 int i;
1317 struct isl_basic_set *convex_hull = NULL;
1319 if (isl_set_n_dim(set) == 0) {
1320 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1321 isl_set_free(set);
1322 convex_hull = isl_basic_set_set_rational(convex_hull);
1323 return convex_hull;
1326 set = isl_set_set_rational(set);
1328 if (!set)
1329 goto error;
1330 set = isl_set_normalize(set);
1331 if (!set)
1332 goto error;
1333 if (set->n == 1) {
1334 convex_hull = isl_basic_set_copy(set->p[0]);
1335 isl_set_free(set);
1336 return convex_hull;
1338 if (isl_set_n_dim(set) == 1)
1339 return convex_hull_1d(set->ctx, set);
1341 return uset_convex_hull_wrap(set);
1342 error:
1343 isl_set_free(set);
1344 return NULL;
1347 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1348 * We first remove the equalities (transforming the set), compute the
1349 * convex hull of the transformed set and then add the equalities back
1350 * (after performing the inverse transformation.
1352 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1353 struct isl_set *set, struct isl_basic_set *affine_hull)
1355 struct isl_mat *T;
1356 struct isl_mat *T2;
1357 struct isl_basic_set *dummy;
1358 struct isl_basic_set *convex_hull;
1360 dummy = isl_basic_set_remove_equalities(
1361 isl_basic_set_copy(affine_hull), &T, &T2);
1362 if (!dummy)
1363 goto error;
1364 isl_basic_set_free(dummy);
1365 set = isl_set_preimage(set, T);
1366 convex_hull = uset_convex_hull(set);
1367 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1368 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1369 return convex_hull;
1370 error:
1371 isl_basic_set_free(affine_hull);
1372 isl_set_free(set);
1373 return NULL;
1376 /* Compute the convex hull of a map.
1378 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1379 * specifically, the wrapping of facets to obtain new facets.
1381 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1383 struct isl_basic_set *bset;
1384 struct isl_basic_map *model = NULL;
1385 struct isl_basic_set *affine_hull = NULL;
1386 struct isl_basic_map *convex_hull = NULL;
1387 struct isl_set *set = NULL;
1388 struct isl_ctx *ctx;
1390 if (!map)
1391 goto error;
1393 ctx = map->ctx;
1394 if (map->n == 0) {
1395 convex_hull = isl_basic_map_empty_like_map(map);
1396 isl_map_free(map);
1397 return convex_hull;
1400 map = isl_map_detect_equalities(map);
1401 map = isl_map_align_divs(map);
1402 model = isl_basic_map_copy(map->p[0]);
1403 set = isl_map_underlying_set(map);
1404 if (!set)
1405 goto error;
1407 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1408 if (!affine_hull)
1409 goto error;
1410 if (affine_hull->n_eq != 0)
1411 bset = modulo_affine_hull(ctx, set, affine_hull);
1412 else {
1413 isl_basic_set_free(affine_hull);
1414 bset = uset_convex_hull(set);
1417 convex_hull = isl_basic_map_overlying_set(bset, model);
1419 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1420 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1421 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1422 return convex_hull;
1423 error:
1424 isl_set_free(set);
1425 isl_basic_map_free(model);
1426 return NULL;
1429 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1431 return (struct isl_basic_set *)
1432 isl_map_convex_hull((struct isl_map *)set);
1435 struct sh_data_entry {
1436 struct isl_hash_table *table;
1437 struct isl_tab *tab;
1440 /* Holds the data needed during the simple hull computation.
1441 * In particular,
1442 * n the number of basic sets in the original set
1443 * hull_table a hash table of already computed constraints
1444 * in the simple hull
1445 * p for each basic set,
1446 * table a hash table of the constraints
1447 * tab the tableau corresponding to the basic set
1449 struct sh_data {
1450 struct isl_ctx *ctx;
1451 unsigned n;
1452 struct isl_hash_table *hull_table;
1453 struct sh_data_entry p[0];
1456 static void sh_data_free(struct sh_data *data)
1458 int i;
1460 if (!data)
1461 return;
1462 isl_hash_table_free(data->ctx, data->hull_table);
1463 for (i = 0; i < data->n; ++i) {
1464 isl_hash_table_free(data->ctx, data->p[i].table);
1465 isl_tab_free(data->ctx, data->p[i].tab);
1467 free(data);
1470 struct ineq_cmp_data {
1471 unsigned len;
1472 isl_int *p;
1475 static int has_ineq(const void *entry, const void *val)
1477 isl_int *row = (isl_int *)entry;
1478 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1480 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1481 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1484 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1485 isl_int *ineq, unsigned len)
1487 uint32_t c_hash;
1488 struct ineq_cmp_data v;
1489 struct isl_hash_table_entry *entry;
1491 v.len = len;
1492 v.p = ineq;
1493 c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init());
1494 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1495 if (!entry)
1496 return - 1;
1497 entry->data = ineq;
1498 return 0;
1501 /* Fill hash table "table" with the constraints of "bset".
1502 * Equalities are added as two inequalities.
1503 * The value in the hash table is a pointer to the (in)equality of "bset".
1505 static int hash_basic_set(struct isl_hash_table *table,
1506 struct isl_basic_set *bset)
1508 int i, j;
1509 unsigned dim = isl_basic_set_total_dim(bset);
1511 for (i = 0; i < bset->n_eq; ++i) {
1512 for (j = 0; j < 2; ++j) {
1513 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
1514 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
1515 return -1;
1518 for (i = 0; i < bset->n_ineq; ++i) {
1519 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
1520 return -1;
1522 return 0;
1525 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
1527 struct sh_data *data;
1528 int i;
1530 data = isl_calloc(set->ctx, struct sh_data,
1531 sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry));
1532 if (!data)
1533 return NULL;
1534 data->ctx = set->ctx;
1535 data->n = set->n;
1536 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
1537 if (!data->hull_table)
1538 goto error;
1539 for (i = 0; i < set->n; ++i) {
1540 data->p[i].table = isl_hash_table_alloc(set->ctx,
1541 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
1542 if (!data->p[i].table)
1543 goto error;
1544 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
1545 goto error;
1547 return data;
1548 error:
1549 sh_data_free(data);
1550 return NULL;
1553 /* Check if inequality "ineq" is a bound for basic set "j" or if
1554 * it can be relaxed (by increasing the constant term) to become
1555 * a bound for that basic set. In the latter case, the constant
1556 * term is updated.
1557 * Return 1 if "ineq" is a bound
1558 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
1559 * -1 if some error occurred
1561 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
1562 isl_int *ineq)
1564 enum isl_lp_result res;
1565 isl_int opt;
1567 if (!data->p[j].tab) {
1568 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
1569 if (!data->p[j].tab)
1570 return -1;
1573 isl_int_init(opt);
1575 res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one,
1576 &opt, NULL);
1577 if (res == isl_lp_ok && isl_int_is_neg(opt))
1578 isl_int_sub(ineq[0], ineq[0], opt);
1580 isl_int_clear(opt);
1582 return res == isl_lp_ok ? 1 :
1583 res == isl_lp_unbounded ? 0 : -1;
1586 /* Check if inequality "ineq" from basic set "i" can be relaxed to
1587 * become a bound on the whole set. If so, add the (relaxed) inequality
1588 * to "hull".
1590 * We first check if "hull" already contains a translate of the inequality.
1591 * If so, we are done.
1592 * Then, we check if any of the previous basic sets contains a translate
1593 * of the inequality. If so, then we have already considered this
1594 * inequality and we are done.
1595 * Otherwise, for each basic set other than "i", we check if the inequality
1596 * is a bound on the basic set.
1597 * For previous basic sets, we know that they do not contain a translate
1598 * of the inequality, so we directly call is_bound.
1599 * For following basic sets, we first check if a translate of the
1600 * inequality appears in its description and if so directly update
1601 * the inequality accordingly.
1603 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
1604 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
1606 uint32_t c_hash;
1607 struct ineq_cmp_data v;
1608 struct isl_hash_table_entry *entry;
1609 int j, k;
1611 if (!hull)
1612 return NULL;
1614 v.len = isl_basic_set_total_dim(hull);
1615 v.p = ineq;
1616 c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init());
1618 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1619 has_ineq, &v, 0);
1620 if (entry)
1621 return hull;
1623 for (j = 0; j < i; ++j) {
1624 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1625 c_hash, has_ineq, &v, 0);
1626 if (entry)
1627 break;
1629 if (j < i)
1630 return hull;
1632 k = isl_basic_set_alloc_inequality(hull);
1633 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
1634 if (k < 0)
1635 goto error;
1637 for (j = 0; j < i; ++j) {
1638 int bound;
1639 bound = is_bound(data, set, j, hull->ineq[k]);
1640 if (bound < 0)
1641 goto error;
1642 if (!bound)
1643 break;
1645 if (j < i) {
1646 isl_basic_set_free_inequality(hull, 1);
1647 return hull;
1650 for (j = i + 1; j < set->n; ++j) {
1651 int bound, neg;
1652 isl_int *ineq_j;
1653 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1654 c_hash, has_ineq, &v, 0);
1655 if (entry) {
1656 ineq_j = entry->data;
1657 neg = isl_seq_is_neg(ineq_j + 1,
1658 hull->ineq[k] + 1, v.len);
1659 if (neg)
1660 isl_int_neg(ineq_j[0], ineq_j[0]);
1661 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
1662 isl_int_set(hull->ineq[k][0], ineq_j[0]);
1663 if (neg)
1664 isl_int_neg(ineq_j[0], ineq_j[0]);
1665 continue;
1667 bound = is_bound(data, set, j, hull->ineq[k]);
1668 if (bound < 0)
1669 goto error;
1670 if (!bound)
1671 break;
1673 if (j < set->n) {
1674 isl_basic_set_free_inequality(hull, 1);
1675 return hull;
1678 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1679 has_ineq, &v, 1);
1680 if (!entry)
1681 goto error;
1682 entry->data = hull->ineq[k];
1684 return hull;
1685 error:
1686 isl_basic_set_free(hull);
1687 return NULL;
1690 /* Check if any inequality from basic set "i" can be relaxed to
1691 * become a bound on the whole set. If so, add the (relaxed) inequality
1692 * to "hull".
1694 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
1695 struct sh_data *data, struct isl_set *set, int i)
1697 int j, k;
1698 unsigned dim = isl_basic_set_total_dim(bset);
1700 for (j = 0; j < set->p[i]->n_eq; ++j) {
1701 for (k = 0; k < 2; ++k) {
1702 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
1703 add_bound(bset, data, set, i, set->p[i]->eq[j]);
1706 for (j = 0; j < set->p[i]->n_ineq; ++j)
1707 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
1708 return bset;
1711 /* Compute a superset of the convex hull of set that is described
1712 * by only translates of the constraints in the constituents of set.
1714 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
1716 struct sh_data *data = NULL;
1717 struct isl_basic_set *hull = NULL;
1718 unsigned n_ineq;
1719 int i, j;
1721 if (!set)
1722 return NULL;
1724 n_ineq = 0;
1725 for (i = 0; i < set->n; ++i) {
1726 if (!set->p[i])
1727 goto error;
1728 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
1731 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1732 if (!hull)
1733 goto error;
1735 data = sh_data_alloc(set, n_ineq);
1736 if (!data)
1737 goto error;
1739 for (i = 0; i < set->n; ++i)
1740 hull = add_bounds(hull, data, set, i);
1742 sh_data_free(data);
1743 isl_set_free(set);
1745 return hull;
1746 error:
1747 sh_data_free(data);
1748 isl_basic_set_free(hull);
1749 isl_set_free(set);
1750 return NULL;
1753 /* Compute a superset of the convex hull of map that is described
1754 * by only translates of the constraints in the constituents of map.
1756 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
1758 struct isl_set *set = NULL;
1759 struct isl_basic_map *model = NULL;
1760 struct isl_basic_map *hull;
1761 struct isl_basic_map *affine_hull;
1762 struct isl_basic_set *bset = NULL;
1764 if (!map)
1765 return NULL;
1766 if (map->n == 0) {
1767 hull = isl_basic_map_empty_like_map(map);
1768 isl_map_free(map);
1769 return hull;
1771 if (map->n == 1) {
1772 hull = isl_basic_map_copy(map->p[0]);
1773 isl_map_free(map);
1774 return hull;
1777 map = isl_map_detect_equalities(map);
1778 affine_hull = isl_map_affine_hull(isl_map_copy(map));
1779 map = isl_map_align_divs(map);
1780 model = isl_basic_map_copy(map->p[0]);
1782 set = isl_map_underlying_set(map);
1784 bset = uset_simple_hull(set);
1786 hull = isl_basic_map_overlying_set(bset, model);
1788 hull = isl_basic_map_intersect(hull, affine_hull);
1789 hull = isl_basic_map_convex_hull(hull);
1790 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
1791 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1793 return hull;
1796 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
1798 return (struct isl_basic_set *)
1799 isl_map_simple_hull((struct isl_map *)set);
1802 /* Given a set "set", return parametric bounds on the dimension "dim".
1804 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
1806 unsigned set_dim = isl_set_dim(set, isl_dim_set);
1807 set = isl_set_copy(set);
1808 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
1809 set = isl_set_eliminate_dims(set, 0, dim);
1810 return isl_set_convex_hull(set);
1813 /* Computes a "simple hull" and then check if each dimension in the
1814 * resulting hull is bounded by a symbolic constant. If not, the
1815 * hull is intersected with the corresponding bounds on the whole set.
1817 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
1819 int i, j;
1820 struct isl_basic_set *hull;
1821 unsigned nparam, left;
1822 int removed_divs = 0;
1824 hull = isl_set_simple_hull(isl_set_copy(set));
1825 if (!hull)
1826 goto error;
1828 nparam = isl_basic_set_dim(hull, isl_dim_param);
1829 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
1830 int lower = 0, upper = 0;
1831 struct isl_basic_set *bounds;
1833 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
1834 for (j = 0; j < hull->n_eq; ++j) {
1835 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
1836 continue;
1837 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
1838 left) == -1)
1839 break;
1841 if (j < hull->n_eq)
1842 continue;
1844 for (j = 0; j < hull->n_ineq; ++j) {
1845 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
1846 continue;
1847 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
1848 left) != -1 ||
1849 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
1850 i) != -1)
1851 continue;
1852 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
1853 lower = 1;
1854 else
1855 upper = 1;
1856 if (lower && upper)
1857 break;
1860 if (lower && upper)
1861 continue;
1863 if (!removed_divs) {
1864 set = isl_set_remove_divs(set);
1865 if (!set)
1866 goto error;
1867 removed_divs = 1;
1869 bounds = set_bounds(set, i);
1870 hull = isl_basic_set_intersect(hull, bounds);
1871 if (!hull)
1872 goto error;
1875 isl_set_free(set);
1876 return hull;
1877 error:
1878 isl_set_free(set);
1879 return NULL;