2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
6 * Copyright 2016 INRIA Paris
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, K.U.Leuven, Departement
11 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
16 * B.P. 105 - 78153 Le Chesnay, France
17 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
18 * CS 42112, 75589 Paris Cedex 12, France
21 #include <isl_ctx_private.h>
22 #include "isl_map_private.h"
24 #include <isl/options.h>
26 #include <isl_mat_private.h>
27 #include <isl_local_space_private.h>
28 #include <isl_val_private.h>
29 #include <isl_vec_private.h>
30 #include <isl_aff_private.h>
31 #include <isl_equalities.h>
32 #include <isl_constraint_private.h>
34 #include <set_to_map.c>
35 #include <set_from_map.c>
37 #define STATUS_ERROR -1
38 #define STATUS_REDUNDANT 1
39 #define STATUS_VALID 2
40 #define STATUS_SEPARATE 3
42 #define STATUS_ADJ_EQ 5
43 #define STATUS_ADJ_INEQ 6
45 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
47 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
50 case isl_ineq_error
: return STATUS_ERROR
;
51 case isl_ineq_redundant
: return STATUS_VALID
;
52 case isl_ineq_separate
: return STATUS_SEPARATE
;
53 case isl_ineq_cut
: return STATUS_CUT
;
54 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
55 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
59 /* Compute the position of the equalities of basic map "bmap_i"
60 * with respect to the basic map represented by "tab_j".
61 * The resulting array has twice as many entries as the number
62 * of equalities corresponding to the two inequalities to which
63 * each equality corresponds.
65 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
66 struct isl_tab
*tab_j
)
69 int *eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
75 dim
= isl_basic_map_total_dim(bmap_i
);
76 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
77 for (l
= 0; l
< 2; ++l
) {
78 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
79 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
80 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
91 /* Compute the position of the inequalities of basic map "bmap_i"
92 * (also represented by "tab_i", if not NULL) with respect to the basic map
93 * represented by "tab_j".
95 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
96 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
99 unsigned n_eq
= bmap_i
->n_eq
;
100 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
105 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
106 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
107 ineq
[k
] = STATUS_REDUNDANT
;
110 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
111 if (ineq
[k
] == STATUS_ERROR
)
113 if (ineq
[k
] == STATUS_SEPARATE
)
123 static int any(int *con
, unsigned len
, int status
)
127 for (i
= 0; i
< len
; ++i
)
128 if (con
[i
] == status
)
133 /* Return the first position of "status" in the list "con" of length "len".
134 * Return -1 if there is no such entry.
136 static int find(int *con
, unsigned len
, int status
)
140 for (i
= 0; i
< len
; ++i
)
141 if (con
[i
] == status
)
146 static int count(int *con
, unsigned len
, int status
)
151 for (i
= 0; i
< len
; ++i
)
152 if (con
[i
] == status
)
157 static int all(int *con
, unsigned len
, int status
)
161 for (i
= 0; i
< len
; ++i
) {
162 if (con
[i
] == STATUS_REDUNDANT
)
164 if (con
[i
] != status
)
170 /* Internal information associated to a basic map in a map
171 * that is to be coalesced by isl_map_coalesce.
173 * "bmap" is the basic map itself (or NULL if "removed" is set)
174 * "tab" is the corresponding tableau (or NULL if "removed" is set)
175 * "hull_hash" identifies the affine space in which "bmap" lives.
176 * "removed" is set if this basic map has been removed from the map
177 * "simplify" is set if this basic map may have some unknown integer
178 * divisions that were not present in the input basic maps. The basic
179 * map should then be simplified such that we may be able to find
180 * a definition among the constraints.
182 * "eq" and "ineq" are only set if we are currently trying to coalesce
183 * this basic map with another basic map, in which case they represent
184 * the position of the inequalities of this basic map with respect to
185 * the other basic map. The number of elements in the "eq" array
186 * is twice the number of equalities in the "bmap", corresponding
187 * to the two inequalities that make up each equality.
189 struct isl_coalesce_info
{
199 /* Is there any (half of an) equality constraint in the description
200 * of the basic map represented by "info" that
201 * has position "status" with respect to the other basic map?
203 static int any_eq(struct isl_coalesce_info
*info
, int status
)
207 n_eq
= isl_basic_map_n_equality(info
->bmap
);
208 return any(info
->eq
, 2 * n_eq
, status
);
211 /* Is there any inequality constraint in the description
212 * of the basic map represented by "info" that
213 * has position "status" with respect to the other basic map?
215 static int any_ineq(struct isl_coalesce_info
*info
, int status
)
219 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
220 return any(info
->ineq
, n_ineq
, status
);
223 /* Return the position of the first half on an equality constraint
224 * in the description of the basic map represented by "info" that
225 * has position "status" with respect to the other basic map.
226 * The returned value is twice the position of the equality constraint
227 * plus zero for the negative half and plus one for the positive half.
228 * Return -1 if there is no such entry.
230 static int find_eq(struct isl_coalesce_info
*info
, int status
)
234 n_eq
= isl_basic_map_n_equality(info
->bmap
);
235 return find(info
->eq
, 2 * n_eq
, status
);
238 /* Return the position of the first inequality constraint in the description
239 * of the basic map represented by "info" that
240 * has position "status" with respect to the other basic map.
241 * Return -1 if there is no such entry.
243 static int find_ineq(struct isl_coalesce_info
*info
, int status
)
247 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
248 return find(info
->ineq
, n_ineq
, status
);
251 /* Return the number of (halves of) equality constraints in the description
252 * of the basic map represented by "info" that
253 * have position "status" with respect to the other basic map.
255 static int count_eq(struct isl_coalesce_info
*info
, int status
)
259 n_eq
= isl_basic_map_n_equality(info
->bmap
);
260 return count(info
->eq
, 2 * n_eq
, status
);
263 /* Return the number of inequality constraints in the description
264 * of the basic map represented by "info" that
265 * have position "status" with respect to the other basic map.
267 static int count_ineq(struct isl_coalesce_info
*info
, int status
)
271 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
272 return count(info
->ineq
, n_ineq
, status
);
275 /* Are all non-redundant constraints of the basic map represented by "info"
276 * either valid or cut constraints with respect to the other basic map?
278 static int all_valid_or_cut(struct isl_coalesce_info
*info
)
282 for (i
= 0; i
< 2 * info
->bmap
->n_eq
; ++i
) {
283 if (info
->eq
[i
] == STATUS_REDUNDANT
)
285 if (info
->eq
[i
] == STATUS_VALID
)
287 if (info
->eq
[i
] == STATUS_CUT
)
292 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
293 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
295 if (info
->ineq
[i
] == STATUS_VALID
)
297 if (info
->ineq
[i
] == STATUS_CUT
)
305 /* Compute the hash of the (apparent) affine hull of info->bmap (with
306 * the existentially quantified variables removed) and store it
309 static int coalesce_info_set_hull_hash(struct isl_coalesce_info
*info
)
314 hull
= isl_basic_map_copy(info
->bmap
);
315 hull
= isl_basic_map_plain_affine_hull(hull
);
316 n_div
= isl_basic_map_dim(hull
, isl_dim_div
);
317 hull
= isl_basic_map_drop_constraints_involving_dims(hull
,
318 isl_dim_div
, 0, n_div
);
319 info
->hull_hash
= isl_basic_map_get_hash(hull
);
320 isl_basic_map_free(hull
);
322 return hull
? 0 : -1;
325 /* Free all the allocated memory in an array
326 * of "n" isl_coalesce_info elements.
328 static void clear_coalesce_info(int n
, struct isl_coalesce_info
*info
)
335 for (i
= 0; i
< n
; ++i
) {
336 isl_basic_map_free(info
[i
].bmap
);
337 isl_tab_free(info
[i
].tab
);
343 /* Drop the basic map represented by "info".
344 * That is, clear the memory associated to the entry and
345 * mark it as having been removed.
346 * Gaussian elimination needs to be performed on the basic map
347 * before it gets freed because it may have been put
348 * in an inconsistent state in isl_map_coalesce while it may
349 * be shared with other maps.
351 static void drop(struct isl_coalesce_info
*info
)
353 info
->bmap
= isl_basic_map_gauss(info
->bmap
, NULL
);
354 info
->bmap
= isl_basic_map_free(info
->bmap
);
355 isl_tab_free(info
->tab
);
360 /* Exchange the information in "info1" with that in "info2".
362 static void exchange(struct isl_coalesce_info
*info1
,
363 struct isl_coalesce_info
*info2
)
365 struct isl_coalesce_info info
;
372 /* This type represents the kind of change that has been performed
373 * while trying to coalesce two basic maps.
375 * isl_change_none: nothing was changed
376 * isl_change_drop_first: the first basic map was removed
377 * isl_change_drop_second: the second basic map was removed
378 * isl_change_fuse: the two basic maps were replaced by a new basic map.
381 isl_change_error
= -1,
383 isl_change_drop_first
,
384 isl_change_drop_second
,
388 /* Update "change" based on an interchange of the first and the second
389 * basic map. That is, interchange isl_change_drop_first and
390 * isl_change_drop_second.
392 static enum isl_change
invert_change(enum isl_change change
)
395 case isl_change_error
:
396 return isl_change_error
;
397 case isl_change_none
:
398 return isl_change_none
;
399 case isl_change_drop_first
:
400 return isl_change_drop_second
;
401 case isl_change_drop_second
:
402 return isl_change_drop_first
;
403 case isl_change_fuse
:
404 return isl_change_fuse
;
407 return isl_change_error
;
410 /* Add the valid constraints of the basic map represented by "info"
411 * to "bmap". "len" is the size of the constraints.
412 * If only one of the pair of inequalities that make up an equality
413 * is valid, then add that inequality.
415 static __isl_give isl_basic_map
*add_valid_constraints(
416 __isl_take isl_basic_map
*bmap
, struct isl_coalesce_info
*info
,
424 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
425 if (info
->eq
[2 * k
] == STATUS_VALID
&&
426 info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
427 l
= isl_basic_map_alloc_equality(bmap
);
429 return isl_basic_map_free(bmap
);
430 isl_seq_cpy(bmap
->eq
[l
], info
->bmap
->eq
[k
], len
);
431 } else if (info
->eq
[2 * k
] == STATUS_VALID
) {
432 l
= isl_basic_map_alloc_inequality(bmap
);
434 return isl_basic_map_free(bmap
);
435 isl_seq_neg(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
436 } else if (info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
437 l
= isl_basic_map_alloc_inequality(bmap
);
439 return isl_basic_map_free(bmap
);
440 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
444 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
445 if (info
->ineq
[k
] != STATUS_VALID
)
447 l
= isl_basic_map_alloc_inequality(bmap
);
449 return isl_basic_map_free(bmap
);
450 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->ineq
[k
], len
);
456 /* Is "bmap" defined by a number of (non-redundant) constraints that
457 * is greater than the number of constraints of basic maps i and j combined?
458 * Equalities are counted as two inequalities.
460 static int number_of_constraints_increases(int i
, int j
,
461 struct isl_coalesce_info
*info
,
462 __isl_keep isl_basic_map
*bmap
, struct isl_tab
*tab
)
466 n_old
= 2 * info
[i
].bmap
->n_eq
+ info
[i
].bmap
->n_ineq
;
467 n_old
+= 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
469 n_new
= 2 * bmap
->n_eq
;
470 for (k
= 0; k
< bmap
->n_ineq
; ++k
)
471 if (!isl_tab_is_redundant(tab
, bmap
->n_eq
+ k
))
474 return n_new
> n_old
;
477 /* Replace the pair of basic maps i and j by the basic map bounded
478 * by the valid constraints in both basic maps and the constraints
479 * in extra (if not NULL).
480 * Place the fused basic map in the position that is the smallest of i and j.
482 * If "detect_equalities" is set, then look for equalities encoded
483 * as pairs of inequalities.
484 * If "check_number" is set, then the original basic maps are only
485 * replaced if the total number of constraints does not increase.
486 * While the number of integer divisions in the two basic maps
487 * is assumed to be the same, the actual definitions may be different.
488 * We only copy the definition from one of the basic map if it is
489 * the same as that of the other basic map. Otherwise, we mark
490 * the integer division as unknown and simplify the basic map
491 * in an attempt to recover the integer division definition.
493 static enum isl_change
fuse(int i
, int j
, struct isl_coalesce_info
*info
,
494 __isl_keep isl_mat
*extra
, int detect_equalities
, int check_number
)
497 struct isl_basic_map
*fused
= NULL
;
498 struct isl_tab
*fused_tab
= NULL
;
499 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
500 unsigned extra_rows
= extra
? extra
->n_row
: 0;
501 unsigned n_eq
, n_ineq
;
505 return fuse(j
, i
, info
, extra
, detect_equalities
, check_number
);
507 n_eq
= info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
;
508 n_ineq
= info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
;
509 fused
= isl_basic_map_alloc_space(isl_space_copy(info
[i
].bmap
->dim
),
510 info
[i
].bmap
->n_div
, n_eq
, n_eq
+ n_ineq
+ extra_rows
);
511 fused
= add_valid_constraints(fused
, &info
[i
], 1 + total
);
512 fused
= add_valid_constraints(fused
, &info
[j
], 1 + total
);
515 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) &&
516 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
517 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
519 for (k
= 0; k
< info
[i
].bmap
->n_div
; ++k
) {
520 int l
= isl_basic_map_alloc_div(fused
);
523 if (isl_seq_eq(info
[i
].bmap
->div
[k
], info
[j
].bmap
->div
[k
],
525 isl_seq_cpy(fused
->div
[l
], info
[i
].bmap
->div
[k
],
528 isl_int_set_si(fused
->div
[l
][0], 0);
533 for (k
= 0; k
< extra_rows
; ++k
) {
534 l
= isl_basic_map_alloc_inequality(fused
);
537 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
540 if (detect_equalities
)
541 fused
= isl_basic_map_detect_inequality_pairs(fused
, NULL
);
542 fused
= isl_basic_map_gauss(fused
, NULL
);
543 if (simplify
|| info
[j
].simplify
) {
544 fused
= isl_basic_map_simplify(fused
);
545 info
[i
].simplify
= 0;
547 fused
= isl_basic_map_finalize(fused
);
549 fused_tab
= isl_tab_from_basic_map(fused
, 0);
550 if (isl_tab_detect_redundant(fused_tab
) < 0)
554 number_of_constraints_increases(i
, j
, info
, fused
, fused_tab
)) {
555 isl_tab_free(fused_tab
);
556 isl_basic_map_free(fused
);
557 return isl_change_none
;
560 isl_basic_map_free(info
[i
].bmap
);
561 info
[i
].bmap
= fused
;
562 isl_tab_free(info
[i
].tab
);
563 info
[i
].tab
= fused_tab
;
566 return isl_change_fuse
;
568 isl_tab_free(fused_tab
);
569 isl_basic_map_free(fused
);
570 return isl_change_error
;
573 /* Given a pair of basic maps i and j such that all constraints are either
574 * "valid" or "cut", check if the facets corresponding to the "cut"
575 * constraints of i lie entirely within basic map j.
576 * If so, replace the pair by the basic map consisting of the valid
577 * constraints in both basic maps.
578 * Checking whether the facet lies entirely within basic map j
579 * is performed by checking whether the constraints of basic map j
580 * are valid for the facet. These tests are performed on a rational
581 * tableau to avoid the theoretical possibility that a constraint
582 * that was considered to be a cut constraint for the entire basic map i
583 * happens to be considered to be a valid constraint for the facet,
584 * even though it cuts off the same rational points.
586 * To see that we are not introducing any extra points, call the
587 * two basic maps A and B and the resulting map U and let x
588 * be an element of U \setminus ( A \cup B ).
589 * A line connecting x with an element of A \cup B meets a facet F
590 * of either A or B. Assume it is a facet of B and let c_1 be
591 * the corresponding facet constraint. We have c_1(x) < 0 and
592 * so c_1 is a cut constraint. This implies that there is some
593 * (possibly rational) point x' satisfying the constraints of A
594 * and the opposite of c_1 as otherwise c_1 would have been marked
595 * valid for A. The line connecting x and x' meets a facet of A
596 * in a (possibly rational) point that also violates c_1, but this
597 * is impossible since all cut constraints of B are valid for all
599 * In case F is a facet of A rather than B, then we can apply the
600 * above reasoning to find a facet of B separating x from A \cup B first.
602 static enum isl_change
check_facets(int i
, int j
,
603 struct isl_coalesce_info
*info
)
606 struct isl_tab_undo
*snap
, *snap2
;
607 unsigned n_eq
= info
[i
].bmap
->n_eq
;
609 snap
= isl_tab_snap(info
[i
].tab
);
610 if (isl_tab_mark_rational(info
[i
].tab
) < 0)
611 return isl_change_error
;
612 snap2
= isl_tab_snap(info
[i
].tab
);
614 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
615 if (info
[i
].ineq
[k
] != STATUS_CUT
)
617 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
618 return isl_change_error
;
619 for (l
= 0; l
< info
[j
].bmap
->n_ineq
; ++l
) {
621 if (info
[j
].ineq
[l
] != STATUS_CUT
)
623 stat
= status_in(info
[j
].bmap
->ineq
[l
], info
[i
].tab
);
625 return isl_change_error
;
626 if (stat
!= STATUS_VALID
)
629 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
630 return isl_change_error
;
631 if (l
< info
[j
].bmap
->n_ineq
)
635 if (k
< info
[i
].bmap
->n_ineq
) {
636 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
637 return isl_change_error
;
638 return isl_change_none
;
640 return fuse(i
, j
, info
, NULL
, 0, 0);
643 /* Check if info->bmap contains the basic map represented
644 * by the tableau "tab".
645 * For each equality, we check both the constraint itself
646 * (as an inequality) and its negation. Make sure the
647 * equality is returned to its original state before returning.
649 static isl_bool
contains(struct isl_coalesce_info
*info
, struct isl_tab
*tab
)
653 isl_basic_map
*bmap
= info
->bmap
;
655 dim
= isl_basic_map_total_dim(bmap
);
656 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
658 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
659 stat
= status_in(bmap
->eq
[k
], tab
);
660 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
662 return isl_bool_error
;
663 if (stat
!= STATUS_VALID
)
664 return isl_bool_false
;
665 stat
= status_in(bmap
->eq
[k
], tab
);
667 return isl_bool_error
;
668 if (stat
!= STATUS_VALID
)
669 return isl_bool_false
;
672 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
674 if (info
->ineq
[k
] == STATUS_REDUNDANT
)
676 stat
= status_in(bmap
->ineq
[k
], tab
);
678 return isl_bool_error
;
679 if (stat
!= STATUS_VALID
)
680 return isl_bool_false
;
682 return isl_bool_true
;
685 /* Basic map "i" has an inequality (say "k") that is adjacent
686 * to some inequality of basic map "j". All the other inequalities
688 * Check if basic map "j" forms an extension of basic map "i".
690 * Note that this function is only called if some of the equalities or
691 * inequalities of basic map "j" do cut basic map "i". The function is
692 * correct even if there are no such cut constraints, but in that case
693 * the additional checks performed by this function are overkill.
695 * In particular, we replace constraint k, say f >= 0, by constraint
696 * f <= -1, add the inequalities of "j" that are valid for "i"
697 * and check if the result is a subset of basic map "j".
698 * To improve the chances of the subset relation being detected,
699 * any variable that only attains a single integer value
700 * in the tableau of "i" is first fixed to that value.
701 * If the result is a subset, then we know that this result is exactly equal
702 * to basic map "j" since all its constraints are valid for basic map "j".
703 * By combining the valid constraints of "i" (all equalities and all
704 * inequalities except "k") and the valid constraints of "j" we therefore
705 * obtain a basic map that is equal to their union.
706 * In this case, there is no need to perform a rollback of the tableau
707 * since it is going to be destroyed in fuse().
713 * |_______| _ |_________\
725 static enum isl_change
is_adj_ineq_extension(int i
, int j
,
726 struct isl_coalesce_info
*info
)
729 struct isl_tab_undo
*snap
;
730 unsigned n_eq
= info
[i
].bmap
->n_eq
;
731 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
735 if (isl_tab_extend_cons(info
[i
].tab
, 1 + info
[j
].bmap
->n_ineq
) < 0)
736 return isl_change_error
;
738 k
= find_ineq(&info
[i
], STATUS_ADJ_INEQ
);
740 isl_die(isl_basic_map_get_ctx(info
[i
].bmap
), isl_error_internal
,
741 "info[i].ineq should have exactly one STATUS_ADJ_INEQ",
742 return isl_change_error
);
744 snap
= isl_tab_snap(info
[i
].tab
);
746 if (isl_tab_unrestrict(info
[i
].tab
, n_eq
+ k
) < 0)
747 return isl_change_error
;
749 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
750 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
751 r
= isl_tab_add_ineq(info
[i
].tab
, info
[i
].bmap
->ineq
[k
]);
752 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
753 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
755 return isl_change_error
;
757 for (k
= 0; k
< info
[j
].bmap
->n_ineq
; ++k
) {
758 if (info
[j
].ineq
[k
] != STATUS_VALID
)
760 if (isl_tab_add_ineq(info
[i
].tab
, info
[j
].bmap
->ineq
[k
]) < 0)
761 return isl_change_error
;
763 if (isl_tab_detect_constants(info
[i
].tab
) < 0)
764 return isl_change_error
;
766 super
= contains(&info
[j
], info
[i
].tab
);
768 return isl_change_error
;
770 return fuse(i
, j
, info
, NULL
, 0, 0);
772 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
773 return isl_change_error
;
775 return isl_change_none
;
779 /* Both basic maps have at least one inequality with and adjacent
780 * (but opposite) inequality in the other basic map.
781 * Check that there are no cut constraints and that there is only
782 * a single pair of adjacent inequalities.
783 * If so, we can replace the pair by a single basic map described
784 * by all but the pair of adjacent inequalities.
785 * Any additional points introduced lie strictly between the two
786 * adjacent hyperplanes and can therefore be integral.
795 * The test for a single pair of adjancent inequalities is important
796 * for avoiding the combination of two basic maps like the following
806 * If there are some cut constraints on one side, then we may
807 * still be able to fuse the two basic maps, but we need to perform
808 * some additional checks in is_adj_ineq_extension.
810 static enum isl_change
check_adj_ineq(int i
, int j
,
811 struct isl_coalesce_info
*info
)
813 int count_i
, count_j
;
816 count_i
= count_ineq(&info
[i
], STATUS_ADJ_INEQ
);
817 count_j
= count_ineq(&info
[j
], STATUS_ADJ_INEQ
);
819 if (count_i
!= 1 && count_j
!= 1)
820 return isl_change_none
;
822 cut_i
= any_eq(&info
[i
], STATUS_CUT
) || any_ineq(&info
[i
], STATUS_CUT
);
823 cut_j
= any_eq(&info
[j
], STATUS_CUT
) || any_ineq(&info
[j
], STATUS_CUT
);
825 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
826 return fuse(i
, j
, info
, NULL
, 0, 0);
828 if (count_i
== 1 && !cut_i
)
829 return is_adj_ineq_extension(i
, j
, info
);
831 if (count_j
== 1 && !cut_j
)
832 return is_adj_ineq_extension(j
, i
, info
);
834 return isl_change_none
;
837 /* Given an affine transformation matrix "T", does row "row" represent
838 * anything other than a unit vector (possibly shifted by a constant)
839 * that is not involved in any of the other rows?
841 * That is, if a constraint involves the variable corresponding to
842 * the row, then could its preimage by "T" have any coefficients
843 * that are different from those in the original constraint?
845 static int not_unique_unit_row(__isl_keep isl_mat
*T
, int row
)
848 int len
= T
->n_col
- 1;
850 i
= isl_seq_first_non_zero(T
->row
[row
] + 1, len
);
853 if (!isl_int_is_one(T
->row
[row
][1 + i
]) &&
854 !isl_int_is_negone(T
->row
[row
][1 + i
]))
857 j
= isl_seq_first_non_zero(T
->row
[row
] + 1 + i
+ 1, len
- (i
+ 1));
861 for (j
= 1; j
< T
->n_row
; ++j
) {
864 if (!isl_int_is_zero(T
->row
[j
][1 + i
]))
871 /* Does inequality constraint "ineq" of "bmap" involve any of
872 * the variables marked in "affected"?
873 * "total" is the total number of variables, i.e., the number
874 * of entries in "affected".
876 static isl_bool
is_affected(__isl_keep isl_basic_map
*bmap
, int ineq
,
877 int *affected
, int total
)
881 for (i
= 0; i
< total
; ++i
) {
884 if (!isl_int_is_zero(bmap
->ineq
[ineq
][1 + i
]))
885 return isl_bool_true
;
888 return isl_bool_false
;
891 /* Given the compressed version of inequality constraint "ineq"
892 * of info->bmap in "v", check if the constraint can be tightened,
893 * where the compression is based on an equality constraint valid
895 * If so, add the tightened version of the inequality constraint
896 * to info->tab. "v" may be modified by this function.
898 * That is, if the compressed constraint is of the form
902 * with 0 < c < m, then it is equivalent to
906 * This means that c can also be subtracted from the original,
907 * uncompressed constraint without affecting the integer points
908 * in info->tab. Add this tightened constraint as an extra row
909 * to info->tab to make this information explicitly available.
911 static __isl_give isl_vec
*try_tightening(struct isl_coalesce_info
*info
,
912 int ineq
, __isl_take isl_vec
*v
)
920 ctx
= isl_vec_get_ctx(v
);
921 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
922 if (isl_int_is_zero(ctx
->normalize_gcd
) ||
923 isl_int_is_one(ctx
->normalize_gcd
)) {
931 isl_int_fdiv_r(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
932 if (isl_int_is_zero(v
->el
[0]))
935 if (isl_tab_extend_cons(info
->tab
, 1) < 0)
936 return isl_vec_free(v
);
938 isl_int_sub(info
->bmap
->ineq
[ineq
][0],
939 info
->bmap
->ineq
[ineq
][0], v
->el
[0]);
940 r
= isl_tab_add_ineq(info
->tab
, info
->bmap
->ineq
[ineq
]);
941 isl_int_add(info
->bmap
->ineq
[ineq
][0],
942 info
->bmap
->ineq
[ineq
][0], v
->el
[0]);
945 return isl_vec_free(v
);
950 /* Tighten the (non-redundant) constraints on the facet represented
952 * In particular, on input, info->tab represents the result
953 * of relaxing the "n" inequality constraints of info->bmap in "relaxed"
954 * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
955 * replacing the one at index "l" by the corresponding equality,
956 * i.e., f_k + 1 = 0, with k = relaxed[l].
958 * Compute a variable compression from the equality constraint f_k + 1 = 0
959 * and use it to tighten the other constraints of info->bmap
960 * (that is, all constraints that have not been relaxed),
961 * updating info->tab (and leaving info->bmap untouched).
962 * The compression handles essentially two cases, one where a variable
963 * is assigned a fixed value and can therefore be eliminated, and one
964 * where one variable is a shifted multiple of some other variable and
965 * can therefore be replaced by that multiple.
966 * Gaussian elimination would also work for the first case, but for
967 * the second case, the effectiveness would depend on the order
969 * After compression, some of the constraints may have coefficients
970 * with a common divisor. If this divisor does not divide the constant
971 * term, then the constraint can be tightened.
972 * The tightening is performed on the tableau info->tab by introducing
973 * extra (temporary) constraints.
975 * Only constraints that are possibly affected by the compression are
976 * considered. In particular, if the constraint only involves variables
977 * that are directly mapped to a distinct set of other variables, then
978 * no common divisor can be introduced and no tightening can occur.
980 * It is important to only consider the non-redundant constraints
981 * since the facet constraint has been relaxed prior to the call
982 * to this function, meaning that the constraints that were redundant
983 * prior to the relaxation may no longer be redundant.
984 * These constraints will be ignored in the fused result, so
985 * the fusion detection should not exploit them.
987 static isl_stat
tighten_on_relaxed_facet(struct isl_coalesce_info
*info
,
988 int n
, int *relaxed
, int l
)
999 ctx
= isl_basic_map_get_ctx(info
->bmap
);
1000 total
= isl_basic_map_total_dim(info
->bmap
);
1001 isl_int_add_ui(info
->bmap
->ineq
[k
][0], info
->bmap
->ineq
[k
][0], 1);
1002 T
= isl_mat_sub_alloc6(ctx
, info
->bmap
->ineq
, k
, 1, 0, 1 + total
);
1003 T
= isl_mat_variable_compression(T
, NULL
);
1004 isl_int_sub_ui(info
->bmap
->ineq
[k
][0], info
->bmap
->ineq
[k
][0], 1);
1006 return isl_stat_error
;
1007 if (T
->n_col
== 0) {
1012 affected
= isl_alloc_array(ctx
, int, total
);
1016 for (i
= 0; i
< total
; ++i
)
1017 affected
[i
] = not_unique_unit_row(T
, 1 + i
);
1019 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
1021 if (any(relaxed
, n
, i
))
1023 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
1025 handle
= is_affected(info
->bmap
, i
, affected
, total
);
1030 v
= isl_vec_alloc(ctx
, 1 + total
);
1033 isl_seq_cpy(v
->el
, info
->bmap
->ineq
[i
], 1 + total
);
1034 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
1035 v
= try_tightening(info
, i
, v
);
1047 return isl_stat_error
;
1050 /* Replace the basic maps "i" and "j" by an extension of "i"
1051 * along the "n" inequality constraints in "relax" by one.
1052 * The tableau info[i].tab has already been extended.
1053 * Extend info[i].bmap accordingly by relaxing all constraints in "relax"
1055 * Each integer division that does not have exactly the same
1056 * definition in "i" and "j" is marked unknown and the basic map
1057 * is scheduled to be simplified in an attempt to recover
1058 * the integer division definition.
1059 * Place the extension in the position that is the smallest of i and j.
1061 static enum isl_change
extend(int i
, int j
, int n
, int *relax
,
1062 struct isl_coalesce_info
*info
)
1067 info
[i
].bmap
= isl_basic_map_cow(info
[i
].bmap
);
1069 return isl_change_error
;
1070 total
= isl_basic_map_total_dim(info
[i
].bmap
);
1071 for (l
= 0; l
< info
[i
].bmap
->n_div
; ++l
)
1072 if (!isl_seq_eq(info
[i
].bmap
->div
[l
],
1073 info
[j
].bmap
->div
[l
], 1 + 1 + total
)) {
1074 isl_int_set_si(info
[i
].bmap
->div
[l
][0], 0);
1075 info
[i
].simplify
= 1;
1077 for (l
= 0; l
< n
; ++l
)
1078 isl_int_add_ui(info
[i
].bmap
->ineq
[relax
[l
]][0],
1079 info
[i
].bmap
->ineq
[relax
[l
]][0], 1);
1080 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_FINAL
);
1083 exchange(&info
[i
], &info
[j
]);
1084 return isl_change_fuse
;
1087 /* Basic map "i" has "n" inequality constraints (collected in "relax")
1088 * that are such that they include basic map "j" if they are relaxed
1089 * by one. All the other inequalities are valid for "j".
1090 * Check if basic map "j" forms an extension of basic map "i".
1092 * In particular, relax the constraints in "relax", compute the corresponding
1093 * facets one by one and check whether each of these is included
1094 * in the other basic map.
1095 * Before testing for inclusion, the constraints on each facet
1096 * are tightened to increase the chance of an inclusion being detected.
1097 * (Adding the valid constraints of "j" to the tableau of "i", as is done
1098 * in is_adj_ineq_extension, may further increase those chances, but this
1099 * is not currently done.)
1100 * If each facet is included, we know that relaxing the constraints extends
1101 * the basic map with exactly the other basic map (we already know that this
1102 * other basic map is included in the extension, because all other
1103 * inequality constraints are valid of "j") and we can replace the
1104 * two basic maps by this extension.
1106 * If any of the relaxed constraints turn out to be redundant, then bail out.
1107 * isl_tab_select_facet refuses to handle such constraints. It may be
1108 * possible to handle them anyway by making a distinction between
1109 * redundant constraints with a corresponding facet that still intersects
1110 * the set (allowing isl_tab_select_facet to handle them) and
1111 * those where the facet does not intersect the set (which can be ignored
1112 * because the empty facet is trivially included in the other disjunct).
1113 * However, relaxed constraints that turn out to be redundant should
1114 * be fairly rare and no such instance has been reported where
1115 * coalescing would be successful.
1131 static enum isl_change
is_relaxed_extension(int i
, int j
, int n
, int *relax
,
1132 struct isl_coalesce_info
*info
)
1136 struct isl_tab_undo
*snap
, *snap2
;
1137 unsigned n_eq
= info
[i
].bmap
->n_eq
;
1139 for (l
= 0; l
< n
; ++l
)
1140 if (isl_tab_is_equality(info
[i
].tab
, n_eq
+ relax
[l
]))
1141 return isl_change_none
;
1143 snap
= isl_tab_snap(info
[i
].tab
);
1144 for (l
= 0; l
< n
; ++l
)
1145 if (isl_tab_relax(info
[i
].tab
, n_eq
+ relax
[l
]) < 0)
1146 return isl_change_error
;
1147 for (l
= 0; l
< n
; ++l
) {
1148 if (!isl_tab_is_redundant(info
[i
].tab
, n_eq
+ relax
[l
]))
1150 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
1151 return isl_change_error
;
1152 return isl_change_none
;
1154 snap2
= isl_tab_snap(info
[i
].tab
);
1155 for (l
= 0; l
< n
; ++l
) {
1156 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
1157 return isl_change_error
;
1158 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ relax
[l
]) < 0)
1159 return isl_change_error
;
1160 if (tighten_on_relaxed_facet(&info
[i
], n
, relax
, l
) < 0)
1161 return isl_change_error
;
1162 super
= contains(&info
[j
], info
[i
].tab
);
1164 return isl_change_error
;
1167 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
1168 return isl_change_error
;
1169 return isl_change_none
;
1172 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
1173 return isl_change_error
;
1174 return extend(i
, j
, n
, relax
, info
);
1177 /* Data structure that keeps track of the wrapping constraints
1178 * and of information to bound the coefficients of those constraints.
1180 * bound is set if we want to apply a bound on the coefficients
1181 * mat contains the wrapping constraints
1182 * max is the bound on the coefficients (if bound is set)
1190 /* Update wraps->max to be greater than or equal to the coefficients
1191 * in the equalities and inequalities of info->bmap that can be removed
1192 * if we end up applying wrapping.
1194 static isl_stat
wraps_update_max(struct isl_wraps
*wraps
,
1195 struct isl_coalesce_info
*info
)
1199 unsigned total
= isl_basic_map_total_dim(info
->bmap
);
1201 isl_int_init(max_k
);
1203 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
1204 if (info
->eq
[2 * k
] == STATUS_VALID
&&
1205 info
->eq
[2 * k
+ 1] == STATUS_VALID
)
1207 isl_seq_abs_max(info
->bmap
->eq
[k
] + 1, total
, &max_k
);
1208 if (isl_int_abs_gt(max_k
, wraps
->max
))
1209 isl_int_set(wraps
->max
, max_k
);
1212 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
1213 if (info
->ineq
[k
] == STATUS_VALID
||
1214 info
->ineq
[k
] == STATUS_REDUNDANT
)
1216 isl_seq_abs_max(info
->bmap
->ineq
[k
] + 1, total
, &max_k
);
1217 if (isl_int_abs_gt(max_k
, wraps
->max
))
1218 isl_int_set(wraps
->max
, max_k
);
1221 isl_int_clear(max_k
);
1226 /* Initialize the isl_wraps data structure.
1227 * If we want to bound the coefficients of the wrapping constraints,
1228 * we set wraps->max to the largest coefficient
1229 * in the equalities and inequalities that can be removed if we end up
1230 * applying wrapping.
1232 static isl_stat
wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
1233 struct isl_coalesce_info
*info
, int i
, int j
)
1240 return isl_stat_error
;
1241 ctx
= isl_mat_get_ctx(mat
);
1242 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
1245 isl_int_init(wraps
->max
);
1246 isl_int_set_si(wraps
->max
, 0);
1247 if (wraps_update_max(wraps
, &info
[i
]) < 0)
1248 return isl_stat_error
;
1249 if (wraps_update_max(wraps
, &info
[j
]) < 0)
1250 return isl_stat_error
;
1255 /* Free the contents of the isl_wraps data structure.
1257 static void wraps_free(struct isl_wraps
*wraps
)
1259 isl_mat_free(wraps
->mat
);
1261 isl_int_clear(wraps
->max
);
1264 /* Is the wrapping constraint in row "row" allowed?
1266 * If wraps->bound is set, we check that none of the coefficients
1267 * is greater than wraps->max.
1269 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
1276 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
1277 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
1283 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
1284 * to include "set" and add the result in position "w" of "wraps".
1285 * "len" is the total number of coefficients in "bound" and "ineq".
1286 * Return 1 on success, 0 on failure and -1 on error.
1287 * Wrapping can fail if the result of wrapping is equal to "bound"
1288 * or if we want to bound the sizes of the coefficients and
1289 * the wrapped constraint does not satisfy this bound.
1291 static int add_wrap(struct isl_wraps
*wraps
, int w
, isl_int
*bound
,
1292 isl_int
*ineq
, unsigned len
, __isl_keep isl_set
*set
, int negate
)
1294 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, len
);
1296 isl_seq_neg(wraps
->mat
->row
[w
+ 1], ineq
, len
);
1297 ineq
= wraps
->mat
->row
[w
+ 1];
1299 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], ineq
))
1301 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, len
))
1303 if (!allow_wrap(wraps
, w
))
1308 /* For each constraint in info->bmap that is not redundant (as determined
1309 * by info->tab) and that is not a valid constraint for the other basic map,
1310 * wrap the constraint around "bound" such that it includes the whole
1311 * set "set" and append the resulting constraint to "wraps".
1312 * Note that the constraints that are valid for the other basic map
1313 * will be added to the combined basic map by default, so there is
1314 * no need to wrap them.
1315 * The caller wrap_in_facets even relies on this function not wrapping
1316 * any constraints that are already valid.
1317 * "wraps" is assumed to have been pre-allocated to the appropriate size.
1318 * wraps->n_row is the number of actual wrapped constraints that have
1320 * If any of the wrapping problems results in a constraint that is
1321 * identical to "bound", then this means that "set" is unbounded in such
1322 * way that no wrapping is possible. If this happens then wraps->n_row
1324 * Similarly, if we want to bound the coefficients of the wrapping
1325 * constraints and a newly added wrapping constraint does not
1326 * satisfy the bound, then wraps->n_row is also reset to zero.
1328 static isl_stat
add_wraps(struct isl_wraps
*wraps
,
1329 struct isl_coalesce_info
*info
, isl_int
*bound
, __isl_keep isl_set
*set
)
1334 isl_basic_map
*bmap
= info
->bmap
;
1335 unsigned len
= 1 + isl_basic_map_total_dim(bmap
);
1337 w
= wraps
->mat
->n_row
;
1339 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
1340 if (info
->ineq
[l
] == STATUS_VALID
||
1341 info
->ineq
[l
] == STATUS_REDUNDANT
)
1343 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], len
))
1345 if (isl_seq_eq(bound
, bmap
->ineq
[l
], len
))
1347 if (isl_tab_is_redundant(info
->tab
, bmap
->n_eq
+ l
))
1350 added
= add_wrap(wraps
, w
, bound
, bmap
->ineq
[l
], len
, set
, 0);
1352 return isl_stat_error
;
1357 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
1358 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], len
))
1360 if (isl_seq_eq(bound
, bmap
->eq
[l
], len
))
1363 for (m
= 0; m
< 2; ++m
) {
1364 if (info
->eq
[2 * l
+ m
] == STATUS_VALID
)
1366 added
= add_wrap(wraps
, w
, bound
, bmap
->eq
[l
], len
,
1369 return isl_stat_error
;
1376 wraps
->mat
->n_row
= w
;
1379 wraps
->mat
->n_row
= 0;
1383 /* Check if the constraints in "wraps" from "first" until the last
1384 * are all valid for the basic set represented by "tab".
1385 * If not, wraps->n_row is set to zero.
1387 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
1388 struct isl_tab
*tab
)
1392 for (i
= first
; i
< wraps
->n_row
; ++i
) {
1393 enum isl_ineq_type type
;
1394 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
1395 if (type
== isl_ineq_error
)
1397 if (type
== isl_ineq_redundant
)
1406 /* Return a set that corresponds to the non-redundant constraints
1407 * (as recorded in tab) of bmap.
1409 * It's important to remove the redundant constraints as some
1410 * of the other constraints may have been modified after the
1411 * constraints were marked redundant.
1412 * In particular, a constraint may have been relaxed.
1413 * Redundant constraints are ignored when a constraint is relaxed
1414 * and should therefore continue to be ignored ever after.
1415 * Otherwise, the relaxation might be thwarted by some of
1416 * these constraints.
1418 * Update the underlying set to ensure that the dimension doesn't change.
1419 * Otherwise the integer divisions could get dropped if the tab
1420 * turns out to be empty.
1422 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
1423 struct isl_tab
*tab
)
1425 isl_basic_set
*bset
;
1427 bmap
= isl_basic_map_copy(bmap
);
1428 bset
= isl_basic_map_underlying_set(bmap
);
1429 bset
= isl_basic_set_cow(bset
);
1430 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1431 return isl_set_from_basic_set(bset
);
1434 /* Wrap the constraints of info->bmap that bound the facet defined
1435 * by inequality "k" around (the opposite of) this inequality to
1436 * include "set". "bound" may be used to store the negated inequality.
1437 * Since the wrapped constraints are not guaranteed to contain the whole
1438 * of info->bmap, we check them in check_wraps.
1439 * If any of the wrapped constraints turn out to be invalid, then
1440 * check_wraps will reset wrap->n_row to zero.
1442 static isl_stat
add_wraps_around_facet(struct isl_wraps
*wraps
,
1443 struct isl_coalesce_info
*info
, int k
, isl_int
*bound
,
1444 __isl_keep isl_set
*set
)
1446 struct isl_tab_undo
*snap
;
1448 unsigned total
= isl_basic_map_total_dim(info
->bmap
);
1450 snap
= isl_tab_snap(info
->tab
);
1452 if (isl_tab_select_facet(info
->tab
, info
->bmap
->n_eq
+ k
) < 0)
1453 return isl_stat_error
;
1454 if (isl_tab_detect_redundant(info
->tab
) < 0)
1455 return isl_stat_error
;
1457 isl_seq_neg(bound
, info
->bmap
->ineq
[k
], 1 + total
);
1459 n
= wraps
->mat
->n_row
;
1460 if (add_wraps(wraps
, info
, bound
, set
) < 0)
1461 return isl_stat_error
;
1463 if (isl_tab_rollback(info
->tab
, snap
) < 0)
1464 return isl_stat_error
;
1465 if (check_wraps(wraps
->mat
, n
, info
->tab
) < 0)
1466 return isl_stat_error
;
1471 /* Given a basic set i with a constraint k that is adjacent to
1472 * basic set j, check if we can wrap
1473 * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
1474 * (always) around their ridges to include the other set.
1475 * If so, replace the pair of basic sets by their union.
1477 * All constraints of i (except k) are assumed to be valid or
1478 * cut constraints for j.
1479 * Wrapping the cut constraints to include basic map j may result
1480 * in constraints that are no longer valid of basic map i
1481 * we have to check that the resulting wrapping constraints are valid for i.
1482 * If "wrap_facet" is not set, then all constraints of i (except k)
1483 * are assumed to be valid for j.
1492 static enum isl_change
can_wrap_in_facet(int i
, int j
, int k
,
1493 struct isl_coalesce_info
*info
, int wrap_facet
)
1495 enum isl_change change
= isl_change_none
;
1496 struct isl_wraps wraps
;
1499 struct isl_set
*set_i
= NULL
;
1500 struct isl_set
*set_j
= NULL
;
1501 struct isl_vec
*bound
= NULL
;
1502 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1504 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1505 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
1506 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1507 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1508 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1510 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
1512 bound
= isl_vec_alloc(ctx
, 1 + total
);
1513 if (!set_i
|| !set_j
|| !bound
)
1516 isl_seq_cpy(bound
->el
, info
[i
].bmap
->ineq
[k
], 1 + total
);
1517 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1518 isl_seq_normalize(ctx
, bound
->el
, 1 + total
);
1520 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1521 wraps
.mat
->n_row
= 1;
1523 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
1525 if (!wraps
.mat
->n_row
)
1529 if (add_wraps_around_facet(&wraps
, &info
[i
], k
,
1530 bound
->el
, set_j
) < 0)
1532 if (!wraps
.mat
->n_row
)
1536 change
= fuse(i
, j
, info
, wraps
.mat
, 0, 0);
1541 isl_set_free(set_i
);
1542 isl_set_free(set_j
);
1544 isl_vec_free(bound
);
1549 isl_vec_free(bound
);
1550 isl_set_free(set_i
);
1551 isl_set_free(set_j
);
1552 return isl_change_error
;
1555 /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
1556 * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
1557 * add wrapping constraints to wrap.mat for all constraints
1558 * of basic map j that bound the part of basic map j that sticks out
1559 * of the cut constraint.
1560 * "set_i" is the underlying set of basic map i.
1561 * If any wrapping fails, then wraps->mat.n_row is reset to zero.
1563 * In particular, we first intersect basic map j with t(x) + 1 = 0.
1564 * If the result is empty, then t(x) >= 0 was actually a valid constraint
1565 * (with respect to the integer points), so we add t(x) >= 0 instead.
1566 * Otherwise, we wrap the constraints of basic map j that are not
1567 * redundant in this intersection and that are not already valid
1568 * for basic map i over basic map i.
1569 * Note that it is sufficient to wrap the constraints to include
1570 * basic map i, because we will only wrap the constraints that do
1571 * not include basic map i already. The wrapped constraint will
1572 * therefore be more relaxed compared to the original constraint.
1573 * Since the original constraint is valid for basic map j, so is
1574 * the wrapped constraint.
1576 static isl_stat
wrap_in_facet(struct isl_wraps
*wraps
, int w
,
1577 struct isl_coalesce_info
*info_j
, __isl_keep isl_set
*set_i
,
1578 struct isl_tab_undo
*snap
)
1580 isl_int_add_ui(wraps
->mat
->row
[w
][0], wraps
->mat
->row
[w
][0], 1);
1581 if (isl_tab_add_eq(info_j
->tab
, wraps
->mat
->row
[w
]) < 0)
1582 return isl_stat_error
;
1583 if (isl_tab_detect_redundant(info_j
->tab
) < 0)
1584 return isl_stat_error
;
1586 if (info_j
->tab
->empty
)
1587 isl_int_sub_ui(wraps
->mat
->row
[w
][0], wraps
->mat
->row
[w
][0], 1);
1588 else if (add_wraps(wraps
, info_j
, wraps
->mat
->row
[w
], set_i
) < 0)
1589 return isl_stat_error
;
1591 if (isl_tab_rollback(info_j
->tab
, snap
) < 0)
1592 return isl_stat_error
;
1597 /* Given a pair of basic maps i and j such that j sticks out
1598 * of i at n cut constraints, each time by at most one,
1599 * try to compute wrapping constraints and replace the two
1600 * basic maps by a single basic map.
1601 * The other constraints of i are assumed to be valid for j.
1602 * "set_i" is the underlying set of basic map i.
1603 * "wraps" has been initialized to be of the right size.
1605 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1606 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1607 * of basic map j that bound the part of basic map j that sticks out
1608 * of the cut constraint.
1610 * If any wrapping fails, i.e., if we cannot wrap to touch
1611 * the union, then we give up.
1612 * Otherwise, the pair of basic maps is replaced by their union.
1614 static enum isl_change
try_wrap_in_facets(int i
, int j
,
1615 struct isl_coalesce_info
*info
, struct isl_wraps
*wraps
,
1616 __isl_keep isl_set
*set_i
)
1620 struct isl_tab_undo
*snap
;
1622 total
= isl_basic_map_total_dim(info
[i
].bmap
);
1624 snap
= isl_tab_snap(info
[j
].tab
);
1626 wraps
->mat
->n_row
= 0;
1628 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
1629 for (l
= 0; l
< 2; ++l
) {
1630 if (info
[i
].eq
[2 * k
+ l
] != STATUS_CUT
)
1632 w
= wraps
->mat
->n_row
++;
1634 isl_seq_neg(wraps
->mat
->row
[w
],
1635 info
[i
].bmap
->eq
[k
], 1 + total
);
1637 isl_seq_cpy(wraps
->mat
->row
[w
],
1638 info
[i
].bmap
->eq
[k
], 1 + total
);
1639 if (wrap_in_facet(wraps
, w
, &info
[j
], set_i
, snap
) < 0)
1640 return isl_change_error
;
1642 if (!wraps
->mat
->n_row
)
1643 return isl_change_none
;
1647 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
1648 if (info
[i
].ineq
[k
] != STATUS_CUT
)
1650 w
= wraps
->mat
->n_row
++;
1651 isl_seq_cpy(wraps
->mat
->row
[w
],
1652 info
[i
].bmap
->ineq
[k
], 1 + total
);
1653 if (wrap_in_facet(wraps
, w
, &info
[j
], set_i
, snap
) < 0)
1654 return isl_change_error
;
1656 if (!wraps
->mat
->n_row
)
1657 return isl_change_none
;
1660 return fuse(i
, j
, info
, wraps
->mat
, 0, 1);
1663 /* Given a pair of basic maps i and j such that j sticks out
1664 * of i at n cut constraints, each time by at most one,
1665 * try to compute wrapping constraints and replace the two
1666 * basic maps by a single basic map.
1667 * The other constraints of i are assumed to be valid for j.
1669 * The core computation is performed by try_wrap_in_facets.
1670 * This function simply extracts an underlying set representation
1671 * of basic map i and initializes the data structure for keeping
1672 * track of wrapping constraints.
1674 static enum isl_change
wrap_in_facets(int i
, int j
, int n
,
1675 struct isl_coalesce_info
*info
)
1677 enum isl_change change
= isl_change_none
;
1678 struct isl_wraps wraps
;
1681 isl_set
*set_i
= NULL
;
1682 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
1685 if (isl_tab_extend_cons(info
[j
].tab
, 1) < 0)
1686 return isl_change_error
;
1688 max_wrap
= 1 + 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
1691 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
1692 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1693 mat
= isl_mat_alloc(ctx
, max_wrap
, 1 + total
);
1694 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
1699 change
= try_wrap_in_facets(i
, j
, info
, &wraps
, set_i
);
1702 isl_set_free(set_i
);
1707 isl_set_free(set_i
);
1708 return isl_change_error
;
1711 /* Return the effect of inequality "ineq" on the tableau "tab",
1712 * after relaxing the constant term of "ineq" by one.
1714 static enum isl_ineq_type
type_of_relaxed(struct isl_tab
*tab
, isl_int
*ineq
)
1716 enum isl_ineq_type type
;
1718 isl_int_add_ui(ineq
[0], ineq
[0], 1);
1719 type
= isl_tab_ineq_type(tab
, ineq
);
1720 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
1725 /* Given two basic sets i and j,
1726 * check if relaxing all the cut constraints of i by one turns
1727 * them into valid constraint for j and check if we can wrap in
1728 * the bits that are sticking out.
1729 * If so, replace the pair by their union.
1731 * We first check if all relaxed cut inequalities of i are valid for j
1732 * and then try to wrap in the intersections of the relaxed cut inequalities
1735 * During this wrapping, we consider the points of j that lie at a distance
1736 * of exactly 1 from i. In particular, we ignore the points that lie in
1737 * between this lower-dimensional space and the basic map i.
1738 * We can therefore only apply this to integer maps.
1764 * Wrapping can fail if the result of wrapping one of the facets
1765 * around its edges does not produce any new facet constraint.
1766 * In particular, this happens when we try to wrap in unbounded sets.
1768 * _______________________________________________________________________
1772 * |_| |_________________________________________________________________
1775 * The following is not an acceptable result of coalescing the above two
1776 * sets as it includes extra integer points.
1777 * _______________________________________________________________________
1782 * \______________________________________________________________________
1784 static enum isl_change
can_wrap_in_set(int i
, int j
,
1785 struct isl_coalesce_info
*info
)
1791 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) ||
1792 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
1793 return isl_change_none
;
1795 n
= count_eq(&info
[i
], STATUS_CUT
) + count_ineq(&info
[i
], STATUS_CUT
);
1797 return isl_change_none
;
1799 total
= isl_basic_map_total_dim(info
[i
].bmap
);
1800 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
1801 for (l
= 0; l
< 2; ++l
) {
1802 enum isl_ineq_type type
;
1804 if (info
[i
].eq
[2 * k
+ l
] != STATUS_CUT
)
1808 isl_seq_neg(info
[i
].bmap
->eq
[k
],
1809 info
[i
].bmap
->eq
[k
], 1 + total
);
1810 type
= type_of_relaxed(info
[j
].tab
,
1811 info
[i
].bmap
->eq
[k
]);
1813 isl_seq_neg(info
[i
].bmap
->eq
[k
],
1814 info
[i
].bmap
->eq
[k
], 1 + total
);
1815 if (type
== isl_ineq_error
)
1816 return isl_change_error
;
1817 if (type
!= isl_ineq_redundant
)
1818 return isl_change_none
;
1822 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
1823 enum isl_ineq_type type
;
1825 if (info
[i
].ineq
[k
] != STATUS_CUT
)
1828 type
= type_of_relaxed(info
[j
].tab
, info
[i
].bmap
->ineq
[k
]);
1829 if (type
== isl_ineq_error
)
1830 return isl_change_error
;
1831 if (type
!= isl_ineq_redundant
)
1832 return isl_change_none
;
1835 return wrap_in_facets(i
, j
, n
, info
);
1838 /* Check if either i or j has only cut constraints that can
1839 * be used to wrap in (a facet of) the other basic set.
1840 * if so, replace the pair by their union.
1842 static enum isl_change
check_wrap(int i
, int j
, struct isl_coalesce_info
*info
)
1844 enum isl_change change
= isl_change_none
;
1846 change
= can_wrap_in_set(i
, j
, info
);
1847 if (change
!= isl_change_none
)
1850 change
= can_wrap_in_set(j
, i
, info
);
1854 /* Check if all inequality constraints of "i" that cut "j" cease
1855 * to be cut constraints if they are relaxed by one.
1856 * If so, collect the cut constraints in "list".
1857 * The caller is responsible for allocating "list".
1859 static isl_bool
all_cut_by_one(int i
, int j
, struct isl_coalesce_info
*info
,
1865 for (l
= 0; l
< info
[i
].bmap
->n_ineq
; ++l
) {
1866 enum isl_ineq_type type
;
1868 if (info
[i
].ineq
[l
] != STATUS_CUT
)
1870 type
= type_of_relaxed(info
[j
].tab
, info
[i
].bmap
->ineq
[l
]);
1871 if (type
== isl_ineq_error
)
1872 return isl_bool_error
;
1873 if (type
!= isl_ineq_redundant
)
1874 return isl_bool_false
;
1878 return isl_bool_true
;
1881 /* Given two basic maps such that "j" has at least one equality constraint
1882 * that is adjacent to an inequality constraint of "i" and such that "i" has
1883 * exactly one inequality constraint that is adjacent to an equality
1884 * constraint of "j", check whether "i" can be extended to include "j" or
1885 * whether "j" can be wrapped into "i".
1886 * All remaining constraints of "i" and "j" are assumed to be valid
1887 * or cut constraints of the other basic map.
1888 * However, none of the equality constraints of "i" are cut constraints.
1890 * If "i" has any "cut" inequality constraints, then check if relaxing
1891 * each of them by one is sufficient for them to become valid.
1892 * If so, check if the inequality constraint adjacent to an equality
1893 * constraint of "j" along with all these cut constraints
1894 * can be relaxed by one to contain exactly "j".
1895 * Otherwise, or if this fails, check if "j" can be wrapped into "i".
1897 static enum isl_change
check_single_adj_eq(int i
, int j
,
1898 struct isl_coalesce_info
*info
)
1900 enum isl_change change
= isl_change_none
;
1907 n_cut
= count_ineq(&info
[i
], STATUS_CUT
);
1909 k
= find_ineq(&info
[i
], STATUS_ADJ_EQ
);
1912 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1913 relax
= isl_calloc_array(ctx
, int, 1 + n_cut
);
1915 return isl_change_error
;
1917 try_relax
= all_cut_by_one(i
, j
, info
, relax
+ 1);
1919 change
= isl_change_error
;
1921 try_relax
= isl_bool_true
;
1924 if (try_relax
&& change
== isl_change_none
)
1925 change
= is_relaxed_extension(i
, j
, 1 + n_cut
, relax
, info
);
1928 if (change
!= isl_change_none
)
1931 change
= can_wrap_in_facet(i
, j
, k
, info
, n_cut
> 0);
1936 /* At least one of the basic maps has an equality that is adjacent
1937 * to an inequality. Make sure that only one of the basic maps has
1938 * such an equality and that the other basic map has exactly one
1939 * inequality adjacent to an equality.
1940 * If the other basic map does not have such an inequality, then
1941 * check if all its constraints are either valid or cut constraints
1942 * and, if so, try wrapping in the first map into the second.
1943 * Otherwise, try to extend one basic map with the other or
1944 * wrap one basic map in the other.
1946 static enum isl_change
check_adj_eq(int i
, int j
,
1947 struct isl_coalesce_info
*info
)
1949 if (any_eq(&info
[i
], STATUS_ADJ_INEQ
) &&
1950 any_eq(&info
[j
], STATUS_ADJ_INEQ
))
1951 /* ADJ EQ TOO MANY */
1952 return isl_change_none
;
1954 if (any_eq(&info
[i
], STATUS_ADJ_INEQ
))
1955 return check_adj_eq(j
, i
, info
);
1957 /* j has an equality adjacent to an inequality in i */
1959 if (count_ineq(&info
[i
], STATUS_ADJ_EQ
) != 1) {
1960 if (all_valid_or_cut(&info
[i
]))
1961 return can_wrap_in_set(i
, j
, info
);
1962 return isl_change_none
;
1964 if (any_eq(&info
[i
], STATUS_CUT
))
1965 return isl_change_none
;
1966 if (any_ineq(&info
[j
], STATUS_ADJ_EQ
) ||
1967 any_ineq(&info
[i
], STATUS_ADJ_INEQ
) ||
1968 any_ineq(&info
[j
], STATUS_ADJ_INEQ
))
1969 /* ADJ EQ TOO MANY */
1970 return isl_change_none
;
1972 return check_single_adj_eq(i
, j
, info
);
1975 /* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
1976 * In particular, disjunct "i" has an inequality constraint that is adjacent
1977 * to a (combination of) equality constraint(s) of disjunct "j",
1978 * but disjunct "j" has no explicit equality constraint adjacent
1979 * to an inequality constraint of disjunct "i".
1981 * Disjunct "i" is already known not to have any equality constraints
1982 * that are adjacent to an equality or inequality constraint.
1983 * Check that, other than the inequality constraint mentioned above,
1984 * all other constraints of disjunct "i" are valid for disjunct "j".
1985 * If so, try and wrap in disjunct "j".
1987 static enum isl_change
check_ineq_adj_eq(int i
, int j
,
1988 struct isl_coalesce_info
*info
)
1992 if (any_eq(&info
[i
], STATUS_CUT
))
1993 return isl_change_none
;
1994 if (any_ineq(&info
[i
], STATUS_CUT
))
1995 return isl_change_none
;
1996 if (any_ineq(&info
[i
], STATUS_ADJ_INEQ
))
1997 return isl_change_none
;
1998 if (count_ineq(&info
[i
], STATUS_ADJ_EQ
) != 1)
1999 return isl_change_none
;
2001 k
= find_ineq(&info
[i
], STATUS_ADJ_EQ
);
2003 return can_wrap_in_facet(i
, j
, k
, info
, 0);
2006 /* The two basic maps lie on adjacent hyperplanes. In particular,
2007 * basic map "i" has an equality that lies parallel to basic map "j".
2008 * Check if we can wrap the facets around the parallel hyperplanes
2009 * to include the other set.
2011 * We perform basically the same operations as can_wrap_in_facet,
2012 * except that we don't need to select a facet of one of the sets.
2018 * If there is more than one equality of "i" adjacent to an equality of "j",
2019 * then the result will satisfy one or more equalities that are a linear
2020 * combination of these equalities. These will be encoded as pairs
2021 * of inequalities in the wrapping constraints and need to be made
2024 static enum isl_change
check_eq_adj_eq(int i
, int j
,
2025 struct isl_coalesce_info
*info
)
2028 enum isl_change change
= isl_change_none
;
2029 int detect_equalities
= 0;
2030 struct isl_wraps wraps
;
2033 struct isl_set
*set_i
= NULL
;
2034 struct isl_set
*set_j
= NULL
;
2035 struct isl_vec
*bound
= NULL
;
2036 unsigned total
= isl_basic_map_total_dim(info
[i
].bmap
);
2038 if (count_eq(&info
[i
], STATUS_ADJ_EQ
) != 1)
2039 detect_equalities
= 1;
2041 k
= find_eq(&info
[i
], STATUS_ADJ_EQ
);
2043 set_i
= set_from_updated_bmap(info
[i
].bmap
, info
[i
].tab
);
2044 set_j
= set_from_updated_bmap(info
[j
].bmap
, info
[j
].tab
);
2045 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
2046 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
2047 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
2049 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
2051 bound
= isl_vec_alloc(ctx
, 1 + total
);
2052 if (!set_i
|| !set_j
|| !bound
)
2056 isl_seq_neg(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
2058 isl_seq_cpy(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
2059 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
2061 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
2062 wraps
.mat
->n_row
= 1;
2064 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
2066 if (!wraps
.mat
->n_row
)
2069 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
2070 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
2072 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
2075 if (add_wraps(&wraps
, &info
[i
], bound
->el
, set_j
) < 0)
2077 if (!wraps
.mat
->n_row
)
2080 change
= fuse(i
, j
, info
, wraps
.mat
, detect_equalities
, 0);
2083 error
: change
= isl_change_error
;
2088 isl_set_free(set_i
);
2089 isl_set_free(set_j
);
2090 isl_vec_free(bound
);
2095 /* Initialize the "eq" and "ineq" fields of "info".
2097 static void init_status(struct isl_coalesce_info
*info
)
2099 info
->eq
= info
->ineq
= NULL
;
2102 /* Set info->eq to the positions of the equalities of info->bmap
2103 * with respect to the basic map represented by "tab".
2104 * If info->eq has already been computed, then do not compute it again.
2106 static void set_eq_status_in(struct isl_coalesce_info
*info
,
2107 struct isl_tab
*tab
)
2111 info
->eq
= eq_status_in(info
->bmap
, tab
);
2114 /* Set info->ineq to the positions of the inequalities of info->bmap
2115 * with respect to the basic map represented by "tab".
2116 * If info->ineq has already been computed, then do not compute it again.
2118 static void set_ineq_status_in(struct isl_coalesce_info
*info
,
2119 struct isl_tab
*tab
)
2123 info
->ineq
= ineq_status_in(info
->bmap
, info
->tab
, tab
);
2126 /* Free the memory allocated by the "eq" and "ineq" fields of "info".
2127 * This function assumes that init_status has been called on "info" first,
2128 * after which the "eq" and "ineq" fields may or may not have been
2129 * assigned a newly allocated array.
2131 static void clear_status(struct isl_coalesce_info
*info
)
2137 /* Are all inequality constraints of the basic map represented by "info"
2138 * valid for the other basic map, except for a single constraint
2139 * that is adjacent to an inequality constraint of the other basic map?
2141 static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info
*info
)
2146 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
2147 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
2149 if (info
->ineq
[i
] == STATUS_VALID
)
2151 if (info
->ineq
[i
] != STATUS_ADJ_INEQ
)
2161 /* Basic map "i" has one or more equality constraints that separate it
2162 * from basic map "j". Check if it happens to be an extension
2164 * In particular, check that all constraints of "j" are valid for "i",
2165 * except for one inequality constraint that is adjacent
2166 * to an inequality constraints of "i".
2167 * If so, check for "i" being an extension of "j" by calling
2168 * is_adj_ineq_extension.
2170 * Clean up the memory allocated for keeping track of the status
2171 * of the constraints before returning.
2173 static enum isl_change
separating_equality(int i
, int j
,
2174 struct isl_coalesce_info
*info
)
2176 enum isl_change change
= isl_change_none
;
2178 if (all(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
2179 all_ineq_valid_or_single_adj_ineq(&info
[j
]))
2180 change
= is_adj_ineq_extension(j
, i
, info
);
2182 clear_status(&info
[i
]);
2183 clear_status(&info
[j
]);
2187 /* Check if the union of the given pair of basic maps
2188 * can be represented by a single basic map.
2189 * If so, replace the pair by the single basic map and return
2190 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2191 * Otherwise, return isl_change_none.
2192 * The two basic maps are assumed to live in the same local space.
2193 * The "eq" and "ineq" fields of info[i] and info[j] are assumed
2194 * to have been initialized by the caller, either to NULL or
2195 * to valid information.
2197 * We first check the effect of each constraint of one basic map
2198 * on the other basic map.
2199 * The constraint may be
2200 * redundant the constraint is redundant in its own
2201 * basic map and should be ignore and removed
2203 * valid all (integer) points of the other basic map
2204 * satisfy the constraint
2205 * separate no (integer) point of the other basic map
2206 * satisfies the constraint
2207 * cut some but not all points of the other basic map
2208 * satisfy the constraint
2209 * adj_eq the given constraint is adjacent (on the outside)
2210 * to an equality of the other basic map
2211 * adj_ineq the given constraint is adjacent (on the outside)
2212 * to an inequality of the other basic map
2214 * We consider seven cases in which we can replace the pair by a single
2215 * basic map. We ignore all "redundant" constraints.
2217 * 1. all constraints of one basic map are valid
2218 * => the other basic map is a subset and can be removed
2220 * 2. all constraints of both basic maps are either "valid" or "cut"
2221 * and the facets corresponding to the "cut" constraints
2222 * of one of the basic maps lies entirely inside the other basic map
2223 * => the pair can be replaced by a basic map consisting
2224 * of the valid constraints in both basic maps
2226 * 3. there is a single pair of adjacent inequalities
2227 * (all other constraints are "valid")
2228 * => the pair can be replaced by a basic map consisting
2229 * of the valid constraints in both basic maps
2231 * 4. one basic map has a single adjacent inequality, while the other
2232 * constraints are "valid". The other basic map has some
2233 * "cut" constraints, but replacing the adjacent inequality by
2234 * its opposite and adding the valid constraints of the other
2235 * basic map results in a subset of the other basic map
2236 * => the pair can be replaced by a basic map consisting
2237 * of the valid constraints in both basic maps
2239 * 5. there is a single adjacent pair of an inequality and an equality,
2240 * the other constraints of the basic map containing the inequality are
2241 * "valid". Moreover, if the inequality the basic map is relaxed
2242 * and then turned into an equality, then resulting facet lies
2243 * entirely inside the other basic map
2244 * => the pair can be replaced by the basic map containing
2245 * the inequality, with the inequality relaxed.
2247 * 6. there is a single inequality adjacent to an equality,
2248 * the other constraints of the basic map containing the inequality are
2249 * "valid". Moreover, the facets corresponding to both
2250 * the inequality and the equality can be wrapped around their
2251 * ridges to include the other basic map
2252 * => the pair can be replaced by a basic map consisting
2253 * of the valid constraints in both basic maps together
2254 * with all wrapping constraints
2256 * 7. one of the basic maps extends beyond the other by at most one.
2257 * Moreover, the facets corresponding to the cut constraints and
2258 * the pieces of the other basic map at offset one from these cut
2259 * constraints can be wrapped around their ridges to include
2260 * the union of the two basic maps
2261 * => the pair can be replaced by a basic map consisting
2262 * of the valid constraints in both basic maps together
2263 * with all wrapping constraints
2265 * 8. the two basic maps live in adjacent hyperplanes. In principle
2266 * such sets can always be combined through wrapping, but we impose
2267 * that there is only one such pair, to avoid overeager coalescing.
2269 * Throughout the computation, we maintain a collection of tableaus
2270 * corresponding to the basic maps. When the basic maps are dropped
2271 * or combined, the tableaus are modified accordingly.
2273 static enum isl_change
coalesce_local_pair_reuse(int i
, int j
,
2274 struct isl_coalesce_info
*info
)
2276 enum isl_change change
= isl_change_none
;
2278 set_ineq_status_in(&info
[i
], info
[j
].tab
);
2279 if (info
[i
].bmap
->n_ineq
&& !info
[i
].ineq
)
2281 if (any_ineq(&info
[i
], STATUS_ERROR
))
2283 if (any_ineq(&info
[i
], STATUS_SEPARATE
))
2286 set_ineq_status_in(&info
[j
], info
[i
].tab
);
2287 if (info
[j
].bmap
->n_ineq
&& !info
[j
].ineq
)
2289 if (any_ineq(&info
[j
], STATUS_ERROR
))
2291 if (any_ineq(&info
[j
], STATUS_SEPARATE
))
2294 set_eq_status_in(&info
[i
], info
[j
].tab
);
2295 if (info
[i
].bmap
->n_eq
&& !info
[i
].eq
)
2297 if (any_eq(&info
[i
], STATUS_ERROR
))
2300 set_eq_status_in(&info
[j
], info
[i
].tab
);
2301 if (info
[j
].bmap
->n_eq
&& !info
[j
].eq
)
2303 if (any_eq(&info
[j
], STATUS_ERROR
))
2306 if (any_eq(&info
[i
], STATUS_SEPARATE
))
2307 return separating_equality(i
, j
, info
);
2308 if (any_eq(&info
[j
], STATUS_SEPARATE
))
2309 return separating_equality(j
, i
, info
);
2311 if (all(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_VALID
) &&
2312 all(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_VALID
)) {
2314 change
= isl_change_drop_second
;
2315 } else if (all(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
2316 all(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_VALID
)) {
2318 change
= isl_change_drop_first
;
2319 } else if (any_eq(&info
[i
], STATUS_ADJ_EQ
)) {
2320 change
= check_eq_adj_eq(i
, j
, info
);
2321 } else if (any_eq(&info
[j
], STATUS_ADJ_EQ
)) {
2322 change
= check_eq_adj_eq(j
, i
, info
);
2323 } else if (any_eq(&info
[i
], STATUS_ADJ_INEQ
) ||
2324 any_eq(&info
[j
], STATUS_ADJ_INEQ
)) {
2325 change
= check_adj_eq(i
, j
, info
);
2326 } else if (any_ineq(&info
[i
], STATUS_ADJ_EQ
)) {
2327 change
= check_ineq_adj_eq(i
, j
, info
);
2328 } else if (any_ineq(&info
[j
], STATUS_ADJ_EQ
)) {
2329 change
= check_ineq_adj_eq(j
, i
, info
);
2330 } else if (any_ineq(&info
[i
], STATUS_ADJ_INEQ
) ||
2331 any_ineq(&info
[j
], STATUS_ADJ_INEQ
)) {
2332 change
= check_adj_ineq(i
, j
, info
);
2334 if (!any_eq(&info
[i
], STATUS_CUT
) &&
2335 !any_eq(&info
[j
], STATUS_CUT
))
2336 change
= check_facets(i
, j
, info
);
2337 if (change
== isl_change_none
)
2338 change
= check_wrap(i
, j
, info
);
2342 clear_status(&info
[i
]);
2343 clear_status(&info
[j
]);
2346 clear_status(&info
[i
]);
2347 clear_status(&info
[j
]);
2348 return isl_change_error
;
2351 /* Check if the union of the given pair of basic maps
2352 * can be represented by a single basic map.
2353 * If so, replace the pair by the single basic map and return
2354 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2355 * Otherwise, return isl_change_none.
2356 * The two basic maps are assumed to live in the same local space.
2358 static enum isl_change
coalesce_local_pair(int i
, int j
,
2359 struct isl_coalesce_info
*info
)
2361 init_status(&info
[i
]);
2362 init_status(&info
[j
]);
2363 return coalesce_local_pair_reuse(i
, j
, info
);
2366 /* Shift the integer division at position "div" of the basic map
2367 * represented by "info" by "shift".
2369 * That is, if the integer division has the form
2373 * then replace it by
2375 * floor((f(x) + shift * d)/d) - shift
2377 static isl_stat
shift_div(struct isl_coalesce_info
*info
, int div
,
2382 info
->bmap
= isl_basic_map_shift_div(info
->bmap
, div
, 0, shift
);
2384 return isl_stat_error
;
2386 total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
2387 total
-= isl_basic_map_dim(info
->bmap
, isl_dim_div
);
2388 if (isl_tab_shift_var(info
->tab
, total
+ div
, shift
) < 0)
2389 return isl_stat_error
;
2394 /* If the integer division at position "div" is defined by an equality,
2395 * i.e., a stride constraint, then change the integer division expression
2396 * to have a constant term equal to zero.
2398 * Let the equality constraint be
2402 * The integer division expression is then typically of the form
2404 * a = floor((-f - c')/m)
2406 * The integer division is first shifted by t = floor(c/m),
2407 * turning the equality constraint into
2409 * c - m floor(c/m) + f + m a' = 0
2413 * (c mod m) + f + m a' = 0
2417 * a' = (-f - (c mod m))/m = floor((-f)/m)
2419 * because a' is an integer and 0 <= (c mod m) < m.
2420 * The constant term of a' can therefore be zeroed out,
2421 * but only if the integer division expression is of the expected form.
2423 static isl_stat
normalize_stride_div(struct isl_coalesce_info
*info
, int div
)
2425 isl_bool defined
, valid
;
2428 isl_int shift
, stride
;
2430 defined
= isl_basic_map_has_defining_equality(info
->bmap
, isl_dim_div
,
2433 return isl_stat_error
;
2437 return isl_stat_error
;
2438 valid
= isl_constraint_is_div_equality(c
, div
);
2439 isl_int_init(shift
);
2440 isl_int_init(stride
);
2441 isl_constraint_get_constant(c
, &shift
);
2442 isl_constraint_get_coefficient(c
, isl_dim_div
, div
, &stride
);
2443 isl_int_fdiv_q(shift
, shift
, stride
);
2444 r
= shift_div(info
, div
, shift
);
2445 isl_int_clear(stride
);
2446 isl_int_clear(shift
);
2447 isl_constraint_free(c
);
2448 if (r
< 0 || valid
< 0)
2449 return isl_stat_error
;
2452 info
->bmap
= isl_basic_map_set_div_expr_constant_num_si_inplace(
2453 info
->bmap
, div
, 0);
2455 return isl_stat_error
;
2459 /* The basic maps represented by "info1" and "info2" are known
2460 * to have the same number of integer divisions.
2461 * Check if pairs of integer divisions are equal to each other
2462 * despite the fact that they differ by a rational constant.
2464 * In particular, look for any pair of integer divisions that
2465 * only differ in their constant terms.
2466 * If either of these integer divisions is defined
2467 * by stride constraints, then modify it to have a zero constant term.
2468 * If both are defined by stride constraints then in the end they will have
2469 * the same (zero) constant term.
2471 static isl_stat
harmonize_stride_divs(struct isl_coalesce_info
*info1
,
2472 struct isl_coalesce_info
*info2
)
2476 n
= isl_basic_map_dim(info1
->bmap
, isl_dim_div
);
2477 for (i
= 0; i
< n
; ++i
) {
2478 isl_bool known
, harmonize
;
2480 known
= isl_basic_map_div_is_known(info1
->bmap
, i
);
2481 if (known
>= 0 && known
)
2482 known
= isl_basic_map_div_is_known(info2
->bmap
, i
);
2484 return isl_stat_error
;
2487 harmonize
= isl_basic_map_equal_div_expr_except_constant(
2488 info1
->bmap
, i
, info2
->bmap
, i
);
2490 return isl_stat_error
;
2493 if (normalize_stride_div(info1
, i
) < 0)
2494 return isl_stat_error
;
2495 if (normalize_stride_div(info2
, i
) < 0)
2496 return isl_stat_error
;
2502 /* If "shift" is an integer constant, then shift the integer division
2503 * at position "div" of the basic map represented by "info" by "shift".
2504 * If "shift" is not an integer constant, then do nothing.
2505 * If "shift" is equal to zero, then no shift needs to be performed either.
2507 * That is, if the integer division has the form
2511 * then replace it by
2513 * floor((f(x) + shift * d)/d) - shift
2515 static isl_stat
shift_if_cst_int(struct isl_coalesce_info
*info
, int div
,
2516 __isl_keep isl_aff
*shift
)
2523 cst
= isl_aff_is_cst(shift
);
2524 if (cst
< 0 || !cst
)
2525 return cst
< 0 ? isl_stat_error
: isl_stat_ok
;
2527 c
= isl_aff_get_constant_val(shift
);
2528 cst
= isl_val_is_int(c
);
2529 if (cst
>= 0 && cst
)
2530 cst
= isl_bool_not(isl_val_is_zero(c
));
2531 if (cst
< 0 || !cst
) {
2533 return cst
< 0 ? isl_stat_error
: isl_stat_ok
;
2537 r
= isl_val_get_num_isl_int(c
, &d
);
2539 r
= shift_div(info
, div
, d
);
2547 /* Check if some of the divs in the basic map represented by "info1"
2548 * are shifts of the corresponding divs in the basic map represented
2549 * by "info2", taking into account the equality constraints "eq1" of "info1"
2550 * and "eq2" of "info2". If so, align them with those of "info2".
2551 * "info1" and "info2" are assumed to have the same number
2552 * of integer divisions.
2554 * An integer division is considered to be a shift of another integer
2555 * division if, after simplification with respect to the equality
2556 * constraints of the other basic map, one is equal to the other
2559 * In particular, for each pair of integer divisions, if both are known,
2560 * have the same denominator and are not already equal to each other,
2561 * simplify each with respect to the equality constraints
2562 * of the other basic map. If the difference is an integer constant,
2563 * then move this difference outside.
2564 * That is, if, after simplification, one integer division is of the form
2566 * floor((f(x) + c_1)/d)
2568 * while the other is of the form
2570 * floor((f(x) + c_2)/d)
2572 * and n = (c_2 - c_1)/d is an integer, then replace the first
2573 * integer division by
2575 * floor((f_1(x) + c_1 + n * d)/d) - n,
2577 * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
2578 * after simplification with respect to the equality constraints.
2580 static isl_stat
harmonize_divs_with_hulls(struct isl_coalesce_info
*info1
,
2581 struct isl_coalesce_info
*info2
, __isl_keep isl_basic_set
*eq1
,
2582 __isl_keep isl_basic_set
*eq2
)
2586 isl_local_space
*ls1
, *ls2
;
2588 total
= isl_basic_map_total_dim(info1
->bmap
);
2589 ls1
= isl_local_space_wrap(isl_basic_map_get_local_space(info1
->bmap
));
2590 ls2
= isl_local_space_wrap(isl_basic_map_get_local_space(info2
->bmap
));
2591 for (i
= 0; i
< info1
->bmap
->n_div
; ++i
) {
2593 isl_aff
*div1
, *div2
;
2595 if (!isl_local_space_div_is_known(ls1
, i
) ||
2596 !isl_local_space_div_is_known(ls2
, i
))
2598 if (isl_int_ne(info1
->bmap
->div
[i
][0], info2
->bmap
->div
[i
][0]))
2600 if (isl_seq_eq(info1
->bmap
->div
[i
] + 1,
2601 info2
->bmap
->div
[i
] + 1, 1 + total
))
2603 div1
= isl_local_space_get_div(ls1
, i
);
2604 div2
= isl_local_space_get_div(ls2
, i
);
2605 div1
= isl_aff_substitute_equalities(div1
,
2606 isl_basic_set_copy(eq2
));
2607 div2
= isl_aff_substitute_equalities(div2
,
2608 isl_basic_set_copy(eq1
));
2609 div2
= isl_aff_sub(div2
, div1
);
2610 r
= shift_if_cst_int(info1
, i
, div2
);
2615 isl_local_space_free(ls1
);
2616 isl_local_space_free(ls2
);
2618 if (i
< info1
->bmap
->n_div
)
2619 return isl_stat_error
;
2623 /* Check if some of the divs in the basic map represented by "info1"
2624 * are shifts of the corresponding divs in the basic map represented
2625 * by "info2". If so, align them with those of "info2".
2626 * Only do this if "info1" and "info2" have the same number
2627 * of integer divisions.
2629 * An integer division is considered to be a shift of another integer
2630 * division if, after simplification with respect to the equality
2631 * constraints of the other basic map, one is equal to the other
2634 * First check if pairs of integer divisions are equal to each other
2635 * despite the fact that they differ by a rational constant.
2636 * If so, try and arrange for them to have the same constant term.
2638 * Then, extract the equality constraints and continue with
2639 * harmonize_divs_with_hulls.
2641 * If the equality constraints of both basic maps are the same,
2642 * then there is no need to perform any shifting since
2643 * the coefficients of the integer divisions should have been
2644 * reduced in the same way.
2646 static isl_stat
harmonize_divs(struct isl_coalesce_info
*info1
,
2647 struct isl_coalesce_info
*info2
)
2650 isl_basic_map
*bmap1
, *bmap2
;
2651 isl_basic_set
*eq1
, *eq2
;
2654 if (!info1
->bmap
|| !info2
->bmap
)
2655 return isl_stat_error
;
2657 if (info1
->bmap
->n_div
!= info2
->bmap
->n_div
)
2659 if (info1
->bmap
->n_div
== 0)
2662 if (harmonize_stride_divs(info1
, info2
) < 0)
2663 return isl_stat_error
;
2665 bmap1
= isl_basic_map_copy(info1
->bmap
);
2666 bmap2
= isl_basic_map_copy(info2
->bmap
);
2667 eq1
= isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1
));
2668 eq2
= isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2
));
2669 equal
= isl_basic_set_plain_is_equal(eq1
, eq2
);
2675 r
= harmonize_divs_with_hulls(info1
, info2
, eq1
, eq2
);
2676 isl_basic_set_free(eq1
);
2677 isl_basic_set_free(eq2
);
2682 /* Do the two basic maps live in the same local space, i.e.,
2683 * do they have the same (known) divs?
2684 * If either basic map has any unknown divs, then we can only assume
2685 * that they do not live in the same local space.
2687 static isl_bool
same_divs(__isl_keep isl_basic_map
*bmap1
,
2688 __isl_keep isl_basic_map
*bmap2
)
2694 if (!bmap1
|| !bmap2
)
2695 return isl_bool_error
;
2696 if (bmap1
->n_div
!= bmap2
->n_div
)
2697 return isl_bool_false
;
2699 if (bmap1
->n_div
== 0)
2700 return isl_bool_true
;
2702 known
= isl_basic_map_divs_known(bmap1
);
2703 if (known
< 0 || !known
)
2705 known
= isl_basic_map_divs_known(bmap2
);
2706 if (known
< 0 || !known
)
2709 total
= isl_basic_map_total_dim(bmap1
);
2710 for (i
= 0; i
< bmap1
->n_div
; ++i
)
2711 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
2712 return isl_bool_false
;
2714 return isl_bool_true
;
2717 /* Assuming that "tab" contains the equality constraints and
2718 * the initial inequality constraints of "bmap", copy the remaining
2719 * inequality constraints of "bmap" to "Tab".
2721 static isl_stat
copy_ineq(struct isl_tab
*tab
, __isl_keep isl_basic_map
*bmap
)
2726 return isl_stat_error
;
2728 n_ineq
= tab
->n_con
- tab
->n_eq
;
2729 for (i
= n_ineq
; i
< bmap
->n_ineq
; ++i
)
2730 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2731 return isl_stat_error
;
2736 /* Description of an integer division that is added
2737 * during an expansion.
2738 * "pos" is the position of the corresponding variable.
2739 * "cst" indicates whether this integer division has a fixed value.
2740 * "val" contains the fixed value, if the value is fixed.
2742 struct isl_expanded
{
2748 /* For each of the "n" integer division variables "expanded",
2749 * if the variable has a fixed value, then add two inequality
2750 * constraints expressing the fixed value.
2751 * Otherwise, add the corresponding div constraints.
2752 * The caller is responsible for removing the div constraints
2753 * that it added for all these "n" integer divisions.
2755 * The div constraints and the pair of inequality constraints
2756 * forcing the fixed value cannot both be added for a given variable
2757 * as the combination may render some of the original constraints redundant.
2758 * These would then be ignored during the coalescing detection,
2759 * while they could remain in the fused result.
2761 * The two added inequality constraints are
2766 * with "a" the variable and "v" its fixed value.
2767 * The facet corresponding to one of these two constraints is selected
2768 * in the tableau to ensure that the pair of inequality constraints
2769 * is treated as an equality constraint.
2771 * The information in info->ineq is thrown away because it was
2772 * computed in terms of div constraints, while some of those
2773 * have now been replaced by these pairs of inequality constraints.
2775 static isl_stat
fix_constant_divs(struct isl_coalesce_info
*info
,
2776 int n
, struct isl_expanded
*expanded
)
2782 o_div
= isl_basic_map_offset(info
->bmap
, isl_dim_div
) - 1;
2783 ineq
= isl_vec_alloc(isl_tab_get_ctx(info
->tab
), 1 + info
->tab
->n_var
);
2785 return isl_stat_error
;
2786 isl_seq_clr(ineq
->el
+ 1, info
->tab
->n_var
);
2788 for (i
= 0; i
< n
; ++i
) {
2789 if (!expanded
[i
].cst
) {
2790 info
->bmap
= isl_basic_map_extend_constraints(
2792 if (isl_basic_map_add_div_constraints(info
->bmap
,
2793 expanded
[i
].pos
- o_div
) < 0)
2796 isl_int_set_si(ineq
->el
[1 + expanded
[i
].pos
], -1);
2797 isl_int_set(ineq
->el
[0], expanded
[i
].val
);
2798 info
->bmap
= isl_basic_map_add_ineq(info
->bmap
,
2800 isl_int_set_si(ineq
->el
[1 + expanded
[i
].pos
], 1);
2801 isl_int_neg(ineq
->el
[0], expanded
[i
].val
);
2802 info
->bmap
= isl_basic_map_add_ineq(info
->bmap
,
2804 isl_int_set_si(ineq
->el
[1 + expanded
[i
].pos
], 0);
2806 if (copy_ineq(info
->tab
, info
->bmap
) < 0)
2808 if (expanded
[i
].cst
&&
2809 isl_tab_select_facet(info
->tab
, info
->tab
->n_con
- 1) < 0)
2818 return i
< n
? isl_stat_error
: isl_stat_ok
;
2821 /* Insert the "n" integer division variables "expanded"
2822 * into info->tab and info->bmap and
2823 * update info->ineq with respect to the redundant constraints
2824 * in the resulting tableau.
2825 * "bmap" contains the result of this insertion in info->bmap,
2826 * while info->bmap is the original version
2827 * of "bmap", i.e., the one that corresponds to the current
2828 * state of info->tab. The number of constraints in info->bmap
2829 * is assumed to be the same as the number of constraints
2830 * in info->tab. This is required to be able to detect
2831 * the extra constraints in "bmap".
2833 * In particular, introduce extra variables corresponding
2834 * to the extra integer divisions and add the div constraints
2835 * that were added to "bmap" after info->tab was created
2837 * Furthermore, check if these extra integer divisions happen
2838 * to attain a fixed integer value in info->tab.
2839 * If so, replace the corresponding div constraints by pairs
2840 * of inequality constraints that fix these
2841 * integer divisions to their single integer values.
2842 * Replace info->bmap by "bmap" to match the changes to info->tab.
2843 * info->ineq was computed without a tableau and therefore
2844 * does not take into account the redundant constraints
2845 * in the tableau. Mark them here.
2846 * There is no need to check the newly added div constraints
2847 * since they cannot be redundant.
2848 * The redundancy check is not performed when constants have been discovered
2849 * since info->ineq is completely thrown away in this case.
2851 static isl_stat
tab_insert_divs(struct isl_coalesce_info
*info
,
2852 int n
, struct isl_expanded
*expanded
, __isl_take isl_basic_map
*bmap
)
2856 struct isl_tab_undo
*snap
;
2860 return isl_stat_error
;
2861 if (info
->bmap
->n_eq
+ info
->bmap
->n_ineq
!= info
->tab
->n_con
)
2862 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
2863 "original tableau does not correspond "
2864 "to original basic map", goto error
);
2866 if (isl_tab_extend_vars(info
->tab
, n
) < 0)
2868 if (isl_tab_extend_cons(info
->tab
, 2 * n
) < 0)
2871 for (i
= 0; i
< n
; ++i
) {
2872 if (isl_tab_insert_var(info
->tab
, expanded
[i
].pos
) < 0)
2876 snap
= isl_tab_snap(info
->tab
);
2878 n_ineq
= info
->tab
->n_con
- info
->tab
->n_eq
;
2879 if (copy_ineq(info
->tab
, bmap
) < 0)
2882 isl_basic_map_free(info
->bmap
);
2886 for (i
= 0; i
< n
; ++i
) {
2887 expanded
[i
].cst
= isl_tab_is_constant(info
->tab
,
2888 expanded
[i
].pos
, &expanded
[i
].val
);
2889 if (expanded
[i
].cst
< 0)
2890 return isl_stat_error
;
2891 if (expanded
[i
].cst
)
2896 if (isl_tab_rollback(info
->tab
, snap
) < 0)
2897 return isl_stat_error
;
2898 info
->bmap
= isl_basic_map_cow(info
->bmap
);
2899 if (isl_basic_map_free_inequality(info
->bmap
, 2 * n
) < 0)
2900 return isl_stat_error
;
2902 return fix_constant_divs(info
, n
, expanded
);
2905 n_eq
= info
->bmap
->n_eq
;
2906 for (i
= 0; i
< n_ineq
; ++i
) {
2907 if (isl_tab_is_redundant(info
->tab
, n_eq
+ i
))
2908 info
->ineq
[i
] = STATUS_REDUNDANT
;
2913 isl_basic_map_free(bmap
);
2914 return isl_stat_error
;
2917 /* Expand info->tab and info->bmap in the same way "bmap" was expanded
2918 * in isl_basic_map_expand_divs using the expansion "exp" and
2919 * update info->ineq with respect to the redundant constraints
2920 * in the resulting tableau. info->bmap is the original version
2921 * of "bmap", i.e., the one that corresponds to the current
2922 * state of info->tab. The number of constraints in info->bmap
2923 * is assumed to be the same as the number of constraints
2924 * in info->tab. This is required to be able to detect
2925 * the extra constraints in "bmap".
2927 * Extract the positions where extra local variables are introduced
2928 * from "exp" and call tab_insert_divs.
2930 static isl_stat
expand_tab(struct isl_coalesce_info
*info
, int *exp
,
2931 __isl_take isl_basic_map
*bmap
)
2934 struct isl_expanded
*expanded
;
2937 unsigned total
, pos
, n_div
;
2940 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2941 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2942 pos
= total
- n_div
;
2943 extra_var
= total
- info
->tab
->n_var
;
2944 n
= n_div
- extra_var
;
2946 ctx
= isl_basic_map_get_ctx(bmap
);
2947 expanded
= isl_calloc_array(ctx
, struct isl_expanded
, extra_var
);
2948 if (extra_var
&& !expanded
)
2953 for (j
= 0; j
< n_div
; ++j
) {
2954 if (i
< n
&& exp
[i
] == j
) {
2958 expanded
[k
++].pos
= pos
+ j
;
2961 for (k
= 0; k
< extra_var
; ++k
)
2962 isl_int_init(expanded
[k
].val
);
2964 r
= tab_insert_divs(info
, extra_var
, expanded
, bmap
);
2966 for (k
= 0; k
< extra_var
; ++k
)
2967 isl_int_clear(expanded
[k
].val
);
2972 isl_basic_map_free(bmap
);
2973 return isl_stat_error
;
2976 /* Check if the union of the basic maps represented by info[i] and info[j]
2977 * can be represented by a single basic map,
2978 * after expanding the divs of info[i] to match those of info[j].
2979 * If so, replace the pair by the single basic map and return
2980 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2981 * Otherwise, return isl_change_none.
2983 * The caller has already checked for info[j] being a subset of info[i].
2984 * If some of the divs of info[j] are unknown, then the expanded info[i]
2985 * will not have the corresponding div constraints. The other patterns
2986 * therefore cannot apply. Skip the computation in this case.
2988 * The expansion is performed using the divs "div" and expansion "exp"
2989 * computed by the caller.
2990 * info[i].bmap has already been expanded and the result is passed in
2992 * The "eq" and "ineq" fields of info[i] reflect the status of
2993 * the constraints of the expanded "bmap" with respect to info[j].tab.
2994 * However, inequality constraints that are redundant in info[i].tab
2995 * have not yet been marked as such because no tableau was available.
2997 * Replace info[i].bmap by "bmap" and expand info[i].tab as well,
2998 * updating info[i].ineq with respect to the redundant constraints.
2999 * Then try and coalesce the expanded info[i] with info[j],
3000 * reusing the information in info[i].eq and info[i].ineq.
3001 * If this does not result in any coalescing or if it results in info[j]
3002 * getting dropped (which should not happen in practice, since the case
3003 * of info[j] being a subset of info[i] has already been checked by
3004 * the caller), then revert info[i] to its original state.
3006 static enum isl_change
coalesce_expand_tab_divs(__isl_take isl_basic_map
*bmap
,
3007 int i
, int j
, struct isl_coalesce_info
*info
, __isl_keep isl_mat
*div
,
3011 isl_basic_map
*bmap_i
;
3012 struct isl_tab_undo
*snap
;
3013 enum isl_change change
= isl_change_none
;
3015 known
= isl_basic_map_divs_known(info
[j
].bmap
);
3016 if (known
< 0 || !known
) {
3017 clear_status(&info
[i
]);
3018 isl_basic_map_free(bmap
);
3019 return known
< 0 ? isl_change_error
: isl_change_none
;
3022 bmap_i
= isl_basic_map_copy(info
[i
].bmap
);
3023 snap
= isl_tab_snap(info
[i
].tab
);
3024 if (expand_tab(&info
[i
], exp
, bmap
) < 0)
3025 change
= isl_change_error
;
3027 init_status(&info
[j
]);
3028 if (change
== isl_change_none
)
3029 change
= coalesce_local_pair_reuse(i
, j
, info
);
3031 clear_status(&info
[i
]);
3032 if (change
!= isl_change_none
&& change
!= isl_change_drop_second
) {
3033 isl_basic_map_free(bmap_i
);
3035 isl_basic_map_free(info
[i
].bmap
);
3036 info
[i
].bmap
= bmap_i
;
3038 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
3039 change
= isl_change_error
;
3045 /* Check if the union of "bmap" and the basic map represented by info[j]
3046 * can be represented by a single basic map,
3047 * after expanding the divs of "bmap" to match those of info[j].
3048 * If so, replace the pair by the single basic map and return
3049 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3050 * Otherwise, return isl_change_none.
3052 * In particular, check if the expanded "bmap" contains the basic map
3053 * represented by the tableau info[j].tab.
3054 * The expansion is performed using the divs "div" and expansion "exp"
3055 * computed by the caller.
3056 * Then we check if all constraints of the expanded "bmap" are valid for
3059 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3060 * In this case, the positions of the constraints of info[i].bmap
3061 * with respect to the basic map represented by info[j] are stored
3064 * If the expanded "bmap" does not contain the basic map
3065 * represented by the tableau info[j].tab and if "i" is not -1,
3066 * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
3067 * as well and check if that results in coalescing.
3069 static enum isl_change
coalesce_with_expanded_divs(
3070 __isl_keep isl_basic_map
*bmap
, int i
, int j
,
3071 struct isl_coalesce_info
*info
, __isl_keep isl_mat
*div
, int *exp
)
3073 enum isl_change change
= isl_change_none
;
3074 struct isl_coalesce_info info_local
, *info_i
;
3076 info_i
= i
>= 0 ? &info
[i
] : &info_local
;
3077 init_status(info_i
);
3078 bmap
= isl_basic_map_copy(bmap
);
3079 bmap
= isl_basic_map_expand_divs(bmap
, isl_mat_copy(div
), exp
);
3080 bmap
= isl_basic_map_mark_final(bmap
);
3085 info_local
.bmap
= bmap
;
3086 info_i
->eq
= eq_status_in(bmap
, info
[j
].tab
);
3087 if (bmap
->n_eq
&& !info_i
->eq
)
3089 if (any_eq(info_i
, STATUS_ERROR
))
3091 if (any_eq(info_i
, STATUS_SEPARATE
))
3094 info_i
->ineq
= ineq_status_in(bmap
, NULL
, info
[j
].tab
);
3095 if (bmap
->n_ineq
&& !info_i
->ineq
)
3097 if (any_ineq(info_i
, STATUS_ERROR
))
3099 if (any_ineq(info_i
, STATUS_SEPARATE
))
3102 if (all(info_i
->eq
, 2 * bmap
->n_eq
, STATUS_VALID
) &&
3103 all(info_i
->ineq
, bmap
->n_ineq
, STATUS_VALID
)) {
3105 change
= isl_change_drop_second
;
3108 if (change
== isl_change_none
&& i
!= -1)
3109 return coalesce_expand_tab_divs(bmap
, i
, j
, info
, div
, exp
);
3112 isl_basic_map_free(bmap
);
3113 clear_status(info_i
);
3116 isl_basic_map_free(bmap
);
3117 clear_status(info_i
);
3118 return isl_change_error
;
3121 /* Check if the union of "bmap_i" and the basic map represented by info[j]
3122 * can be represented by a single basic map,
3123 * after aligning the divs of "bmap_i" to match those of info[j].
3124 * If so, replace the pair by the single basic map and return
3125 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3126 * Otherwise, return isl_change_none.
3128 * In particular, check if "bmap_i" contains the basic map represented by
3129 * info[j] after aligning the divs of "bmap_i" to those of info[j].
3130 * Note that this can only succeed if the number of divs of "bmap_i"
3131 * is smaller than (or equal to) the number of divs of info[j].
3133 * We first check if the divs of "bmap_i" are all known and form a subset
3134 * of those of info[j].bmap. If so, we pass control over to
3135 * coalesce_with_expanded_divs.
3137 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3139 static enum isl_change
coalesce_after_aligning_divs(
3140 __isl_keep isl_basic_map
*bmap_i
, int i
, int j
,
3141 struct isl_coalesce_info
*info
)
3144 isl_mat
*div_i
, *div_j
, *div
;
3148 enum isl_change change
;
3150 known
= isl_basic_map_divs_known(bmap_i
);
3152 return isl_change_error
;
3154 return isl_change_none
;
3156 ctx
= isl_basic_map_get_ctx(bmap_i
);
3158 div_i
= isl_basic_map_get_divs(bmap_i
);
3159 div_j
= isl_basic_map_get_divs(info
[j
].bmap
);
3161 if (!div_i
|| !div_j
)
3164 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
3165 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
3166 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
3169 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
3173 if (div
->n_row
== div_j
->n_row
)
3174 change
= coalesce_with_expanded_divs(bmap_i
,
3175 i
, j
, info
, div
, exp1
);
3177 change
= isl_change_none
;
3181 isl_mat_free(div_i
);
3182 isl_mat_free(div_j
);
3189 isl_mat_free(div_i
);
3190 isl_mat_free(div_j
);
3193 return isl_change_error
;
3196 /* Check if basic map "j" is a subset of basic map "i" after
3197 * exploiting the extra equalities of "j" to simplify the divs of "i".
3198 * If so, remove basic map "j" and return isl_change_drop_second.
3200 * If "j" does not have any equalities or if they are the same
3201 * as those of "i", then we cannot exploit them to simplify the divs.
3202 * Similarly, if there are no divs in "i", then they cannot be simplified.
3203 * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
3204 * then "j" cannot be a subset of "i".
3206 * Otherwise, we intersect "i" with the affine hull of "j" and then
3207 * check if "j" is a subset of the result after aligning the divs.
3208 * If so, then "j" is definitely a subset of "i" and can be removed.
3209 * Note that if after intersection with the affine hull of "j".
3210 * "i" still has more divs than "j", then there is no way we can
3211 * align the divs of "i" to those of "j".
3213 static enum isl_change
coalesce_subset_with_equalities(int i
, int j
,
3214 struct isl_coalesce_info
*info
)
3216 isl_basic_map
*hull_i
, *hull_j
, *bmap_i
;
3218 enum isl_change change
;
3220 if (info
[j
].bmap
->n_eq
== 0)
3221 return isl_change_none
;
3222 if (info
[i
].bmap
->n_div
== 0)
3223 return isl_change_none
;
3225 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
3226 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
3227 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
3228 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
3230 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
3231 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
3232 empty
= isl_basic_map_plain_is_empty(hull_j
);
3233 isl_basic_map_free(hull_i
);
3235 if (equal
< 0 || equal
|| empty
< 0 || empty
) {
3236 isl_basic_map_free(hull_j
);
3237 if (equal
< 0 || empty
< 0)
3238 return isl_change_error
;
3239 return isl_change_none
;
3242 bmap_i
= isl_basic_map_copy(info
[i
].bmap
);
3243 bmap_i
= isl_basic_map_intersect(bmap_i
, hull_j
);
3245 return isl_change_error
;
3247 if (bmap_i
->n_div
> info
[j
].bmap
->n_div
) {
3248 isl_basic_map_free(bmap_i
);
3249 return isl_change_none
;
3252 change
= coalesce_after_aligning_divs(bmap_i
, -1, j
, info
);
3254 isl_basic_map_free(bmap_i
);
3259 /* Check if the union of and the basic maps represented by info[i] and info[j]
3260 * can be represented by a single basic map, by aligning or equating
3261 * their integer divisions.
3262 * If so, replace the pair by the single basic map and return
3263 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3264 * Otherwise, return isl_change_none.
3266 * Note that we only perform any test if the number of divs is different
3267 * in the two basic maps. In case the number of divs is the same,
3268 * we have already established that the divs are different
3269 * in the two basic maps.
3270 * In particular, if the number of divs of basic map i is smaller than
3271 * the number of divs of basic map j, then we check if j is a subset of i
3274 static enum isl_change
coalesce_divs(int i
, int j
,
3275 struct isl_coalesce_info
*info
)
3277 enum isl_change change
= isl_change_none
;
3279 if (info
[i
].bmap
->n_div
< info
[j
].bmap
->n_div
)
3280 change
= coalesce_after_aligning_divs(info
[i
].bmap
, i
, j
, info
);
3281 if (change
!= isl_change_none
)
3284 if (info
[j
].bmap
->n_div
< info
[i
].bmap
->n_div
)
3285 change
= coalesce_after_aligning_divs(info
[j
].bmap
, j
, i
, info
);
3286 if (change
!= isl_change_none
)
3287 return invert_change(change
);
3289 change
= coalesce_subset_with_equalities(i
, j
, info
);
3290 if (change
!= isl_change_none
)
3293 change
= coalesce_subset_with_equalities(j
, i
, info
);
3294 if (change
!= isl_change_none
)
3295 return invert_change(change
);
3297 return isl_change_none
;
3300 /* Does "bmap" involve any divs that themselves refer to divs?
3302 static isl_bool
has_nested_div(__isl_keep isl_basic_map
*bmap
)
3308 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3309 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3312 for (i
= 0; i
< n_div
; ++i
)
3313 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + total
,
3315 return isl_bool_true
;
3317 return isl_bool_false
;
3320 /* Return a list of affine expressions, one for each integer division
3321 * in "bmap_i". For each integer division that also appears in "bmap_j",
3322 * the affine expression is set to NaN. The number of NaNs in the list
3323 * is equal to the number of integer divisions in "bmap_j".
3324 * For the other integer divisions of "bmap_i", the corresponding
3325 * element in the list is a purely affine expression equal to the integer
3326 * division in "hull".
3327 * If no such list can be constructed, then the number of elements
3328 * in the returned list is smaller than the number of integer divisions
3331 static __isl_give isl_aff_list
*set_up_substitutions(
3332 __isl_keep isl_basic_map
*bmap_i
, __isl_keep isl_basic_map
*bmap_j
,
3333 __isl_take isl_basic_map
*hull
)
3335 unsigned n_div_i
, n_div_j
, total
;
3337 isl_local_space
*ls
;
3338 isl_basic_set
*wrap_hull
;
3346 ctx
= isl_basic_map_get_ctx(hull
);
3348 n_div_i
= isl_basic_map_dim(bmap_i
, isl_dim_div
);
3349 n_div_j
= isl_basic_map_dim(bmap_j
, isl_dim_div
);
3350 total
= isl_basic_map_total_dim(bmap_i
) - n_div_i
;
3352 ls
= isl_basic_map_get_local_space(bmap_i
);
3353 ls
= isl_local_space_wrap(ls
);
3354 wrap_hull
= isl_basic_map_wrap(hull
);
3356 aff_nan
= isl_aff_nan_on_domain(isl_local_space_copy(ls
));
3357 list
= isl_aff_list_alloc(ctx
, n_div_i
);
3360 for (i
= 0; i
< n_div_i
; ++i
) {
3364 isl_basic_map_equal_div_expr_part(bmap_i
, i
, bmap_j
, j
,
3367 list
= isl_aff_list_add(list
, isl_aff_copy(aff_nan
));
3370 if (n_div_i
- i
<= n_div_j
- j
)
3373 aff
= isl_local_space_get_div(ls
, i
);
3374 aff
= isl_aff_substitute_equalities(aff
,
3375 isl_basic_set_copy(wrap_hull
));
3376 aff
= isl_aff_floor(aff
);
3379 if (isl_aff_dim(aff
, isl_dim_div
) != 0) {
3384 list
= isl_aff_list_add(list
, aff
);
3387 isl_aff_free(aff_nan
);
3388 isl_local_space_free(ls
);
3389 isl_basic_set_free(wrap_hull
);
3393 isl_aff_free(aff_nan
);
3394 isl_local_space_free(ls
);
3395 isl_basic_set_free(wrap_hull
);
3396 isl_aff_list_free(list
);
3400 /* Add variables to info->bmap and info->tab corresponding to the elements
3401 * in "list" that are not set to NaN.
3402 * "extra_var" is the number of these elements.
3403 * "dim" is the offset in the variables of "tab" where we should
3404 * start considering the elements in "list".
3405 * When this function returns, the total number of variables in "tab"
3406 * is equal to "dim" plus the number of elements in "list".
3408 * The newly added existentially quantified variables are not given
3409 * an explicit representation because the corresponding div constraints
3410 * do not appear in info->bmap. These constraints are not added
3411 * to info->bmap because for internal consistency, they would need to
3412 * be added to info->tab as well, where they could combine with the equality
3413 * that is added later to result in constraints that do not hold
3414 * in the original input.
3416 static isl_stat
add_sub_vars(struct isl_coalesce_info
*info
,
3417 __isl_keep isl_aff_list
*list
, int dim
, int extra_var
)
3422 space
= isl_basic_map_get_space(info
->bmap
);
3423 info
->bmap
= isl_basic_map_cow(info
->bmap
);
3424 info
->bmap
= isl_basic_map_extend_space(info
->bmap
, space
,
3427 return isl_stat_error
;
3428 n
= isl_aff_list_n_aff(list
);
3429 for (i
= 0; i
< n
; ++i
) {
3433 aff
= isl_aff_list_get_aff(list
, i
);
3434 is_nan
= isl_aff_is_nan(aff
);
3437 return isl_stat_error
;
3441 if (isl_tab_insert_var(info
->tab
, dim
+ i
) < 0)
3442 return isl_stat_error
;
3443 d
= isl_basic_map_alloc_div(info
->bmap
);
3445 return isl_stat_error
;
3446 info
->bmap
= isl_basic_map_mark_div_unknown(info
->bmap
, d
);
3448 return isl_stat_error
;
3449 for (j
= d
; j
> i
; --j
)
3450 isl_basic_map_swap_div(info
->bmap
, j
- 1, j
);
3456 /* For each element in "list" that is not set to NaN, fix the corresponding
3457 * variable in "tab" to the purely affine expression defined by the element.
3458 * "dim" is the offset in the variables of "tab" where we should
3459 * start considering the elements in "list".
3461 * This function assumes that a sufficient number of rows and
3462 * elements in the constraint array are available in the tableau.
3464 static int add_sub_equalities(struct isl_tab
*tab
,
3465 __isl_keep isl_aff_list
*list
, int dim
)
3472 n
= isl_aff_list_n_aff(list
);
3474 ctx
= isl_tab_get_ctx(tab
);
3475 sub
= isl_vec_alloc(ctx
, 1 + dim
+ n
);
3478 isl_seq_clr(sub
->el
+ 1 + dim
, n
);
3480 for (i
= 0; i
< n
; ++i
) {
3481 aff
= isl_aff_list_get_aff(list
, i
);
3484 if (isl_aff_is_nan(aff
)) {
3488 isl_seq_cpy(sub
->el
, aff
->v
->el
+ 1, 1 + dim
);
3489 isl_int_neg(sub
->el
[1 + dim
+ i
], aff
->v
->el
[0]);
3490 if (isl_tab_add_eq(tab
, sub
->el
) < 0)
3492 isl_int_set_si(sub
->el
[1 + dim
+ i
], 0);
3504 /* Add variables to info->tab and info->bmap corresponding to the elements
3505 * in "list" that are not set to NaN. The value of the added variable
3506 * in info->tab is fixed to the purely affine expression defined by the element.
3507 * "dim" is the offset in the variables of info->tab where we should
3508 * start considering the elements in "list".
3509 * When this function returns, the total number of variables in info->tab
3510 * is equal to "dim" plus the number of elements in "list".
3512 static int add_subs(struct isl_coalesce_info
*info
,
3513 __isl_keep isl_aff_list
*list
, int dim
)
3521 n
= isl_aff_list_n_aff(list
);
3522 extra_var
= n
- (info
->tab
->n_var
- dim
);
3524 if (isl_tab_extend_vars(info
->tab
, extra_var
) < 0)
3526 if (isl_tab_extend_cons(info
->tab
, 2 * extra_var
) < 0)
3528 if (add_sub_vars(info
, list
, dim
, extra_var
) < 0)
3531 return add_sub_equalities(info
->tab
, list
, dim
);
3534 /* Coalesce basic map "j" into basic map "i" after adding the extra integer
3535 * divisions in "i" but not in "j" to basic map "j", with values
3536 * specified by "list". The total number of elements in "list"
3537 * is equal to the number of integer divisions in "i", while the number
3538 * of NaN elements in the list is equal to the number of integer divisions
3541 * If no coalescing can be performed, then we need to revert basic map "j"
3542 * to its original state. We do the same if basic map "i" gets dropped
3543 * during the coalescing, even though this should not happen in practice
3544 * since we have already checked for "j" being a subset of "i"
3545 * before we reach this stage.
3547 static enum isl_change
coalesce_with_subs(int i
, int j
,
3548 struct isl_coalesce_info
*info
, __isl_keep isl_aff_list
*list
)
3550 isl_basic_map
*bmap_j
;
3551 struct isl_tab_undo
*snap
;
3553 enum isl_change change
;
3555 bmap_j
= isl_basic_map_copy(info
[j
].bmap
);
3556 snap
= isl_tab_snap(info
[j
].tab
);
3558 dim
= isl_basic_map_dim(bmap_j
, isl_dim_all
);
3559 dim
-= isl_basic_map_dim(bmap_j
, isl_dim_div
);
3560 if (add_subs(&info
[j
], list
, dim
) < 0)
3563 change
= coalesce_local_pair(i
, j
, info
);
3564 if (change
!= isl_change_none
&& change
!= isl_change_drop_first
) {
3565 isl_basic_map_free(bmap_j
);
3567 isl_basic_map_free(info
[j
].bmap
);
3568 info
[j
].bmap
= bmap_j
;
3570 if (isl_tab_rollback(info
[j
].tab
, snap
) < 0)
3571 return isl_change_error
;
3576 isl_basic_map_free(bmap_j
);
3577 return isl_change_error
;
3580 /* Check if we can coalesce basic map "j" into basic map "i" after copying
3581 * those extra integer divisions in "i" that can be simplified away
3582 * using the extra equalities in "j".
3583 * All divs are assumed to be known and not contain any nested divs.
3585 * We first check if there are any extra equalities in "j" that we
3586 * can exploit. Then we check if every integer division in "i"
3587 * either already appears in "j" or can be simplified using the
3588 * extra equalities to a purely affine expression.
3589 * If these tests succeed, then we try to coalesce the two basic maps
3590 * by introducing extra dimensions in "j" corresponding to
3591 * the extra integer divsisions "i" fixed to the corresponding
3592 * purely affine expression.
3594 static enum isl_change
check_coalesce_into_eq(int i
, int j
,
3595 struct isl_coalesce_info
*info
)
3597 unsigned n_div_i
, n_div_j
;
3598 isl_basic_map
*hull_i
, *hull_j
;
3601 enum isl_change change
;
3603 n_div_i
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_div
);
3604 n_div_j
= isl_basic_map_dim(info
[j
].bmap
, isl_dim_div
);
3605 if (n_div_i
<= n_div_j
)
3606 return isl_change_none
;
3607 if (info
[j
].bmap
->n_eq
== 0)
3608 return isl_change_none
;
3610 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
3611 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
3612 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
3613 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
3615 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
3616 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
3617 empty
= isl_basic_map_plain_is_empty(hull_j
);
3618 isl_basic_map_free(hull_i
);
3620 if (equal
< 0 || empty
< 0)
3622 if (equal
|| empty
) {
3623 isl_basic_map_free(hull_j
);
3624 return isl_change_none
;
3627 list
= set_up_substitutions(info
[i
].bmap
, info
[j
].bmap
, hull_j
);
3629 return isl_change_error
;
3630 if (isl_aff_list_n_aff(list
) < n_div_i
)
3631 change
= isl_change_none
;
3633 change
= coalesce_with_subs(i
, j
, info
, list
);
3635 isl_aff_list_free(list
);
3639 isl_basic_map_free(hull_j
);
3640 return isl_change_error
;
3643 /* Check if we can coalesce basic maps "i" and "j" after copying
3644 * those extra integer divisions in one of the basic maps that can
3645 * be simplified away using the extra equalities in the other basic map.
3646 * We require all divs to be known in both basic maps.
3647 * Furthermore, to simplify the comparison of div expressions,
3648 * we do not allow any nested integer divisions.
3650 static enum isl_change
check_coalesce_eq(int i
, int j
,
3651 struct isl_coalesce_info
*info
)
3653 isl_bool known
, nested
;
3654 enum isl_change change
;
3656 known
= isl_basic_map_divs_known(info
[i
].bmap
);
3657 if (known
< 0 || !known
)
3658 return known
< 0 ? isl_change_error
: isl_change_none
;
3659 known
= isl_basic_map_divs_known(info
[j
].bmap
);
3660 if (known
< 0 || !known
)
3661 return known
< 0 ? isl_change_error
: isl_change_none
;
3662 nested
= has_nested_div(info
[i
].bmap
);
3663 if (nested
< 0 || nested
)
3664 return nested
< 0 ? isl_change_error
: isl_change_none
;
3665 nested
= has_nested_div(info
[j
].bmap
);
3666 if (nested
< 0 || nested
)
3667 return nested
< 0 ? isl_change_error
: isl_change_none
;
3669 change
= check_coalesce_into_eq(i
, j
, info
);
3670 if (change
!= isl_change_none
)
3672 change
= check_coalesce_into_eq(j
, i
, info
);
3673 if (change
!= isl_change_none
)
3674 return invert_change(change
);
3676 return isl_change_none
;
3679 /* Check if the union of the given pair of basic maps
3680 * can be represented by a single basic map.
3681 * If so, replace the pair by the single basic map and return
3682 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3683 * Otherwise, return isl_change_none.
3685 * We first check if the two basic maps live in the same local space,
3686 * after aligning the divs that differ by only an integer constant.
3687 * If so, we do the complete check. Otherwise, we check if they have
3688 * the same number of integer divisions and can be coalesced, if one is
3689 * an obvious subset of the other or if the extra integer divisions
3690 * of one basic map can be simplified away using the extra equalities
3691 * of the other basic map.
3693 * Note that trying to coalesce pairs of disjuncts with the same
3694 * number, but different local variables may drop the explicit
3695 * representation of some of these local variables.
3696 * This operation is therefore not performed when
3697 * the "coalesce_preserve_locals" option is set.
3699 static enum isl_change
coalesce_pair(int i
, int j
,
3700 struct isl_coalesce_info
*info
)
3704 enum isl_change change
;
3707 if (harmonize_divs(&info
[i
], &info
[j
]) < 0)
3708 return isl_change_error
;
3709 same
= same_divs(info
[i
].bmap
, info
[j
].bmap
);
3711 return isl_change_error
;
3713 return coalesce_local_pair(i
, j
, info
);
3715 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
3716 preserve
= isl_options_get_coalesce_preserve_locals(ctx
);
3717 if (!preserve
&& info
[i
].bmap
->n_div
== info
[j
].bmap
->n_div
) {
3718 change
= coalesce_local_pair(i
, j
, info
);
3719 if (change
!= isl_change_none
)
3723 change
= coalesce_divs(i
, j
, info
);
3724 if (change
!= isl_change_none
)
3727 return check_coalesce_eq(i
, j
, info
);
3730 /* Return the maximum of "a" and "b".
3732 static int isl_max(int a
, int b
)
3734 return a
> b
? a
: b
;
3737 /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
3738 * with those in the range [start2, end2[, skipping basic maps
3739 * that have been removed (either before or within this function).
3741 * For each basic map i in the first range, we check if it can be coalesced
3742 * with respect to any previously considered basic map j in the second range.
3743 * If i gets dropped (because it was a subset of some j), then
3744 * we can move on to the next basic map.
3745 * If j gets dropped, we need to continue checking against the other
3746 * previously considered basic maps.
3747 * If the two basic maps got fused, then we recheck the fused basic map
3748 * against the previously considered basic maps, starting at i + 1
3749 * (even if start2 is greater than i + 1).
3751 static int coalesce_range(isl_ctx
*ctx
, struct isl_coalesce_info
*info
,
3752 int start1
, int end1
, int start2
, int end2
)
3756 for (i
= end1
- 1; i
>= start1
; --i
) {
3757 if (info
[i
].removed
)
3759 for (j
= isl_max(i
+ 1, start2
); j
< end2
; ++j
) {
3760 enum isl_change changed
;
3762 if (info
[j
].removed
)
3764 if (info
[i
].removed
)
3765 isl_die(ctx
, isl_error_internal
,
3766 "basic map unexpectedly removed",
3768 changed
= coalesce_pair(i
, j
, info
);
3770 case isl_change_error
:
3772 case isl_change_none
:
3773 case isl_change_drop_second
:
3775 case isl_change_drop_first
:
3778 case isl_change_fuse
:
3788 /* Pairwise coalesce the basic maps described by the "n" elements of "info".
3790 * We consider groups of basic maps that live in the same apparent
3791 * affine hull and we first coalesce within such a group before we
3792 * coalesce the elements in the group with elements of previously
3793 * considered groups. If a fuse happens during the second phase,
3794 * then we also reconsider the elements within the group.
3796 static int coalesce(isl_ctx
*ctx
, int n
, struct isl_coalesce_info
*info
)
3800 for (end
= n
; end
> 0; end
= start
) {
3802 while (start
>= 1 &&
3803 info
[start
- 1].hull_hash
== info
[start
].hull_hash
)
3805 if (coalesce_range(ctx
, info
, start
, end
, start
, end
) < 0)
3807 if (coalesce_range(ctx
, info
, start
, end
, end
, n
) < 0)
3814 /* Update the basic maps in "map" based on the information in "info".
3815 * In particular, remove the basic maps that have been marked removed and
3816 * update the others based on the information in the corresponding tableau.
3817 * Since we detected implicit equalities without calling
3818 * isl_basic_map_gauss, we need to do it now.
3819 * Also call isl_basic_map_simplify if we may have lost the definition
3820 * of one or more integer divisions.
3822 static __isl_give isl_map
*update_basic_maps(__isl_take isl_map
*map
,
3823 int n
, struct isl_coalesce_info
*info
)
3830 for (i
= n
- 1; i
>= 0; --i
) {
3831 if (info
[i
].removed
) {
3832 isl_basic_map_free(map
->p
[i
]);
3833 if (i
!= map
->n
- 1)
3834 map
->p
[i
] = map
->p
[map
->n
- 1];
3839 info
[i
].bmap
= isl_basic_map_update_from_tab(info
[i
].bmap
,
3841 info
[i
].bmap
= isl_basic_map_gauss(info
[i
].bmap
, NULL
);
3842 if (info
[i
].simplify
)
3843 info
[i
].bmap
= isl_basic_map_simplify(info
[i
].bmap
);
3844 info
[i
].bmap
= isl_basic_map_finalize(info
[i
].bmap
);
3846 return isl_map_free(map
);
3847 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
3848 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
3849 isl_basic_map_free(map
->p
[i
]);
3850 map
->p
[i
] = info
[i
].bmap
;
3851 info
[i
].bmap
= NULL
;
3857 /* For each pair of basic maps in the map, check if the union of the two
3858 * can be represented by a single basic map.
3859 * If so, replace the pair by the single basic map and start over.
3861 * We factor out any (hidden) common factor from the constraint
3862 * coefficients to improve the detection of adjacent constraints.
3864 * Since we are constructing the tableaus of the basic maps anyway,
3865 * we exploit them to detect implicit equalities and redundant constraints.
3866 * This also helps the coalescing as it can ignore the redundant constraints.
3867 * In order to avoid confusion, we make all implicit equalities explicit
3868 * in the basic maps. We don't call isl_basic_map_gauss, though,
3869 * as that may affect the number of constraints.
3870 * This means that we have to call isl_basic_map_gauss at the end
3871 * of the computation (in update_basic_maps and in drop) to ensure that
3872 * the basic maps are not left in an unexpected state.
3873 * For each basic map, we also compute the hash of the apparent affine hull
3874 * for use in coalesce.
3876 __isl_give isl_map
*isl_map_coalesce(__isl_take isl_map
*map
)
3881 struct isl_coalesce_info
*info
= NULL
;
3883 map
= isl_map_remove_empty_parts(map
);
3890 ctx
= isl_map_get_ctx(map
);
3891 map
= isl_map_sort_divs(map
);
3892 map
= isl_map_cow(map
);
3899 info
= isl_calloc_array(map
->ctx
, struct isl_coalesce_info
, n
);
3903 for (i
= 0; i
< map
->n
; ++i
) {
3904 map
->p
[i
] = isl_basic_map_reduce_coefficients(map
->p
[i
]);
3907 info
[i
].bmap
= isl_basic_map_copy(map
->p
[i
]);
3908 info
[i
].tab
= isl_tab_from_basic_map(info
[i
].bmap
, 0);
3911 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
3912 if (isl_tab_detect_implicit_equalities(info
[i
].tab
) < 0)
3914 info
[i
].bmap
= isl_tab_make_equalities_explicit(info
[i
].tab
,
3918 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
3919 if (isl_tab_detect_redundant(info
[i
].tab
) < 0)
3921 if (coalesce_info_set_hull_hash(&info
[i
]) < 0)
3924 for (i
= map
->n
- 1; i
>= 0; --i
)
3925 if (info
[i
].tab
->empty
)
3928 if (coalesce(ctx
, n
, info
) < 0)
3931 map
= update_basic_maps(map
, n
, info
);
3933 clear_coalesce_info(n
, info
);
3937 clear_coalesce_info(n
, info
);
3942 /* For each pair of basic sets in the set, check if the union of the two
3943 * can be represented by a single basic set.
3944 * If so, replace the pair by the single basic set and start over.
3946 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
3948 return set_from_map(isl_map_coalesce(set_to_map(set
)));