isl_map_simplify.c: extract out group_and_drop_irrelevant_constraints
[isl.git] / isl_map_simplify.c
blob7fc74c2f5b22bf3df9dbf730c975a8b70d224414
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include "isl_equalities.h"
18 #include <isl/map.h>
19 #include <isl_seq.h>
20 #include "isl_tab.h"
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
25 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
27 isl_int *t = bmap->eq[a];
28 bmap->eq[a] = bmap->eq[b];
29 bmap->eq[b] = t;
32 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
34 if (a != b) {
35 isl_int *t = bmap->ineq[a];
36 bmap->ineq[a] = bmap->ineq[b];
37 bmap->ineq[b] = t;
41 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
43 isl_seq_cpy(c, c + n, rem);
44 isl_seq_clr(c + rem, n);
47 /* Drop n dimensions starting at first.
49 * In principle, this frees up some extra variables as the number
50 * of columns remains constant, but we would have to extend
51 * the div array too as the number of rows in this array is assumed
52 * to be equal to extra.
54 struct isl_basic_set *isl_basic_set_drop_dims(
55 struct isl_basic_set *bset, unsigned first, unsigned n)
57 int i;
59 if (!bset)
60 goto error;
62 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
64 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
65 return bset;
67 bset = isl_basic_set_cow(bset);
68 if (!bset)
69 return NULL;
71 for (i = 0; i < bset->n_eq; ++i)
72 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
73 (bset->dim->n_out-first-n)+bset->extra);
75 for (i = 0; i < bset->n_ineq; ++i)
76 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
77 (bset->dim->n_out-first-n)+bset->extra);
79 for (i = 0; i < bset->n_div; ++i)
80 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
81 (bset->dim->n_out-first-n)+bset->extra);
83 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
84 if (!bset->dim)
85 goto error;
87 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
88 bset = isl_basic_set_simplify(bset);
89 return isl_basic_set_finalize(bset);
90 error:
91 isl_basic_set_free(bset);
92 return NULL;
95 struct isl_set *isl_set_drop_dims(
96 struct isl_set *set, unsigned first, unsigned n)
98 int i;
100 if (!set)
101 goto error;
103 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
105 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
106 return set;
107 set = isl_set_cow(set);
108 if (!set)
109 goto error;
110 set->dim = isl_space_drop_outputs(set->dim, first, n);
111 if (!set->dim)
112 goto error;
114 for (i = 0; i < set->n; ++i) {
115 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
116 if (!set->p[i])
117 goto error;
120 ISL_F_CLR(set, ISL_SET_NORMALIZED);
121 return set;
122 error:
123 isl_set_free(set);
124 return NULL;
127 /* Move "n" divs starting at "first" to the end of the list of divs.
129 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
130 unsigned first, unsigned n)
132 isl_int **div;
133 int i;
135 if (first + n == bmap->n_div)
136 return bmap;
138 div = isl_alloc_array(bmap->ctx, isl_int *, n);
139 if (!div)
140 goto error;
141 for (i = 0; i < n; ++i)
142 div[i] = bmap->div[first + i];
143 for (i = 0; i < bmap->n_div - first - n; ++i)
144 bmap->div[first + i] = bmap->div[first + n + i];
145 for (i = 0; i < n; ++i)
146 bmap->div[bmap->n_div - n + i] = div[i];
147 free(div);
148 return bmap;
149 error:
150 isl_basic_map_free(bmap);
151 return NULL;
154 /* Drop "n" dimensions of type "type" starting at "first".
156 * In principle, this frees up some extra variables as the number
157 * of columns remains constant, but we would have to extend
158 * the div array too as the number of rows in this array is assumed
159 * to be equal to extra.
161 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
162 enum isl_dim_type type, unsigned first, unsigned n)
164 int i;
165 unsigned dim;
166 unsigned offset;
167 unsigned left;
169 if (!bmap)
170 goto error;
172 dim = isl_basic_map_dim(bmap, type);
173 isl_assert(bmap->ctx, first + n <= dim, goto error);
175 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
176 return bmap;
178 bmap = isl_basic_map_cow(bmap);
179 if (!bmap)
180 return NULL;
182 offset = isl_basic_map_offset(bmap, type) + first;
183 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
184 for (i = 0; i < bmap->n_eq; ++i)
185 constraint_drop_vars(bmap->eq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_ineq; ++i)
188 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
190 for (i = 0; i < bmap->n_div; ++i)
191 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
193 if (type == isl_dim_div) {
194 bmap = move_divs_last(bmap, first, n);
195 if (!bmap)
196 goto error;
197 isl_basic_map_free_div(bmap, n);
198 } else
199 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
200 if (!bmap->dim)
201 goto error;
203 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
204 bmap = isl_basic_map_simplify(bmap);
205 return isl_basic_map_finalize(bmap);
206 error:
207 isl_basic_map_free(bmap);
208 return NULL;
211 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
212 enum isl_dim_type type, unsigned first, unsigned n)
214 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
215 type, first, n);
218 struct isl_basic_map *isl_basic_map_drop_inputs(
219 struct isl_basic_map *bmap, unsigned first, unsigned n)
221 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
224 struct isl_map *isl_map_drop(struct isl_map *map,
225 enum isl_dim_type type, unsigned first, unsigned n)
227 int i;
229 if (!map)
230 goto error;
232 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
234 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
235 return map;
236 map = isl_map_cow(map);
237 if (!map)
238 goto error;
239 map->dim = isl_space_drop_dims(map->dim, type, first, n);
240 if (!map->dim)
241 goto error;
243 for (i = 0; i < map->n; ++i) {
244 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
245 if (!map->p[i])
246 goto error;
248 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
250 return map;
251 error:
252 isl_map_free(map);
253 return NULL;
256 struct isl_set *isl_set_drop(struct isl_set *set,
257 enum isl_dim_type type, unsigned first, unsigned n)
259 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
262 struct isl_map *isl_map_drop_inputs(
263 struct isl_map *map, unsigned first, unsigned n)
265 return isl_map_drop(map, isl_dim_in, first, n);
269 * We don't cow, as the div is assumed to be redundant.
271 static struct isl_basic_map *isl_basic_map_drop_div(
272 struct isl_basic_map *bmap, unsigned div)
274 int i;
275 unsigned pos;
277 if (!bmap)
278 goto error;
280 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
282 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
284 for (i = 0; i < bmap->n_eq; ++i)
285 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
287 for (i = 0; i < bmap->n_ineq; ++i) {
288 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
289 isl_basic_map_drop_inequality(bmap, i);
290 --i;
291 continue;
293 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
296 for (i = 0; i < bmap->n_div; ++i)
297 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
299 if (div != bmap->n_div - 1) {
300 int j;
301 isl_int *t = bmap->div[div];
303 for (j = div; j < bmap->n_div - 1; ++j)
304 bmap->div[j] = bmap->div[j+1];
306 bmap->div[bmap->n_div - 1] = t;
308 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
309 isl_basic_map_free_div(bmap, 1);
311 return bmap;
312 error:
313 isl_basic_map_free(bmap);
314 return NULL;
317 struct isl_basic_map *isl_basic_map_normalize_constraints(
318 struct isl_basic_map *bmap)
320 int i;
321 isl_int gcd;
322 unsigned total = isl_basic_map_total_dim(bmap);
324 if (!bmap)
325 return NULL;
327 isl_int_init(gcd);
328 for (i = bmap->n_eq - 1; i >= 0; --i) {
329 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
330 if (isl_int_is_zero(gcd)) {
331 if (!isl_int_is_zero(bmap->eq[i][0])) {
332 bmap = isl_basic_map_set_to_empty(bmap);
333 break;
335 isl_basic_map_drop_equality(bmap, i);
336 continue;
338 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
339 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
340 if (isl_int_is_one(gcd))
341 continue;
342 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
343 bmap = isl_basic_map_set_to_empty(bmap);
344 break;
346 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
349 for (i = bmap->n_ineq - 1; i >= 0; --i) {
350 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
351 if (isl_int_is_zero(gcd)) {
352 if (isl_int_is_neg(bmap->ineq[i][0])) {
353 bmap = isl_basic_map_set_to_empty(bmap);
354 break;
356 isl_basic_map_drop_inequality(bmap, i);
357 continue;
359 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
360 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
361 if (isl_int_is_one(gcd))
362 continue;
363 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
364 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
366 isl_int_clear(gcd);
368 return bmap;
371 struct isl_basic_set *isl_basic_set_normalize_constraints(
372 struct isl_basic_set *bset)
374 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
375 (struct isl_basic_map *)bset);
378 /* Assuming the variable at position "pos" has an integer coefficient
379 * in integer division "div", extract it from this integer division.
380 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
381 * corresponds to the constant term.
383 * That is, the integer division is of the form
385 * floor((... + c * d * x_pos + ...)/d)
387 * Replace it by
389 * floor((... + 0 * x_pos + ...)/d) + c * x_pos
391 static __isl_give isl_basic_map *remove_var_from_div(
392 __isl_take isl_basic_map *bmap, int div, int pos)
394 isl_int shift;
396 isl_int_init(shift);
397 isl_int_divexact(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
398 isl_int_neg(shift, shift);
399 bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
400 isl_int_clear(shift);
402 return bmap;
405 /* Check if integer division "div" has any integral coefficient
406 * (or constant term). If so, extract them from the integer division.
408 static __isl_give isl_basic_map *remove_independent_vars_from_div(
409 __isl_take isl_basic_map *bmap, int div)
411 int i;
412 unsigned total = 1 + isl_basic_map_total_dim(bmap);
414 for (i = 0; i < total; ++i) {
415 if (isl_int_is_zero(bmap->div[div][1 + i]))
416 continue;
417 if (!isl_int_is_divisible_by(bmap->div[div][1 + i],
418 bmap->div[div][0]))
419 continue;
420 bmap = remove_var_from_div(bmap, div, i);
421 if (!bmap)
422 break;
425 return bmap;
428 /* Check if any known integer division has any integral coefficient
429 * (or constant term). If so, extract them from the integer division.
431 static __isl_give isl_basic_map *remove_independent_vars_from_divs(
432 __isl_take isl_basic_map *bmap)
434 int i;
436 if (!bmap)
437 return NULL;
438 if (bmap->n_div == 0)
439 return bmap;
441 for (i = 0; i < bmap->n_div; ++i) {
442 if (isl_int_is_zero(bmap->div[i][0]))
443 continue;
444 bmap = remove_independent_vars_from_div(bmap, i);
445 if (!bmap)
446 break;
449 return bmap;
452 /* Remove any common factor in numerator and denominator of the div expression,
453 * not taking into account the constant term.
454 * That is, if the div is of the form
456 * floor((a + m f(x))/(m d))
458 * then replace it by
460 * floor((floor(a/m) + f(x))/d)
462 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
463 * and can therefore not influence the result of the floor.
465 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
467 unsigned total = isl_basic_map_total_dim(bmap);
468 isl_ctx *ctx = bmap->ctx;
470 if (isl_int_is_zero(bmap->div[div][0]))
471 return;
472 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
473 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
474 if (isl_int_is_one(ctx->normalize_gcd))
475 return;
476 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
477 ctx->normalize_gcd);
478 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
479 ctx->normalize_gcd);
480 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
481 ctx->normalize_gcd, total);
484 /* Remove any common factor in numerator and denominator of a div expression,
485 * not taking into account the constant term.
486 * That is, look for any div of the form
488 * floor((a + m f(x))/(m d))
490 * and replace it by
492 * floor((floor(a/m) + f(x))/d)
494 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
495 * and can therefore not influence the result of the floor.
497 static __isl_give isl_basic_map *normalize_div_expressions(
498 __isl_take isl_basic_map *bmap)
500 int i;
502 if (!bmap)
503 return NULL;
504 if (bmap->n_div == 0)
505 return bmap;
507 for (i = 0; i < bmap->n_div; ++i)
508 normalize_div_expression(bmap, i);
510 return bmap;
513 /* Assumes divs have been ordered if keep_divs is set.
515 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
516 unsigned pos, isl_int *eq, int keep_divs, int *progress)
518 unsigned total;
519 unsigned space_total;
520 int k;
521 int last_div;
523 total = isl_basic_map_total_dim(bmap);
524 space_total = isl_space_dim(bmap->dim, isl_dim_all);
525 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
526 for (k = 0; k < bmap->n_eq; ++k) {
527 if (bmap->eq[k] == eq)
528 continue;
529 if (isl_int_is_zero(bmap->eq[k][1+pos]))
530 continue;
531 if (progress)
532 *progress = 1;
533 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
534 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
537 for (k = 0; k < bmap->n_ineq; ++k) {
538 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
539 continue;
540 if (progress)
541 *progress = 1;
542 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
543 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
544 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
547 for (k = 0; k < bmap->n_div; ++k) {
548 if (isl_int_is_zero(bmap->div[k][0]))
549 continue;
550 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
551 continue;
552 if (progress)
553 *progress = 1;
554 /* We need to be careful about circular definitions,
555 * so for now we just remove the definition of div k
556 * if the equality contains any divs.
557 * If keep_divs is set, then the divs have been ordered
558 * and we can keep the definition as long as the result
559 * is still ordered.
561 if (last_div == -1 || (keep_divs && last_div < k)) {
562 isl_seq_elim(bmap->div[k]+1, eq,
563 1+pos, 1+total, &bmap->div[k][0]);
564 normalize_div_expression(bmap, k);
565 } else
566 isl_seq_clr(bmap->div[k], 1 + total);
567 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
571 /* Assumes divs have been ordered if keep_divs is set.
573 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
574 isl_int *eq, unsigned div, int keep_divs)
576 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
578 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
580 bmap = isl_basic_map_drop_div(bmap, div);
582 return bmap;
585 /* Check if elimination of div "div" using equality "eq" would not
586 * result in a div depending on a later div.
588 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
589 unsigned div)
591 int k;
592 int last_div;
593 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
594 unsigned pos = space_total + div;
596 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
597 if (last_div < 0 || last_div <= div)
598 return 1;
600 for (k = 0; k <= last_div; ++k) {
601 if (isl_int_is_zero(bmap->div[k][0]))
602 return 1;
603 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
604 return 0;
607 return 1;
610 /* Elimininate divs based on equalities
612 static struct isl_basic_map *eliminate_divs_eq(
613 struct isl_basic_map *bmap, int *progress)
615 int d;
616 int i;
617 int modified = 0;
618 unsigned off;
620 bmap = isl_basic_map_order_divs(bmap);
622 if (!bmap)
623 return NULL;
625 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
627 for (d = bmap->n_div - 1; d >= 0 ; --d) {
628 for (i = 0; i < bmap->n_eq; ++i) {
629 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
630 !isl_int_is_negone(bmap->eq[i][off + d]))
631 continue;
632 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
633 continue;
634 modified = 1;
635 *progress = 1;
636 bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
637 if (isl_basic_map_drop_equality(bmap, i) < 0)
638 return isl_basic_map_free(bmap);
639 break;
642 if (modified)
643 return eliminate_divs_eq(bmap, progress);
644 return bmap;
647 /* Elimininate divs based on inequalities
649 static struct isl_basic_map *eliminate_divs_ineq(
650 struct isl_basic_map *bmap, int *progress)
652 int d;
653 int i;
654 unsigned off;
655 struct isl_ctx *ctx;
657 if (!bmap)
658 return NULL;
660 ctx = bmap->ctx;
661 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
663 for (d = bmap->n_div - 1; d >= 0 ; --d) {
664 for (i = 0; i < bmap->n_eq; ++i)
665 if (!isl_int_is_zero(bmap->eq[i][off + d]))
666 break;
667 if (i < bmap->n_eq)
668 continue;
669 for (i = 0; i < bmap->n_ineq; ++i)
670 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
671 break;
672 if (i < bmap->n_ineq)
673 continue;
674 *progress = 1;
675 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
676 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
677 break;
678 bmap = isl_basic_map_drop_div(bmap, d);
679 if (!bmap)
680 break;
682 return bmap;
685 struct isl_basic_map *isl_basic_map_gauss(
686 struct isl_basic_map *bmap, int *progress)
688 int k;
689 int done;
690 int last_var;
691 unsigned total_var;
692 unsigned total;
694 bmap = isl_basic_map_order_divs(bmap);
696 if (!bmap)
697 return NULL;
699 total = isl_basic_map_total_dim(bmap);
700 total_var = total - bmap->n_div;
702 last_var = total - 1;
703 for (done = 0; done < bmap->n_eq; ++done) {
704 for (; last_var >= 0; --last_var) {
705 for (k = done; k < bmap->n_eq; ++k)
706 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
707 break;
708 if (k < bmap->n_eq)
709 break;
711 if (last_var < 0)
712 break;
713 if (k != done)
714 swap_equality(bmap, k, done);
715 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
716 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
718 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
719 progress);
721 if (last_var >= total_var &&
722 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
723 unsigned div = last_var - total_var;
724 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
725 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
726 isl_int_set(bmap->div[div][0],
727 bmap->eq[done][1+last_var]);
728 if (progress)
729 *progress = 1;
730 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
733 if (done == bmap->n_eq)
734 return bmap;
735 for (k = done; k < bmap->n_eq; ++k) {
736 if (isl_int_is_zero(bmap->eq[k][0]))
737 continue;
738 return isl_basic_map_set_to_empty(bmap);
740 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
741 return bmap;
744 struct isl_basic_set *isl_basic_set_gauss(
745 struct isl_basic_set *bset, int *progress)
747 return (struct isl_basic_set*)isl_basic_map_gauss(
748 (struct isl_basic_map *)bset, progress);
752 static unsigned int round_up(unsigned int v)
754 int old_v = v;
756 while (v) {
757 old_v = v;
758 v ^= v & -v;
760 return old_v << 1;
763 /* Hash table of inequalities in a basic map.
764 * "index" is an array of addresses of inequalities in the basic map, some
765 * of which are NULL. The inequalities are hashed on the coefficients
766 * except the constant term.
767 * "size" is the number of elements in the array and is always a power of two
768 * "bits" is the number of bits need to represent an index into the array.
769 * "total" is the total dimension of the basic map.
771 struct isl_constraint_index {
772 unsigned int size;
773 int bits;
774 isl_int ***index;
775 unsigned total;
778 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
780 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
781 __isl_keep isl_basic_map *bmap)
783 isl_ctx *ctx;
785 ci->index = NULL;
786 if (!bmap)
787 return isl_stat_error;
788 ci->total = isl_basic_set_total_dim(bmap);
789 if (bmap->n_ineq == 0)
790 return isl_stat_ok;
791 ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
792 ci->bits = ffs(ci->size) - 1;
793 ctx = isl_basic_map_get_ctx(bmap);
794 ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
795 if (!ci->index)
796 return isl_stat_error;
798 return isl_stat_ok;
801 /* Free the memory allocated by create_constraint_index.
803 static void constraint_index_free(struct isl_constraint_index *ci)
805 free(ci->index);
808 /* Return the position in ci->index that contains the address of
809 * an inequality that is equal to *ineq up to the constant term,
810 * provided this address is not identical to "ineq".
811 * If there is no such inequality, then return the position where
812 * such an inequality should be inserted.
814 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
816 int h;
817 uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
818 for (h = hash; ci->index[h]; h = (h+1) % ci->size)
819 if (ineq != ci->index[h] &&
820 isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
821 break;
822 return h;
825 /* Return the position in ci->index that contains the address of
826 * an inequality that is equal to the k'th inequality of "bmap"
827 * up to the constant term, provided it does not point to the very
828 * same inequality.
829 * If there is no such inequality, then return the position where
830 * such an inequality should be inserted.
832 static int hash_index(struct isl_constraint_index *ci,
833 __isl_keep isl_basic_map *bmap, int k)
835 return hash_index_ineq(ci, &bmap->ineq[k]);
838 static int set_hash_index(struct isl_constraint_index *ci,
839 struct isl_basic_set *bset, int k)
841 return hash_index(ci, bset, k);
844 /* Fill in the "ci" data structure with the inequalities of "bset".
846 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
847 __isl_keep isl_basic_set *bset)
849 int k, h;
851 if (create_constraint_index(ci, bset) < 0)
852 return isl_stat_error;
854 for (k = 0; k < bset->n_ineq; ++k) {
855 h = set_hash_index(ci, bset, k);
856 ci->index[h] = &bset->ineq[k];
859 return isl_stat_ok;
862 /* Is the inequality ineq (obviously) redundant with respect
863 * to the constraints in "ci"?
865 * Look for an inequality in "ci" with the same coefficients and then
866 * check if the contant term of "ineq" is greater than or equal
867 * to the constant term of that inequality. If so, "ineq" is clearly
868 * redundant.
870 * Note that hash_index_ineq ignores a stored constraint if it has
871 * the same address as the passed inequality. It is ok to pass
872 * the address of a local variable here since it will never be
873 * the same as the address of a constraint in "ci".
875 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
876 isl_int *ineq)
878 int h;
880 h = hash_index_ineq(ci, &ineq);
881 if (!ci->index[h])
882 return isl_bool_false;
883 return isl_int_ge(ineq[0], (*ci->index[h])[0]);
886 /* If we can eliminate more than one div, then we need to make
887 * sure we do it from last div to first div, in order not to
888 * change the position of the other divs that still need to
889 * be removed.
891 static struct isl_basic_map *remove_duplicate_divs(
892 struct isl_basic_map *bmap, int *progress)
894 unsigned int size;
895 int *index;
896 int *elim_for;
897 int k, l, h;
898 int bits;
899 struct isl_blk eq;
900 unsigned total_var;
901 unsigned total;
902 struct isl_ctx *ctx;
904 bmap = isl_basic_map_order_divs(bmap);
905 if (!bmap || bmap->n_div <= 1)
906 return bmap;
908 total_var = isl_space_dim(bmap->dim, isl_dim_all);
909 total = total_var + bmap->n_div;
911 ctx = bmap->ctx;
912 for (k = bmap->n_div - 1; k >= 0; --k)
913 if (!isl_int_is_zero(bmap->div[k][0]))
914 break;
915 if (k <= 0)
916 return bmap;
918 size = round_up(4 * bmap->n_div / 3 - 1);
919 if (size == 0)
920 return bmap;
921 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
922 bits = ffs(size) - 1;
923 index = isl_calloc_array(ctx, int, size);
924 if (!elim_for || !index)
925 goto out;
926 eq = isl_blk_alloc(ctx, 1+total);
927 if (isl_blk_is_error(eq))
928 goto out;
930 isl_seq_clr(eq.data, 1+total);
931 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
932 for (--k; k >= 0; --k) {
933 uint32_t hash;
935 if (isl_int_is_zero(bmap->div[k][0]))
936 continue;
938 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
939 for (h = hash; index[h]; h = (h+1) % size)
940 if (isl_seq_eq(bmap->div[k],
941 bmap->div[index[h]-1], 2+total))
942 break;
943 if (index[h]) {
944 *progress = 1;
945 l = index[h] - 1;
946 elim_for[l] = k + 1;
948 index[h] = k+1;
950 for (l = bmap->n_div - 1; l >= 0; --l) {
951 if (!elim_for[l])
952 continue;
953 k = elim_for[l] - 1;
954 isl_int_set_si(eq.data[1+total_var+k], -1);
955 isl_int_set_si(eq.data[1+total_var+l], 1);
956 bmap = eliminate_div(bmap, eq.data, l, 1);
957 if (!bmap)
958 break;
959 isl_int_set_si(eq.data[1+total_var+k], 0);
960 isl_int_set_si(eq.data[1+total_var+l], 0);
963 isl_blk_free(ctx, eq);
964 out:
965 free(index);
966 free(elim_for);
967 return bmap;
970 static int n_pure_div_eq(struct isl_basic_map *bmap)
972 int i, j;
973 unsigned total;
975 total = isl_space_dim(bmap->dim, isl_dim_all);
976 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
977 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
978 --j;
979 if (j < 0)
980 break;
981 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
982 return 0;
984 return i;
987 /* Normalize divs that appear in equalities.
989 * In particular, we assume that bmap contains some equalities
990 * of the form
992 * a x = m * e_i
994 * and we want to replace the set of e_i by a minimal set and
995 * such that the new e_i have a canonical representation in terms
996 * of the vector x.
997 * If any of the equalities involves more than one divs, then
998 * we currently simply bail out.
1000 * Let us first additionally assume that all equalities involve
1001 * a div. The equalities then express modulo constraints on the
1002 * remaining variables and we can use "parameter compression"
1003 * to find a minimal set of constraints. The result is a transformation
1005 * x = T(x') = x_0 + G x'
1007 * with G a lower-triangular matrix with all elements below the diagonal
1008 * non-negative and smaller than the diagonal element on the same row.
1009 * We first normalize x_0 by making the same property hold in the affine
1010 * T matrix.
1011 * The rows i of G with a 1 on the diagonal do not impose any modulo
1012 * constraint and simply express x_i = x'_i.
1013 * For each of the remaining rows i, we introduce a div and a corresponding
1014 * equality. In particular
1016 * g_ii e_j = x_i - g_i(x')
1018 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1019 * corresponding div (if g_kk != 1).
1021 * If there are any equalities not involving any div, then we
1022 * first apply a variable compression on the variables x:
1024 * x = C x'' x'' = C_2 x
1026 * and perform the above parameter compression on A C instead of on A.
1027 * The resulting compression is then of the form
1029 * x'' = T(x') = x_0 + G x'
1031 * and in constructing the new divs and the corresponding equalities,
1032 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1033 * by the corresponding row from C_2.
1035 static struct isl_basic_map *normalize_divs(
1036 struct isl_basic_map *bmap, int *progress)
1038 int i, j, k;
1039 int total;
1040 int div_eq;
1041 struct isl_mat *B;
1042 struct isl_vec *d;
1043 struct isl_mat *T = NULL;
1044 struct isl_mat *C = NULL;
1045 struct isl_mat *C2 = NULL;
1046 isl_int v;
1047 int *pos;
1048 int dropped, needed;
1050 if (!bmap)
1051 return NULL;
1053 if (bmap->n_div == 0)
1054 return bmap;
1056 if (bmap->n_eq == 0)
1057 return bmap;
1059 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
1060 return bmap;
1062 total = isl_space_dim(bmap->dim, isl_dim_all);
1063 div_eq = n_pure_div_eq(bmap);
1064 if (div_eq == 0)
1065 return bmap;
1067 if (div_eq < bmap->n_eq) {
1068 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1069 bmap->n_eq - div_eq, 0, 1 + total);
1070 C = isl_mat_variable_compression(B, &C2);
1071 if (!C || !C2)
1072 goto error;
1073 if (C->n_col == 0) {
1074 bmap = isl_basic_map_set_to_empty(bmap);
1075 isl_mat_free(C);
1076 isl_mat_free(C2);
1077 goto done;
1081 d = isl_vec_alloc(bmap->ctx, div_eq);
1082 if (!d)
1083 goto error;
1084 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1085 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
1086 --j;
1087 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
1089 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
1091 if (C) {
1092 B = isl_mat_product(B, C);
1093 C = NULL;
1096 T = isl_mat_parameter_compression(B, d);
1097 if (!T)
1098 goto error;
1099 if (T->n_col == 0) {
1100 bmap = isl_basic_map_set_to_empty(bmap);
1101 isl_mat_free(C2);
1102 isl_mat_free(T);
1103 goto done;
1105 isl_int_init(v);
1106 for (i = 0; i < T->n_row - 1; ++i) {
1107 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1108 if (isl_int_is_zero(v))
1109 continue;
1110 isl_mat_col_submul(T, 0, v, 1 + i);
1112 isl_int_clear(v);
1113 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1114 if (!pos)
1115 goto error;
1116 /* We have to be careful because dropping equalities may reorder them */
1117 dropped = 0;
1118 for (j = bmap->n_div - 1; j >= 0; --j) {
1119 for (i = 0; i < bmap->n_eq; ++i)
1120 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
1121 break;
1122 if (i < bmap->n_eq) {
1123 bmap = isl_basic_map_drop_div(bmap, j);
1124 isl_basic_map_drop_equality(bmap, i);
1125 ++dropped;
1128 pos[0] = 0;
1129 needed = 0;
1130 for (i = 1; i < T->n_row; ++i) {
1131 if (isl_int_is_one(T->row[i][i]))
1132 pos[i] = i;
1133 else
1134 needed++;
1136 if (needed > dropped) {
1137 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1138 needed, needed, 0);
1139 if (!bmap)
1140 goto error;
1142 for (i = 1; i < T->n_row; ++i) {
1143 if (isl_int_is_one(T->row[i][i]))
1144 continue;
1145 k = isl_basic_map_alloc_div(bmap);
1146 pos[i] = 1 + total + k;
1147 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
1148 isl_int_set(bmap->div[k][0], T->row[i][i]);
1149 if (C2)
1150 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
1151 else
1152 isl_int_set_si(bmap->div[k][1 + i], 1);
1153 for (j = 0; j < i; ++j) {
1154 if (isl_int_is_zero(T->row[i][j]))
1155 continue;
1156 if (pos[j] < T->n_row && C2)
1157 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1158 C2->row[pos[j]], 1 + total);
1159 else
1160 isl_int_neg(bmap->div[k][1 + pos[j]],
1161 T->row[i][j]);
1163 j = isl_basic_map_alloc_equality(bmap);
1164 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
1165 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1167 free(pos);
1168 isl_mat_free(C2);
1169 isl_mat_free(T);
1171 if (progress)
1172 *progress = 1;
1173 done:
1174 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1176 return bmap;
1177 error:
1178 isl_mat_free(C);
1179 isl_mat_free(C2);
1180 isl_mat_free(T);
1181 return bmap;
1184 static struct isl_basic_map *set_div_from_lower_bound(
1185 struct isl_basic_map *bmap, int div, int ineq)
1187 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1189 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1190 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1191 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1192 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1193 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1195 return bmap;
1198 /* Check whether it is ok to define a div based on an inequality.
1199 * To avoid the introduction of circular definitions of divs, we
1200 * do not allow such a definition if the resulting expression would refer to
1201 * any other undefined divs or if any known div is defined in
1202 * terms of the unknown div.
1204 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1205 int div, int ineq)
1207 int j;
1208 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1210 /* Not defined in terms of unknown divs */
1211 for (j = 0; j < bmap->n_div; ++j) {
1212 if (div == j)
1213 continue;
1214 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1215 continue;
1216 if (isl_int_is_zero(bmap->div[j][0]))
1217 return 0;
1220 /* No other div defined in terms of this one => avoid loops */
1221 for (j = 0; j < bmap->n_div; ++j) {
1222 if (div == j)
1223 continue;
1224 if (isl_int_is_zero(bmap->div[j][0]))
1225 continue;
1226 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1227 return 0;
1230 return 1;
1233 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1234 * be a better expression than the current one?
1236 * If we do not have any expression yet, then any expression would be better.
1237 * Otherwise we check if the last variable involved in the inequality
1238 * (disregarding the div that it would define) is in an earlier position
1239 * than the last variable involved in the current div expression.
1241 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1242 int div, int ineq)
1244 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1245 int last_div;
1246 int last_ineq;
1248 if (isl_int_is_zero(bmap->div[div][0]))
1249 return 1;
1251 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1252 bmap->n_div - (div + 1)) >= 0)
1253 return 0;
1255 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1256 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1257 total + bmap->n_div);
1259 return last_ineq < last_div;
1262 /* Given two constraints "k" and "l" that are opposite to each other,
1263 * except for the constant term, check if we can use them
1264 * to obtain an expression for one of the hitherto unknown divs or
1265 * a "better" expression for a div for which we already have an expression.
1266 * "sum" is the sum of the constant terms of the constraints.
1267 * If this sum is strictly smaller than the coefficient of one
1268 * of the divs, then this pair can be used define the div.
1269 * To avoid the introduction of circular definitions of divs, we
1270 * do not use the pair if the resulting expression would refer to
1271 * any other undefined divs or if any known div is defined in
1272 * terms of the unknown div.
1274 static struct isl_basic_map *check_for_div_constraints(
1275 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1277 int i;
1278 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1280 for (i = 0; i < bmap->n_div; ++i) {
1281 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1282 continue;
1283 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1284 continue;
1285 if (!better_div_constraint(bmap, i, k))
1286 continue;
1287 if (!ok_to_set_div_from_bound(bmap, i, k))
1288 break;
1289 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1290 bmap = set_div_from_lower_bound(bmap, i, k);
1291 else
1292 bmap = set_div_from_lower_bound(bmap, i, l);
1293 if (progress)
1294 *progress = 1;
1295 break;
1297 return bmap;
1300 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1301 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1303 struct isl_constraint_index ci;
1304 int k, l, h;
1305 unsigned total = isl_basic_map_total_dim(bmap);
1306 isl_int sum;
1308 if (!bmap || bmap->n_ineq <= 1)
1309 return bmap;
1311 if (create_constraint_index(&ci, bmap) < 0)
1312 return bmap;
1314 h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1315 ci.index[h] = &bmap->ineq[0];
1316 for (k = 1; k < bmap->n_ineq; ++k) {
1317 h = hash_index(&ci, bmap, k);
1318 if (!ci.index[h]) {
1319 ci.index[h] = &bmap->ineq[k];
1320 continue;
1322 if (progress)
1323 *progress = 1;
1324 l = ci.index[h] - &bmap->ineq[0];
1325 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1326 swap_inequality(bmap, k, l);
1327 isl_basic_map_drop_inequality(bmap, k);
1328 --k;
1330 isl_int_init(sum);
1331 for (k = 0; k < bmap->n_ineq-1; ++k) {
1332 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1333 h = hash_index(&ci, bmap, k);
1334 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1335 if (!ci.index[h])
1336 continue;
1337 l = ci.index[h] - &bmap->ineq[0];
1338 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1339 if (isl_int_is_pos(sum)) {
1340 if (detect_divs)
1341 bmap = check_for_div_constraints(bmap, k, l,
1342 sum, progress);
1343 continue;
1345 if (isl_int_is_zero(sum)) {
1346 /* We need to break out of the loop after these
1347 * changes since the contents of the hash
1348 * will no longer be valid.
1349 * Plus, we probably we want to regauss first.
1351 if (progress)
1352 *progress = 1;
1353 isl_basic_map_drop_inequality(bmap, l);
1354 isl_basic_map_inequality_to_equality(bmap, k);
1355 } else
1356 bmap = isl_basic_map_set_to_empty(bmap);
1357 break;
1359 isl_int_clear(sum);
1361 constraint_index_free(&ci);
1362 return bmap;
1365 /* Detect all pairs of inequalities that form an equality.
1367 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1368 * Call it repeatedly while it is making progress.
1370 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1371 __isl_take isl_basic_map *bmap, int *progress)
1373 int duplicate;
1375 do {
1376 duplicate = 0;
1377 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1378 &duplicate, 0);
1379 if (progress && duplicate)
1380 *progress = 1;
1381 } while (duplicate);
1383 return bmap;
1386 /* Eliminate knowns divs from constraints where they appear with
1387 * a (positive or negative) unit coefficient.
1389 * That is, replace
1391 * floor(e/m) + f >= 0
1393 * by
1395 * e + m f >= 0
1397 * and
1399 * -floor(e/m) + f >= 0
1401 * by
1403 * -e + m f + m - 1 >= 0
1405 * The first conversion is valid because floor(e/m) >= -f is equivalent
1406 * to e/m >= -f because -f is an integral expression.
1407 * The second conversion follows from the fact that
1409 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1412 * Note that one of the div constraints may have been eliminated
1413 * due to being redundant with respect to the constraint that is
1414 * being modified by this function. The modified constraint may
1415 * no longer imply this div constraint, so we add it back to make
1416 * sure we do not lose any information.
1418 * We skip integral divs, i.e., those with denominator 1, as we would
1419 * risk eliminating the div from the div constraints. We do not need
1420 * to handle those divs here anyway since the div constraints will turn
1421 * out to form an equality and this equality can then be use to eliminate
1422 * the div from all constraints.
1424 static __isl_give isl_basic_map *eliminate_unit_divs(
1425 __isl_take isl_basic_map *bmap, int *progress)
1427 int i, j;
1428 isl_ctx *ctx;
1429 unsigned total;
1431 if (!bmap)
1432 return NULL;
1434 ctx = isl_basic_map_get_ctx(bmap);
1435 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1437 for (i = 0; i < bmap->n_div; ++i) {
1438 if (isl_int_is_zero(bmap->div[i][0]))
1439 continue;
1440 if (isl_int_is_one(bmap->div[i][0]))
1441 continue;
1442 for (j = 0; j < bmap->n_ineq; ++j) {
1443 int s;
1445 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1446 !isl_int_is_negone(bmap->ineq[j][total + i]))
1447 continue;
1449 *progress = 1;
1451 s = isl_int_sgn(bmap->ineq[j][total + i]);
1452 isl_int_set_si(bmap->ineq[j][total + i], 0);
1453 if (s < 0)
1454 isl_seq_combine(bmap->ineq[j],
1455 ctx->negone, bmap->div[i] + 1,
1456 bmap->div[i][0], bmap->ineq[j],
1457 total + bmap->n_div);
1458 else
1459 isl_seq_combine(bmap->ineq[j],
1460 ctx->one, bmap->div[i] + 1,
1461 bmap->div[i][0], bmap->ineq[j],
1462 total + bmap->n_div);
1463 if (s < 0) {
1464 isl_int_add(bmap->ineq[j][0],
1465 bmap->ineq[j][0], bmap->div[i][0]);
1466 isl_int_sub_ui(bmap->ineq[j][0],
1467 bmap->ineq[j][0], 1);
1470 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1471 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1472 return isl_basic_map_free(bmap);
1476 return bmap;
1479 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1481 int progress = 1;
1482 if (!bmap)
1483 return NULL;
1484 while (progress) {
1485 progress = 0;
1486 if (!bmap)
1487 break;
1488 if (isl_basic_map_plain_is_empty(bmap))
1489 break;
1490 bmap = isl_basic_map_normalize_constraints(bmap);
1491 bmap = remove_independent_vars_from_divs(bmap);
1492 bmap = normalize_div_expressions(bmap);
1493 bmap = remove_duplicate_divs(bmap, &progress);
1494 bmap = eliminate_unit_divs(bmap, &progress);
1495 bmap = eliminate_divs_eq(bmap, &progress);
1496 bmap = eliminate_divs_ineq(bmap, &progress);
1497 bmap = isl_basic_map_gauss(bmap, &progress);
1498 /* requires equalities in normal form */
1499 bmap = normalize_divs(bmap, &progress);
1500 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1501 &progress, 1);
1502 if (bmap && progress)
1503 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1505 return bmap;
1508 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1510 return (struct isl_basic_set *)
1511 isl_basic_map_simplify((struct isl_basic_map *)bset);
1515 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1516 isl_int *constraint, unsigned div)
1518 unsigned pos;
1520 if (!bmap)
1521 return -1;
1523 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1525 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1526 int neg;
1527 isl_int_sub(bmap->div[div][1],
1528 bmap->div[div][1], bmap->div[div][0]);
1529 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1530 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1531 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1532 isl_int_add(bmap->div[div][1],
1533 bmap->div[div][1], bmap->div[div][0]);
1534 if (!neg)
1535 return 0;
1536 if (isl_seq_first_non_zero(constraint+pos+1,
1537 bmap->n_div-div-1) != -1)
1538 return 0;
1539 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1540 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1541 return 0;
1542 if (isl_seq_first_non_zero(constraint+pos+1,
1543 bmap->n_div-div-1) != -1)
1544 return 0;
1545 } else
1546 return 0;
1548 return 1;
1551 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1552 isl_int *constraint, unsigned div)
1554 return isl_basic_map_is_div_constraint(bset, constraint, div);
1558 /* If the only constraints a div d=floor(f/m)
1559 * appears in are its two defining constraints
1561 * f - m d >=0
1562 * -(f - (m - 1)) + m d >= 0
1564 * then it can safely be removed.
1566 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1568 int i;
1569 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1571 for (i = 0; i < bmap->n_eq; ++i)
1572 if (!isl_int_is_zero(bmap->eq[i][pos]))
1573 return 0;
1575 for (i = 0; i < bmap->n_ineq; ++i) {
1576 if (isl_int_is_zero(bmap->ineq[i][pos]))
1577 continue;
1578 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1579 return 0;
1582 for (i = 0; i < bmap->n_div; ++i) {
1583 if (isl_int_is_zero(bmap->div[i][0]))
1584 continue;
1585 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1586 return 0;
1589 return 1;
1593 * Remove divs that don't occur in any of the constraints or other divs.
1594 * These can arise when dropping constraints from a basic map or
1595 * when the divs of a basic map have been temporarily aligned
1596 * with the divs of another basic map.
1598 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1600 int i;
1602 if (!bmap)
1603 return NULL;
1605 for (i = bmap->n_div-1; i >= 0; --i) {
1606 if (!div_is_redundant(bmap, i))
1607 continue;
1608 bmap = isl_basic_map_drop_div(bmap, i);
1610 return bmap;
1613 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1615 bmap = remove_redundant_divs(bmap);
1616 if (!bmap)
1617 return NULL;
1618 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1619 return bmap;
1622 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1624 return (struct isl_basic_set *)
1625 isl_basic_map_finalize((struct isl_basic_map *)bset);
1628 struct isl_set *isl_set_finalize(struct isl_set *set)
1630 int i;
1632 if (!set)
1633 return NULL;
1634 for (i = 0; i < set->n; ++i) {
1635 set->p[i] = isl_basic_set_finalize(set->p[i]);
1636 if (!set->p[i])
1637 goto error;
1639 return set;
1640 error:
1641 isl_set_free(set);
1642 return NULL;
1645 struct isl_map *isl_map_finalize(struct isl_map *map)
1647 int i;
1649 if (!map)
1650 return NULL;
1651 for (i = 0; i < map->n; ++i) {
1652 map->p[i] = isl_basic_map_finalize(map->p[i]);
1653 if (!map->p[i])
1654 goto error;
1656 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1657 return map;
1658 error:
1659 isl_map_free(map);
1660 return NULL;
1664 /* Remove definition of any div that is defined in terms of the given variable.
1665 * The div itself is not removed. Functions such as
1666 * eliminate_divs_ineq depend on the other divs remaining in place.
1668 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1669 int pos)
1671 int i;
1673 if (!bmap)
1674 return NULL;
1676 for (i = 0; i < bmap->n_div; ++i) {
1677 if (isl_int_is_zero(bmap->div[i][0]))
1678 continue;
1679 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1680 continue;
1681 isl_int_set_si(bmap->div[i][0], 0);
1683 return bmap;
1686 /* Eliminate the specified variables from the constraints using
1687 * Fourier-Motzkin. The variables themselves are not removed.
1689 struct isl_basic_map *isl_basic_map_eliminate_vars(
1690 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1692 int d;
1693 int i, j, k;
1694 unsigned total;
1695 int need_gauss = 0;
1697 if (n == 0)
1698 return bmap;
1699 if (!bmap)
1700 return NULL;
1701 total = isl_basic_map_total_dim(bmap);
1703 bmap = isl_basic_map_cow(bmap);
1704 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1705 bmap = remove_dependent_vars(bmap, d);
1706 if (!bmap)
1707 return NULL;
1709 for (d = pos + n - 1;
1710 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1711 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1712 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1713 int n_lower, n_upper;
1714 if (!bmap)
1715 return NULL;
1716 for (i = 0; i < bmap->n_eq; ++i) {
1717 if (isl_int_is_zero(bmap->eq[i][1+d]))
1718 continue;
1719 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1720 isl_basic_map_drop_equality(bmap, i);
1721 need_gauss = 1;
1722 break;
1724 if (i < bmap->n_eq)
1725 continue;
1726 n_lower = 0;
1727 n_upper = 0;
1728 for (i = 0; i < bmap->n_ineq; ++i) {
1729 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1730 n_lower++;
1731 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1732 n_upper++;
1734 bmap = isl_basic_map_extend_constraints(bmap,
1735 0, n_lower * n_upper);
1736 if (!bmap)
1737 goto error;
1738 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1739 int last;
1740 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1741 continue;
1742 last = -1;
1743 for (j = 0; j < i; ++j) {
1744 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1745 continue;
1746 last = j;
1747 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1748 isl_int_sgn(bmap->ineq[j][1+d]))
1749 continue;
1750 k = isl_basic_map_alloc_inequality(bmap);
1751 if (k < 0)
1752 goto error;
1753 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1754 1+total);
1755 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1756 1+d, 1+total, NULL);
1758 isl_basic_map_drop_inequality(bmap, i);
1759 i = last + 1;
1761 if (n_lower > 0 && n_upper > 0) {
1762 bmap = isl_basic_map_normalize_constraints(bmap);
1763 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1764 NULL, 0);
1765 bmap = isl_basic_map_gauss(bmap, NULL);
1766 bmap = isl_basic_map_remove_redundancies(bmap);
1767 need_gauss = 0;
1768 if (!bmap)
1769 goto error;
1770 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1771 break;
1774 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1775 if (need_gauss)
1776 bmap = isl_basic_map_gauss(bmap, NULL);
1777 return bmap;
1778 error:
1779 isl_basic_map_free(bmap);
1780 return NULL;
1783 struct isl_basic_set *isl_basic_set_eliminate_vars(
1784 struct isl_basic_set *bset, unsigned pos, unsigned n)
1786 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1787 (struct isl_basic_map *)bset, pos, n);
1790 /* Eliminate the specified n dimensions starting at first from the
1791 * constraints, without removing the dimensions from the space.
1792 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1793 * Otherwise, they are projected out and the original space is restored.
1795 __isl_give isl_basic_map *isl_basic_map_eliminate(
1796 __isl_take isl_basic_map *bmap,
1797 enum isl_dim_type type, unsigned first, unsigned n)
1799 isl_space *space;
1801 if (!bmap)
1802 return NULL;
1803 if (n == 0)
1804 return bmap;
1806 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1807 isl_die(bmap->ctx, isl_error_invalid,
1808 "index out of bounds", goto error);
1810 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1811 first += isl_basic_map_offset(bmap, type) - 1;
1812 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1813 return isl_basic_map_finalize(bmap);
1816 space = isl_basic_map_get_space(bmap);
1817 bmap = isl_basic_map_project_out(bmap, type, first, n);
1818 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1819 bmap = isl_basic_map_reset_space(bmap, space);
1820 return bmap;
1821 error:
1822 isl_basic_map_free(bmap);
1823 return NULL;
1826 __isl_give isl_basic_set *isl_basic_set_eliminate(
1827 __isl_take isl_basic_set *bset,
1828 enum isl_dim_type type, unsigned first, unsigned n)
1830 return isl_basic_map_eliminate(bset, type, first, n);
1833 /* Don't assume equalities are in order, because align_divs
1834 * may have changed the order of the divs.
1836 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1838 int d, i;
1839 unsigned total;
1841 total = isl_space_dim(bmap->dim, isl_dim_all);
1842 for (d = 0; d < total; ++d)
1843 elim[d] = -1;
1844 for (i = 0; i < bmap->n_eq; ++i) {
1845 for (d = total - 1; d >= 0; --d) {
1846 if (isl_int_is_zero(bmap->eq[i][1+d]))
1847 continue;
1848 elim[d] = i;
1849 break;
1854 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1856 compute_elimination_index((struct isl_basic_map *)bset, elim);
1859 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1860 struct isl_basic_map *bmap, int *elim)
1862 int d;
1863 int copied = 0;
1864 unsigned total;
1866 total = isl_space_dim(bmap->dim, isl_dim_all);
1867 for (d = total - 1; d >= 0; --d) {
1868 if (isl_int_is_zero(src[1+d]))
1869 continue;
1870 if (elim[d] == -1)
1871 continue;
1872 if (!copied) {
1873 isl_seq_cpy(dst, src, 1 + total);
1874 copied = 1;
1876 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1878 return copied;
1881 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1882 struct isl_basic_set *bset, int *elim)
1884 return reduced_using_equalities(dst, src,
1885 (struct isl_basic_map *)bset, elim);
1888 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1889 struct isl_basic_set *bset, struct isl_basic_set *context)
1891 int i;
1892 int *elim;
1894 if (!bset || !context)
1895 goto error;
1897 if (context->n_eq == 0) {
1898 isl_basic_set_free(context);
1899 return bset;
1902 bset = isl_basic_set_cow(bset);
1903 if (!bset)
1904 goto error;
1906 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1907 if (!elim)
1908 goto error;
1909 set_compute_elimination_index(context, elim);
1910 for (i = 0; i < bset->n_eq; ++i)
1911 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1912 context, elim);
1913 for (i = 0; i < bset->n_ineq; ++i)
1914 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1915 context, elim);
1916 isl_basic_set_free(context);
1917 free(elim);
1918 bset = isl_basic_set_simplify(bset);
1919 bset = isl_basic_set_finalize(bset);
1920 return bset;
1921 error:
1922 isl_basic_set_free(bset);
1923 isl_basic_set_free(context);
1924 return NULL;
1927 static struct isl_basic_set *remove_shifted_constraints(
1928 struct isl_basic_set *bset, struct isl_basic_set *context)
1930 struct isl_constraint_index ci;
1931 int k;
1933 if (!bset || !context)
1934 return bset;
1936 if (context->n_ineq == 0)
1937 return bset;
1938 if (setup_constraint_index(&ci, context) < 0)
1939 return bset;
1941 for (k = 0; k < bset->n_ineq; ++k) {
1942 isl_bool redundant;
1944 redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
1945 if (redundant < 0)
1946 goto error;
1947 if (!redundant)
1948 continue;
1949 bset = isl_basic_set_cow(bset);
1950 if (!bset)
1951 goto error;
1952 isl_basic_set_drop_inequality(bset, k);
1953 --k;
1955 constraint_index_free(&ci);
1956 return bset;
1957 error:
1958 constraint_index_free(&ci);
1959 return bset;
1962 /* Remove constraints from "bmap" that are identical to constraints
1963 * in "context" or that are more relaxed (greater constant term).
1965 * We perform the test for shifted copies on the pure constraints
1966 * in remove_shifted_constraints.
1968 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
1969 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
1971 isl_basic_set *bset, *bset_context;
1973 if (!bmap || !context)
1974 goto error;
1976 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
1977 isl_basic_map_free(context);
1978 return bmap;
1981 context = isl_basic_map_align_divs(context, bmap);
1982 bmap = isl_basic_map_align_divs(bmap, context);
1984 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1985 bset_context = isl_basic_map_underlying_set(context);
1986 bset = remove_shifted_constraints(bset, bset_context);
1987 isl_basic_set_free(bset_context);
1989 bmap = isl_basic_map_overlying_set(bset, bmap);
1991 return bmap;
1992 error:
1993 isl_basic_map_free(bmap);
1994 isl_basic_map_free(context);
1995 return NULL;
1998 /* Does the (linear part of a) constraint "c" involve any of the "len"
1999 * "relevant" dimensions?
2001 static int is_related(isl_int *c, int len, int *relevant)
2003 int i;
2005 for (i = 0; i < len; ++i) {
2006 if (!relevant[i])
2007 continue;
2008 if (!isl_int_is_zero(c[i]))
2009 return 1;
2012 return 0;
2015 /* Drop constraints from "bset" that do not involve any of
2016 * the dimensions marked "relevant".
2018 static __isl_give isl_basic_set *drop_unrelated_constraints(
2019 __isl_take isl_basic_set *bset, int *relevant)
2021 int i, dim;
2023 dim = isl_basic_set_dim(bset, isl_dim_set);
2024 for (i = 0; i < dim; ++i)
2025 if (!relevant[i])
2026 break;
2027 if (i >= dim)
2028 return bset;
2030 for (i = bset->n_eq - 1; i >= 0; --i)
2031 if (!is_related(bset->eq[i] + 1, dim, relevant))
2032 isl_basic_set_drop_equality(bset, i);
2034 for (i = bset->n_ineq - 1; i >= 0; --i)
2035 if (!is_related(bset->ineq[i] + 1, dim, relevant))
2036 isl_basic_set_drop_inequality(bset, i);
2038 return bset;
2041 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2043 * In particular, for any variable involved in the constraint,
2044 * find the actual group id from before and replace the group
2045 * of the corresponding variable by the minimal group of all
2046 * the variables involved in the constraint considered so far
2047 * (if this minimum is smaller) or replace the minimum by this group
2048 * (if the minimum is larger).
2050 * At the end, all the variables in "c" will (indirectly) point
2051 * to the minimal of the groups that they referred to originally.
2053 static void update_groups(int dim, int *group, isl_int *c)
2055 int j;
2056 int min = dim;
2058 for (j = 0; j < dim; ++j) {
2059 if (isl_int_is_zero(c[j]))
2060 continue;
2061 while (group[j] >= 0 && group[group[j]] != group[j])
2062 group[j] = group[group[j]];
2063 if (group[j] == min)
2064 continue;
2065 if (group[j] < min) {
2066 if (min >= 0 && min < dim)
2067 group[min] = group[j];
2068 min = group[j];
2069 } else
2070 group[group[j]] = min;
2074 /* Allocate an array of groups of variables, one for each variable
2075 * in "context", initialized to zero.
2077 static int *alloc_groups(__isl_keep isl_basic_set *context)
2079 isl_ctx *ctx;
2080 int dim;
2082 dim = isl_basic_set_dim(context, isl_dim_set);
2083 ctx = isl_basic_set_get_ctx(context);
2084 return isl_calloc_array(ctx, int, dim);
2087 /* Drop constraints from "context" that only involve variables that are
2088 * not related to any of the variables marked with a "-1" in "group".
2090 * We construct groups of variables that collect variables that
2091 * (indirectly) appear in some common constraint of "context".
2092 * Each group is identified by the first variable in the group,
2093 * except for the special group of variables that was already identified
2094 * in the input as -1 (or are related to those variables).
2095 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2096 * otherwise the group of i is the group of group[i].
2098 * We first initialize groups for the remaining variables.
2099 * Then we iterate over the constraints of "context" and update the
2100 * group of the variables in the constraint by the smallest group.
2101 * Finally, we resolve indirect references to groups by running over
2102 * the variables.
2104 * After computing the groups, we drop constraints that do not involve
2105 * any variables in the -1 group.
2107 static __isl_give isl_basic_set *group_and_drop_irrelevant_constraints(
2108 __isl_take isl_basic_set *context, __isl_take int *group)
2110 int dim;
2111 int i;
2112 int last;
2114 dim = isl_basic_set_dim(context, isl_dim_set);
2116 last = -1;
2117 for (i = 0; i < dim; ++i)
2118 if (group[i] >= 0)
2119 last = group[i] = i;
2120 if (last < 0) {
2121 free(group);
2122 return context;
2125 for (i = 0; i < context->n_eq; ++i)
2126 update_groups(dim, group, context->eq[i] + 1);
2127 for (i = 0; i < context->n_ineq; ++i)
2128 update_groups(dim, group, context->ineq[i] + 1);
2130 for (i = 0; i < dim; ++i)
2131 if (group[i] >= 0)
2132 group[i] = group[group[i]];
2134 for (i = 0; i < dim; ++i)
2135 group[i] = group[i] == -1;
2137 context = drop_unrelated_constraints(context, group);
2139 free(group);
2140 return context;
2143 /* Drop constraints from "context" that are irrelevant for computing
2144 * the gist of "bset".
2146 * In particular, drop constraints in variables that are not related
2147 * to any of the variables involved in the constraints of "bset"
2148 * in the sense that there is no sequence of constraints that connects them.
2150 * We first mark all variables that appear in "bset" as belonging
2151 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2153 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2154 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2156 int *group;
2157 int dim;
2158 int i, j;
2160 if (!context || !bset)
2161 return isl_basic_set_free(context);
2163 group = alloc_groups(context);
2165 if (!group)
2166 return isl_basic_set_free(context);
2168 dim = isl_basic_set_dim(bset, isl_dim_set);
2169 for (i = 0; i < dim; ++i) {
2170 for (j = 0; j < bset->n_eq; ++j)
2171 if (!isl_int_is_zero(bset->eq[j][1 + i]))
2172 break;
2173 if (j < bset->n_eq) {
2174 group[i] = -1;
2175 continue;
2177 for (j = 0; j < bset->n_ineq; ++j)
2178 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2179 break;
2180 if (j < bset->n_ineq)
2181 group[i] = -1;
2184 return group_and_drop_irrelevant_constraints(context, group);
2187 /* Remove all information from bset that is redundant in the context
2188 * of context. Both bset and context are assumed to be full-dimensional.
2190 * We first remove the inequalities from "bset"
2191 * that are obviously redundant with respect to some inequality in "context".
2192 * Then we remove those constraints from "context" that have become
2193 * irrelevant for computing the gist of "bset".
2194 * Note that this removal of constraints cannot be replaced by
2195 * a factorization because factors in "bset" may still be connected
2196 * to each other through constraints in "context".
2198 * If there are any inequalities left, we construct a tableau for
2199 * the context and then add the inequalities of "bset".
2200 * Before adding these inequalities, we freeze all constraints such that
2201 * they won't be considered redundant in terms of the constraints of "bset".
2202 * Then we detect all redundant constraints (among the
2203 * constraints that weren't frozen), first by checking for redundancy in the
2204 * the tableau and then by checking if replacing a constraint by its negation
2205 * would lead to an empty set. This last step is fairly expensive
2206 * and could be optimized by more reuse of the tableau.
2207 * Finally, we update bset according to the results.
2209 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2210 __isl_take isl_basic_set *context)
2212 int i, k;
2213 isl_basic_set *combined = NULL;
2214 struct isl_tab *tab = NULL;
2215 unsigned context_ineq;
2216 unsigned total;
2218 if (!bset || !context)
2219 goto error;
2221 if (isl_basic_set_is_universe(bset)) {
2222 isl_basic_set_free(context);
2223 return bset;
2226 if (isl_basic_set_is_universe(context)) {
2227 isl_basic_set_free(context);
2228 return bset;
2231 bset = remove_shifted_constraints(bset, context);
2232 if (!bset)
2233 goto error;
2234 if (bset->n_ineq == 0)
2235 goto done;
2237 context = drop_irrelevant_constraints(context, bset);
2238 if (!context)
2239 goto error;
2240 if (isl_basic_set_is_universe(context)) {
2241 isl_basic_set_free(context);
2242 return bset;
2245 context_ineq = context->n_ineq;
2246 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2247 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2248 tab = isl_tab_from_basic_set(combined, 0);
2249 for (i = 0; i < context_ineq; ++i)
2250 if (isl_tab_freeze_constraint(tab, i) < 0)
2251 goto error;
2252 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2253 goto error;
2254 for (i = 0; i < bset->n_ineq; ++i)
2255 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
2256 goto error;
2257 bset = isl_basic_set_add_constraints(combined, bset, 0);
2258 combined = NULL;
2259 if (!bset)
2260 goto error;
2261 if (isl_tab_detect_redundant(tab) < 0)
2262 goto error;
2263 total = isl_basic_set_total_dim(bset);
2264 for (i = context_ineq; i < bset->n_ineq; ++i) {
2265 int is_empty;
2266 if (tab->con[i].is_redundant)
2267 continue;
2268 tab->con[i].is_redundant = 1;
2269 combined = isl_basic_set_dup(bset);
2270 combined = isl_basic_set_update_from_tab(combined, tab);
2271 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2272 k = isl_basic_set_alloc_inequality(combined);
2273 if (k < 0)
2274 goto error;
2275 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2276 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2277 is_empty = isl_basic_set_is_empty(combined);
2278 if (is_empty < 0)
2279 goto error;
2280 isl_basic_set_free(combined);
2281 combined = NULL;
2282 if (!is_empty)
2283 tab->con[i].is_redundant = 0;
2285 for (i = 0; i < context_ineq; ++i)
2286 tab->con[i].is_redundant = 1;
2287 bset = isl_basic_set_update_from_tab(bset, tab);
2288 if (bset) {
2289 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2290 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2293 isl_tab_free(tab);
2294 done:
2295 bset = isl_basic_set_finalize(bset);
2296 isl_basic_set_free(context);
2297 return bset;
2298 error:
2299 isl_tab_free(tab);
2300 isl_basic_set_free(combined);
2301 isl_basic_set_free(context);
2302 isl_basic_set_free(bset);
2303 return NULL;
2306 /* Remove all information from bset that is redundant in the context
2307 * of context. In particular, equalities that are linear combinations
2308 * of those in context are removed. Then the inequalities that are
2309 * redundant in the context of the equalities and inequalities of
2310 * context are removed.
2312 * First of all, we drop those constraints from "context"
2313 * that are irrelevant for computing the gist of "bset".
2314 * Alternatively, we could factorize the intersection of "context" and "bset".
2316 * We first compute the integer affine hull of the intersection,
2317 * compute the gist inside this affine hull and then add back
2318 * those equalities that are not implied by the context.
2320 * If two constraints are mutually redundant, then uset_gist_full
2321 * will remove the second of those constraints. We therefore first
2322 * sort the constraints so that constraints not involving existentially
2323 * quantified variables are given precedence over those that do.
2324 * We have to perform this sorting before the variable compression,
2325 * because that may effect the order of the variables.
2327 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2328 __isl_take isl_basic_set *context)
2330 isl_mat *eq;
2331 isl_mat *T, *T2;
2332 isl_basic_set *aff;
2333 isl_basic_set *aff_context;
2334 unsigned total;
2336 if (!bset || !context)
2337 goto error;
2339 context = drop_irrelevant_constraints(context, bset);
2341 aff = isl_basic_set_copy(bset);
2342 aff = isl_basic_set_intersect(aff, isl_basic_set_copy(context));
2343 aff = isl_basic_set_affine_hull(aff);
2344 if (!aff)
2345 goto error;
2346 if (isl_basic_set_plain_is_empty(aff)) {
2347 isl_basic_set_free(bset);
2348 isl_basic_set_free(context);
2349 return aff;
2351 bset = isl_basic_set_sort_constraints(bset);
2352 if (aff->n_eq == 0) {
2353 isl_basic_set_free(aff);
2354 return uset_gist_full(bset, context);
2356 total = isl_basic_set_total_dim(bset);
2357 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2358 eq = isl_mat_cow(eq);
2359 T = isl_mat_variable_compression(eq, &T2);
2360 if (T && T->n_col == 0) {
2361 isl_mat_free(T);
2362 isl_mat_free(T2);
2363 isl_basic_set_free(context);
2364 isl_basic_set_free(aff);
2365 return isl_basic_set_set_to_empty(bset);
2368 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2370 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2371 context = isl_basic_set_preimage(context, T);
2373 bset = uset_gist_full(bset, context);
2374 bset = isl_basic_set_preimage(bset, T2);
2375 bset = isl_basic_set_intersect(bset, aff);
2376 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2378 if (bset) {
2379 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2380 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2383 return bset;
2384 error:
2385 isl_basic_set_free(bset);
2386 isl_basic_set_free(context);
2387 return NULL;
2390 /* Return a basic map that has the same intersection with "context" as "bmap"
2391 * and that is as "simple" as possible.
2393 * The core computation is performed on the pure constraints.
2394 * When we add back the meaning of the integer divisions, we need
2395 * to (re)introduce the div constraints. If we happen to have
2396 * discovered that some of these integer divisions are equal to
2397 * some affine combination of other variables, then these div
2398 * constraints may end up getting simplified in terms of the equalities,
2399 * resulting in extra inequalities on the other variables that
2400 * may have been removed already or that may not even have been
2401 * part of the input. We try and remove those constraints of
2402 * this form that are most obviously redundant with respect to
2403 * the context. We also remove those div constraints that are
2404 * redundant with respect to the other constraints in the result.
2406 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2407 struct isl_basic_map *context)
2409 isl_basic_set *bset, *eq;
2410 isl_basic_map *eq_bmap;
2411 unsigned n_div, n_eq, n_ineq;
2413 if (!bmap || !context)
2414 goto error;
2416 if (isl_basic_map_is_universe(bmap)) {
2417 isl_basic_map_free(context);
2418 return bmap;
2420 if (isl_basic_map_plain_is_empty(context)) {
2421 isl_space *space = isl_basic_map_get_space(bmap);
2422 isl_basic_map_free(bmap);
2423 isl_basic_map_free(context);
2424 return isl_basic_map_universe(space);
2426 if (isl_basic_map_plain_is_empty(bmap)) {
2427 isl_basic_map_free(context);
2428 return bmap;
2431 bmap = isl_basic_map_remove_redundancies(bmap);
2432 context = isl_basic_map_remove_redundancies(context);
2433 if (!context)
2434 goto error;
2436 context = isl_basic_map_align_divs(context, bmap);
2437 bmap = isl_basic_map_align_divs(bmap, context);
2438 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2440 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2441 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
2443 if (!bset || bset->n_eq == 0 || n_div == 0 ||
2444 isl_basic_set_plain_is_empty(bset)) {
2445 isl_basic_map_free(context);
2446 return isl_basic_map_overlying_set(bset, bmap);
2449 n_eq = bset->n_eq;
2450 n_ineq = bset->n_ineq;
2451 eq = isl_basic_set_copy(bset);
2452 eq = isl_basic_set_cow(eq);
2453 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
2454 eq = isl_basic_set_free(eq);
2455 if (isl_basic_set_free_equality(bset, n_eq) < 0)
2456 bset = isl_basic_set_free(bset);
2458 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
2459 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
2460 bmap = isl_basic_map_overlying_set(bset, bmap);
2461 bmap = isl_basic_map_intersect(bmap, eq_bmap);
2462 bmap = isl_basic_map_remove_redundancies(bmap);
2464 return bmap;
2465 error:
2466 isl_basic_map_free(bmap);
2467 isl_basic_map_free(context);
2468 return NULL;
2472 * Assumes context has no implicit divs.
2474 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2475 __isl_take isl_basic_map *context)
2477 int i;
2479 if (!map || !context)
2480 goto error;
2482 if (isl_basic_map_plain_is_empty(context)) {
2483 isl_space *space = isl_map_get_space(map);
2484 isl_map_free(map);
2485 isl_basic_map_free(context);
2486 return isl_map_universe(space);
2489 context = isl_basic_map_remove_redundancies(context);
2490 map = isl_map_cow(map);
2491 if (!map || !context)
2492 goto error;
2493 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2494 map = isl_map_compute_divs(map);
2495 if (!map)
2496 goto error;
2497 for (i = map->n - 1; i >= 0; --i) {
2498 map->p[i] = isl_basic_map_gist(map->p[i],
2499 isl_basic_map_copy(context));
2500 if (!map->p[i])
2501 goto error;
2502 if (isl_basic_map_plain_is_empty(map->p[i])) {
2503 isl_basic_map_free(map->p[i]);
2504 if (i != map->n - 1)
2505 map->p[i] = map->p[map->n - 1];
2506 map->n--;
2509 isl_basic_map_free(context);
2510 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2511 return map;
2512 error:
2513 isl_map_free(map);
2514 isl_basic_map_free(context);
2515 return NULL;
2518 /* Return a map that has the same intersection with "context" as "map"
2519 * and that is as "simple" as possible.
2521 * If "map" is already the universe, then we cannot make it any simpler.
2522 * Similarly, if "context" is the universe, then we cannot exploit it
2523 * to simplify "map"
2524 * If "map" and "context" are identical to each other, then we can
2525 * return the corresponding universe.
2527 * If none of these cases apply, we have to work a bit harder.
2528 * During this computation, we make use of a single disjunct context,
2529 * so if the original context consists of more than one disjunct
2530 * then we need to approximate the context by a single disjunct set.
2531 * Simply taking the simple hull may drop constraints that are
2532 * only implicitly available in each disjunct. We therefore also
2533 * look for constraints among those defining "map" that are valid
2534 * for the context. These can then be used to simplify away
2535 * the corresponding constraints in "map".
2537 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2538 __isl_take isl_map *context)
2540 int equal;
2541 int is_universe;
2542 isl_basic_map *hull;
2544 is_universe = isl_map_plain_is_universe(map);
2545 if (is_universe >= 0 && !is_universe)
2546 is_universe = isl_map_plain_is_universe(context);
2547 if (is_universe < 0)
2548 goto error;
2549 if (is_universe) {
2550 isl_map_free(context);
2551 return map;
2554 equal = isl_map_plain_is_equal(map, context);
2555 if (equal < 0)
2556 goto error;
2557 if (equal) {
2558 isl_map *res = isl_map_universe(isl_map_get_space(map));
2559 isl_map_free(map);
2560 isl_map_free(context);
2561 return res;
2564 context = isl_map_compute_divs(context);
2565 if (!context)
2566 goto error;
2567 if (isl_map_n_basic_map(context) == 1) {
2568 hull = isl_map_simple_hull(context);
2569 } else {
2570 isl_ctx *ctx;
2571 isl_map_list *list;
2573 ctx = isl_map_get_ctx(map);
2574 list = isl_map_list_alloc(ctx, 2);
2575 list = isl_map_list_add(list, isl_map_copy(context));
2576 list = isl_map_list_add(list, isl_map_copy(map));
2577 hull = isl_map_unshifted_simple_hull_from_map_list(context,
2578 list);
2580 return isl_map_gist_basic_map(map, hull);
2581 error:
2582 isl_map_free(map);
2583 isl_map_free(context);
2584 return NULL;
2587 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2588 __isl_take isl_map *context)
2590 return isl_map_align_params_map_map_and(map, context, &map_gist);
2593 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2594 struct isl_basic_set *context)
2596 return (struct isl_basic_set *)isl_basic_map_gist(
2597 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2600 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2601 __isl_take isl_basic_set *context)
2603 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2604 (struct isl_basic_map *)context);
2607 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2608 __isl_take isl_basic_set *context)
2610 isl_space *space = isl_set_get_space(set);
2611 isl_basic_set *dom_context = isl_basic_set_universe(space);
2612 dom_context = isl_basic_set_intersect_params(dom_context, context);
2613 return isl_set_gist_basic_set(set, dom_context);
2616 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2617 __isl_take isl_set *context)
2619 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2620 (struct isl_map *)context);
2623 /* Compute the gist of "bmap" with respect to the constraints "context"
2624 * on the domain.
2626 __isl_give isl_basic_map *isl_basic_map_gist_domain(
2627 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
2629 isl_space *space = isl_basic_map_get_space(bmap);
2630 isl_basic_map *bmap_context = isl_basic_map_universe(space);
2632 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
2633 return isl_basic_map_gist(bmap, bmap_context);
2636 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2637 __isl_take isl_set *context)
2639 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2640 map_context = isl_map_intersect_domain(map_context, context);
2641 return isl_map_gist(map, map_context);
2644 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2645 __isl_take isl_set *context)
2647 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2648 map_context = isl_map_intersect_range(map_context, context);
2649 return isl_map_gist(map, map_context);
2652 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2653 __isl_take isl_set *context)
2655 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2656 map_context = isl_map_intersect_params(map_context, context);
2657 return isl_map_gist(map, map_context);
2660 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2661 __isl_take isl_set *context)
2663 return isl_map_gist_params(set, context);
2666 /* Quick check to see if two basic maps are disjoint.
2667 * In particular, we reduce the equalities and inequalities of
2668 * one basic map in the context of the equalities of the other
2669 * basic map and check if we get a contradiction.
2671 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2672 __isl_keep isl_basic_map *bmap2)
2674 struct isl_vec *v = NULL;
2675 int *elim = NULL;
2676 unsigned total;
2677 int i;
2679 if (!bmap1 || !bmap2)
2680 return isl_bool_error;
2681 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2682 return isl_bool_error);
2683 if (bmap1->n_div || bmap2->n_div)
2684 return isl_bool_false;
2685 if (!bmap1->n_eq && !bmap2->n_eq)
2686 return isl_bool_false;
2688 total = isl_space_dim(bmap1->dim, isl_dim_all);
2689 if (total == 0)
2690 return isl_bool_false;
2691 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2692 if (!v)
2693 goto error;
2694 elim = isl_alloc_array(bmap1->ctx, int, total);
2695 if (!elim)
2696 goto error;
2697 compute_elimination_index(bmap1, elim);
2698 for (i = 0; i < bmap2->n_eq; ++i) {
2699 int reduced;
2700 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2701 bmap1, elim);
2702 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2703 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2704 goto disjoint;
2706 for (i = 0; i < bmap2->n_ineq; ++i) {
2707 int reduced;
2708 reduced = reduced_using_equalities(v->block.data,
2709 bmap2->ineq[i], bmap1, elim);
2710 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2711 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2712 goto disjoint;
2714 compute_elimination_index(bmap2, elim);
2715 for (i = 0; i < bmap1->n_ineq; ++i) {
2716 int reduced;
2717 reduced = reduced_using_equalities(v->block.data,
2718 bmap1->ineq[i], bmap2, elim);
2719 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2720 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2721 goto disjoint;
2723 isl_vec_free(v);
2724 free(elim);
2725 return isl_bool_false;
2726 disjoint:
2727 isl_vec_free(v);
2728 free(elim);
2729 return isl_bool_true;
2730 error:
2731 isl_vec_free(v);
2732 free(elim);
2733 return isl_bool_error;
2736 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2737 __isl_keep isl_basic_set *bset2)
2739 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2740 (struct isl_basic_map *)bset2);
2743 /* Are "map1" and "map2" obviously disjoint?
2745 * If one of them is empty or if they live in different spaces (ignoring
2746 * parameters), then they are clearly disjoint.
2748 * If they have different parameters, then we skip any further tests.
2750 * If they are obviously equal, but not obviously empty, then we will
2751 * not be able to detect if they are disjoint.
2753 * Otherwise we check if each basic map in "map1" is obviously disjoint
2754 * from each basic map in "map2".
2756 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2757 __isl_keep isl_map *map2)
2759 int i, j;
2760 isl_bool disjoint;
2761 isl_bool intersect;
2762 isl_bool match;
2764 if (!map1 || !map2)
2765 return isl_bool_error;
2767 disjoint = isl_map_plain_is_empty(map1);
2768 if (disjoint < 0 || disjoint)
2769 return disjoint;
2771 disjoint = isl_map_plain_is_empty(map2);
2772 if (disjoint < 0 || disjoint)
2773 return disjoint;
2775 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
2776 map2->dim, isl_dim_in);
2777 if (match < 0 || !match)
2778 return match < 0 ? isl_bool_error : isl_bool_true;
2780 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
2781 map2->dim, isl_dim_out);
2782 if (match < 0 || !match)
2783 return match < 0 ? isl_bool_error : isl_bool_true;
2785 match = isl_space_match(map1->dim, isl_dim_param,
2786 map2->dim, isl_dim_param);
2787 if (match < 0 || !match)
2788 return match < 0 ? isl_bool_error : isl_bool_false;
2790 intersect = isl_map_plain_is_equal(map1, map2);
2791 if (intersect < 0 || intersect)
2792 return intersect < 0 ? isl_bool_error : isl_bool_false;
2794 for (i = 0; i < map1->n; ++i) {
2795 for (j = 0; j < map2->n; ++j) {
2796 isl_bool d = isl_basic_map_plain_is_disjoint(map1->p[i],
2797 map2->p[j]);
2798 if (d != isl_bool_true)
2799 return d;
2802 return isl_bool_true;
2805 /* Are "map1" and "map2" disjoint?
2807 * They are disjoint if they are "obviously disjoint" or if one of them
2808 * is empty. Otherwise, they are not disjoint if one of them is universal.
2809 * If none of these cases apply, we compute the intersection and see if
2810 * the result is empty.
2812 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2814 isl_bool disjoint;
2815 isl_bool intersect;
2816 isl_map *test;
2818 disjoint = isl_map_plain_is_disjoint(map1, map2);
2819 if (disjoint < 0 || disjoint)
2820 return disjoint;
2822 disjoint = isl_map_is_empty(map1);
2823 if (disjoint < 0 || disjoint)
2824 return disjoint;
2826 disjoint = isl_map_is_empty(map2);
2827 if (disjoint < 0 || disjoint)
2828 return disjoint;
2830 intersect = isl_map_plain_is_universe(map1);
2831 if (intersect < 0 || intersect)
2832 return intersect < 0 ? isl_bool_error : isl_bool_false;
2834 intersect = isl_map_plain_is_universe(map2);
2835 if (intersect < 0 || intersect)
2836 return intersect < 0 ? isl_bool_error : isl_bool_false;
2838 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2839 disjoint = isl_map_is_empty(test);
2840 isl_map_free(test);
2842 return disjoint;
2845 /* Are "bmap1" and "bmap2" disjoint?
2847 * They are disjoint if they are "obviously disjoint" or if one of them
2848 * is empty. Otherwise, they are not disjoint if one of them is universal.
2849 * If none of these cases apply, we compute the intersection and see if
2850 * the result is empty.
2852 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2853 __isl_keep isl_basic_map *bmap2)
2855 isl_bool disjoint;
2856 isl_bool intersect;
2857 isl_basic_map *test;
2859 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2860 if (disjoint < 0 || disjoint)
2861 return disjoint;
2863 disjoint = isl_basic_map_is_empty(bmap1);
2864 if (disjoint < 0 || disjoint)
2865 return disjoint;
2867 disjoint = isl_basic_map_is_empty(bmap2);
2868 if (disjoint < 0 || disjoint)
2869 return disjoint;
2871 intersect = isl_basic_map_is_universe(bmap1);
2872 if (intersect < 0 || intersect)
2873 return intersect < 0 ? isl_bool_error : isl_bool_false;
2875 intersect = isl_basic_map_is_universe(bmap2);
2876 if (intersect < 0 || intersect)
2877 return intersect < 0 ? isl_bool_error : isl_bool_false;
2879 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2880 isl_basic_map_copy(bmap2));
2881 disjoint = isl_basic_map_is_empty(test);
2882 isl_basic_map_free(test);
2884 return disjoint;
2887 /* Are "bset1" and "bset2" disjoint?
2889 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2890 __isl_keep isl_basic_set *bset2)
2892 return isl_basic_map_is_disjoint(bset1, bset2);
2895 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2896 __isl_keep isl_set *set2)
2898 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2899 (struct isl_map *)set2);
2902 /* Are "set1" and "set2" disjoint?
2904 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2906 return isl_map_is_disjoint(set1, set2);
2909 /* Check if we can combine a given div with lower bound l and upper
2910 * bound u with some other div and if so return that other div.
2911 * Otherwise return -1.
2913 * We first check that
2914 * - the bounds are opposites of each other (except for the constant
2915 * term)
2916 * - the bounds do not reference any other div
2917 * - no div is defined in terms of this div
2919 * Let m be the size of the range allowed on the div by the bounds.
2920 * That is, the bounds are of the form
2922 * e <= a <= e + m - 1
2924 * with e some expression in the other variables.
2925 * We look for another div b such that no third div is defined in terms
2926 * of this second div b and such that in any constraint that contains
2927 * a (except for the given lower and upper bound), also contains b
2928 * with a coefficient that is m times that of b.
2929 * That is, all constraints (execpt for the lower and upper bound)
2930 * are of the form
2932 * e + f (a + m b) >= 0
2934 * If so, we return b so that "a + m b" can be replaced by
2935 * a single div "c = a + m b".
2937 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2938 unsigned div, unsigned l, unsigned u)
2940 int i, j;
2941 unsigned dim;
2942 int coalesce = -1;
2944 if (bmap->n_div <= 1)
2945 return -1;
2946 dim = isl_space_dim(bmap->dim, isl_dim_all);
2947 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2948 return -1;
2949 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2950 bmap->n_div - div - 1) != -1)
2951 return -1;
2952 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2953 dim + bmap->n_div))
2954 return -1;
2956 for (i = 0; i < bmap->n_div; ++i) {
2957 if (isl_int_is_zero(bmap->div[i][0]))
2958 continue;
2959 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2960 return -1;
2963 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2964 if (isl_int_is_neg(bmap->ineq[l][0])) {
2965 isl_int_sub(bmap->ineq[l][0],
2966 bmap->ineq[l][0], bmap->ineq[u][0]);
2967 bmap = isl_basic_map_copy(bmap);
2968 bmap = isl_basic_map_set_to_empty(bmap);
2969 isl_basic_map_free(bmap);
2970 return -1;
2972 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2973 for (i = 0; i < bmap->n_div; ++i) {
2974 if (i == div)
2975 continue;
2976 if (!pairs[i])
2977 continue;
2978 for (j = 0; j < bmap->n_div; ++j) {
2979 if (isl_int_is_zero(bmap->div[j][0]))
2980 continue;
2981 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2982 break;
2984 if (j < bmap->n_div)
2985 continue;
2986 for (j = 0; j < bmap->n_ineq; ++j) {
2987 int valid;
2988 if (j == l || j == u)
2989 continue;
2990 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2991 continue;
2992 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2993 break;
2994 isl_int_mul(bmap->ineq[j][1 + dim + div],
2995 bmap->ineq[j][1 + dim + div],
2996 bmap->ineq[l][0]);
2997 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2998 bmap->ineq[j][1 + dim + i]);
2999 isl_int_divexact(bmap->ineq[j][1 + dim + div],
3000 bmap->ineq[j][1 + dim + div],
3001 bmap->ineq[l][0]);
3002 if (!valid)
3003 break;
3005 if (j < bmap->n_ineq)
3006 continue;
3007 coalesce = i;
3008 break;
3010 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
3011 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
3012 return coalesce;
3015 /* Given a lower and an upper bound on div i, construct an inequality
3016 * that when nonnegative ensures that this pair of bounds always allows
3017 * for an integer value of the given div.
3018 * The lower bound is inequality l, while the upper bound is inequality u.
3019 * The constructed inequality is stored in ineq.
3020 * g, fl, fu are temporary scalars.
3022 * Let the upper bound be
3024 * -n_u a + e_u >= 0
3026 * and the lower bound
3028 * n_l a + e_l >= 0
3030 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
3031 * We have
3033 * - f_u e_l <= f_u f_l g a <= f_l e_u
3035 * Since all variables are integer valued, this is equivalent to
3037 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
3039 * If this interval is at least f_u f_l g, then it contains at least
3040 * one integer value for a.
3041 * That is, the test constraint is
3043 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
3045 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
3046 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
3048 unsigned dim;
3049 dim = isl_space_dim(bmap->dim, isl_dim_all);
3051 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
3052 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
3053 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
3054 isl_int_neg(fu, fu);
3055 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
3056 1 + dim + bmap->n_div);
3057 isl_int_add(ineq[0], ineq[0], fl);
3058 isl_int_add(ineq[0], ineq[0], fu);
3059 isl_int_sub_ui(ineq[0], ineq[0], 1);
3060 isl_int_mul(g, g, fl);
3061 isl_int_mul(g, g, fu);
3062 isl_int_sub(ineq[0], ineq[0], g);
3065 /* Remove more kinds of divs that are not strictly needed.
3066 * In particular, if all pairs of lower and upper bounds on a div
3067 * are such that they allow at least one integer value of the div,
3068 * the we can eliminate the div using Fourier-Motzkin without
3069 * introducing any spurious solutions.
3071 static struct isl_basic_map *drop_more_redundant_divs(
3072 struct isl_basic_map *bmap, int *pairs, int n)
3074 struct isl_tab *tab = NULL;
3075 struct isl_vec *vec = NULL;
3076 unsigned dim;
3077 int remove = -1;
3078 isl_int g, fl, fu;
3080 isl_int_init(g);
3081 isl_int_init(fl);
3082 isl_int_init(fu);
3084 if (!bmap)
3085 goto error;
3087 dim = isl_space_dim(bmap->dim, isl_dim_all);
3088 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
3089 if (!vec)
3090 goto error;
3092 tab = isl_tab_from_basic_map(bmap, 0);
3094 while (n > 0) {
3095 int i, l, u;
3096 int best = -1;
3097 enum isl_lp_result res;
3099 for (i = 0; i < bmap->n_div; ++i) {
3100 if (!pairs[i])
3101 continue;
3102 if (best >= 0 && pairs[best] <= pairs[i])
3103 continue;
3104 best = i;
3107 i = best;
3108 for (l = 0; l < bmap->n_ineq; ++l) {
3109 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
3110 continue;
3111 for (u = 0; u < bmap->n_ineq; ++u) {
3112 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
3113 continue;
3114 construct_test_ineq(bmap, i, l, u,
3115 vec->el, g, fl, fu);
3116 res = isl_tab_min(tab, vec->el,
3117 bmap->ctx->one, &g, NULL, 0);
3118 if (res == isl_lp_error)
3119 goto error;
3120 if (res == isl_lp_empty) {
3121 bmap = isl_basic_map_set_to_empty(bmap);
3122 break;
3124 if (res != isl_lp_ok || isl_int_is_neg(g))
3125 break;
3127 if (u < bmap->n_ineq)
3128 break;
3130 if (l == bmap->n_ineq) {
3131 remove = i;
3132 break;
3134 pairs[i] = 0;
3135 --n;
3138 isl_tab_free(tab);
3139 isl_vec_free(vec);
3141 isl_int_clear(g);
3142 isl_int_clear(fl);
3143 isl_int_clear(fu);
3145 free(pairs);
3147 if (remove < 0)
3148 return bmap;
3150 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
3151 return isl_basic_map_drop_redundant_divs(bmap);
3152 error:
3153 free(pairs);
3154 isl_basic_map_free(bmap);
3155 isl_tab_free(tab);
3156 isl_vec_free(vec);
3157 isl_int_clear(g);
3158 isl_int_clear(fl);
3159 isl_int_clear(fu);
3160 return NULL;
3163 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3164 * and the upper bound u, div1 always occurs together with div2 in the form
3165 * (div1 + m div2), where m is the constant range on the variable div1
3166 * allowed by l and u, replace the pair div1 and div2 by a single
3167 * div that is equal to div1 + m div2.
3169 * The new div will appear in the location that contains div2.
3170 * We need to modify all constraints that contain
3171 * div2 = (div - div1) / m
3172 * (If a constraint does not contain div2, it will also not contain div1.)
3173 * If the constraint also contains div1, then we know they appear
3174 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3175 * i.e., the coefficient of div is f.
3177 * Otherwise, we first need to introduce div1 into the constraint.
3178 * Let the l be
3180 * div1 + f >=0
3182 * and u
3184 * -div1 + f' >= 0
3186 * A lower bound on div2
3188 * n div2 + t >= 0
3190 * can be replaced by
3192 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3194 * with g = gcd(m,n).
3195 * An upper bound
3197 * -n div2 + t >= 0
3199 * can be replaced by
3201 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3203 * These constraint are those that we would obtain from eliminating
3204 * div1 using Fourier-Motzkin.
3206 * After all constraints have been modified, we drop the lower and upper
3207 * bound and then drop div1.
3209 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
3210 unsigned div1, unsigned div2, unsigned l, unsigned u)
3212 isl_int a;
3213 isl_int b;
3214 isl_int m;
3215 unsigned dim, total;
3216 int i;
3218 dim = isl_space_dim(bmap->dim, isl_dim_all);
3219 total = 1 + dim + bmap->n_div;
3221 isl_int_init(a);
3222 isl_int_init(b);
3223 isl_int_init(m);
3224 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
3225 isl_int_add_ui(m, m, 1);
3227 for (i = 0; i < bmap->n_ineq; ++i) {
3228 if (i == l || i == u)
3229 continue;
3230 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
3231 continue;
3232 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
3233 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
3234 isl_int_divexact(a, m, b);
3235 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
3236 if (isl_int_is_pos(b)) {
3237 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3238 b, bmap->ineq[l], total);
3239 } else {
3240 isl_int_neg(b, b);
3241 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3242 b, bmap->ineq[u], total);
3245 isl_int_set(bmap->ineq[i][1 + dim + div2],
3246 bmap->ineq[i][1 + dim + div1]);
3247 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
3250 isl_int_clear(a);
3251 isl_int_clear(b);
3252 isl_int_clear(m);
3253 if (l > u) {
3254 isl_basic_map_drop_inequality(bmap, l);
3255 isl_basic_map_drop_inequality(bmap, u);
3256 } else {
3257 isl_basic_map_drop_inequality(bmap, u);
3258 isl_basic_map_drop_inequality(bmap, l);
3260 bmap = isl_basic_map_drop_div(bmap, div1);
3261 return bmap;
3264 /* First check if we can coalesce any pair of divs and
3265 * then continue with dropping more redundant divs.
3267 * We loop over all pairs of lower and upper bounds on a div
3268 * with coefficient 1 and -1, respectively, check if there
3269 * is any other div "c" with which we can coalesce the div
3270 * and if so, perform the coalescing.
3272 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
3273 struct isl_basic_map *bmap, int *pairs, int n)
3275 int i, l, u;
3276 unsigned dim;
3278 dim = isl_space_dim(bmap->dim, isl_dim_all);
3280 for (i = 0; i < bmap->n_div; ++i) {
3281 if (!pairs[i])
3282 continue;
3283 for (l = 0; l < bmap->n_ineq; ++l) {
3284 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
3285 continue;
3286 for (u = 0; u < bmap->n_ineq; ++u) {
3287 int c;
3289 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3290 continue;
3291 c = div_find_coalesce(bmap, pairs, i, l, u);
3292 if (c < 0)
3293 continue;
3294 free(pairs);
3295 bmap = coalesce_divs(bmap, i, c, l, u);
3296 return isl_basic_map_drop_redundant_divs(bmap);
3301 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3302 return bmap;
3304 return drop_more_redundant_divs(bmap, pairs, n);
3307 /* Remove divs that are not strictly needed.
3308 * In particular, if a div only occurs positively (or negatively)
3309 * in constraints, then it can simply be dropped.
3310 * Also, if a div occurs in only two constraints and if moreover
3311 * those two constraints are opposite to each other, except for the constant
3312 * term and if the sum of the constant terms is such that for any value
3313 * of the other values, there is always at least one integer value of the
3314 * div, i.e., if one plus this sum is greater than or equal to
3315 * the (absolute value) of the coefficent of the div in the constraints,
3316 * then we can also simply drop the div.
3318 * We skip divs that appear in equalities or in the definition of other divs.
3319 * Divs that appear in the definition of other divs usually occur in at least
3320 * 4 constraints, but the constraints may have been simplified.
3322 * If any divs are left after these simple checks then we move on
3323 * to more complicated cases in drop_more_redundant_divs.
3325 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3326 struct isl_basic_map *bmap)
3328 int i, j;
3329 unsigned off;
3330 int *pairs = NULL;
3331 int n = 0;
3333 if (!bmap)
3334 goto error;
3335 if (bmap->n_div == 0)
3336 return bmap;
3338 off = isl_space_dim(bmap->dim, isl_dim_all);
3339 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3340 if (!pairs)
3341 goto error;
3343 for (i = 0; i < bmap->n_div; ++i) {
3344 int pos, neg;
3345 int last_pos, last_neg;
3346 int redundant;
3347 int defined;
3349 defined = !isl_int_is_zero(bmap->div[i][0]);
3350 for (j = i; j < bmap->n_div; ++j)
3351 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3352 break;
3353 if (j < bmap->n_div)
3354 continue;
3355 for (j = 0; j < bmap->n_eq; ++j)
3356 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3357 break;
3358 if (j < bmap->n_eq)
3359 continue;
3360 ++n;
3361 pos = neg = 0;
3362 for (j = 0; j < bmap->n_ineq; ++j) {
3363 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3364 last_pos = j;
3365 ++pos;
3367 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3368 last_neg = j;
3369 ++neg;
3372 pairs[i] = pos * neg;
3373 if (pairs[i] == 0) {
3374 for (j = bmap->n_ineq - 1; j >= 0; --j)
3375 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3376 isl_basic_map_drop_inequality(bmap, j);
3377 bmap = isl_basic_map_drop_div(bmap, i);
3378 free(pairs);
3379 return isl_basic_map_drop_redundant_divs(bmap);
3381 if (pairs[i] != 1)
3382 continue;
3383 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3384 bmap->ineq[last_neg] + 1,
3385 off + bmap->n_div))
3386 continue;
3388 isl_int_add(bmap->ineq[last_pos][0],
3389 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3390 isl_int_add_ui(bmap->ineq[last_pos][0],
3391 bmap->ineq[last_pos][0], 1);
3392 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3393 bmap->ineq[last_pos][1+off+i]);
3394 isl_int_sub_ui(bmap->ineq[last_pos][0],
3395 bmap->ineq[last_pos][0], 1);
3396 isl_int_sub(bmap->ineq[last_pos][0],
3397 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3398 if (!redundant) {
3399 if (defined ||
3400 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3401 pairs[i] = 0;
3402 --n;
3403 continue;
3405 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3406 bmap = isl_basic_map_simplify(bmap);
3407 free(pairs);
3408 return isl_basic_map_drop_redundant_divs(bmap);
3410 if (last_pos > last_neg) {
3411 isl_basic_map_drop_inequality(bmap, last_pos);
3412 isl_basic_map_drop_inequality(bmap, last_neg);
3413 } else {
3414 isl_basic_map_drop_inequality(bmap, last_neg);
3415 isl_basic_map_drop_inequality(bmap, last_pos);
3417 bmap = isl_basic_map_drop_div(bmap, i);
3418 free(pairs);
3419 return isl_basic_map_drop_redundant_divs(bmap);
3422 if (n > 0)
3423 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3425 free(pairs);
3426 return bmap;
3427 error:
3428 free(pairs);
3429 isl_basic_map_free(bmap);
3430 return NULL;
3433 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3434 struct isl_basic_set *bset)
3436 return (struct isl_basic_set *)
3437 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3440 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3442 int i;
3444 if (!map)
3445 return NULL;
3446 for (i = 0; i < map->n; ++i) {
3447 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3448 if (!map->p[i])
3449 goto error;
3451 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3452 return map;
3453 error:
3454 isl_map_free(map);
3455 return NULL;
3458 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3460 return (struct isl_set *)
3461 isl_map_drop_redundant_divs((struct isl_map *)set);
3464 /* Does "bmap" satisfy any equality that involves more than 2 variables
3465 * and/or has coefficients different from -1 and 1?
3467 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
3469 int i;
3470 unsigned total;
3472 total = isl_basic_map_dim(bmap, isl_dim_all);
3474 for (i = 0; i < bmap->n_eq; ++i) {
3475 int j, k;
3477 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
3478 if (j < 0)
3479 continue;
3480 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3481 !isl_int_is_negone(bmap->eq[i][1 + j]))
3482 return 1;
3484 j += 1;
3485 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3486 if (k < 0)
3487 continue;
3488 j += k;
3489 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3490 !isl_int_is_negone(bmap->eq[i][1 + j]))
3491 return 1;
3493 j += 1;
3494 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3495 if (k >= 0)
3496 return 1;
3499 return 0;
3502 /* Remove any common factor g from the constraint coefficients in "v".
3503 * The constant term is stored in the first position and is replaced
3504 * by floor(c/g). If any common factor is removed and if this results
3505 * in a tightening of the constraint, then set *tightened.
3507 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
3508 int *tightened)
3510 isl_ctx *ctx;
3512 if (!v)
3513 return NULL;
3514 ctx = isl_vec_get_ctx(v);
3515 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
3516 if (isl_int_is_zero(ctx->normalize_gcd))
3517 return v;
3518 if (isl_int_is_one(ctx->normalize_gcd))
3519 return v;
3520 v = isl_vec_cow(v);
3521 if (!v)
3522 return NULL;
3523 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
3524 *tightened = 1;
3525 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
3526 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
3527 v->size - 1);
3528 return v;
3531 /* If "bmap" is an integer set that satisfies any equality involving
3532 * more than 2 variables and/or has coefficients different from -1 and 1,
3533 * then use variable compression to reduce the coefficients by removing
3534 * any (hidden) common factor.
3535 * In particular, apply the variable compression to each constraint,
3536 * factor out any common factor in the non-constant coefficients and
3537 * then apply the inverse of the compression.
3538 * At the end, we mark the basic map as having reduced constants.
3539 * If this flag is still set on the next invocation of this function,
3540 * then we skip the computation.
3542 * Removing a common factor may result in a tightening of some of
3543 * the constraints. If this happens, then we may end up with two
3544 * opposite inequalities that can be replaced by an equality.
3545 * We therefore call isl_basic_map_detect_inequality_pairs,
3546 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3547 * and isl_basic_map_gauss if such a pair was found.
3549 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
3550 __isl_take isl_basic_map *bmap)
3552 unsigned total;
3553 isl_ctx *ctx;
3554 isl_vec *v;
3555 isl_mat *eq, *T, *T2;
3556 int i;
3557 int tightened;
3559 if (!bmap)
3560 return NULL;
3561 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
3562 return bmap;
3563 if (isl_basic_map_is_rational(bmap))
3564 return bmap;
3565 if (bmap->n_eq == 0)
3566 return bmap;
3567 if (!has_multiple_var_equality(bmap))
3568 return bmap;
3570 total = isl_basic_map_dim(bmap, isl_dim_all);
3571 ctx = isl_basic_map_get_ctx(bmap);
3572 v = isl_vec_alloc(ctx, 1 + total);
3573 if (!v)
3574 return isl_basic_map_free(bmap);
3576 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
3577 T = isl_mat_variable_compression(eq, &T2);
3578 if (!T || !T2)
3579 goto error;
3580 if (T->n_col == 0) {
3581 isl_mat_free(T);
3582 isl_mat_free(T2);
3583 isl_vec_free(v);
3584 return isl_basic_map_set_to_empty(bmap);
3587 tightened = 0;
3588 for (i = 0; i < bmap->n_ineq; ++i) {
3589 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
3590 v = isl_vec_mat_product(v, isl_mat_copy(T));
3591 v = normalize_constraint(v, &tightened);
3592 v = isl_vec_mat_product(v, isl_mat_copy(T2));
3593 if (!v)
3594 goto error;
3595 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
3598 isl_mat_free(T);
3599 isl_mat_free(T2);
3600 isl_vec_free(v);
3602 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
3604 if (tightened) {
3605 int progress = 0;
3607 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
3608 if (progress) {
3609 bmap = eliminate_divs_eq(bmap, &progress);
3610 bmap = isl_basic_map_gauss(bmap, NULL);
3614 return bmap;
3615 error:
3616 isl_mat_free(T);
3617 isl_mat_free(T2);
3618 isl_vec_free(v);
3619 return isl_basic_map_free(bmap);
3622 /* Shift the integer division at position "div" of "bmap"
3623 * by "shift" times the variable at position "pos".
3624 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
3625 * corresponds to the constant term.
3627 * That is, if the integer division has the form
3629 * floor(f(x)/d)
3631 * then replace it by
3633 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
3635 __isl_give isl_basic_map *isl_basic_map_shift_div(
3636 __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
3638 int i;
3639 unsigned total;
3641 if (!bmap)
3642 return NULL;
3644 total = isl_basic_map_dim(bmap, isl_dim_all);
3645 total -= isl_basic_map_dim(bmap, isl_dim_div);
3647 isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
3649 for (i = 0; i < bmap->n_eq; ++i) {
3650 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
3651 continue;
3652 isl_int_submul(bmap->eq[i][pos],
3653 shift, bmap->eq[i][1 + total + div]);
3655 for (i = 0; i < bmap->n_ineq; ++i) {
3656 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
3657 continue;
3658 isl_int_submul(bmap->ineq[i][pos],
3659 shift, bmap->ineq[i][1 + total + div]);
3661 for (i = 0; i < bmap->n_div; ++i) {
3662 if (isl_int_is_zero(bmap->div[i][0]))
3663 continue;
3664 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
3665 continue;
3666 isl_int_submul(bmap->div[i][1 + pos],
3667 shift, bmap->div[i][1 + 1 + total + div]);
3670 return bmap;