2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl/space.h>
18 #include <isl/constraint.h>
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
23 #include <isl/schedule_node.h>
25 #include <isl_tarjan.h>
26 #include <isl_ast_private.h>
27 #include <isl_ast_build_expr.h>
28 #include <isl_ast_build_private.h>
29 #include <isl_ast_graft_private.h>
31 /* Data used in generate_domain.
33 * "build" is the input build.
34 * "list" collects the results.
36 struct isl_generate_domain_data
{
39 isl_ast_graft_list
*list
;
42 static __isl_give isl_ast_graft_list
*generate_next_level(
43 __isl_take isl_union_map
*executed
,
44 __isl_take isl_ast_build
*build
);
45 static __isl_give isl_ast_graft_list
*generate_code(
46 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
49 /* Generate an AST for a single domain based on
50 * the (non single valued) inverse schedule "executed".
52 * We extend the schedule with the iteration domain
53 * and continue generating through a call to generate_code.
55 * In particular, if executed has the form
59 * then we continue generating code on
63 * The extended inverse schedule is clearly single valued
64 * ensuring that the nested generate_code will not reach this function,
65 * but will instead create calls to all elements of D that need
66 * to be executed from the current schedule domain.
68 static isl_stat
generate_non_single_valued(__isl_take isl_map
*executed
,
69 struct isl_generate_domain_data
*data
)
73 isl_ast_graft_list
*list
;
75 build
= isl_ast_build_copy(data
->build
);
77 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
78 executed
= isl_map_domain_product(executed
, identity
);
79 build
= isl_ast_build_set_single_valued(build
, 1);
81 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
83 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
88 /* Call the at_each_domain callback, if requested by the user,
89 * after recording the current inverse schedule in the build.
91 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
92 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
95 return isl_ast_graft_free(graft
);
96 if (!build
->at_each_domain
)
99 build
= isl_ast_build_copy(build
);
100 build
= isl_ast_build_set_executed(build
,
101 isl_union_map_from_map(isl_map_copy(executed
)));
103 return isl_ast_graft_free(graft
);
105 graft
->node
= build
->at_each_domain(graft
->node
,
106 build
, build
->at_each_domain_user
);
107 isl_ast_build_free(build
);
110 graft
= isl_ast_graft_free(graft
);
115 /* Generate a call expression for the single executed
116 * domain element "map" and put a guard around it based its (simplified)
117 * domain. "executed" is the original inverse schedule from which "map"
118 * has been derived. In particular, "map" is either identical to "executed"
119 * or it is the result of gisting "executed" with respect to the build domain.
120 * "executed" is only used if there is an at_each_domain callback.
122 * At this stage, any pending constraints in the build can no longer
123 * be simplified with respect to any enforced constraints since
124 * the call node does not have any enforced constraints.
125 * Since all pending constraints not covered by any enforced constraints
126 * will be added as a guard to the graft in create_node_scaled,
127 * even in the eliminated case, the pending constraints
128 * can be considered to have been generated by outer constructs.
130 * If the user has set an at_each_domain callback, it is called
131 * on the constructed call expression node.
133 static isl_stat
add_domain(__isl_take isl_map
*executed
,
134 __isl_take isl_map
*map
, struct isl_generate_domain_data
*data
)
136 isl_ast_build
*build
;
137 isl_ast_graft
*graft
;
138 isl_ast_graft_list
*list
;
139 isl_set
*guard
, *pending
;
141 build
= isl_ast_build_copy(data
->build
);
142 pending
= isl_ast_build_get_pending(build
);
143 build
= isl_ast_build_replace_pending_by_guard(build
, pending
);
145 guard
= isl_map_domain(isl_map_copy(map
));
146 guard
= isl_set_compute_divs(guard
);
147 guard
= isl_set_coalesce(guard
);
148 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(build
));
149 guard
= isl_ast_build_specialize(build
, guard
);
151 graft
= isl_ast_graft_alloc_domain(map
, build
);
152 graft
= at_each_domain(graft
, executed
, build
);
153 isl_ast_build_free(build
);
154 isl_map_free(executed
);
155 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
157 list
= isl_ast_graft_list_from_ast_graft(graft
);
158 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
163 /* Generate an AST for a single domain based on
164 * the inverse schedule "executed" and add it to data->list.
166 * If there is more than one domain element associated to the current
167 * schedule "time", then we need to continue the generation process
168 * in generate_non_single_valued.
169 * Note that the inverse schedule being single-valued may depend
170 * on constraints that are only available in the original context
171 * domain specified by the user. We therefore first introduce
172 * some of the constraints of data->build->domain. In particular,
173 * we intersect with a single-disjunct approximation of this set.
174 * We perform this approximation to avoid further splitting up
175 * the executed relation, possibly introducing a disjunctive guard
178 * On the other hand, we only perform the test after having taken the gist
179 * of the domain as the resulting map is the one from which the call
180 * expression is constructed. Using this map to construct the call
181 * expression usually yields simpler results in cases where the original
182 * map is not obviously single-valued.
183 * If the original map is obviously single-valued, then the gist
184 * operation is skipped.
186 * Because we perform the single-valuedness test on the gisted map,
187 * we may in rare cases fail to recognize that the inverse schedule
188 * is single-valued. This becomes problematic if this happens
189 * from the recursive call through generate_non_single_valued
190 * as we would then end up in an infinite recursion.
191 * We therefore check if we are inside a call to generate_non_single_valued
192 * and revert to the ungisted map if the gisted map turns out not to be
195 * Otherwise, call add_domain to generate a call expression (with guard) and
196 * to call the at_each_domain callback, if any.
198 static isl_stat
generate_domain(__isl_take isl_map
*executed
, void *user
)
200 struct isl_generate_domain_data
*data
= user
;
205 domain
= isl_ast_build_get_domain(data
->build
);
206 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
207 executed
= isl_map_intersect_domain(executed
, domain
);
208 empty
= isl_map_is_empty(executed
);
212 isl_map_free(executed
);
216 sv
= isl_map_plain_is_single_valued(executed
);
220 return add_domain(executed
, isl_map_copy(executed
), data
);
222 executed
= isl_map_coalesce(executed
);
223 map
= isl_map_copy(executed
);
224 map
= isl_ast_build_compute_gist_map_domain(data
->build
, map
);
225 sv
= isl_map_is_single_valued(map
);
230 if (data
->build
->single_valued
)
231 map
= isl_map_copy(executed
);
233 return generate_non_single_valued(executed
, data
);
236 return add_domain(executed
, map
, data
);
239 isl_map_free(executed
);
240 return isl_stat_error
;
243 /* Call build->create_leaf to a create "leaf" node in the AST,
244 * encapsulate the result in an isl_ast_graft and return the result
245 * as a 1-element list.
247 * Note that the node returned by the user may be an entire tree.
249 * Since the node itself cannot enforce any constraints, we turn
250 * all pending constraints into guards and add them to the resulting
251 * graft to ensure that they will be generated.
253 * Before we pass control to the user, we first clear some information
254 * from the build that is (presumbably) only meaningful
255 * for the current code generation.
256 * This includes the create_leaf callback itself, so we make a copy
257 * of the build first.
259 static __isl_give isl_ast_graft_list
*call_create_leaf(
260 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
264 isl_ast_graft
*graft
;
265 isl_ast_build
*user_build
;
267 guard
= isl_ast_build_get_pending(build
);
268 user_build
= isl_ast_build_copy(build
);
269 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
270 isl_set_copy(guard
));
271 user_build
= isl_ast_build_set_executed(user_build
, executed
);
272 user_build
= isl_ast_build_clear_local_info(user_build
);
276 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
277 graft
= isl_ast_graft_alloc(node
, build
);
278 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
279 isl_ast_build_free(build
);
280 return isl_ast_graft_list_from_ast_graft(graft
);
283 static __isl_give isl_ast_graft_list
*build_ast_from_child(
284 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
285 __isl_take isl_union_map
*executed
);
287 /* Generate an AST after having handled the complete schedule
288 * of this call to the code generator or the complete band
289 * if we are generating an AST from a schedule tree.
291 * If we are inside a band node, then move on to the child of the band.
293 * If the user has specified a create_leaf callback, control
294 * is passed to the user in call_create_leaf.
296 * Otherwise, we generate one or more calls for each individual
297 * domain in generate_domain.
299 static __isl_give isl_ast_graft_list
*generate_inner_level(
300 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
303 struct isl_generate_domain_data data
= { build
};
305 if (!build
|| !executed
)
308 if (isl_ast_build_has_schedule_node(build
)) {
309 isl_schedule_node
*node
;
310 node
= isl_ast_build_get_schedule_node(build
);
311 build
= isl_ast_build_reset_schedule_node(build
);
312 return build_ast_from_child(build
, node
, executed
);
315 if (build
->create_leaf
)
316 return call_create_leaf(executed
, build
);
318 ctx
= isl_union_map_get_ctx(executed
);
319 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
320 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
321 data
.list
= isl_ast_graft_list_free(data
.list
);
324 error
: data
.list
= NULL
;
325 isl_ast_build_free(build
);
326 isl_union_map_free(executed
);
330 /* Call the before_each_for callback, if requested by the user.
332 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
333 __isl_keep isl_ast_build
*build
)
338 return isl_ast_node_free(node
);
339 if (!build
->before_each_for
)
341 id
= build
->before_each_for(build
, build
->before_each_for_user
);
342 node
= isl_ast_node_set_annotation(node
, id
);
346 /* Call the after_each_for callback, if requested by the user.
348 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
349 __isl_keep isl_ast_build
*build
)
351 if (!graft
|| !build
)
352 return isl_ast_graft_free(graft
);
353 if (!build
->after_each_for
)
355 graft
->node
= build
->after_each_for(graft
->node
, build
,
356 build
->after_each_for_user
);
358 return isl_ast_graft_free(graft
);
362 /* Plug in all the know values of the current and outer dimensions
363 * in the domain of "executed". In principle, we only need to plug
364 * in the known value of the current dimension since the values of
365 * outer dimensions have been plugged in already.
366 * However, it turns out to be easier to just plug in all known values.
368 static __isl_give isl_union_map
*plug_in_values(
369 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
371 return isl_ast_build_substitute_values_union_map_domain(build
,
375 /* Check if the constraint "c" is a lower bound on dimension "pos",
376 * an upper bound, or independent of dimension "pos".
378 static int constraint_type(isl_constraint
*c
, int pos
)
380 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
382 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
387 /* Compare the types of the constraints "a" and "b",
388 * resulting in constraints that are independent of "depth"
389 * to be sorted before the lower bounds on "depth", which in
390 * turn are sorted before the upper bounds on "depth".
392 static int cmp_constraint(__isl_keep isl_constraint
*a
,
393 __isl_keep isl_constraint
*b
, void *user
)
396 int t1
= constraint_type(a
, *depth
);
397 int t2
= constraint_type(b
, *depth
);
402 /* Extract a lower bound on dimension "pos" from constraint "c".
404 * If the constraint is of the form
408 * then we essentially return
410 * l = ceil(-f(...)/a)
412 * However, if the current dimension is strided, then we need to make
413 * sure that the lower bound we construct is of the form
417 * with f the offset and s the stride.
418 * We therefore compute
420 * f + s * ceil((l - f)/s)
422 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
423 int pos
, __isl_keep isl_ast_build
*build
)
427 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
428 aff
= isl_aff_ceil(aff
);
430 if (isl_ast_build_has_stride(build
, pos
)) {
434 offset
= isl_ast_build_get_offset(build
, pos
);
435 stride
= isl_ast_build_get_stride(build
, pos
);
437 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
438 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
439 aff
= isl_aff_ceil(aff
);
440 aff
= isl_aff_scale_val(aff
, stride
);
441 aff
= isl_aff_add(aff
, offset
);
444 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
449 /* Return the exact lower bound (or upper bound if "upper" is set)
450 * of "domain" as a piecewise affine expression.
452 * If we are computing a lower bound (of a strided dimension), then
453 * we need to make sure it is of the form
457 * where f is the offset and s is the stride.
458 * We therefore need to include the stride constraint before computing
461 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
462 __isl_keep isl_ast_build
*build
, int upper
)
467 isl_pw_multi_aff
*pma
;
469 domain
= isl_set_copy(domain
);
471 stride
= isl_ast_build_get_stride_constraint(build
);
472 domain
= isl_set_intersect(domain
, stride
);
474 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
476 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
478 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
479 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
480 isl_pw_multi_aff_free(pma
);
481 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
482 pa
= isl_pw_aff_coalesce(pa
);
487 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
488 * remove_redundant_lower_bounds.
490 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
493 return isl_pw_aff_plain_cmp(a
, b
);
496 /* Given a list of lower bounds "list", remove those that are redundant
497 * with respect to the other bounds in "list" and the domain of "build".
499 * We first sort the bounds in the same way as they would be sorted
500 * by set_for_node_expressions so that we can try and remove the last
503 * For a lower bound to be effective, there needs to be at least
504 * one domain element for which it is larger than all other lower bounds.
505 * For each lower bound we therefore intersect the domain with
506 * the conditions that it is larger than all other bounds and
507 * check whether the result is empty. If so, the bound can be removed.
509 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
510 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
515 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
519 n
= isl_pw_aff_list_n_pw_aff(list
);
523 domain
= isl_ast_build_get_domain(build
);
525 for (i
= n
- 1; i
>= 0; --i
) {
530 domain_i
= isl_set_copy(domain
);
531 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
533 for (j
= 0; j
< n
; ++j
) {
540 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
541 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
542 domain_i
= isl_set_intersect(domain_i
, better
);
545 empty
= isl_set_is_empty(domain_i
);
547 isl_set_free(domain_i
);
548 isl_pw_aff_free(pa_i
);
554 list
= isl_pw_aff_list_drop(list
, i
, 1);
558 isl_set_free(domain
);
562 isl_set_free(domain
);
563 return isl_pw_aff_list_free(list
);
566 /* Extract a lower bound on dimension "pos" from each constraint
567 * in "constraints" and return the list of lower bounds.
568 * If "constraints" has zero elements, then we extract a lower bound
569 * from "domain" instead.
571 * If the current dimension is strided, then the lower bound
572 * is adjusted by lower_bound to match the stride information.
573 * This modification may make one or more lower bounds redundant
574 * with respect to the other lower bounds. We therefore check
575 * for this condition and remove the redundant lower bounds.
577 static __isl_give isl_pw_aff_list
*lower_bounds(
578 __isl_keep isl_constraint_list
*constraints
, int pos
,
579 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
582 isl_pw_aff_list
*list
;
588 n
= isl_constraint_list_n_constraint(constraints
);
591 pa
= exact_bound(domain
, build
, 0);
592 return isl_pw_aff_list_from_pw_aff(pa
);
595 ctx
= isl_ast_build_get_ctx(build
);
596 list
= isl_pw_aff_list_alloc(ctx
,n
);
598 for (i
= 0; i
< n
; ++i
) {
602 c
= isl_constraint_list_get_constraint(constraints
, i
);
603 aff
= lower_bound(c
, pos
, build
);
604 isl_constraint_free(c
);
605 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
608 if (isl_ast_build_has_stride(build
, pos
))
609 list
= remove_redundant_lower_bounds(list
, build
);
614 /* Extract an upper bound on dimension "pos" from each constraint
615 * in "constraints" and return the list of upper bounds.
616 * If "constraints" has zero elements, then we extract an upper bound
617 * from "domain" instead.
619 static __isl_give isl_pw_aff_list
*upper_bounds(
620 __isl_keep isl_constraint_list
*constraints
, int pos
,
621 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
624 isl_pw_aff_list
*list
;
627 n
= isl_constraint_list_n_constraint(constraints
);
630 pa
= exact_bound(domain
, build
, 1);
631 return isl_pw_aff_list_from_pw_aff(pa
);
634 ctx
= isl_ast_build_get_ctx(build
);
635 list
= isl_pw_aff_list_alloc(ctx
,n
);
637 for (i
= 0; i
< n
; ++i
) {
641 c
= isl_constraint_list_get_constraint(constraints
, i
);
642 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
643 isl_constraint_free(c
);
644 aff
= isl_aff_floor(aff
);
645 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
651 /* Return an isl_ast_expr that performs the reduction of type "type"
652 * on AST expressions corresponding to the elements in "list".
654 * The list is assumed to contain at least one element.
655 * If the list contains exactly one element, then the returned isl_ast_expr
656 * simply computes that affine expression.
657 * If the list contains more than one element, then we sort it
658 * using a fairly abitrary but hopefully reasonably stable order.
660 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_op_type type
,
661 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
670 n
= isl_pw_aff_list_n_pw_aff(list
);
673 return isl_ast_build_expr_from_pw_aff_internal(build
,
674 isl_pw_aff_list_get_pw_aff(list
, 0));
676 ctx
= isl_pw_aff_list_get_ctx(list
);
677 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
681 list
= isl_pw_aff_list_copy(list
);
682 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
684 return isl_ast_expr_free(expr
);
686 for (i
= 0; i
< n
; ++i
) {
687 isl_ast_expr
*expr_i
;
689 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
690 isl_pw_aff_list_get_pw_aff(list
, i
));
693 expr
->u
.op
.args
[i
] = expr_i
;
696 isl_pw_aff_list_free(list
);
699 isl_pw_aff_list_free(list
);
700 isl_ast_expr_free(expr
);
704 /* Add guards implied by the "generated constraints",
705 * but not (necessarily) enforced by the generated AST to "guard".
706 * In particular, if there is any stride constraints,
707 * then add the guard implied by those constraints.
708 * If we have generated a degenerate loop, then add the guard
709 * implied by "bounds" on the outer dimensions, i.e., the guard
710 * that ensures that the single value actually exists.
711 * Since there may also be guards implied by a combination
712 * of these constraints, we first combine them before
713 * deriving the implied constraints.
715 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
716 int degenerate
, __isl_keep isl_basic_set
*bounds
,
717 __isl_keep isl_ast_build
*build
)
719 int depth
, has_stride
;
723 depth
= isl_ast_build_get_depth(build
);
724 has_stride
= isl_ast_build_has_stride(build
, depth
);
725 if (!has_stride
&& !degenerate
)
728 space
= isl_basic_set_get_space(bounds
);
729 dom
= isl_set_universe(space
);
732 bounds
= isl_basic_set_copy(bounds
);
733 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
734 bounds
, isl_dim_set
, depth
, 1);
735 set
= isl_set_from_basic_set(bounds
);
736 dom
= isl_set_intersect(dom
, set
);
740 set
= isl_ast_build_get_stride_constraint(build
);
741 dom
= isl_set_intersect(dom
, set
);
744 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
745 dom
= isl_ast_build_compute_gist(build
, dom
);
746 guard
= isl_set_intersect(guard
, dom
);
751 /* Update "graft" based on "sub_build" for the degenerate case.
753 * "build" is the build in which graft->node was created
754 * "sub_build" contains information about the current level itself,
755 * including the single value attained.
757 * We set the initialization part of the for loop to the single
758 * value attained by the current dimension.
759 * The increment and condition are not strictly needed as the are known
760 * to be "1" and "iterator <= value" respectively.
762 static __isl_give isl_ast_graft
*refine_degenerate(
763 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
764 __isl_keep isl_ast_build
*sub_build
)
768 if (!graft
|| !sub_build
)
769 return isl_ast_graft_free(graft
);
771 value
= isl_pw_aff_copy(sub_build
->value
);
773 graft
->node
->u
.f
.init
= isl_ast_build_expr_from_pw_aff_internal(build
,
775 if (!graft
->node
->u
.f
.init
)
776 return isl_ast_graft_free(graft
);
781 /* Return the intersection of constraints in "list" as a set.
783 static __isl_give isl_set
*intersect_constraints(
784 __isl_keep isl_constraint_list
*list
)
789 n
= isl_constraint_list_n_constraint(list
);
791 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
792 "expecting at least one constraint", return NULL
);
794 bset
= isl_basic_set_from_constraint(
795 isl_constraint_list_get_constraint(list
, 0));
796 for (i
= 1; i
< n
; ++i
) {
797 isl_basic_set
*bset_i
;
799 bset_i
= isl_basic_set_from_constraint(
800 isl_constraint_list_get_constraint(list
, i
));
801 bset
= isl_basic_set_intersect(bset
, bset_i
);
804 return isl_set_from_basic_set(bset
);
807 /* Compute the constraints on the outer dimensions enforced by
808 * graft->node and add those constraints to graft->enforced,
809 * in case the upper bound is expressed as a set "upper".
811 * In particular, if l(...) is a lower bound in "lower", and
813 * -a i + f(...) >= 0 or a i <= f(...)
815 * is an upper bound ocnstraint on the current dimension i,
816 * then the for loop enforces the constraint
818 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
820 * We therefore simply take each lower bound in turn, plug it into
821 * the upper bounds and compute the intersection over all lower bounds.
823 * If a lower bound is a rational expression, then
824 * isl_basic_set_preimage_multi_aff will force this rational
825 * expression to have only integer values. However, the loop
826 * itself does not enforce this integrality constraint. We therefore
827 * use the ceil of the lower bounds instead of the lower bounds themselves.
828 * Other constraints will make sure that the for loop is only executed
829 * when each of the lower bounds attains an integral value.
830 * In particular, potentially rational values only occur in
831 * lower_bound if the offset is a (seemingly) rational expression,
832 * but then outer conditions will make sure that this rational expression
833 * only attains integer values.
835 static __isl_give isl_ast_graft
*set_enforced_from_set(
836 __isl_take isl_ast_graft
*graft
,
837 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
840 isl_basic_set
*enforced
;
841 isl_pw_multi_aff
*pma
;
844 if (!graft
|| !lower
)
845 return isl_ast_graft_free(graft
);
847 space
= isl_set_get_space(upper
);
848 enforced
= isl_basic_set_universe(isl_space_copy(space
));
850 space
= isl_space_map_from_set(space
);
851 pma
= isl_pw_multi_aff_identity(space
);
853 n
= isl_pw_aff_list_n_pw_aff(lower
);
854 for (i
= 0; i
< n
; ++i
) {
858 isl_pw_multi_aff
*pma_i
;
860 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
861 pa
= isl_pw_aff_ceil(pa
);
862 pma_i
= isl_pw_multi_aff_copy(pma
);
863 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
864 enforced_i
= isl_set_copy(upper
);
865 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
866 hull
= isl_set_simple_hull(enforced_i
);
867 enforced
= isl_basic_set_intersect(enforced
, hull
);
870 isl_pw_multi_aff_free(pma
);
872 graft
= isl_ast_graft_enforce(graft
, enforced
);
877 /* Compute the constraints on the outer dimensions enforced by
878 * graft->node and add those constraints to graft->enforced,
879 * in case the upper bound is expressed as
880 * a list of affine expressions "upper".
882 * The enforced condition is that each lower bound expression is less
883 * than or equal to each upper bound expression.
885 static __isl_give isl_ast_graft
*set_enforced_from_list(
886 __isl_take isl_ast_graft
*graft
,
887 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
890 isl_basic_set
*enforced
;
892 lower
= isl_pw_aff_list_copy(lower
);
893 upper
= isl_pw_aff_list_copy(upper
);
894 cond
= isl_pw_aff_list_le_set(lower
, upper
);
895 enforced
= isl_set_simple_hull(cond
);
896 graft
= isl_ast_graft_enforce(graft
, enforced
);
901 /* Does "aff" have a negative constant term?
903 static isl_stat
aff_constant_is_negative(__isl_take isl_set
*set
,
904 __isl_take isl_aff
*aff
, void *user
)
909 v
= isl_aff_get_constant_val(aff
);
910 *neg
= isl_val_is_neg(v
);
915 return *neg
? isl_stat_ok
: isl_stat_error
;
918 /* Does "pa" have a negative constant term over its entire domain?
920 static isl_stat
pw_aff_constant_is_negative(__isl_take isl_pw_aff
*pa
,
926 r
= isl_pw_aff_foreach_piece(pa
, &aff_constant_is_negative
, user
);
929 return (*neg
&& r
>= 0) ? isl_stat_ok
: isl_stat_error
;
932 /* Does each element in "list" have a negative constant term?
934 * The callback terminates the iteration as soon an element has been
935 * found that does not have a negative constant term.
937 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
941 if (isl_pw_aff_list_foreach(list
,
942 &pw_aff_constant_is_negative
, &neg
) < 0 && neg
)
948 /* Add 1 to each of the elements in "list", where each of these elements
949 * is defined over the internal schedule space of "build".
951 static __isl_give isl_pw_aff_list
*list_add_one(
952 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
959 space
= isl_ast_build_get_space(build
, 1);
960 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
961 aff
= isl_aff_add_constant_si(aff
, 1);
962 one
= isl_pw_aff_from_aff(aff
);
964 n
= isl_pw_aff_list_n_pw_aff(list
);
965 for (i
= 0; i
< n
; ++i
) {
967 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
968 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
969 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
972 isl_pw_aff_free(one
);
977 /* Set the condition part of the for node graft->node in case
978 * the upper bound is represented as a list of piecewise affine expressions.
980 * In particular, set the condition to
982 * iterator <= min(list of upper bounds)
984 * If each of the upper bounds has a negative constant term, then
985 * set the condition to
987 * iterator < min(list of (upper bound + 1)s)
990 static __isl_give isl_ast_graft
*set_for_cond_from_list(
991 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
992 __isl_keep isl_ast_build
*build
)
995 isl_ast_expr
*bound
, *iterator
, *cond
;
996 enum isl_ast_op_type type
= isl_ast_op_le
;
999 return isl_ast_graft_free(graft
);
1001 neg
= list_constant_is_negative(list
);
1003 return isl_ast_graft_free(graft
);
1004 list
= isl_pw_aff_list_copy(list
);
1006 list
= list_add_one(list
, build
);
1007 type
= isl_ast_op_lt
;
1010 bound
= reduce_list(isl_ast_op_min
, list
, build
);
1011 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
1012 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
1013 graft
->node
->u
.f
.cond
= cond
;
1015 isl_pw_aff_list_free(list
);
1016 if (!graft
->node
->u
.f
.cond
)
1017 return isl_ast_graft_free(graft
);
1021 /* Set the condition part of the for node graft->node in case
1022 * the upper bound is represented as a set.
1024 static __isl_give isl_ast_graft
*set_for_cond_from_set(
1025 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
1026 __isl_keep isl_ast_build
*build
)
1033 cond
= isl_ast_build_expr_from_set_internal(build
, isl_set_copy(set
));
1034 graft
->node
->u
.f
.cond
= cond
;
1035 if (!graft
->node
->u
.f
.cond
)
1036 return isl_ast_graft_free(graft
);
1040 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1041 * the current dimension.
1043 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1051 ctx
= isl_ast_build_get_ctx(build
);
1052 depth
= isl_ast_build_get_depth(build
);
1054 if (!isl_ast_build_has_stride(build
, depth
))
1055 return isl_ast_expr_alloc_int_si(ctx
, 1);
1057 v
= isl_ast_build_get_stride(build
, depth
);
1058 return isl_ast_expr_from_val(v
);
1061 /* Should we express the loop condition as
1063 * iterator <= min(list of upper bounds)
1065 * or as a conjunction of constraints?
1067 * The first is constructed from a list of upper bounds.
1068 * The second is constructed from a set.
1070 * If there are no upper bounds in "constraints", then this could mean
1071 * that "domain" simply doesn't have an upper bound or that we didn't
1072 * pick any upper bound. In the first case, we want to generate the
1073 * loop condition as a(n empty) conjunction of constraints
1074 * In the second case, we will compute
1075 * a single upper bound from "domain" and so we use the list form.
1077 * If there are upper bounds in "constraints",
1078 * then we use the list form iff the atomic_upper_bound option is set.
1080 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1081 __isl_keep isl_set
*domain
, int depth
)
1084 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1086 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1089 /* Fill in the expressions of the for node in graft->node.
1092 * - set the initialization part of the loop to the maximum of the lower bounds
1093 * - extract the increment from the stride of the current dimension
1094 * - construct the for condition either based on a list of upper bounds
1095 * or on a set of upper bound constraints.
1097 static __isl_give isl_ast_graft
*set_for_node_expressions(
1098 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1099 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1100 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1107 build
= isl_ast_build_copy(build
);
1110 node
->u
.f
.init
= reduce_list(isl_ast_op_max
, lower
, build
);
1111 node
->u
.f
.inc
= for_inc(build
);
1113 if (!node
->u
.f
.init
|| !node
->u
.f
.inc
)
1114 graft
= isl_ast_graft_free(graft
);
1117 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1119 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1121 isl_ast_build_free(build
);
1126 /* Update "graft" based on "bounds" and "domain" for the generic,
1127 * non-degenerate, case.
1129 * "c_lower" and "c_upper" contain the lower and upper bounds
1130 * that the loop node should express.
1131 * "domain" is the subset of the intersection of the constraints
1132 * for which some code is executed.
1134 * There may be zero lower bounds or zero upper bounds in "constraints"
1135 * in case the list of constraints was created
1136 * based on the atomic option or based on separation with explicit bounds.
1137 * In that case, we use "domain" to derive lower and/or upper bounds.
1139 * We first compute a list of one or more lower bounds.
1141 * Then we decide if we want to express the condition as
1143 * iterator <= min(list of upper bounds)
1145 * or as a conjunction of constraints.
1147 * The set of enforced constraints is then computed either based on
1148 * a list of upper bounds or on a set of upper bound constraints.
1149 * We do not compute any enforced constraints if we were forced
1150 * to compute a lower or upper bound using exact_bound. The domains
1151 * of the resulting expressions may imply some bounds on outer dimensions
1152 * that we do not want to appear in the enforced constraints since
1153 * they are not actually enforced by the corresponding code.
1155 * Finally, we fill in the expressions of the for node.
1157 static __isl_give isl_ast_graft
*refine_generic_bounds(
1158 __isl_take isl_ast_graft
*graft
,
1159 __isl_take isl_constraint_list
*c_lower
,
1160 __isl_take isl_constraint_list
*c_upper
,
1161 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1165 isl_pw_aff_list
*lower
;
1167 isl_set
*upper_set
= NULL
;
1168 isl_pw_aff_list
*upper_list
= NULL
;
1169 int n_lower
, n_upper
;
1171 if (!graft
|| !c_lower
|| !c_upper
|| !build
)
1174 depth
= isl_ast_build_get_depth(build
);
1175 ctx
= isl_ast_graft_get_ctx(graft
);
1177 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1178 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1180 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1182 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1185 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1186 else if (n_upper
> 0)
1187 upper_set
= intersect_constraints(c_upper
);
1189 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1191 if (n_lower
== 0 || n_upper
== 0)
1194 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1196 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1198 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1201 isl_pw_aff_list_free(lower
);
1202 isl_pw_aff_list_free(upper_list
);
1203 isl_set_free(upper_set
);
1204 isl_constraint_list_free(c_lower
);
1205 isl_constraint_list_free(c_upper
);
1209 isl_constraint_list_free(c_lower
);
1210 isl_constraint_list_free(c_upper
);
1211 return isl_ast_graft_free(graft
);
1214 /* Internal data structure used inside count_constraints to keep
1215 * track of the number of constraints that are independent of dimension "pos",
1216 * the lower bounds in "pos" and the upper bounds in "pos".
1218 struct isl_ast_count_constraints_data
{
1226 /* Increment data->n_indep, data->lower or data->upper depending
1227 * on whether "c" is independenct of dimensions data->pos,
1228 * a lower bound or an upper bound.
1230 static isl_stat
count_constraints(__isl_take isl_constraint
*c
, void *user
)
1232 struct isl_ast_count_constraints_data
*data
= user
;
1234 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1236 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1241 isl_constraint_free(c
);
1246 /* Update "graft" based on "bounds" and "domain" for the generic,
1247 * non-degenerate, case.
1249 * "list" respresent the list of bounds that need to be encoded by
1250 * the for loop. Only the constraints that involve the iterator
1251 * are relevant here. The other constraints are taken care of by
1252 * the caller and are included in the generated constraints of "build".
1253 * "domain" is the subset of the intersection of the constraints
1254 * for which some code is executed.
1255 * "build" is the build in which graft->node was created.
1257 * We separate lower bounds, upper bounds and constraints that
1258 * are independent of the loop iterator.
1260 * The actual for loop bounds are generated in refine_generic_bounds.
1262 static __isl_give isl_ast_graft
*refine_generic_split(
1263 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1264 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1266 struct isl_ast_count_constraints_data data
;
1267 isl_constraint_list
*lower
;
1268 isl_constraint_list
*upper
;
1271 return isl_ast_graft_free(graft
);
1273 data
.pos
= isl_ast_build_get_depth(build
);
1275 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1277 return isl_ast_graft_free(graft
);
1279 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1280 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1281 isl_constraint_list_free(list
);
1282 return isl_ast_graft_free(graft
);
1285 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1286 upper
= isl_constraint_list_copy(lower
);
1287 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1288 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1290 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1293 /* Update "graft" based on "bounds" and "domain" for the generic,
1294 * non-degenerate, case.
1296 * "bounds" respresent the bounds that need to be encoded by
1297 * the for loop (or a guard around the for loop).
1298 * "domain" is the subset of "bounds" for which some code is executed.
1299 * "build" is the build in which graft->node was created.
1301 * We break up "bounds" into a list of constraints and continue with
1302 * refine_generic_split.
1304 static __isl_give isl_ast_graft
*refine_generic(
1305 __isl_take isl_ast_graft
*graft
,
1306 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1307 __isl_keep isl_ast_build
*build
)
1309 isl_constraint_list
*list
;
1311 if (!build
|| !graft
)
1312 return isl_ast_graft_free(graft
);
1314 list
= isl_basic_set_get_constraint_list(bounds
);
1316 graft
= refine_generic_split(graft
, list
, domain
, build
);
1321 /* Create a for node for the current level.
1323 * Mark the for node degenerate if "degenerate" is set.
1325 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1335 depth
= isl_ast_build_get_depth(build
);
1336 id
= isl_ast_build_get_iterator_id(build
, depth
);
1337 node
= isl_ast_node_alloc_for(id
);
1339 node
= isl_ast_node_for_mark_degenerate(node
);
1344 /* If the ast_build_exploit_nested_bounds option is set, then return
1345 * the constraints enforced by all elements in "list".
1346 * Otherwise, return the universe.
1348 static __isl_give isl_basic_set
*extract_shared_enforced(
1349 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1357 ctx
= isl_ast_graft_list_get_ctx(list
);
1358 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1359 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1361 space
= isl_ast_build_get_space(build
, 1);
1362 return isl_basic_set_universe(space
);
1365 /* Return the pending constraints of "build" that are not already taken
1366 * care of (by a combination of "enforced" and the generated constraints
1369 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1370 __isl_keep isl_basic_set
*enforced
)
1372 isl_set
*guard
, *context
;
1374 guard
= isl_ast_build_get_pending(build
);
1375 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1376 context
= isl_set_intersect(context
,
1377 isl_ast_build_get_generated(build
));
1378 return isl_set_gist(guard
, context
);
1381 /* Create an AST node for the current dimension based on
1382 * the schedule domain "bounds" and return the node encapsulated
1383 * in an isl_ast_graft.
1385 * "executed" is the current inverse schedule, taking into account
1386 * the bounds in "bounds"
1387 * "domain" is the domain of "executed", with inner dimensions projected out.
1388 * It may be a strict subset of "bounds" in case "bounds" was created
1389 * based on the atomic option or based on separation with explicit bounds.
1391 * "domain" may satisfy additional equalities that result
1392 * from intersecting "executed" with "bounds" in add_node.
1393 * It may also satisfy some global constraints that were dropped out because
1394 * we performed separation with explicit bounds.
1395 * The very first step is then to copy these constraints to "bounds".
1397 * Since we may be calling before_each_for and after_each_for
1398 * callbacks, we record the current inverse schedule in the build.
1400 * We consider three builds,
1401 * "build" is the one in which the current level is created,
1402 * "body_build" is the build in which the next level is created,
1403 * "sub_build" is essentially the same as "body_build", except that
1404 * the depth has not been increased yet.
1406 * "build" already contains information (in strides and offsets)
1407 * about the strides at the current level, but this information is not
1408 * reflected in the build->domain.
1409 * We first add this information and the "bounds" to the sub_build->domain.
1410 * isl_ast_build_set_loop_bounds adds the stride information and
1411 * checks whether the current dimension attains
1412 * only a single value and whether this single value can be represented using
1413 * a single affine expression.
1414 * In the first case, the current level is considered "degenerate".
1415 * In the second, sub-case, the current level is considered "eliminated".
1416 * Eliminated levels don't need to be reflected in the AST since we can
1417 * simply plug in the affine expression. For degenerate, but non-eliminated,
1418 * levels, we do introduce a for node, but mark is as degenerate so that
1419 * it can be printed as an assignment of the single value to the loop
1422 * If the current level is eliminated, we explicitly plug in the value
1423 * for the current level found by isl_ast_build_set_loop_bounds in the
1424 * inverse schedule. This ensures that if we are working on a slice
1425 * of the domain based on information available in the inverse schedule
1426 * and the build domain, that then this information is also reflected
1427 * in the inverse schedule. This operation also eliminates the current
1428 * dimension from the inverse schedule making sure no inner dimensions depend
1429 * on the current dimension. Otherwise, we create a for node, marking
1430 * it degenerate if appropriate. The initial for node is still incomplete
1431 * and will be completed in either refine_degenerate or refine_generic.
1433 * We then generate a sequence of grafts for the next level,
1434 * create a surrounding graft for the current level and insert
1435 * the for node we created (if the current level is not eliminated).
1436 * Before creating a graft for the current level, we first extract
1437 * hoistable constraints from the child guards and combine them
1438 * with the pending constraints in the build. These constraints
1439 * are used to simplify the child guards and then added to the guard
1440 * of the current graft to ensure that they will be generated.
1441 * If the hoisted guard is a disjunction, then we use it directly
1442 * to gist the guards on the children before intersect it with the
1443 * pending constraints. We do so because this disjunction is typically
1444 * identical to the guards on the children such that these guards
1445 * can be effectively removed completely. After the intersection,
1446 * the gist operation would have a harder time figuring this out.
1448 * Finally, we set the bounds of the for loop in either
1449 * refine_degenerate or refine_generic.
1450 * We do so in a context where the pending constraints of the build
1451 * have been replaced by the guard of the current graft.
1453 static __isl_give isl_ast_graft
*create_node_scaled(
1454 __isl_take isl_union_map
*executed
,
1455 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1456 __isl_take isl_ast_build
*build
)
1460 isl_bool eliminated
;
1461 isl_basic_set
*hull
;
1462 isl_basic_set
*enforced
;
1463 isl_set
*guard
, *hoisted
;
1464 isl_ast_node
*node
= NULL
;
1465 isl_ast_graft
*graft
;
1466 isl_ast_graft_list
*children
;
1467 isl_ast_build
*sub_build
;
1468 isl_ast_build
*body_build
;
1470 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1471 domain
= isl_set_detect_equalities(domain
);
1472 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1473 bounds
= isl_basic_set_intersect(bounds
, hull
);
1474 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1476 depth
= isl_ast_build_get_depth(build
);
1477 sub_build
= isl_ast_build_copy(build
);
1478 bounds
= isl_basic_set_remove_redundancies(bounds
);
1479 bounds
= isl_ast_build_specialize_basic_set(sub_build
, bounds
);
1480 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1481 isl_basic_set_copy(bounds
));
1482 degenerate
= isl_ast_build_has_value(sub_build
);
1483 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1484 if (degenerate
< 0 || eliminated
< 0)
1485 executed
= isl_union_map_free(executed
);
1487 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1488 sub_build
= isl_ast_build_set_pending_generated(sub_build
,
1489 isl_basic_set_copy(bounds
));
1491 executed
= plug_in_values(executed
, sub_build
);
1493 node
= create_for(build
, degenerate
);
1495 body_build
= isl_ast_build_copy(sub_build
);
1496 body_build
= isl_ast_build_increase_depth(body_build
);
1498 node
= before_each_for(node
, body_build
);
1499 children
= generate_next_level(executed
,
1500 isl_ast_build_copy(body_build
));
1502 enforced
= extract_shared_enforced(children
, build
);
1503 guard
= extract_pending(sub_build
, enforced
);
1504 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1505 if (isl_set_n_basic_set(hoisted
) > 1)
1506 children
= isl_ast_graft_list_gist_guards(children
,
1507 isl_set_copy(hoisted
));
1508 guard
= isl_set_intersect(guard
, hoisted
);
1510 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1512 graft
= isl_ast_graft_alloc_from_children(children
,
1513 isl_set_copy(guard
), enforced
, build
, sub_build
);
1516 isl_ast_build
*for_build
;
1518 graft
= isl_ast_graft_insert_for(graft
, node
);
1519 for_build
= isl_ast_build_copy(build
);
1520 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1521 isl_set_copy(guard
));
1523 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1525 graft
= refine_generic(graft
, bounds
,
1527 isl_ast_build_free(for_build
);
1529 isl_set_free(guard
);
1531 graft
= after_each_for(graft
, body_build
);
1533 isl_ast_build_free(body_build
);
1534 isl_ast_build_free(sub_build
);
1535 isl_ast_build_free(build
);
1536 isl_basic_set_free(bounds
);
1537 isl_set_free(domain
);
1542 /* Internal data structure for checking if all constraints involving
1543 * the input dimension "depth" are such that the other coefficients
1544 * are multiples of "m", reducing "m" if they are not.
1545 * If "m" is reduced all the way down to "1", then the check has failed
1546 * and we break out of the iteration.
1548 struct isl_check_scaled_data
{
1553 /* If constraint "c" involves the input dimension data->depth,
1554 * then make sure that all the other coefficients are multiples of data->m,
1555 * reducing data->m if needed.
1556 * Break out of the iteration if data->m has become equal to "1".
1558 static isl_stat
constraint_check_scaled(__isl_take isl_constraint
*c
,
1561 struct isl_check_scaled_data
*data
= user
;
1563 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1566 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1567 isl_constraint_free(c
);
1571 for (i
= 0; i
< 4; ++i
) {
1572 n
= isl_constraint_dim(c
, t
[i
]);
1573 for (j
= 0; j
< n
; ++j
) {
1576 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1578 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1580 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1581 data
->m
= isl_val_gcd(data
->m
, d
);
1582 if (isl_val_is_one(data
->m
))
1589 isl_constraint_free(c
);
1591 return i
< 4 ? isl_stat_error
: isl_stat_ok
;
1594 /* For each constraint of "bmap" that involves the input dimension data->depth,
1595 * make sure that all the other coefficients are multiples of data->m,
1596 * reducing data->m if needed.
1597 * Break out of the iteration if data->m has become equal to "1".
1599 static isl_stat
basic_map_check_scaled(__isl_take isl_basic_map
*bmap
,
1604 r
= isl_basic_map_foreach_constraint(bmap
,
1605 &constraint_check_scaled
, user
);
1606 isl_basic_map_free(bmap
);
1611 /* For each constraint of "map" that involves the input dimension data->depth,
1612 * make sure that all the other coefficients are multiples of data->m,
1613 * reducing data->m if needed.
1614 * Break out of the iteration if data->m has become equal to "1".
1616 static isl_stat
map_check_scaled(__isl_take isl_map
*map
, void *user
)
1620 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1626 /* Create an AST node for the current dimension based on
1627 * the schedule domain "bounds" and return the node encapsulated
1628 * in an isl_ast_graft.
1630 * "executed" is the current inverse schedule, taking into account
1631 * the bounds in "bounds"
1632 * "domain" is the domain of "executed", with inner dimensions projected out.
1635 * Before moving on to the actual AST node construction in create_node_scaled,
1636 * we first check if the current dimension is strided and if we can scale
1637 * down this stride. Note that we only do this if the ast_build_scale_strides
1640 * In particular, let the current dimension take on values
1644 * with a an integer. We check if we can find an integer m that (obviously)
1645 * divides both f and s.
1647 * If so, we check if the current dimension only appears in constraints
1648 * where the coefficients of the other variables are multiples of m.
1649 * We perform this extra check to avoid the risk of introducing
1650 * divisions by scaling down the current dimension.
1652 * If so, we scale the current dimension down by a factor of m.
1653 * That is, we plug in
1657 * Note that in principle we could always scale down strided loops
1662 * but this may result in i' taking on larger values than the original i,
1663 * due to the shift by "f".
1664 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1666 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1667 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1668 __isl_take isl_ast_build
*build
)
1670 struct isl_check_scaled_data data
;
1675 ctx
= isl_ast_build_get_ctx(build
);
1676 if (!isl_options_get_ast_build_scale_strides(ctx
))
1677 return create_node_scaled(executed
, bounds
, domain
, build
);
1679 data
.depth
= isl_ast_build_get_depth(build
);
1680 if (!isl_ast_build_has_stride(build
, data
.depth
))
1681 return create_node_scaled(executed
, bounds
, domain
, build
);
1683 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1684 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1686 offset
= isl_aff_free(offset
);
1687 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1688 d
= isl_aff_get_denominator_val(offset
);
1690 executed
= isl_union_map_free(executed
);
1692 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1693 data
.m
= isl_val_div(data
.m
, d
);
1695 data
.m
= isl_val_set_si(data
.m
, 1);
1699 if (!isl_val_is_one(data
.m
)) {
1700 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1702 !isl_val_is_one(data
.m
))
1703 executed
= isl_union_map_free(executed
);
1706 if (!isl_val_is_one(data
.m
)) {
1711 isl_union_map
*umap
;
1713 space
= isl_ast_build_get_space(build
, 1);
1714 space
= isl_space_map_from_set(space
);
1715 ma
= isl_multi_aff_identity(space
);
1716 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1717 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1718 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1720 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1721 isl_multi_aff_copy(ma
));
1722 domain
= isl_set_preimage_multi_aff(domain
,
1723 isl_multi_aff_copy(ma
));
1724 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1725 umap
= isl_union_map_from_map(map
);
1726 executed
= isl_union_map_apply_domain(executed
,
1727 isl_union_map_copy(umap
));
1728 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1731 isl_aff_free(offset
);
1732 isl_val_free(data
.m
);
1734 return create_node_scaled(executed
, bounds
, domain
, build
);
1737 /* Add the basic set to the list that "user" points to.
1739 static isl_stat
collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1741 isl_basic_set_list
**list
= user
;
1743 *list
= isl_basic_set_list_add(*list
, bset
);
1748 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1750 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1751 __isl_take isl_set
*set
)
1755 isl_basic_set_list
*list
;
1760 ctx
= isl_set_get_ctx(set
);
1762 n
= isl_set_n_basic_set(set
);
1763 list
= isl_basic_set_list_alloc(ctx
, n
);
1764 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1765 list
= isl_basic_set_list_free(list
);
1771 /* Generate code for the schedule domain "bounds"
1772 * and add the result to "list".
1774 * We mainly detect strides here and check if the bounds do not
1775 * conflict with the current build domain
1776 * and then pass over control to create_node.
1778 * "bounds" reflects the bounds on the current dimension and possibly
1779 * some extra conditions on outer dimensions.
1780 * It does not, however, include any divs involving the current dimension,
1781 * so it does not capture any stride constraints.
1782 * We therefore need to compute that part of the schedule domain that
1783 * intersects with "bounds" and derive the strides from the result.
1785 static __isl_give isl_ast_graft_list
*add_node(
1786 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1787 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1789 isl_ast_graft
*graft
;
1790 isl_set
*domain
= NULL
;
1791 isl_union_set
*uset
;
1792 int empty
, disjoint
;
1794 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1795 executed
= isl_union_map_intersect_domain(executed
, uset
);
1796 empty
= isl_union_map_is_empty(executed
);
1802 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1803 domain
= isl_set_from_union_set(uset
);
1804 domain
= isl_ast_build_specialize(build
, domain
);
1806 domain
= isl_set_compute_divs(domain
);
1807 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1808 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1814 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1816 graft
= create_node(executed
, bounds
, domain
,
1817 isl_ast_build_copy(build
));
1818 list
= isl_ast_graft_list_add(list
, graft
);
1819 isl_ast_build_free(build
);
1822 list
= isl_ast_graft_list_free(list
);
1824 isl_set_free(domain
);
1825 isl_basic_set_free(bounds
);
1826 isl_union_map_free(executed
);
1827 isl_ast_build_free(build
);
1831 /* Does any element of i follow or coincide with any element of j
1832 * at the current depth for equal values of the outer dimensions?
1834 static isl_bool
domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1835 __isl_keep isl_basic_set
*j
, void *user
)
1837 int depth
= *(int *) user
;
1838 isl_basic_map
*test
;
1842 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1843 isl_basic_set_copy(j
));
1844 for (l
= 0; l
< depth
; ++l
)
1845 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1847 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1848 isl_dim_out
, depth
);
1849 empty
= isl_basic_map_is_empty(test
);
1850 isl_basic_map_free(test
);
1852 return empty
< 0 ? isl_bool_error
: !empty
;
1855 /* Split up each element of "list" into a part that is related to "bset"
1856 * according to "gt" and a part that is not.
1857 * Return a list that consist of "bset" and all the pieces.
1859 static __isl_give isl_basic_set_list
*add_split_on(
1860 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1861 __isl_keep isl_basic_map
*gt
)
1864 isl_basic_set_list
*res
;
1867 bset
= isl_basic_set_free(bset
);
1869 gt
= isl_basic_map_copy(gt
);
1870 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1871 n
= isl_basic_set_list_n_basic_set(list
);
1872 res
= isl_basic_set_list_from_basic_set(bset
);
1873 for (i
= 0; res
&& i
< n
; ++i
) {
1874 isl_basic_set
*bset
;
1875 isl_set
*set1
, *set2
;
1876 isl_basic_map
*bmap
;
1879 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1880 bmap
= isl_basic_map_copy(gt
);
1881 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1882 bset
= isl_basic_map_range(bmap
);
1883 empty
= isl_basic_set_is_empty(bset
);
1885 res
= isl_basic_set_list_free(res
);
1887 isl_basic_set_free(bset
);
1888 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1889 res
= isl_basic_set_list_add(res
, bset
);
1893 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1894 set1
= isl_set_from_basic_set(bset
);
1895 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1896 set2
= isl_set_from_basic_set(bset
);
1897 set1
= isl_set_subtract(set2
, set1
);
1898 set1
= isl_set_make_disjoint(set1
);
1900 res
= isl_basic_set_list_concat(res
,
1901 isl_basic_set_list_from_set(set1
));
1903 isl_basic_map_free(gt
);
1904 isl_basic_set_list_free(list
);
1908 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1909 __isl_keep isl_basic_set_list
*domain_list
,
1910 __isl_keep isl_union_map
*executed
,
1911 __isl_keep isl_ast_build
*build
);
1913 /* Internal data structure for add_nodes.
1915 * "executed" and "build" are extra arguments to be passed to add_node.
1916 * "list" collects the results.
1918 struct isl_add_nodes_data
{
1919 isl_union_map
*executed
;
1920 isl_ast_build
*build
;
1922 isl_ast_graft_list
*list
;
1925 /* Generate code for the schedule domains in "scc"
1926 * and add the results to "list".
1928 * The domains in "scc" form a strongly connected component in the ordering.
1929 * If the number of domains in "scc" is larger than 1, then this means
1930 * that we cannot determine a valid ordering for the domains in the component.
1931 * This should be fairly rare because the individual domains
1932 * have been made disjoint first.
1933 * The problem is that the domains may be integrally disjoint but not
1934 * rationally disjoint. For example, we may have domains
1936 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1938 * These two domains have an empty intersection, but their rational
1939 * relaxations do intersect. It is impossible to order these domains
1940 * in the second dimension because the first should be ordered before
1941 * the second for outer dimension equal to 0, while it should be ordered
1942 * after for outer dimension equal to 1.
1944 * This may happen in particular in case of unrolling since the domain
1945 * of each slice is replaced by its simple hull.
1947 * For each basic set i in "scc" and for each of the following basic sets j,
1948 * we split off that part of the basic set i that shares the outer dimensions
1949 * with j and lies before j in the current dimension.
1950 * We collect all the pieces in a new list that replaces "scc".
1952 * While the elements in "scc" should be disjoint, we double-check
1953 * this property to avoid running into an infinite recursion in case
1954 * they intersect due to some internal error.
1956 static isl_stat
add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1958 struct isl_add_nodes_data
*data
= user
;
1960 isl_basic_set
*bset
, *first
;
1961 isl_basic_set_list
*list
;
1965 n
= isl_basic_set_list_n_basic_set(scc
);
1966 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
1968 isl_basic_set_list_free(scc
);
1969 data
->list
= add_node(data
->list
,
1970 isl_union_map_copy(data
->executed
), bset
,
1971 isl_ast_build_copy(data
->build
));
1972 return data
->list
? isl_stat_ok
: isl_stat_error
;
1975 depth
= isl_ast_build_get_depth(data
->build
);
1976 space
= isl_basic_set_get_space(bset
);
1977 space
= isl_space_map_from_set(space
);
1978 gt
= isl_basic_map_universe(space
);
1979 for (i
= 0; i
< depth
; ++i
)
1980 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
1981 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
1983 first
= isl_basic_set_copy(bset
);
1984 list
= isl_basic_set_list_from_basic_set(bset
);
1985 for (i
= 1; i
< n
; ++i
) {
1988 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
1990 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
1992 list
= isl_basic_set_list_free(list
);
1994 isl_die(isl_basic_set_list_get_ctx(scc
),
1996 "basic sets in scc are assumed to be disjoint",
1997 list
= isl_basic_set_list_free(list
));
1999 list
= add_split_on(list
, bset
, gt
);
2001 isl_basic_set_free(first
);
2002 isl_basic_map_free(gt
);
2003 isl_basic_set_list_free(scc
);
2005 data
->list
= isl_ast_graft_list_concat(data
->list
,
2006 generate_sorted_domains(scc
, data
->executed
, data
->build
));
2007 isl_basic_set_list_free(scc
);
2009 return data
->list
? isl_stat_ok
: isl_stat_error
;
2012 /* Sort the domains in "domain_list" according to the execution order
2013 * at the current depth (for equal values of the outer dimensions),
2014 * generate code for each of them, collecting the results in a list.
2015 * If no code is generated (because the intersection of the inverse schedule
2016 * with the domains turns out to be empty), then an empty list is returned.
2018 * The caller is responsible for ensuring that the basic sets in "domain_list"
2019 * are pair-wise disjoint. It can, however, in principle happen that
2020 * two basic sets should be ordered one way for one value of the outer
2021 * dimensions and the other way for some other value of the outer dimensions.
2022 * We therefore play safe and look for strongly connected components.
2023 * The function add_nodes takes care of handling non-trivial components.
2025 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
2026 __isl_keep isl_basic_set_list
*domain_list
,
2027 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2030 struct isl_add_nodes_data data
;
2037 ctx
= isl_basic_set_list_get_ctx(domain_list
);
2038 n
= isl_basic_set_list_n_basic_set(domain_list
);
2039 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
2043 return add_node(data
.list
, isl_union_map_copy(executed
),
2044 isl_basic_set_list_get_basic_set(domain_list
, 0),
2045 isl_ast_build_copy(build
));
2047 depth
= isl_ast_build_get_depth(build
);
2048 data
.executed
= executed
;
2050 if (isl_basic_set_list_foreach_scc(domain_list
,
2051 &domain_follows_at_depth
, &depth
,
2052 &add_nodes
, &data
) < 0)
2053 data
.list
= isl_ast_graft_list_free(data
.list
);
2058 /* Do i and j share any values for the outer dimensions?
2060 static isl_bool
shared_outer(__isl_keep isl_basic_set
*i
,
2061 __isl_keep isl_basic_set
*j
, void *user
)
2063 int depth
= *(int *) user
;
2064 isl_basic_map
*test
;
2068 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2069 isl_basic_set_copy(j
));
2070 for (l
= 0; l
< depth
; ++l
)
2071 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2073 empty
= isl_basic_map_is_empty(test
);
2074 isl_basic_map_free(test
);
2076 return empty
< 0 ? isl_bool_error
: !empty
;
2079 /* Internal data structure for generate_sorted_domains_wrap.
2081 * "n" is the total number of basic sets
2082 * "executed" and "build" are extra arguments to be passed
2083 * to generate_sorted_domains.
2085 * "single" is set to 1 by generate_sorted_domains_wrap if there
2086 * is only a single component.
2087 * "list" collects the results.
2089 struct isl_ast_generate_parallel_domains_data
{
2091 isl_union_map
*executed
;
2092 isl_ast_build
*build
;
2095 isl_ast_graft_list
*list
;
2098 /* Call generate_sorted_domains on "scc", fuse the result into a list
2099 * with either zero or one graft and collect the these single element
2100 * lists into data->list.
2102 * If there is only one component, i.e., if the number of basic sets
2103 * in the current component is equal to the total number of basic sets,
2104 * then data->single is set to 1 and the result of generate_sorted_domains
2107 static isl_stat
generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2110 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2111 isl_ast_graft_list
*list
;
2113 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2114 data
->single
= isl_basic_set_list_n_basic_set(scc
) == data
->n
;
2116 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2120 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2122 isl_basic_set_list_free(scc
);
2124 return isl_stat_error
;
2129 /* Look for any (weakly connected) components in the "domain_list"
2130 * of domains that share some values of the outer dimensions.
2131 * That is, domains in different components do not share any values
2132 * of the outer dimensions. This means that these components
2133 * can be freely reordered.
2134 * Within each of the components, we sort the domains according
2135 * to the execution order at the current depth.
2137 * If there is more than one component, then generate_sorted_domains_wrap
2138 * fuses the result of each call to generate_sorted_domains
2139 * into a list with either zero or one graft and collects these (at most)
2140 * single element lists into a bigger list. This means that the elements of the
2141 * final list can be freely reordered. In particular, we sort them
2142 * according to an arbitrary but fixed ordering to ease merging of
2143 * graft lists from different components.
2145 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2146 __isl_keep isl_basic_set_list
*domain_list
,
2147 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2150 struct isl_ast_generate_parallel_domains_data data
;
2155 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2157 return generate_sorted_domains(domain_list
, executed
, build
);
2159 depth
= isl_ast_build_get_depth(build
);
2161 data
.executed
= executed
;
2164 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2165 &generate_sorted_domains_wrap
,
2167 data
.list
= isl_ast_graft_list_free(data
.list
);
2170 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2175 /* Internal data for separate_domain.
2177 * "explicit" is set if we only want to use explicit bounds.
2179 * "domain" collects the separated domains.
2181 struct isl_separate_domain_data
{
2182 isl_ast_build
*build
;
2187 /* Extract implicit bounds on the current dimension for the executed "map".
2189 * The domain of "map" may involve inner dimensions, so we
2190 * need to eliminate them.
2192 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2193 __isl_keep isl_ast_build
*build
)
2197 domain
= isl_map_domain(map
);
2198 domain
= isl_ast_build_eliminate(build
, domain
);
2203 /* Extract explicit bounds on the current dimension for the executed "map".
2205 * Rather than eliminating the inner dimensions as in implicit_bounds,
2206 * we simply drop any constraints involving those inner dimensions.
2207 * The idea is that most bounds that are implied by constraints on the
2208 * inner dimensions will be enforced by for loops and not by explicit guards.
2209 * There is then no need to separate along those bounds.
2211 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2212 __isl_keep isl_ast_build
*build
)
2217 dim
= isl_map_dim(map
, isl_dim_out
);
2218 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2220 domain
= isl_map_domain(map
);
2221 depth
= isl_ast_build_get_depth(build
);
2222 dim
= isl_set_dim(domain
, isl_dim_set
);
2223 domain
= isl_set_detect_equalities(domain
);
2224 domain
= isl_set_drop_constraints_involving_dims(domain
,
2225 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2226 domain
= isl_set_remove_divs_involving_dims(domain
,
2227 isl_dim_set
, depth
, 1);
2228 domain
= isl_set_remove_unknown_divs(domain
);
2233 /* Split data->domain into pieces that intersect with the range of "map"
2234 * and pieces that do not intersect with the range of "map"
2235 * and then add that part of the range of "map" that does not intersect
2236 * with data->domain.
2238 static isl_stat
separate_domain(__isl_take isl_map
*map
, void *user
)
2240 struct isl_separate_domain_data
*data
= user
;
2245 domain
= explicit_bounds(map
, data
->build
);
2247 domain
= implicit_bounds(map
, data
->build
);
2249 domain
= isl_set_coalesce(domain
);
2250 domain
= isl_set_make_disjoint(domain
);
2251 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2252 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2253 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2254 data
->domain
= isl_set_union(data
->domain
, d1
);
2255 data
->domain
= isl_set_union(data
->domain
, d2
);
2260 /* Separate the schedule domains of "executed".
2262 * That is, break up the domain of "executed" into basic sets,
2263 * such that for each basic set S, every element in S is associated with
2264 * the same domain spaces.
2266 * "space" is the (single) domain space of "executed".
2268 static __isl_give isl_set
*separate_schedule_domains(
2269 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2270 __isl_keep isl_ast_build
*build
)
2272 struct isl_separate_domain_data data
= { build
};
2275 ctx
= isl_ast_build_get_ctx(build
);
2276 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2277 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2278 data
.domain
= isl_set_empty(space
);
2279 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2280 data
.domain
= isl_set_free(data
.domain
);
2282 isl_union_map_free(executed
);
2286 /* Temporary data used during the search for a lower bound for unrolling.
2288 * "build" is the build in which the unrolling will be performed
2289 * "domain" is the original set for which to find a lower bound
2290 * "depth" is the dimension for which to find a lower boudn
2291 * "expansion" is the expansion that needs to be applied to "domain"
2292 * in the unrolling that will be performed
2294 * "lower" is the best lower bound found so far. It is NULL if we have not
2296 * "n" is the corresponding size. If lower is NULL, then the value of n
2298 * "n_div" is the maximal number of integer divisions in the first
2299 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2300 * been computed yet.
2302 struct isl_find_unroll_data
{
2303 isl_ast_build
*build
;
2306 isl_basic_map
*expansion
;
2313 /* Return the constraint
2315 * i_"depth" = aff + offset
2317 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2320 aff
= isl_aff_copy(aff
);
2321 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2322 aff
= isl_aff_add_constant_si(aff
, offset
);
2323 return isl_equality_from_aff(aff
);
2326 /* Update *user to the number of integer divsions in the first element
2327 * of "ma", if it is larger than the current value.
2329 static isl_stat
update_n_div(__isl_take isl_set
*set
,
2330 __isl_take isl_multi_aff
*ma
, void *user
)
2336 aff
= isl_multi_aff_get_aff(ma
, 0);
2337 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2339 isl_multi_aff_free(ma
);
2345 return aff
? isl_stat_ok
: isl_stat_error
;
2348 /* Get the number of integer divisions in the expression for the iterator
2349 * value at the first slice in the unrolling based on lower bound "lower",
2350 * taking into account the expansion that needs to be performed on this slice.
2352 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2353 __isl_keep isl_aff
*lower
)
2357 isl_map
*it_map
, *expansion
;
2358 isl_pw_multi_aff
*pma
;
2361 c
= at_offset(data
->depth
, lower
, 0);
2362 set
= isl_set_copy(data
->domain
);
2363 set
= isl_set_add_constraint(set
, c
);
2364 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2365 set
= isl_set_apply(set
, expansion
);
2366 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2367 pma
= isl_pw_multi_aff_from_map(it_map
);
2369 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2371 isl_pw_multi_aff_free(pma
);
2376 /* Is the lower bound "lower" with corresponding iteration count "n"
2377 * better than the one stored in "data"?
2378 * If there is no upper bound on the iteration count ("n" is infinity) or
2379 * if the count is too large, then we cannot use this lower bound.
2380 * Otherwise, if there was no previous lower bound or
2381 * if the iteration count of the new lower bound is smaller than
2382 * the iteration count of the previous lower bound, then we consider
2383 * the new lower bound to be better.
2384 * If the iteration count is the same, then compare the number
2385 * of integer divisions that would be needed to express
2386 * the iterator value at the first slice in the unrolling
2387 * according to the lower bound. If we end up computing this
2388 * number, then store the lowest value in data->n_div.
2390 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2391 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2398 if (isl_val_is_infty(n
))
2400 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2404 cmp
= isl_val_cmp_si(n
, *data
->n
);
2409 if (data
->n_div
< 0)
2410 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2411 if (data
->n_div
< 0)
2413 if (data
->n_div
== 0)
2415 n_div
= get_expanded_n_div(data
, lower
);
2418 if (n_div
>= data
->n_div
)
2420 data
->n_div
= n_div
;
2425 /* Check if we can use "c" as a lower bound and if it is better than
2426 * any previously found lower bound.
2428 * If "c" does not involve the dimension at the current depth,
2429 * then we cannot use it.
2430 * Otherwise, let "c" be of the form
2434 * We compute the maximal value of
2436 * -ceil(f(j)/a)) + i + 1
2438 * over the domain. If there is such a value "n", then we know
2440 * -ceil(f(j)/a)) + i + 1 <= n
2444 * i < ceil(f(j)/a)) + n
2446 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2447 * We just need to check if we have found any lower bound before and
2448 * if the new lower bound is better (smaller n or fewer integer divisions)
2449 * than the previously found lower bounds.
2451 static isl_stat
update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2452 __isl_keep isl_constraint
*c
)
2454 isl_aff
*aff
, *lower
;
2458 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2461 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2462 lower
= isl_aff_ceil(lower
);
2463 aff
= isl_aff_copy(lower
);
2464 aff
= isl_aff_neg(aff
);
2465 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2466 aff
= isl_aff_add_constant_si(aff
, 1);
2467 max
= isl_set_max_val(data
->domain
, aff
);
2470 better
= is_better_lower_bound(data
, lower
, max
);
2471 if (better
< 0 || !better
) {
2473 isl_aff_free(lower
);
2474 return better
< 0 ? isl_stat_error
: isl_stat_ok
;
2477 isl_aff_free(data
->lower
);
2478 data
->lower
= lower
;
2479 *data
->n
= isl_val_get_num_si(max
);
2485 /* Check if we can use "c" as a lower bound and if it is better than
2486 * any previously found lower bound.
2488 static isl_stat
constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2490 struct isl_find_unroll_data
*data
;
2493 data
= (struct isl_find_unroll_data
*) user
;
2494 r
= update_unrolling_lower_bound(data
, c
);
2495 isl_constraint_free(c
);
2500 /* Look for a lower bound l(i) on the dimension at "depth"
2501 * and a size n such that "domain" is a subset of
2503 * { [i] : l(i) <= i_d < l(i) + n }
2505 * where d is "depth" and l(i) depends only on earlier dimensions.
2506 * Furthermore, try and find a lower bound such that n is as small as possible.
2507 * In particular, "n" needs to be finite.
2508 * "build" is the build in which the unrolling will be performed.
2509 * "expansion" is the expansion that needs to be applied to "domain"
2510 * in the unrolling that will be performed.
2512 * Inner dimensions have been eliminated from "domain" by the caller.
2514 * We first construct a collection of lower bounds on the input set
2515 * by computing its simple hull. We then iterate through them,
2516 * discarding those that we cannot use (either because they do not
2517 * involve the dimension at "depth" or because they have no corresponding
2518 * upper bound, meaning that "n" would be unbounded) and pick out the
2519 * best from the remaining ones.
2521 * If we cannot find a suitable lower bound, then we consider that
2524 static __isl_give isl_aff
*find_unroll_lower_bound(
2525 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2526 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2528 struct isl_find_unroll_data data
=
2529 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2530 isl_basic_set
*hull
;
2532 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2534 if (isl_basic_set_foreach_constraint(hull
,
2535 &constraint_find_unroll
, &data
) < 0)
2538 isl_basic_set_free(hull
);
2541 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2542 "cannot find lower bound for unrolling", return NULL
);
2546 isl_basic_set_free(hull
);
2547 return isl_aff_free(data
.lower
);
2550 /* Call "fn" on each iteration of the current dimension of "domain".
2551 * If "init" is not NULL, then it is called with the number of
2552 * iterations before any call to "fn".
2553 * Return -1 on failure.
2555 * Since we are going to be iterating over the individual values,
2556 * we first check if there are any strides on the current dimension.
2557 * If there is, we rewrite the current dimension i as
2559 * i = stride i' + offset
2561 * and then iterate over individual values of i' instead.
2563 * We then look for a lower bound on i' and a size such that the domain
2566 * { [j,i'] : l(j) <= i' < l(j) + n }
2568 * and then take slices of the domain at values of i'
2569 * between l(j) and l(j) + n - 1.
2571 * We compute the unshifted simple hull of each slice to ensure that
2572 * we have a single basic set per offset. The slicing constraint
2573 * may get simplified away before the unshifted simple hull is taken
2574 * and may therefore in some rare cases disappear from the result.
2575 * We therefore explicitly add the constraint back after computing
2576 * the unshifted simple hull to ensure that the basic sets
2577 * remain disjoint. The constraints that are dropped by taking the hull
2578 * will be taken into account at the next level, as in the case of the
2581 * Finally, we map i' back to i and call "fn".
2583 static int foreach_iteration(__isl_take isl_set
*domain
,
2584 __isl_keep isl_ast_build
*build
, int (*init
)(int n
, void *user
),
2585 int (*fn
)(__isl_take isl_basic_set
*bset
, void *user
), void *user
)
2590 isl_multi_aff
*expansion
;
2591 isl_basic_map
*bmap
;
2592 isl_aff
*lower
= NULL
;
2593 isl_ast_build
*stride_build
;
2595 depth
= isl_ast_build_get_depth(build
);
2597 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2598 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2599 stride_build
= isl_ast_build_copy(build
);
2600 stride_build
= isl_ast_build_detect_strides(stride_build
,
2601 isl_set_copy(domain
));
2602 expansion
= isl_ast_build_get_stride_expansion(stride_build
);
2604 domain
= isl_set_preimage_multi_aff(domain
,
2605 isl_multi_aff_copy(expansion
));
2606 domain
= isl_ast_build_eliminate_divs(stride_build
, domain
);
2607 isl_ast_build_free(stride_build
);
2609 bmap
= isl_basic_map_from_multi_aff(expansion
);
2611 empty
= isl_set_is_empty(domain
);
2617 lower
= find_unroll_lower_bound(build
, domain
, depth
, bmap
, &n
);
2621 if (n
>= 0 && init
&& init(n
, user
) < 0)
2623 for (i
= 0; i
< n
; ++i
) {
2625 isl_basic_set
*bset
;
2626 isl_constraint
*slice
;
2628 slice
= at_offset(depth
, lower
, i
);
2629 set
= isl_set_copy(domain
);
2630 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2631 bset
= isl_set_unshifted_simple_hull(set
);
2632 bset
= isl_basic_set_add_constraint(bset
, slice
);
2633 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2635 if (fn(bset
, user
) < 0)
2639 isl_aff_free(lower
);
2640 isl_set_free(domain
);
2641 isl_basic_map_free(bmap
);
2643 return n
< 0 || i
< n
? -1 : 0;
2646 /* Data structure for storing the results and the intermediate objects
2647 * of compute_domains.
2649 * "list" is the main result of the function and contains a list
2650 * of disjoint basic sets for which code should be generated.
2652 * "executed" and "build" are inputs to compute_domains.
2653 * "schedule_domain" is the domain of "executed".
2655 * "option" contains the domains at the current depth that should by
2656 * atomic, separated or unrolled. These domains are as specified by
2657 * the user, except that inner dimensions have been eliminated and
2658 * that they have been made pair-wise disjoint.
2660 * "sep_class" contains the user-specified split into separation classes
2661 * specialized to the current depth.
2662 * "done" contains the union of the separation domains that have already
2665 struct isl_codegen_domains
{
2666 isl_basic_set_list
*list
;
2668 isl_union_map
*executed
;
2669 isl_ast_build
*build
;
2670 isl_set
*schedule_domain
;
2678 /* Internal data structure for do_unroll.
2680 * "domains" stores the results of compute_domains.
2681 * "class_domain" is the original class domain passed to do_unroll.
2682 * "unroll_domain" collects the unrolled iterations.
2684 struct isl_ast_unroll_data
{
2685 struct isl_codegen_domains
*domains
;
2686 isl_set
*class_domain
;
2687 isl_set
*unroll_domain
;
2690 /* Given an iteration of an unrolled domain represented by "bset",
2691 * add it to data->domains->list.
2692 * Since we may have dropped some constraints, we intersect with
2693 * the class domain again to ensure that each element in the list
2694 * is disjoint from the other class domains.
2696 static int do_unroll_iteration(__isl_take isl_basic_set
*bset
, void *user
)
2698 struct isl_ast_unroll_data
*data
= user
;
2700 isl_basic_set_list
*list
;
2702 set
= isl_set_from_basic_set(bset
);
2703 data
->unroll_domain
= isl_set_union(data
->unroll_domain
,
2705 set
= isl_set_intersect(set
, isl_set_copy(data
->class_domain
));
2706 set
= isl_set_make_disjoint(set
);
2707 list
= isl_basic_set_list_from_set(set
);
2708 data
->domains
->list
= isl_basic_set_list_concat(data
->domains
->list
,
2714 /* Extend domains->list with a list of basic sets, one for each value
2715 * of the current dimension in "domain" and remove the corresponding
2716 * sets from the class domain. Return the updated class domain.
2717 * The divs that involve the current dimension have not been projected out
2720 * We call foreach_iteration to iterate over the individual values and
2721 * in do_unroll_iteration we collect the individual basic sets in
2722 * domains->list and their union in data->unroll_domain, which is then
2723 * used to update the class domain.
2725 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2726 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2728 struct isl_ast_unroll_data data
;
2731 return isl_set_free(class_domain
);
2733 return isl_set_free(domain
);
2735 data
.domains
= domains
;
2736 data
.class_domain
= class_domain
;
2737 data
.unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2739 if (foreach_iteration(domain
, domains
->build
, NULL
,
2740 &do_unroll_iteration
, &data
) < 0)
2741 data
.unroll_domain
= isl_set_free(data
.unroll_domain
);
2743 class_domain
= isl_set_subtract(class_domain
, data
.unroll_domain
);
2745 return class_domain
;
2748 /* Add domains to domains->list for each individual value of the current
2749 * dimension, for that part of the schedule domain that lies in the
2750 * intersection of the option domain and the class domain.
2751 * Remove the corresponding sets from the class domain and
2752 * return the updated class domain.
2754 * We first break up the unroll option domain into individual pieces
2755 * and then handle each of them separately. The unroll option domain
2756 * has been made disjoint in compute_domains_init_options,
2758 * Note that we actively want to combine different pieces of the
2759 * schedule domain that have the same value at the current dimension.
2760 * We therefore need to break up the unroll option domain before
2761 * intersecting with class and schedule domain, hoping that the
2762 * unroll option domain specified by the user is relatively simple.
2764 static __isl_give isl_set
*compute_unroll_domains(
2765 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2767 isl_set
*unroll_domain
;
2768 isl_basic_set_list
*unroll_list
;
2772 empty
= isl_set_is_empty(domains
->option
[isl_ast_loop_unroll
]);
2774 return isl_set_free(class_domain
);
2776 return class_domain
;
2778 unroll_domain
= isl_set_copy(domains
->option
[isl_ast_loop_unroll
]);
2779 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2781 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2782 for (i
= 0; i
< n
; ++i
) {
2783 isl_basic_set
*bset
;
2785 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2786 unroll_domain
= isl_set_from_basic_set(bset
);
2787 unroll_domain
= isl_set_intersect(unroll_domain
,
2788 isl_set_copy(class_domain
));
2789 unroll_domain
= isl_set_intersect(unroll_domain
,
2790 isl_set_copy(domains
->schedule_domain
));
2792 empty
= isl_set_is_empty(unroll_domain
);
2793 if (empty
>= 0 && empty
) {
2794 isl_set_free(unroll_domain
);
2798 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2801 isl_basic_set_list_free(unroll_list
);
2803 return class_domain
;
2806 /* Try and construct a single basic set that includes the intersection of
2807 * the schedule domain, the atomic option domain and the class domain.
2808 * Add the resulting basic set(s) to domains->list and remove them
2809 * from class_domain. Return the updated class domain.
2811 * We construct a single domain rather than trying to combine
2812 * the schedule domains of individual domains because we are working
2813 * within a single component so that non-overlapping schedule domains
2814 * should already have been separated.
2815 * We do however need to make sure that this single domains is a subset
2816 * of the class domain so that it would not intersect with any other
2817 * class domains. This means that we may end up splitting up the atomic
2818 * domain in case separation classes are being used.
2820 * "domain" is the intersection of the schedule domain and the class domain,
2821 * with inner dimensions projected out.
2823 static __isl_give isl_set
*compute_atomic_domain(
2824 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2826 isl_basic_set
*bset
;
2827 isl_basic_set_list
*list
;
2828 isl_set
*domain
, *atomic_domain
;
2831 domain
= isl_set_copy(domains
->option
[isl_ast_loop_atomic
]);
2832 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2833 domain
= isl_set_intersect(domain
,
2834 isl_set_copy(domains
->schedule_domain
));
2835 empty
= isl_set_is_empty(domain
);
2837 class_domain
= isl_set_free(class_domain
);
2839 isl_set_free(domain
);
2840 return class_domain
;
2843 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2844 domain
= isl_set_coalesce(domain
);
2845 bset
= isl_set_unshifted_simple_hull(domain
);
2846 domain
= isl_set_from_basic_set(bset
);
2847 atomic_domain
= isl_set_copy(domain
);
2848 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2849 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2850 domain
= isl_set_make_disjoint(domain
);
2851 list
= isl_basic_set_list_from_set(domain
);
2852 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2854 return class_domain
;
2857 /* Split up the schedule domain into uniform basic sets,
2858 * in the sense that each element in a basic set is associated to
2859 * elements of the same domains, and add the result to domains->list.
2860 * Do this for that part of the schedule domain that lies in the
2861 * intersection of "class_domain" and the separate option domain.
2863 * "class_domain" may or may not include the constraints
2864 * of the schedule domain, but this does not make a difference
2865 * since we are going to intersect it with the domain of the inverse schedule.
2866 * If it includes schedule domain constraints, then they may involve
2867 * inner dimensions, but we will eliminate them in separation_domain.
2869 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2870 __isl_keep isl_set
*class_domain
)
2874 isl_union_map
*executed
;
2875 isl_basic_set_list
*list
;
2878 domain
= isl_set_copy(domains
->option
[isl_ast_loop_separate
]);
2879 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2880 executed
= isl_union_map_copy(domains
->executed
);
2881 executed
= isl_union_map_intersect_domain(executed
,
2882 isl_union_set_from_set(domain
));
2883 empty
= isl_union_map_is_empty(executed
);
2884 if (empty
< 0 || empty
) {
2885 isl_union_map_free(executed
);
2886 return empty
< 0 ? -1 : 0;
2889 space
= isl_set_get_space(class_domain
);
2890 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2892 list
= isl_basic_set_list_from_set(domain
);
2893 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2898 /* Split up the domain at the current depth into disjoint
2899 * basic sets for which code should be generated separately
2900 * for the given separation class domain.
2902 * If any separation classes have been defined, then "class_domain"
2903 * is the domain of the current class and does not refer to inner dimensions.
2904 * Otherwise, "class_domain" is the universe domain.
2906 * We first make sure that the class domain is disjoint from
2907 * previously considered class domains.
2909 * The separate domains can be computed directly from the "class_domain".
2911 * The unroll, atomic and remainder domains need the constraints
2912 * from the schedule domain.
2914 * For unrolling, the actual schedule domain is needed (with divs that
2915 * may refer to the current dimension) so that stride detection can be
2918 * For atomic and remainder domains, inner dimensions and divs involving
2919 * the current dimensions should be eliminated.
2920 * In case we are working within a separation class, we need to intersect
2921 * the result with the current "class_domain" to ensure that the domains
2922 * are disjoint from those generated from other class domains.
2924 * The domain that has been made atomic may be larger than specified
2925 * by the user since it needs to be representable as a single basic set.
2926 * This possibly larger domain is removed from class_domain by
2927 * compute_atomic_domain. It is computed first so that the extended domain
2928 * would not overlap with any domains computed before.
2929 * Similary, the unrolled domains may have some constraints removed and
2930 * may therefore also be larger than specified by the user.
2932 * If anything is left after handling separate, unroll and atomic,
2933 * we split it up into basic sets and append the basic sets to domains->list.
2935 static isl_stat
compute_partial_domains(struct isl_codegen_domains
*domains
,
2936 __isl_take isl_set
*class_domain
)
2938 isl_basic_set_list
*list
;
2941 class_domain
= isl_set_subtract(class_domain
,
2942 isl_set_copy(domains
->done
));
2943 domains
->done
= isl_set_union(domains
->done
,
2944 isl_set_copy(class_domain
));
2946 class_domain
= compute_atomic_domain(domains
, class_domain
);
2947 class_domain
= compute_unroll_domains(domains
, class_domain
);
2949 domain
= isl_set_copy(class_domain
);
2951 if (compute_separate_domain(domains
, domain
) < 0)
2953 domain
= isl_set_subtract(domain
,
2954 isl_set_copy(domains
->option
[isl_ast_loop_separate
]));
2956 domain
= isl_set_intersect(domain
,
2957 isl_set_copy(domains
->schedule_domain
));
2959 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2960 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2962 domain
= isl_set_coalesce(domain
);
2963 domain
= isl_set_make_disjoint(domain
);
2965 list
= isl_basic_set_list_from_set(domain
);
2966 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2968 isl_set_free(class_domain
);
2972 isl_set_free(domain
);
2973 isl_set_free(class_domain
);
2974 return isl_stat_error
;
2977 /* Split up the domain at the current depth into disjoint
2978 * basic sets for which code should be generated separately
2979 * for the separation class identified by "pnt".
2981 * We extract the corresponding class domain from domains->sep_class,
2982 * eliminate inner dimensions and pass control to compute_partial_domains.
2984 static isl_stat
compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
2986 struct isl_codegen_domains
*domains
= user
;
2991 class_set
= isl_set_from_point(pnt
);
2992 domain
= isl_map_domain(isl_map_intersect_range(
2993 isl_map_copy(domains
->sep_class
), class_set
));
2994 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
2995 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2997 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
2999 return isl_stat_error
;
3001 isl_set_free(domain
);
3005 return compute_partial_domains(domains
, domain
);
3008 /* Extract the domains at the current depth that should be atomic,
3009 * separated or unrolled and store them in option.
3011 * The domains specified by the user might overlap, so we make
3012 * them disjoint by subtracting earlier domains from later domains.
3014 static void compute_domains_init_options(isl_set
*option
[4],
3015 __isl_keep isl_ast_build
*build
)
3017 enum isl_ast_loop_type type
, type2
;
3020 for (type
= isl_ast_loop_atomic
;
3021 type
<= isl_ast_loop_separate
; ++type
) {
3022 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
3023 for (type2
= isl_ast_loop_atomic
; type2
< type
; ++type2
)
3024 option
[type
] = isl_set_subtract(option
[type
],
3025 isl_set_copy(option
[type2
]));
3028 unroll
= option
[isl_ast_loop_unroll
];
3029 unroll
= isl_set_coalesce(unroll
);
3030 unroll
= isl_set_make_disjoint(unroll
);
3031 option
[isl_ast_loop_unroll
] = unroll
;
3034 /* Split up the domain at the current depth into disjoint
3035 * basic sets for which code should be generated separately,
3036 * based on the user-specified options.
3037 * Return the list of disjoint basic sets.
3039 * There are three kinds of domains that we need to keep track of.
3040 * - the "schedule domain" is the domain of "executed"
3041 * - the "class domain" is the domain corresponding to the currrent
3043 * - the "option domain" is the domain corresponding to one of the options
3044 * atomic, unroll or separate
3046 * We first consider the individial values of the separation classes
3047 * and split up the domain for each of them separately.
3048 * Finally, we consider the remainder. If no separation classes were
3049 * specified, then we call compute_partial_domains with the universe
3050 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3051 * with inner dimensions removed. We do this because we want to
3052 * avoid computing the complement of the class domains (i.e., the difference
3053 * between the universe and domains->done).
3055 static __isl_give isl_basic_set_list
*compute_domains(
3056 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
3058 struct isl_codegen_domains domains
;
3061 isl_union_set
*schedule_domain
;
3065 enum isl_ast_loop_type type
;
3071 ctx
= isl_union_map_get_ctx(executed
);
3072 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
3074 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3075 domain
= isl_set_from_union_set(schedule_domain
);
3077 compute_domains_init_options(domains
.option
, build
);
3079 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
3080 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
3081 n_param
= isl_set_dim(classes
, isl_dim_param
);
3082 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
3084 space
= isl_set_get_space(domain
);
3085 domains
.build
= build
;
3086 domains
.schedule_domain
= isl_set_copy(domain
);
3087 domains
.executed
= executed
;
3088 domains
.done
= isl_set_empty(space
);
3090 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
3091 domains
.list
= isl_basic_set_list_free(domains
.list
);
3092 isl_set_free(classes
);
3094 empty
= isl_set_is_empty(domains
.done
);
3096 domains
.list
= isl_basic_set_list_free(domains
.list
);
3097 domain
= isl_set_free(domain
);
3099 isl_set_free(domain
);
3100 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
3102 domain
= isl_ast_build_eliminate(build
, domain
);
3104 if (compute_partial_domains(&domains
, domain
) < 0)
3105 domains
.list
= isl_basic_set_list_free(domains
.list
);
3107 isl_set_free(domains
.schedule_domain
);
3108 isl_set_free(domains
.done
);
3109 isl_map_free(domains
.sep_class
);
3110 for (type
= isl_ast_loop_atomic
; type
<= isl_ast_loop_separate
; ++type
)
3111 isl_set_free(domains
.option
[type
]);
3113 return domains
.list
;
3116 /* Generate code for a single component, after shifting (if any)
3117 * has been applied, in case the schedule was specified as a union map.
3119 * We first split up the domain at the current depth into disjoint
3120 * basic sets based on the user-specified options.
3121 * Then we generated code for each of them and concatenate the results.
3123 static __isl_give isl_ast_graft_list
*generate_shifted_component_flat(
3124 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3126 isl_basic_set_list
*domain_list
;
3127 isl_ast_graft_list
*list
= NULL
;
3129 domain_list
= compute_domains(executed
, build
);
3130 list
= generate_parallel_domains(domain_list
, executed
, build
);
3132 isl_basic_set_list_free(domain_list
);
3133 isl_union_map_free(executed
);
3134 isl_ast_build_free(build
);
3139 /* Generate code for a single component, after shifting (if any)
3140 * has been applied, in case the schedule was specified as a schedule tree
3141 * and the separate option was specified.
3143 * We perform separation on the domain of "executed" and then generate
3144 * an AST for each of the resulting disjoint basic sets.
3146 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_separate(
3147 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3151 isl_basic_set_list
*domain_list
;
3152 isl_ast_graft_list
*list
;
3154 space
= isl_ast_build_get_space(build
, 1);
3155 domain
= separate_schedule_domains(space
,
3156 isl_union_map_copy(executed
), build
);
3157 domain_list
= isl_basic_set_list_from_set(domain
);
3159 list
= generate_parallel_domains(domain_list
, executed
, build
);
3161 isl_basic_set_list_free(domain_list
);
3162 isl_union_map_free(executed
);
3163 isl_ast_build_free(build
);
3168 /* Internal data structure for generate_shifted_component_tree_unroll.
3170 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3171 * "list" collects the constructs grafts.
3173 struct isl_ast_unroll_tree_data
{
3174 isl_union_map
*executed
;
3175 isl_ast_build
*build
;
3176 isl_ast_graft_list
*list
;
3179 /* Initialize data->list to a list of "n" elements.
3181 static int init_unroll_tree(int n
, void *user
)
3183 struct isl_ast_unroll_tree_data
*data
= user
;
3186 ctx
= isl_ast_build_get_ctx(data
->build
);
3187 data
->list
= isl_ast_graft_list_alloc(ctx
, n
);
3192 /* Given an iteration of an unrolled domain represented by "bset",
3193 * generate the corresponding AST and add the result to data->list.
3195 static int do_unroll_tree_iteration(__isl_take isl_basic_set
*bset
, void *user
)
3197 struct isl_ast_unroll_tree_data
*data
= user
;
3199 data
->list
= add_node(data
->list
, isl_union_map_copy(data
->executed
),
3200 bset
, isl_ast_build_copy(data
->build
));
3205 /* Generate code for a single component, after shifting (if any)
3206 * has been applied, in case the schedule was specified as a schedule tree
3207 * and the unroll option was specified.
3209 * We call foreach_iteration to iterate over the individual values and
3210 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3212 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_unroll(
3213 __isl_take isl_union_map
*executed
, __isl_take isl_set
*domain
,
3214 __isl_take isl_ast_build
*build
)
3216 struct isl_ast_unroll_tree_data data
= { executed
, build
, NULL
};
3218 if (foreach_iteration(domain
, build
, &init_unroll_tree
,
3219 &do_unroll_tree_iteration
, &data
) < 0)
3220 data
.list
= isl_ast_graft_list_free(data
.list
);
3222 isl_union_map_free(executed
);
3223 isl_ast_build_free(build
);
3228 /* Does "domain" involve a disjunction that is purely based on
3229 * constraints involving only outer dimension?
3231 * In particular, is there a disjunction such that the constraints
3232 * involving the current and later dimensions are the same over
3233 * all the disjuncts?
3235 static isl_bool
has_pure_outer_disjunction(__isl_keep isl_set
*domain
,
3236 __isl_keep isl_ast_build
*build
)
3238 isl_basic_set
*hull
;
3239 isl_set
*shared
, *inner
;
3243 if (isl_set_n_basic_set(domain
) <= 1)
3244 return isl_bool_false
;
3246 inner
= isl_set_copy(domain
);
3247 depth
= isl_ast_build_get_depth(build
);
3248 dim
= isl_set_dim(inner
, isl_dim_set
);
3249 inner
= isl_set_drop_constraints_not_involving_dims(inner
,
3250 isl_dim_set
, depth
, dim
- depth
);
3251 hull
= isl_set_plain_unshifted_simple_hull(isl_set_copy(inner
));
3252 shared
= isl_set_from_basic_set(hull
);
3253 equal
= isl_set_plain_is_equal(inner
, shared
);
3254 isl_set_free(inner
);
3255 isl_set_free(shared
);
3260 /* Generate code for a single component, after shifting (if any)
3261 * has been applied, in case the schedule was specified as a schedule tree.
3262 * In particular, handle the base case where there is either no isolated
3263 * set or we are within the isolated set (in which case "isolated" is set)
3264 * or the iterations that precede or follow the isolated set.
3266 * The schedule domain is broken up or combined into basic sets
3267 * according to the AST generation option specified in the current
3268 * schedule node, which may be either atomic, separate, unroll or
3269 * unspecified. If the option is unspecified, then we currently simply
3270 * split the schedule domain into disjoint basic sets.
3272 * In case the separate option is specified, the AST generation is
3273 * handled by generate_shifted_component_tree_separate.
3274 * In the other cases, we need the global schedule domain.
3275 * In the unroll case, the AST generation is then handled by
3276 * generate_shifted_component_tree_unroll which needs the actual
3277 * schedule domain (with divs that may refer to the current dimension)
3278 * so that stride detection can be performed.
3279 * In the atomic or unspecified case, inner dimensions and divs involving
3280 * the current dimensions should be eliminated.
3281 * The result is then either combined into a single basic set or
3282 * split up into disjoint basic sets.
3283 * Finally an AST is generated for each basic set and the results are
3286 * If the schedule domain involves a disjunction that is purely based on
3287 * constraints involving only outer dimension, then it is treated as
3288 * if atomic was specified. This ensures that only a single loop
3289 * is generated instead of a sequence of identical loops with
3292 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_base(
3293 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3296 isl_bool outer_disjunction
;
3297 isl_union_set
*schedule_domain
;
3299 isl_basic_set_list
*domain_list
;
3300 isl_ast_graft_list
*list
;
3301 enum isl_ast_loop_type type
;
3303 type
= isl_ast_build_get_loop_type(build
, isolated
);
3307 if (type
== isl_ast_loop_separate
)
3308 return generate_shifted_component_tree_separate(executed
,
3311 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3312 domain
= isl_set_from_union_set(schedule_domain
);
3314 if (type
== isl_ast_loop_unroll
)
3315 return generate_shifted_component_tree_unroll(executed
, domain
,
3318 domain
= isl_ast_build_eliminate(build
, domain
);
3319 domain
= isl_set_coalesce(domain
);
3321 outer_disjunction
= has_pure_outer_disjunction(domain
, build
);
3322 if (outer_disjunction
< 0)
3323 domain
= isl_set_free(domain
);
3325 if (outer_disjunction
|| type
== isl_ast_loop_atomic
) {
3326 isl_basic_set
*hull
;
3327 hull
= isl_set_unshifted_simple_hull(domain
);
3328 domain_list
= isl_basic_set_list_from_basic_set(hull
);
3330 domain
= isl_set_make_disjoint(domain
);
3331 domain_list
= isl_basic_set_list_from_set(domain
);
3334 list
= generate_parallel_domains(domain_list
, executed
, build
);
3336 isl_basic_set_list_free(domain_list
);
3337 isl_union_map_free(executed
);
3338 isl_ast_build_free(build
);
3342 isl_union_map_free(executed
);
3343 isl_ast_build_free(build
);
3347 /* Extract out the disjunction imposed by "domain" on the outer
3348 * schedule dimensions.
3350 * In particular, remove all inner dimensions from "domain" (including
3351 * the current dimension) and then remove the constraints that are shared
3352 * by all disjuncts in the result.
3354 static __isl_give isl_set
*extract_disjunction(__isl_take isl_set
*domain
,
3355 __isl_keep isl_ast_build
*build
)
3360 domain
= isl_ast_build_specialize(build
, domain
);
3361 depth
= isl_ast_build_get_depth(build
);
3362 dim
= isl_set_dim(domain
, isl_dim_set
);
3363 domain
= isl_set_eliminate(domain
, isl_dim_set
, depth
, dim
- depth
);
3364 domain
= isl_set_remove_unknown_divs(domain
);
3365 hull
= isl_set_copy(domain
);
3366 hull
= isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull
));
3367 domain
= isl_set_gist(domain
, hull
);
3372 /* Add "guard" to the grafts in "list".
3373 * "build" is the outer AST build, while "sub_build" includes "guard"
3374 * in its generated domain.
3376 * First combine the grafts into a single graft and then add the guard.
3377 * If the list is empty, or if some error occurred, then simply return
3380 static __isl_give isl_ast_graft_list
*list_add_guard(
3381 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_set
*guard
,
3382 __isl_keep isl_ast_build
*build
, __isl_keep isl_ast_build
*sub_build
)
3384 isl_ast_graft
*graft
;
3386 list
= isl_ast_graft_list_fuse(list
, sub_build
);
3388 if (isl_ast_graft_list_n_ast_graft(list
) != 1)
3391 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
3392 graft
= isl_ast_graft_add_guard(graft
, isl_set_copy(guard
), build
);
3393 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
3398 /* Generate code for a single component, after shifting (if any)
3399 * has been applied, in case the schedule was specified as a schedule tree.
3400 * In particular, do so for the specified subset of the schedule domain.
3402 * If we are outside of the isolated part, then "domain" may include
3403 * a disjunction. Explicitly generate this disjunction at this point
3404 * instead of relying on the disjunction getting hoisted back up
3407 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_part(
3408 __isl_keep isl_union_map
*executed
, __isl_take isl_set
*domain
,
3409 __isl_keep isl_ast_build
*build
, int isolated
)
3411 isl_union_set
*uset
;
3412 isl_ast_graft_list
*list
;
3413 isl_ast_build
*sub_build
;
3416 uset
= isl_union_set_from_set(isl_set_copy(domain
));
3417 executed
= isl_union_map_copy(executed
);
3418 executed
= isl_union_map_intersect_domain(executed
, uset
);
3419 empty
= isl_union_map_is_empty(executed
);
3424 isl_union_map_free(executed
);
3425 isl_set_free(domain
);
3426 ctx
= isl_ast_build_get_ctx(build
);
3427 return isl_ast_graft_list_alloc(ctx
, 0);
3430 sub_build
= isl_ast_build_copy(build
);
3432 domain
= extract_disjunction(domain
, build
);
3433 sub_build
= isl_ast_build_restrict_generated(sub_build
,
3434 isl_set_copy(domain
));
3436 list
= generate_shifted_component_tree_base(executed
,
3437 isl_ast_build_copy(sub_build
), isolated
);
3439 list
= list_add_guard(list
, domain
, build
, sub_build
);
3440 isl_ast_build_free(sub_build
);
3441 isl_set_free(domain
);
3444 isl_union_map_free(executed
);
3445 isl_set_free(domain
);
3449 /* Generate code for a single component, after shifting (if any)
3450 * has been applied, in case the schedule was specified as a schedule tree.
3451 * In particular, do so for the specified sequence of subsets
3452 * of the schedule domain, "before", "isolated", "after" and "other",
3453 * where only the "isolated" part is considered to be isolated.
3455 static __isl_give isl_ast_graft_list
*generate_shifted_component_parts(
3456 __isl_take isl_union_map
*executed
, __isl_take isl_set
*before
,
3457 __isl_take isl_set
*isolated
, __isl_take isl_set
*after
,
3458 __isl_take isl_set
*other
, __isl_take isl_ast_build
*build
)
3460 isl_ast_graft_list
*list
, *res
;
3462 res
= generate_shifted_component_tree_part(executed
, before
, build
, 0);
3463 list
= generate_shifted_component_tree_part(executed
, isolated
,
3465 res
= isl_ast_graft_list_concat(res
, list
);
3466 list
= generate_shifted_component_tree_part(executed
, after
, build
, 0);
3467 res
= isl_ast_graft_list_concat(res
, list
);
3468 list
= generate_shifted_component_tree_part(executed
, other
, build
, 0);
3469 res
= isl_ast_graft_list_concat(res
, list
);
3471 isl_union_map_free(executed
);
3472 isl_ast_build_free(build
);
3477 /* Does "set" intersect "first", but not "second"?
3479 static isl_bool
only_intersects_first(__isl_keep isl_set
*set
,
3480 __isl_keep isl_set
*first
, __isl_keep isl_set
*second
)
3484 disjoint
= isl_set_is_disjoint(set
, first
);
3486 return isl_bool_error
;
3488 return isl_bool_false
;
3490 return isl_set_is_disjoint(set
, second
);
3493 /* Generate code for a single component, after shifting (if any)
3494 * has been applied, in case the schedule was specified as a schedule tree.
3495 * In particular, do so in case of isolation where there is
3496 * only an "isolated" part and an "after" part.
3497 * "dead1" and "dead2" are freed by this function in order to simplify
3500 * The "before" and "other" parts are set to empty sets.
3502 static __isl_give isl_ast_graft_list
*generate_shifted_component_only_after(
3503 __isl_take isl_union_map
*executed
, __isl_take isl_set
*isolated
,
3504 __isl_take isl_set
*after
, __isl_take isl_ast_build
*build
,
3505 __isl_take isl_set
*dead1
, __isl_take isl_set
*dead2
)
3509 empty
= isl_set_empty(isl_set_get_space(after
));
3510 isl_set_free(dead1
);
3511 isl_set_free(dead2
);
3512 return generate_shifted_component_parts(executed
, isl_set_copy(empty
),
3513 isolated
, after
, empty
, build
);
3516 /* Generate code for a single component, after shifting (if any)
3517 * has been applied, in case the schedule was specified as a schedule tree.
3519 * We first check if the user has specified an isolated schedule domain
3520 * and that we are not already outside of this isolated schedule domain.
3521 * If so, we break up the schedule domain into iterations that
3522 * precede the isolated domain, the isolated domain itself,
3523 * the iterations that follow the isolated domain and
3524 * the remaining iterations (those that are incomparable
3525 * to the isolated domain).
3526 * We generate an AST for each piece and concatenate the results.
3528 * If the isolated domain is not convex, then it is replaced
3529 * by a convex superset to ensure that the sets of preceding and
3530 * following iterations are properly defined and, in particular,
3531 * that there are no intermediate iterations that do not belong
3532 * to the isolated domain.
3534 * In the special case where at least one element of the schedule
3535 * domain that does not belong to the isolated domain needs
3536 * to be scheduled after this isolated domain, but none of those
3537 * elements need to be scheduled before, break up the schedule domain
3538 * in only two parts, the isolated domain, and a part that will be
3539 * scheduled after the isolated domain.
3541 * If no isolated set has been specified, then we generate an
3542 * AST for the entire inverse schedule.
3544 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree(
3545 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3548 int empty
, has_isolate
;
3550 isl_union_set
*schedule_domain
;
3552 isl_basic_set
*hull
;
3553 isl_set
*isolated
, *before
, *after
, *test
;
3557 build
= isl_ast_build_extract_isolated(build
);
3558 has_isolate
= isl_ast_build_has_isolated(build
);
3559 if (has_isolate
< 0)
3560 executed
= isl_union_map_free(executed
);
3561 else if (!has_isolate
)
3562 return generate_shifted_component_tree_base(executed
, build
, 0);
3564 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3565 domain
= isl_set_from_union_set(schedule_domain
);
3567 isolated
= isl_ast_build_get_isolated(build
);
3568 isolated
= isl_set_intersect(isolated
, isl_set_copy(domain
));
3569 test
= isl_ast_build_specialize(build
, isl_set_copy(isolated
));
3570 empty
= isl_set_is_empty(test
);
3575 isl_set_free(isolated
);
3576 isl_set_free(domain
);
3577 return generate_shifted_component_tree_base(executed
, build
, 0);
3579 isolated
= isl_ast_build_eliminate(build
, isolated
);
3580 hull
= isl_set_unshifted_simple_hull(isolated
);
3581 isolated
= isl_set_from_basic_set(hull
);
3583 depth
= isl_ast_build_get_depth(build
);
3584 space
= isl_space_map_from_set(isl_set_get_space(isolated
));
3585 gt
= isl_map_universe(space
);
3586 for (i
= 0; i
< depth
; ++i
)
3587 gt
= isl_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
3588 gt
= isl_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
3589 lt
= isl_map_reverse(isl_map_copy(gt
));
3590 before
= isl_set_apply(isl_set_copy(isolated
), gt
);
3591 after
= isl_set_apply(isl_set_copy(isolated
), lt
);
3593 domain
= isl_set_subtract(domain
, isl_set_copy(isolated
));
3594 pure
= only_intersects_first(domain
, after
, before
);
3596 executed
= isl_union_map_free(executed
);
3598 return generate_shifted_component_only_after(executed
, isolated
,
3599 domain
, build
, before
, after
);
3600 domain
= isl_set_subtract(domain
, isl_set_copy(before
));
3601 domain
= isl_set_subtract(domain
, isl_set_copy(after
));
3602 after
= isl_set_subtract(after
, isl_set_copy(isolated
));
3603 after
= isl_set_subtract(after
, isl_set_copy(before
));
3604 before
= isl_set_subtract(before
, isl_set_copy(isolated
));
3606 return generate_shifted_component_parts(executed
, before
, isolated
,
3607 after
, domain
, build
);
3609 isl_set_free(domain
);
3610 isl_set_free(isolated
);
3611 isl_union_map_free(executed
);
3612 isl_ast_build_free(build
);
3616 /* Generate code for a single component, after shifting (if any)
3619 * Call generate_shifted_component_tree or generate_shifted_component_flat
3620 * depending on whether the schedule was specified as a schedule tree.
3622 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3623 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3625 if (isl_ast_build_has_schedule_node(build
))
3626 return generate_shifted_component_tree(executed
, build
);
3628 return generate_shifted_component_flat(executed
, build
);
3631 struct isl_set_map_pair
{
3636 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3637 * of indices into the "domain" array,
3638 * return the union of the "map" fields of the elements
3639 * indexed by the first "n" elements of "order".
3641 static __isl_give isl_union_map
*construct_component_executed(
3642 struct isl_set_map_pair
*domain
, int *order
, int n
)
3646 isl_union_map
*executed
;
3648 map
= isl_map_copy(domain
[order
[0]].map
);
3649 executed
= isl_union_map_from_map(map
);
3650 for (i
= 1; i
< n
; ++i
) {
3651 map
= isl_map_copy(domain
[order
[i
]].map
);
3652 executed
= isl_union_map_add_map(executed
, map
);
3658 /* Generate code for a single component, after shifting (if any)
3661 * The component inverse schedule is specified as the "map" fields
3662 * of the elements of "domain" indexed by the first "n" elements of "order".
3664 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3665 struct isl_set_map_pair
*domain
, int *order
, int n
,
3666 __isl_take isl_ast_build
*build
)
3668 isl_union_map
*executed
;
3670 executed
= construct_component_executed(domain
, order
, n
);
3671 return generate_shifted_component(executed
, build
);
3674 /* Does set dimension "pos" of "set" have an obviously fixed value?
3676 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3681 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3684 fixed
= !isl_val_is_nan(v
);
3690 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3691 * of indices into the "domain" array,
3692 * do all (except for at most one) of the "set" field of the elements
3693 * indexed by the first "n" elements of "order" have a fixed value
3694 * at position "depth"?
3696 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3697 int *order
, int n
, int depth
)
3702 for (i
= 0; i
< n
; ++i
) {
3705 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3718 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3719 * of indices into the "domain" array,
3720 * eliminate the inner dimensions from the "set" field of the elements
3721 * indexed by the first "n" elements of "order", provided the current
3722 * dimension does not have a fixed value.
3724 * Return the index of the first element in "order" with a corresponding
3725 * "set" field that does not have an (obviously) fixed value.
3727 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3728 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3733 for (i
= n
- 1; i
>= 0; --i
) {
3735 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3740 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3741 domain
[order
[i
]].set
);
3748 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3749 * of indices into the "domain" array,
3750 * find the element of "domain" (amongst those indexed by the first "n"
3751 * elements of "order") with the "set" field that has the smallest
3752 * value for the current iterator.
3754 * Note that the domain with the smallest value may depend on the parameters
3755 * and/or outer loop dimension. Since the result of this function is only
3756 * used as heuristic, we only make a reasonable attempt at finding the best
3757 * domain, one that should work in case a single domain provides the smallest
3758 * value for the current dimension over all values of the parameters
3759 * and outer dimensions.
3761 * In particular, we compute the smallest value of the first domain
3762 * and replace it by that of any later domain if that later domain
3763 * has a smallest value that is smaller for at least some value
3764 * of the parameters and outer dimensions.
3766 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3767 __isl_keep isl_ast_build
*build
)
3773 min_first
= isl_ast_build_map_to_iterator(build
,
3774 isl_set_copy(domain
[order
[0]].set
));
3775 min_first
= isl_map_lexmin(min_first
);
3777 for (i
= 1; i
< n
; ++i
) {
3778 isl_map
*min
, *test
;
3781 min
= isl_ast_build_map_to_iterator(build
,
3782 isl_set_copy(domain
[order
[i
]].set
));
3783 min
= isl_map_lexmin(min
);
3784 test
= isl_map_copy(min
);
3785 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3786 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3787 empty
= isl_map_is_empty(test
);
3789 if (empty
>= 0 && !empty
) {
3790 isl_map_free(min_first
);
3800 isl_map_free(min_first
);
3802 return i
< n
? -1 : first
;
3805 /* Construct a shifted inverse schedule based on the original inverse schedule,
3806 * the stride and the offset.
3808 * The original inverse schedule is specified as the "map" fields
3809 * of the elements of "domain" indexed by the first "n" elements of "order".
3811 * "stride" and "offset" are such that the difference
3812 * between the values of the current dimension of domain "i"
3813 * and the values of the current dimension for some reference domain are
3816 * stride * integer + offset[i]
3818 * Moreover, 0 <= offset[i] < stride.
3820 * For each domain, we create a map
3822 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3824 * where j refers to the current dimension and the other dimensions are
3825 * unchanged, and apply this map to the original schedule domain.
3827 * For example, for the original schedule
3829 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3831 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3832 * we apply the mapping
3836 * to the schedule of the "A" domain and the mapping
3838 * { [j - 1] -> [j, 1] }
3840 * to the schedule of the "B" domain.
3843 * Note that after the transformation, the differences between pairs
3844 * of values of the current dimension over all domains are multiples
3845 * of stride and that we have therefore exposed the stride.
3848 * To see that the mapping preserves the lexicographic order,
3849 * first note that each of the individual maps above preserves the order.
3850 * If the value of the current iterator is j1 in one domain and j2 in another,
3851 * then if j1 = j2, we know that the same map is applied to both domains
3852 * and the order is preserved.
3853 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3854 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3858 * and the order is preserved.
3859 * If c1 < c2, then we know
3865 * j2 - j1 = n * s + r
3867 * with n >= 0 and 0 <= r < s.
3868 * In other words, r = c2 - c1.
3879 * (j1 - c1, c1) << (j2 - c2, c2)
3881 * with "<<" the lexicographic order, proving that the order is preserved
3884 static __isl_give isl_union_map
*construct_shifted_executed(
3885 struct isl_set_map_pair
*domain
, int *order
, int n
,
3886 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3887 __isl_take isl_ast_build
*build
)
3890 isl_union_map
*executed
;
3896 depth
= isl_ast_build_get_depth(build
);
3897 space
= isl_ast_build_get_space(build
, 1);
3898 executed
= isl_union_map_empty(isl_space_copy(space
));
3899 space
= isl_space_map_from_set(space
);
3900 map
= isl_map_identity(isl_space_copy(space
));
3901 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3902 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3903 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3905 c
= isl_constraint_alloc_equality(isl_local_space_from_space(space
));
3906 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3907 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3909 for (i
= 0; i
< n
; ++i
) {
3913 v
= isl_multi_val_get_val(offset
, i
);
3916 map_i
= isl_map_copy(map
);
3917 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3920 c
= isl_constraint_set_constant_val(c
, v
);
3921 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
3923 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
3925 executed
= isl_union_map_add_map(executed
, map_i
);
3928 isl_constraint_free(c
);
3932 executed
= isl_union_map_free(executed
);
3937 /* Generate code for a single component, after exposing the stride,
3938 * given that the schedule domain is "shifted strided".
3940 * The component inverse schedule is specified as the "map" fields
3941 * of the elements of "domain" indexed by the first "n" elements of "order".
3943 * The schedule domain being "shifted strided" means that the differences
3944 * between the values of the current dimension of domain "i"
3945 * and the values of the current dimension for some reference domain are
3948 * stride * integer + offset[i]
3950 * We first look for the domain with the "smallest" value for the current
3951 * dimension and adjust the offsets such that the offset of the "smallest"
3952 * domain is equal to zero. The other offsets are reduced modulo stride.
3954 * Based on this information, we construct a new inverse schedule in
3955 * construct_shifted_executed that exposes the stride.
3956 * Since this involves the introduction of a new schedule dimension,
3957 * the build needs to be changed accordingly.
3958 * After computing the AST, the newly introduced dimension needs
3959 * to be removed again from the list of grafts. We do this by plugging
3960 * in a mapping that represents the new schedule domain in terms of the
3961 * old schedule domain.
3963 static __isl_give isl_ast_graft_list
*generate_shift_component(
3964 struct isl_set_map_pair
*domain
, int *order
, int n
,
3965 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3966 __isl_take isl_ast_build
*build
)
3968 isl_ast_graft_list
*list
;
3974 isl_multi_aff
*ma
, *zero
;
3975 isl_union_map
*executed
;
3977 depth
= isl_ast_build_get_depth(build
);
3979 first
= first_offset(domain
, order
, n
, build
);
3983 mv
= isl_multi_val_copy(offset
);
3984 val
= isl_multi_val_get_val(offset
, first
);
3985 val
= isl_val_neg(val
);
3986 mv
= isl_multi_val_add_val(mv
, val
);
3987 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
3989 executed
= construct_shifted_executed(domain
, order
, n
, stride
, mv
,
3991 space
= isl_ast_build_get_space(build
, 1);
3992 space
= isl_space_map_from_set(space
);
3993 ma
= isl_multi_aff_identity(isl_space_copy(space
));
3994 space
= isl_space_from_domain(isl_space_domain(space
));
3995 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3996 zero
= isl_multi_aff_zero(space
);
3997 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
3998 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
3999 list
= generate_shifted_component(executed
, build
);
4001 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
4003 isl_multi_val_free(mv
);
4007 isl_ast_build_free(build
);
4011 /* Does any node in the schedule tree rooted at the current schedule node
4012 * of "build" depend on outer schedule nodes?
4014 static int has_anchored_subtree(__isl_keep isl_ast_build
*build
)
4016 isl_schedule_node
*node
;
4019 node
= isl_ast_build_get_schedule_node(build
);
4020 dependent
= isl_schedule_node_is_subtree_anchored(node
);
4021 isl_schedule_node_free(node
);
4026 /* Generate code for a single component.
4028 * The component inverse schedule is specified as the "map" fields
4029 * of the elements of "domain" indexed by the first "n" elements of "order".
4031 * This function may modify the "set" fields of "domain".
4033 * Before proceeding with the actual code generation for the component,
4034 * we first check if there are any "shifted" strides, meaning that
4035 * the schedule domains of the individual domains are all strided,
4036 * but that they have different offsets, resulting in the union
4037 * of schedule domains not being strided anymore.
4039 * The simplest example is the schedule
4041 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4043 * Both schedule domains are strided, but their union is not.
4044 * This function detects such cases and then rewrites the schedule to
4046 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4048 * In the new schedule, the schedule domains have the same offset (modulo
4049 * the stride), ensuring that the union of schedule domains is also strided.
4052 * If there is only a single domain in the component, then there is
4053 * nothing to do. Similarly, if the current schedule dimension has
4054 * a fixed value for almost all domains then there is nothing to be done.
4055 * In particular, we need at least two domains where the current schedule
4056 * dimension does not have a fixed value.
4057 * Finally, in case of a schedule map input,
4058 * if any of the options refer to the current schedule dimension,
4059 * then we bail out as well. It would be possible to reformulate the options
4060 * in terms of the new schedule domain, but that would introduce constraints
4061 * that separate the domains in the options and that is something we would
4063 * In the case of a schedule tree input, we bail out if any of
4064 * the descendants of the current schedule node refer to outer
4065 * schedule nodes in any way.
4068 * To see if there is any shifted stride, we look at the differences
4069 * between the values of the current dimension in pairs of domains
4070 * for equal values of outer dimensions. These differences should be
4075 * with "m" the stride and "r" a constant. Note that we cannot perform
4076 * this analysis on individual domains as the lower bound in each domain
4077 * may depend on parameters or outer dimensions and so the current dimension
4078 * itself may not have a fixed remainder on division by the stride.
4080 * In particular, we compare the first domain that does not have an
4081 * obviously fixed value for the current dimension to itself and all
4082 * other domains and collect the offsets and the gcd of the strides.
4083 * If the gcd becomes one, then we failed to find shifted strides.
4084 * If the gcd is zero, then the differences were all fixed, meaning
4085 * that some domains had non-obviously fixed values for the current dimension.
4086 * If all the offsets are the same (for those domains that do not have
4087 * an obviously fixed value for the current dimension), then we do not
4088 * apply the transformation.
4089 * If none of the domains were skipped, then there is nothing to do.
4090 * If some of them were skipped, then if we apply separation, the schedule
4091 * domain should get split in pieces with a (non-shifted) stride.
4093 * Otherwise, we apply a shift to expose the stride in
4094 * generate_shift_component.
4096 static __isl_give isl_ast_graft_list
*generate_component(
4097 struct isl_set_map_pair
*domain
, int *order
, int n
,
4098 __isl_take isl_ast_build
*build
)
4105 isl_val
*gcd
= NULL
;
4109 isl_ast_graft_list
*list
;
4112 depth
= isl_ast_build_get_depth(build
);
4115 if (skip
>= 0 && !skip
)
4116 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
4117 if (skip
>= 0 && !skip
) {
4118 if (isl_ast_build_has_schedule_node(build
))
4119 skip
= has_anchored_subtree(build
);
4121 skip
= isl_ast_build_options_involve_depth(build
);
4126 return generate_shifted_component_from_list(domain
,
4129 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
4133 ctx
= isl_ast_build_get_ctx(build
);
4135 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
4138 for (i
= 0; i
< n
; ++i
) {
4141 map
= isl_map_from_domain_and_range(
4142 isl_set_copy(domain
[order
[base
]].set
),
4143 isl_set_copy(domain
[order
[i
]].set
));
4144 for (d
= 0; d
< depth
; ++d
)
4145 map
= isl_map_equate(map
, isl_dim_in
, d
,
4147 deltas
= isl_map_deltas(map
);
4148 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
4149 isl_set_free(deltas
);
4156 gcd
= isl_val_gcd(gcd
, m
);
4157 if (isl_val_is_one(gcd
)) {
4161 mv
= isl_multi_val_set_val(mv
, i
, r
);
4163 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
4169 if (fixed
&& i
> base
) {
4171 a
= isl_multi_val_get_val(mv
, i
);
4172 b
= isl_multi_val_get_val(mv
, base
);
4173 if (isl_val_ne(a
, b
))
4180 if (res
< 0 || !gcd
) {
4181 isl_ast_build_free(build
);
4183 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
4184 list
= generate_shifted_component_from_list(domain
,
4187 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
4192 isl_multi_val_free(mv
);
4196 isl_ast_build_free(build
);
4200 /* Store both "map" itself and its domain in the
4201 * structure pointed to by *next and advance to the next array element.
4203 static isl_stat
extract_domain(__isl_take isl_map
*map
, void *user
)
4205 struct isl_set_map_pair
**next
= user
;
4207 (*next
)->map
= isl_map_copy(map
);
4208 (*next
)->set
= isl_map_domain(map
);
4214 static int after_in_tree(__isl_keep isl_union_map
*umap
,
4215 __isl_keep isl_schedule_node
*node
);
4217 /* Is any domain element of "umap" scheduled after any of
4218 * the corresponding image elements by the tree rooted at
4219 * the child of "node"?
4221 static int after_in_child(__isl_keep isl_union_map
*umap
,
4222 __isl_keep isl_schedule_node
*node
)
4224 isl_schedule_node
*child
;
4227 child
= isl_schedule_node_get_child(node
, 0);
4228 after
= after_in_tree(umap
, child
);
4229 isl_schedule_node_free(child
);
4234 /* Is any domain element of "umap" scheduled after any of
4235 * the corresponding image elements by the tree rooted at
4236 * the band node "node"?
4238 * We first check if any domain element is scheduled after any
4239 * of the corresponding image elements by the band node itself.
4240 * If not, we restrict "map" to those pairs of element that
4241 * are scheduled together by the band node and continue with
4242 * the child of the band node.
4243 * If there are no such pairs then the map passed to after_in_child
4244 * will be empty causing it to return 0.
4246 static int after_in_band(__isl_keep isl_union_map
*umap
,
4247 __isl_keep isl_schedule_node
*node
)
4249 isl_multi_union_pw_aff
*mupa
;
4250 isl_union_map
*partial
, *test
, *gt
, *universe
, *umap1
, *umap2
;
4251 isl_union_set
*domain
, *range
;
4256 if (isl_schedule_node_band_n_member(node
) == 0)
4257 return after_in_child(umap
, node
);
4259 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
4260 space
= isl_multi_union_pw_aff_get_space(mupa
);
4261 partial
= isl_union_map_from_multi_union_pw_aff(mupa
);
4262 test
= isl_union_map_copy(umap
);
4263 test
= isl_union_map_apply_domain(test
, isl_union_map_copy(partial
));
4264 test
= isl_union_map_apply_range(test
, isl_union_map_copy(partial
));
4265 gt
= isl_union_map_from_map(isl_map_lex_gt(space
));
4266 test
= isl_union_map_intersect(test
, gt
);
4267 empty
= isl_union_map_is_empty(test
);
4268 isl_union_map_free(test
);
4270 if (empty
< 0 || !empty
) {
4271 isl_union_map_free(partial
);
4272 return empty
< 0 ? -1 : 1;
4275 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4276 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4277 range
= isl_union_map_range(universe
);
4278 umap1
= isl_union_map_copy(partial
);
4279 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4280 umap2
= isl_union_map_intersect_domain(partial
, range
);
4281 test
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4282 test
= isl_union_map_intersect(test
, isl_union_map_copy(umap
));
4283 after
= after_in_child(test
, node
);
4284 isl_union_map_free(test
);
4288 /* Is any domain element of "umap" scheduled after any of
4289 * the corresponding image elements by the tree rooted at
4290 * the context node "node"?
4292 * The context constraints apply to the schedule domain,
4293 * so we cannot apply them directly to "umap", which contains
4294 * pairs of statement instances. Instead, we add them
4295 * to the range of the prefix schedule for both domain and
4298 static int after_in_context(__isl_keep isl_union_map
*umap
,
4299 __isl_keep isl_schedule_node
*node
)
4301 isl_union_map
*prefix
, *universe
, *umap1
, *umap2
;
4302 isl_union_set
*domain
, *range
;
4306 umap
= isl_union_map_copy(umap
);
4307 context
= isl_schedule_node_context_get_context(node
);
4308 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4309 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4310 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4311 range
= isl_union_map_range(universe
);
4312 umap1
= isl_union_map_copy(prefix
);
4313 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4314 umap2
= isl_union_map_intersect_domain(prefix
, range
);
4315 umap1
= isl_union_map_intersect_range(umap1
,
4316 isl_union_set_from_set(context
));
4317 umap1
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4318 umap
= isl_union_map_intersect(umap
, umap1
);
4320 after
= after_in_child(umap
, node
);
4322 isl_union_map_free(umap
);
4327 /* Is any domain element of "umap" scheduled after any of
4328 * the corresponding image elements by the tree rooted at
4329 * the expansion node "node"?
4331 * We apply the expansion to domain and range of "umap" and
4332 * continue with its child.
4334 static int after_in_expansion(__isl_keep isl_union_map
*umap
,
4335 __isl_keep isl_schedule_node
*node
)
4337 isl_union_map
*expansion
;
4340 expansion
= isl_schedule_node_expansion_get_expansion(node
);
4341 umap
= isl_union_map_copy(umap
);
4342 umap
= isl_union_map_apply_domain(umap
, isl_union_map_copy(expansion
));
4343 umap
= isl_union_map_apply_range(umap
, expansion
);
4345 after
= after_in_child(umap
, node
);
4347 isl_union_map_free(umap
);
4352 /* Is any domain element of "umap" scheduled after any of
4353 * the corresponding image elements by the tree rooted at
4354 * the extension node "node"?
4356 * Since the extension node may add statement instances before or
4357 * after the pairs of statement instances in "umap", we return 1
4358 * to ensure that these pairs are not broken up.
4360 static int after_in_extension(__isl_keep isl_union_map
*umap
,
4361 __isl_keep isl_schedule_node
*node
)
4366 /* Is any domain element of "umap" scheduled after any of
4367 * the corresponding image elements by the tree rooted at
4368 * the filter node "node"?
4370 * We intersect domain and range of "umap" with the filter and
4371 * continue with its child.
4373 static int after_in_filter(__isl_keep isl_union_map
*umap
,
4374 __isl_keep isl_schedule_node
*node
)
4376 isl_union_set
*filter
;
4379 umap
= isl_union_map_copy(umap
);
4380 filter
= isl_schedule_node_filter_get_filter(node
);
4381 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(filter
));
4382 umap
= isl_union_map_intersect_range(umap
, filter
);
4384 after
= after_in_child(umap
, node
);
4386 isl_union_map_free(umap
);
4391 /* Is any domain element of "umap" scheduled after any of
4392 * the corresponding image elements by the tree rooted at
4393 * the set node "node"?
4395 * This is only the case if this condition holds in any
4396 * of the (filter) children of the set node.
4397 * In particular, if the domain and the range of "umap"
4398 * are contained in different children, then the condition
4401 static int after_in_set(__isl_keep isl_union_map
*umap
,
4402 __isl_keep isl_schedule_node
*node
)
4406 n
= isl_schedule_node_n_children(node
);
4407 for (i
= 0; i
< n
; ++i
) {
4408 isl_schedule_node
*child
;
4411 child
= isl_schedule_node_get_child(node
, i
);
4412 after
= after_in_tree(umap
, child
);
4413 isl_schedule_node_free(child
);
4415 if (after
< 0 || after
)
4422 /* Return the filter of child "i" of "node".
4424 static __isl_give isl_union_set
*child_filter(
4425 __isl_keep isl_schedule_node
*node
, int i
)
4427 isl_schedule_node
*child
;
4428 isl_union_set
*filter
;
4430 child
= isl_schedule_node_get_child(node
, i
);
4431 filter
= isl_schedule_node_filter_get_filter(child
);
4432 isl_schedule_node_free(child
);
4437 /* Is any domain element of "umap" scheduled after any of
4438 * the corresponding image elements by the tree rooted at
4439 * the sequence node "node"?
4441 * This happens in particular if any domain element is
4442 * contained in a later child than one containing a range element or
4443 * if the condition holds within a given child in the sequence.
4444 * The later part of the condition is checked by after_in_set.
4446 static int after_in_sequence(__isl_keep isl_union_map
*umap
,
4447 __isl_keep isl_schedule_node
*node
)
4450 isl_union_map
*umap_i
;
4451 int empty
, after
= 0;
4453 n
= isl_schedule_node_n_children(node
);
4454 for (i
= 1; i
< n
; ++i
) {
4455 isl_union_set
*filter_i
;
4457 umap_i
= isl_union_map_copy(umap
);
4458 filter_i
= child_filter(node
, i
);
4459 umap_i
= isl_union_map_intersect_domain(umap_i
, filter_i
);
4460 empty
= isl_union_map_is_empty(umap_i
);
4464 isl_union_map_free(umap_i
);
4468 for (j
= 0; j
< i
; ++j
) {
4469 isl_union_set
*filter_j
;
4470 isl_union_map
*umap_ij
;
4472 umap_ij
= isl_union_map_copy(umap_i
);
4473 filter_j
= child_filter(node
, j
);
4474 umap_ij
= isl_union_map_intersect_range(umap_ij
,
4476 empty
= isl_union_map_is_empty(umap_ij
);
4477 isl_union_map_free(umap_ij
);
4487 isl_union_map_free(umap_i
);
4492 if (after
< 0 || after
)
4495 return after_in_set(umap
, node
);
4497 isl_union_map_free(umap_i
);
4501 /* Is any domain element of "umap" scheduled after any of
4502 * the corresponding image elements by the tree rooted at "node"?
4504 * If "umap" is empty, then clearly there is no such element.
4505 * Otherwise, consider the different types of nodes separately.
4507 static int after_in_tree(__isl_keep isl_union_map
*umap
,
4508 __isl_keep isl_schedule_node
*node
)
4511 enum isl_schedule_node_type type
;
4513 empty
= isl_union_map_is_empty(umap
);
4521 type
= isl_schedule_node_get_type(node
);
4523 case isl_schedule_node_error
:
4525 case isl_schedule_node_leaf
:
4527 case isl_schedule_node_band
:
4528 return after_in_band(umap
, node
);
4529 case isl_schedule_node_domain
:
4530 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
4531 "unexpected internal domain node", return -1);
4532 case isl_schedule_node_context
:
4533 return after_in_context(umap
, node
);
4534 case isl_schedule_node_expansion
:
4535 return after_in_expansion(umap
, node
);
4536 case isl_schedule_node_extension
:
4537 return after_in_extension(umap
, node
);
4538 case isl_schedule_node_filter
:
4539 return after_in_filter(umap
, node
);
4540 case isl_schedule_node_guard
:
4541 case isl_schedule_node_mark
:
4542 return after_in_child(umap
, node
);
4543 case isl_schedule_node_set
:
4544 return after_in_set(umap
, node
);
4545 case isl_schedule_node_sequence
:
4546 return after_in_sequence(umap
, node
);
4552 /* Is any domain element of "map1" scheduled after any domain
4553 * element of "map2" by the subtree underneath the current band node,
4554 * while at the same time being scheduled together by the current
4555 * band node, i.e., by "map1" and "map2?
4557 * If the child of the current band node is a leaf, then
4558 * no element can be scheduled after any other element.
4560 * Otherwise, we construct a relation between domain elements
4561 * of "map1" and domain elements of "map2" that are scheduled
4562 * together and then check if the subtree underneath the current
4563 * band node determines their relative order.
4565 static int after_in_subtree(__isl_keep isl_ast_build
*build
,
4566 __isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4568 isl_schedule_node
*node
;
4570 isl_union_map
*umap
;
4573 node
= isl_ast_build_get_schedule_node(build
);
4576 node
= isl_schedule_node_child(node
, 0);
4577 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
) {
4578 isl_schedule_node_free(node
);
4581 map
= isl_map_copy(map2
);
4582 map
= isl_map_apply_domain(map
, isl_map_copy(map1
));
4583 umap
= isl_union_map_from_map(map
);
4584 after
= after_in_tree(umap
, node
);
4585 isl_union_map_free(umap
);
4586 isl_schedule_node_free(node
);
4590 /* Internal data for any_scheduled_after.
4592 * "build" is the build in which the AST is constructed.
4593 * "depth" is the number of loops that have already been generated
4594 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4595 * "domain" is an array of set-map pairs corresponding to the different
4596 * iteration domains. The set is the schedule domain, i.e., the domain
4597 * of the inverse schedule, while the map is the inverse schedule itself.
4599 struct isl_any_scheduled_after_data
{
4600 isl_ast_build
*build
;
4602 int group_coscheduled
;
4603 struct isl_set_map_pair
*domain
;
4606 /* Is any element of domain "i" scheduled after any element of domain "j"
4607 * (for a common iteration of the first data->depth loops)?
4609 * data->domain[i].set contains the domain of the inverse schedule
4610 * for domain "i", i.e., elements in the schedule domain.
4612 * If we are inside a band of a schedule tree and there is a pair
4613 * of elements in the two domains that is schedule together by
4614 * the current band, then we check if any element of "i" may be schedule
4615 * after element of "j" by the descendants of the band node.
4617 * If data->group_coscheduled is set, then we also return 1 if there
4618 * is any pair of elements in the two domains that are scheduled together.
4620 static isl_bool
any_scheduled_after(int i
, int j
, void *user
)
4622 struct isl_any_scheduled_after_data
*data
= user
;
4623 int dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
4626 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
4629 follows
= isl_set_follows_at(data
->domain
[i
].set
,
4630 data
->domain
[j
].set
, pos
);
4633 return isl_bool_error
;
4635 return isl_bool_true
;
4637 return isl_bool_false
;
4640 if (isl_ast_build_has_schedule_node(data
->build
)) {
4643 after
= after_in_subtree(data
->build
, data
->domain
[i
].map
,
4644 data
->domain
[j
].map
);
4645 if (after
< 0 || after
)
4649 return data
->group_coscheduled
;
4652 /* Look for independent components at the current depth and generate code
4653 * for each component separately. The resulting lists of grafts are
4654 * merged in an attempt to combine grafts with identical guards.
4656 * Code for two domains can be generated separately if all the elements
4657 * of one domain are scheduled before (or together with) all the elements
4658 * of the other domain. We therefore consider the graph with as nodes
4659 * the domains and an edge between two nodes if any element of the first
4660 * node is scheduled after any element of the second node.
4661 * If the ast_build_group_coscheduled is set, then we also add an edge if
4662 * there is any pair of elements in the two domains that are scheduled
4664 * Code is then generated (by generate_component)
4665 * for each of the strongly connected components in this graph
4666 * in their topological order.
4668 * Since the test is performed on the domain of the inverse schedules of
4669 * the different domains, we precompute these domains and store
4670 * them in data.domain.
4672 static __isl_give isl_ast_graft_list
*generate_components(
4673 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4676 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4677 int n
= isl_union_map_n_map(executed
);
4678 struct isl_any_scheduled_after_data data
;
4679 struct isl_set_map_pair
*next
;
4680 struct isl_tarjan_graph
*g
= NULL
;
4681 isl_ast_graft_list
*list
= NULL
;
4684 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
4690 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
4696 data
.depth
= isl_ast_build_get_depth(build
);
4697 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
4698 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
4702 list
= isl_ast_graft_list_alloc(ctx
, 0);
4706 isl_ast_graft_list
*list_c
;
4709 if (g
->order
[i
] == -1)
4710 isl_die(ctx
, isl_error_internal
, "cannot happen",
4713 while (g
->order
[i
] != -1) {
4717 list_c
= generate_component(data
.domain
,
4718 g
->order
+ first
, i
- first
,
4719 isl_ast_build_copy(build
));
4720 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
4726 error
: list
= isl_ast_graft_list_free(list
);
4727 isl_tarjan_graph_free(g
);
4728 for (i
= 0; i
< n_domain
; ++i
) {
4729 isl_map_free(data
.domain
[i
].map
);
4730 isl_set_free(data
.domain
[i
].set
);
4733 isl_union_map_free(executed
);
4734 isl_ast_build_free(build
);
4739 /* Generate code for the next level (and all inner levels).
4741 * If "executed" is empty, i.e., no code needs to be generated,
4742 * then we return an empty list.
4744 * If we have already generated code for all loop levels, then we pass
4745 * control to generate_inner_level.
4747 * If "executed" lives in a single space, i.e., if code needs to be
4748 * generated for a single domain, then there can only be a single
4749 * component and we go directly to generate_shifted_component.
4750 * Otherwise, we call generate_components to detect the components
4751 * and to call generate_component on each of them separately.
4753 static __isl_give isl_ast_graft_list
*generate_next_level(
4754 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4758 if (!build
|| !executed
)
4761 if (isl_union_map_is_empty(executed
)) {
4762 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4763 isl_union_map_free(executed
);
4764 isl_ast_build_free(build
);
4765 return isl_ast_graft_list_alloc(ctx
, 0);
4768 depth
= isl_ast_build_get_depth(build
);
4769 if (depth
>= isl_ast_build_dim(build
, isl_dim_set
))
4770 return generate_inner_level(executed
, build
);
4772 if (isl_union_map_n_map(executed
) == 1)
4773 return generate_shifted_component(executed
, build
);
4775 return generate_components(executed
, build
);
4777 isl_union_map_free(executed
);
4778 isl_ast_build_free(build
);
4782 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4783 * internal, executed and build are the inputs to generate_code.
4784 * list collects the output.
4786 struct isl_generate_code_data
{
4788 isl_union_map
*executed
;
4789 isl_ast_build
*build
;
4791 isl_ast_graft_list
*list
;
4794 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4798 * with E the external build schedule and S the additional schedule "space",
4799 * reformulate the inverse schedule in terms of the internal schedule domain,
4804 * We first obtain a mapping
4808 * take the inverse and the product with S -> S, resulting in
4810 * [I -> S] -> [E -> S]
4812 * Applying the map to the input produces the desired result.
4814 static __isl_give isl_union_map
*internal_executed(
4815 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
4816 __isl_keep isl_ast_build
*build
)
4820 proj
= isl_ast_build_get_schedule_map(build
);
4821 proj
= isl_map_reverse(proj
);
4822 space
= isl_space_map_from_set(isl_space_copy(space
));
4823 id
= isl_map_identity(space
);
4824 proj
= isl_map_product(proj
, id
);
4825 executed
= isl_union_map_apply_domain(executed
,
4826 isl_union_map_from_map(proj
));
4830 /* Generate an AST that visits the elements in the range of data->executed
4831 * in the relative order specified by the corresponding domain element(s)
4832 * for those domain elements that belong to "set".
4833 * Add the result to data->list.
4835 * The caller ensures that "set" is a universe domain.
4836 * "space" is the space of the additional part of the schedule.
4837 * It is equal to the space of "set" if build->domain is parametric.
4838 * Otherwise, it is equal to the range of the wrapped space of "set".
4840 * If the build space is not parametric and
4841 * if isl_ast_build_node_from_schedule_map
4842 * was called from an outside user (data->internal not set), then
4843 * the (inverse) schedule refers to the external build domain and needs to
4844 * be transformed to refer to the internal build domain.
4846 * If the build space is parametric, then we add some of the parameter
4847 * constraints to the executed relation. Adding these constraints
4848 * allows for an earlier detection of conflicts in some cases.
4849 * However, we do not want to divide the executed relation into
4850 * more disjuncts than necessary. We therefore approximate
4851 * the constraints on the parameters by a single disjunct set.
4853 * The build is extended to include the additional part of the schedule.
4854 * If the original build space was not parametric, then the options
4855 * in data->build refer only to the additional part of the schedule
4856 * and they need to be adjusted to refer to the complete AST build
4859 * After having adjusted inverse schedule and build, we start generating
4860 * code with the outer loop of the current code generation
4861 * in generate_next_level.
4863 * If the original build space was not parametric, we undo the embedding
4864 * on the resulting isl_ast_node_list so that it can be used within
4865 * the outer AST build.
4867 static isl_stat
generate_code_in_space(struct isl_generate_code_data
*data
,
4868 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
4870 isl_union_map
*executed
;
4871 isl_ast_build
*build
;
4872 isl_ast_graft_list
*list
;
4875 executed
= isl_union_map_copy(data
->executed
);
4876 executed
= isl_union_map_intersect_domain(executed
,
4877 isl_union_set_from_set(set
));
4879 embed
= !isl_set_is_params(data
->build
->domain
);
4880 if (embed
&& !data
->internal
)
4881 executed
= internal_executed(executed
, space
, data
->build
);
4884 domain
= isl_ast_build_get_domain(data
->build
);
4885 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
4886 executed
= isl_union_map_intersect_params(executed
, domain
);
4889 build
= isl_ast_build_copy(data
->build
);
4890 build
= isl_ast_build_product(build
, space
);
4892 list
= generate_next_level(executed
, build
);
4894 list
= isl_ast_graft_list_unembed(list
, embed
);
4896 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
4901 /* Generate an AST that visits the elements in the range of data->executed
4902 * in the relative order specified by the corresponding domain element(s)
4903 * for those domain elements that belong to "set".
4904 * Add the result to data->list.
4906 * The caller ensures that "set" is a universe domain.
4908 * If the build space S is not parametric, then the space of "set"
4909 * need to be a wrapped relation with S as domain. That is, it needs
4914 * Check this property and pass control to generate_code_in_space
4916 * If the build space is not parametric, then T is the space of "set".
4918 static isl_stat
generate_code_set(__isl_take isl_set
*set
, void *user
)
4920 struct isl_generate_code_data
*data
= user
;
4921 isl_space
*space
, *build_space
;
4924 space
= isl_set_get_space(set
);
4926 if (isl_set_is_params(data
->build
->domain
))
4927 return generate_code_in_space(data
, set
, space
);
4929 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
4930 space
= isl_space_unwrap(space
);
4931 is_domain
= isl_space_is_domain(build_space
, space
);
4932 isl_space_free(build_space
);
4933 space
= isl_space_range(space
);
4938 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
4939 "invalid nested schedule space", goto error
);
4941 return generate_code_in_space(data
, set
, space
);
4944 isl_space_free(space
);
4945 return isl_stat_error
;
4948 /* Generate an AST that visits the elements in the range of "executed"
4949 * in the relative order specified by the corresponding domain element(s).
4951 * "build" is an isl_ast_build that has either been constructed by
4952 * isl_ast_build_from_context or passed to a callback set by
4953 * isl_ast_build_set_create_leaf.
4954 * In the first case, the space of the isl_ast_build is typically
4955 * a parametric space, although this is currently not enforced.
4956 * In the second case, the space is never a parametric space.
4957 * If the space S is not parametric, then the domain space(s) of "executed"
4958 * need to be wrapped relations with S as domain.
4960 * If the domain of "executed" consists of several spaces, then an AST
4961 * is generated for each of them (in arbitrary order) and the results
4964 * If "internal" is set, then the domain "S" above refers to the internal
4965 * schedule domain representation. Otherwise, it refers to the external
4966 * representation, as returned by isl_ast_build_get_schedule_space.
4968 * We essentially run over all the spaces in the domain of "executed"
4969 * and call generate_code_set on each of them.
4971 static __isl_give isl_ast_graft_list
*generate_code(
4972 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
4976 struct isl_generate_code_data data
= { 0 };
4978 isl_union_set
*schedule_domain
;
4979 isl_union_map
*universe
;
4983 space
= isl_ast_build_get_space(build
, 1);
4984 space
= isl_space_align_params(space
,
4985 isl_union_map_get_space(executed
));
4986 space
= isl_space_align_params(space
,
4987 isl_union_map_get_space(build
->options
));
4988 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
4989 executed
= isl_union_map_align_params(executed
, space
);
4990 if (!executed
|| !build
)
4993 ctx
= isl_ast_build_get_ctx(build
);
4995 data
.internal
= internal
;
4996 data
.executed
= executed
;
4998 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
5000 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
5001 schedule_domain
= isl_union_map_domain(universe
);
5002 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
5004 data
.list
= isl_ast_graft_list_free(data
.list
);
5006 isl_union_set_free(schedule_domain
);
5007 isl_union_map_free(executed
);
5009 isl_ast_build_free(build
);
5012 isl_union_map_free(executed
);
5013 isl_ast_build_free(build
);
5017 /* Generate an AST that visits the elements in the domain of "schedule"
5018 * in the relative order specified by the corresponding image element(s).
5020 * "build" is an isl_ast_build that has either been constructed by
5021 * isl_ast_build_from_context or passed to a callback set by
5022 * isl_ast_build_set_create_leaf.
5023 * In the first case, the space of the isl_ast_build is typically
5024 * a parametric space, although this is currently not enforced.
5025 * In the second case, the space is never a parametric space.
5026 * If the space S is not parametric, then the range space(s) of "schedule"
5027 * need to be wrapped relations with S as domain.
5029 * If the range of "schedule" consists of several spaces, then an AST
5030 * is generated for each of them (in arbitrary order) and the results
5033 * We first initialize the local copies of the relevant options.
5034 * We do this here rather than when the isl_ast_build is created
5035 * because the options may have changed between the construction
5036 * of the isl_ast_build and the call to isl_generate_code.
5038 * The main computation is performed on an inverse schedule (with
5039 * the schedule domain in the domain and the elements to be executed
5040 * in the range) called "executed".
5042 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule_map(
5043 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5045 isl_ast_graft_list
*list
;
5047 isl_union_map
*executed
;
5049 build
= isl_ast_build_copy(build
);
5050 build
= isl_ast_build_set_single_valued(build
, 0);
5051 schedule
= isl_union_map_coalesce(schedule
);
5052 schedule
= isl_union_map_remove_redundancies(schedule
);
5053 executed
= isl_union_map_reverse(schedule
);
5054 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
5055 node
= isl_ast_node_from_graft_list(list
, build
);
5056 isl_ast_build_free(build
);
5061 /* The old name for isl_ast_build_node_from_schedule_map.
5062 * It is being kept for backward compatibility, but
5063 * it will be removed in the future.
5065 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
5066 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5068 return isl_ast_build_node_from_schedule_map(build
, schedule
);
5071 /* Generate an AST that visits the elements in the domain of "executed"
5072 * in the relative order specified by the band node "node" and its descendants.
5074 * The relation "executed" maps the outer generated loop iterators
5075 * to the domain elements executed by those iterations.
5077 * If the band is empty, we continue with its descendants.
5078 * Otherwise, we extend the build and the inverse schedule with
5079 * the additional space/partial schedule and continue generating
5080 * an AST in generate_next_level.
5081 * As soon as we have extended the inverse schedule with the additional
5082 * partial schedule, we look for equalities that may exists between
5083 * the old and the new part.
5085 static __isl_give isl_ast_graft_list
*build_ast_from_band(
5086 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5087 __isl_take isl_union_map
*executed
)
5090 isl_multi_union_pw_aff
*extra
;
5091 isl_union_map
*extra_umap
;
5092 isl_ast_graft_list
*list
;
5095 if (!build
|| !node
|| !executed
)
5098 if (isl_schedule_node_band_n_member(node
) == 0)
5099 return build_ast_from_child(build
, node
, executed
);
5101 extra
= isl_schedule_node_band_get_partial_schedule(node
);
5102 extra
= isl_multi_union_pw_aff_align_params(extra
,
5103 isl_ast_build_get_space(build
, 1));
5104 space
= isl_multi_union_pw_aff_get_space(extra
);
5106 extra_umap
= isl_union_map_from_multi_union_pw_aff(extra
);
5107 extra_umap
= isl_union_map_reverse(extra_umap
);
5109 executed
= isl_union_map_domain_product(executed
, extra_umap
);
5110 executed
= isl_union_map_detect_equalities(executed
);
5112 n1
= isl_ast_build_dim(build
, isl_dim_param
);
5113 build
= isl_ast_build_product(build
, space
);
5114 n2
= isl_ast_build_dim(build
, isl_dim_param
);
5116 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5117 "band node is not allowed to introduce new parameters",
5118 build
= isl_ast_build_free(build
));
5119 build
= isl_ast_build_set_schedule_node(build
, node
);
5121 list
= generate_next_level(executed
, build
);
5123 list
= isl_ast_graft_list_unembed(list
, 1);
5127 isl_schedule_node_free(node
);
5128 isl_union_map_free(executed
);
5129 isl_ast_build_free(build
);
5133 /* Hoist a list of grafts (in practice containing a single graft)
5134 * from "sub_build" (which includes extra context information)
5137 * In particular, project out all additional parameters introduced
5138 * by the context node from the enforced constraints and the guard
5139 * of the single graft.
5141 static __isl_give isl_ast_graft_list
*hoist_out_of_context(
5142 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
,
5143 __isl_keep isl_ast_build
*sub_build
)
5145 isl_ast_graft
*graft
;
5146 isl_basic_set
*enforced
;
5148 unsigned n_param
, extra_param
;
5150 if (!build
|| !sub_build
)
5151 return isl_ast_graft_list_free(list
);
5153 n_param
= isl_ast_build_dim(build
, isl_dim_param
);
5154 extra_param
= isl_ast_build_dim(sub_build
, isl_dim_param
);
5156 if (extra_param
== n_param
)
5159 extra_param
-= n_param
;
5160 enforced
= isl_ast_graft_list_extract_shared_enforced(list
, sub_build
);
5161 enforced
= isl_basic_set_project_out(enforced
, isl_dim_param
,
5162 n_param
, extra_param
);
5163 enforced
= isl_basic_set_remove_unknown_divs(enforced
);
5164 guard
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5165 guard
= isl_set_remove_divs_involving_dims(guard
, isl_dim_param
,
5166 n_param
, extra_param
);
5167 guard
= isl_set_project_out(guard
, isl_dim_param
, n_param
, extra_param
);
5168 guard
= isl_set_compute_divs(guard
);
5169 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5171 list
= isl_ast_graft_list_from_ast_graft(graft
);
5176 /* Generate an AST that visits the elements in the domain of "executed"
5177 * in the relative order specified by the context node "node"
5178 * and its descendants.
5180 * The relation "executed" maps the outer generated loop iterators
5181 * to the domain elements executed by those iterations.
5183 * The context node may introduce additional parameters as well as
5184 * constraints on the outer schedule dimensions or original parameters.
5186 * We add the extra parameters to a new build and the context
5187 * constraints to both the build and (as a single disjunct)
5188 * to the domain of "executed". Since the context constraints
5189 * are specified in terms of the input schedule, we first need
5190 * to map them to the internal schedule domain.
5192 * After constructing the AST from the descendants of "node",
5193 * we combine the list of grafts into a single graft within
5194 * the new build, in order to be able to exploit the additional
5195 * context constraints during this combination.
5197 * Additionally, if the current node is the outermost node in
5198 * the schedule tree (apart from the root domain node), we generate
5199 * all pending guards, again to be able to exploit the additional
5200 * context constraints. We currently do not do this for internal
5201 * context nodes since we may still want to hoist conditions
5202 * to outer AST nodes.
5204 * If the context node introduced any new parameters, then they
5205 * are removed from the set of enforced constraints and guard
5206 * in hoist_out_of_context.
5208 static __isl_give isl_ast_graft_list
*build_ast_from_context(
5209 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5210 __isl_take isl_union_map
*executed
)
5214 isl_multi_aff
*internal2input
;
5215 isl_ast_build
*sub_build
;
5216 isl_ast_graft_list
*list
;
5219 depth
= isl_schedule_node_get_tree_depth(node
);
5220 space
= isl_ast_build_get_space(build
, 1);
5221 context
= isl_schedule_node_context_get_context(node
);
5222 context
= isl_set_align_params(context
, space
);
5223 sub_build
= isl_ast_build_copy(build
);
5224 space
= isl_set_get_space(context
);
5225 sub_build
= isl_ast_build_align_params(sub_build
, space
);
5226 internal2input
= isl_ast_build_get_internal2input(sub_build
);
5227 context
= isl_set_preimage_multi_aff(context
, internal2input
);
5228 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5229 isl_set_copy(context
));
5230 context
= isl_set_from_basic_set(isl_set_simple_hull(context
));
5231 executed
= isl_union_map_intersect_domain(executed
,
5232 isl_union_set_from_set(context
));
5234 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5236 n
= isl_ast_graft_list_n_ast_graft(list
);
5238 list
= isl_ast_graft_list_free(list
);
5240 list
= isl_ast_graft_list_fuse(list
, sub_build
);
5242 list
= isl_ast_graft_list_insert_pending_guard_nodes(list
,
5245 list
= hoist_out_of_context(list
, build
, sub_build
);
5247 isl_ast_build_free(build
);
5248 isl_ast_build_free(sub_build
);
5253 /* Generate an AST that visits the elements in the domain of "executed"
5254 * in the relative order specified by the expansion node "node" and
5257 * The relation "executed" maps the outer generated loop iterators
5258 * to the domain elements executed by those iterations.
5260 * We expand the domain elements by the expansion and
5261 * continue with the descendants of the node.
5263 static __isl_give isl_ast_graft_list
*build_ast_from_expansion(
5264 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5265 __isl_take isl_union_map
*executed
)
5267 isl_union_map
*expansion
;
5270 expansion
= isl_schedule_node_expansion_get_expansion(node
);
5271 expansion
= isl_union_map_align_params(expansion
,
5272 isl_union_map_get_space(executed
));
5274 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5275 executed
= isl_union_map_apply_range(executed
, expansion
);
5276 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5278 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5279 "expansion node is not allowed to introduce "
5280 "new parameters", goto error
);
5282 return build_ast_from_child(build
, node
, executed
);
5284 isl_ast_build_free(build
);
5285 isl_schedule_node_free(node
);
5286 isl_union_map_free(executed
);
5290 /* Generate an AST that visits the elements in the domain of "executed"
5291 * in the relative order specified by the extension node "node" and
5294 * The relation "executed" maps the outer generated loop iterators
5295 * to the domain elements executed by those iterations.
5297 * Extend the inverse schedule with the extension applied to current
5298 * set of generated constraints. Since the extension if formulated
5299 * in terms of the input schedule, it first needs to be transformed
5300 * to refer to the internal schedule.
5302 static __isl_give isl_ast_graft_list
*build_ast_from_extension(
5303 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5304 __isl_take isl_union_map
*executed
)
5306 isl_union_set
*schedule_domain
;
5307 isl_union_map
*extension
;
5310 set
= isl_ast_build_get_generated(build
);
5311 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5312 schedule_domain
= isl_union_set_from_set(set
);
5314 extension
= isl_schedule_node_extension_get_extension(node
);
5316 extension
= isl_union_map_preimage_domain_multi_aff(extension
,
5317 isl_multi_aff_copy(build
->internal2input
));
5318 extension
= isl_union_map_intersect_domain(extension
, schedule_domain
);
5319 extension
= isl_ast_build_substitute_values_union_map_domain(build
,
5321 executed
= isl_union_map_union(executed
, extension
);
5323 return build_ast_from_child(build
, node
, executed
);
5326 /* Generate an AST that visits the elements in the domain of "executed"
5327 * in the relative order specified by the filter node "node" and
5330 * The relation "executed" maps the outer generated loop iterators
5331 * to the domain elements executed by those iterations.
5333 * We simply intersect the iteration domain (i.e., the range of "executed")
5334 * with the filter and continue with the descendants of the node,
5335 * unless the resulting inverse schedule is empty, in which
5336 * case we return an empty list.
5338 * If the result of the intersection is equal to the original "executed"
5339 * relation, then keep the original representation since the intersection
5340 * may have unnecessarily broken up the relation into a greater number
5343 static __isl_give isl_ast_graft_list
*build_ast_from_filter(
5344 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5345 __isl_take isl_union_map
*executed
)
5348 isl_union_set
*filter
;
5349 isl_union_map
*orig
;
5350 isl_ast_graft_list
*list
;
5355 orig
= isl_union_map_copy(executed
);
5356 if (!build
|| !node
|| !executed
)
5359 filter
= isl_schedule_node_filter_get_filter(node
);
5360 filter
= isl_union_set_align_params(filter
,
5361 isl_union_map_get_space(executed
));
5362 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5363 executed
= isl_union_map_intersect_range(executed
, filter
);
5364 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5366 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5367 "filter node is not allowed to introduce "
5368 "new parameters", goto error
);
5370 unchanged
= isl_union_map_is_subset(orig
, executed
);
5371 empty
= isl_union_map_is_empty(executed
);
5372 if (unchanged
< 0 || empty
< 0)
5375 isl_union_map_free(executed
);
5376 return build_ast_from_child(build
, node
, orig
);
5378 isl_union_map_free(orig
);
5380 return build_ast_from_child(build
, node
, executed
);
5382 ctx
= isl_ast_build_get_ctx(build
);
5383 list
= isl_ast_graft_list_alloc(ctx
, 0);
5384 isl_ast_build_free(build
);
5385 isl_schedule_node_free(node
);
5386 isl_union_map_free(executed
);
5389 isl_ast_build_free(build
);
5390 isl_schedule_node_free(node
);
5391 isl_union_map_free(executed
);
5392 isl_union_map_free(orig
);
5396 /* Generate an AST that visits the elements in the domain of "executed"
5397 * in the relative order specified by the guard node "node" and
5400 * The relation "executed" maps the outer generated loop iterators
5401 * to the domain elements executed by those iterations.
5403 * Ensure that the associated guard is enforced by the outer AST
5404 * constructs by adding it to the guard of the graft.
5405 * Since we know that we will enforce the guard, we can also include it
5406 * in the generated constraints used to construct an AST for
5407 * the descendant nodes.
5409 static __isl_give isl_ast_graft_list
*build_ast_from_guard(
5410 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5411 __isl_take isl_union_map
*executed
)
5414 isl_set
*guard
, *hoisted
;
5415 isl_basic_set
*enforced
;
5416 isl_ast_build
*sub_build
;
5417 isl_ast_graft
*graft
;
5418 isl_ast_graft_list
*list
;
5421 space
= isl_ast_build_get_space(build
, 1);
5422 guard
= isl_schedule_node_guard_get_guard(node
);
5423 n1
= isl_space_dim(space
, isl_dim_param
);
5424 guard
= isl_set_align_params(guard
, space
);
5425 n2
= isl_set_dim(guard
, isl_dim_param
);
5427 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5428 "guard node is not allowed to introduce "
5429 "new parameters", guard
= isl_set_free(guard
));
5430 guard
= isl_set_preimage_multi_aff(guard
,
5431 isl_multi_aff_copy(build
->internal2input
));
5432 guard
= isl_ast_build_specialize(build
, guard
);
5433 guard
= isl_set_gist(guard
, isl_set_copy(build
->generated
));
5435 sub_build
= isl_ast_build_copy(build
);
5436 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5437 isl_set_copy(guard
));
5439 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5442 hoisted
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5443 if (isl_set_n_basic_set(hoisted
) > 1)
5444 list
= isl_ast_graft_list_gist_guards(list
,
5445 isl_set_copy(hoisted
));
5446 guard
= isl_set_intersect(guard
, hoisted
);
5447 enforced
= extract_shared_enforced(list
, build
);
5448 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5451 isl_ast_build_free(sub_build
);
5452 isl_ast_build_free(build
);
5453 return isl_ast_graft_list_from_ast_graft(graft
);
5456 /* Call the before_each_mark callback, if requested by the user.
5458 * Return 0 on success and -1 on error.
5460 * The caller is responsible for recording the current inverse schedule
5463 static isl_stat
before_each_mark(__isl_keep isl_id
*mark
,
5464 __isl_keep isl_ast_build
*build
)
5467 return isl_stat_error
;
5468 if (!build
->before_each_mark
)
5470 return build
->before_each_mark(mark
, build
,
5471 build
->before_each_mark_user
);
5474 /* Call the after_each_mark callback, if requested by the user.
5476 * The caller is responsible for recording the current inverse schedule
5479 static __isl_give isl_ast_graft
*after_each_mark(
5480 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
5482 if (!graft
|| !build
)
5483 return isl_ast_graft_free(graft
);
5484 if (!build
->after_each_mark
)
5486 graft
->node
= build
->after_each_mark(graft
->node
, build
,
5487 build
->after_each_mark_user
);
5489 return isl_ast_graft_free(graft
);
5494 /* Generate an AST that visits the elements in the domain of "executed"
5495 * in the relative order specified by the mark node "node" and
5498 * The relation "executed" maps the outer generated loop iterators
5499 * to the domain elements executed by those iterations.
5501 * Since we may be calling before_each_mark and after_each_mark
5502 * callbacks, we record the current inverse schedule in the build.
5504 * We generate an AST for the child of the mark node, combine
5505 * the graft list into a single graft and then insert the mark
5506 * in the AST of that single graft.
5508 static __isl_give isl_ast_graft_list
*build_ast_from_mark(
5509 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5510 __isl_take isl_union_map
*executed
)
5513 isl_ast_graft
*graft
;
5514 isl_ast_graft_list
*list
;
5517 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
5519 mark
= isl_schedule_node_mark_get_id(node
);
5520 if (before_each_mark(mark
, build
) < 0)
5521 node
= isl_schedule_node_free(node
);
5523 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5524 list
= isl_ast_graft_list_fuse(list
, build
);
5525 n
= isl_ast_graft_list_n_ast_graft(list
);
5527 list
= isl_ast_graft_list_free(list
);
5531 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
5532 graft
= isl_ast_graft_insert_mark(graft
, mark
);
5533 graft
= after_each_mark(graft
, build
);
5534 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
5536 isl_ast_build_free(build
);
5541 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5542 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5543 __isl_take isl_union_map
*executed
);
5545 /* Generate an AST that visits the elements in the domain of "executed"
5546 * in the relative order specified by the sequence (or set) node "node" and
5549 * The relation "executed" maps the outer generated loop iterators
5550 * to the domain elements executed by those iterations.
5552 * We simply generate an AST for each of the children and concatenate
5555 static __isl_give isl_ast_graft_list
*build_ast_from_sequence(
5556 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5557 __isl_take isl_union_map
*executed
)
5561 isl_ast_graft_list
*list
;
5563 ctx
= isl_ast_build_get_ctx(build
);
5564 list
= isl_ast_graft_list_alloc(ctx
, 0);
5566 n
= isl_schedule_node_n_children(node
);
5567 for (i
= 0; i
< n
; ++i
) {
5568 isl_schedule_node
*child
;
5569 isl_ast_graft_list
*list_i
;
5571 child
= isl_schedule_node_get_child(node
, i
);
5572 list_i
= build_ast_from_schedule_node(isl_ast_build_copy(build
),
5573 child
, isl_union_map_copy(executed
));
5574 list
= isl_ast_graft_list_concat(list
, list_i
);
5576 isl_ast_build_free(build
);
5577 isl_schedule_node_free(node
);
5578 isl_union_map_free(executed
);
5583 /* Generate an AST that visits the elements in the domain of "executed"
5584 * in the relative order specified by the node "node" and its descendants.
5586 * The relation "executed" maps the outer generated loop iterators
5587 * to the domain elements executed by those iterations.
5589 * If the node is a leaf, then we pass control to generate_inner_level.
5590 * Note that the current build does not refer to any band node, so
5591 * that generate_inner_level will not try to visit the child of
5594 * The other node types are handled in separate functions.
5595 * Set nodes are currently treated in the same way as sequence nodes.
5596 * The children of a set node may be executed in any order,
5597 * including the order of the children.
5599 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5600 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5601 __isl_take isl_union_map
*executed
)
5603 enum isl_schedule_node_type type
;
5605 type
= isl_schedule_node_get_type(node
);
5608 case isl_schedule_node_error
:
5610 case isl_schedule_node_leaf
:
5611 isl_schedule_node_free(node
);
5612 return generate_inner_level(executed
, build
);
5613 case isl_schedule_node_band
:
5614 return build_ast_from_band(build
, node
, executed
);
5615 case isl_schedule_node_context
:
5616 return build_ast_from_context(build
, node
, executed
);
5617 case isl_schedule_node_domain
:
5618 isl_die(isl_schedule_node_get_ctx(node
), isl_error_unsupported
,
5619 "unexpected internal domain node", goto error
);
5620 case isl_schedule_node_expansion
:
5621 return build_ast_from_expansion(build
, node
, executed
);
5622 case isl_schedule_node_extension
:
5623 return build_ast_from_extension(build
, node
, executed
);
5624 case isl_schedule_node_filter
:
5625 return build_ast_from_filter(build
, node
, executed
);
5626 case isl_schedule_node_guard
:
5627 return build_ast_from_guard(build
, node
, executed
);
5628 case isl_schedule_node_mark
:
5629 return build_ast_from_mark(build
, node
, executed
);
5630 case isl_schedule_node_sequence
:
5631 case isl_schedule_node_set
:
5632 return build_ast_from_sequence(build
, node
, executed
);
5635 isl_die(isl_ast_build_get_ctx(build
), isl_error_internal
,
5636 "unhandled type", goto error
);
5638 isl_union_map_free(executed
);
5639 isl_schedule_node_free(node
);
5640 isl_ast_build_free(build
);
5645 /* Generate an AST that visits the elements in the domain of "executed"
5646 * in the relative order specified by the (single) child of "node" and
5649 * The relation "executed" maps the outer generated loop iterators
5650 * to the domain elements executed by those iterations.
5652 * This function is never called on a leaf, set or sequence node,
5653 * so the node always has exactly one child.
5655 static __isl_give isl_ast_graft_list
*build_ast_from_child(
5656 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5657 __isl_take isl_union_map
*executed
)
5659 node
= isl_schedule_node_child(node
, 0);
5660 return build_ast_from_schedule_node(build
, node
, executed
);
5663 /* Generate an AST that visits the elements in the domain of the domain
5664 * node "node" in the relative order specified by its descendants.
5666 * An initial inverse schedule is created that maps a zero-dimensional
5667 * schedule space to the node domain.
5668 * The input "build" is assumed to have a parametric domain and
5669 * is replaced by the same zero-dimensional schedule space.
5671 * We also add some of the parameter constraints in the build domain
5672 * to the executed relation. Adding these constraints
5673 * allows for an earlier detection of conflicts in some cases.
5674 * However, we do not want to divide the executed relation into
5675 * more disjuncts than necessary. We therefore approximate
5676 * the constraints on the parameters by a single disjunct set.
5678 static __isl_give isl_ast_node
*build_ast_from_domain(
5679 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
)
5682 isl_union_set
*domain
, *schedule_domain
;
5683 isl_union_map
*executed
;
5686 isl_ast_graft_list
*list
;
5693 ctx
= isl_ast_build_get_ctx(build
);
5694 space
= isl_ast_build_get_space(build
, 1);
5695 is_params
= isl_space_is_params(space
);
5696 isl_space_free(space
);
5700 isl_die(ctx
, isl_error_unsupported
,
5701 "expecting parametric initial context", goto error
);
5703 domain
= isl_schedule_node_domain_get_domain(node
);
5704 domain
= isl_union_set_coalesce(domain
);
5706 space
= isl_union_set_get_space(domain
);
5707 space
= isl_space_set_from_params(space
);
5708 build
= isl_ast_build_product(build
, space
);
5710 set
= isl_ast_build_get_domain(build
);
5711 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5712 schedule_domain
= isl_union_set_from_set(set
);
5714 executed
= isl_union_map_from_domain_and_range(schedule_domain
, domain
);
5715 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5716 ast
= isl_ast_node_from_graft_list(list
, build
);
5717 isl_ast_build_free(build
);
5721 isl_schedule_node_free(node
);
5722 isl_ast_build_free(build
);
5726 /* Generate an AST that visits the elements in the domain of "schedule"
5727 * in the relative order specified by the schedule tree.
5729 * "build" is an isl_ast_build that has been created using
5730 * isl_ast_build_alloc or isl_ast_build_from_context based
5731 * on a parametric set.
5733 * The construction starts at the root node of the schedule,
5734 * which is assumed to be a domain node.
5736 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule(
5737 __isl_keep isl_ast_build
*build
, __isl_take isl_schedule
*schedule
)
5740 isl_schedule_node
*node
;
5742 if (!build
|| !schedule
)
5745 ctx
= isl_ast_build_get_ctx(build
);
5747 node
= isl_schedule_get_root(schedule
);
5750 isl_schedule_free(schedule
);
5752 build
= isl_ast_build_copy(build
);
5753 build
= isl_ast_build_set_single_valued(build
, 0);
5754 if (isl_schedule_node_get_type(node
) != isl_schedule_node_domain
)
5755 isl_die(ctx
, isl_error_unsupported
,
5756 "expecting root domain node",
5757 build
= isl_ast_build_free(build
));
5758 return build_ast_from_domain(build
, node
);
5760 isl_schedule_free(schedule
);