2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_sample.h"
11 #include "isl_sample_piplib.h"
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
18 #include "isl_basis_reduction.h"
19 #include <isl_point_private.h>
21 static struct isl_vec
*empty_sample(struct isl_basic_set
*bset
)
25 vec
= isl_vec_alloc(bset
->ctx
, 0);
26 isl_basic_set_free(bset
);
30 /* Construct a zero sample of the same dimension as bset.
31 * As a special case, if bset is zero-dimensional, this
32 * function creates a zero-dimensional sample point.
34 static struct isl_vec
*zero_sample(struct isl_basic_set
*bset
)
37 struct isl_vec
*sample
;
39 dim
= isl_basic_set_total_dim(bset
);
40 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
42 isl_int_set_si(sample
->el
[0], 1);
43 isl_seq_clr(sample
->el
+ 1, dim
);
45 isl_basic_set_free(bset
);
49 static struct isl_vec
*interval_sample(struct isl_basic_set
*bset
)
53 struct isl_vec
*sample
;
55 bset
= isl_basic_set_simplify(bset
);
58 if (isl_basic_set_fast_is_empty(bset
))
59 return empty_sample(bset
);
60 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
61 return zero_sample(bset
);
63 sample
= isl_vec_alloc(bset
->ctx
, 2);
64 isl_int_set_si(sample
->block
.data
[0], 1);
67 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
68 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
69 if (isl_int_is_one(bset
->eq
[0][1]))
70 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
72 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
74 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
76 isl_basic_set_free(bset
);
81 if (isl_int_is_one(bset
->ineq
[0][1]))
82 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
84 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
85 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
86 isl_seq_inner_product(sample
->block
.data
,
87 bset
->ineq
[i
], 2, &t
);
88 if (isl_int_is_neg(t
))
92 if (i
< bset
->n_ineq
) {
94 return empty_sample(bset
);
97 isl_basic_set_free(bset
);
100 isl_basic_set_free(bset
);
101 isl_vec_free(sample
);
105 static struct isl_mat
*independent_bounds(struct isl_basic_set
*bset
)
108 struct isl_mat
*dirs
= NULL
;
109 struct isl_mat
*bounds
= NULL
;
115 dim
= isl_basic_set_n_dim(bset
);
116 bounds
= isl_mat_alloc(bset
->ctx
, 1+dim
, 1+dim
);
120 isl_int_set_si(bounds
->row
[0][0], 1);
121 isl_seq_clr(bounds
->row
[0]+1, dim
);
124 if (bset
->n_ineq
== 0)
127 dirs
= isl_mat_alloc(bset
->ctx
, dim
, dim
);
129 isl_mat_free(bounds
);
132 isl_seq_cpy(dirs
->row
[0], bset
->ineq
[0]+1, dirs
->n_col
);
133 isl_seq_cpy(bounds
->row
[1], bset
->ineq
[0], bounds
->n_col
);
134 for (j
= 1, n
= 1; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
137 isl_seq_cpy(dirs
->row
[n
], bset
->ineq
[j
]+1, dirs
->n_col
);
139 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
142 for (i
= 0; i
< n
; ++i
) {
144 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
], dirs
->n_col
);
149 isl_seq_elim(dirs
->row
[n
], dirs
->row
[i
], pos
,
151 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
159 isl_int
*t
= dirs
->row
[n
];
160 for (k
= n
; k
> i
; --k
)
161 dirs
->row
[k
] = dirs
->row
[k
-1];
165 isl_seq_cpy(bounds
->row
[n
], bset
->ineq
[j
], bounds
->n_col
);
172 static void swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
174 isl_int
*t
= bset
->ineq
[a
];
175 bset
->ineq
[a
] = bset
->ineq
[b
];
179 /* Skew into positive orthant and project out lineality space.
181 * We perform a unimodular transformation that turns a selected
182 * maximal set of linearly independent bounds into constraints
183 * on the first dimensions that impose that these first dimensions
184 * are non-negative. In particular, the constraint matrix is lower
185 * triangular with positive entries on the diagonal and negative
187 * If "bset" has a lineality space then these constraints (and therefore
188 * all constraints in bset) only involve the first dimensions.
189 * The remaining dimensions then do not appear in any constraints and
190 * we can select any value for them, say zero. We therefore project
191 * out this final dimensions and plug in the value zero later. This
192 * is accomplished by simply dropping the final columns of
193 * the unimodular transformation.
195 static struct isl_basic_set
*isl_basic_set_skew_to_positive_orthant(
196 struct isl_basic_set
*bset
, struct isl_mat
**T
)
198 struct isl_mat
*U
= NULL
;
199 struct isl_mat
*bounds
= NULL
;
201 unsigned old_dim
, new_dim
;
207 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
208 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
209 isl_assert(bset
->ctx
, bset
->n_eq
== 0, goto error
);
211 old_dim
= isl_basic_set_n_dim(bset
);
212 /* Try to move (multiples of) unit rows up. */
213 for (i
= 0, j
= 0; i
< bset
->n_ineq
; ++i
) {
214 int pos
= isl_seq_first_non_zero(bset
->ineq
[i
]+1, old_dim
);
217 if (isl_seq_first_non_zero(bset
->ineq
[i
]+1+pos
+1,
221 swap_inequality(bset
, i
, j
);
224 bounds
= independent_bounds(bset
);
227 new_dim
= bounds
->n_row
- 1;
228 bounds
= isl_mat_left_hermite(bounds
, 1, &U
, NULL
);
231 U
= isl_mat_drop_cols(U
, 1 + new_dim
, old_dim
- new_dim
);
232 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
236 isl_mat_free(bounds
);
239 isl_mat_free(bounds
);
241 isl_basic_set_free(bset
);
245 /* Find a sample integer point, if any, in bset, which is known
246 * to have equalities. If bset contains no integer points, then
247 * return a zero-length vector.
248 * We simply remove the known equalities, compute a sample
249 * in the resulting bset, using the specified recurse function,
250 * and then transform the sample back to the original space.
252 static struct isl_vec
*sample_eq(struct isl_basic_set
*bset
,
253 struct isl_vec
*(*recurse
)(struct isl_basic_set
*))
256 struct isl_vec
*sample
;
261 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
262 sample
= recurse(bset
);
263 if (!sample
|| sample
->size
== 0)
266 sample
= isl_mat_vec_product(T
, sample
);
270 /* Return a matrix containing the equalities of the tableau
271 * in constraint form. The tableau is assumed to have
272 * an associated bset that has been kept up-to-date.
274 static struct isl_mat
*tab_equalities(struct isl_tab
*tab
)
279 struct isl_basic_set
*bset
;
284 bset
= isl_tab_peek_bset(tab
);
285 isl_assert(tab
->mat
->ctx
, bset
, return NULL
);
287 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
288 if (tab
->empty
|| n_eq
== 0)
289 return isl_mat_alloc(tab
->mat
->ctx
, 0, tab
->n_var
);
290 if (n_eq
== tab
->n_var
)
291 return isl_mat_identity(tab
->mat
->ctx
, tab
->n_var
);
293 eq
= isl_mat_alloc(tab
->mat
->ctx
, n_eq
, tab
->n_var
);
296 for (i
= 0, j
= 0; i
< tab
->n_con
; ++i
) {
297 if (tab
->con
[i
].is_row
)
299 if (tab
->con
[i
].index
>= 0 && tab
->con
[i
].index
>= tab
->n_dead
)
302 isl_seq_cpy(eq
->row
[j
], bset
->eq
[i
] + 1, tab
->n_var
);
304 isl_seq_cpy(eq
->row
[j
],
305 bset
->ineq
[i
- bset
->n_eq
] + 1, tab
->n_var
);
308 isl_assert(bset
->ctx
, j
== n_eq
, goto error
);
315 /* Compute and return an initial basis for the bounded tableau "tab".
317 * If the tableau is either full-dimensional or zero-dimensional,
318 * the we simply return an identity matrix.
319 * Otherwise, we construct a basis whose first directions correspond
322 static struct isl_mat
*initial_basis(struct isl_tab
*tab
)
328 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
329 if (tab
->empty
|| n_eq
== 0 || n_eq
== tab
->n_var
)
330 return isl_mat_identity(tab
->mat
->ctx
, 1 + tab
->n_var
);
332 eq
= tab_equalities(tab
);
333 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &Q
);
338 Q
= isl_mat_lin_to_aff(Q
);
342 /* Given a tableau representing a set, find and return
343 * an integer point in the set, if there is any.
345 * We perform a depth first search
346 * for an integer point, by scanning all possible values in the range
347 * attained by a basis vector, where an initial basis may have been set
348 * by the calling function. Otherwise an initial basis that exploits
349 * the equalities in the tableau is created.
350 * tab->n_zero is currently ignored and is clobbered by this function.
352 * The tableau is allowed to have unbounded direction, but then
353 * the calling function needs to set an initial basis, with the
354 * unbounded directions last and with tab->n_unbounded set
355 * to the number of unbounded directions.
356 * Furthermore, the calling functions needs to add shifted copies
357 * of all constraints involving unbounded directions to ensure
358 * that any feasible rational value in these directions can be rounded
359 * up to yield a feasible integer value.
360 * In particular, let B define the given basis x' = B x
361 * and let T be the inverse of B, i.e., X = T x'.
362 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
363 * or a T x' + c >= 0 in terms of the given basis. Assume that
364 * the bounded directions have an integer value, then we can safely
365 * round up the values for the unbounded directions if we make sure
366 * that x' not only satisfies the original constraint, but also
367 * the constraint "a T x' + c + s >= 0" with s the sum of all
368 * negative values in the last n_unbounded entries of "a T".
369 * The calling function therefore needs to add the constraint
370 * a x + c + s >= 0. The current function then scans the first
371 * directions for an integer value and once those have been found,
372 * it can compute "T ceil(B x)" to yield an integer point in the set.
373 * Note that during the search, the first rows of B may be changed
374 * by a basis reduction, but the last n_unbounded rows of B remain
375 * unaltered and are also not mixed into the first rows.
377 * The search is implemented iteratively. "level" identifies the current
378 * basis vector. "init" is true if we want the first value at the current
379 * level and false if we want the next value.
381 * The initial basis is the identity matrix. If the range in some direction
382 * contains more than one integer value, we perform basis reduction based
383 * on the value of ctx->opt->gbr
384 * - ISL_GBR_NEVER: never perform basis reduction
385 * - ISL_GBR_ONCE: only perform basis reduction the first
386 * time such a range is encountered
387 * - ISL_GBR_ALWAYS: always perform basis reduction when
388 * such a range is encountered
390 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
391 * reduction computation to return early. That is, as soon as it
392 * finds a reasonable first direction.
394 struct isl_vec
*isl_tab_sample(struct isl_tab
*tab
)
399 struct isl_vec
*sample
;
402 enum isl_lp_result res
;
406 struct isl_tab_undo
**snap
;
411 return isl_vec_alloc(tab
->mat
->ctx
, 0);
414 tab
->basis
= initial_basis(tab
);
417 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_row
== tab
->n_var
+ 1,
419 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_col
== tab
->n_var
+ 1,
426 if (tab
->n_unbounded
== tab
->n_var
) {
427 sample
= isl_tab_get_sample_value(tab
);
428 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
), sample
);
429 sample
= isl_vec_ceil(sample
);
430 sample
= isl_mat_vec_inverse_product(isl_mat_copy(tab
->basis
),
435 if (isl_tab_extend_cons(tab
, dim
+ 1) < 0)
438 min
= isl_vec_alloc(ctx
, dim
);
439 max
= isl_vec_alloc(ctx
, dim
);
440 snap
= isl_alloc_array(ctx
, struct isl_tab_undo
*, dim
);
442 if (!min
|| !max
|| !snap
)
452 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
453 ctx
->one
, &min
->el
[level
], NULL
, 0);
454 if (res
== isl_lp_empty
)
456 isl_assert(ctx
, res
!= isl_lp_unbounded
, goto error
);
457 if (res
== isl_lp_error
)
459 if (!empty
&& isl_tab_sample_is_integer(tab
))
461 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
462 tab
->basis
->row
[1 + level
] + 1, dim
);
463 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
464 ctx
->one
, &max
->el
[level
], NULL
, 0);
465 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
466 tab
->basis
->row
[1 + level
] + 1, dim
);
467 isl_int_neg(max
->el
[level
], max
->el
[level
]);
468 if (res
== isl_lp_empty
)
470 isl_assert(ctx
, res
!= isl_lp_unbounded
, goto error
);
471 if (res
== isl_lp_error
)
473 if (!empty
&& isl_tab_sample_is_integer(tab
))
475 if (!empty
&& !reduced
&&
476 ctx
->opt
->gbr
!= ISL_GBR_NEVER
&&
477 isl_int_lt(min
->el
[level
], max
->el
[level
])) {
478 unsigned gbr_only_first
;
479 if (ctx
->opt
->gbr
== ISL_GBR_ONCE
)
480 ctx
->opt
->gbr
= ISL_GBR_NEVER
;
482 gbr_only_first
= ctx
->opt
->gbr_only_first
;
483 ctx
->opt
->gbr_only_first
=
484 ctx
->opt
->gbr
== ISL_GBR_ALWAYS
;
485 tab
= isl_tab_compute_reduced_basis(tab
);
486 ctx
->opt
->gbr_only_first
= gbr_only_first
;
487 if (!tab
|| !tab
->basis
)
493 snap
[level
] = isl_tab_snap(tab
);
495 isl_int_add_ui(min
->el
[level
], min
->el
[level
], 1);
497 if (empty
|| isl_int_gt(min
->el
[level
], max
->el
[level
])) {
501 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
505 isl_int_neg(tab
->basis
->row
[1 + level
][0], min
->el
[level
]);
506 tab
= isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]);
507 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
508 if (level
+ tab
->n_unbounded
< dim
- 1) {
517 sample
= isl_tab_get_sample_value(tab
);
520 if (tab
->n_unbounded
&& !isl_int_is_one(sample
->el
[0])) {
521 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
),
523 sample
= isl_vec_ceil(sample
);
524 sample
= isl_mat_vec_inverse_product(
525 isl_mat_copy(tab
->basis
), sample
);
528 sample
= isl_vec_alloc(ctx
, 0);
543 /* Given a basic set that is known to be bounded, find and return
544 * an integer point in the basic set, if there is any.
546 * After handling some trivial cases, we construct a tableau
547 * and then use isl_tab_sample to find a sample, passing it
548 * the identity matrix as initial basis.
550 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
)
554 struct isl_vec
*sample
;
555 struct isl_tab
*tab
= NULL
;
560 if (isl_basic_set_fast_is_empty(bset
))
561 return empty_sample(bset
);
563 dim
= isl_basic_set_total_dim(bset
);
565 return zero_sample(bset
);
567 return interval_sample(bset
);
569 return sample_eq(bset
, sample_bounded
);
573 tab
= isl_tab_from_basic_set(bset
);
574 if (tab
&& tab
->empty
) {
576 ISL_F_SET(bset
, ISL_BASIC_SET_EMPTY
);
577 sample
= isl_vec_alloc(bset
->ctx
, 0);
578 isl_basic_set_free(bset
);
582 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
584 if (!ISL_F_ISSET(bset
, ISL_BASIC_SET_NO_IMPLICIT
))
585 tab
= isl_tab_detect_implicit_equalities(tab
);
589 sample
= isl_tab_sample(tab
);
593 if (sample
->size
> 0) {
594 isl_vec_free(bset
->sample
);
595 bset
->sample
= isl_vec_copy(sample
);
598 isl_basic_set_free(bset
);
602 isl_basic_set_free(bset
);
607 /* Given a basic set "bset" and a value "sample" for the first coordinates
608 * of bset, plug in these values and drop the corresponding coordinates.
610 * We do this by computing the preimage of the transformation
616 * where [1 s] is the sample value and I is the identity matrix of the
617 * appropriate dimension.
619 static struct isl_basic_set
*plug_in(struct isl_basic_set
*bset
,
620 struct isl_vec
*sample
)
626 if (!bset
|| !sample
)
629 total
= isl_basic_set_total_dim(bset
);
630 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
634 for (i
= 0; i
< sample
->size
; ++i
) {
635 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
636 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
638 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
639 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
640 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
642 isl_vec_free(sample
);
644 bset
= isl_basic_set_preimage(bset
, T
);
647 isl_basic_set_free(bset
);
648 isl_vec_free(sample
);
652 /* Given a basic set "bset", return any (possibly non-integer) point
655 static struct isl_vec
*rational_sample(struct isl_basic_set
*bset
)
658 struct isl_vec
*sample
;
663 tab
= isl_tab_from_basic_set(bset
);
664 sample
= isl_tab_get_sample_value(tab
);
667 isl_basic_set_free(bset
);
672 /* Given a linear cone "cone" and a rational point "vec",
673 * construct a polyhedron with shifted copies of the constraints in "cone",
674 * i.e., a polyhedron with "cone" as its recession cone, such that each
675 * point x in this polyhedron is such that the unit box positioned at x
676 * lies entirely inside the affine cone 'vec + cone'.
677 * Any rational point in this polyhedron may therefore be rounded up
678 * to yield an integer point that lies inside said affine cone.
680 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
681 * point "vec" by v/d.
682 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
683 * by <a_i, x> - b/d >= 0.
684 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
685 * We prefer this polyhedron over the actual affine cone because it doesn't
686 * require a scaling of the constraints.
687 * If each of the vertices of the unit cube positioned at x lies inside
688 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
689 * We therefore impose that x' = x + \sum e_i, for any selection of unit
690 * vectors lies inside the polyhedron, i.e.,
692 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
694 * The most stringent of these constraints is the one that selects
695 * all negative a_i, so the polyhedron we are looking for has constraints
697 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
699 * Note that if cone were known to have only non-negative rays
700 * (which can be accomplished by a unimodular transformation),
701 * then we would only have to check the points x' = x + e_i
702 * and we only have to add the smallest negative a_i (if any)
703 * instead of the sum of all negative a_i.
705 static struct isl_basic_set
*shift_cone(struct isl_basic_set
*cone
,
711 struct isl_basic_set
*shift
= NULL
;
716 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
718 total
= isl_basic_set_total_dim(cone
);
720 shift
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone
),
723 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
724 k
= isl_basic_set_alloc_inequality(shift
);
727 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
728 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
730 isl_int_cdiv_q(shift
->ineq
[k
][0],
731 shift
->ineq
[k
][0], vec
->el
[0]);
732 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
733 for (j
= 0; j
< total
; ++j
) {
734 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
736 isl_int_add(shift
->ineq
[k
][0],
737 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
741 isl_basic_set_free(cone
);
744 return isl_basic_set_finalize(shift
);
746 isl_basic_set_free(shift
);
747 isl_basic_set_free(cone
);
752 /* Given a rational point vec in a (transformed) basic set,
753 * such that cone is the recession cone of the original basic set,
754 * "round up" the rational point to an integer point.
756 * We first check if the rational point just happens to be integer.
757 * If not, we transform the cone in the same way as the basic set,
758 * pick a point x in this cone shifted to the rational point such that
759 * the whole unit cube at x is also inside this affine cone.
760 * Then we simply round up the coordinates of x and return the
761 * resulting integer point.
763 static struct isl_vec
*round_up_in_cone(struct isl_vec
*vec
,
764 struct isl_basic_set
*cone
, struct isl_mat
*U
)
768 if (!vec
|| !cone
|| !U
)
771 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
772 if (isl_int_is_one(vec
->el
[0])) {
774 isl_basic_set_free(cone
);
778 total
= isl_basic_set_total_dim(cone
);
779 cone
= isl_basic_set_preimage(cone
, U
);
780 cone
= isl_basic_set_remove_dims(cone
, 0, total
- (vec
->size
- 1));
782 cone
= shift_cone(cone
, vec
);
784 vec
= rational_sample(cone
);
785 vec
= isl_vec_ceil(vec
);
790 isl_basic_set_free(cone
);
794 /* Concatenate two integer vectors, i.e., two vectors with denominator
795 * (stored in element 0) equal to 1.
797 static struct isl_vec
*vec_concat(struct isl_vec
*vec1
, struct isl_vec
*vec2
)
803 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
804 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
805 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
806 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
808 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
812 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
813 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
825 /* Drop all constraints in bset that involve any of the dimensions
826 * first to first+n-1.
828 static struct isl_basic_set
*drop_constraints_involving
829 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
836 bset
= isl_basic_set_cow(bset
);
838 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
839 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
841 isl_basic_set_drop_inequality(bset
, i
);
847 /* Give a basic set "bset" with recession cone "cone", compute and
848 * return an integer point in bset, if any.
850 * If the recession cone is full-dimensional, then we know that
851 * bset contains an infinite number of integer points and it is
852 * fairly easy to pick one of them.
853 * If the recession cone is not full-dimensional, then we first
854 * transform bset such that the bounded directions appear as
855 * the first dimensions of the transformed basic set.
856 * We do this by using a unimodular transformation that transforms
857 * the equalities in the recession cone to equalities on the first
860 * The transformed set is then projected onto its bounded dimensions.
861 * Note that to compute this projection, we can simply drop all constraints
862 * involving any of the unbounded dimensions since these constraints
863 * cannot be combined to produce a constraint on the bounded dimensions.
864 * To see this, assume that there is such a combination of constraints
865 * that produces a constraint on the bounded dimensions. This means
866 * that some combination of the unbounded dimensions has both an upper
867 * bound and a lower bound in terms of the bounded dimensions, but then
868 * this combination would be a bounded direction too and would have been
869 * transformed into a bounded dimensions.
871 * We then compute a sample value in the bounded dimensions.
872 * If no such value can be found, then the original set did not contain
873 * any integer points and we are done.
874 * Otherwise, we plug in the value we found in the bounded dimensions,
875 * project out these bounded dimensions and end up with a set with
876 * a full-dimensional recession cone.
877 * A sample point in this set is computed by "rounding up" any
878 * rational point in the set.
880 * The sample points in the bounded and unbounded dimensions are
881 * then combined into a single sample point and transformed back
882 * to the original space.
884 __isl_give isl_vec
*isl_basic_set_sample_with_cone(
885 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*cone
)
889 struct isl_mat
*M
, *U
;
890 struct isl_vec
*sample
;
891 struct isl_vec
*cone_sample
;
893 struct isl_basic_set
*bounded
;
899 total
= isl_basic_set_total_dim(cone
);
900 cone_dim
= total
- cone
->n_eq
;
902 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
903 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
908 U
= isl_mat_lin_to_aff(U
);
909 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
911 bounded
= isl_basic_set_copy(bset
);
912 bounded
= drop_constraints_involving(bounded
, total
- cone_dim
, cone_dim
);
913 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
914 sample
= sample_bounded(bounded
);
915 if (!sample
|| sample
->size
== 0) {
916 isl_basic_set_free(bset
);
917 isl_basic_set_free(cone
);
921 bset
= plug_in(bset
, isl_vec_copy(sample
));
922 cone_sample
= rational_sample(bset
);
923 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
924 sample
= vec_concat(sample
, cone_sample
);
925 sample
= isl_mat_vec_product(U
, sample
);
928 isl_basic_set_free(cone
);
929 isl_basic_set_free(bset
);
933 static void vec_sum_of_neg(struct isl_vec
*v
, isl_int
*s
)
937 isl_int_set_si(*s
, 0);
939 for (i
= 0; i
< v
->size
; ++i
)
940 if (isl_int_is_neg(v
->el
[i
]))
941 isl_int_add(*s
, *s
, v
->el
[i
]);
944 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
945 * to the recession cone and the inverse of a new basis U = inv(B),
946 * with the unbounded directions in B last,
947 * add constraints to "tab" that ensure any rational value
948 * in the unbounded directions can be rounded up to an integer value.
950 * The new basis is given by x' = B x, i.e., x = U x'.
951 * For any rational value of the last tab->n_unbounded coordinates
952 * in the update tableau, the value that is obtained by rounding
953 * up this value should be contained in the original tableau.
954 * For any constraint "a x + c >= 0", we therefore need to add
955 * a constraint "a x + c + s >= 0", with s the sum of all negative
956 * entries in the last elements of "a U".
958 * Since we are not interested in the first entries of any of the "a U",
959 * we first drop the columns of U that correpond to bounded directions.
961 static int tab_shift_cone(struct isl_tab
*tab
,
962 struct isl_tab
*tab_cone
, struct isl_mat
*U
)
966 struct isl_basic_set
*bset
= NULL
;
968 if (tab
&& tab
->n_unbounded
== 0) {
973 if (!tab
|| !tab_cone
|| !U
)
975 bset
= isl_tab_peek_bset(tab_cone
);
976 U
= isl_mat_drop_cols(U
, 0, tab
->n_var
- tab
->n_unbounded
);
977 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
979 struct isl_vec
*row
= NULL
;
980 if (isl_tab_is_equality(tab_cone
, tab_cone
->n_eq
+ i
))
982 row
= isl_vec_alloc(bset
->ctx
, tab_cone
->n_var
);
985 isl_seq_cpy(row
->el
, bset
->ineq
[i
] + 1, tab_cone
->n_var
);
986 row
= isl_vec_mat_product(row
, isl_mat_copy(U
));
989 vec_sum_of_neg(row
, &v
);
991 if (isl_int_is_zero(v
))
993 tab
= isl_tab_extend(tab
, 1);
994 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
995 ok
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]) >= 0;
996 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1010 /* Compute and return an initial basis for the possibly
1011 * unbounded tableau "tab". "tab_cone" is a tableau
1012 * for the corresponding recession cone.
1013 * Additionally, add constraints to "tab" that ensure
1014 * that any rational value for the unbounded directions
1015 * can be rounded up to an integer value.
1017 * If the tableau is bounded, i.e., if the recession cone
1018 * is zero-dimensional, then we just use inital_basis.
1019 * Otherwise, we construct a basis whose first directions
1020 * correspond to equalities, followed by bounded directions,
1021 * i.e., equalities in the recession cone.
1022 * The remaining directions are then unbounded.
1024 int isl_tab_set_initial_basis_with_cone(struct isl_tab
*tab
,
1025 struct isl_tab
*tab_cone
)
1028 struct isl_mat
*cone_eq
;
1029 struct isl_mat
*U
, *Q
;
1031 if (!tab
|| !tab_cone
)
1034 if (tab_cone
->n_col
== tab_cone
->n_dead
) {
1035 tab
->basis
= initial_basis(tab
);
1036 return tab
->basis
? 0 : -1;
1039 eq
= tab_equalities(tab
);
1042 tab
->n_zero
= eq
->n_row
;
1043 cone_eq
= tab_equalities(tab_cone
);
1044 eq
= isl_mat_concat(eq
, cone_eq
);
1047 tab
->n_unbounded
= tab
->n_var
- (eq
->n_row
- tab
->n_zero
);
1048 eq
= isl_mat_left_hermite(eq
, 0, &U
, &Q
);
1052 tab
->basis
= isl_mat_lin_to_aff(Q
);
1053 if (tab_shift_cone(tab
, tab_cone
, U
) < 0)
1060 /* Compute and return a sample point in bset using generalized basis
1061 * reduction. We first check if the input set has a non-trivial
1062 * recession cone. If so, we perform some extra preprocessing in
1063 * sample_with_cone. Otherwise, we directly perform generalized basis
1066 static struct isl_vec
*gbr_sample(struct isl_basic_set
*bset
)
1069 struct isl_basic_set
*cone
;
1071 dim
= isl_basic_set_total_dim(bset
);
1073 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
1075 if (cone
->n_eq
< dim
)
1076 return isl_basic_set_sample_with_cone(bset
, cone
);
1078 isl_basic_set_free(cone
);
1079 return sample_bounded(bset
);
1082 static struct isl_vec
*pip_sample(struct isl_basic_set
*bset
)
1085 struct isl_ctx
*ctx
;
1086 struct isl_vec
*sample
;
1088 bset
= isl_basic_set_skew_to_positive_orthant(bset
, &T
);
1093 sample
= isl_pip_basic_set_sample(bset
);
1095 if (sample
&& sample
->size
!= 0)
1096 sample
= isl_mat_vec_product(T
, sample
);
1103 static struct isl_vec
*basic_set_sample(struct isl_basic_set
*bset
, int bounded
)
1105 struct isl_ctx
*ctx
;
1111 if (isl_basic_set_fast_is_empty(bset
))
1112 return empty_sample(bset
);
1114 dim
= isl_basic_set_n_dim(bset
);
1115 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
1116 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
1118 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
1119 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
1123 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
1124 isl_basic_set_free(bset
);
1128 isl_vec_free(bset
->sample
);
1129 bset
->sample
= NULL
;
1132 return sample_eq(bset
, bounded
? isl_basic_set_sample_bounded
1133 : isl_basic_set_sample_vec
);
1135 return zero_sample(bset
);
1137 return interval_sample(bset
);
1139 switch (bset
->ctx
->opt
->ilp_solver
) {
1141 return pip_sample(bset
);
1143 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
1145 isl_assert(bset
->ctx
, 0, );
1147 isl_basic_set_free(bset
);
1151 __isl_give isl_vec
*isl_basic_set_sample_vec(__isl_take isl_basic_set
*bset
)
1153 return basic_set_sample(bset
, 0);
1156 /* Compute an integer sample in "bset", where the caller guarantees
1157 * that "bset" is bounded.
1159 struct isl_vec
*isl_basic_set_sample_bounded(struct isl_basic_set
*bset
)
1161 return basic_set_sample(bset
, 1);
1164 __isl_give isl_basic_set
*isl_basic_set_from_vec(__isl_take isl_vec
*vec
)
1168 struct isl_basic_set
*bset
= NULL
;
1169 struct isl_ctx
*ctx
;
1175 isl_assert(ctx
, vec
->size
!= 0, goto error
);
1177 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
1180 dim
= isl_basic_set_n_dim(bset
);
1181 for (i
= dim
- 1; i
>= 0; --i
) {
1182 k
= isl_basic_set_alloc_equality(bset
);
1185 isl_seq_clr(bset
->eq
[k
], 1 + dim
);
1186 isl_int_neg(bset
->eq
[k
][0], vec
->el
[1 + i
]);
1187 isl_int_set(bset
->eq
[k
][1 + i
], vec
->el
[0]);
1193 isl_basic_set_free(bset
);
1198 __isl_give isl_basic_map
*isl_basic_map_sample(__isl_take isl_basic_map
*bmap
)
1200 struct isl_basic_set
*bset
;
1201 struct isl_vec
*sample_vec
;
1203 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1204 sample_vec
= isl_basic_set_sample_vec(bset
);
1207 if (sample_vec
->size
== 0) {
1208 struct isl_basic_map
*sample
;
1209 sample
= isl_basic_map_empty_like(bmap
);
1210 isl_vec_free(sample_vec
);
1211 isl_basic_map_free(bmap
);
1214 bset
= isl_basic_set_from_vec(sample_vec
);
1215 return isl_basic_map_overlying_set(bset
, bmap
);
1217 isl_basic_map_free(bmap
);
1221 __isl_give isl_basic_map
*isl_map_sample(__isl_take isl_map
*map
)
1224 isl_basic_map
*sample
= NULL
;
1229 for (i
= 0; i
< map
->n
; ++i
) {
1230 sample
= isl_basic_map_sample(isl_basic_map_copy(map
->p
[i
]));
1233 if (!ISL_F_ISSET(sample
, ISL_BASIC_MAP_EMPTY
))
1235 isl_basic_map_free(sample
);
1238 sample
= isl_basic_map_empty_like_map(map
);
1246 __isl_give isl_basic_set
*isl_set_sample(__isl_take isl_set
*set
)
1248 return (isl_basic_set
*) isl_map_sample((isl_map
*)set
);
1251 __isl_give isl_point
*isl_basic_set_sample_point(__isl_take isl_basic_set
*bset
)
1256 dim
= isl_basic_set_get_dim(bset
);
1257 bset
= isl_basic_set_underlying_set(bset
);
1258 vec
= isl_basic_set_sample_vec(bset
);
1260 return isl_point_alloc(dim
, vec
);
1263 __isl_give isl_point
*isl_set_sample_point(__isl_take isl_set
*set
)
1271 for (i
= 0; i
< set
->n
; ++i
) {
1272 pnt
= isl_basic_set_sample_point(isl_basic_set_copy(set
->p
[i
]));
1275 if (!isl_point_is_void(pnt
))
1277 isl_point_free(pnt
);
1280 pnt
= isl_point_void(isl_set_get_dim(set
));