2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_map_private.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
55 struct isl_context_op
{
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab
*(*detect_nonnegative_parameters
)(
58 struct isl_context
*context
, struct isl_tab
*tab
);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
67 int check
, int update
);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
72 int check
, int update
);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
77 isl_int
*ineq
, int strict
);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
83 /* add div "div" to context and return non-negativity */
84 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
85 int (*detect_equalities
)(struct isl_context
*context
,
87 /* return row index of "best" split */
88 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
89 /* check if context has already been determined to be empty */
90 int (*is_empty
)(struct isl_context
*context
);
91 /* check if context is still usable */
92 int (*is_ok
)(struct isl_context
*context
);
93 /* save a copy/snapshot of context */
94 void *(*save
)(struct isl_context
*context
);
95 /* restore saved context */
96 void (*restore
)(struct isl_context
*context
, void *);
97 /* invalidate context */
98 void (*invalidate
)(struct isl_context
*context
);
100 void (*free
)(struct isl_context
*context
);
104 struct isl_context_op
*op
;
107 struct isl_context_lex
{
108 struct isl_context context
;
112 struct isl_partial_sol
{
114 struct isl_basic_set
*dom
;
117 struct isl_partial_sol
*next
;
121 struct isl_sol_callback
{
122 struct isl_tab_callback callback
;
126 /* isl_sol is an interface for constructing a solution to
127 * a parametric integer linear programming problem.
128 * Every time the algorithm reaches a state where a solution
129 * can be read off from the tableau (including cases where the tableau
130 * is empty), the function "add" is called on the isl_sol passed
131 * to find_solutions_main.
133 * The context tableau is owned by isl_sol and is updated incrementally.
135 * There are currently two implementations of this interface,
136 * isl_sol_map, which simply collects the solutions in an isl_map
137 * and (optionally) the parts of the context where there is no solution
139 * isl_sol_for, which calls a user-defined function for each part of
148 struct isl_context
*context
;
149 struct isl_partial_sol
*partial
;
150 void (*add
)(struct isl_sol
*sol
,
151 struct isl_basic_set
*dom
, struct isl_mat
*M
);
152 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
153 void (*free
)(struct isl_sol
*sol
);
154 struct isl_sol_callback dec_level
;
157 static void sol_free(struct isl_sol
*sol
)
159 struct isl_partial_sol
*partial
, *next
;
162 for (partial
= sol
->partial
; partial
; partial
= next
) {
163 next
= partial
->next
;
164 isl_basic_set_free(partial
->dom
);
165 isl_mat_free(partial
->M
);
171 /* Push a partial solution represented by a domain and mapping M
172 * onto the stack of partial solutions.
174 static void sol_push_sol(struct isl_sol
*sol
,
175 struct isl_basic_set
*dom
, struct isl_mat
*M
)
177 struct isl_partial_sol
*partial
;
179 if (sol
->error
|| !dom
)
182 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
186 partial
->level
= sol
->level
;
189 partial
->next
= sol
->partial
;
191 sol
->partial
= partial
;
195 isl_basic_set_free(dom
);
199 /* Pop one partial solution from the partial solution stack and
200 * pass it on to sol->add or sol->add_empty.
202 static void sol_pop_one(struct isl_sol
*sol
)
204 struct isl_partial_sol
*partial
;
206 partial
= sol
->partial
;
207 sol
->partial
= partial
->next
;
210 sol
->add(sol
, partial
->dom
, partial
->M
);
212 sol
->add_empty(sol
, partial
->dom
);
216 /* Return a fresh copy of the domain represented by the context tableau.
218 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
220 struct isl_basic_set
*bset
;
225 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
226 bset
= isl_basic_set_update_from_tab(bset
,
227 sol
->context
->op
->peek_tab(sol
->context
));
232 /* Check whether two partial solutions have the same mapping, where n_div
233 * is the number of divs that the two partial solutions have in common.
235 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
241 if (!s1
->M
!= !s2
->M
)
246 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
248 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
249 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
250 s1
->M
->n_col
-1-dim
-n_div
) != -1)
252 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
253 s2
->M
->n_col
-1-dim
-n_div
) != -1)
255 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
261 /* Pop all solutions from the partial solution stack that were pushed onto
262 * the stack at levels that are deeper than the current level.
263 * If the two topmost elements on the stack have the same level
264 * and represent the same solution, then their domains are combined.
265 * This combined domain is the same as the current context domain
266 * as sol_pop is called each time we move back to a higher level.
268 static void sol_pop(struct isl_sol
*sol
)
270 struct isl_partial_sol
*partial
;
276 if (sol
->level
== 0) {
277 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
282 partial
= sol
->partial
;
286 if (partial
->level
<= sol
->level
)
289 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
290 n_div
= isl_basic_set_dim(
291 sol
->context
->op
->peek_basic_set(sol
->context
),
294 if (!same_solution(partial
, partial
->next
, n_div
)) {
298 struct isl_basic_set
*bset
;
300 bset
= sol_domain(sol
);
302 isl_basic_set_free(partial
->next
->dom
);
303 partial
->next
->dom
= bset
;
304 partial
->next
->level
= sol
->level
;
306 sol
->partial
= partial
->next
;
307 isl_basic_set_free(partial
->dom
);
308 isl_mat_free(partial
->M
);
315 static void sol_dec_level(struct isl_sol
*sol
)
325 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
327 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
329 sol_dec_level(callback
->sol
);
331 return callback
->sol
->error
? -1 : 0;
334 /* Move down to next level and push callback onto context tableau
335 * to decrease the level again when it gets rolled back across
336 * the current state. That is, dec_level will be called with
337 * the context tableau in the same state as it is when inc_level
340 static void sol_inc_level(struct isl_sol
*sol
)
348 tab
= sol
->context
->op
->peek_tab(sol
->context
);
349 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
353 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
357 if (isl_int_is_one(m
))
360 for (i
= 0; i
< n_row
; ++i
)
361 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
364 /* Add the solution identified by the tableau and the context tableau.
366 * The layout of the variables is as follows.
367 * tab->n_var is equal to the total number of variables in the input
368 * map (including divs that were copied from the context)
369 * + the number of extra divs constructed
370 * Of these, the first tab->n_param and the last tab->n_div variables
371 * correspond to the variables in the context, i.e.,
372 * tab->n_param + tab->n_div = context_tab->n_var
373 * tab->n_param is equal to the number of parameters and input
374 * dimensions in the input map
375 * tab->n_div is equal to the number of divs in the context
377 * If there is no solution, then call add_empty with a basic set
378 * that corresponds to the context tableau. (If add_empty is NULL,
381 * If there is a solution, then first construct a matrix that maps
382 * all dimensions of the context to the output variables, i.e.,
383 * the output dimensions in the input map.
384 * The divs in the input map (if any) that do not correspond to any
385 * div in the context do not appear in the solution.
386 * The algorithm will make sure that they have an integer value,
387 * but these values themselves are of no interest.
388 * We have to be careful not to drop or rearrange any divs in the
389 * context because that would change the meaning of the matrix.
391 * To extract the value of the output variables, it should be noted
392 * that we always use a big parameter M in the main tableau and so
393 * the variable stored in this tableau is not an output variable x itself, but
394 * x' = M + x (in case of minimization)
396 * x' = M - x (in case of maximization)
397 * If x' appears in a column, then its optimal value is zero,
398 * which means that the optimal value of x is an unbounded number
399 * (-M for minimization and M for maximization).
400 * We currently assume that the output dimensions in the original map
401 * are bounded, so this cannot occur.
402 * Similarly, when x' appears in a row, then the coefficient of M in that
403 * row is necessarily 1.
404 * If the row in the tableau represents
405 * d x' = c + d M + e(y)
406 * then, in case of minimization, the corresponding row in the matrix
409 * with a d = m, the (updated) common denominator of the matrix.
410 * In case of maximization, the row will be
413 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
415 struct isl_basic_set
*bset
= NULL
;
416 struct isl_mat
*mat
= NULL
;
421 if (sol
->error
|| !tab
)
424 if (tab
->empty
&& !sol
->add_empty
)
427 bset
= sol_domain(sol
);
430 sol_push_sol(sol
, bset
, NULL
);
436 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
437 1 + tab
->n_param
+ tab
->n_div
);
443 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
444 isl_int_set_si(mat
->row
[0][0], 1);
445 for (row
= 0; row
< sol
->n_out
; ++row
) {
446 int i
= tab
->n_param
+ row
;
449 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
450 if (!tab
->var
[i
].is_row
) {
452 isl_assert(mat
->ctx
, !tab
->M
, goto error2
);
456 r
= tab
->var
[i
].index
;
459 isl_assert(mat
->ctx
, isl_int_eq(tab
->mat
->row
[r
][2],
460 tab
->mat
->row
[r
][0]),
462 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
463 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
464 scale_rows(mat
, m
, 1 + row
);
465 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
466 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
467 for (j
= 0; j
< tab
->n_param
; ++j
) {
469 if (tab
->var
[j
].is_row
)
471 col
= tab
->var
[j
].index
;
472 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
473 tab
->mat
->row
[r
][off
+ col
]);
475 for (j
= 0; j
< tab
->n_div
; ++j
) {
477 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
479 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
480 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
481 tab
->mat
->row
[r
][off
+ col
]);
484 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
490 sol_push_sol(sol
, bset
, mat
);
495 isl_basic_set_free(bset
);
503 struct isl_set
*empty
;
506 static void sol_map_free(struct isl_sol_map
*sol_map
)
508 if (sol_map
->sol
.context
)
509 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
510 isl_map_free(sol_map
->map
);
511 isl_set_free(sol_map
->empty
);
515 static void sol_map_free_wrap(struct isl_sol
*sol
)
517 sol_map_free((struct isl_sol_map
*)sol
);
520 /* This function is called for parts of the context where there is
521 * no solution, with "bset" corresponding to the context tableau.
522 * Simply add the basic set to the set "empty".
524 static void sol_map_add_empty(struct isl_sol_map
*sol
,
525 struct isl_basic_set
*bset
)
529 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
531 sol
->empty
= isl_set_grow(sol
->empty
, 1);
532 bset
= isl_basic_set_simplify(bset
);
533 bset
= isl_basic_set_finalize(bset
);
534 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
537 isl_basic_set_free(bset
);
540 isl_basic_set_free(bset
);
544 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
545 struct isl_basic_set
*bset
)
547 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
550 /* Add bset to sol's empty, but only if we are actually collecting
553 static void sol_map_add_empty_if_needed(struct isl_sol_map
*sol
,
554 struct isl_basic_set
*bset
)
557 sol_map_add_empty(sol
, bset
);
559 isl_basic_set_free(bset
);
562 /* Given a basic map "dom" that represents the context and an affine
563 * matrix "M" that maps the dimensions of the context to the
564 * output variables, construct a basic map with the same parameters
565 * and divs as the context, the dimensions of the context as input
566 * dimensions and a number of output dimensions that is equal to
567 * the number of output dimensions in the input map.
569 * The constraints and divs of the context are simply copied
570 * from "dom". For each row
574 * is added, with d the common denominator of M.
576 static void sol_map_add(struct isl_sol_map
*sol
,
577 struct isl_basic_set
*dom
, struct isl_mat
*M
)
580 struct isl_basic_map
*bmap
= NULL
;
581 isl_basic_set
*context_bset
;
589 if (sol
->sol
.error
|| !dom
|| !M
)
592 n_out
= sol
->sol
.n_out
;
593 n_eq
= dom
->n_eq
+ n_out
;
594 n_ineq
= dom
->n_ineq
;
596 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
597 total
= isl_map_dim(sol
->map
, isl_dim_all
);
598 bmap
= isl_basic_map_alloc_dim(isl_map_get_dim(sol
->map
),
599 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
602 if (sol
->sol
.rational
)
603 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
604 for (i
= 0; i
< dom
->n_div
; ++i
) {
605 int k
= isl_basic_map_alloc_div(bmap
);
608 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
609 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
610 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
611 dom
->div
[i
] + 1 + 1 + nparam
, i
);
613 for (i
= 0; i
< dom
->n_eq
; ++i
) {
614 int k
= isl_basic_map_alloc_equality(bmap
);
617 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
618 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
619 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
620 dom
->eq
[i
] + 1 + nparam
, n_div
);
622 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
623 int k
= isl_basic_map_alloc_inequality(bmap
);
626 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
627 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
628 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
629 dom
->ineq
[i
] + 1 + nparam
, n_div
);
631 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
632 int k
= isl_basic_map_alloc_equality(bmap
);
635 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
636 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
637 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
638 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
639 M
->row
[1 + i
] + 1 + nparam
, n_div
);
641 bmap
= isl_basic_map_simplify(bmap
);
642 bmap
= isl_basic_map_finalize(bmap
);
643 sol
->map
= isl_map_grow(sol
->map
, 1);
644 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
647 isl_basic_set_free(dom
);
651 isl_basic_set_free(dom
);
653 isl_basic_map_free(bmap
);
657 static void sol_map_add_wrap(struct isl_sol
*sol
,
658 struct isl_basic_set
*dom
, struct isl_mat
*M
)
660 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
664 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
665 * i.e., the constant term and the coefficients of all variables that
666 * appear in the context tableau.
667 * Note that the coefficient of the big parameter M is NOT copied.
668 * The context tableau may not have a big parameter and even when it
669 * does, it is a different big parameter.
671 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
674 unsigned off
= 2 + tab
->M
;
676 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
677 for (i
= 0; i
< tab
->n_param
; ++i
) {
678 if (tab
->var
[i
].is_row
)
679 isl_int_set_si(line
[1 + i
], 0);
681 int col
= tab
->var
[i
].index
;
682 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
685 for (i
= 0; i
< tab
->n_div
; ++i
) {
686 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
687 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
689 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
690 isl_int_set(line
[1 + tab
->n_param
+ i
],
691 tab
->mat
->row
[row
][off
+ col
]);
696 /* Check if rows "row1" and "row2" have identical "parametric constants",
697 * as explained above.
698 * In this case, we also insist that the coefficients of the big parameter
699 * be the same as the values of the constants will only be the same
700 * if these coefficients are also the same.
702 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
705 unsigned off
= 2 + tab
->M
;
707 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
710 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
711 tab
->mat
->row
[row2
][2]))
714 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
715 int pos
= i
< tab
->n_param
? i
:
716 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
719 if (tab
->var
[pos
].is_row
)
721 col
= tab
->var
[pos
].index
;
722 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
723 tab
->mat
->row
[row2
][off
+ col
]))
729 /* Return an inequality that expresses that the "parametric constant"
730 * should be non-negative.
731 * This function is only called when the coefficient of the big parameter
734 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
736 struct isl_vec
*ineq
;
738 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
742 get_row_parameter_line(tab
, row
, ineq
->el
);
744 ineq
= isl_vec_normalize(ineq
);
749 /* Return a integer division for use in a parametric cut based on the given row.
750 * In particular, let the parametric constant of the row be
754 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
755 * The div returned is equal to
757 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
759 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
763 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
767 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
768 get_row_parameter_line(tab
, row
, div
->el
+ 1);
769 div
= isl_vec_normalize(div
);
770 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
771 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
776 /* Return a integer division for use in transferring an integrality constraint
778 * In particular, let the parametric constant of the row be
782 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
783 * The the returned div is equal to
785 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
787 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
791 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
795 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
796 get_row_parameter_line(tab
, row
, div
->el
+ 1);
797 div
= isl_vec_normalize(div
);
798 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
803 /* Construct and return an inequality that expresses an upper bound
805 * In particular, if the div is given by
809 * then the inequality expresses
813 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
817 struct isl_vec
*ineq
;
822 total
= isl_basic_set_total_dim(bset
);
823 div_pos
= 1 + total
- bset
->n_div
+ div
;
825 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
829 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
830 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
834 /* Given a row in the tableau and a div that was created
835 * using get_row_split_div and that been constrained to equality, i.e.,
837 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
839 * replace the expression "\sum_i {a_i} y_i" in the row by d,
840 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
841 * The coefficients of the non-parameters in the tableau have been
842 * verified to be integral. We can therefore simply replace coefficient b
843 * by floor(b). For the coefficients of the parameters we have
844 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
847 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
849 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
850 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
852 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
854 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
855 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
857 isl_assert(tab
->mat
->ctx
,
858 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
859 isl_seq_combine(tab
->mat
->row
[row
] + 1,
860 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
861 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
862 1 + tab
->M
+ tab
->n_col
);
864 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
866 isl_int_set_si(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
875 /* Check if the (parametric) constant of the given row is obviously
876 * negative, meaning that we don't need to consult the context tableau.
877 * If there is a big parameter and its coefficient is non-zero,
878 * then this coefficient determines the outcome.
879 * Otherwise, we check whether the constant is negative and
880 * all non-zero coefficients of parameters are negative and
881 * belong to non-negative parameters.
883 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
887 unsigned off
= 2 + tab
->M
;
890 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
892 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
896 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
898 for (i
= 0; i
< tab
->n_param
; ++i
) {
899 /* Eliminated parameter */
900 if (tab
->var
[i
].is_row
)
902 col
= tab
->var
[i
].index
;
903 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
905 if (!tab
->var
[i
].is_nonneg
)
907 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
910 for (i
= 0; i
< tab
->n_div
; ++i
) {
911 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
913 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
914 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
916 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
918 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
924 /* Check if the (parametric) constant of the given row is obviously
925 * non-negative, meaning that we don't need to consult the context tableau.
926 * If there is a big parameter and its coefficient is non-zero,
927 * then this coefficient determines the outcome.
928 * Otherwise, we check whether the constant is non-negative and
929 * all non-zero coefficients of parameters are positive and
930 * belong to non-negative parameters.
932 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
936 unsigned off
= 2 + tab
->M
;
939 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
941 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
945 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
947 for (i
= 0; i
< tab
->n_param
; ++i
) {
948 /* Eliminated parameter */
949 if (tab
->var
[i
].is_row
)
951 col
= tab
->var
[i
].index
;
952 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
954 if (!tab
->var
[i
].is_nonneg
)
956 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
959 for (i
= 0; i
< tab
->n_div
; ++i
) {
960 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
962 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
963 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
965 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
967 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
973 /* Given a row r and two columns, return the column that would
974 * lead to the lexicographically smallest increment in the sample
975 * solution when leaving the basis in favor of the row.
976 * Pivoting with column c will increment the sample value by a non-negative
977 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
978 * corresponding to the non-parametric variables.
979 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
980 * with all other entries in this virtual row equal to zero.
981 * If variable v appears in a row, then a_{v,c} is the element in column c
984 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
985 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
986 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
987 * increment. Otherwise, it's c2.
989 static int lexmin_col_pair(struct isl_tab
*tab
,
990 int row
, int col1
, int col2
, isl_int tmp
)
995 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
997 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1001 if (!tab
->var
[i
].is_row
) {
1002 if (tab
->var
[i
].index
== col1
)
1004 if (tab
->var
[i
].index
== col2
)
1009 if (tab
->var
[i
].index
== row
)
1012 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1013 s1
= isl_int_sgn(r
[col1
]);
1014 s2
= isl_int_sgn(r
[col2
]);
1015 if (s1
== 0 && s2
== 0)
1022 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1023 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1024 if (isl_int_is_pos(tmp
))
1026 if (isl_int_is_neg(tmp
))
1032 /* Given a row in the tableau, find and return the column that would
1033 * result in the lexicographically smallest, but positive, increment
1034 * in the sample point.
1035 * If there is no such column, then return tab->n_col.
1036 * If anything goes wrong, return -1.
1038 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1041 int col
= tab
->n_col
;
1045 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1049 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1050 if (tab
->col_var
[j
] >= 0 &&
1051 (tab
->col_var
[j
] < tab
->n_param
||
1052 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1055 if (!isl_int_is_pos(tr
[j
]))
1058 if (col
== tab
->n_col
)
1061 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1062 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1072 /* Return the first known violated constraint, i.e., a non-negative
1073 * contraint that currently has an either obviously negative value
1074 * or a previously determined to be negative value.
1076 * If any constraint has a negative coefficient for the big parameter,
1077 * if any, then we return one of these first.
1079 static int first_neg(struct isl_tab
*tab
)
1084 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1085 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1087 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1090 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1091 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1093 if (tab
->row_sign
) {
1094 if (tab
->row_sign
[row
] == 0 &&
1095 is_obviously_neg(tab
, row
))
1096 tab
->row_sign
[row
] = isl_tab_row_neg
;
1097 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1099 } else if (!is_obviously_neg(tab
, row
))
1106 /* Resolve all known or obviously violated constraints through pivoting.
1107 * In particular, as long as we can find any violated constraint, we
1108 * look for a pivoting column that would result in the lexicographicallly
1109 * smallest increment in the sample point. If there is no such column
1110 * then the tableau is infeasible.
1112 static struct isl_tab
*restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1113 static struct isl_tab
*restore_lexmin(struct isl_tab
*tab
)
1121 while ((row
= first_neg(tab
)) != -1) {
1122 col
= lexmin_pivot_col(tab
, row
);
1123 if (col
>= tab
->n_col
) {
1124 if (isl_tab_mark_empty(tab
) < 0)
1130 if (isl_tab_pivot(tab
, row
, col
) < 0)
1139 /* Given a row that represents an equality, look for an appropriate
1141 * In particular, if there are any non-zero coefficients among
1142 * the non-parameter variables, then we take the last of these
1143 * variables. Eliminating this variable in terms of the other
1144 * variables and/or parameters does not influence the property
1145 * that all column in the initial tableau are lexicographically
1146 * positive. The row corresponding to the eliminated variable
1147 * will only have non-zero entries below the diagonal of the
1148 * initial tableau. That is, we transform
1154 * If there is no such non-parameter variable, then we are dealing with
1155 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1156 * for elimination. This will ensure that the eliminated parameter
1157 * always has an integer value whenever all the other parameters are integral.
1158 * If there is no such parameter then we return -1.
1160 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1162 unsigned off
= 2 + tab
->M
;
1165 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1167 if (tab
->var
[i
].is_row
)
1169 col
= tab
->var
[i
].index
;
1170 if (col
<= tab
->n_dead
)
1172 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1175 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1176 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1178 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1184 /* Add an equality that is known to be valid to the tableau.
1185 * We first check if we can eliminate a variable or a parameter.
1186 * If not, we add the equality as two inequalities.
1187 * In this case, the equality was a pure parameter equality and there
1188 * is no need to resolve any constraint violations.
1190 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1197 r
= isl_tab_add_row(tab
, eq
);
1201 r
= tab
->con
[r
].index
;
1202 i
= last_var_col_or_int_par_col(tab
, r
);
1204 tab
->con
[r
].is_nonneg
= 1;
1205 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1207 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1208 r
= isl_tab_add_row(tab
, eq
);
1211 tab
->con
[r
].is_nonneg
= 1;
1212 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1215 if (isl_tab_pivot(tab
, r
, i
) < 0)
1217 if (isl_tab_kill_col(tab
, i
) < 0)
1221 tab
= restore_lexmin(tab
);
1230 /* Check if the given row is a pure constant.
1232 static int is_constant(struct isl_tab
*tab
, int row
)
1234 unsigned off
= 2 + tab
->M
;
1236 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1237 tab
->n_col
- tab
->n_dead
) == -1;
1240 /* Add an equality that may or may not be valid to the tableau.
1241 * If the resulting row is a pure constant, then it must be zero.
1242 * Otherwise, the resulting tableau is empty.
1244 * If the row is not a pure constant, then we add two inequalities,
1245 * each time checking that they can be satisfied.
1246 * In the end we try to use one of the two constraints to eliminate
1249 static struct isl_tab
*add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1250 static struct isl_tab
*add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1254 struct isl_tab_undo
*snap
;
1258 snap
= isl_tab_snap(tab
);
1259 r1
= isl_tab_add_row(tab
, eq
);
1262 tab
->con
[r1
].is_nonneg
= 1;
1263 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1266 row
= tab
->con
[r1
].index
;
1267 if (is_constant(tab
, row
)) {
1268 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1269 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1270 if (isl_tab_mark_empty(tab
) < 0)
1274 if (isl_tab_rollback(tab
, snap
) < 0)
1279 tab
= restore_lexmin(tab
);
1280 if (!tab
|| tab
->empty
)
1283 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1285 r2
= isl_tab_add_row(tab
, eq
);
1288 tab
->con
[r2
].is_nonneg
= 1;
1289 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1292 tab
= restore_lexmin(tab
);
1293 if (!tab
|| tab
->empty
)
1296 if (!tab
->con
[r1
].is_row
) {
1297 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1299 } else if (!tab
->con
[r2
].is_row
) {
1300 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1302 } else if (isl_int_is_zero(tab
->mat
->row
[tab
->con
[r1
].index
][1])) {
1303 unsigned off
= 2 + tab
->M
;
1305 int row
= tab
->con
[r1
].index
;
1306 i
= isl_seq_first_non_zero(tab
->mat
->row
[row
]+off
+tab
->n_dead
,
1307 tab
->n_col
- tab
->n_dead
);
1309 if (isl_tab_pivot(tab
, row
, tab
->n_dead
+ i
) < 0)
1311 if (isl_tab_kill_col(tab
, tab
->n_dead
+ i
) < 0)
1317 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1318 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1320 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1321 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1322 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1323 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1335 /* Add an inequality to the tableau, resolving violations using
1338 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1345 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1346 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1351 r
= isl_tab_add_row(tab
, ineq
);
1354 tab
->con
[r
].is_nonneg
= 1;
1355 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1357 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1358 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1363 tab
= restore_lexmin(tab
);
1364 if (tab
&& !tab
->empty
&& tab
->con
[r
].is_row
&&
1365 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1366 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1374 /* Check if the coefficients of the parameters are all integral.
1376 static int integer_parameter(struct isl_tab
*tab
, int row
)
1380 unsigned off
= 2 + tab
->M
;
1382 for (i
= 0; i
< tab
->n_param
; ++i
) {
1383 /* Eliminated parameter */
1384 if (tab
->var
[i
].is_row
)
1386 col
= tab
->var
[i
].index
;
1387 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1388 tab
->mat
->row
[row
][0]))
1391 for (i
= 0; i
< tab
->n_div
; ++i
) {
1392 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1394 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1395 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1396 tab
->mat
->row
[row
][0]))
1402 /* Check if the coefficients of the non-parameter variables are all integral.
1404 static int integer_variable(struct isl_tab
*tab
, int row
)
1407 unsigned off
= 2 + tab
->M
;
1409 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1410 if (tab
->col_var
[i
] >= 0 &&
1411 (tab
->col_var
[i
] < tab
->n_param
||
1412 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1414 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1415 tab
->mat
->row
[row
][0]))
1421 /* Check if the constant term is integral.
1423 static int integer_constant(struct isl_tab
*tab
, int row
)
1425 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1426 tab
->mat
->row
[row
][0]);
1429 #define I_CST 1 << 0
1430 #define I_PAR 1 << 1
1431 #define I_VAR 1 << 2
1433 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1434 * that is non-integer and therefore requires a cut and return
1435 * the index of the variable.
1436 * For parametric tableaus, there are three parts in a row,
1437 * the constant, the coefficients of the parameters and the rest.
1438 * For each part, we check whether the coefficients in that part
1439 * are all integral and if so, set the corresponding flag in *f.
1440 * If the constant and the parameter part are integral, then the
1441 * current sample value is integral and no cut is required
1442 * (irrespective of whether the variable part is integral).
1444 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1446 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1448 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1451 if (!tab
->var
[var
].is_row
)
1453 row
= tab
->var
[var
].index
;
1454 if (integer_constant(tab
, row
))
1455 ISL_FL_SET(flags
, I_CST
);
1456 if (integer_parameter(tab
, row
))
1457 ISL_FL_SET(flags
, I_PAR
);
1458 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1460 if (integer_variable(tab
, row
))
1461 ISL_FL_SET(flags
, I_VAR
);
1468 /* Check for first (non-parameter) variable that is non-integer and
1469 * therefore requires a cut and return the corresponding row.
1470 * For parametric tableaus, there are three parts in a row,
1471 * the constant, the coefficients of the parameters and the rest.
1472 * For each part, we check whether the coefficients in that part
1473 * are all integral and if so, set the corresponding flag in *f.
1474 * If the constant and the parameter part are integral, then the
1475 * current sample value is integral and no cut is required
1476 * (irrespective of whether the variable part is integral).
1478 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1480 int var
= next_non_integer_var(tab
, -1, f
);
1482 return var
< 0 ? -1 : tab
->var
[var
].index
;
1485 /* Add a (non-parametric) cut to cut away the non-integral sample
1486 * value of the given row.
1488 * If the row is given by
1490 * m r = f + \sum_i a_i y_i
1494 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1496 * The big parameter, if any, is ignored, since it is assumed to be big
1497 * enough to be divisible by any integer.
1498 * If the tableau is actually a parametric tableau, then this function
1499 * is only called when all coefficients of the parameters are integral.
1500 * The cut therefore has zero coefficients for the parameters.
1502 * The current value is known to be negative, so row_sign, if it
1503 * exists, is set accordingly.
1505 * Return the row of the cut or -1.
1507 static int add_cut(struct isl_tab
*tab
, int row
)
1512 unsigned off
= 2 + tab
->M
;
1514 if (isl_tab_extend_cons(tab
, 1) < 0)
1516 r
= isl_tab_allocate_con(tab
);
1520 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1521 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1522 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1523 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1524 isl_int_neg(r_row
[1], r_row
[1]);
1526 isl_int_set_si(r_row
[2], 0);
1527 for (i
= 0; i
< tab
->n_col
; ++i
)
1528 isl_int_fdiv_r(r_row
[off
+ i
],
1529 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1531 tab
->con
[r
].is_nonneg
= 1;
1532 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1535 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1537 return tab
->con
[r
].index
;
1540 /* Given a non-parametric tableau, add cuts until an integer
1541 * sample point is obtained or until the tableau is determined
1542 * to be integer infeasible.
1543 * As long as there is any non-integer value in the sample point,
1544 * we add appropriate cuts, if possible, for each of these
1545 * non-integer values and then resolve the violated
1546 * cut constraints using restore_lexmin.
1547 * If one of the corresponding rows is equal to an integral
1548 * combination of variables/constraints plus a non-integral constant,
1549 * then there is no way to obtain an integer point and we return
1550 * a tableau that is marked empty.
1552 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
)
1563 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1565 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1566 if (isl_tab_mark_empty(tab
) < 0)
1570 row
= tab
->var
[var
].index
;
1571 row
= add_cut(tab
, row
);
1574 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1575 tab
= restore_lexmin(tab
);
1576 if (!tab
|| tab
->empty
)
1585 /* Check whether all the currently active samples also satisfy the inequality
1586 * "ineq" (treated as an equality if eq is set).
1587 * Remove those samples that do not.
1589 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1597 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1598 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1599 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1602 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1604 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1605 1 + tab
->n_var
, &v
);
1606 sgn
= isl_int_sgn(v
);
1607 if (eq
? (sgn
== 0) : (sgn
>= 0))
1609 tab
= isl_tab_drop_sample(tab
, i
);
1621 /* Check whether the sample value of the tableau is finite,
1622 * i.e., either the tableau does not use a big parameter, or
1623 * all values of the variables are equal to the big parameter plus
1624 * some constant. This constant is the actual sample value.
1626 static int sample_is_finite(struct isl_tab
*tab
)
1633 for (i
= 0; i
< tab
->n_var
; ++i
) {
1635 if (!tab
->var
[i
].is_row
)
1637 row
= tab
->var
[i
].index
;
1638 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1644 /* Check if the context tableau of sol has any integer points.
1645 * Leave tab in empty state if no integer point can be found.
1646 * If an integer point can be found and if moreover it is finite,
1647 * then it is added to the list of sample values.
1649 * This function is only called when none of the currently active sample
1650 * values satisfies the most recently added constraint.
1652 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1654 struct isl_tab_undo
*snap
;
1660 snap
= isl_tab_snap(tab
);
1661 if (isl_tab_push_basis(tab
) < 0)
1664 tab
= cut_to_integer_lexmin(tab
);
1668 if (!tab
->empty
&& sample_is_finite(tab
)) {
1669 struct isl_vec
*sample
;
1671 sample
= isl_tab_get_sample_value(tab
);
1673 tab
= isl_tab_add_sample(tab
, sample
);
1676 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1685 /* Check if any of the currently active sample values satisfies
1686 * the inequality "ineq" (an equality if eq is set).
1688 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1696 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1697 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1698 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1701 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1703 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1704 1 + tab
->n_var
, &v
);
1705 sgn
= isl_int_sgn(v
);
1706 if (eq
? (sgn
== 0) : (sgn
>= 0))
1711 return i
< tab
->n_sample
;
1714 /* Add a div specifed by "div" to the tableau "tab" and return
1715 * 1 if the div is obviously non-negative.
1717 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1718 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1722 struct isl_mat
*samples
;
1725 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1728 nonneg
= tab
->var
[r
].is_nonneg
;
1729 tab
->var
[r
].frozen
= 1;
1731 samples
= isl_mat_extend(tab
->samples
,
1732 tab
->n_sample
, 1 + tab
->n_var
);
1733 tab
->samples
= samples
;
1736 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1737 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1738 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1739 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1740 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1746 /* Add a div specified by "div" to both the main tableau and
1747 * the context tableau. In case of the main tableau, we only
1748 * need to add an extra div. In the context tableau, we also
1749 * need to express the meaning of the div.
1750 * Return the index of the div or -1 if anything went wrong.
1752 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1753 struct isl_vec
*div
)
1758 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1761 if (!context
->op
->is_ok(context
))
1764 if (isl_tab_extend_vars(tab
, 1) < 0)
1766 r
= isl_tab_allocate_var(tab
);
1770 tab
->var
[r
].is_nonneg
= 1;
1771 tab
->var
[r
].frozen
= 1;
1774 return tab
->n_div
- 1;
1776 context
->op
->invalidate(context
);
1780 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1783 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1785 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1786 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1788 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, total
))
1795 /* Return the index of a div that corresponds to "div".
1796 * We first check if we already have such a div and if not, we create one.
1798 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1799 struct isl_vec
*div
)
1802 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1807 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1811 return add_div(tab
, context
, div
);
1814 /* Add a parametric cut to cut away the non-integral sample value
1816 * Let a_i be the coefficients of the constant term and the parameters
1817 * and let b_i be the coefficients of the variables or constraints
1818 * in basis of the tableau.
1819 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1821 * The cut is expressed as
1823 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1825 * If q did not already exist in the context tableau, then it is added first.
1826 * If q is in a column of the main tableau then the "+ q" can be accomplished
1827 * by setting the corresponding entry to the denominator of the constraint.
1828 * If q happens to be in a row of the main tableau, then the corresponding
1829 * row needs to be added instead (taking care of the denominators).
1830 * Note that this is very unlikely, but perhaps not entirely impossible.
1832 * The current value of the cut is known to be negative (or at least
1833 * non-positive), so row_sign is set accordingly.
1835 * Return the row of the cut or -1.
1837 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1838 struct isl_context
*context
)
1840 struct isl_vec
*div
;
1847 unsigned off
= 2 + tab
->M
;
1852 div
= get_row_parameter_div(tab
, row
);
1857 d
= context
->op
->get_div(context
, tab
, div
);
1861 if (isl_tab_extend_cons(tab
, 1) < 0)
1863 r
= isl_tab_allocate_con(tab
);
1867 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1868 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1869 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1870 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1871 isl_int_neg(r_row
[1], r_row
[1]);
1873 isl_int_set_si(r_row
[2], 0);
1874 for (i
= 0; i
< tab
->n_param
; ++i
) {
1875 if (tab
->var
[i
].is_row
)
1877 col
= tab
->var
[i
].index
;
1878 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1879 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1880 tab
->mat
->row
[row
][0]);
1881 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1883 for (i
= 0; i
< tab
->n_div
; ++i
) {
1884 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1886 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1887 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
1888 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
1889 tab
->mat
->row
[row
][0]);
1890 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
1892 for (i
= 0; i
< tab
->n_col
; ++i
) {
1893 if (tab
->col_var
[i
] >= 0 &&
1894 (tab
->col_var
[i
] < tab
->n_param
||
1895 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1897 isl_int_fdiv_r(r_row
[off
+ i
],
1898 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1900 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
1902 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1904 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
1905 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
1906 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
1907 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
1908 r_row
[0], tab
->mat
->row
[d_row
] + 1,
1909 off
- 1 + tab
->n_col
);
1910 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
1913 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
1914 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
1917 tab
->con
[r
].is_nonneg
= 1;
1918 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1921 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1925 row
= tab
->con
[r
].index
;
1927 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
1933 /* Construct a tableau for bmap that can be used for computing
1934 * the lexicographic minimum (or maximum) of bmap.
1935 * If not NULL, then dom is the domain where the minimum
1936 * should be computed. In this case, we set up a parametric
1937 * tableau with row signs (initialized to "unknown").
1938 * If M is set, then the tableau will use a big parameter.
1939 * If max is set, then a maximum should be computed instead of a minimum.
1940 * This means that for each variable x, the tableau will contain the variable
1941 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1942 * of the variables in all constraints are negated prior to adding them
1945 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
1946 struct isl_basic_set
*dom
, unsigned M
, int max
)
1949 struct isl_tab
*tab
;
1951 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
1952 isl_basic_map_total_dim(bmap
), M
);
1956 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
1958 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
1959 tab
->n_div
= dom
->n_div
;
1960 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
1961 enum isl_tab_row_sign
, tab
->mat
->n_row
);
1965 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
1966 if (isl_tab_mark_empty(tab
) < 0)
1971 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1972 tab
->var
[i
].is_nonneg
= 1;
1973 tab
->var
[i
].frozen
= 1;
1975 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1977 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
1978 bmap
->eq
[i
] + 1 + tab
->n_param
,
1979 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1980 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
1982 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
1983 bmap
->eq
[i
] + 1 + tab
->n_param
,
1984 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1985 if (!tab
|| tab
->empty
)
1988 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1990 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
1991 bmap
->ineq
[i
] + 1 + tab
->n_param
,
1992 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1993 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
1995 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
1996 bmap
->ineq
[i
] + 1 + tab
->n_param
,
1997 tab
->n_var
- tab
->n_param
- tab
->n_div
);
1998 if (!tab
|| tab
->empty
)
2007 /* Given a main tableau where more than one row requires a split,
2008 * determine and return the "best" row to split on.
2010 * Given two rows in the main tableau, if the inequality corresponding
2011 * to the first row is redundant with respect to that of the second row
2012 * in the current tableau, then it is better to split on the second row,
2013 * since in the positive part, both row will be positive.
2014 * (In the negative part a pivot will have to be performed and just about
2015 * anything can happen to the sign of the other row.)
2017 * As a simple heuristic, we therefore select the row that makes the most
2018 * of the other rows redundant.
2020 * Perhaps it would also be useful to look at the number of constraints
2021 * that conflict with any given constraint.
2023 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2025 struct isl_tab_undo
*snap
;
2031 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2034 snap
= isl_tab_snap(context_tab
);
2036 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2037 struct isl_tab_undo
*snap2
;
2038 struct isl_vec
*ineq
= NULL
;
2042 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2044 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2047 ineq
= get_row_parameter_ineq(tab
, split
);
2050 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2055 snap2
= isl_tab_snap(context_tab
);
2057 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2058 struct isl_tab_var
*var
;
2062 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2064 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2067 ineq
= get_row_parameter_ineq(tab
, row
);
2070 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2074 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2075 if (!context_tab
->empty
&&
2076 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2078 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2081 if (best
== -1 || r
> best_r
) {
2085 if (isl_tab_rollback(context_tab
, snap
) < 0)
2092 static struct isl_basic_set
*context_lex_peek_basic_set(
2093 struct isl_context
*context
)
2095 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2098 return isl_tab_peek_bset(clex
->tab
);
2101 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2103 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2107 static void context_lex_extend(struct isl_context
*context
, int n
)
2109 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2112 if (isl_tab_extend_cons(clex
->tab
, n
) >= 0)
2114 isl_tab_free(clex
->tab
);
2118 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2119 int check
, int update
)
2121 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2122 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2124 clex
->tab
= add_lexmin_eq(clex
->tab
, eq
);
2126 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2130 clex
->tab
= check_integer_feasible(clex
->tab
);
2133 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2136 isl_tab_free(clex
->tab
);
2140 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2141 int check
, int update
)
2143 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2144 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2146 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2148 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2152 clex
->tab
= check_integer_feasible(clex
->tab
);
2155 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2158 isl_tab_free(clex
->tab
);
2162 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2164 struct isl_context
*context
= (struct isl_context
*)user
;
2165 context_lex_add_ineq(context
, ineq
, 0, 0);
2166 return context
->op
->is_ok(context
) ? 0 : -1;
2169 /* Check which signs can be obtained by "ineq" on all the currently
2170 * active sample values. See row_sign for more information.
2172 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2178 int res
= isl_tab_row_unknown
;
2180 isl_assert(tab
->mat
->ctx
, tab
->samples
, return 0);
2181 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return 0);
2184 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2185 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2186 1 + tab
->n_var
, &tmp
);
2187 sgn
= isl_int_sgn(tmp
);
2188 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2189 if (res
== isl_tab_row_unknown
)
2190 res
= isl_tab_row_pos
;
2191 if (res
== isl_tab_row_neg
)
2192 res
= isl_tab_row_any
;
2195 if (res
== isl_tab_row_unknown
)
2196 res
= isl_tab_row_neg
;
2197 if (res
== isl_tab_row_pos
)
2198 res
= isl_tab_row_any
;
2200 if (res
== isl_tab_row_any
)
2208 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2209 isl_int
*ineq
, int strict
)
2211 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2212 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2215 /* Check whether "ineq" can be added to the tableau without rendering
2218 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2220 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2221 struct isl_tab_undo
*snap
;
2227 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2230 snap
= isl_tab_snap(clex
->tab
);
2231 if (isl_tab_push_basis(clex
->tab
) < 0)
2233 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2234 clex
->tab
= check_integer_feasible(clex
->tab
);
2237 feasible
= !clex
->tab
->empty
;
2238 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2244 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2245 struct isl_vec
*div
)
2247 return get_div(tab
, context
, div
);
2250 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2252 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2253 return context_tab_add_div(clex
->tab
, div
,
2254 context_lex_add_ineq_wrap
, context
);
2257 static int context_lex_detect_equalities(struct isl_context
*context
,
2258 struct isl_tab
*tab
)
2263 static int context_lex_best_split(struct isl_context
*context
,
2264 struct isl_tab
*tab
)
2266 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2267 struct isl_tab_undo
*snap
;
2270 snap
= isl_tab_snap(clex
->tab
);
2271 if (isl_tab_push_basis(clex
->tab
) < 0)
2273 r
= best_split(tab
, clex
->tab
);
2275 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2281 static int context_lex_is_empty(struct isl_context
*context
)
2283 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2286 return clex
->tab
->empty
;
2289 static void *context_lex_save(struct isl_context
*context
)
2291 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2292 struct isl_tab_undo
*snap
;
2294 snap
= isl_tab_snap(clex
->tab
);
2295 if (isl_tab_push_basis(clex
->tab
) < 0)
2297 if (isl_tab_save_samples(clex
->tab
) < 0)
2303 static void context_lex_restore(struct isl_context
*context
, void *save
)
2305 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2306 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2307 isl_tab_free(clex
->tab
);
2312 static int context_lex_is_ok(struct isl_context
*context
)
2314 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2318 /* For each variable in the context tableau, check if the variable can
2319 * only attain non-negative values. If so, mark the parameter as non-negative
2320 * in the main tableau. This allows for a more direct identification of some
2321 * cases of violated constraints.
2323 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2324 struct isl_tab
*context_tab
)
2327 struct isl_tab_undo
*snap
;
2328 struct isl_vec
*ineq
= NULL
;
2329 struct isl_tab_var
*var
;
2332 if (context_tab
->n_var
== 0)
2335 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2339 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2342 snap
= isl_tab_snap(context_tab
);
2345 isl_seq_clr(ineq
->el
, ineq
->size
);
2346 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2347 isl_int_set_si(ineq
->el
[1 + i
], 1);
2348 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2350 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2351 if (!context_tab
->empty
&&
2352 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2354 if (i
>= tab
->n_param
)
2355 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2356 tab
->var
[j
].is_nonneg
= 1;
2359 isl_int_set_si(ineq
->el
[1 + i
], 0);
2360 if (isl_tab_rollback(context_tab
, snap
) < 0)
2364 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2365 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2377 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2378 struct isl_context
*context
, struct isl_tab
*tab
)
2380 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2381 struct isl_tab_undo
*snap
;
2383 snap
= isl_tab_snap(clex
->tab
);
2384 if (isl_tab_push_basis(clex
->tab
) < 0)
2387 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2389 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2398 static void context_lex_invalidate(struct isl_context
*context
)
2400 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2401 isl_tab_free(clex
->tab
);
2405 static void context_lex_free(struct isl_context
*context
)
2407 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2408 isl_tab_free(clex
->tab
);
2412 struct isl_context_op isl_context_lex_op
= {
2413 context_lex_detect_nonnegative_parameters
,
2414 context_lex_peek_basic_set
,
2415 context_lex_peek_tab
,
2417 context_lex_add_ineq
,
2418 context_lex_ineq_sign
,
2419 context_lex_test_ineq
,
2420 context_lex_get_div
,
2421 context_lex_add_div
,
2422 context_lex_detect_equalities
,
2423 context_lex_best_split
,
2424 context_lex_is_empty
,
2427 context_lex_restore
,
2428 context_lex_invalidate
,
2432 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2434 struct isl_tab
*tab
;
2436 bset
= isl_basic_set_cow(bset
);
2439 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2442 if (isl_tab_track_bset(tab
, bset
) < 0)
2444 tab
= isl_tab_init_samples(tab
);
2447 isl_basic_set_free(bset
);
2451 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2453 struct isl_context_lex
*clex
;
2458 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2462 clex
->context
.op
= &isl_context_lex_op
;
2464 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2465 clex
->tab
= restore_lexmin(clex
->tab
);
2466 clex
->tab
= check_integer_feasible(clex
->tab
);
2470 return &clex
->context
;
2472 clex
->context
.op
->free(&clex
->context
);
2476 struct isl_context_gbr
{
2477 struct isl_context context
;
2478 struct isl_tab
*tab
;
2479 struct isl_tab
*shifted
;
2480 struct isl_tab
*cone
;
2483 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2484 struct isl_context
*context
, struct isl_tab
*tab
)
2486 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2487 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2490 static struct isl_basic_set
*context_gbr_peek_basic_set(
2491 struct isl_context
*context
)
2493 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2496 return isl_tab_peek_bset(cgbr
->tab
);
2499 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2501 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2505 /* Initialize the "shifted" tableau of the context, which
2506 * contains the constraints of the original tableau shifted
2507 * by the sum of all negative coefficients. This ensures
2508 * that any rational point in the shifted tableau can
2509 * be rounded up to yield an integer point in the original tableau.
2511 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2514 struct isl_vec
*cst
;
2515 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2516 unsigned dim
= isl_basic_set_total_dim(bset
);
2518 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2522 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2523 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2524 for (j
= 0; j
< dim
; ++j
) {
2525 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2527 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2528 bset
->ineq
[i
][1 + j
]);
2532 cgbr
->shifted
= isl_tab_from_basic_set(bset
);
2534 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2535 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2540 /* Check if the shifted tableau is non-empty, and if so
2541 * use the sample point to construct an integer point
2542 * of the context tableau.
2544 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2546 struct isl_vec
*sample
;
2549 gbr_init_shifted(cgbr
);
2552 if (cgbr
->shifted
->empty
)
2553 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2555 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2556 sample
= isl_vec_ceil(sample
);
2561 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2568 for (i
= 0; i
< bset
->n_eq
; ++i
)
2569 isl_int_set_si(bset
->eq
[i
][0], 0);
2571 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2572 isl_int_set_si(bset
->ineq
[i
][0], 0);
2577 static int use_shifted(struct isl_context_gbr
*cgbr
)
2579 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2582 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2584 struct isl_basic_set
*bset
;
2585 struct isl_basic_set
*cone
;
2587 if (isl_tab_sample_is_integer(cgbr
->tab
))
2588 return isl_tab_get_sample_value(cgbr
->tab
);
2590 if (use_shifted(cgbr
)) {
2591 struct isl_vec
*sample
;
2593 sample
= gbr_get_shifted_sample(cgbr
);
2594 if (!sample
|| sample
->size
> 0)
2597 isl_vec_free(sample
);
2601 bset
= isl_tab_peek_bset(cgbr
->tab
);
2602 cgbr
->cone
= isl_tab_from_recession_cone(bset
);
2605 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2608 cgbr
->cone
= isl_tab_detect_implicit_equalities(cgbr
->cone
);
2612 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2613 struct isl_vec
*sample
;
2614 struct isl_tab_undo
*snap
;
2616 if (cgbr
->tab
->basis
) {
2617 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2618 isl_mat_free(cgbr
->tab
->basis
);
2619 cgbr
->tab
->basis
= NULL
;
2621 cgbr
->tab
->n_zero
= 0;
2622 cgbr
->tab
->n_unbounded
= 0;
2626 snap
= isl_tab_snap(cgbr
->tab
);
2628 sample
= isl_tab_sample(cgbr
->tab
);
2630 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2631 isl_vec_free(sample
);
2638 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2639 cone
= drop_constant_terms(cone
);
2640 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2641 cone
= isl_basic_set_underlying_set(cone
);
2642 cone
= isl_basic_set_gauss(cone
, NULL
);
2644 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2645 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2646 bset
= isl_basic_set_underlying_set(bset
);
2647 bset
= isl_basic_set_gauss(bset
, NULL
);
2649 return isl_basic_set_sample_with_cone(bset
, cone
);
2652 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2654 struct isl_vec
*sample
;
2659 if (cgbr
->tab
->empty
)
2662 sample
= gbr_get_sample(cgbr
);
2666 if (sample
->size
== 0) {
2667 isl_vec_free(sample
);
2668 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2673 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2677 isl_tab_free(cgbr
->tab
);
2681 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2688 if (isl_tab_extend_cons(tab
, 2) < 0)
2691 tab
= isl_tab_add_eq(tab
, eq
);
2699 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2700 int check
, int update
)
2702 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2704 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2706 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2707 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2709 cgbr
->cone
= isl_tab_add_eq(cgbr
->cone
, eq
);
2713 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2717 check_gbr_integer_feasible(cgbr
);
2720 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2723 isl_tab_free(cgbr
->tab
);
2727 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2732 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2735 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2738 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2741 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2743 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2746 for (i
= 0; i
< dim
; ++i
) {
2747 if (!isl_int_is_neg(ineq
[1 + i
]))
2749 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2752 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2755 for (i
= 0; i
< dim
; ++i
) {
2756 if (!isl_int_is_neg(ineq
[1 + i
]))
2758 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2762 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2763 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2765 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2771 isl_tab_free(cgbr
->tab
);
2775 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2776 int check
, int update
)
2778 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2780 add_gbr_ineq(cgbr
, ineq
);
2785 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2789 check_gbr_integer_feasible(cgbr
);
2792 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2795 isl_tab_free(cgbr
->tab
);
2799 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2801 struct isl_context
*context
= (struct isl_context
*)user
;
2802 context_gbr_add_ineq(context
, ineq
, 0, 0);
2803 return context
->op
->is_ok(context
) ? 0 : -1;
2806 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2807 isl_int
*ineq
, int strict
)
2809 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2810 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2813 /* Check whether "ineq" can be added to the tableau without rendering
2816 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2818 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2819 struct isl_tab_undo
*snap
;
2820 struct isl_tab_undo
*shifted_snap
= NULL
;
2821 struct isl_tab_undo
*cone_snap
= NULL
;
2827 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2830 snap
= isl_tab_snap(cgbr
->tab
);
2832 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
2834 cone_snap
= isl_tab_snap(cgbr
->cone
);
2835 add_gbr_ineq(cgbr
, ineq
);
2836 check_gbr_integer_feasible(cgbr
);
2839 feasible
= !cgbr
->tab
->empty
;
2840 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
2843 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
2845 } else if (cgbr
->shifted
) {
2846 isl_tab_free(cgbr
->shifted
);
2847 cgbr
->shifted
= NULL
;
2850 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
2852 } else if (cgbr
->cone
) {
2853 isl_tab_free(cgbr
->cone
);
2860 /* Return the column of the last of the variables associated to
2861 * a column that has a non-zero coefficient.
2862 * This function is called in a context where only coefficients
2863 * of parameters or divs can be non-zero.
2865 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
2869 unsigned dim
= tab
->n_var
- tab
->n_param
- tab
->n_div
;
2871 if (tab
->n_var
== 0)
2874 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
2875 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
2877 if (tab
->var
[i
].is_row
)
2879 col
= tab
->var
[i
].index
;
2880 if (!isl_int_is_zero(p
[col
]))
2887 /* Look through all the recently added equalities in the context
2888 * to see if we can propagate any of them to the main tableau.
2890 * The newly added equalities in the context are encoded as pairs
2891 * of inequalities starting at inequality "first".
2893 * We tentatively add each of these equalities to the main tableau
2894 * and if this happens to result in a row with a final coefficient
2895 * that is one or negative one, we use it to kill a column
2896 * in the main tableau. Otherwise, we discard the tentatively
2899 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
2900 struct isl_tab
*tab
, unsigned first
)
2903 struct isl_vec
*eq
= NULL
;
2905 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2909 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
2912 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
2913 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2914 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
2917 struct isl_tab_undo
*snap
;
2918 snap
= isl_tab_snap(tab
);
2920 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
2921 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
2922 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
2925 r
= isl_tab_add_row(tab
, eq
->el
);
2928 r
= tab
->con
[r
].index
;
2929 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
2930 if (j
< 0 || j
< tab
->n_dead
||
2931 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
2932 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
2933 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
2934 if (isl_tab_rollback(tab
, snap
) < 0)
2938 if (isl_tab_pivot(tab
, r
, j
) < 0)
2940 if (isl_tab_kill_col(tab
, j
) < 0)
2943 tab
= restore_lexmin(tab
);
2951 isl_tab_free(cgbr
->tab
);
2955 static int context_gbr_detect_equalities(struct isl_context
*context
,
2956 struct isl_tab
*tab
)
2958 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2959 struct isl_ctx
*ctx
;
2961 enum isl_lp_result res
;
2964 ctx
= cgbr
->tab
->mat
->ctx
;
2967 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2968 cgbr
->cone
= isl_tab_from_recession_cone(bset
);
2971 if (isl_tab_track_bset(cgbr
->cone
, isl_basic_set_dup(bset
)) < 0)
2974 cgbr
->cone
= isl_tab_detect_implicit_equalities(cgbr
->cone
);
2976 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
2977 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
2978 if (cgbr
->tab
&& cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
2979 propagate_equalities(cgbr
, tab
, n_ineq
);
2983 isl_tab_free(cgbr
->tab
);
2988 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2989 struct isl_vec
*div
)
2991 return get_div(tab
, context
, div
);
2994 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2996 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3000 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3002 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3004 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3007 cgbr
->cone
->bmap
= isl_basic_map_extend_dim(cgbr
->cone
->bmap
,
3008 isl_basic_map_get_dim(cgbr
->cone
->bmap
), 1, 0, 2);
3009 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3012 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3013 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3016 return context_tab_add_div(cgbr
->tab
, div
,
3017 context_gbr_add_ineq_wrap
, context
);
3020 static int context_gbr_best_split(struct isl_context
*context
,
3021 struct isl_tab
*tab
)
3023 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3024 struct isl_tab_undo
*snap
;
3027 snap
= isl_tab_snap(cgbr
->tab
);
3028 r
= best_split(tab
, cgbr
->tab
);
3030 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3036 static int context_gbr_is_empty(struct isl_context
*context
)
3038 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3041 return cgbr
->tab
->empty
;
3044 struct isl_gbr_tab_undo
{
3045 struct isl_tab_undo
*tab_snap
;
3046 struct isl_tab_undo
*shifted_snap
;
3047 struct isl_tab_undo
*cone_snap
;
3050 static void *context_gbr_save(struct isl_context
*context
)
3052 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3053 struct isl_gbr_tab_undo
*snap
;
3055 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3059 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3060 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3064 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3066 snap
->shifted_snap
= NULL
;
3069 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3071 snap
->cone_snap
= NULL
;
3079 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3081 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3082 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3085 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3086 isl_tab_free(cgbr
->tab
);
3090 if (snap
->shifted_snap
) {
3091 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3093 } else if (cgbr
->shifted
) {
3094 isl_tab_free(cgbr
->shifted
);
3095 cgbr
->shifted
= NULL
;
3098 if (snap
->cone_snap
) {
3099 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3101 } else if (cgbr
->cone
) {
3102 isl_tab_free(cgbr
->cone
);
3111 isl_tab_free(cgbr
->tab
);
3115 static int context_gbr_is_ok(struct isl_context
*context
)
3117 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3121 static void context_gbr_invalidate(struct isl_context
*context
)
3123 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3124 isl_tab_free(cgbr
->tab
);
3128 static void context_gbr_free(struct isl_context
*context
)
3130 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3131 isl_tab_free(cgbr
->tab
);
3132 isl_tab_free(cgbr
->shifted
);
3133 isl_tab_free(cgbr
->cone
);
3137 struct isl_context_op isl_context_gbr_op
= {
3138 context_gbr_detect_nonnegative_parameters
,
3139 context_gbr_peek_basic_set
,
3140 context_gbr_peek_tab
,
3142 context_gbr_add_ineq
,
3143 context_gbr_ineq_sign
,
3144 context_gbr_test_ineq
,
3145 context_gbr_get_div
,
3146 context_gbr_add_div
,
3147 context_gbr_detect_equalities
,
3148 context_gbr_best_split
,
3149 context_gbr_is_empty
,
3152 context_gbr_restore
,
3153 context_gbr_invalidate
,
3157 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3159 struct isl_context_gbr
*cgbr
;
3164 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3168 cgbr
->context
.op
= &isl_context_gbr_op
;
3170 cgbr
->shifted
= NULL
;
3172 cgbr
->tab
= isl_tab_from_basic_set(dom
);
3173 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3176 if (isl_tab_track_bset(cgbr
->tab
,
3177 isl_basic_set_cow(isl_basic_set_copy(dom
))) < 0)
3179 check_gbr_integer_feasible(cgbr
);
3181 return &cgbr
->context
;
3183 cgbr
->context
.op
->free(&cgbr
->context
);
3187 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3192 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3193 return isl_context_lex_alloc(dom
);
3195 return isl_context_gbr_alloc(dom
);
3198 /* Construct an isl_sol_map structure for accumulating the solution.
3199 * If track_empty is set, then we also keep track of the parts
3200 * of the context where there is no solution.
3201 * If max is set, then we are solving a maximization, rather than
3202 * a minimization problem, which means that the variables in the
3203 * tableau have value "M - x" rather than "M + x".
3205 static struct isl_sol_map
*sol_map_init(struct isl_basic_map
*bmap
,
3206 struct isl_basic_set
*dom
, int track_empty
, int max
)
3208 struct isl_sol_map
*sol_map
;
3210 sol_map
= isl_calloc_type(bset
->ctx
, struct isl_sol_map
);
3214 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3215 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3216 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3217 sol_map
->sol
.max
= max
;
3218 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3219 sol_map
->sol
.add
= &sol_map_add_wrap
;
3220 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3221 sol_map
->sol
.free
= &sol_map_free_wrap
;
3222 sol_map
->map
= isl_map_alloc_dim(isl_basic_map_get_dim(bmap
), 1,
3227 sol_map
->sol
.context
= isl_context_alloc(dom
);
3228 if (!sol_map
->sol
.context
)
3232 sol_map
->empty
= isl_set_alloc_dim(isl_basic_set_get_dim(dom
),
3233 1, ISL_SET_DISJOINT
);
3234 if (!sol_map
->empty
)
3238 isl_basic_set_free(dom
);
3241 isl_basic_set_free(dom
);
3242 sol_map_free(sol_map
);
3246 /* Check whether all coefficients of (non-parameter) variables
3247 * are non-positive, meaning that no pivots can be performed on the row.
3249 static int is_critical(struct isl_tab
*tab
, int row
)
3252 unsigned off
= 2 + tab
->M
;
3254 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3255 if (tab
->col_var
[j
] >= 0 &&
3256 (tab
->col_var
[j
] < tab
->n_param
||
3257 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3260 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3267 /* Check whether the inequality represented by vec is strict over the integers,
3268 * i.e., there are no integer values satisfying the constraint with
3269 * equality. This happens if the gcd of the coefficients is not a divisor
3270 * of the constant term. If so, scale the constraint down by the gcd
3271 * of the coefficients.
3273 static int is_strict(struct isl_vec
*vec
)
3279 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3280 if (!isl_int_is_one(gcd
)) {
3281 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3282 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3283 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3290 /* Determine the sign of the given row of the main tableau.
3291 * The result is one of
3292 * isl_tab_row_pos: always non-negative; no pivot needed
3293 * isl_tab_row_neg: always non-positive; pivot
3294 * isl_tab_row_any: can be both positive and negative; split
3296 * We first handle some simple cases
3297 * - the row sign may be known already
3298 * - the row may be obviously non-negative
3299 * - the parametric constant may be equal to that of another row
3300 * for which we know the sign. This sign will be either "pos" or
3301 * "any". If it had been "neg" then we would have pivoted before.
3303 * If none of these cases hold, we check the value of the row for each
3304 * of the currently active samples. Based on the signs of these values
3305 * we make an initial determination of the sign of the row.
3307 * all zero -> unk(nown)
3308 * all non-negative -> pos
3309 * all non-positive -> neg
3310 * both negative and positive -> all
3312 * If we end up with "all", we are done.
3313 * Otherwise, we perform a check for positive and/or negative
3314 * values as follows.
3316 * samples neg unk pos
3322 * There is no special sign for "zero", because we can usually treat zero
3323 * as either non-negative or non-positive, whatever works out best.
3324 * However, if the row is "critical", meaning that pivoting is impossible
3325 * then we don't want to limp zero with the non-positive case, because
3326 * then we we would lose the solution for those values of the parameters
3327 * where the value of the row is zero. Instead, we treat 0 as non-negative
3328 * ensuring a split if the row can attain both zero and negative values.
3329 * The same happens when the original constraint was one that could not
3330 * be satisfied with equality by any integer values of the parameters.
3331 * In this case, we normalize the constraint, but then a value of zero
3332 * for the normalized constraint is actually a positive value for the
3333 * original constraint, so again we need to treat zero as non-negative.
3334 * In both these cases, we have the following decision tree instead:
3336 * all non-negative -> pos
3337 * all negative -> neg
3338 * both negative and non-negative -> all
3346 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3347 struct isl_sol
*sol
, int row
)
3349 struct isl_vec
*ineq
= NULL
;
3350 int res
= isl_tab_row_unknown
;
3355 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3356 return tab
->row_sign
[row
];
3357 if (is_obviously_nonneg(tab
, row
))
3358 return isl_tab_row_pos
;
3359 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3360 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3362 if (identical_parameter_line(tab
, row
, row2
))
3363 return tab
->row_sign
[row2
];
3366 critical
= is_critical(tab
, row
);
3368 ineq
= get_row_parameter_ineq(tab
, row
);
3372 strict
= is_strict(ineq
);
3374 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3375 critical
|| strict
);
3377 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3378 /* test for negative values */
3380 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3381 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3383 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3387 res
= isl_tab_row_pos
;
3389 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3391 if (res
== isl_tab_row_neg
) {
3392 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3393 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3397 if (res
== isl_tab_row_neg
) {
3398 /* test for positive values */
3400 if (!critical
&& !strict
)
3401 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3403 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3407 res
= isl_tab_row_any
;
3417 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3419 /* Find solutions for values of the parameters that satisfy the given
3422 * We currently take a snapshot of the context tableau that is reset
3423 * when we return from this function, while we make a copy of the main
3424 * tableau, leaving the original main tableau untouched.
3425 * These are fairly arbitrary choices. Making a copy also of the context
3426 * tableau would obviate the need to undo any changes made to it later,
3427 * while taking a snapshot of the main tableau could reduce memory usage.
3428 * If we were to switch to taking a snapshot of the main tableau,
3429 * we would have to keep in mind that we need to save the row signs
3430 * and that we need to do this before saving the current basis
3431 * such that the basis has been restore before we restore the row signs.
3433 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3439 saved
= sol
->context
->op
->save(sol
->context
);
3441 tab
= isl_tab_dup(tab
);
3445 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3447 find_solutions(sol
, tab
);
3449 sol
->context
->op
->restore(sol
->context
, saved
);
3455 /* Record the absence of solutions for those values of the parameters
3456 * that do not satisfy the given inequality with equality.
3458 static void no_sol_in_strict(struct isl_sol
*sol
,
3459 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3466 saved
= sol
->context
->op
->save(sol
->context
);
3468 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3470 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3479 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3481 sol
->context
->op
->restore(sol
->context
, saved
);
3487 /* Compute the lexicographic minimum of the set represented by the main
3488 * tableau "tab" within the context "sol->context_tab".
3489 * On entry the sample value of the main tableau is lexicographically
3490 * less than or equal to this lexicographic minimum.
3491 * Pivots are performed until a feasible point is found, which is then
3492 * necessarily equal to the minimum, or until the tableau is found to
3493 * be infeasible. Some pivots may need to be performed for only some
3494 * feasible values of the context tableau. If so, the context tableau
3495 * is split into a part where the pivot is needed and a part where it is not.
3497 * Whenever we enter the main loop, the main tableau is such that no
3498 * "obvious" pivots need to be performed on it, where "obvious" means
3499 * that the given row can be seen to be negative without looking at
3500 * the context tableau. In particular, for non-parametric problems,
3501 * no pivots need to be performed on the main tableau.
3502 * The caller of find_solutions is responsible for making this property
3503 * hold prior to the first iteration of the loop, while restore_lexmin
3504 * is called before every other iteration.
3506 * Inside the main loop, we first examine the signs of the rows of
3507 * the main tableau within the context of the context tableau.
3508 * If we find a row that is always non-positive for all values of
3509 * the parameters satisfying the context tableau and negative for at
3510 * least one value of the parameters, we perform the appropriate pivot
3511 * and start over. An exception is the case where no pivot can be
3512 * performed on the row. In this case, we require that the sign of
3513 * the row is negative for all values of the parameters (rather than just
3514 * non-positive). This special case is handled inside row_sign, which
3515 * will say that the row can have any sign if it determines that it can
3516 * attain both negative and zero values.
3518 * If we can't find a row that always requires a pivot, but we can find
3519 * one or more rows that require a pivot for some values of the parameters
3520 * (i.e., the row can attain both positive and negative signs), then we split
3521 * the context tableau into two parts, one where we force the sign to be
3522 * non-negative and one where we force is to be negative.
3523 * The non-negative part is handled by a recursive call (through find_in_pos).
3524 * Upon returning from this call, we continue with the negative part and
3525 * perform the required pivot.
3527 * If no such rows can be found, all rows are non-negative and we have
3528 * found a (rational) feasible point. If we only wanted a rational point
3530 * Otherwise, we check if all values of the sample point of the tableau
3531 * are integral for the variables. If so, we have found the minimal
3532 * integral point and we are done.
3533 * If the sample point is not integral, then we need to make a distinction
3534 * based on whether the constant term is non-integral or the coefficients
3535 * of the parameters. Furthermore, in order to decide how to handle
3536 * the non-integrality, we also need to know whether the coefficients
3537 * of the other columns in the tableau are integral. This leads
3538 * to the following table. The first two rows do not correspond
3539 * to a non-integral sample point and are only mentioned for completeness.
3541 * constant parameters other
3544 * int int rat | -> no problem
3546 * rat int int -> fail
3548 * rat int rat -> cut
3551 * rat rat rat | -> parametric cut
3554 * rat rat int | -> split context
3556 * If the parametric constant is completely integral, then there is nothing
3557 * to be done. If the constant term is non-integral, but all the other
3558 * coefficient are integral, then there is nothing that can be done
3559 * and the tableau has no integral solution.
3560 * If, on the other hand, one or more of the other columns have rational
3561 * coeffcients, but the parameter coefficients are all integral, then
3562 * we can perform a regular (non-parametric) cut.
3563 * Finally, if there is any parameter coefficient that is non-integral,
3564 * then we need to involve the context tableau. There are two cases here.
3565 * If at least one other column has a rational coefficient, then we
3566 * can perform a parametric cut in the main tableau by adding a new
3567 * integer division in the context tableau.
3568 * If all other columns have integral coefficients, then we need to
3569 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3570 * is always integral. We do this by introducing an integer division
3571 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3572 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3573 * Since q is expressed in the tableau as
3574 * c + \sum a_i y_i - m q >= 0
3575 * -c - \sum a_i y_i + m q + m - 1 >= 0
3576 * it is sufficient to add the inequality
3577 * -c - \sum a_i y_i + m q >= 0
3578 * In the part of the context where this inequality does not hold, the
3579 * main tableau is marked as being empty.
3581 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3583 struct isl_context
*context
;
3585 if (!tab
|| sol
->error
)
3588 context
= sol
->context
;
3592 if (context
->op
->is_empty(context
))
3595 for (; tab
&& !tab
->empty
; tab
= restore_lexmin(tab
)) {
3602 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3603 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3605 sgn
= row_sign(tab
, sol
, row
);
3608 tab
->row_sign
[row
] = sgn
;
3609 if (sgn
== isl_tab_row_any
)
3611 if (sgn
== isl_tab_row_any
&& split
== -1)
3613 if (sgn
== isl_tab_row_neg
)
3616 if (row
< tab
->n_row
)
3619 struct isl_vec
*ineq
;
3621 split
= context
->op
->best_split(context
, tab
);
3624 ineq
= get_row_parameter_ineq(tab
, split
);
3628 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3629 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3631 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3632 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3634 tab
->row_sign
[split
] = isl_tab_row_pos
;
3636 find_in_pos(sol
, tab
, ineq
->el
);
3637 tab
->row_sign
[split
] = isl_tab_row_neg
;
3639 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3640 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3641 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3649 row
= first_non_integer_row(tab
, &flags
);
3652 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3653 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3654 if (isl_tab_mark_empty(tab
) < 0)
3658 row
= add_cut(tab
, row
);
3659 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3660 struct isl_vec
*div
;
3661 struct isl_vec
*ineq
;
3663 div
= get_row_split_div(tab
, row
);
3666 d
= context
->op
->get_div(context
, tab
, div
);
3670 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3672 no_sol_in_strict(sol
, tab
, ineq
);
3673 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3674 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3676 if (sol
->error
|| !context
->op
->is_ok(context
))
3678 tab
= set_row_cst_to_div(tab
, row
, d
);
3679 if (context
->op
->is_empty(context
))
3682 row
= add_parametric_cut(tab
, row
, context
);
3695 /* Compute the lexicographic minimum of the set represented by the main
3696 * tableau "tab" within the context "sol->context_tab".
3698 * As a preprocessing step, we first transfer all the purely parametric
3699 * equalities from the main tableau to the context tableau, i.e.,
3700 * parameters that have been pivoted to a row.
3701 * These equalities are ignored by the main algorithm, because the
3702 * corresponding rows may not be marked as being non-negative.
3703 * In parts of the context where the added equality does not hold,
3704 * the main tableau is marked as being empty.
3706 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3712 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3716 if (tab
->row_var
[row
] < 0)
3718 if (tab
->row_var
[row
] >= tab
->n_param
&&
3719 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3721 if (tab
->row_var
[row
] < tab
->n_param
)
3722 p
= tab
->row_var
[row
];
3724 p
= tab
->row_var
[row
]
3725 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3727 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3728 get_row_parameter_line(tab
, row
, eq
->el
);
3729 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3730 eq
= isl_vec_normalize(eq
);
3733 no_sol_in_strict(sol
, tab
, eq
);
3735 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3737 no_sol_in_strict(sol
, tab
, eq
);
3738 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3740 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3744 if (isl_tab_mark_redundant(tab
, row
) < 0)
3747 if (sol
->context
->op
->is_empty(sol
->context
))
3750 row
= tab
->n_redundant
- 1;
3753 find_solutions(sol
, tab
);
3764 static void sol_map_find_solutions(struct isl_sol_map
*sol_map
,
3765 struct isl_tab
*tab
)
3767 find_solutions_main(&sol_map
->sol
, tab
);
3770 /* Check if integer division "div" of "dom" also occurs in "bmap".
3771 * If so, return its position within the divs.
3772 * If not, return -1.
3774 static int find_context_div(struct isl_basic_map
*bmap
,
3775 struct isl_basic_set
*dom
, unsigned div
)
3778 unsigned b_dim
= isl_dim_total(bmap
->dim
);
3779 unsigned d_dim
= isl_dim_total(dom
->dim
);
3781 if (isl_int_is_zero(dom
->div
[div
][0]))
3783 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
3786 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3787 if (isl_int_is_zero(bmap
->div
[i
][0]))
3789 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
3790 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
3792 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
3798 /* The correspondence between the variables in the main tableau,
3799 * the context tableau, and the input map and domain is as follows.
3800 * The first n_param and the last n_div variables of the main tableau
3801 * form the variables of the context tableau.
3802 * In the basic map, these n_param variables correspond to the
3803 * parameters and the input dimensions. In the domain, they correspond
3804 * to the parameters and the set dimensions.
3805 * The n_div variables correspond to the integer divisions in the domain.
3806 * To ensure that everything lines up, we may need to copy some of the
3807 * integer divisions of the domain to the map. These have to be placed
3808 * in the same order as those in the context and they have to be placed
3809 * after any other integer divisions that the map may have.
3810 * This function performs the required reordering.
3812 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
3813 struct isl_basic_set
*dom
)
3819 for (i
= 0; i
< dom
->n_div
; ++i
)
3820 if (find_context_div(bmap
, dom
, i
) != -1)
3822 other
= bmap
->n_div
- common
;
3823 if (dom
->n_div
- common
> 0) {
3824 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
3825 dom
->n_div
- common
, 0, 0);
3829 for (i
= 0; i
< dom
->n_div
; ++i
) {
3830 int pos
= find_context_div(bmap
, dom
, i
);
3832 pos
= isl_basic_map_alloc_div(bmap
);
3835 isl_int_set_si(bmap
->div
[pos
][0], 0);
3837 if (pos
!= other
+ i
)
3838 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
3842 isl_basic_map_free(bmap
);
3846 /* Compute the lexicographic minimum (or maximum if "max" is set)
3847 * of "bmap" over the domain "dom" and return the result as a map.
3848 * If "empty" is not NULL, then *empty is assigned a set that
3849 * contains those parts of the domain where there is no solution.
3850 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3851 * then we compute the rational optimum. Otherwise, we compute
3852 * the integral optimum.
3854 * We perform some preprocessing. As the PILP solver does not
3855 * handle implicit equalities very well, we first make sure all
3856 * the equalities are explicitly available.
3857 * We also make sure the divs in the domain are properly order,
3858 * because they will be added one by one in the given order
3859 * during the construction of the solution map.
3861 struct isl_map
*isl_tab_basic_map_partial_lexopt(
3862 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
3863 struct isl_set
**empty
, int max
)
3865 struct isl_tab
*tab
;
3866 struct isl_map
*result
= NULL
;
3867 struct isl_sol_map
*sol_map
= NULL
;
3868 struct isl_context
*context
;
3869 struct isl_basic_map
*eq
;
3876 isl_assert(bmap
->ctx
,
3877 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
3879 eq
= isl_basic_map_copy(bmap
);
3880 eq
= isl_basic_map_intersect_domain(eq
, isl_basic_set_copy(dom
));
3881 eq
= isl_basic_map_affine_hull(eq
);
3882 bmap
= isl_basic_map_intersect(bmap
, eq
);
3885 dom
= isl_basic_set_order_divs(dom
);
3886 bmap
= align_context_divs(bmap
, dom
);
3888 sol_map
= sol_map_init(bmap
, dom
, !!empty
, max
);
3892 context
= sol_map
->sol
.context
;
3893 if (isl_basic_set_fast_is_empty(context
->op
->peek_basic_set(context
)))
3895 else if (isl_basic_map_fast_is_empty(bmap
))
3896 sol_map_add_empty_if_needed(sol_map
,
3897 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
3899 tab
= tab_for_lexmin(bmap
,
3900 context
->op
->peek_basic_set(context
), 1, max
);
3901 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
3902 sol_map_find_solutions(sol_map
, tab
);
3904 if (sol_map
->sol
.error
)
3907 result
= isl_map_copy(sol_map
->map
);
3909 *empty
= isl_set_copy(sol_map
->empty
);
3910 sol_free(&sol_map
->sol
);
3911 isl_basic_map_free(bmap
);
3914 sol_free(&sol_map
->sol
);
3915 isl_basic_map_free(bmap
);
3919 struct isl_sol_for
{
3921 int (*fn
)(__isl_take isl_basic_set
*dom
,
3922 __isl_take isl_mat
*map
, void *user
);
3926 static void sol_for_free(struct isl_sol_for
*sol_for
)
3928 if (sol_for
->sol
.context
)
3929 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
3933 static void sol_for_free_wrap(struct isl_sol
*sol
)
3935 sol_for_free((struct isl_sol_for
*)sol
);
3938 /* Add the solution identified by the tableau and the context tableau.
3940 * See documentation of sol_add for more details.
3942 * Instead of constructing a basic map, this function calls a user
3943 * defined function with the current context as a basic set and
3944 * an affine matrix reprenting the relation between the input and output.
3945 * The number of rows in this matrix is equal to one plus the number
3946 * of output variables. The number of columns is equal to one plus
3947 * the total dimension of the context, i.e., the number of parameters,
3948 * input variables and divs. Since some of the columns in the matrix
3949 * may refer to the divs, the basic set is not simplified.
3950 * (Simplification may reorder or remove divs.)
3952 static void sol_for_add(struct isl_sol_for
*sol
,
3953 struct isl_basic_set
*dom
, struct isl_mat
*M
)
3955 if (sol
->sol
.error
|| !dom
|| !M
)
3958 dom
= isl_basic_set_simplify(dom
);
3959 dom
= isl_basic_set_finalize(dom
);
3961 if (sol
->fn(isl_basic_set_copy(dom
), isl_mat_copy(M
), sol
->user
) < 0)
3964 isl_basic_set_free(dom
);
3968 isl_basic_set_free(dom
);
3973 static void sol_for_add_wrap(struct isl_sol
*sol
,
3974 struct isl_basic_set
*dom
, struct isl_mat
*M
)
3976 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
3979 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
3980 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
3984 struct isl_sol_for
*sol_for
= NULL
;
3985 struct isl_dim
*dom_dim
;
3986 struct isl_basic_set
*dom
= NULL
;
3988 sol_for
= isl_calloc_type(bset
->ctx
, struct isl_sol_for
);
3992 dom_dim
= isl_dim_domain(isl_dim_copy(bmap
->dim
));
3993 dom
= isl_basic_set_universe(dom_dim
);
3995 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3996 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3997 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
3999 sol_for
->user
= user
;
4000 sol_for
->sol
.max
= max
;
4001 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4002 sol_for
->sol
.add
= &sol_for_add_wrap
;
4003 sol_for
->sol
.add_empty
= NULL
;
4004 sol_for
->sol
.free
= &sol_for_free_wrap
;
4006 sol_for
->sol
.context
= isl_context_alloc(dom
);
4007 if (!sol_for
->sol
.context
)
4010 isl_basic_set_free(dom
);
4013 isl_basic_set_free(dom
);
4014 sol_for_free(sol_for
);
4018 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4019 struct isl_tab
*tab
)
4021 find_solutions_main(&sol_for
->sol
, tab
);
4024 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4025 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4029 struct isl_sol_for
*sol_for
= NULL
;
4031 bmap
= isl_basic_map_copy(bmap
);
4035 bmap
= isl_basic_map_detect_equalities(bmap
);
4036 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4038 if (isl_basic_map_fast_is_empty(bmap
))
4041 struct isl_tab
*tab
;
4042 struct isl_context
*context
= sol_for
->sol
.context
;
4043 tab
= tab_for_lexmin(bmap
,
4044 context
->op
->peek_basic_set(context
), 1, max
);
4045 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4046 sol_for_find_solutions(sol_for
, tab
);
4047 if (sol_for
->sol
.error
)
4051 sol_free(&sol_for
->sol
);
4052 isl_basic_map_free(bmap
);
4055 sol_free(&sol_for
->sol
);
4056 isl_basic_map_free(bmap
);
4060 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map
*bmap
,
4061 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4065 return isl_basic_map_foreach_lexopt(bmap
, 0, fn
, user
);
4068 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map
*bmap
,
4069 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_mat
*map
,
4073 return isl_basic_map_foreach_lexopt(bmap
, 1, fn
, user
);