2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->eq
[a
];
34 bmap
->eq
[a
] = bmap
->eq
[b
];
38 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
41 isl_int
*t
= bmap
->ineq
[a
];
42 bmap
->ineq
[a
] = bmap
->ineq
[b
];
47 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
49 isl_seq_cpy(c
, c
+ n
, rem
);
50 isl_seq_clr(c
+ rem
, n
);
53 /* Drop n dimensions starting at first.
55 * In principle, this frees up some extra variables as the number
56 * of columns remains constant, but we would have to extend
57 * the div array too as the number of rows in this array is assumed
58 * to be equal to extra.
60 struct isl_basic_set
*isl_basic_set_drop_dims(
61 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
68 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
70 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
73 bset
= isl_basic_set_cow(bset
);
77 for (i
= 0; i
< bset
->n_eq
; ++i
)
78 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
79 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
81 for (i
= 0; i
< bset
->n_ineq
; ++i
)
82 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
83 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
85 for (i
= 0; i
< bset
->n_div
; ++i
)
86 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
87 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
89 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
93 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
94 bset
= isl_basic_set_simplify(bset
);
95 return isl_basic_set_finalize(bset
);
97 isl_basic_set_free(bset
);
101 struct isl_set
*isl_set_drop_dims(
102 struct isl_set
*set
, unsigned first
, unsigned n
)
109 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
111 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
113 set
= isl_set_cow(set
);
116 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
120 for (i
= 0; i
< set
->n
; ++i
) {
121 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
126 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
133 /* Move "n" divs starting at "first" to the end of the list of divs.
135 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
136 unsigned first
, unsigned n
)
141 if (first
+ n
== bmap
->n_div
)
144 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
147 for (i
= 0; i
< n
; ++i
)
148 div
[i
] = bmap
->div
[first
+ i
];
149 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
150 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
151 for (i
= 0; i
< n
; ++i
)
152 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
156 isl_basic_map_free(bmap
);
160 /* Drop "n" dimensions of type "type" starting at "first".
162 * In principle, this frees up some extra variables as the number
163 * of columns remains constant, but we would have to extend
164 * the div array too as the number of rows in this array is assumed
165 * to be equal to extra.
167 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
168 enum isl_dim_type type
, unsigned first
, unsigned n
)
178 dim
= isl_basic_map_dim(bmap
, type
);
179 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
181 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
184 bmap
= isl_basic_map_cow(bmap
);
188 offset
= isl_basic_map_offset(bmap
, type
) + first
;
189 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
190 for (i
= 0; i
< bmap
->n_eq
; ++i
)
191 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
193 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
194 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
196 for (i
= 0; i
< bmap
->n_div
; ++i
)
197 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
199 if (type
== isl_dim_div
) {
200 bmap
= move_divs_last(bmap
, first
, n
);
203 if (isl_basic_map_free_div(bmap
, n
) < 0)
204 return isl_basic_map_free(bmap
);
206 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
210 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
211 bmap
= isl_basic_map_simplify(bmap
);
212 return isl_basic_map_finalize(bmap
);
214 isl_basic_map_free(bmap
);
218 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
219 enum isl_dim_type type
, unsigned first
, unsigned n
)
221 return bset_from_bmap(isl_basic_map_drop(bset_to_bmap(bset
),
225 struct isl_basic_map
*isl_basic_map_drop_inputs(
226 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
228 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
231 struct isl_map
*isl_map_drop(struct isl_map
*map
,
232 enum isl_dim_type type
, unsigned first
, unsigned n
)
239 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
241 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
243 map
= isl_map_cow(map
);
246 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
250 for (i
= 0; i
< map
->n
; ++i
) {
251 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
255 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
263 struct isl_set
*isl_set_drop(struct isl_set
*set
,
264 enum isl_dim_type type
, unsigned first
, unsigned n
)
266 return set_from_map(isl_map_drop(set_to_map(set
), type
, first
, n
));
269 struct isl_map
*isl_map_drop_inputs(
270 struct isl_map
*map
, unsigned first
, unsigned n
)
272 return isl_map_drop(map
, isl_dim_in
, first
, n
);
276 * We don't cow, as the div is assumed to be redundant.
278 __isl_give isl_basic_map
*isl_basic_map_drop_div(
279 __isl_take isl_basic_map
*bmap
, unsigned div
)
287 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
289 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
291 for (i
= 0; i
< bmap
->n_eq
; ++i
)
292 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
294 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
295 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
296 isl_basic_map_drop_inequality(bmap
, i
);
300 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
303 for (i
= 0; i
< bmap
->n_div
; ++i
)
304 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
306 if (div
!= bmap
->n_div
- 1) {
308 isl_int
*t
= bmap
->div
[div
];
310 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
311 bmap
->div
[j
] = bmap
->div
[j
+1];
313 bmap
->div
[bmap
->n_div
- 1] = t
;
315 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
316 if (isl_basic_map_free_div(bmap
, 1) < 0)
317 return isl_basic_map_free(bmap
);
321 isl_basic_map_free(bmap
);
325 struct isl_basic_map
*isl_basic_map_normalize_constraints(
326 struct isl_basic_map
*bmap
)
330 unsigned total
= isl_basic_map_total_dim(bmap
);
336 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
337 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
338 if (isl_int_is_zero(gcd
)) {
339 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
340 bmap
= isl_basic_map_set_to_empty(bmap
);
343 isl_basic_map_drop_equality(bmap
, i
);
346 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
347 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
348 if (isl_int_is_one(gcd
))
350 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
351 bmap
= isl_basic_map_set_to_empty(bmap
);
354 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
357 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
358 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
359 if (isl_int_is_zero(gcd
)) {
360 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
361 bmap
= isl_basic_map_set_to_empty(bmap
);
364 isl_basic_map_drop_inequality(bmap
, i
);
367 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
368 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
369 if (isl_int_is_one(gcd
))
371 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
372 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
379 struct isl_basic_set
*isl_basic_set_normalize_constraints(
380 struct isl_basic_set
*bset
)
382 isl_basic_map
*bmap
= bset_to_bmap(bset
);
383 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap
));
386 /* Reduce the coefficient of the variable at position "pos"
387 * in integer division "div", such that it lies in the half-open
388 * interval (1/2,1/2], extracting any excess value from this integer division.
389 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
390 * corresponds to the constant term.
392 * That is, the integer division is of the form
394 * floor((... + (c * d + r) * x_pos + ...)/d)
396 * with -d < 2 * r <= d.
399 * floor((... + r * x_pos + ...)/d) + c * x_pos
401 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
402 * Otherwise, c = floor((c * d + r)/d) + 1.
404 * This is the same normalization that is performed by isl_aff_floor.
406 static __isl_give isl_basic_map
*reduce_coefficient_in_div(
407 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
413 isl_int_fdiv_r(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
414 isl_int_mul_ui(shift
, shift
, 2);
415 add_one
= isl_int_gt(shift
, bmap
->div
[div
][0]);
416 isl_int_fdiv_q(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
418 isl_int_add_ui(shift
, shift
, 1);
419 isl_int_neg(shift
, shift
);
420 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
421 isl_int_clear(shift
);
426 /* Does the coefficient of the variable at position "pos"
427 * in integer division "div" need to be reduced?
428 * That is, does it lie outside the half-open interval (1/2,1/2]?
429 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
432 static isl_bool
needs_reduction(__isl_keep isl_basic_map
*bmap
, int div
,
437 if (isl_int_is_zero(bmap
->div
[div
][1 + pos
]))
438 return isl_bool_false
;
440 isl_int_mul_ui(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][1 + pos
], 2);
441 r
= isl_int_abs_ge(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]) &&
442 !isl_int_eq(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
443 isl_int_divexact_ui(bmap
->div
[div
][1 + pos
],
444 bmap
->div
[div
][1 + pos
], 2);
449 /* Reduce the coefficients (including the constant term) of
450 * integer division "div", if needed.
451 * In particular, make sure all coefficients lie in
452 * the half-open interval (1/2,1/2].
454 static __isl_give isl_basic_map
*reduce_div_coefficients_of_div(
455 __isl_take isl_basic_map
*bmap
, int div
)
458 unsigned total
= 1 + isl_basic_map_total_dim(bmap
);
460 for (i
= 0; i
< total
; ++i
) {
463 reduce
= needs_reduction(bmap
, div
, i
);
465 return isl_basic_map_free(bmap
);
468 bmap
= reduce_coefficient_in_div(bmap
, div
, i
);
476 /* Reduce the coefficients (including the constant term) of
477 * the known integer divisions, if needed
478 * In particular, make sure all coefficients lie in
479 * the half-open interval (1/2,1/2].
481 static __isl_give isl_basic_map
*reduce_div_coefficients(
482 __isl_take isl_basic_map
*bmap
)
488 if (bmap
->n_div
== 0)
491 for (i
= 0; i
< bmap
->n_div
; ++i
) {
492 if (isl_int_is_zero(bmap
->div
[i
][0]))
494 bmap
= reduce_div_coefficients_of_div(bmap
, i
);
502 /* Remove any common factor in numerator and denominator of the div expression,
503 * not taking into account the constant term.
504 * That is, if the div is of the form
506 * floor((a + m f(x))/(m d))
510 * floor((floor(a/m) + f(x))/d)
512 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
513 * and can therefore not influence the result of the floor.
515 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
517 unsigned total
= isl_basic_map_total_dim(bmap
);
518 isl_ctx
*ctx
= bmap
->ctx
;
520 if (isl_int_is_zero(bmap
->div
[div
][0]))
522 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
523 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
524 if (isl_int_is_one(ctx
->normalize_gcd
))
526 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
528 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
530 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
531 ctx
->normalize_gcd
, total
);
534 /* Remove any common factor in numerator and denominator of a div expression,
535 * not taking into account the constant term.
536 * That is, look for any div of the form
538 * floor((a + m f(x))/(m d))
542 * floor((floor(a/m) + f(x))/d)
544 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
545 * and can therefore not influence the result of the floor.
547 static __isl_give isl_basic_map
*normalize_div_expressions(
548 __isl_take isl_basic_map
*bmap
)
554 if (bmap
->n_div
== 0)
557 for (i
= 0; i
< bmap
->n_div
; ++i
)
558 normalize_div_expression(bmap
, i
);
563 /* Assumes divs have been ordered if keep_divs is set.
565 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
566 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
569 unsigned space_total
;
573 total
= isl_basic_map_total_dim(bmap
);
574 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
575 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
576 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
577 if (bmap
->eq
[k
] == eq
)
579 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
583 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
584 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
587 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
588 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
592 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
593 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
594 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
597 for (k
= 0; k
< bmap
->n_div
; ++k
) {
598 if (isl_int_is_zero(bmap
->div
[k
][0]))
600 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
604 /* We need to be careful about circular definitions,
605 * so for now we just remove the definition of div k
606 * if the equality contains any divs.
607 * If keep_divs is set, then the divs have been ordered
608 * and we can keep the definition as long as the result
611 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
612 isl_seq_elim(bmap
->div
[k
]+1, eq
,
613 1+pos
, 1+total
, &bmap
->div
[k
][0]);
614 normalize_div_expression(bmap
, k
);
616 isl_seq_clr(bmap
->div
[k
], 1 + total
);
617 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
621 /* Assumes divs have been ordered if keep_divs is set.
623 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
624 isl_int
*eq
, unsigned div
, int keep_divs
)
626 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
628 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
630 bmap
= isl_basic_map_drop_div(bmap
, div
);
635 /* Check if elimination of div "div" using equality "eq" would not
636 * result in a div depending on a later div.
638 static isl_bool
ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
643 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
644 unsigned pos
= space_total
+ div
;
646 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
647 if (last_div
< 0 || last_div
<= div
)
648 return isl_bool_true
;
650 for (k
= 0; k
<= last_div
; ++k
) {
651 if (isl_int_is_zero(bmap
->div
[k
][0]))
653 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
654 return isl_bool_false
;
657 return isl_bool_true
;
660 /* Eliminate divs based on equalities
662 static struct isl_basic_map
*eliminate_divs_eq(
663 struct isl_basic_map
*bmap
, int *progress
)
670 bmap
= isl_basic_map_order_divs(bmap
);
675 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
677 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
678 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
681 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
682 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
684 ok
= ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
);
686 return isl_basic_map_free(bmap
);
691 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
692 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
693 return isl_basic_map_free(bmap
);
698 return eliminate_divs_eq(bmap
, progress
);
702 /* Elimininate divs based on inequalities
704 static struct isl_basic_map
*eliminate_divs_ineq(
705 struct isl_basic_map
*bmap
, int *progress
)
716 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
718 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
719 for (i
= 0; i
< bmap
->n_eq
; ++i
)
720 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
724 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
725 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
727 if (i
< bmap
->n_ineq
)
730 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
731 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
733 bmap
= isl_basic_map_drop_div(bmap
, d
);
740 /* Does the equality constraint at position "eq" in "bmap" involve
741 * any local variables in the range [first, first + n)
742 * that are not marked as having an explicit representation?
744 static isl_bool
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map
*bmap
,
745 int eq
, unsigned first
, unsigned n
)
751 return isl_bool_error
;
753 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
754 for (i
= 0; i
< n
; ++i
) {
757 if (isl_int_is_zero(bmap
->eq
[eq
][o_div
+ first
+ i
]))
759 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, first
+ i
);
761 return isl_bool_error
;
763 return isl_bool_true
;
766 return isl_bool_false
;
769 /* The last local variable involved in the equality constraint
770 * at position "eq" in "bmap" is the local variable at position "div".
771 * It can therefore be used to extract an explicit representation
773 * Do so unless the local variable already has an explicit representation or
774 * the explicit representation would involve any other local variables
775 * that in turn do not have an explicit representation.
776 * An equality constraint involving local variables without an explicit
777 * representation can be used in isl_basic_map_drop_redundant_divs
778 * to separate out an independent local variable. Introducing
779 * an explicit representation here would block this transformation,
780 * while the partial explicit representation in itself is not very useful.
781 * Set *progress if anything is changed.
783 * The equality constraint is of the form
787 * with n a positive number. The explicit representation derived from
792 static __isl_give isl_basic_map
*set_div_from_eq(__isl_take isl_basic_map
*bmap
,
793 int div
, int eq
, int *progress
)
795 unsigned total
, o_div
;
801 if (!isl_int_is_zero(bmap
->div
[div
][0]))
804 involves
= bmap_eq_involves_unknown_divs(bmap
, eq
, 0, div
);
806 return isl_basic_map_free(bmap
);
810 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
811 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
812 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->eq
[eq
], 1 + total
);
813 isl_int_set_si(bmap
->div
[div
][1 + o_div
+ div
], 0);
814 isl_int_set(bmap
->div
[div
][0], bmap
->eq
[eq
][o_div
+ div
]);
817 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
822 struct isl_basic_map
*isl_basic_map_gauss(
823 struct isl_basic_map
*bmap
, int *progress
)
831 bmap
= isl_basic_map_order_divs(bmap
);
836 total
= isl_basic_map_total_dim(bmap
);
837 total_var
= total
- bmap
->n_div
;
839 last_var
= total
- 1;
840 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
841 for (; last_var
>= 0; --last_var
) {
842 for (k
= done
; k
< bmap
->n_eq
; ++k
)
843 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
851 swap_equality(bmap
, k
, done
);
852 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
853 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
855 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
858 if (last_var
>= total_var
)
859 bmap
= set_div_from_eq(bmap
, last_var
- total_var
,
864 if (done
== bmap
->n_eq
)
866 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
867 if (isl_int_is_zero(bmap
->eq
[k
][0]))
869 return isl_basic_map_set_to_empty(bmap
);
871 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
875 struct isl_basic_set
*isl_basic_set_gauss(
876 struct isl_basic_set
*bset
, int *progress
)
878 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset
),
883 static unsigned int round_up(unsigned int v
)
894 /* Hash table of inequalities in a basic map.
895 * "index" is an array of addresses of inequalities in the basic map, some
896 * of which are NULL. The inequalities are hashed on the coefficients
897 * except the constant term.
898 * "size" is the number of elements in the array and is always a power of two
899 * "bits" is the number of bits need to represent an index into the array.
900 * "total" is the total dimension of the basic map.
902 struct isl_constraint_index
{
909 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
911 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
912 __isl_keep isl_basic_map
*bmap
)
918 return isl_stat_error
;
919 ci
->total
= isl_basic_set_total_dim(bmap
);
920 if (bmap
->n_ineq
== 0)
922 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
923 ci
->bits
= ffs(ci
->size
) - 1;
924 ctx
= isl_basic_map_get_ctx(bmap
);
925 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
927 return isl_stat_error
;
932 /* Free the memory allocated by create_constraint_index.
934 static void constraint_index_free(struct isl_constraint_index
*ci
)
939 /* Return the position in ci->index that contains the address of
940 * an inequality that is equal to *ineq up to the constant term,
941 * provided this address is not identical to "ineq".
942 * If there is no such inequality, then return the position where
943 * such an inequality should be inserted.
945 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
948 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
949 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
950 if (ineq
!= ci
->index
[h
] &&
951 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
956 /* Return the position in ci->index that contains the address of
957 * an inequality that is equal to the k'th inequality of "bmap"
958 * up to the constant term, provided it does not point to the very
960 * If there is no such inequality, then return the position where
961 * such an inequality should be inserted.
963 static int hash_index(struct isl_constraint_index
*ci
,
964 __isl_keep isl_basic_map
*bmap
, int k
)
966 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
969 static int set_hash_index(struct isl_constraint_index
*ci
,
970 struct isl_basic_set
*bset
, int k
)
972 return hash_index(ci
, bset
, k
);
975 /* Fill in the "ci" data structure with the inequalities of "bset".
977 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
978 __isl_keep isl_basic_set
*bset
)
982 if (create_constraint_index(ci
, bset
) < 0)
983 return isl_stat_error
;
985 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
986 h
= set_hash_index(ci
, bset
, k
);
987 ci
->index
[h
] = &bset
->ineq
[k
];
993 /* Is the inequality ineq (obviously) redundant with respect
994 * to the constraints in "ci"?
996 * Look for an inequality in "ci" with the same coefficients and then
997 * check if the contant term of "ineq" is greater than or equal
998 * to the constant term of that inequality. If so, "ineq" is clearly
1001 * Note that hash_index_ineq ignores a stored constraint if it has
1002 * the same address as the passed inequality. It is ok to pass
1003 * the address of a local variable here since it will never be
1004 * the same as the address of a constraint in "ci".
1006 static isl_bool
constraint_index_is_redundant(struct isl_constraint_index
*ci
,
1011 h
= hash_index_ineq(ci
, &ineq
);
1013 return isl_bool_false
;
1014 return isl_int_ge(ineq
[0], (*ci
->index
[h
])[0]);
1017 /* If we can eliminate more than one div, then we need to make
1018 * sure we do it from last div to first div, in order not to
1019 * change the position of the other divs that still need to
1022 static struct isl_basic_map
*remove_duplicate_divs(
1023 struct isl_basic_map
*bmap
, int *progress
)
1033 struct isl_ctx
*ctx
;
1035 bmap
= isl_basic_map_order_divs(bmap
);
1036 if (!bmap
|| bmap
->n_div
<= 1)
1039 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1040 total
= total_var
+ bmap
->n_div
;
1043 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
1044 if (!isl_int_is_zero(bmap
->div
[k
][0]))
1049 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
1052 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
1053 bits
= ffs(size
) - 1;
1054 index
= isl_calloc_array(ctx
, int, size
);
1055 if (!elim_for
|| !index
)
1057 eq
= isl_blk_alloc(ctx
, 1+total
);
1058 if (isl_blk_is_error(eq
))
1061 isl_seq_clr(eq
.data
, 1+total
);
1062 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
1063 for (--k
; k
>= 0; --k
) {
1066 if (isl_int_is_zero(bmap
->div
[k
][0]))
1069 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
1070 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
1071 if (isl_seq_eq(bmap
->div
[k
],
1072 bmap
->div
[index
[h
]-1], 2+total
))
1077 elim_for
[l
] = k
+ 1;
1081 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
1084 k
= elim_for
[l
] - 1;
1085 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
1086 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
1087 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
1090 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
1091 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
1094 isl_blk_free(ctx
, eq
);
1101 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
1106 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1107 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
1108 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1112 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
1118 /* Normalize divs that appear in equalities.
1120 * In particular, we assume that bmap contains some equalities
1125 * and we want to replace the set of e_i by a minimal set and
1126 * such that the new e_i have a canonical representation in terms
1128 * If any of the equalities involves more than one divs, then
1129 * we currently simply bail out.
1131 * Let us first additionally assume that all equalities involve
1132 * a div. The equalities then express modulo constraints on the
1133 * remaining variables and we can use "parameter compression"
1134 * to find a minimal set of constraints. The result is a transformation
1136 * x = T(x') = x_0 + G x'
1138 * with G a lower-triangular matrix with all elements below the diagonal
1139 * non-negative and smaller than the diagonal element on the same row.
1140 * We first normalize x_0 by making the same property hold in the affine
1142 * The rows i of G with a 1 on the diagonal do not impose any modulo
1143 * constraint and simply express x_i = x'_i.
1144 * For each of the remaining rows i, we introduce a div and a corresponding
1145 * equality. In particular
1147 * g_ii e_j = x_i - g_i(x')
1149 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1150 * corresponding div (if g_kk != 1).
1152 * If there are any equalities not involving any div, then we
1153 * first apply a variable compression on the variables x:
1155 * x = C x'' x'' = C_2 x
1157 * and perform the above parameter compression on A C instead of on A.
1158 * The resulting compression is then of the form
1160 * x'' = T(x') = x_0 + G x'
1162 * and in constructing the new divs and the corresponding equalities,
1163 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1164 * by the corresponding row from C_2.
1166 static struct isl_basic_map
*normalize_divs(
1167 struct isl_basic_map
*bmap
, int *progress
)
1174 struct isl_mat
*T
= NULL
;
1175 struct isl_mat
*C
= NULL
;
1176 struct isl_mat
*C2
= NULL
;
1179 int dropped
, needed
;
1184 if (bmap
->n_div
== 0)
1187 if (bmap
->n_eq
== 0)
1190 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
1193 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1194 div_eq
= n_pure_div_eq(bmap
);
1198 if (div_eq
< bmap
->n_eq
) {
1199 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
1200 bmap
->n_eq
- div_eq
, 0, 1 + total
);
1201 C
= isl_mat_variable_compression(B
, &C2
);
1204 if (C
->n_col
== 0) {
1205 bmap
= isl_basic_map_set_to_empty(bmap
);
1212 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
1215 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
1216 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1218 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
1220 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
1223 B
= isl_mat_product(B
, C
);
1227 T
= isl_mat_parameter_compression(B
, d
);
1230 if (T
->n_col
== 0) {
1231 bmap
= isl_basic_map_set_to_empty(bmap
);
1237 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
1238 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
1239 if (isl_int_is_zero(v
))
1241 isl_mat_col_submul(T
, 0, v
, 1 + i
);
1244 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
1247 /* We have to be careful because dropping equalities may reorder them */
1249 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
1250 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1251 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1253 if (i
< bmap
->n_eq
) {
1254 bmap
= isl_basic_map_drop_div(bmap
, j
);
1255 isl_basic_map_drop_equality(bmap
, i
);
1261 for (i
= 1; i
< T
->n_row
; ++i
) {
1262 if (isl_int_is_one(T
->row
[i
][i
]))
1267 if (needed
> dropped
) {
1268 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1273 for (i
= 1; i
< T
->n_row
; ++i
) {
1274 if (isl_int_is_one(T
->row
[i
][i
]))
1276 k
= isl_basic_map_alloc_div(bmap
);
1277 pos
[i
] = 1 + total
+ k
;
1278 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
1279 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1281 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
1283 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1284 for (j
= 0; j
< i
; ++j
) {
1285 if (isl_int_is_zero(T
->row
[i
][j
]))
1287 if (pos
[j
] < T
->n_row
&& C2
)
1288 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1289 C2
->row
[pos
[j
]], 1 + total
);
1291 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1294 j
= isl_basic_map_alloc_equality(bmap
);
1295 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
1296 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1305 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1316 static struct isl_basic_map
*set_div_from_lower_bound(
1317 struct isl_basic_map
*bmap
, int div
, int ineq
)
1319 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1321 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1322 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1323 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1324 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1325 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1330 /* Check whether it is ok to define a div based on an inequality.
1331 * To avoid the introduction of circular definitions of divs, we
1332 * do not allow such a definition if the resulting expression would refer to
1333 * any other undefined divs or if any known div is defined in
1334 * terms of the unknown div.
1336 static isl_bool
ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1340 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1342 /* Not defined in terms of unknown divs */
1343 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1346 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1348 if (isl_int_is_zero(bmap
->div
[j
][0]))
1349 return isl_bool_false
;
1352 /* No other div defined in terms of this one => avoid loops */
1353 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1356 if (isl_int_is_zero(bmap
->div
[j
][0]))
1358 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1359 return isl_bool_false
;
1362 return isl_bool_true
;
1365 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1366 * be a better expression than the current one?
1368 * If we do not have any expression yet, then any expression would be better.
1369 * Otherwise we check if the last variable involved in the inequality
1370 * (disregarding the div that it would define) is in an earlier position
1371 * than the last variable involved in the current div expression.
1373 static isl_bool
better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1376 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1380 if (isl_int_is_zero(bmap
->div
[div
][0]))
1381 return isl_bool_true
;
1383 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1384 bmap
->n_div
- (div
+ 1)) >= 0)
1385 return isl_bool_false
;
1387 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1388 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1389 total
+ bmap
->n_div
);
1391 return last_ineq
< last_div
;
1394 /* Given two constraints "k" and "l" that are opposite to each other,
1395 * except for the constant term, check if we can use them
1396 * to obtain an expression for one of the hitherto unknown divs or
1397 * a "better" expression for a div for which we already have an expression.
1398 * "sum" is the sum of the constant terms of the constraints.
1399 * If this sum is strictly smaller than the coefficient of one
1400 * of the divs, then this pair can be used define the div.
1401 * To avoid the introduction of circular definitions of divs, we
1402 * do not use the pair if the resulting expression would refer to
1403 * any other undefined divs or if any known div is defined in
1404 * terms of the unknown div.
1406 static struct isl_basic_map
*check_for_div_constraints(
1407 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1410 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1412 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1415 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1417 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1419 set_div
= better_div_constraint(bmap
, i
, k
);
1420 if (set_div
>= 0 && set_div
)
1421 set_div
= ok_to_set_div_from_bound(bmap
, i
, k
);
1423 return isl_basic_map_free(bmap
);
1426 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1427 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1429 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1437 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1438 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1440 struct isl_constraint_index ci
;
1442 unsigned total
= isl_basic_map_total_dim(bmap
);
1445 if (!bmap
|| bmap
->n_ineq
<= 1)
1448 if (create_constraint_index(&ci
, bmap
) < 0)
1451 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1452 ci
.index
[h
] = &bmap
->ineq
[0];
1453 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1454 h
= hash_index(&ci
, bmap
, k
);
1456 ci
.index
[h
] = &bmap
->ineq
[k
];
1461 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1462 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1463 swap_inequality(bmap
, k
, l
);
1464 isl_basic_map_drop_inequality(bmap
, k
);
1468 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1469 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1470 h
= hash_index(&ci
, bmap
, k
);
1471 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1474 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1475 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1476 if (isl_int_is_pos(sum
)) {
1478 bmap
= check_for_div_constraints(bmap
, k
, l
,
1482 if (isl_int_is_zero(sum
)) {
1483 /* We need to break out of the loop after these
1484 * changes since the contents of the hash
1485 * will no longer be valid.
1486 * Plus, we probably we want to regauss first.
1490 isl_basic_map_drop_inequality(bmap
, l
);
1491 isl_basic_map_inequality_to_equality(bmap
, k
);
1493 bmap
= isl_basic_map_set_to_empty(bmap
);
1498 constraint_index_free(&ci
);
1502 /* Detect all pairs of inequalities that form an equality.
1504 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1505 * Call it repeatedly while it is making progress.
1507 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1508 __isl_take isl_basic_map
*bmap
, int *progress
)
1514 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1516 if (progress
&& duplicate
)
1518 } while (duplicate
);
1523 /* Eliminate knowns divs from constraints where they appear with
1524 * a (positive or negative) unit coefficient.
1528 * floor(e/m) + f >= 0
1536 * -floor(e/m) + f >= 0
1540 * -e + m f + m - 1 >= 0
1542 * The first conversion is valid because floor(e/m) >= -f is equivalent
1543 * to e/m >= -f because -f is an integral expression.
1544 * The second conversion follows from the fact that
1546 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1549 * Note that one of the div constraints may have been eliminated
1550 * due to being redundant with respect to the constraint that is
1551 * being modified by this function. The modified constraint may
1552 * no longer imply this div constraint, so we add it back to make
1553 * sure we do not lose any information.
1555 * We skip integral divs, i.e., those with denominator 1, as we would
1556 * risk eliminating the div from the div constraints. We do not need
1557 * to handle those divs here anyway since the div constraints will turn
1558 * out to form an equality and this equality can then be used to eliminate
1559 * the div from all constraints.
1561 static __isl_give isl_basic_map
*eliminate_unit_divs(
1562 __isl_take isl_basic_map
*bmap
, int *progress
)
1571 ctx
= isl_basic_map_get_ctx(bmap
);
1572 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1574 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1575 if (isl_int_is_zero(bmap
->div
[i
][0]))
1577 if (isl_int_is_one(bmap
->div
[i
][0]))
1579 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1582 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1583 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1588 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1589 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1591 isl_seq_combine(bmap
->ineq
[j
],
1592 ctx
->negone
, bmap
->div
[i
] + 1,
1593 bmap
->div
[i
][0], bmap
->ineq
[j
],
1594 total
+ bmap
->n_div
);
1596 isl_seq_combine(bmap
->ineq
[j
],
1597 ctx
->one
, bmap
->div
[i
] + 1,
1598 bmap
->div
[i
][0], bmap
->ineq
[j
],
1599 total
+ bmap
->n_div
);
1601 isl_int_add(bmap
->ineq
[j
][0],
1602 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1603 isl_int_sub_ui(bmap
->ineq
[j
][0],
1604 bmap
->ineq
[j
][0], 1);
1607 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1608 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1609 return isl_basic_map_free(bmap
);
1616 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1625 empty
= isl_basic_map_plain_is_empty(bmap
);
1627 return isl_basic_map_free(bmap
);
1630 bmap
= isl_basic_map_normalize_constraints(bmap
);
1631 bmap
= reduce_div_coefficients(bmap
);
1632 bmap
= normalize_div_expressions(bmap
);
1633 bmap
= remove_duplicate_divs(bmap
, &progress
);
1634 bmap
= eliminate_unit_divs(bmap
, &progress
);
1635 bmap
= eliminate_divs_eq(bmap
, &progress
);
1636 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1637 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1638 /* requires equalities in normal form */
1639 bmap
= normalize_divs(bmap
, &progress
);
1640 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1642 if (bmap
&& progress
)
1643 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1648 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1650 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset
)));
1654 isl_bool
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1655 isl_int
*constraint
, unsigned div
)
1660 return isl_bool_error
;
1662 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1664 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1666 isl_int_sub(bmap
->div
[div
][1],
1667 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1668 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1669 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1670 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1671 isl_int_add(bmap
->div
[div
][1],
1672 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1674 return isl_bool_false
;
1675 if (isl_seq_first_non_zero(constraint
+pos
+1,
1676 bmap
->n_div
-div
-1) != -1)
1677 return isl_bool_false
;
1678 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1679 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1680 return isl_bool_false
;
1681 if (isl_seq_first_non_zero(constraint
+pos
+1,
1682 bmap
->n_div
-div
-1) != -1)
1683 return isl_bool_false
;
1685 return isl_bool_false
;
1687 return isl_bool_true
;
1690 isl_bool
isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1691 isl_int
*constraint
, unsigned div
)
1693 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1697 /* If the only constraints a div d=floor(f/m)
1698 * appears in are its two defining constraints
1701 * -(f - (m - 1)) + m d >= 0
1703 * then it can safely be removed.
1705 static isl_bool
div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1708 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1710 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1711 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1712 return isl_bool_false
;
1714 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1717 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1719 red
= isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
);
1720 if (red
< 0 || !red
)
1724 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1725 if (isl_int_is_zero(bmap
->div
[i
][0]))
1727 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1728 return isl_bool_false
;
1731 return isl_bool_true
;
1735 * Remove divs that don't occur in any of the constraints or other divs.
1736 * These can arise when dropping constraints from a basic map or
1737 * when the divs of a basic map have been temporarily aligned
1738 * with the divs of another basic map.
1740 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1747 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1750 redundant
= div_is_redundant(bmap
, i
);
1752 return isl_basic_map_free(bmap
);
1755 bmap
= isl_basic_map_drop_div(bmap
, i
);
1760 /* Mark "bmap" as final, without checking for obviously redundant
1761 * integer divisions. This function should be used when "bmap"
1762 * is known not to involve any such integer divisions.
1764 __isl_give isl_basic_map
*isl_basic_map_mark_final(
1765 __isl_take isl_basic_map
*bmap
)
1769 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1773 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1775 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1777 bmap
= remove_redundant_divs(bmap
);
1778 bmap
= isl_basic_map_mark_final(bmap
);
1782 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1784 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset
)));
1787 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1793 for (i
= 0; i
< set
->n
; ++i
) {
1794 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1804 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1810 for (i
= 0; i
< map
->n
; ++i
) {
1811 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1815 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1823 /* Remove definition of any div that is defined in terms of the given variable.
1824 * The div itself is not removed. Functions such as
1825 * eliminate_divs_ineq depend on the other divs remaining in place.
1827 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1835 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1836 if (isl_int_is_zero(bmap
->div
[i
][0]))
1838 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1840 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
1847 /* Eliminate the specified variables from the constraints using
1848 * Fourier-Motzkin. The variables themselves are not removed.
1850 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1851 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1862 total
= isl_basic_map_total_dim(bmap
);
1864 bmap
= isl_basic_map_cow(bmap
);
1865 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1866 bmap
= remove_dependent_vars(bmap
, d
);
1870 for (d
= pos
+ n
- 1;
1871 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1872 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1873 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1874 int n_lower
, n_upper
;
1877 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1878 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1880 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1881 isl_basic_map_drop_equality(bmap
, i
);
1889 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1890 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1892 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1895 bmap
= isl_basic_map_extend_constraints(bmap
,
1896 0, n_lower
* n_upper
);
1899 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1901 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1904 for (j
= 0; j
< i
; ++j
) {
1905 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1908 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1909 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1911 k
= isl_basic_map_alloc_inequality(bmap
);
1914 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1916 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1917 1+d
, 1+total
, NULL
);
1919 isl_basic_map_drop_inequality(bmap
, i
);
1922 if (n_lower
> 0 && n_upper
> 0) {
1923 bmap
= isl_basic_map_normalize_constraints(bmap
);
1924 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1926 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1927 bmap
= isl_basic_map_remove_redundancies(bmap
);
1931 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1935 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1937 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1940 isl_basic_map_free(bmap
);
1944 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1945 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1947 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset
),
1951 /* Eliminate the specified n dimensions starting at first from the
1952 * constraints, without removing the dimensions from the space.
1953 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1954 * Otherwise, they are projected out and the original space is restored.
1956 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1957 __isl_take isl_basic_map
*bmap
,
1958 enum isl_dim_type type
, unsigned first
, unsigned n
)
1967 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1968 isl_die(bmap
->ctx
, isl_error_invalid
,
1969 "index out of bounds", goto error
);
1971 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1972 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1973 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1974 return isl_basic_map_finalize(bmap
);
1977 space
= isl_basic_map_get_space(bmap
);
1978 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1979 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1980 bmap
= isl_basic_map_reset_space(bmap
, space
);
1983 isl_basic_map_free(bmap
);
1987 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1988 __isl_take isl_basic_set
*bset
,
1989 enum isl_dim_type type
, unsigned first
, unsigned n
)
1991 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1994 /* Remove all constraints from "bmap" that reference any unknown local
1995 * variables (directly or indirectly).
1997 * Dropping all constraints on a local variable will make it redundant,
1998 * so it will get removed implicitly by
1999 * isl_basic_map_drop_constraints_involving_dims. Some other local
2000 * variables may also end up becoming redundant if they only appear
2001 * in constraints together with the unknown local variable.
2002 * Therefore, start over after calling
2003 * isl_basic_map_drop_constraints_involving_dims.
2005 __isl_give isl_basic_map
*isl_basic_map_drop_constraint_involving_unknown_divs(
2006 __isl_take isl_basic_map
*bmap
)
2009 int i
, n_div
, o_div
;
2011 known
= isl_basic_map_divs_known(bmap
);
2013 return isl_basic_map_free(bmap
);
2017 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2018 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
) - 1;
2020 for (i
= 0; i
< n_div
; ++i
) {
2021 known
= isl_basic_map_div_is_known(bmap
, i
);
2023 return isl_basic_map_free(bmap
);
2026 bmap
= remove_dependent_vars(bmap
, o_div
+ i
);
2027 bmap
= isl_basic_map_drop_constraints_involving_dims(bmap
,
2031 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2038 /* Remove all constraints from "map" that reference any unknown local
2039 * variables (directly or indirectly).
2041 * Since constraints may get dropped from the basic maps,
2042 * they may no longer be disjoint from each other.
2044 __isl_give isl_map
*isl_map_drop_constraint_involving_unknown_divs(
2045 __isl_take isl_map
*map
)
2050 known
= isl_map_divs_known(map
);
2052 return isl_map_free(map
);
2056 map
= isl_map_cow(map
);
2060 for (i
= 0; i
< map
->n
; ++i
) {
2062 isl_basic_map_drop_constraint_involving_unknown_divs(
2065 return isl_map_free(map
);
2069 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
2074 /* Don't assume equalities are in order, because align_divs
2075 * may have changed the order of the divs.
2077 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
2082 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2083 for (d
= 0; d
< total
; ++d
)
2085 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2086 for (d
= total
- 1; d
>= 0; --d
) {
2087 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
2095 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
2097 compute_elimination_index(bset_to_bmap(bset
), elim
);
2100 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
2101 struct isl_basic_map
*bmap
, int *elim
)
2107 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2108 for (d
= total
- 1; d
>= 0; --d
) {
2109 if (isl_int_is_zero(src
[1+d
]))
2114 isl_seq_cpy(dst
, src
, 1 + total
);
2117 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
2122 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
2123 struct isl_basic_set
*bset
, int *elim
)
2125 return reduced_using_equalities(dst
, src
,
2126 bset_to_bmap(bset
), elim
);
2129 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
2130 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
2135 if (!bset
|| !context
)
2138 if (context
->n_eq
== 0) {
2139 isl_basic_set_free(context
);
2143 bset
= isl_basic_set_cow(bset
);
2147 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
2150 set_compute_elimination_index(context
, elim
);
2151 for (i
= 0; i
< bset
->n_eq
; ++i
)
2152 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
2154 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2155 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
2157 isl_basic_set_free(context
);
2159 bset
= isl_basic_set_simplify(bset
);
2160 bset
= isl_basic_set_finalize(bset
);
2163 isl_basic_set_free(bset
);
2164 isl_basic_set_free(context
);
2168 /* For each inequality in "ineq" that is a shifted (more relaxed)
2169 * copy of an inequality in "context", mark the corresponding entry
2171 * If an inequality only has a non-negative constant term, then
2174 static isl_stat
mark_shifted_constraints(__isl_keep isl_mat
*ineq
,
2175 __isl_keep isl_basic_set
*context
, int *row
)
2177 struct isl_constraint_index ci
;
2182 if (!ineq
|| !context
)
2183 return isl_stat_error
;
2184 if (context
->n_ineq
== 0)
2186 if (setup_constraint_index(&ci
, context
) < 0)
2187 return isl_stat_error
;
2189 n_ineq
= isl_mat_rows(ineq
);
2190 total
= isl_mat_cols(ineq
) - 1;
2191 for (k
= 0; k
< n_ineq
; ++k
) {
2195 l
= isl_seq_first_non_zero(ineq
->row
[k
] + 1, total
);
2196 if (l
< 0 && isl_int_is_nonneg(ineq
->row
[k
][0])) {
2200 redundant
= constraint_index_is_redundant(&ci
, ineq
->row
[k
]);
2207 constraint_index_free(&ci
);
2210 constraint_index_free(&ci
);
2211 return isl_stat_error
;
2214 static struct isl_basic_set
*remove_shifted_constraints(
2215 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
2217 struct isl_constraint_index ci
;
2220 if (!bset
|| !context
)
2223 if (context
->n_ineq
== 0)
2225 if (setup_constraint_index(&ci
, context
) < 0)
2228 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
2231 redundant
= constraint_index_is_redundant(&ci
, bset
->ineq
[k
]);
2236 bset
= isl_basic_set_cow(bset
);
2239 isl_basic_set_drop_inequality(bset
, k
);
2242 constraint_index_free(&ci
);
2245 constraint_index_free(&ci
);
2249 /* Remove constraints from "bmap" that are identical to constraints
2250 * in "context" or that are more relaxed (greater constant term).
2252 * We perform the test for shifted copies on the pure constraints
2253 * in remove_shifted_constraints.
2255 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
2256 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
2258 isl_basic_set
*bset
, *bset_context
;
2260 if (!bmap
|| !context
)
2263 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
2264 isl_basic_map_free(context
);
2268 context
= isl_basic_map_align_divs(context
, bmap
);
2269 bmap
= isl_basic_map_align_divs(bmap
, context
);
2271 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
2272 bset_context
= isl_basic_map_underlying_set(context
);
2273 bset
= remove_shifted_constraints(bset
, bset_context
);
2274 isl_basic_set_free(bset_context
);
2276 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2280 isl_basic_map_free(bmap
);
2281 isl_basic_map_free(context
);
2285 /* Does the (linear part of a) constraint "c" involve any of the "len"
2286 * "relevant" dimensions?
2288 static int is_related(isl_int
*c
, int len
, int *relevant
)
2292 for (i
= 0; i
< len
; ++i
) {
2295 if (!isl_int_is_zero(c
[i
]))
2302 /* Drop constraints from "bmap" that do not involve any of
2303 * the dimensions marked "relevant".
2305 static __isl_give isl_basic_map
*drop_unrelated_constraints(
2306 __isl_take isl_basic_map
*bmap
, int *relevant
)
2310 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2311 for (i
= 0; i
< dim
; ++i
)
2317 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
)
2318 if (!is_related(bmap
->eq
[i
] + 1, dim
, relevant
)) {
2319 bmap
= isl_basic_map_cow(bmap
);
2320 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
2321 return isl_basic_map_free(bmap
);
2324 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
)
2325 if (!is_related(bmap
->ineq
[i
] + 1, dim
, relevant
)) {
2326 bmap
= isl_basic_map_cow(bmap
);
2327 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
2328 return isl_basic_map_free(bmap
);
2334 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2336 * In particular, for any variable involved in the constraint,
2337 * find the actual group id from before and replace the group
2338 * of the corresponding variable by the minimal group of all
2339 * the variables involved in the constraint considered so far
2340 * (if this minimum is smaller) or replace the minimum by this group
2341 * (if the minimum is larger).
2343 * At the end, all the variables in "c" will (indirectly) point
2344 * to the minimal of the groups that they referred to originally.
2346 static void update_groups(int dim
, int *group
, isl_int
*c
)
2351 for (j
= 0; j
< dim
; ++j
) {
2352 if (isl_int_is_zero(c
[j
]))
2354 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2355 group
[j
] = group
[group
[j
]];
2356 if (group
[j
] == min
)
2358 if (group
[j
] < min
) {
2359 if (min
>= 0 && min
< dim
)
2360 group
[min
] = group
[j
];
2363 group
[group
[j
]] = min
;
2367 /* Allocate an array of groups of variables, one for each variable
2368 * in "context", initialized to zero.
2370 static int *alloc_groups(__isl_keep isl_basic_set
*context
)
2375 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2376 ctx
= isl_basic_set_get_ctx(context
);
2377 return isl_calloc_array(ctx
, int, dim
);
2380 /* Drop constraints from "bmap" that only involve variables that are
2381 * not related to any of the variables marked with a "-1" in "group".
2383 * We construct groups of variables that collect variables that
2384 * (indirectly) appear in some common constraint of "bmap".
2385 * Each group is identified by the first variable in the group,
2386 * except for the special group of variables that was already identified
2387 * in the input as -1 (or are related to those variables).
2388 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2389 * otherwise the group of i is the group of group[i].
2391 * We first initialize groups for the remaining variables.
2392 * Then we iterate over the constraints of "bmap" and update the
2393 * group of the variables in the constraint by the smallest group.
2394 * Finally, we resolve indirect references to groups by running over
2397 * After computing the groups, we drop constraints that do not involve
2398 * any variables in the -1 group.
2400 __isl_give isl_basic_map
*isl_basic_map_drop_unrelated_constraints(
2401 __isl_take isl_basic_map
*bmap
, __isl_take
int *group
)
2410 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2413 for (i
= 0; i
< dim
; ++i
)
2415 last
= group
[i
] = i
;
2421 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2422 update_groups(dim
, group
, bmap
->eq
[i
] + 1);
2423 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
2424 update_groups(dim
, group
, bmap
->ineq
[i
] + 1);
2426 for (i
= 0; i
< dim
; ++i
)
2428 group
[i
] = group
[group
[i
]];
2430 for (i
= 0; i
< dim
; ++i
)
2431 group
[i
] = group
[i
] == -1;
2433 bmap
= drop_unrelated_constraints(bmap
, group
);
2439 /* Drop constraints from "context" that are irrelevant for computing
2440 * the gist of "bset".
2442 * In particular, drop constraints in variables that are not related
2443 * to any of the variables involved in the constraints of "bset"
2444 * in the sense that there is no sequence of constraints that connects them.
2446 * We first mark all variables that appear in "bset" as belonging
2447 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2449 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2450 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2456 if (!context
|| !bset
)
2457 return isl_basic_set_free(context
);
2459 group
= alloc_groups(context
);
2462 return isl_basic_set_free(context
);
2464 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2465 for (i
= 0; i
< dim
; ++i
) {
2466 for (j
= 0; j
< bset
->n_eq
; ++j
)
2467 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2469 if (j
< bset
->n_eq
) {
2473 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2474 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2476 if (j
< bset
->n_ineq
)
2480 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2483 /* Drop constraints from "context" that are irrelevant for computing
2484 * the gist of the inequalities "ineq".
2485 * Inequalities in "ineq" for which the corresponding element of row
2486 * is set to -1 have already been marked for removal and should be ignored.
2488 * In particular, drop constraints in variables that are not related
2489 * to any of the variables involved in "ineq"
2490 * in the sense that there is no sequence of constraints that connects them.
2492 * We first mark all variables that appear in "bset" as belonging
2493 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2495 static __isl_give isl_basic_set
*drop_irrelevant_constraints_marked(
2496 __isl_take isl_basic_set
*context
, __isl_keep isl_mat
*ineq
, int *row
)
2502 if (!context
|| !ineq
)
2503 return isl_basic_set_free(context
);
2505 group
= alloc_groups(context
);
2508 return isl_basic_set_free(context
);
2510 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2511 n
= isl_mat_rows(ineq
);
2512 for (i
= 0; i
< dim
; ++i
) {
2513 for (j
= 0; j
< n
; ++j
) {
2516 if (!isl_int_is_zero(ineq
->row
[j
][1 + i
]))
2523 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2526 /* Do all "n" entries of "row" contain a negative value?
2528 static int all_neg(int *row
, int n
)
2532 for (i
= 0; i
< n
; ++i
)
2539 /* Update the inequalities in "bset" based on the information in "row"
2542 * In particular, the array "row" contains either -1, meaning that
2543 * the corresponding inequality of "bset" is redundant, or the index
2544 * of an inequality in "tab".
2546 * If the row entry is -1, then drop the inequality.
2547 * Otherwise, if the constraint is marked redundant in the tableau,
2548 * then drop the inequality. Similarly, if it is marked as an equality
2549 * in the tableau, then turn the inequality into an equality and
2550 * perform Gaussian elimination.
2552 static __isl_give isl_basic_set
*update_ineq(__isl_take isl_basic_set
*bset
,
2553 __isl_keep
int *row
, struct isl_tab
*tab
)
2558 int found_equality
= 0;
2562 if (tab
&& tab
->empty
)
2563 return isl_basic_set_set_to_empty(bset
);
2565 n_ineq
= bset
->n_ineq
;
2566 for (i
= n_ineq
- 1; i
>= 0; --i
) {
2568 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2569 return isl_basic_set_free(bset
);
2575 if (isl_tab_is_equality(tab
, n_eq
+ row
[i
])) {
2576 isl_basic_map_inequality_to_equality(bset
, i
);
2578 } else if (isl_tab_is_redundant(tab
, n_eq
+ row
[i
])) {
2579 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2580 return isl_basic_set_free(bset
);
2585 bset
= isl_basic_set_gauss(bset
, NULL
);
2586 bset
= isl_basic_set_finalize(bset
);
2590 /* Update the inequalities in "bset" based on the information in "row"
2591 * and "tab" and free all arguments (other than "bset").
2593 static __isl_give isl_basic_set
*update_ineq_free(
2594 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*ineq
,
2595 __isl_take isl_basic_set
*context
, __isl_take
int *row
,
2596 struct isl_tab
*tab
)
2599 isl_basic_set_free(context
);
2601 bset
= update_ineq(bset
, row
, tab
);
2608 /* Remove all information from bset that is redundant in the context
2610 * "ineq" contains the (possibly transformed) inequalities of "bset",
2611 * in the same order.
2612 * The (explicit) equalities of "bset" are assumed to have been taken
2613 * into account by the transformation such that only the inequalities
2615 * "context" is assumed not to be empty.
2617 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2618 * A value of -1 means that the inequality is obviously redundant and may
2619 * not even appear in "tab".
2621 * We first mark the inequalities of "bset"
2622 * that are obviously redundant with respect to some inequality in "context".
2623 * Then we remove those constraints from "context" that have become
2624 * irrelevant for computing the gist of "bset".
2625 * Note that this removal of constraints cannot be replaced by
2626 * a factorization because factors in "bset" may still be connected
2627 * to each other through constraints in "context".
2629 * If there are any inequalities left, we construct a tableau for
2630 * the context and then add the inequalities of "bset".
2631 * Before adding these inequalities, we freeze all constraints such that
2632 * they won't be considered redundant in terms of the constraints of "bset".
2633 * Then we detect all redundant constraints (among the
2634 * constraints that weren't frozen), first by checking for redundancy in the
2635 * the tableau and then by checking if replacing a constraint by its negation
2636 * would lead to an empty set. This last step is fairly expensive
2637 * and could be optimized by more reuse of the tableau.
2638 * Finally, we update bset according to the results.
2640 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2641 __isl_take isl_mat
*ineq
, __isl_take isl_basic_set
*context
)
2646 isl_basic_set
*combined
= NULL
;
2647 struct isl_tab
*tab
= NULL
;
2648 unsigned n_eq
, context_ineq
;
2651 if (!bset
|| !ineq
|| !context
)
2654 if (bset
->n_ineq
== 0 || isl_basic_set_plain_is_universe(context
)) {
2655 isl_basic_set_free(context
);
2660 ctx
= isl_basic_set_get_ctx(context
);
2661 row
= isl_calloc_array(ctx
, int, bset
->n_ineq
);
2665 if (mark_shifted_constraints(ineq
, context
, row
) < 0)
2667 if (all_neg(row
, bset
->n_ineq
))
2668 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2670 context
= drop_irrelevant_constraints_marked(context
, ineq
, row
);
2673 if (isl_basic_set_plain_is_universe(context
))
2674 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2676 n_eq
= context
->n_eq
;
2677 context_ineq
= context
->n_ineq
;
2678 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2679 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2680 tab
= isl_tab_from_basic_set(combined
, 0);
2681 for (i
= 0; i
< context_ineq
; ++i
)
2682 if (isl_tab_freeze_constraint(tab
, n_eq
+ i
) < 0)
2684 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2687 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2690 combined
= isl_basic_set_add_ineq(combined
, ineq
->row
[i
]);
2691 if (isl_tab_add_ineq(tab
, ineq
->row
[i
]) < 0)
2695 if (isl_tab_detect_implicit_equalities(tab
) < 0)
2697 if (isl_tab_detect_redundant(tab
) < 0)
2699 total
= isl_basic_set_total_dim(bset
);
2700 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
2701 isl_basic_set
*test
;
2707 if (tab
->con
[n_eq
+ r
].is_redundant
)
2709 test
= isl_basic_set_dup(combined
);
2710 if (isl_inequality_negate(test
, r
) < 0)
2711 test
= isl_basic_set_free(test
);
2712 test
= isl_basic_set_update_from_tab(test
, tab
);
2713 is_empty
= isl_basic_set_is_empty(test
);
2714 isl_basic_set_free(test
);
2718 tab
->con
[n_eq
+ r
].is_redundant
= 1;
2720 bset
= update_ineq_free(bset
, ineq
, context
, row
, tab
);
2722 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2723 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2726 isl_basic_set_free(combined
);
2732 isl_basic_set_free(combined
);
2733 isl_basic_set_free(context
);
2734 isl_basic_set_free(bset
);
2738 /* Extract the inequalities of "bset" as an isl_mat.
2740 static __isl_give isl_mat
*extract_ineq(__isl_keep isl_basic_set
*bset
)
2749 ctx
= isl_basic_set_get_ctx(bset
);
2750 total
= isl_basic_set_total_dim(bset
);
2751 ineq
= isl_mat_sub_alloc6(ctx
, bset
->ineq
, 0, bset
->n_ineq
,
2757 /* Remove all information from "bset" that is redundant in the context
2758 * of "context", for the case where both "bset" and "context" are
2761 static __isl_give isl_basic_set
*uset_gist_uncompressed(
2762 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2766 ineq
= extract_ineq(bset
);
2767 return uset_gist_full(bset
, ineq
, context
);
2770 /* Remove all information from "bset" that is redundant in the context
2771 * of "context", for the case where the combined equalities of
2772 * "bset" and "context" allow for a compression that can be obtained
2773 * by preapplication of "T".
2775 * "bset" itself is not transformed by "T". Instead, the inequalities
2776 * are extracted from "bset" and those are transformed by "T".
2777 * uset_gist_full then determines which of the transformed inequalities
2778 * are redundant with respect to the transformed "context" and removes
2779 * the corresponding inequalities from "bset".
2781 * After preapplying "T" to the inequalities, any common factor is
2782 * removed from the coefficients. If this results in a tightening
2783 * of the constant term, then the same tightening is applied to
2784 * the corresponding untransformed inequality in "bset".
2785 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2789 * with 0 <= r < g, then it is equivalent to
2793 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2794 * subspace compressed by T since the latter would be transformed to
2798 static __isl_give isl_basic_set
*uset_gist_compressed(
2799 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
,
2800 __isl_take isl_mat
*T
)
2804 int i
, n_row
, n_col
;
2807 ineq
= extract_ineq(bset
);
2808 ineq
= isl_mat_product(ineq
, isl_mat_copy(T
));
2809 context
= isl_basic_set_preimage(context
, T
);
2811 if (!ineq
|| !context
)
2813 if (isl_basic_set_plain_is_empty(context
)) {
2815 isl_basic_set_free(context
);
2816 return isl_basic_set_set_to_empty(bset
);
2819 ctx
= isl_mat_get_ctx(ineq
);
2820 n_row
= isl_mat_rows(ineq
);
2821 n_col
= isl_mat_cols(ineq
);
2823 for (i
= 0; i
< n_row
; ++i
) {
2824 isl_seq_gcd(ineq
->row
[i
] + 1, n_col
- 1, &ctx
->normalize_gcd
);
2825 if (isl_int_is_zero(ctx
->normalize_gcd
))
2827 if (isl_int_is_one(ctx
->normalize_gcd
))
2829 isl_seq_scale_down(ineq
->row
[i
] + 1, ineq
->row
[i
] + 1,
2830 ctx
->normalize_gcd
, n_col
- 1);
2831 isl_int_fdiv_r(rem
, ineq
->row
[i
][0], ctx
->normalize_gcd
);
2832 isl_int_fdiv_q(ineq
->row
[i
][0],
2833 ineq
->row
[i
][0], ctx
->normalize_gcd
);
2834 if (isl_int_is_zero(rem
))
2836 bset
= isl_basic_set_cow(bset
);
2839 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], rem
);
2843 return uset_gist_full(bset
, ineq
, context
);
2846 isl_basic_set_free(context
);
2847 isl_basic_set_free(bset
);
2851 /* Project "bset" onto the variables that are involved in "template".
2853 static __isl_give isl_basic_set
*project_onto_involved(
2854 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*template)
2858 if (!bset
|| !template)
2859 return isl_basic_set_free(bset
);
2861 n
= isl_basic_set_dim(template, isl_dim_set
);
2863 for (i
= 0; i
< n
; ++i
) {
2866 involved
= isl_basic_set_involves_dims(template,
2869 return isl_basic_set_free(bset
);
2872 bset
= isl_basic_set_eliminate_vars(bset
, i
, 1);
2878 /* Remove all information from bset that is redundant in the context
2879 * of context. In particular, equalities that are linear combinations
2880 * of those in context are removed. Then the inequalities that are
2881 * redundant in the context of the equalities and inequalities of
2882 * context are removed.
2884 * First of all, we drop those constraints from "context"
2885 * that are irrelevant for computing the gist of "bset".
2886 * Alternatively, we could factorize the intersection of "context" and "bset".
2888 * We first compute the intersection of the integer affine hulls
2889 * of "bset" and "context",
2890 * compute the gist inside this intersection and then reduce
2891 * the constraints with respect to the equalities of the context
2892 * that only involve variables already involved in the input.
2894 * If two constraints are mutually redundant, then uset_gist_full
2895 * will remove the second of those constraints. We therefore first
2896 * sort the constraints so that constraints not involving existentially
2897 * quantified variables are given precedence over those that do.
2898 * We have to perform this sorting before the variable compression,
2899 * because that may effect the order of the variables.
2901 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2902 __isl_take isl_basic_set
*context
)
2907 isl_basic_set
*aff_context
;
2910 if (!bset
|| !context
)
2913 context
= drop_irrelevant_constraints(context
, bset
);
2915 bset
= isl_basic_set_detect_equalities(bset
);
2916 aff
= isl_basic_set_copy(bset
);
2917 aff
= isl_basic_set_plain_affine_hull(aff
);
2918 context
= isl_basic_set_detect_equalities(context
);
2919 aff_context
= isl_basic_set_copy(context
);
2920 aff_context
= isl_basic_set_plain_affine_hull(aff_context
);
2921 aff
= isl_basic_set_intersect(aff
, aff_context
);
2924 if (isl_basic_set_plain_is_empty(aff
)) {
2925 isl_basic_set_free(bset
);
2926 isl_basic_set_free(context
);
2929 bset
= isl_basic_set_sort_constraints(bset
);
2930 if (aff
->n_eq
== 0) {
2931 isl_basic_set_free(aff
);
2932 return uset_gist_uncompressed(bset
, context
);
2934 total
= isl_basic_set_total_dim(bset
);
2935 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2936 eq
= isl_mat_cow(eq
);
2937 T
= isl_mat_variable_compression(eq
, NULL
);
2938 isl_basic_set_free(aff
);
2939 if (T
&& T
->n_col
== 0) {
2941 isl_basic_set_free(context
);
2942 return isl_basic_set_set_to_empty(bset
);
2945 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2946 aff_context
= project_onto_involved(aff_context
, bset
);
2948 bset
= uset_gist_compressed(bset
, context
, T
);
2949 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2952 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2953 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2958 isl_basic_set_free(bset
);
2959 isl_basic_set_free(context
);
2963 /* Return the number of equality constraints in "bmap" that involve
2964 * local variables. This function assumes that Gaussian elimination
2965 * has been applied to the equality constraints.
2967 static int n_div_eq(__isl_keep isl_basic_map
*bmap
)
2975 if (bmap
->n_eq
== 0)
2978 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2979 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2982 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2983 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
,
2990 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2991 * The constraints are assumed not to involve any local variables.
2993 static __isl_give isl_basic_map
*basic_map_from_equalities(
2994 __isl_take isl_space
*space
, __isl_take isl_mat
*eq
)
2997 isl_basic_map
*bmap
= NULL
;
3002 if (1 + isl_space_dim(space
, isl_dim_all
) != eq
->n_col
)
3003 isl_die(isl_space_get_ctx(space
), isl_error_internal
,
3004 "unexpected number of columns", goto error
);
3006 bmap
= isl_basic_map_alloc_space(isl_space_copy(space
),
3008 for (i
= 0; i
< eq
->n_row
; ++i
) {
3009 k
= isl_basic_map_alloc_equality(bmap
);
3012 isl_seq_cpy(bmap
->eq
[k
], eq
->row
[i
], eq
->n_col
);
3015 isl_space_free(space
);
3019 isl_space_free(space
);
3021 isl_basic_map_free(bmap
);
3025 /* Construct and return a variable compression based on the equality
3026 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
3027 * "n1" is the number of (initial) equality constraints in "bmap1"
3028 * that do involve local variables.
3029 * "n2" is the number of (initial) equality constraints in "bmap2"
3030 * that do involve local variables.
3031 * "total" is the total number of other variables.
3032 * This function assumes that Gaussian elimination
3033 * has been applied to the equality constraints in both "bmap1" and "bmap2"
3034 * such that the equality constraints not involving local variables
3035 * are those that start at "n1" or "n2".
3037 * If either of "bmap1" and "bmap2" does not have such equality constraints,
3038 * then simply compute the compression based on the equality constraints
3039 * in the other basic map.
3040 * Otherwise, combine the equality constraints from both into a new
3041 * basic map such that Gaussian elimination can be applied to this combination
3042 * and then construct a variable compression from the resulting
3043 * equality constraints.
3045 static __isl_give isl_mat
*combined_variable_compression(
3046 __isl_keep isl_basic_map
*bmap1
, int n1
,
3047 __isl_keep isl_basic_map
*bmap2
, int n2
, int total
)
3050 isl_mat
*E1
, *E2
, *V
;
3051 isl_basic_map
*bmap
;
3053 ctx
= isl_basic_map_get_ctx(bmap1
);
3054 if (bmap1
->n_eq
== n1
) {
3055 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
3056 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
3057 return isl_mat_variable_compression(E2
, NULL
);
3059 if (bmap2
->n_eq
== n2
) {
3060 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
3061 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
3062 return isl_mat_variable_compression(E1
, NULL
);
3064 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
3065 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
3066 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
3067 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
3068 E1
= isl_mat_concat(E1
, E2
);
3069 bmap
= basic_map_from_equalities(isl_basic_map_get_space(bmap1
), E1
);
3070 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3073 E1
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
3074 V
= isl_mat_variable_compression(E1
, NULL
);
3075 isl_basic_map_free(bmap
);
3080 /* Extract the stride constraints from "bmap", compressed
3081 * with respect to both the stride constraints in "context" and
3082 * the remaining equality constraints in both "bmap" and "context".
3083 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
3084 * "context_n_eq" is the number of (initial) stride constraints in "context".
3086 * Let x be all variables in "bmap" (and "context") other than the local
3087 * variables. First compute a variable compression
3091 * based on the non-stride equality constraints in "bmap" and "context".
3092 * Consider the stride constraints of "context",
3096 * with y the local variables and plug in the variable compression,
3099 * A(V x') + B(y) = 0
3101 * Use these constraints to compute a parameter compression on x'
3105 * Now consider the stride constraints of "bmap"
3109 * and plug in x = V*T x''.
3110 * That is, return A = [C*V*T D].
3112 static __isl_give isl_mat
*extract_compressed_stride_constraints(
3113 __isl_keep isl_basic_map
*bmap
, int bmap_n_eq
,
3114 __isl_keep isl_basic_map
*context
, int context_n_eq
)
3118 isl_mat
*A
, *B
, *T
, *V
;
3120 total
= isl_basic_map_dim(context
, isl_dim_all
);
3121 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3124 ctx
= isl_basic_map_get_ctx(bmap
);
3126 V
= combined_variable_compression(bmap
, bmap_n_eq
,
3127 context
, context_n_eq
, total
);
3129 A
= isl_mat_sub_alloc6(ctx
, context
->eq
, 0, context_n_eq
, 0, 1 + total
);
3130 B
= isl_mat_sub_alloc6(ctx
, context
->eq
,
3131 0, context_n_eq
, 1 + total
, n_div
);
3132 A
= isl_mat_product(A
, isl_mat_copy(V
));
3133 T
= isl_mat_parameter_compression_ext(A
, B
);
3134 T
= isl_mat_product(V
, T
);
3136 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3137 T
= isl_mat_diagonal(T
, isl_mat_identity(ctx
, n_div
));
3139 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
,
3140 0, bmap_n_eq
, 0, 1 + total
+ n_div
);
3141 A
= isl_mat_product(A
, T
);
3146 /* Remove the prime factors from *g that have an exponent that
3147 * is strictly smaller than the exponent in "c".
3148 * All exponents in *g are known to be smaller than or equal
3151 * That is, if *g is equal to
3153 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3155 * and "c" is equal to
3157 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3161 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3162 * p_n^{e_n * (e_n = f_n)}
3164 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3165 * neither does the gcd of *g and c / *g.
3166 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3167 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3168 * Dividing *g by this gcd therefore strictly reduces the exponent
3169 * of the prime factors that need to be removed, while leaving the
3170 * other prime factors untouched.
3171 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3172 * removes all undesired factors, without removing any others.
3174 static void remove_incomplete_powers(isl_int
*g
, isl_int c
)
3180 isl_int_divexact(t
, c
, *g
);
3181 isl_int_gcd(t
, t
, *g
);
3182 if (isl_int_is_one(t
))
3184 isl_int_divexact(*g
, *g
, t
);
3189 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3190 * of the same stride constraints in a compressed space that exploits
3191 * all equalities in the context and the other equalities in "bmap".
3193 * If the stride constraints of "bmap" are of the form
3197 * then A is of the form
3201 * If any of these constraints involves only a single local variable y,
3202 * then the constraint appears as
3212 * Let g be the gcd of m and the coefficients of h.
3213 * Then, in particular, g is a divisor of the coefficients of h and
3217 * is known to be a multiple of g.
3218 * If some prime factor in m appears with the same exponent in g,
3219 * then it can be removed from m because f(x) is already known
3220 * to be a multiple of g and therefore in particular of this power
3221 * of the prime factors.
3222 * Prime factors that appear with a smaller exponent in g cannot
3223 * be removed from m.
3224 * Let g' be the divisor of g containing all prime factors that
3225 * appear with the same exponent in m and g, then
3229 * can be replaced by
3231 * f(x) + m/g' y_i' = 0
3233 * Note that (if g' != 1) this changes the explicit representation
3234 * of y_i to that of y_i', so the integer division at position i
3235 * is marked unknown and later recomputed by a call to
3236 * isl_basic_map_gauss.
3238 static __isl_give isl_basic_map
*reduce_stride_constraints(
3239 __isl_take isl_basic_map
*bmap
, int n
, __isl_keep isl_mat
*A
)
3247 return isl_basic_map_free(bmap
);
3249 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3250 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3254 for (i
= 0; i
< n
; ++i
) {
3257 div
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, n_div
);
3259 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
3260 "equality constraints modified unexpectedly",
3262 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
+ div
+ 1,
3263 n_div
- div
- 1) != -1)
3265 if (isl_mat_row_gcd(A
, i
, &gcd
) < 0)
3267 if (isl_int_is_one(gcd
))
3269 remove_incomplete_powers(&gcd
, bmap
->eq
[i
][1 + total
+ div
]);
3270 if (isl_int_is_one(gcd
))
3272 isl_int_divexact(bmap
->eq
[i
][1 + total
+ div
],
3273 bmap
->eq
[i
][1 + total
+ div
], gcd
);
3274 bmap
= isl_basic_map_mark_div_unknown(bmap
, div
);
3282 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3287 isl_basic_map_free(bmap
);
3291 /* Simplify the stride constraints in "bmap" based on
3292 * the remaining equality constraints in "bmap" and all equality
3293 * constraints in "context".
3294 * Only do this if both "bmap" and "context" have stride constraints.
3296 * First extract a copy of the stride constraints in "bmap" in a compressed
3297 * space exploiting all the other equality constraints and then
3298 * use this compressed copy to simplify the original stride constraints.
3300 static __isl_give isl_basic_map
*gist_strides(__isl_take isl_basic_map
*bmap
,
3301 __isl_keep isl_basic_map
*context
)
3303 int bmap_n_eq
, context_n_eq
;
3306 if (!bmap
|| !context
)
3307 return isl_basic_map_free(bmap
);
3309 bmap_n_eq
= n_div_eq(bmap
);
3310 context_n_eq
= n_div_eq(context
);
3312 if (bmap_n_eq
< 0 || context_n_eq
< 0)
3313 return isl_basic_map_free(bmap
);
3314 if (bmap_n_eq
== 0 || context_n_eq
== 0)
3317 A
= extract_compressed_stride_constraints(bmap
, bmap_n_eq
,
3318 context
, context_n_eq
);
3319 bmap
= reduce_stride_constraints(bmap
, bmap_n_eq
, A
);
3326 /* Return a basic map that has the same intersection with "context" as "bmap"
3327 * and that is as "simple" as possible.
3329 * The core computation is performed on the pure constraints.
3330 * When we add back the meaning of the integer divisions, we need
3331 * to (re)introduce the div constraints. If we happen to have
3332 * discovered that some of these integer divisions are equal to
3333 * some affine combination of other variables, then these div
3334 * constraints may end up getting simplified in terms of the equalities,
3335 * resulting in extra inequalities on the other variables that
3336 * may have been removed already or that may not even have been
3337 * part of the input. We try and remove those constraints of
3338 * this form that are most obviously redundant with respect to
3339 * the context. We also remove those div constraints that are
3340 * redundant with respect to the other constraints in the result.
3342 * The stride constraints among the equality constraints in "bmap" are
3343 * also simplified with respecting to the other equality constraints
3344 * in "bmap" and with respect to all equality constraints in "context".
3346 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
3347 struct isl_basic_map
*context
)
3349 isl_basic_set
*bset
, *eq
;
3350 isl_basic_map
*eq_bmap
;
3351 unsigned total
, n_div
, extra
, n_eq
, n_ineq
;
3353 if (!bmap
|| !context
)
3356 if (isl_basic_map_plain_is_universe(bmap
)) {
3357 isl_basic_map_free(context
);
3360 if (isl_basic_map_plain_is_empty(context
)) {
3361 isl_space
*space
= isl_basic_map_get_space(bmap
);
3362 isl_basic_map_free(bmap
);
3363 isl_basic_map_free(context
);
3364 return isl_basic_map_universe(space
);
3366 if (isl_basic_map_plain_is_empty(bmap
)) {
3367 isl_basic_map_free(context
);
3371 bmap
= isl_basic_map_remove_redundancies(bmap
);
3372 context
= isl_basic_map_remove_redundancies(context
);
3376 context
= isl_basic_map_align_divs(context
, bmap
);
3377 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3378 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3379 extra
= n_div
- isl_basic_map_dim(bmap
, isl_dim_div
);
3381 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
3382 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, extra
);
3383 bset
= uset_gist(bset
,
3384 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
3385 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, total
, extra
);
3387 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
3388 isl_basic_set_plain_is_empty(bset
)) {
3389 isl_basic_map_free(context
);
3390 return isl_basic_map_overlying_set(bset
, bmap
);
3394 n_ineq
= bset
->n_ineq
;
3395 eq
= isl_basic_set_copy(bset
);
3396 eq
= isl_basic_set_cow(eq
);
3397 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
3398 eq
= isl_basic_set_free(eq
);
3399 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
3400 bset
= isl_basic_set_free(bset
);
3402 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
3403 eq_bmap
= gist_strides(eq_bmap
, context
);
3404 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
3405 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
3406 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
3407 bmap
= isl_basic_map_remove_redundancies(bmap
);
3411 isl_basic_map_free(bmap
);
3412 isl_basic_map_free(context
);
3417 * Assumes context has no implicit divs.
3419 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
3420 __isl_take isl_basic_map
*context
)
3424 if (!map
|| !context
)
3427 if (isl_basic_map_plain_is_empty(context
)) {
3428 isl_space
*space
= isl_map_get_space(map
);
3430 isl_basic_map_free(context
);
3431 return isl_map_universe(space
);
3434 context
= isl_basic_map_remove_redundancies(context
);
3435 map
= isl_map_cow(map
);
3436 if (!map
|| !context
)
3438 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
3439 map
= isl_map_compute_divs(map
);
3442 for (i
= map
->n
- 1; i
>= 0; --i
) {
3443 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
3444 isl_basic_map_copy(context
));
3447 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
3448 isl_basic_map_free(map
->p
[i
]);
3449 if (i
!= map
->n
- 1)
3450 map
->p
[i
] = map
->p
[map
->n
- 1];
3454 isl_basic_map_free(context
);
3455 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3459 isl_basic_map_free(context
);
3463 /* Drop all inequalities from "bmap" that also appear in "context".
3464 * "context" is assumed to have only known local variables and
3465 * the initial local variables of "bmap" are assumed to be the same
3466 * as those of "context".
3467 * The constraints of both "bmap" and "context" are assumed
3468 * to have been sorted using isl_basic_map_sort_constraints.
3470 * Run through the inequality constraints of "bmap" and "context"
3472 * If a constraint of "bmap" involves variables not in "context",
3473 * then it cannot appear in "context".
3474 * If a matching constraint is found, it is removed from "bmap".
3476 static __isl_give isl_basic_map
*drop_inequalities(
3477 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3480 unsigned total
, extra
;
3482 if (!bmap
|| !context
)
3483 return isl_basic_map_free(bmap
);
3485 total
= isl_basic_map_total_dim(context
);
3486 extra
= isl_basic_map_total_dim(bmap
) - total
;
3488 i1
= bmap
->n_ineq
- 1;
3489 i2
= context
->n_ineq
- 1;
3490 while (bmap
&& i1
>= 0 && i2
>= 0) {
3493 if (isl_seq_first_non_zero(bmap
->ineq
[i1
] + 1 + total
,
3498 cmp
= isl_basic_map_constraint_cmp(context
, bmap
->ineq
[i1
],
3508 if (isl_int_eq(bmap
->ineq
[i1
][0], context
->ineq
[i2
][0])) {
3509 bmap
= isl_basic_map_cow(bmap
);
3510 if (isl_basic_map_drop_inequality(bmap
, i1
) < 0)
3511 bmap
= isl_basic_map_free(bmap
);
3520 /* Drop all equalities from "bmap" that also appear in "context".
3521 * "context" is assumed to have only known local variables and
3522 * the initial local variables of "bmap" are assumed to be the same
3523 * as those of "context".
3525 * Run through the equality constraints of "bmap" and "context"
3527 * If a constraint of "bmap" involves variables not in "context",
3528 * then it cannot appear in "context".
3529 * If a matching constraint is found, it is removed from "bmap".
3531 static __isl_give isl_basic_map
*drop_equalities(
3532 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3535 unsigned total
, extra
;
3537 if (!bmap
|| !context
)
3538 return isl_basic_map_free(bmap
);
3540 total
= isl_basic_map_total_dim(context
);
3541 extra
= isl_basic_map_total_dim(bmap
) - total
;
3543 i1
= bmap
->n_eq
- 1;
3544 i2
= context
->n_eq
- 1;
3546 while (bmap
&& i1
>= 0 && i2
>= 0) {
3549 if (isl_seq_first_non_zero(bmap
->eq
[i1
] + 1 + total
,
3552 last1
= isl_seq_last_non_zero(bmap
->eq
[i1
] + 1, total
);
3553 last2
= isl_seq_last_non_zero(context
->eq
[i2
] + 1, total
);
3554 if (last1
> last2
) {
3558 if (last1
< last2
) {
3562 if (isl_seq_eq(bmap
->eq
[i1
], context
->eq
[i2
], 1 + total
)) {
3563 bmap
= isl_basic_map_cow(bmap
);
3564 if (isl_basic_map_drop_equality(bmap
, i1
) < 0)
3565 bmap
= isl_basic_map_free(bmap
);
3574 /* Remove the constraints in "context" from "bmap".
3575 * "context" is assumed to have explicit representations
3576 * for all local variables.
3578 * First align the divs of "bmap" to those of "context" and
3579 * sort the constraints. Then drop all constraints from "bmap"
3580 * that appear in "context".
3582 __isl_give isl_basic_map
*isl_basic_map_plain_gist(
3583 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
3585 isl_bool done
, known
;
3587 done
= isl_basic_map_plain_is_universe(context
);
3588 if (done
== isl_bool_false
)
3589 done
= isl_basic_map_plain_is_universe(bmap
);
3590 if (done
== isl_bool_false
)
3591 done
= isl_basic_map_plain_is_empty(context
);
3592 if (done
== isl_bool_false
)
3593 done
= isl_basic_map_plain_is_empty(bmap
);
3597 isl_basic_map_free(context
);
3600 known
= isl_basic_map_divs_known(context
);
3604 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_invalid
,
3605 "context has unknown divs", goto error
);
3607 bmap
= isl_basic_map_align_divs(bmap
, context
);
3608 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3609 bmap
= isl_basic_map_sort_constraints(bmap
);
3610 context
= isl_basic_map_sort_constraints(context
);
3612 bmap
= drop_inequalities(bmap
, context
);
3613 bmap
= drop_equalities(bmap
, context
);
3615 isl_basic_map_free(context
);
3616 bmap
= isl_basic_map_finalize(bmap
);
3619 isl_basic_map_free(bmap
);
3620 isl_basic_map_free(context
);
3624 /* Replace "map" by the disjunct at position "pos" and free "context".
3626 static __isl_give isl_map
*replace_by_disjunct(__isl_take isl_map
*map
,
3627 int pos
, __isl_take isl_basic_map
*context
)
3629 isl_basic_map
*bmap
;
3631 bmap
= isl_basic_map_copy(map
->p
[pos
]);
3633 isl_basic_map_free(context
);
3634 return isl_map_from_basic_map(bmap
);
3637 /* Remove the constraints in "context" from "map".
3638 * If any of the disjuncts in the result turns out to be the universe,
3639 * then return this universe.
3640 * "context" is assumed to have explicit representations
3641 * for all local variables.
3643 __isl_give isl_map
*isl_map_plain_gist_basic_map(__isl_take isl_map
*map
,
3644 __isl_take isl_basic_map
*context
)
3647 isl_bool univ
, known
;
3649 univ
= isl_basic_map_plain_is_universe(context
);
3653 isl_basic_map_free(context
);
3656 known
= isl_basic_map_divs_known(context
);
3660 isl_die(isl_map_get_ctx(map
), isl_error_invalid
,
3661 "context has unknown divs", goto error
);
3663 map
= isl_map_cow(map
);
3666 for (i
= 0; i
< map
->n
; ++i
) {
3667 map
->p
[i
] = isl_basic_map_plain_gist(map
->p
[i
],
3668 isl_basic_map_copy(context
));
3669 univ
= isl_basic_map_plain_is_universe(map
->p
[i
]);
3672 if (univ
&& map
->n
> 1)
3673 return replace_by_disjunct(map
, i
, context
);
3676 isl_basic_map_free(context
);
3677 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3679 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
3683 isl_basic_map_free(context
);
3687 /* Replace "map" by a universe map in the same space and free "drop".
3689 static __isl_give isl_map
*replace_by_universe(__isl_take isl_map
*map
,
3690 __isl_take isl_map
*drop
)
3694 res
= isl_map_universe(isl_map_get_space(map
));
3700 /* Return a map that has the same intersection with "context" as "map"
3701 * and that is as "simple" as possible.
3703 * If "map" is already the universe, then we cannot make it any simpler.
3704 * Similarly, if "context" is the universe, then we cannot exploit it
3706 * If "map" and "context" are identical to each other, then we can
3707 * return the corresponding universe.
3709 * If either "map" or "context" consists of multiple disjuncts,
3710 * then check if "context" happens to be a subset of "map",
3711 * in which case all constraints can be removed.
3712 * In case of multiple disjuncts, the standard procedure
3713 * may not be able to detect that all constraints can be removed.
3715 * If none of these cases apply, we have to work a bit harder.
3716 * During this computation, we make use of a single disjunct context,
3717 * so if the original context consists of more than one disjunct
3718 * then we need to approximate the context by a single disjunct set.
3719 * Simply taking the simple hull may drop constraints that are
3720 * only implicitly available in each disjunct. We therefore also
3721 * look for constraints among those defining "map" that are valid
3722 * for the context. These can then be used to simplify away
3723 * the corresponding constraints in "map".
3725 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
3726 __isl_take isl_map
*context
)
3730 int single_disjunct_map
, single_disjunct_context
;
3732 isl_basic_map
*hull
;
3734 is_universe
= isl_map_plain_is_universe(map
);
3735 if (is_universe
>= 0 && !is_universe
)
3736 is_universe
= isl_map_plain_is_universe(context
);
3737 if (is_universe
< 0)
3740 isl_map_free(context
);
3744 equal
= isl_map_plain_is_equal(map
, context
);
3748 return replace_by_universe(map
, context
);
3750 single_disjunct_map
= isl_map_n_basic_map(map
) == 1;
3751 single_disjunct_context
= isl_map_n_basic_map(context
) == 1;
3752 if (!single_disjunct_map
|| !single_disjunct_context
) {
3753 subset
= isl_map_is_subset(context
, map
);
3757 return replace_by_universe(map
, context
);
3760 context
= isl_map_compute_divs(context
);
3763 if (single_disjunct_context
) {
3764 hull
= isl_map_simple_hull(context
);
3769 ctx
= isl_map_get_ctx(map
);
3770 list
= isl_map_list_alloc(ctx
, 2);
3771 list
= isl_map_list_add(list
, isl_map_copy(context
));
3772 list
= isl_map_list_add(list
, isl_map_copy(map
));
3773 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
3776 return isl_map_gist_basic_map(map
, hull
);
3779 isl_map_free(context
);
3783 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
3784 __isl_take isl_map
*context
)
3786 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
3789 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
3790 struct isl_basic_set
*context
)
3792 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset
),
3793 bset_to_bmap(context
)));
3796 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
3797 __isl_take isl_basic_set
*context
)
3799 return set_from_map(isl_map_gist_basic_map(set_to_map(set
),
3800 bset_to_bmap(context
)));
3803 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
3804 __isl_take isl_basic_set
*context
)
3806 isl_space
*space
= isl_set_get_space(set
);
3807 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
3808 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
3809 return isl_set_gist_basic_set(set
, dom_context
);
3812 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
3813 __isl_take isl_set
*context
)
3815 return set_from_map(isl_map_gist(set_to_map(set
), set_to_map(context
)));
3818 /* Compute the gist of "bmap" with respect to the constraints "context"
3821 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
3822 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
3824 isl_space
*space
= isl_basic_map_get_space(bmap
);
3825 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
3827 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
3828 return isl_basic_map_gist(bmap
, bmap_context
);
3831 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
3832 __isl_take isl_set
*context
)
3834 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3835 map_context
= isl_map_intersect_domain(map_context
, context
);
3836 return isl_map_gist(map
, map_context
);
3839 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
3840 __isl_take isl_set
*context
)
3842 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3843 map_context
= isl_map_intersect_range(map_context
, context
);
3844 return isl_map_gist(map
, map_context
);
3847 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
3848 __isl_take isl_set
*context
)
3850 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3851 map_context
= isl_map_intersect_params(map_context
, context
);
3852 return isl_map_gist(map
, map_context
);
3855 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
3856 __isl_take isl_set
*context
)
3858 return isl_map_gist_params(set
, context
);
3861 /* Quick check to see if two basic maps are disjoint.
3862 * In particular, we reduce the equalities and inequalities of
3863 * one basic map in the context of the equalities of the other
3864 * basic map and check if we get a contradiction.
3866 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3867 __isl_keep isl_basic_map
*bmap2
)
3869 struct isl_vec
*v
= NULL
;
3874 if (!bmap1
|| !bmap2
)
3875 return isl_bool_error
;
3876 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
3877 return isl_bool_error
);
3878 if (bmap1
->n_div
|| bmap2
->n_div
)
3879 return isl_bool_false
;
3880 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
3881 return isl_bool_false
;
3883 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
3885 return isl_bool_false
;
3886 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
3889 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
3892 compute_elimination_index(bmap1
, elim
);
3893 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
3895 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
3897 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
3898 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3901 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
3903 reduced
= reduced_using_equalities(v
->block
.data
,
3904 bmap2
->ineq
[i
], bmap1
, elim
);
3905 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3906 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3909 compute_elimination_index(bmap2
, elim
);
3910 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
3912 reduced
= reduced_using_equalities(v
->block
.data
,
3913 bmap1
->ineq
[i
], bmap2
, elim
);
3914 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3915 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3920 return isl_bool_false
;
3924 return isl_bool_true
;
3928 return isl_bool_error
;
3931 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3932 __isl_keep isl_basic_set
*bset2
)
3934 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1
),
3935 bset_to_bmap(bset2
));
3938 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3940 static isl_bool
all_pairs(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
,
3941 isl_bool (*test
)(__isl_keep isl_basic_map
*bmap1
,
3942 __isl_keep isl_basic_map
*bmap2
))
3947 return isl_bool_error
;
3949 for (i
= 0; i
< map1
->n
; ++i
) {
3950 for (j
= 0; j
< map2
->n
; ++j
) {
3951 isl_bool d
= test(map1
->p
[i
], map2
->p
[j
]);
3952 if (d
!= isl_bool_true
)
3957 return isl_bool_true
;
3960 /* Are "map1" and "map2" obviously disjoint, based on information
3961 * that can be derived without looking at the individual basic maps?
3963 * In particular, if one of them is empty or if they live in different spaces
3964 * (ignoring parameters), then they are clearly disjoint.
3966 static isl_bool
isl_map_plain_is_disjoint_global(__isl_keep isl_map
*map1
,
3967 __isl_keep isl_map
*map2
)
3973 return isl_bool_error
;
3975 disjoint
= isl_map_plain_is_empty(map1
);
3976 if (disjoint
< 0 || disjoint
)
3979 disjoint
= isl_map_plain_is_empty(map2
);
3980 if (disjoint
< 0 || disjoint
)
3983 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
3984 map2
->dim
, isl_dim_in
);
3985 if (match
< 0 || !match
)
3986 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3988 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
3989 map2
->dim
, isl_dim_out
);
3990 if (match
< 0 || !match
)
3991 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3993 return isl_bool_false
;
3996 /* Are "map1" and "map2" obviously disjoint?
3998 * If one of them is empty or if they live in different spaces (ignoring
3999 * parameters), then they are clearly disjoint.
4000 * This is checked by isl_map_plain_is_disjoint_global.
4002 * If they have different parameters, then we skip any further tests.
4004 * If they are obviously equal, but not obviously empty, then we will
4005 * not be able to detect if they are disjoint.
4007 * Otherwise we check if each basic map in "map1" is obviously disjoint
4008 * from each basic map in "map2".
4010 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
4011 __isl_keep isl_map
*map2
)
4017 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
4018 if (disjoint
< 0 || disjoint
)
4021 match
= isl_space_match(map1
->dim
, isl_dim_param
,
4022 map2
->dim
, isl_dim_param
);
4023 if (match
< 0 || !match
)
4024 return match
< 0 ? isl_bool_error
: isl_bool_false
;
4026 intersect
= isl_map_plain_is_equal(map1
, map2
);
4027 if (intersect
< 0 || intersect
)
4028 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4030 return all_pairs(map1
, map2
, &isl_basic_map_plain_is_disjoint
);
4033 /* Are "map1" and "map2" disjoint?
4035 * They are disjoint if they are "obviously disjoint" or if one of them
4036 * is empty. Otherwise, they are not disjoint if one of them is universal.
4037 * If the two inputs are (obviously) equal and not empty, then they are
4039 * If none of these cases apply, then check if all pairs of basic maps
4042 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4047 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
4048 if (disjoint
< 0 || disjoint
)
4051 disjoint
= isl_map_is_empty(map1
);
4052 if (disjoint
< 0 || disjoint
)
4055 disjoint
= isl_map_is_empty(map2
);
4056 if (disjoint
< 0 || disjoint
)
4059 intersect
= isl_map_plain_is_universe(map1
);
4060 if (intersect
< 0 || intersect
)
4061 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4063 intersect
= isl_map_plain_is_universe(map2
);
4064 if (intersect
< 0 || intersect
)
4065 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4067 intersect
= isl_map_plain_is_equal(map1
, map2
);
4068 if (intersect
< 0 || intersect
)
4069 return isl_bool_not(intersect
);
4071 return all_pairs(map1
, map2
, &isl_basic_map_is_disjoint
);
4074 /* Are "bmap1" and "bmap2" disjoint?
4076 * They are disjoint if they are "obviously disjoint" or if one of them
4077 * is empty. Otherwise, they are not disjoint if one of them is universal.
4078 * If none of these cases apply, we compute the intersection and see if
4079 * the result is empty.
4081 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
4082 __isl_keep isl_basic_map
*bmap2
)
4086 isl_basic_map
*test
;
4088 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
4089 if (disjoint
< 0 || disjoint
)
4092 disjoint
= isl_basic_map_is_empty(bmap1
);
4093 if (disjoint
< 0 || disjoint
)
4096 disjoint
= isl_basic_map_is_empty(bmap2
);
4097 if (disjoint
< 0 || disjoint
)
4100 intersect
= isl_basic_map_plain_is_universe(bmap1
);
4101 if (intersect
< 0 || intersect
)
4102 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4104 intersect
= isl_basic_map_plain_is_universe(bmap2
);
4105 if (intersect
< 0 || intersect
)
4106 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4108 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
4109 isl_basic_map_copy(bmap2
));
4110 disjoint
= isl_basic_map_is_empty(test
);
4111 isl_basic_map_free(test
);
4116 /* Are "bset1" and "bset2" disjoint?
4118 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
4119 __isl_keep isl_basic_set
*bset2
)
4121 return isl_basic_map_is_disjoint(bset1
, bset2
);
4124 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
4125 __isl_keep isl_set
*set2
)
4127 return isl_map_plain_is_disjoint(set_to_map(set1
), set_to_map(set2
));
4130 /* Are "set1" and "set2" disjoint?
4132 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
4134 return isl_map_is_disjoint(set1
, set2
);
4137 /* Is "v" equal to 0, 1 or -1?
4139 static int is_zero_or_one(isl_int v
)
4141 return isl_int_is_zero(v
) || isl_int_is_one(v
) || isl_int_is_negone(v
);
4144 /* Check if we can combine a given div with lower bound l and upper
4145 * bound u with some other div and if so return that other div.
4146 * Otherwise return -1.
4148 * We first check that
4149 * - the bounds are opposites of each other (except for the constant
4151 * - the bounds do not reference any other div
4152 * - no div is defined in terms of this div
4154 * Let m be the size of the range allowed on the div by the bounds.
4155 * That is, the bounds are of the form
4157 * e <= a <= e + m - 1
4159 * with e some expression in the other variables.
4160 * We look for another div b such that no third div is defined in terms
4161 * of this second div b and such that in any constraint that contains
4162 * a (except for the given lower and upper bound), also contains b
4163 * with a coefficient that is m times that of b.
4164 * That is, all constraints (execpt for the lower and upper bound)
4167 * e + f (a + m b) >= 0
4169 * Furthermore, in the constraints that only contain b, the coefficient
4170 * of b should be equal to 1 or -1.
4171 * If so, we return b so that "a + m b" can be replaced by
4172 * a single div "c = a + m b".
4174 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
4175 unsigned div
, unsigned l
, unsigned u
)
4181 if (bmap
->n_div
<= 1)
4183 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4184 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
4186 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
4187 bmap
->n_div
- div
- 1) != -1)
4189 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
4193 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4194 if (isl_int_is_zero(bmap
->div
[i
][0]))
4196 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
4200 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4201 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
4202 isl_int_sub(bmap
->ineq
[l
][0],
4203 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4204 bmap
= isl_basic_map_copy(bmap
);
4205 bmap
= isl_basic_map_set_to_empty(bmap
);
4206 isl_basic_map_free(bmap
);
4209 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4210 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4215 for (j
= 0; j
< bmap
->n_div
; ++j
) {
4216 if (isl_int_is_zero(bmap
->div
[j
][0]))
4218 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
4221 if (j
< bmap
->n_div
)
4223 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4225 if (j
== l
|| j
== u
)
4227 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
])) {
4228 if (is_zero_or_one(bmap
->ineq
[j
][1 + dim
+ i
]))
4232 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
4234 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
4235 bmap
->ineq
[j
][1 + dim
+ div
],
4237 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
4238 bmap
->ineq
[j
][1 + dim
+ i
]);
4239 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
4240 bmap
->ineq
[j
][1 + dim
+ div
],
4245 if (j
< bmap
->n_ineq
)
4250 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4251 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4255 /* Internal data structure used during the construction and/or evaluation of
4256 * an inequality that ensures that a pair of bounds always allows
4257 * for an integer value.
4259 * "tab" is the tableau in which the inequality is evaluated. It may
4260 * be NULL until it is actually needed.
4261 * "v" contains the inequality coefficients.
4262 * "g", "fl" and "fu" are temporary scalars used during the construction and
4265 struct test_ineq_data
{
4266 struct isl_tab
*tab
;
4273 /* Free all the memory allocated by the fields of "data".
4275 static void test_ineq_data_clear(struct test_ineq_data
*data
)
4277 isl_tab_free(data
->tab
);
4278 isl_vec_free(data
->v
);
4279 isl_int_clear(data
->g
);
4280 isl_int_clear(data
->fl
);
4281 isl_int_clear(data
->fu
);
4284 /* Is the inequality stored in data->v satisfied by "bmap"?
4285 * That is, does it only attain non-negative values?
4286 * data->tab is a tableau corresponding to "bmap".
4288 static isl_bool
test_ineq_is_satisfied(__isl_keep isl_basic_map
*bmap
,
4289 struct test_ineq_data
*data
)
4292 enum isl_lp_result res
;
4294 ctx
= isl_basic_map_get_ctx(bmap
);
4296 data
->tab
= isl_tab_from_basic_map(bmap
, 0);
4297 res
= isl_tab_min(data
->tab
, data
->v
->el
, ctx
->one
, &data
->g
, NULL
, 0);
4298 if (res
== isl_lp_error
)
4299 return isl_bool_error
;
4300 return res
== isl_lp_ok
&& isl_int_is_nonneg(data
->g
);
4303 /* Given a lower and an upper bound on div i, do they always allow
4304 * for an integer value of the given div?
4305 * Determine this property by constructing an inequality
4306 * such that the property is guaranteed when the inequality is nonnegative.
4307 * The lower bound is inequality l, while the upper bound is inequality u.
4308 * The constructed inequality is stored in data->v.
4310 * Let the upper bound be
4314 * and the lower bound
4318 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4321 * - f_u e_l <= f_u f_l g a <= f_l e_u
4323 * Since all variables are integer valued, this is equivalent to
4325 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4327 * If this interval is at least f_u f_l g, then it contains at least
4328 * one integer value for a.
4329 * That is, the test constraint is
4331 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4335 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4337 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4338 * then the constraint can be scaled down by a factor g',
4339 * with the constant term replaced by
4340 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4341 * Note that the result of applying Fourier-Motzkin to this pair
4344 * f_l e_u + f_u e_l >= 0
4346 * If the constant term of the scaled down version of this constraint,
4347 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4348 * term of the scaled down test constraint, then the test constraint
4349 * is known to hold and no explicit evaluation is required.
4350 * This is essentially the Omega test.
4352 * If the test constraint consists of only a constant term, then
4353 * it is sufficient to look at the sign of this constant term.
4355 static isl_bool
int_between_bounds(__isl_keep isl_basic_map
*bmap
, int i
,
4356 int l
, int u
, struct test_ineq_data
*data
)
4358 unsigned offset
, n_div
;
4359 offset
= isl_basic_map_offset(bmap
, isl_dim_div
);
4360 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4362 isl_int_gcd(data
->g
,
4363 bmap
->ineq
[l
][offset
+ i
], bmap
->ineq
[u
][offset
+ i
]);
4364 isl_int_divexact(data
->fl
, bmap
->ineq
[l
][offset
+ i
], data
->g
);
4365 isl_int_divexact(data
->fu
, bmap
->ineq
[u
][offset
+ i
], data
->g
);
4366 isl_int_neg(data
->fu
, data
->fu
);
4367 isl_seq_combine(data
->v
->el
, data
->fl
, bmap
->ineq
[u
],
4368 data
->fu
, bmap
->ineq
[l
], offset
+ n_div
);
4369 isl_int_mul(data
->g
, data
->g
, data
->fl
);
4370 isl_int_mul(data
->g
, data
->g
, data
->fu
);
4371 isl_int_sub(data
->g
, data
->g
, data
->fl
);
4372 isl_int_sub(data
->g
, data
->g
, data
->fu
);
4373 isl_int_add_ui(data
->g
, data
->g
, 1);
4374 isl_int_sub(data
->fl
, data
->v
->el
[0], data
->g
);
4376 isl_seq_gcd(data
->v
->el
+ 1, offset
- 1 + n_div
, &data
->g
);
4377 if (isl_int_is_zero(data
->g
))
4378 return isl_int_is_nonneg(data
->fl
);
4379 if (isl_int_is_one(data
->g
)) {
4380 isl_int_set(data
->v
->el
[0], data
->fl
);
4381 return test_ineq_is_satisfied(bmap
, data
);
4383 isl_int_fdiv_q(data
->fl
, data
->fl
, data
->g
);
4384 isl_int_fdiv_q(data
->v
->el
[0], data
->v
->el
[0], data
->g
);
4385 if (isl_int_eq(data
->fl
, data
->v
->el
[0]))
4386 return isl_bool_true
;
4387 isl_int_set(data
->v
->el
[0], data
->fl
);
4388 isl_seq_scale_down(data
->v
->el
+ 1, data
->v
->el
+ 1, data
->g
,
4389 offset
- 1 + n_div
);
4391 return test_ineq_is_satisfied(bmap
, data
);
4394 /* Remove more kinds of divs that are not strictly needed.
4395 * In particular, if all pairs of lower and upper bounds on a div
4396 * are such that they allow at least one integer value of the div,
4397 * then we can eliminate the div using Fourier-Motzkin without
4398 * introducing any spurious solutions.
4400 * If at least one of the two constraints has a unit coefficient for the div,
4401 * then the presence of such a value is guaranteed so there is no need to check.
4402 * In particular, the value attained by the bound with unit coefficient
4403 * can serve as this intermediate value.
4405 static struct isl_basic_map
*drop_more_redundant_divs(
4406 struct isl_basic_map
*bmap
, int *pairs
, int n
)
4409 struct test_ineq_data data
= { NULL
, NULL
};
4410 unsigned off
, n_div
;
4413 isl_int_init(data
.g
);
4414 isl_int_init(data
.fl
);
4415 isl_int_init(data
.fu
);
4420 ctx
= isl_basic_map_get_ctx(bmap
);
4421 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
4422 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4423 data
.v
= isl_vec_alloc(ctx
, off
+ n_div
);
4432 for (i
= 0; i
< n_div
; ++i
) {
4435 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
4441 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4442 if (!isl_int_is_pos(bmap
->ineq
[l
][off
+ i
]))
4444 if (isl_int_is_one(bmap
->ineq
[l
][off
+ i
]))
4446 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4447 if (!isl_int_is_neg(bmap
->ineq
[u
][off
+ i
]))
4449 if (isl_int_is_negone(bmap
->ineq
[u
][off
+ i
]))
4451 has_int
= int_between_bounds(bmap
, i
, l
, u
,
4455 if (data
.tab
&& data
.tab
->empty
)
4460 if (u
< bmap
->n_ineq
)
4463 if (data
.tab
&& data
.tab
->empty
) {
4464 bmap
= isl_basic_map_set_to_empty(bmap
);
4467 if (l
== bmap
->n_ineq
) {
4475 test_ineq_data_clear(&data
);
4482 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
4483 return isl_basic_map_drop_redundant_divs(bmap
);
4486 isl_basic_map_free(bmap
);
4487 test_ineq_data_clear(&data
);
4491 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4492 * and the upper bound u, div1 always occurs together with div2 in the form
4493 * (div1 + m div2), where m is the constant range on the variable div1
4494 * allowed by l and u, replace the pair div1 and div2 by a single
4495 * div that is equal to div1 + m div2.
4497 * The new div will appear in the location that contains div2.
4498 * We need to modify all constraints that contain
4499 * div2 = (div - div1) / m
4500 * The coefficient of div2 is known to be equal to 1 or -1.
4501 * (If a constraint does not contain div2, it will also not contain div1.)
4502 * If the constraint also contains div1, then we know they appear
4503 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4504 * i.e., the coefficient of div is f.
4506 * Otherwise, we first need to introduce div1 into the constraint.
4515 * A lower bound on div2
4519 * can be replaced by
4521 * m div2 + div1 + m t + f >= 0
4527 * can be replaced by
4529 * -(m div2 + div1) + m t + f' >= 0
4531 * These constraint are those that we would obtain from eliminating
4532 * div1 using Fourier-Motzkin.
4534 * After all constraints have been modified, we drop the lower and upper
4535 * bound and then drop div1.
4537 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
4538 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
4542 unsigned dim
, total
;
4545 ctx
= isl_basic_map_get_ctx(bmap
);
4547 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4548 total
= 1 + dim
+ bmap
->n_div
;
4551 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4552 isl_int_add_ui(m
, m
, 1);
4554 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4555 if (i
== l
|| i
== u
)
4557 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
4559 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
4560 if (isl_int_is_pos(bmap
->ineq
[i
][1 + dim
+ div2
]))
4561 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4562 ctx
->one
, bmap
->ineq
[l
], total
);
4564 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4565 ctx
->one
, bmap
->ineq
[u
], total
);
4567 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
4568 bmap
->ineq
[i
][1 + dim
+ div1
]);
4569 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
4574 isl_basic_map_drop_inequality(bmap
, l
);
4575 isl_basic_map_drop_inequality(bmap
, u
);
4577 isl_basic_map_drop_inequality(bmap
, u
);
4578 isl_basic_map_drop_inequality(bmap
, l
);
4580 bmap
= isl_basic_map_drop_div(bmap
, div1
);
4584 /* First check if we can coalesce any pair of divs and
4585 * then continue with dropping more redundant divs.
4587 * We loop over all pairs of lower and upper bounds on a div
4588 * with coefficient 1 and -1, respectively, check if there
4589 * is any other div "c" with which we can coalesce the div
4590 * and if so, perform the coalescing.
4592 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
4593 struct isl_basic_map
*bmap
, int *pairs
, int n
)
4598 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4600 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4603 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4604 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
4606 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4609 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
4611 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
4615 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
4616 return isl_basic_map_drop_redundant_divs(bmap
);
4621 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
4626 return drop_more_redundant_divs(bmap
, pairs
, n
);
4629 /* Are the "n" coefficients starting at "first" of inequality constraints
4630 * "i" and "j" of "bmap" equal to each other?
4632 static int is_parallel_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4635 return isl_seq_eq(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4638 /* Are the "n" coefficients starting at "first" of inequality constraints
4639 * "i" and "j" of "bmap" opposite to each other?
4641 static int is_opposite_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4644 return isl_seq_is_neg(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4647 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4648 * apart from the constant term?
4650 static isl_bool
is_opposite(__isl_keep isl_basic_map
*bmap
, int i
, int j
)
4654 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4655 return is_opposite_part(bmap
, i
, j
, 1, total
);
4658 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4659 * apart from the constant term and the coefficient at position "pos"?
4661 static int is_parallel_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4666 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4667 return is_parallel_part(bmap
, i
, j
, 1, pos
- 1) &&
4668 is_parallel_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4671 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4672 * apart from the constant term and the coefficient at position "pos"?
4674 static int is_opposite_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4679 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4680 return is_opposite_part(bmap
, i
, j
, 1, pos
- 1) &&
4681 is_opposite_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4684 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4685 * been modified, simplying it if "simplify" is set.
4686 * Free the temporary data structure "pairs" that was associated
4687 * to the old version of "bmap".
4689 static __isl_give isl_basic_map
*drop_redundant_divs_again(
4690 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int simplify
)
4693 bmap
= isl_basic_map_simplify(bmap
);
4695 return isl_basic_map_drop_redundant_divs(bmap
);
4698 /* Is "div" the single unknown existentially quantified variable
4699 * in inequality constraint "ineq" of "bmap"?
4700 * "div" is known to have a non-zero coefficient in "ineq".
4702 static isl_bool
single_unknown(__isl_keep isl_basic_map
*bmap
, int ineq
,
4706 unsigned n_div
, o_div
;
4709 known
= isl_basic_map_div_is_known(bmap
, div
);
4710 if (known
< 0 || known
)
4711 return isl_bool_not(known
);
4712 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4714 return isl_bool_true
;
4715 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4716 for (i
= 0; i
< n_div
; ++i
) {
4721 if (isl_int_is_zero(bmap
->ineq
[ineq
][o_div
+ i
]))
4723 known
= isl_basic_map_div_is_known(bmap
, i
);
4724 if (known
< 0 || !known
)
4728 return isl_bool_true
;
4731 /* Does integer division "div" have coefficient 1 in inequality constraint
4734 static isl_bool
has_coef_one(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4738 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4739 if (isl_int_is_one(bmap
->ineq
[ineq
][o_div
+ div
]))
4740 return isl_bool_true
;
4742 return isl_bool_false
;
4745 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4746 * then try and drop redundant divs again,
4747 * freeing the temporary data structure "pairs" that was associated
4748 * to the old version of "bmap".
4750 static __isl_give isl_basic_map
*set_eq_and_try_again(
4751 __isl_take isl_basic_map
*bmap
, int ineq
, __isl_take
int *pairs
)
4753 bmap
= isl_basic_map_cow(bmap
);
4754 isl_basic_map_inequality_to_equality(bmap
, ineq
);
4755 return drop_redundant_divs_again(bmap
, pairs
, 1);
4758 /* Drop the integer division at position "div", along with the two
4759 * inequality constraints "ineq1" and "ineq2" in which it appears
4760 * from "bmap" and then try and drop redundant divs again,
4761 * freeing the temporary data structure "pairs" that was associated
4762 * to the old version of "bmap".
4764 static __isl_give isl_basic_map
*drop_div_and_try_again(
4765 __isl_take isl_basic_map
*bmap
, int div
, int ineq1
, int ineq2
,
4766 __isl_take
int *pairs
)
4768 if (ineq1
> ineq2
) {
4769 isl_basic_map_drop_inequality(bmap
, ineq1
);
4770 isl_basic_map_drop_inequality(bmap
, ineq2
);
4772 isl_basic_map_drop_inequality(bmap
, ineq2
);
4773 isl_basic_map_drop_inequality(bmap
, ineq1
);
4775 bmap
= isl_basic_map_drop_div(bmap
, div
);
4776 return drop_redundant_divs_again(bmap
, pairs
, 0);
4779 /* Given two inequality constraints
4781 * f(x) + n d + c >= 0, (ineq)
4783 * with d the variable at position "pos", and
4785 * f(x) + c0 >= 0, (lower)
4787 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4788 * determined by the first constraint.
4795 static void lower_bound_from_parallel(__isl_keep isl_basic_map
*bmap
,
4796 int ineq
, int lower
, int pos
, isl_int
*l
)
4798 isl_int_neg(*l
, bmap
->ineq
[ineq
][0]);
4799 isl_int_add(*l
, *l
, bmap
->ineq
[lower
][0]);
4800 isl_int_cdiv_q(*l
, *l
, bmap
->ineq
[ineq
][pos
]);
4803 /* Given two inequality constraints
4805 * f(x) + n d + c >= 0, (ineq)
4807 * with d the variable at position "pos", and
4809 * -f(x) - c0 >= 0, (upper)
4811 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4812 * determined by the first constraint.
4819 static void lower_bound_from_opposite(__isl_keep isl_basic_map
*bmap
,
4820 int ineq
, int upper
, int pos
, isl_int
*u
)
4822 isl_int_neg(*u
, bmap
->ineq
[ineq
][0]);
4823 isl_int_sub(*u
, *u
, bmap
->ineq
[upper
][0]);
4824 isl_int_cdiv_q(*u
, *u
, bmap
->ineq
[ineq
][pos
]);
4827 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4828 * does the corresponding lower bound have a fixed value in "bmap"?
4830 * In particular, "ineq" is of the form
4832 * f(x) + n d + c >= 0
4834 * with n > 0, c the constant term and
4835 * d the existentially quantified variable "div".
4836 * That is, the lower bound is
4838 * ceil((-f(x) - c)/n)
4840 * Look for a pair of constraints
4845 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4846 * That is, check that
4848 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4850 * If so, return the index of inequality f(x) + c0 >= 0.
4851 * Otherwise, return -1.
4853 static int lower_bound_is_cst(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4856 int lower
= -1, upper
= -1;
4857 unsigned o_div
, n_div
;
4861 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4862 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4863 for (i
= 0; i
< bmap
->n_ineq
&& (lower
< 0 || upper
< 0); ++i
) {
4866 if (!isl_int_is_zero(bmap
->ineq
[i
][o_div
+ div
]))
4869 is_parallel_except(bmap
, ineq
, i
, o_div
+ div
)) {
4874 is_opposite_except(bmap
, ineq
, i
, o_div
+ div
)) {
4879 if (lower
< 0 || upper
< 0)
4885 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &l
);
4886 lower_bound_from_opposite(bmap
, ineq
, upper
, o_div
+ div
, &u
);
4888 equal
= isl_int_eq(l
, u
);
4893 return equal
? lower
: -1;
4896 /* Given a lower bound constraint "ineq" on the existentially quantified
4897 * variable "div", such that the corresponding lower bound has
4898 * a fixed value in "bmap", assign this fixed value to the variable and
4899 * then try and drop redundant divs again,
4900 * freeing the temporary data structure "pairs" that was associated
4901 * to the old version of "bmap".
4902 * "lower" determines the constant value for the lower bound.
4904 * In particular, "ineq" is of the form
4906 * f(x) + n d + c >= 0,
4908 * while "lower" is of the form
4912 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4913 * is ceil((c0 - c)/n).
4915 static __isl_give isl_basic_map
*fix_cst_lower(__isl_take isl_basic_map
*bmap
,
4916 int div
, int ineq
, int lower
, int *pairs
)
4923 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4924 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &c
);
4925 bmap
= isl_basic_map_fix(bmap
, isl_dim_div
, div
, c
);
4930 return isl_basic_map_drop_redundant_divs(bmap
);
4933 /* Remove divs that are not strictly needed based on the inequality
4935 * In particular, if a div only occurs positively (or negatively)
4936 * in constraints, then it can simply be dropped.
4937 * Also, if a div occurs in only two constraints and if moreover
4938 * those two constraints are opposite to each other, except for the constant
4939 * term and if the sum of the constant terms is such that for any value
4940 * of the other values, there is always at least one integer value of the
4941 * div, i.e., if one plus this sum is greater than or equal to
4942 * the (absolute value) of the coefficient of the div in the constraints,
4943 * then we can also simply drop the div.
4945 * If an existentially quantified variable does not have an explicit
4946 * representation, appears in only a single lower bound that does not
4947 * involve any other such existentially quantified variables and appears
4948 * in this lower bound with coefficient 1,
4949 * then fix the variable to the value of the lower bound. That is,
4950 * turn the inequality into an equality.
4951 * If for any value of the other variables, there is any value
4952 * for the existentially quantified variable satisfying the constraints,
4953 * then this lower bound also satisfies the constraints.
4954 * It is therefore safe to pick this lower bound.
4956 * The same reasoning holds even if the coefficient is not one.
4957 * However, fixing the variable to the value of the lower bound may
4958 * in general introduce an extra integer division, in which case
4959 * it may be better to pick another value.
4960 * If this integer division has a known constant value, then plugging
4961 * in this constant value removes the existentially quantified variable
4962 * completely. In particular, if the lower bound is of the form
4963 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4964 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4965 * then the existentially quantified variable can be assigned this
4968 * We skip divs that appear in equalities or in the definition of other divs.
4969 * Divs that appear in the definition of other divs usually occur in at least
4970 * 4 constraints, but the constraints may have been simplified.
4972 * If any divs are left after these simple checks then we move on
4973 * to more complicated cases in drop_more_redundant_divs.
4975 static __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs_ineq(
4976 __isl_take isl_basic_map
*bmap
)
4985 if (bmap
->n_div
== 0)
4988 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4989 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
4993 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4995 int last_pos
, last_neg
;
4998 isl_bool opp
, set_div
;
5000 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
5001 for (j
= i
; j
< bmap
->n_div
; ++j
)
5002 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
5004 if (j
< bmap
->n_div
)
5006 for (j
= 0; j
< bmap
->n_eq
; ++j
)
5007 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
5013 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
5014 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
5018 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
5023 pairs
[i
] = pos
* neg
;
5024 if (pairs
[i
] == 0) {
5025 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
5026 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
5027 isl_basic_map_drop_inequality(bmap
, j
);
5028 bmap
= isl_basic_map_drop_div(bmap
, i
);
5029 return drop_redundant_divs_again(bmap
, pairs
, 0);
5032 opp
= isl_bool_false
;
5034 opp
= is_opposite(bmap
, last_pos
, last_neg
);
5039 isl_bool single
, one
;
5043 single
= single_unknown(bmap
, last_pos
, i
);
5048 one
= has_coef_one(bmap
, i
, last_pos
);
5052 return set_eq_and_try_again(bmap
, last_pos
,
5054 lower
= lower_bound_is_cst(bmap
, i
, last_pos
);
5056 return fix_cst_lower(bmap
, i
, last_pos
, lower
,
5061 isl_int_add(bmap
->ineq
[last_pos
][0],
5062 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
5063 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
5064 bmap
->ineq
[last_pos
][0], 1);
5065 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
5066 bmap
->ineq
[last_pos
][1+off
+i
]);
5067 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
5068 bmap
->ineq
[last_pos
][0], 1);
5069 isl_int_sub(bmap
->ineq
[last_pos
][0],
5070 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
5072 return drop_div_and_try_again(bmap
, i
,
5073 last_pos
, last_neg
, pairs
);
5075 set_div
= isl_bool_false
;
5077 set_div
= ok_to_set_div_from_bound(bmap
, i
, last_pos
);
5079 return isl_basic_map_free(bmap
);
5081 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
5082 return drop_redundant_divs_again(bmap
, pairs
, 1);
5089 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
5095 isl_basic_map_free(bmap
);
5099 /* Consider the coefficients at "c" as a row vector and replace
5100 * them with their product with "T". "T" is assumed to be a square matrix.
5102 static isl_stat
preimage(isl_int
*c
, __isl_keep isl_mat
*T
)
5109 return isl_stat_error
;
5110 n
= isl_mat_rows(T
);
5111 if (isl_seq_first_non_zero(c
, n
) == -1)
5113 ctx
= isl_mat_get_ctx(T
);
5114 v
= isl_vec_alloc(ctx
, n
);
5116 return isl_stat_error
;
5117 isl_seq_swp_or_cpy(v
->el
, c
, n
);
5118 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5120 return isl_stat_error
;
5121 isl_seq_swp_or_cpy(c
, v
->el
, n
);
5127 /* Plug in T for the variables in "bmap" starting at "pos".
5128 * T is a linear unimodular matrix, i.e., without constant term.
5130 static __isl_give isl_basic_map
*isl_basic_map_preimage_vars(
5131 __isl_take isl_basic_map
*bmap
, unsigned pos
, __isl_take isl_mat
*T
)
5136 bmap
= isl_basic_map_cow(bmap
);
5140 n
= isl_mat_cols(T
);
5141 if (n
!= isl_mat_rows(T
))
5142 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5143 "expecting square matrix", goto error
);
5145 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5146 if (pos
+ n
> total
|| pos
+ n
< pos
)
5147 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5148 "invalid range", goto error
);
5150 for (i
= 0; i
< bmap
->n_eq
; ++i
)
5151 if (preimage(bmap
->eq
[i
] + 1 + pos
, T
) < 0)
5153 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
5154 if (preimage(bmap
->ineq
[i
] + 1 + pos
, T
) < 0)
5156 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5157 if (isl_basic_map_div_is_marked_unknown(bmap
, i
))
5159 if (preimage(bmap
->div
[i
] + 1 + 1 + pos
, T
) < 0)
5166 isl_basic_map_free(bmap
);
5171 /* Remove divs that are not strictly needed.
5173 * First look for an equality constraint involving two or more
5174 * existentially quantified variables without an explicit
5175 * representation. Replace the combination that appears
5176 * in the equality constraint by a single existentially quantified
5177 * variable such that the equality can be used to derive
5178 * an explicit representation for the variable.
5179 * If there are no more such equality constraints, then continue
5180 * with isl_basic_map_drop_redundant_divs_ineq.
5182 * In particular, if the equality constraint is of the form
5184 * f(x) + \sum_i c_i a_i = 0
5186 * with a_i existentially quantified variable without explicit
5187 * representation, then apply a transformation on the existentially
5188 * quantified variables to turn the constraint into
5192 * with g the gcd of the c_i.
5193 * In order to easily identify which existentially quantified variables
5194 * have a complete explicit representation, i.e., without being defined
5195 * in terms of other existentially quantified variables without
5196 * an explicit representation, the existentially quantified variables
5199 * The variable transformation is computed by extending the row
5200 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5202 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5207 * with [c_1/g ... c_n/g] representing the first row of U.
5208 * The inverse of U is then plugged into the original constraints.
5209 * The call to isl_basic_map_simplify makes sure the explicit
5210 * representation for a_1' is extracted from the equality constraint.
5212 __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs(
5213 __isl_take isl_basic_map
*bmap
)
5217 unsigned o_div
, n_div
;
5224 if (isl_basic_map_divs_known(bmap
))
5225 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5226 if (bmap
->n_eq
== 0)
5227 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5228 bmap
= isl_basic_map_sort_divs(bmap
);
5232 first
= isl_basic_map_first_unknown_div(bmap
);
5234 return isl_basic_map_free(bmap
);
5236 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
5237 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
5239 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5240 l
= isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ first
,
5245 if (isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ l
+ 1,
5246 n_div
- (l
+ 1)) == -1)
5250 if (i
>= bmap
->n_eq
)
5251 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5253 ctx
= isl_basic_map_get_ctx(bmap
);
5254 T
= isl_mat_alloc(ctx
, n_div
- l
, n_div
- l
);
5256 return isl_basic_map_free(bmap
);
5257 isl_seq_cpy(T
->row
[0], bmap
->eq
[i
] + o_div
+ l
, n_div
- l
);
5258 T
= isl_mat_normalize_row(T
, 0);
5259 T
= isl_mat_unimodular_complete(T
, 1);
5260 T
= isl_mat_right_inverse(T
);
5262 for (i
= l
; i
< n_div
; ++i
)
5263 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
5264 bmap
= isl_basic_map_preimage_vars(bmap
, o_div
- 1 + l
, T
);
5265 bmap
= isl_basic_map_simplify(bmap
);
5267 return isl_basic_map_drop_redundant_divs(bmap
);
5270 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
5271 struct isl_basic_set
*bset
)
5273 isl_basic_map
*bmap
= bset_to_bmap(bset
);
5274 return bset_from_bmap(isl_basic_map_drop_redundant_divs(bmap
));
5277 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
5283 for (i
= 0; i
< map
->n
; ++i
) {
5284 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
5288 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
5295 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
5297 return set_from_map(isl_map_drop_redundant_divs(set_to_map(set
)));
5300 /* Does "bmap" satisfy any equality that involves more than 2 variables
5301 * and/or has coefficients different from -1 and 1?
5303 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
5308 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5310 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5313 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
5316 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5317 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5321 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5325 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5326 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5330 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5338 /* Remove any common factor g from the constraint coefficients in "v".
5339 * The constant term is stored in the first position and is replaced
5340 * by floor(c/g). If any common factor is removed and if this results
5341 * in a tightening of the constraint, then set *tightened.
5343 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
5350 ctx
= isl_vec_get_ctx(v
);
5351 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
5352 if (isl_int_is_zero(ctx
->normalize_gcd
))
5354 if (isl_int_is_one(ctx
->normalize_gcd
))
5359 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
5361 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
5362 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
5367 /* If "bmap" is an integer set that satisfies any equality involving
5368 * more than 2 variables and/or has coefficients different from -1 and 1,
5369 * then use variable compression to reduce the coefficients by removing
5370 * any (hidden) common factor.
5371 * In particular, apply the variable compression to each constraint,
5372 * factor out any common factor in the non-constant coefficients and
5373 * then apply the inverse of the compression.
5374 * At the end, we mark the basic map as having reduced constants.
5375 * If this flag is still set on the next invocation of this function,
5376 * then we skip the computation.
5378 * Removing a common factor may result in a tightening of some of
5379 * the constraints. If this happens, then we may end up with two
5380 * opposite inequalities that can be replaced by an equality.
5381 * We therefore call isl_basic_map_detect_inequality_pairs,
5382 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5383 * and isl_basic_map_gauss if such a pair was found.
5385 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
5386 __isl_take isl_basic_map
*bmap
)
5391 isl_mat
*eq
, *T
, *T2
;
5397 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
5399 if (isl_basic_map_is_rational(bmap
))
5401 if (bmap
->n_eq
== 0)
5403 if (!has_multiple_var_equality(bmap
))
5406 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5407 ctx
= isl_basic_map_get_ctx(bmap
);
5408 v
= isl_vec_alloc(ctx
, 1 + total
);
5410 return isl_basic_map_free(bmap
);
5412 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
5413 T
= isl_mat_variable_compression(eq
, &T2
);
5416 if (T
->n_col
== 0) {
5420 return isl_basic_map_set_to_empty(bmap
);
5424 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5425 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
5426 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5427 v
= normalize_constraint(v
, &tightened
);
5428 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
5431 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
5438 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
5443 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
5445 bmap
= eliminate_divs_eq(bmap
, &progress
);
5446 bmap
= isl_basic_map_gauss(bmap
, NULL
);
5455 return isl_basic_map_free(bmap
);
5458 /* Shift the integer division at position "div" of "bmap"
5459 * by "shift" times the variable at position "pos".
5460 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5461 * corresponds to the constant term.
5463 * That is, if the integer division has the form
5467 * then replace it by
5469 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5471 __isl_give isl_basic_map
*isl_basic_map_shift_div(
5472 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
5477 if (isl_int_is_zero(shift
))
5482 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5483 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
5485 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
5487 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5488 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
5490 isl_int_submul(bmap
->eq
[i
][pos
],
5491 shift
, bmap
->eq
[i
][1 + total
+ div
]);
5493 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5494 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
5496 isl_int_submul(bmap
->ineq
[i
][pos
],
5497 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
5499 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5500 if (isl_int_is_zero(bmap
->div
[i
][0]))
5502 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
5504 isl_int_submul(bmap
->div
[i
][1 + pos
],
5505 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);