3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
8 using C<GMP> or C<imath>.
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
184 =head3 Changes since isl-0.12
188 =item * C<isl_int> has been replaced by C<isl_val>.
189 Some of the old functions are still available in C<isl/deprecated/*.h>
190 but they will be removed in the future.
192 =item * The functions C<isl_pw_qpolynomial_eval>,
193 C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
194 and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
195 an C<isl_val> instead of an C<isl_qpolynomial>.
197 =item * The function C<isl_band_member_is_zero_distance>
198 has been removed. Essentially the same functionality is available
199 through C<isl_band_member_is_coincident>, except that it requires
200 setting up coincidence constraints.
201 The option C<schedule_outer_zero_distance> has accordingly been
202 replaced by the option C<schedule_outer_coincidence>.
204 =item * The function C<isl_vertex_get_expr> has been changed
205 to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
206 The function C<isl_vertex_get_domain> has been changed to return
207 a regular basic set, rather than a rational basic set.
211 =head3 Changes since isl-0.14
215 =item * The function C<isl_union_pw_multi_aff_add> now consistently
216 computes the sum on the shared definition domain.
217 The function C<isl_union_pw_multi_aff_union_add> has been added
218 to compute the sum on the union of definition domains.
219 The original behavior of C<isl_union_pw_multi_aff_add> was
220 confused and is no longer available.
222 =item * Band forests have been replaced by schedule trees.
224 =item * The function C<isl_union_map_compute_flow> has been
225 replaced by the function C<isl_union_access_info_compute_flow>.
226 Note that the may dependence relation returned by
227 C<isl_union_flow_get_may_dependence> is the union of
228 the two dependence relations returned by
229 C<isl_union_map_compute_flow>. Similarly for the no source relations.
230 The function C<isl_union_map_compute_flow> is still available
231 for backward compatibility, but it will be removed in the future.
233 =item * The function C<isl_basic_set_drop_constraint> has been
236 =item * The function C<isl_ast_build_ast_from_schedule> has been
237 renamed to C<isl_ast_build_node_from_schedule_map>.
238 The original name is still available
239 for backward compatibility, but it will be removed in the future.
241 =item * The C<separation_class> AST generation option has been
244 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
245 have been renamed to C<isl_constraint_alloc_equality> and
246 C<isl_constraint_alloc_inequality>. The original names have been
247 kept for backward compatibility, but they will be removed in the future.
249 =item * The C<schedule_fuse> option has been replaced
250 by the C<schedule_serialize_sccs> option. The effect
251 of setting the C<schedule_fuse> option to C<ISL_SCHEDULE_FUSE_MIN>
252 is now obtained by turning on the C<schedule_serialize_sccs> option.
256 =head3 Changes since isl-0.17
260 =item * The function C<isl_printer_print_ast_expr> no longer prints
261 in C format by default. To print in C format, the output format
262 of the printer needs to have been explicitly set to C<ISL_FORMAT_C>.
263 As a result, the function C<isl_ast_expr_to_str> no longer prints
264 the expression in C format. Use C<isl_ast_expr_to_C_str> instead.
266 =item * The functions C<isl_set_align_divs> and C<isl_map_align_divs>
267 have been deprecated. The function C<isl_set_lift> has an effect
268 that is similar to C<isl_set_align_divs> and could in some cases
269 be used as an alternative.
275 C<isl> is released under the MIT license.
279 Permission is hereby granted, free of charge, to any person obtaining a copy of
280 this software and associated documentation files (the "Software"), to deal in
281 the Software without restriction, including without limitation the rights to
282 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
283 of the Software, and to permit persons to whom the Software is furnished to do
284 so, subject to the following conditions:
286 The above copyright notice and this permission notice shall be included in all
287 copies or substantial portions of the Software.
289 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
290 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
291 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
292 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
293 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
294 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
299 Note that by default C<isl> requires C<GMP>, which is released
300 under the GNU Lesser General Public License (LGPL). This means
301 that code linked against C<isl> is also linked against LGPL code.
303 When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C<isl>
304 will link against C<imath>, a library for exact integer arithmetic released
305 under the MIT license.
309 The source of C<isl> can be obtained either as a tarball
310 or from the git repository. Both are available from
311 L<http://isl.gforge.inria.fr/>.
312 The installation process depends on how you obtained
315 =head2 Installation from the git repository
319 =item 1 Clone or update the repository
321 The first time the source is obtained, you need to clone
324 git clone git://repo.or.cz/isl.git
326 To obtain updates, you need to pull in the latest changes
330 =item 2 Optionally get C<imath> submodule
332 To build C<isl> with C<imath>, you need to obtain the C<imath>
333 submodule by running in the git source tree of C<isl>
338 This will fetch the required version of C<imath> in a subdirectory of C<isl>.
340 =item 2 Generate C<configure>
346 After performing the above steps, continue
347 with the L<Common installation instructions>.
349 =head2 Common installation instructions
353 =item 1 Obtain C<GMP>
355 By default, building C<isl> requires C<GMP>, including its headers files.
356 Your distribution may not provide these header files by default
357 and you may need to install a package called C<gmp-devel> or something
358 similar. Alternatively, C<GMP> can be built from
359 source, available from L<http://gmplib.org/>.
360 C<GMP> is not needed if you build C<isl> with C<imath>.
364 C<isl> uses the standard C<autoconf> C<configure> script.
369 optionally followed by some configure options.
370 A complete list of options can be obtained by running
374 Below we discuss some of the more common options.
380 Installation prefix for C<isl>
382 =item C<--with-int=[gmp|imath|imath-32]>
384 Select the integer library to be used by C<isl>, the default is C<gmp>.
385 With C<imath-32>, C<isl> will use 32 bit integers, but fall back to C<imath>
386 for values out of the 32 bit range. In most applications, C<isl> will run
387 fastest with the C<imath-32> option, followed by C<gmp> and C<imath>, the
390 =item C<--with-gmp-prefix>
392 Installation prefix for C<GMP> (architecture-independent files).
394 =item C<--with-gmp-exec-prefix>
396 Installation prefix for C<GMP> (architecture-dependent files).
404 =item 4 Install (optional)
410 =head1 Integer Set Library
412 =head2 Memory Management
414 Since a high-level operation on isl objects usually involves
415 several substeps and since the user is usually not interested in
416 the intermediate results, most functions that return a new object
417 will also release all the objects passed as arguments.
418 If the user still wants to use one or more of these arguments
419 after the function call, she should pass along a copy of the
420 object rather than the object itself.
421 The user is then responsible for making sure that the original
422 object gets used somewhere else or is explicitly freed.
424 The arguments and return values of all documented functions are
425 annotated to make clear which arguments are released and which
426 arguments are preserved. In particular, the following annotations
433 C<__isl_give> means that a new object is returned.
434 The user should make sure that the returned pointer is
435 used exactly once as a value for an C<__isl_take> argument.
436 In between, it can be used as a value for as many
437 C<__isl_keep> arguments as the user likes.
438 There is one exception, and that is the case where the
439 pointer returned is C<NULL>. Is this case, the user
440 is free to use it as an C<__isl_take> argument or not.
441 When applied to a C<char *>, the returned pointer needs to be
446 C<__isl_null> means that a C<NULL> value is returned.
450 C<__isl_take> means that the object the argument points to
451 is taken over by the function and may no longer be used
452 by the user as an argument to any other function.
453 The pointer value must be one returned by a function
454 returning an C<__isl_give> pointer.
455 If the user passes in a C<NULL> value, then this will
456 be treated as an error in the sense that the function will
457 not perform its usual operation. However, it will still
458 make sure that all the other C<__isl_take> arguments
463 C<__isl_keep> means that the function will only use the object
464 temporarily. After the function has finished, the user
465 can still use it as an argument to other functions.
466 A C<NULL> value will be treated in the same way as
467 a C<NULL> value for an C<__isl_take> argument.
468 This annotation may also be used on return values of
469 type C<const char *>, in which case the returned pointer should
470 not be freed by the user and is only valid until the object
471 from which it was derived is updated or freed.
475 =head2 Initialization
477 All manipulations of integer sets and relations occur within
478 the context of an C<isl_ctx>.
479 A given C<isl_ctx> can only be used within a single thread.
480 All arguments of a function are required to have been allocated
481 within the same context.
482 There are currently no functions available for moving an object
483 from one C<isl_ctx> to another C<isl_ctx>. This means that
484 there is currently no way of safely moving an object from one
485 thread to another, unless the whole C<isl_ctx> is moved.
487 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
488 freed using C<isl_ctx_free>.
489 All objects allocated within an C<isl_ctx> should be freed
490 before the C<isl_ctx> itself is freed.
492 isl_ctx *isl_ctx_alloc();
493 void isl_ctx_free(isl_ctx *ctx);
495 The user can impose a bound on the number of low-level I<operations>
496 that can be performed by an C<isl_ctx>. This bound can be set and
497 retrieved using the following functions. A bound of zero means that
498 no bound is imposed. The number of operations performed can be
499 reset using C<isl_ctx_reset_operations>. Note that the number
500 of low-level operations needed to perform a high-level computation
501 may differ significantly across different versions
502 of C<isl>, but it should be the same across different platforms
503 for the same version of C<isl>.
505 Warning: This feature is experimental. C<isl> has good support to abort and
506 bail out during the computation, but this feature may exercise error code paths
507 that are normally not used that much. Consequently, it is not unlikely that
508 hidden bugs will be exposed.
510 void isl_ctx_set_max_operations(isl_ctx *ctx,
511 unsigned long max_operations);
512 unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
513 void isl_ctx_reset_operations(isl_ctx *ctx);
515 In order to be able to create an object in the same context
516 as another object, most object types (described later in
517 this document) provide a function to obtain the context
518 in which the object was created.
521 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
522 isl_ctx *isl_multi_val_get_ctx(
523 __isl_keep isl_multi_val *mv);
526 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
528 #include <isl/local_space.h>
529 isl_ctx *isl_local_space_get_ctx(
530 __isl_keep isl_local_space *ls);
533 isl_ctx *isl_set_list_get_ctx(
534 __isl_keep isl_set_list *list);
537 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
538 isl_ctx *isl_multi_aff_get_ctx(
539 __isl_keep isl_multi_aff *maff);
540 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
541 isl_ctx *isl_pw_multi_aff_get_ctx(
542 __isl_keep isl_pw_multi_aff *pma);
543 isl_ctx *isl_multi_pw_aff_get_ctx(
544 __isl_keep isl_multi_pw_aff *mpa);
545 isl_ctx *isl_union_pw_aff_get_ctx(
546 __isl_keep isl_union_pw_aff *upa);
547 isl_ctx *isl_union_pw_multi_aff_get_ctx(
548 __isl_keep isl_union_pw_multi_aff *upma);
549 isl_ctx *isl_multi_union_pw_aff_get_ctx(
550 __isl_keep isl_multi_union_pw_aff *mupa);
552 #include <isl/id_to_ast_expr.h>
553 isl_ctx *isl_id_to_ast_expr_get_ctx(
554 __isl_keep isl_id_to_ast_expr *id2expr);
556 #include <isl/point.h>
557 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
560 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
563 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
565 #include <isl/vertices.h>
566 isl_ctx *isl_vertices_get_ctx(
567 __isl_keep isl_vertices *vertices);
568 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
569 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
571 #include <isl/flow.h>
572 isl_ctx *isl_restriction_get_ctx(
573 __isl_keep isl_restriction *restr);
574 isl_ctx *isl_union_access_info_get_ctx(
575 __isl_keep isl_union_access_info *access);
576 isl_ctx *isl_union_flow_get_ctx(
577 __isl_keep isl_union_flow *flow);
579 #include <isl/schedule.h>
580 isl_ctx *isl_schedule_get_ctx(
581 __isl_keep isl_schedule *sched);
582 isl_ctx *isl_schedule_constraints_get_ctx(
583 __isl_keep isl_schedule_constraints *sc);
585 #include <isl/schedule_node.h>
586 isl_ctx *isl_schedule_node_get_ctx(
587 __isl_keep isl_schedule_node *node);
589 #include <isl/band.h>
590 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
592 #include <isl/ast_build.h>
593 isl_ctx *isl_ast_build_get_ctx(
594 __isl_keep isl_ast_build *build);
597 isl_ctx *isl_ast_expr_get_ctx(
598 __isl_keep isl_ast_expr *expr);
599 isl_ctx *isl_ast_node_get_ctx(
600 __isl_keep isl_ast_node *node);
604 C<isl> uses two special return types for functions that either return
605 a boolean or that in principle do not return anything.
606 In particular, the C<isl_bool> type has three possible values:
607 C<isl_bool_true> (a positive integer value), indicating I<true> or I<yes>;
608 C<isl_bool_false> (the integer value zero), indicating I<false> or I<no>; and
609 C<isl_bool_error> (a negative integer value), indicating that something
610 went wrong. The following function can be used to negate an C<isl_bool>,
611 where the negation of C<isl_bool_error> is C<isl_bool_error> again.
614 isl_bool isl_bool_not(isl_bool b);
616 The C<isl_stat> type has two possible values:
617 C<isl_stat_ok> (the integer value zero), indicating a successful
619 C<isl_stat_error> (a negative integer value), indicating that something
621 See L</"Error Handling"> for more information on
622 C<isl_bool_error> and C<isl_stat_error>.
626 An C<isl_val> represents an integer value, a rational value
627 or one of three special values, infinity, negative infinity and NaN.
628 Some predefined values can be created using the following functions.
631 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
632 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
633 __isl_give isl_val *isl_val_negone(isl_ctx *ctx);
634 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
635 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
636 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
638 Specific integer values can be created using the following functions.
641 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
643 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
645 __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
646 size_t n, size_t size, const void *chunks);
648 The function C<isl_val_int_from_chunks> constructs an C<isl_val>
649 from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
650 The least significant digit is assumed to be stored first.
652 Value objects can be copied and freed using the following functions.
655 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
656 __isl_null isl_val *isl_val_free(__isl_take isl_val *v);
658 They can be inspected using the following functions.
661 long isl_val_get_num_si(__isl_keep isl_val *v);
662 long isl_val_get_den_si(__isl_keep isl_val *v);
663 __isl_give isl_val *isl_val_get_den_val(
664 __isl_keep isl_val *v);
665 double isl_val_get_d(__isl_keep isl_val *v);
666 size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
668 int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
669 size_t size, void *chunks);
671 C<isl_val_n_abs_num_chunks> returns the number of I<digits>
672 of C<size> bytes needed to store the absolute value of the
674 C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
675 which is assumed to have been preallocated by the caller.
676 The least significant digit is stored first.
677 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
678 C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
679 and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
681 An C<isl_val> can be modified using the following function.
684 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
687 The following unary properties are defined on C<isl_val>s.
690 int isl_val_sgn(__isl_keep isl_val *v);
691 isl_bool isl_val_is_zero(__isl_keep isl_val *v);
692 isl_bool isl_val_is_one(__isl_keep isl_val *v);
693 isl_bool isl_val_is_negone(__isl_keep isl_val *v);
694 isl_bool isl_val_is_nonneg(__isl_keep isl_val *v);
695 isl_bool isl_val_is_nonpos(__isl_keep isl_val *v);
696 isl_bool isl_val_is_pos(__isl_keep isl_val *v);
697 isl_bool isl_val_is_neg(__isl_keep isl_val *v);
698 isl_bool isl_val_is_int(__isl_keep isl_val *v);
699 isl_bool isl_val_is_rat(__isl_keep isl_val *v);
700 isl_bool isl_val_is_nan(__isl_keep isl_val *v);
701 isl_bool isl_val_is_infty(__isl_keep isl_val *v);
702 isl_bool isl_val_is_neginfty(__isl_keep isl_val *v);
704 Note that the sign of NaN is undefined.
706 The following binary properties are defined on pairs of C<isl_val>s.
709 isl_bool isl_val_lt(__isl_keep isl_val *v1,
710 __isl_keep isl_val *v2);
711 isl_bool isl_val_le(__isl_keep isl_val *v1,
712 __isl_keep isl_val *v2);
713 isl_bool isl_val_gt(__isl_keep isl_val *v1,
714 __isl_keep isl_val *v2);
715 isl_bool isl_val_ge(__isl_keep isl_val *v1,
716 __isl_keep isl_val *v2);
717 isl_bool isl_val_eq(__isl_keep isl_val *v1,
718 __isl_keep isl_val *v2);
719 isl_bool isl_val_ne(__isl_keep isl_val *v1,
720 __isl_keep isl_val *v2);
721 isl_bool isl_val_abs_eq(__isl_keep isl_val *v1,
722 __isl_keep isl_val *v2);
724 The function C<isl_val_abs_eq> checks whether its two arguments
725 are equal in absolute value.
727 For integer C<isl_val>s we additionally have the following binary property.
730 isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1,
731 __isl_keep isl_val *v2);
733 An C<isl_val> can also be compared to an integer using the following
734 function. The result is undefined for NaN.
737 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
739 The following unary operations are available on C<isl_val>s.
742 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
743 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
744 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
745 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
746 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
747 __isl_give isl_val *isl_val_inv(__isl_take isl_val *v);
748 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
750 The following binary operations are available on C<isl_val>s.
753 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
754 __isl_take isl_val *v2);
755 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
756 __isl_take isl_val *v2);
757 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
758 __isl_take isl_val *v2);
759 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
761 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
762 __isl_take isl_val *v2);
763 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
765 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
766 __isl_take isl_val *v2);
767 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
769 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
770 __isl_take isl_val *v2);
772 On integer values, we additionally have the following operations.
775 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
776 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
777 __isl_take isl_val *v2);
778 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
779 __isl_take isl_val *v2);
780 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
781 __isl_take isl_val *v2, __isl_give isl_val **x,
782 __isl_give isl_val **y);
784 The function C<isl_val_gcdext> returns the greatest common divisor g
785 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
786 that C<*x> * C<v1> + C<*y> * C<v2> = g.
788 =head3 GMP specific functions
790 These functions are only available if C<isl> has been compiled with C<GMP>
793 Specific integer and rational values can be created from C<GMP> values using
794 the following functions.
796 #include <isl/val_gmp.h>
797 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
799 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
800 const mpz_t n, const mpz_t d);
802 The numerator and denominator of a rational value can be extracted as
803 C<GMP> values using the following functions.
805 #include <isl/val_gmp.h>
806 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
807 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
809 =head2 Sets and Relations
811 C<isl> uses six types of objects for representing sets and relations,
812 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
813 C<isl_union_set> and C<isl_union_map>.
814 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
815 can be described as a conjunction of affine constraints, while
816 C<isl_set> and C<isl_map> represent unions of
817 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
818 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
819 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
820 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
821 where spaces are considered different if they have a different number
822 of dimensions and/or different names (see L<"Spaces">).
823 The difference between sets and relations (maps) is that sets have
824 one set of variables, while relations have two sets of variables,
825 input variables and output variables.
827 =head2 Error Handling
829 C<isl> supports different ways to react in case a runtime error is triggered.
830 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
831 with two maps that have incompatible spaces. There are three possible ways
832 to react on error: to warn, to continue or to abort.
834 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
835 the last error in the corresponding C<isl_ctx> and the function in which the
836 error was triggered returns a value indicating that some error has
837 occurred. In case of functions returning a pointer, this value is
838 C<NULL>. In case of functions returning an C<isl_bool> or an
839 C<isl_stat>, this valus is C<isl_bool_error> or C<isl_stat_error>.
840 An error does not corrupt internal state,
841 such that isl can continue to be used. C<isl> also provides functions to
842 read the last error and to reset the memory that stores the last error. The
843 last error is only stored for information purposes. Its presence does not
844 change the behavior of C<isl>. Hence, resetting an error is not required to
845 continue to use isl, but only to observe new errors.
848 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
849 void isl_ctx_reset_error(isl_ctx *ctx);
851 Another option is to continue on error. This is similar to warn on error mode,
852 except that C<isl> does not print any warning. This allows a program to
853 implement its own error reporting.
855 The last option is to directly abort the execution of the program from within
856 the isl library. This makes it obviously impossible to recover from an error,
857 but it allows to directly spot the error location. By aborting on error,
858 debuggers break at the location the error occurred and can provide a stack
859 trace. Other tools that automatically provide stack traces on abort or that do
860 not want to continue execution after an error was triggered may also prefer to
863 The on error behavior of isl can be specified by calling
864 C<isl_options_set_on_error> or by setting the command line option
865 C<--isl-on-error>. Valid arguments for the function call are
866 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
867 choices for the command line option are C<warn>, C<continue> and C<abort>.
868 It is also possible to query the current error mode.
870 #include <isl/options.h>
871 isl_stat isl_options_set_on_error(isl_ctx *ctx, int val);
872 int isl_options_get_on_error(isl_ctx *ctx);
876 Identifiers are used to identify both individual dimensions
877 and tuples of dimensions. They consist of an optional name and an optional
878 user pointer. The name and the user pointer cannot both be C<NULL>, however.
879 Identifiers with the same name but different pointer values
880 are considered to be distinct.
881 Similarly, identifiers with different names but the same pointer value
882 are also considered to be distinct.
883 Equal identifiers are represented using the same object.
884 Pairs of identifiers can therefore be tested for equality using the
886 Identifiers can be constructed, copied, freed, inspected and printed
887 using the following functions.
890 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
891 __isl_keep const char *name, void *user);
892 __isl_give isl_id *isl_id_set_free_user(
893 __isl_take isl_id *id,
894 void (*free_user)(void *user));
895 __isl_give isl_id *isl_id_copy(isl_id *id);
896 __isl_null isl_id *isl_id_free(__isl_take isl_id *id);
898 void *isl_id_get_user(__isl_keep isl_id *id);
899 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
901 __isl_give isl_printer *isl_printer_print_id(
902 __isl_take isl_printer *p, __isl_keep isl_id *id);
904 The callback set by C<isl_id_set_free_user> is called on the user
905 pointer when the last reference to the C<isl_id> is freed.
906 Note that C<isl_id_get_name> returns a pointer to some internal
907 data structure, so the result can only be used while the
908 corresponding C<isl_id> is alive.
912 Whenever a new set, relation or similar object is created from scratch,
913 the space in which it lives needs to be specified using an C<isl_space>.
914 Each space involves zero or more parameters and zero, one or two
915 tuples of set or input/output dimensions. The parameters and dimensions
916 are identified by an C<isl_dim_type> and a position.
917 The type C<isl_dim_param> refers to parameters,
918 the type C<isl_dim_set> refers to set dimensions (for spaces
919 with a single tuple of dimensions) and the types C<isl_dim_in>
920 and C<isl_dim_out> refer to input and output dimensions
921 (for spaces with two tuples of dimensions).
922 Local spaces (see L</"Local Spaces">) also contain dimensions
923 of type C<isl_dim_div>.
924 Note that parameters are only identified by their position within
925 a given object. Across different objects, parameters are (usually)
926 identified by their names or identifiers. Only unnamed parameters
927 are identified by their positions across objects. The use of unnamed
928 parameters is discouraged.
930 #include <isl/space.h>
931 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
932 unsigned nparam, unsigned n_in, unsigned n_out);
933 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
935 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
936 unsigned nparam, unsigned dim);
937 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
938 __isl_null isl_space *isl_space_free(__isl_take isl_space *space);
940 The space used for creating a parameter domain
941 needs to be created using C<isl_space_params_alloc>.
942 For other sets, the space
943 needs to be created using C<isl_space_set_alloc>, while
944 for a relation, the space
945 needs to be created using C<isl_space_alloc>.
947 To check whether a given space is that of a set or a map
948 or whether it is a parameter space, use these functions:
950 #include <isl/space.h>
951 isl_bool isl_space_is_params(__isl_keep isl_space *space);
952 isl_bool isl_space_is_set(__isl_keep isl_space *space);
953 isl_bool isl_space_is_map(__isl_keep isl_space *space);
955 Spaces can be compared using the following functions:
957 #include <isl/space.h>
958 isl_bool isl_space_is_equal(__isl_keep isl_space *space1,
959 __isl_keep isl_space *space2);
960 isl_bool isl_space_has_equal_params(
961 __isl_keep isl_space *space1,
962 __isl_keep isl_space *space2);
963 isl_bool isl_space_has_equal_tuples(
964 __isl_keep isl_space *space1,
965 __isl_keep isl_space *space2);
966 isl_bool isl_space_is_domain(__isl_keep isl_space *space1,
967 __isl_keep isl_space *space2);
968 isl_bool isl_space_is_range(__isl_keep isl_space *space1,
969 __isl_keep isl_space *space2);
970 isl_bool isl_space_tuple_is_equal(
971 __isl_keep isl_space *space1,
972 enum isl_dim_type type1,
973 __isl_keep isl_space *space2,
974 enum isl_dim_type type2);
976 C<isl_space_is_domain> checks whether the first argument is equal
977 to the domain of the second argument. This requires in particular that
978 the first argument is a set space and that the second argument
979 is a map space. C<isl_space_tuple_is_equal> checks whether the given
980 tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
981 spaces are the same. That is, it checks if they have the same
982 identifier (if any), the same dimension and the same internal structure
985 C<isl_space_has_equal_params> checks whether two spaces
986 have the same parameters in the same order.
987 C<isl_space_has_equal_tuples> check whether two spaces have
988 the same tuples. In contrast to C<isl_space_is_equal> below,
989 it does not check the
990 parameters. This is useful because many C<isl> functions align the
991 parameters before they perform their operations, such that equivalence
993 C<isl_space_is_equal> checks whether two spaces are identical,
994 meaning that they have the same parameters and the same tuples.
995 That is, it checks whether both C<isl_space_has_equal_params> and
996 C<isl_space_has_equal_tuples> hold.
998 It is often useful to create objects that live in the
999 same space as some other object. This can be accomplished
1000 by creating the new objects
1001 (see L</"Creating New Sets and Relations"> or
1002 L</"Functions">) based on the space
1003 of the original object.
1005 #include <isl/set.h>
1006 __isl_give isl_space *isl_basic_set_get_space(
1007 __isl_keep isl_basic_set *bset);
1008 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
1010 #include <isl/union_set.h>
1011 __isl_give isl_space *isl_union_set_get_space(
1012 __isl_keep isl_union_set *uset);
1014 #include <isl/map.h>
1015 __isl_give isl_space *isl_basic_map_get_space(
1016 __isl_keep isl_basic_map *bmap);
1017 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
1019 #include <isl/union_map.h>
1020 __isl_give isl_space *isl_union_map_get_space(
1021 __isl_keep isl_union_map *umap);
1023 #include <isl/constraint.h>
1024 __isl_give isl_space *isl_constraint_get_space(
1025 __isl_keep isl_constraint *constraint);
1027 #include <isl/polynomial.h>
1028 __isl_give isl_space *isl_qpolynomial_get_domain_space(
1029 __isl_keep isl_qpolynomial *qp);
1030 __isl_give isl_space *isl_qpolynomial_get_space(
1031 __isl_keep isl_qpolynomial *qp);
1032 __isl_give isl_space *
1033 isl_qpolynomial_fold_get_domain_space(
1034 __isl_keep isl_qpolynomial_fold *fold);
1035 __isl_give isl_space *isl_qpolynomial_fold_get_space(
1036 __isl_keep isl_qpolynomial_fold *fold);
1037 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
1038 __isl_keep isl_pw_qpolynomial *pwqp);
1039 __isl_give isl_space *isl_pw_qpolynomial_get_space(
1040 __isl_keep isl_pw_qpolynomial *pwqp);
1041 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
1042 __isl_keep isl_pw_qpolynomial_fold *pwf);
1043 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
1044 __isl_keep isl_pw_qpolynomial_fold *pwf);
1045 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
1046 __isl_keep isl_union_pw_qpolynomial *upwqp);
1047 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
1048 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
1050 #include <isl/val.h>
1051 __isl_give isl_space *isl_multi_val_get_space(
1052 __isl_keep isl_multi_val *mv);
1054 #include <isl/aff.h>
1055 __isl_give isl_space *isl_aff_get_domain_space(
1056 __isl_keep isl_aff *aff);
1057 __isl_give isl_space *isl_aff_get_space(
1058 __isl_keep isl_aff *aff);
1059 __isl_give isl_space *isl_pw_aff_get_domain_space(
1060 __isl_keep isl_pw_aff *pwaff);
1061 __isl_give isl_space *isl_pw_aff_get_space(
1062 __isl_keep isl_pw_aff *pwaff);
1063 __isl_give isl_space *isl_multi_aff_get_domain_space(
1064 __isl_keep isl_multi_aff *maff);
1065 __isl_give isl_space *isl_multi_aff_get_space(
1066 __isl_keep isl_multi_aff *maff);
1067 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
1068 __isl_keep isl_pw_multi_aff *pma);
1069 __isl_give isl_space *isl_pw_multi_aff_get_space(
1070 __isl_keep isl_pw_multi_aff *pma);
1071 __isl_give isl_space *isl_union_pw_aff_get_space(
1072 __isl_keep isl_union_pw_aff *upa);
1073 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
1074 __isl_keep isl_union_pw_multi_aff *upma);
1075 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
1076 __isl_keep isl_multi_pw_aff *mpa);
1077 __isl_give isl_space *isl_multi_pw_aff_get_space(
1078 __isl_keep isl_multi_pw_aff *mpa);
1079 __isl_give isl_space *
1080 isl_multi_union_pw_aff_get_domain_space(
1081 __isl_keep isl_multi_union_pw_aff *mupa);
1082 __isl_give isl_space *
1083 isl_multi_union_pw_aff_get_space(
1084 __isl_keep isl_multi_union_pw_aff *mupa);
1086 #include <isl/point.h>
1087 __isl_give isl_space *isl_point_get_space(
1088 __isl_keep isl_point *pnt);
1090 The number of dimensions of a given type of space
1091 may be read off from a space or an object that lives
1092 in a space using the following functions.
1093 In case of C<isl_space_dim>, type may be
1094 C<isl_dim_param>, C<isl_dim_in> (only for relations),
1095 C<isl_dim_out> (only for relations), C<isl_dim_set>
1096 (only for sets) or C<isl_dim_all>.
1098 #include <isl/space.h>
1099 unsigned isl_space_dim(__isl_keep isl_space *space,
1100 enum isl_dim_type type);
1102 #include <isl/local_space.h>
1103 int isl_local_space_dim(__isl_keep isl_local_space *ls,
1104 enum isl_dim_type type);
1106 #include <isl/set.h>
1107 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1108 enum isl_dim_type type);
1109 unsigned isl_set_dim(__isl_keep isl_set *set,
1110 enum isl_dim_type type);
1112 #include <isl/union_set.h>
1113 unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
1114 enum isl_dim_type type);
1116 #include <isl/map.h>
1117 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1118 enum isl_dim_type type);
1119 unsigned isl_map_dim(__isl_keep isl_map *map,
1120 enum isl_dim_type type);
1122 #include <isl/union_map.h>
1123 unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
1124 enum isl_dim_type type);
1126 #include <isl/val.h>
1127 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
1128 enum isl_dim_type type);
1130 #include <isl/aff.h>
1131 int isl_aff_dim(__isl_keep isl_aff *aff,
1132 enum isl_dim_type type);
1133 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
1134 enum isl_dim_type type);
1135 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
1136 enum isl_dim_type type);
1137 unsigned isl_pw_multi_aff_dim(
1138 __isl_keep isl_pw_multi_aff *pma,
1139 enum isl_dim_type type);
1140 unsigned isl_multi_pw_aff_dim(
1141 __isl_keep isl_multi_pw_aff *mpa,
1142 enum isl_dim_type type);
1143 unsigned isl_union_pw_aff_dim(
1144 __isl_keep isl_union_pw_aff *upa,
1145 enum isl_dim_type type);
1146 unsigned isl_union_pw_multi_aff_dim(
1147 __isl_keep isl_union_pw_multi_aff *upma,
1148 enum isl_dim_type type);
1149 unsigned isl_multi_union_pw_aff_dim(
1150 __isl_keep isl_multi_union_pw_aff *mupa,
1151 enum isl_dim_type type);
1153 #include <isl/polynomial.h>
1154 unsigned isl_union_pw_qpolynomial_dim(
1155 __isl_keep isl_union_pw_qpolynomial *upwqp,
1156 enum isl_dim_type type);
1157 unsigned isl_union_pw_qpolynomial_fold_dim(
1158 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1159 enum isl_dim_type type);
1161 Note that an C<isl_union_set>, an C<isl_union_map>,
1162 an C<isl_union_pw_multi_aff>,
1163 an C<isl_union_pw_qpolynomial> and
1164 an C<isl_union_pw_qpolynomial_fold>
1165 only have parameters.
1167 The identifiers or names of the individual dimensions of spaces
1168 may be set or read off using the following functions on spaces
1169 or objects that live in spaces.
1170 These functions are mostly useful to obtain the identifiers, positions
1171 or names of the parameters. Identifiers of individual dimensions are
1172 essentially only useful for printing. They are ignored by all other
1173 operations and may not be preserved across those operations.
1175 #include <isl/space.h>
1176 __isl_give isl_space *isl_space_set_dim_id(
1177 __isl_take isl_space *space,
1178 enum isl_dim_type type, unsigned pos,
1179 __isl_take isl_id *id);
1180 isl_bool isl_space_has_dim_id(__isl_keep isl_space *space,
1181 enum isl_dim_type type, unsigned pos);
1182 __isl_give isl_id *isl_space_get_dim_id(
1183 __isl_keep isl_space *space,
1184 enum isl_dim_type type, unsigned pos);
1185 __isl_give isl_space *isl_space_set_dim_name(
1186 __isl_take isl_space *space,
1187 enum isl_dim_type type, unsigned pos,
1188 __isl_keep const char *name);
1189 isl_bool isl_space_has_dim_name(__isl_keep isl_space *space,
1190 enum isl_dim_type type, unsigned pos);
1191 __isl_keep const char *isl_space_get_dim_name(
1192 __isl_keep isl_space *space,
1193 enum isl_dim_type type, unsigned pos);
1195 #include <isl/local_space.h>
1196 __isl_give isl_local_space *isl_local_space_set_dim_id(
1197 __isl_take isl_local_space *ls,
1198 enum isl_dim_type type, unsigned pos,
1199 __isl_take isl_id *id);
1200 isl_bool isl_local_space_has_dim_id(
1201 __isl_keep isl_local_space *ls,
1202 enum isl_dim_type type, unsigned pos);
1203 __isl_give isl_id *isl_local_space_get_dim_id(
1204 __isl_keep isl_local_space *ls,
1205 enum isl_dim_type type, unsigned pos);
1206 __isl_give isl_local_space *isl_local_space_set_dim_name(
1207 __isl_take isl_local_space *ls,
1208 enum isl_dim_type type, unsigned pos, const char *s);
1209 isl_bool isl_local_space_has_dim_name(
1210 __isl_keep isl_local_space *ls,
1211 enum isl_dim_type type, unsigned pos)
1212 const char *isl_local_space_get_dim_name(
1213 __isl_keep isl_local_space *ls,
1214 enum isl_dim_type type, unsigned pos);
1216 #include <isl/constraint.h>
1217 const char *isl_constraint_get_dim_name(
1218 __isl_keep isl_constraint *constraint,
1219 enum isl_dim_type type, unsigned pos);
1221 #include <isl/set.h>
1222 __isl_give isl_id *isl_basic_set_get_dim_id(
1223 __isl_keep isl_basic_set *bset,
1224 enum isl_dim_type type, unsigned pos);
1225 __isl_give isl_set *isl_set_set_dim_id(
1226 __isl_take isl_set *set, enum isl_dim_type type,
1227 unsigned pos, __isl_take isl_id *id);
1228 isl_bool isl_set_has_dim_id(__isl_keep isl_set *set,
1229 enum isl_dim_type type, unsigned pos);
1230 __isl_give isl_id *isl_set_get_dim_id(
1231 __isl_keep isl_set *set, enum isl_dim_type type,
1233 const char *isl_basic_set_get_dim_name(
1234 __isl_keep isl_basic_set *bset,
1235 enum isl_dim_type type, unsigned pos);
1236 isl_bool isl_set_has_dim_name(__isl_keep isl_set *set,
1237 enum isl_dim_type type, unsigned pos);
1238 const char *isl_set_get_dim_name(
1239 __isl_keep isl_set *set,
1240 enum isl_dim_type type, unsigned pos);
1242 #include <isl/map.h>
1243 __isl_give isl_map *isl_map_set_dim_id(
1244 __isl_take isl_map *map, enum isl_dim_type type,
1245 unsigned pos, __isl_take isl_id *id);
1246 isl_bool isl_basic_map_has_dim_id(
1247 __isl_keep isl_basic_map *bmap,
1248 enum isl_dim_type type, unsigned pos);
1249 isl_bool isl_map_has_dim_id(__isl_keep isl_map *map,
1250 enum isl_dim_type type, unsigned pos);
1251 __isl_give isl_id *isl_map_get_dim_id(
1252 __isl_keep isl_map *map, enum isl_dim_type type,
1254 __isl_give isl_id *isl_union_map_get_dim_id(
1255 __isl_keep isl_union_map *umap,
1256 enum isl_dim_type type, unsigned pos);
1257 const char *isl_basic_map_get_dim_name(
1258 __isl_keep isl_basic_map *bmap,
1259 enum isl_dim_type type, unsigned pos);
1260 isl_bool isl_map_has_dim_name(__isl_keep isl_map *map,
1261 enum isl_dim_type type, unsigned pos);
1262 const char *isl_map_get_dim_name(
1263 __isl_keep isl_map *map,
1264 enum isl_dim_type type, unsigned pos);
1266 #include <isl/val.h>
1267 __isl_give isl_multi_val *isl_multi_val_set_dim_id(
1268 __isl_take isl_multi_val *mv,
1269 enum isl_dim_type type, unsigned pos,
1270 __isl_take isl_id *id);
1271 __isl_give isl_id *isl_multi_val_get_dim_id(
1272 __isl_keep isl_multi_val *mv,
1273 enum isl_dim_type type, unsigned pos);
1274 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
1275 __isl_take isl_multi_val *mv,
1276 enum isl_dim_type type, unsigned pos, const char *s);
1278 #include <isl/aff.h>
1279 __isl_give isl_aff *isl_aff_set_dim_id(
1280 __isl_take isl_aff *aff, enum isl_dim_type type,
1281 unsigned pos, __isl_take isl_id *id);
1282 __isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
1283 __isl_take isl_multi_aff *maff,
1284 enum isl_dim_type type, unsigned pos,
1285 __isl_take isl_id *id);
1286 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
1287 __isl_take isl_pw_aff *pma,
1288 enum isl_dim_type type, unsigned pos,
1289 __isl_take isl_id *id);
1290 __isl_give isl_multi_pw_aff *
1291 isl_multi_pw_aff_set_dim_id(
1292 __isl_take isl_multi_pw_aff *mpa,
1293 enum isl_dim_type type, unsigned pos,
1294 __isl_take isl_id *id);
1295 __isl_give isl_multi_union_pw_aff *
1296 isl_multi_union_pw_aff_set_dim_id(
1297 __isl_take isl_multi_union_pw_aff *mupa,
1298 enum isl_dim_type type, unsigned pos,
1299 __isl_take isl_id *id);
1300 __isl_give isl_id *isl_multi_aff_get_dim_id(
1301 __isl_keep isl_multi_aff *ma,
1302 enum isl_dim_type type, unsigned pos);
1303 isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
1304 enum isl_dim_type type, unsigned pos);
1305 __isl_give isl_id *isl_pw_aff_get_dim_id(
1306 __isl_keep isl_pw_aff *pa,
1307 enum isl_dim_type type, unsigned pos);
1308 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
1309 __isl_keep isl_pw_multi_aff *pma,
1310 enum isl_dim_type type, unsigned pos);
1311 __isl_give isl_id *isl_multi_pw_aff_get_dim_id(
1312 __isl_keep isl_multi_pw_aff *mpa,
1313 enum isl_dim_type type, unsigned pos);
1314 __isl_give isl_id *isl_multi_union_pw_aff_get_dim_id(
1315 __isl_keep isl_multi_union_pw_aff *mupa,
1316 enum isl_dim_type type, unsigned pos);
1317 __isl_give isl_aff *isl_aff_set_dim_name(
1318 __isl_take isl_aff *aff, enum isl_dim_type type,
1319 unsigned pos, const char *s);
1320 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
1321 __isl_take isl_multi_aff *maff,
1322 enum isl_dim_type type, unsigned pos, const char *s);
1323 __isl_give isl_multi_pw_aff *
1324 isl_multi_pw_aff_set_dim_name(
1325 __isl_take isl_multi_pw_aff *mpa,
1326 enum isl_dim_type type, unsigned pos, const char *s);
1327 __isl_give isl_union_pw_aff *
1328 isl_union_pw_aff_set_dim_name(
1329 __isl_take isl_union_pw_aff *upa,
1330 enum isl_dim_type type, unsigned pos,
1332 __isl_give isl_union_pw_multi_aff *
1333 isl_union_pw_multi_aff_set_dim_name(
1334 __isl_take isl_union_pw_multi_aff *upma,
1335 enum isl_dim_type type, unsigned pos,
1337 __isl_give isl_multi_union_pw_aff *
1338 isl_multi_union_pw_aff_set_dim_name(
1339 __isl_take isl_multi_union_pw_aff *mupa,
1340 enum isl_dim_type type, unsigned pos,
1341 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
1342 enum isl_dim_type type, unsigned pos);
1343 const char *isl_pw_aff_get_dim_name(
1344 __isl_keep isl_pw_aff *pa,
1345 enum isl_dim_type type, unsigned pos);
1346 const char *isl_pw_multi_aff_get_dim_name(
1347 __isl_keep isl_pw_multi_aff *pma,
1348 enum isl_dim_type type, unsigned pos);
1350 #include <isl/polynomial.h>
1351 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1352 __isl_take isl_qpolynomial *qp,
1353 enum isl_dim_type type, unsigned pos,
1355 __isl_give isl_pw_qpolynomial *
1356 isl_pw_qpolynomial_set_dim_name(
1357 __isl_take isl_pw_qpolynomial *pwqp,
1358 enum isl_dim_type type, unsigned pos,
1360 __isl_give isl_pw_qpolynomial_fold *
1361 isl_pw_qpolynomial_fold_set_dim_name(
1362 __isl_take isl_pw_qpolynomial_fold *pwf,
1363 enum isl_dim_type type, unsigned pos,
1365 __isl_give isl_union_pw_qpolynomial *
1366 isl_union_pw_qpolynomial_set_dim_name(
1367 __isl_take isl_union_pw_qpolynomial *upwqp,
1368 enum isl_dim_type type, unsigned pos,
1370 __isl_give isl_union_pw_qpolynomial_fold *
1371 isl_union_pw_qpolynomial_fold_set_dim_name(
1372 __isl_take isl_union_pw_qpolynomial_fold *upwf,
1373 enum isl_dim_type type, unsigned pos,
1376 Note that C<isl_space_get_name> returns a pointer to some internal
1377 data structure, so the result can only be used while the
1378 corresponding C<isl_space> is alive.
1379 Also note that every function that operates on two sets or relations
1380 requires that both arguments have the same parameters. This also
1381 means that if one of the arguments has named parameters, then the
1382 other needs to have named parameters too and the names need to match.
1383 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
1384 arguments may have different parameters (as long as they are named),
1385 in which case the result will have as parameters the union of the parameters of
1388 Given the identifier or name of a dimension (typically a parameter),
1389 its position can be obtained from the following functions.
1391 #include <isl/space.h>
1392 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
1393 enum isl_dim_type type, __isl_keep isl_id *id);
1394 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
1395 enum isl_dim_type type, const char *name);
1397 #include <isl/local_space.h>
1398 int isl_local_space_find_dim_by_name(
1399 __isl_keep isl_local_space *ls,
1400 enum isl_dim_type type, const char *name);
1402 #include <isl/val.h>
1403 int isl_multi_val_find_dim_by_id(
1404 __isl_keep isl_multi_val *mv,
1405 enum isl_dim_type type, __isl_keep isl_id *id);
1406 int isl_multi_val_find_dim_by_name(
1407 __isl_keep isl_multi_val *mv,
1408 enum isl_dim_type type, const char *name);
1410 #include <isl/set.h>
1411 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1412 enum isl_dim_type type, __isl_keep isl_id *id);
1413 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1414 enum isl_dim_type type, const char *name);
1416 #include <isl/map.h>
1417 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1418 enum isl_dim_type type, __isl_keep isl_id *id);
1419 int isl_basic_map_find_dim_by_name(
1420 __isl_keep isl_basic_map *bmap,
1421 enum isl_dim_type type, const char *name);
1422 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1423 enum isl_dim_type type, const char *name);
1424 int isl_union_map_find_dim_by_name(
1425 __isl_keep isl_union_map *umap,
1426 enum isl_dim_type type, const char *name);
1428 #include <isl/aff.h>
1429 int isl_multi_aff_find_dim_by_id(
1430 __isl_keep isl_multi_aff *ma,
1431 enum isl_dim_type type, __isl_keep isl_id *id);
1432 int isl_multi_pw_aff_find_dim_by_id(
1433 __isl_keep isl_multi_pw_aff *mpa,
1434 enum isl_dim_type type, __isl_keep isl_id *id);
1435 int isl_multi_union_pw_aff_find_dim_by_id(
1436 __isl_keep isl_union_multi_pw_aff *mupa,
1437 enum isl_dim_type type, __isl_keep isl_id *id);
1438 int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
1439 enum isl_dim_type type, const char *name);
1440 int isl_multi_aff_find_dim_by_name(
1441 __isl_keep isl_multi_aff *ma,
1442 enum isl_dim_type type, const char *name);
1443 int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
1444 enum isl_dim_type type, const char *name);
1445 int isl_multi_pw_aff_find_dim_by_name(
1446 __isl_keep isl_multi_pw_aff *mpa,
1447 enum isl_dim_type type, const char *name);
1448 int isl_pw_multi_aff_find_dim_by_name(
1449 __isl_keep isl_pw_multi_aff *pma,
1450 enum isl_dim_type type, const char *name);
1451 int isl_union_pw_aff_find_dim_by_name(
1452 __isl_keep isl_union_pw_aff *upa,
1453 enum isl_dim_type type, const char *name);
1454 int isl_union_pw_multi_aff_find_dim_by_name(
1455 __isl_keep isl_union_pw_multi_aff *upma,
1456 enum isl_dim_type type, const char *name);
1457 int isl_multi_union_pw_aff_find_dim_by_name(
1458 __isl_keep isl_multi_union_pw_aff *mupa,
1459 enum isl_dim_type type, const char *name);
1461 #include <isl/polynomial.h>
1462 int isl_pw_qpolynomial_find_dim_by_name(
1463 __isl_keep isl_pw_qpolynomial *pwqp,
1464 enum isl_dim_type type, const char *name);
1465 int isl_pw_qpolynomial_fold_find_dim_by_name(
1466 __isl_keep isl_pw_qpolynomial_fold *pwf,
1467 enum isl_dim_type type, const char *name);
1468 int isl_union_pw_qpolynomial_find_dim_by_name(
1469 __isl_keep isl_union_pw_qpolynomial *upwqp,
1470 enum isl_dim_type type, const char *name);
1471 int isl_union_pw_qpolynomial_fold_find_dim_by_name(
1472 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1473 enum isl_dim_type type, const char *name);
1475 The identifiers or names of entire spaces may be set or read off
1476 using the following functions.
1478 #include <isl/space.h>
1479 __isl_give isl_space *isl_space_set_tuple_id(
1480 __isl_take isl_space *space,
1481 enum isl_dim_type type, __isl_take isl_id *id);
1482 __isl_give isl_space *isl_space_reset_tuple_id(
1483 __isl_take isl_space *space, enum isl_dim_type type);
1484 isl_bool isl_space_has_tuple_id(
1485 __isl_keep isl_space *space,
1486 enum isl_dim_type type);
1487 __isl_give isl_id *isl_space_get_tuple_id(
1488 __isl_keep isl_space *space, enum isl_dim_type type);
1489 __isl_give isl_space *isl_space_set_tuple_name(
1490 __isl_take isl_space *space,
1491 enum isl_dim_type type, const char *s);
1492 isl_bool isl_space_has_tuple_name(
1493 __isl_keep isl_space *space,
1494 enum isl_dim_type type);
1495 __isl_keep const char *isl_space_get_tuple_name(
1496 __isl_keep isl_space *space,
1497 enum isl_dim_type type);
1499 #include <isl/local_space.h>
1500 __isl_give isl_local_space *isl_local_space_set_tuple_id(
1501 __isl_take isl_local_space *ls,
1502 enum isl_dim_type type, __isl_take isl_id *id);
1504 #include <isl/set.h>
1505 __isl_give isl_basic_set *isl_basic_set_set_tuple_id(
1506 __isl_take isl_basic_set *bset,
1507 __isl_take isl_id *id);
1508 __isl_give isl_set *isl_set_set_tuple_id(
1509 __isl_take isl_set *set, __isl_take isl_id *id);
1510 __isl_give isl_set *isl_set_reset_tuple_id(
1511 __isl_take isl_set *set);
1512 isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set);
1513 __isl_give isl_id *isl_set_get_tuple_id(
1514 __isl_keep isl_set *set);
1515 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1516 __isl_take isl_basic_set *set, const char *s);
1517 __isl_give isl_set *isl_set_set_tuple_name(
1518 __isl_take isl_set *set, const char *s);
1519 const char *isl_basic_set_get_tuple_name(
1520 __isl_keep isl_basic_set *bset);
1521 isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set);
1522 const char *isl_set_get_tuple_name(
1523 __isl_keep isl_set *set);
1525 #include <isl/map.h>
1526 __isl_give isl_basic_map *isl_basic_map_set_tuple_id(
1527 __isl_take isl_basic_map *bmap,
1528 enum isl_dim_type type, __isl_take isl_id *id);
1529 __isl_give isl_map *isl_map_set_tuple_id(
1530 __isl_take isl_map *map, enum isl_dim_type type,
1531 __isl_take isl_id *id);
1532 __isl_give isl_map *isl_map_reset_tuple_id(
1533 __isl_take isl_map *map, enum isl_dim_type type);
1534 isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map,
1535 enum isl_dim_type type);
1536 __isl_give isl_id *isl_map_get_tuple_id(
1537 __isl_keep isl_map *map, enum isl_dim_type type);
1538 __isl_give isl_map *isl_map_set_tuple_name(
1539 __isl_take isl_map *map,
1540 enum isl_dim_type type, const char *s);
1541 const char *isl_basic_map_get_tuple_name(
1542 __isl_keep isl_basic_map *bmap,
1543 enum isl_dim_type type);
1544 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1545 __isl_take isl_basic_map *bmap,
1546 enum isl_dim_type type, const char *s);
1547 isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map,
1548 enum isl_dim_type type);
1549 const char *isl_map_get_tuple_name(
1550 __isl_keep isl_map *map,
1551 enum isl_dim_type type);
1553 #include <isl/val.h>
1554 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
1555 __isl_take isl_multi_val *mv,
1556 enum isl_dim_type type, __isl_take isl_id *id);
1557 __isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
1558 __isl_take isl_multi_val *mv,
1559 enum isl_dim_type type);
1560 isl_bool isl_multi_val_has_tuple_id(
1561 __isl_keep isl_multi_val *mv,
1562 enum isl_dim_type type);
1563 __isl_give isl_id *isl_multi_val_get_tuple_id(
1564 __isl_keep isl_multi_val *mv,
1565 enum isl_dim_type type);
1566 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
1567 __isl_take isl_multi_val *mv,
1568 enum isl_dim_type type, const char *s);
1569 const char *isl_multi_val_get_tuple_name(
1570 __isl_keep isl_multi_val *mv,
1571 enum isl_dim_type type);
1573 #include <isl/aff.h>
1574 __isl_give isl_aff *isl_aff_set_tuple_id(
1575 __isl_take isl_aff *aff,
1576 enum isl_dim_type type, __isl_take isl_id *id);
1577 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
1578 __isl_take isl_multi_aff *maff,
1579 enum isl_dim_type type, __isl_take isl_id *id);
1580 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
1581 __isl_take isl_pw_aff *pwaff,
1582 enum isl_dim_type type, __isl_take isl_id *id);
1583 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
1584 __isl_take isl_pw_multi_aff *pma,
1585 enum isl_dim_type type, __isl_take isl_id *id);
1586 __isl_give isl_multi_union_pw_aff *
1587 isl_multi_union_pw_aff_set_tuple_id(
1588 __isl_take isl_multi_union_pw_aff *mupa,
1589 enum isl_dim_type type, __isl_take isl_id *id);
1590 __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
1591 __isl_take isl_multi_aff *ma,
1592 enum isl_dim_type type);
1593 __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
1594 __isl_take isl_pw_aff *pa,
1595 enum isl_dim_type type);
1596 __isl_give isl_multi_pw_aff *
1597 isl_multi_pw_aff_reset_tuple_id(
1598 __isl_take isl_multi_pw_aff *mpa,
1599 enum isl_dim_type type);
1600 __isl_give isl_pw_multi_aff *
1601 isl_pw_multi_aff_reset_tuple_id(
1602 __isl_take isl_pw_multi_aff *pma,
1603 enum isl_dim_type type);
1604 __isl_give isl_multi_union_pw_aff *
1605 isl_multi_union_pw_aff_reset_tuple_id(
1606 __isl_take isl_multi_union_pw_aff *mupa,
1607 enum isl_dim_type type);
1608 isl_bool isl_multi_aff_has_tuple_id(
1609 __isl_keep isl_multi_aff *ma,
1610 enum isl_dim_type type);
1611 __isl_give isl_id *isl_multi_aff_get_tuple_id(
1612 __isl_keep isl_multi_aff *ma,
1613 enum isl_dim_type type);
1614 isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
1615 enum isl_dim_type type);
1616 __isl_give isl_id *isl_pw_aff_get_tuple_id(
1617 __isl_keep isl_pw_aff *pa,
1618 enum isl_dim_type type);
1619 isl_bool isl_pw_multi_aff_has_tuple_id(
1620 __isl_keep isl_pw_multi_aff *pma,
1621 enum isl_dim_type type);
1622 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
1623 __isl_keep isl_pw_multi_aff *pma,
1624 enum isl_dim_type type);
1625 isl_bool isl_multi_pw_aff_has_tuple_id(
1626 __isl_keep isl_multi_pw_aff *mpa,
1627 enum isl_dim_type type);
1628 __isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
1629 __isl_keep isl_multi_pw_aff *mpa,
1630 enum isl_dim_type type);
1631 isl_bool isl_multi_union_pw_aff_has_tuple_id(
1632 __isl_keep isl_multi_union_pw_aff *mupa,
1633 enum isl_dim_type type);
1634 __isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id(
1635 __isl_keep isl_multi_union_pw_aff *mupa,
1636 enum isl_dim_type type);
1637 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
1638 __isl_take isl_multi_aff *maff,
1639 enum isl_dim_type type, const char *s);
1640 __isl_give isl_multi_pw_aff *
1641 isl_multi_pw_aff_set_tuple_name(
1642 __isl_take isl_multi_pw_aff *mpa,
1643 enum isl_dim_type type, const char *s);
1644 __isl_give isl_multi_union_pw_aff *
1645 isl_multi_union_pw_aff_set_tuple_name(
1646 __isl_take isl_multi_union_pw_aff *mupa,
1647 enum isl_dim_type type, const char *s);
1648 const char *isl_multi_aff_get_tuple_name(
1649 __isl_keep isl_multi_aff *multi,
1650 enum isl_dim_type type);
1651 isl_bool isl_pw_multi_aff_has_tuple_name(
1652 __isl_keep isl_pw_multi_aff *pma,
1653 enum isl_dim_type type);
1654 const char *isl_pw_multi_aff_get_tuple_name(
1655 __isl_keep isl_pw_multi_aff *pma,
1656 enum isl_dim_type type);
1657 const char *isl_multi_union_pw_aff_get_tuple_name(
1658 __isl_keep isl_multi_union_pw_aff *mupa,
1659 enum isl_dim_type type);
1661 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
1662 or C<isl_dim_set>. As with C<isl_space_get_name>,
1663 the C<isl_space_get_tuple_name> function returns a pointer to some internal
1665 Binary operations require the corresponding spaces of their arguments
1666 to have the same name.
1668 To keep the names of all parameters and tuples, but reset the user pointers
1669 of all the corresponding identifiers, use the following function.
1671 #include <isl/space.h>
1672 __isl_give isl_space *isl_space_reset_user(
1673 __isl_take isl_space *space);
1675 #include <isl/set.h>
1676 __isl_give isl_set *isl_set_reset_user(
1677 __isl_take isl_set *set);
1679 #include <isl/map.h>
1680 __isl_give isl_map *isl_map_reset_user(
1681 __isl_take isl_map *map);
1683 #include <isl/union_set.h>
1684 __isl_give isl_union_set *isl_union_set_reset_user(
1685 __isl_take isl_union_set *uset);
1687 #include <isl/union_map.h>
1688 __isl_give isl_union_map *isl_union_map_reset_user(
1689 __isl_take isl_union_map *umap);
1691 #include <isl/val.h>
1692 __isl_give isl_multi_val *isl_multi_val_reset_user(
1693 __isl_take isl_multi_val *mv);
1695 #include <isl/aff.h>
1696 __isl_give isl_multi_aff *isl_multi_aff_reset_user(
1697 __isl_take isl_multi_aff *ma);
1698 __isl_give isl_pw_aff *isl_pw_aff_reset_user(
1699 __isl_take isl_pw_aff *pa);
1700 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
1701 __isl_take isl_multi_pw_aff *mpa);
1702 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user(
1703 __isl_take isl_pw_multi_aff *pma);
1704 __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user(
1705 __isl_take isl_union_pw_aff *upa);
1706 __isl_give isl_multi_union_pw_aff *
1707 isl_multi_union_pw_aff_reset_user(
1708 __isl_take isl_multi_union_pw_aff *mupa);
1709 __isl_give isl_union_pw_multi_aff *
1710 isl_union_pw_multi_aff_reset_user(
1711 __isl_take isl_union_pw_multi_aff *upma);
1713 #include <isl/polynomial.h>
1714 __isl_give isl_pw_qpolynomial *
1715 isl_pw_qpolynomial_reset_user(
1716 __isl_take isl_pw_qpolynomial *pwqp);
1717 __isl_give isl_union_pw_qpolynomial *
1718 isl_union_pw_qpolynomial_reset_user(
1719 __isl_take isl_union_pw_qpolynomial *upwqp);
1720 __isl_give isl_pw_qpolynomial_fold *
1721 isl_pw_qpolynomial_fold_reset_user(
1722 __isl_take isl_pw_qpolynomial_fold *pwf);
1723 __isl_give isl_union_pw_qpolynomial_fold *
1724 isl_union_pw_qpolynomial_fold_reset_user(
1725 __isl_take isl_union_pw_qpolynomial_fold *upwf);
1727 Spaces can be nested. In particular, the domain of a set or
1728 the domain or range of a relation can be a nested relation.
1729 This process is also called I<wrapping>.
1730 The functions for detecting, constructing and deconstructing
1731 such nested spaces can be found in the wrapping properties
1732 of L</"Unary Properties">, the wrapping operations
1733 of L</"Unary Operations"> and the Cartesian product operations
1734 of L</"Basic Operations">.
1736 Spaces can be created from other spaces
1737 using the functions described in L</"Unary Operations">
1738 and L</"Binary Operations">.
1742 A local space is essentially a space with
1743 zero or more existentially quantified variables.
1744 The local space of various objects can be obtained
1745 using the following functions.
1747 #include <isl/constraint.h>
1748 __isl_give isl_local_space *isl_constraint_get_local_space(
1749 __isl_keep isl_constraint *constraint);
1751 #include <isl/set.h>
1752 __isl_give isl_local_space *isl_basic_set_get_local_space(
1753 __isl_keep isl_basic_set *bset);
1755 #include <isl/map.h>
1756 __isl_give isl_local_space *isl_basic_map_get_local_space(
1757 __isl_keep isl_basic_map *bmap);
1759 #include <isl/aff.h>
1760 __isl_give isl_local_space *isl_aff_get_domain_local_space(
1761 __isl_keep isl_aff *aff);
1762 __isl_give isl_local_space *isl_aff_get_local_space(
1763 __isl_keep isl_aff *aff);
1765 A new local space can be created from a space using
1767 #include <isl/local_space.h>
1768 __isl_give isl_local_space *isl_local_space_from_space(
1769 __isl_take isl_space *space);
1771 They can be inspected, modified, copied and freed using the following functions.
1773 #include <isl/local_space.h>
1774 isl_bool isl_local_space_is_params(
1775 __isl_keep isl_local_space *ls);
1776 isl_bool isl_local_space_is_set(
1777 __isl_keep isl_local_space *ls);
1778 __isl_give isl_space *isl_local_space_get_space(
1779 __isl_keep isl_local_space *ls);
1780 __isl_give isl_aff *isl_local_space_get_div(
1781 __isl_keep isl_local_space *ls, int pos);
1782 __isl_give isl_local_space *isl_local_space_copy(
1783 __isl_keep isl_local_space *ls);
1784 __isl_null isl_local_space *isl_local_space_free(
1785 __isl_take isl_local_space *ls);
1787 Note that C<isl_local_space_get_div> can only be used on local spaces
1790 Two local spaces can be compared using
1792 isl_bool isl_local_space_is_equal(
1793 __isl_keep isl_local_space *ls1,
1794 __isl_keep isl_local_space *ls2);
1796 Local spaces can be created from other local spaces
1797 using the functions described in L</"Unary Operations">
1798 and L</"Binary Operations">.
1800 =head2 Creating New Sets and Relations
1802 C<isl> has functions for creating some standard sets and relations.
1806 =item * Empty sets and relations
1808 __isl_give isl_basic_set *isl_basic_set_empty(
1809 __isl_take isl_space *space);
1810 __isl_give isl_basic_map *isl_basic_map_empty(
1811 __isl_take isl_space *space);
1812 __isl_give isl_set *isl_set_empty(
1813 __isl_take isl_space *space);
1814 __isl_give isl_map *isl_map_empty(
1815 __isl_take isl_space *space);
1816 __isl_give isl_union_set *isl_union_set_empty(
1817 __isl_take isl_space *space);
1818 __isl_give isl_union_map *isl_union_map_empty(
1819 __isl_take isl_space *space);
1821 For C<isl_union_set>s and C<isl_union_map>s, the space
1822 is only used to specify the parameters.
1824 =item * Universe sets and relations
1826 __isl_give isl_basic_set *isl_basic_set_universe(
1827 __isl_take isl_space *space);
1828 __isl_give isl_basic_map *isl_basic_map_universe(
1829 __isl_take isl_space *space);
1830 __isl_give isl_set *isl_set_universe(
1831 __isl_take isl_space *space);
1832 __isl_give isl_map *isl_map_universe(
1833 __isl_take isl_space *space);
1834 __isl_give isl_union_set *isl_union_set_universe(
1835 __isl_take isl_union_set *uset);
1836 __isl_give isl_union_map *isl_union_map_universe(
1837 __isl_take isl_union_map *umap);
1839 The sets and relations constructed by the functions above
1840 contain all integer values, while those constructed by the
1841 functions below only contain non-negative values.
1843 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1844 __isl_take isl_space *space);
1845 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1846 __isl_take isl_space *space);
1847 __isl_give isl_set *isl_set_nat_universe(
1848 __isl_take isl_space *space);
1849 __isl_give isl_map *isl_map_nat_universe(
1850 __isl_take isl_space *space);
1852 =item * Identity relations
1854 __isl_give isl_basic_map *isl_basic_map_identity(
1855 __isl_take isl_space *space);
1856 __isl_give isl_map *isl_map_identity(
1857 __isl_take isl_space *space);
1859 The number of input and output dimensions in C<space> needs
1862 =item * Lexicographic order
1864 __isl_give isl_map *isl_map_lex_lt(
1865 __isl_take isl_space *set_space);
1866 __isl_give isl_map *isl_map_lex_le(
1867 __isl_take isl_space *set_space);
1868 __isl_give isl_map *isl_map_lex_gt(
1869 __isl_take isl_space *set_space);
1870 __isl_give isl_map *isl_map_lex_ge(
1871 __isl_take isl_space *set_space);
1872 __isl_give isl_map *isl_map_lex_lt_first(
1873 __isl_take isl_space *space, unsigned n);
1874 __isl_give isl_map *isl_map_lex_le_first(
1875 __isl_take isl_space *space, unsigned n);
1876 __isl_give isl_map *isl_map_lex_gt_first(
1877 __isl_take isl_space *space, unsigned n);
1878 __isl_give isl_map *isl_map_lex_ge_first(
1879 __isl_take isl_space *space, unsigned n);
1881 The first four functions take a space for a B<set>
1882 and return relations that express that the elements in the domain
1883 are lexicographically less
1884 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1885 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1886 than the elements in the range.
1887 The last four functions take a space for a map
1888 and return relations that express that the first C<n> dimensions
1889 in the domain are lexicographically less
1890 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1891 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1892 than the first C<n> dimensions in the range.
1896 A basic set or relation can be converted to a set or relation
1897 using the following functions.
1899 __isl_give isl_set *isl_set_from_basic_set(
1900 __isl_take isl_basic_set *bset);
1901 __isl_give isl_map *isl_map_from_basic_map(
1902 __isl_take isl_basic_map *bmap);
1904 Sets and relations can be converted to union sets and relations
1905 using the following functions.
1907 __isl_give isl_union_set *isl_union_set_from_basic_set(
1908 __isl_take isl_basic_set *bset);
1909 __isl_give isl_union_map *isl_union_map_from_basic_map(
1910 __isl_take isl_basic_map *bmap);
1911 __isl_give isl_union_set *isl_union_set_from_set(
1912 __isl_take isl_set *set);
1913 __isl_give isl_union_map *isl_union_map_from_map(
1914 __isl_take isl_map *map);
1916 The inverse conversions below can only be used if the input
1917 union set or relation is known to contain elements in exactly one
1920 __isl_give isl_set *isl_set_from_union_set(
1921 __isl_take isl_union_set *uset);
1922 __isl_give isl_map *isl_map_from_union_map(
1923 __isl_take isl_union_map *umap);
1925 Sets and relations can be copied and freed again using the following
1928 __isl_give isl_basic_set *isl_basic_set_copy(
1929 __isl_keep isl_basic_set *bset);
1930 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1931 __isl_give isl_union_set *isl_union_set_copy(
1932 __isl_keep isl_union_set *uset);
1933 __isl_give isl_basic_map *isl_basic_map_copy(
1934 __isl_keep isl_basic_map *bmap);
1935 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1936 __isl_give isl_union_map *isl_union_map_copy(
1937 __isl_keep isl_union_map *umap);
1938 __isl_null isl_basic_set *isl_basic_set_free(
1939 __isl_take isl_basic_set *bset);
1940 __isl_null isl_set *isl_set_free(__isl_take isl_set *set);
1941 __isl_null isl_union_set *isl_union_set_free(
1942 __isl_take isl_union_set *uset);
1943 __isl_null isl_basic_map *isl_basic_map_free(
1944 __isl_take isl_basic_map *bmap);
1945 __isl_null isl_map *isl_map_free(__isl_take isl_map *map);
1946 __isl_null isl_union_map *isl_union_map_free(
1947 __isl_take isl_union_map *umap);
1949 Other sets and relations can be constructed by starting
1950 from a universe set or relation, adding equality and/or
1951 inequality constraints and then projecting out the
1952 existentially quantified variables, if any.
1953 Constraints can be constructed, manipulated and
1954 added to (or removed from) (basic) sets and relations
1955 using the following functions.
1957 #include <isl/constraint.h>
1958 __isl_give isl_constraint *isl_constraint_alloc_equality(
1959 __isl_take isl_local_space *ls);
1960 __isl_give isl_constraint *isl_constraint_alloc_inequality(
1961 __isl_take isl_local_space *ls);
1962 __isl_give isl_constraint *isl_constraint_set_constant_si(
1963 __isl_take isl_constraint *constraint, int v);
1964 __isl_give isl_constraint *isl_constraint_set_constant_val(
1965 __isl_take isl_constraint *constraint,
1966 __isl_take isl_val *v);
1967 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1968 __isl_take isl_constraint *constraint,
1969 enum isl_dim_type type, int pos, int v);
1970 __isl_give isl_constraint *
1971 isl_constraint_set_coefficient_val(
1972 __isl_take isl_constraint *constraint,
1973 enum isl_dim_type type, int pos,
1974 __isl_take isl_val *v);
1975 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1976 __isl_take isl_basic_map *bmap,
1977 __isl_take isl_constraint *constraint);
1978 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1979 __isl_take isl_basic_set *bset,
1980 __isl_take isl_constraint *constraint);
1981 __isl_give isl_map *isl_map_add_constraint(
1982 __isl_take isl_map *map,
1983 __isl_take isl_constraint *constraint);
1984 __isl_give isl_set *isl_set_add_constraint(
1985 __isl_take isl_set *set,
1986 __isl_take isl_constraint *constraint);
1988 For example, to create a set containing the even integers
1989 between 10 and 42, you would use the following code.
1992 isl_local_space *ls;
1994 isl_basic_set *bset;
1996 space = isl_space_set_alloc(ctx, 0, 2);
1997 bset = isl_basic_set_universe(isl_space_copy(space));
1998 ls = isl_local_space_from_space(space);
2000 c = isl_constraint_alloc_equality(isl_local_space_copy(ls));
2001 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2002 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
2003 bset = isl_basic_set_add_constraint(bset, c);
2005 c = isl_constraint_alloc_inequality(isl_local_space_copy(ls));
2006 c = isl_constraint_set_constant_si(c, -10);
2007 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
2008 bset = isl_basic_set_add_constraint(bset, c);
2010 c = isl_constraint_alloc_inequality(ls);
2011 c = isl_constraint_set_constant_si(c, 42);
2012 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2013 bset = isl_basic_set_add_constraint(bset, c);
2015 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
2019 isl_basic_set *bset;
2020 bset = isl_basic_set_read_from_str(ctx,
2021 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
2023 A basic set or relation can also be constructed from two matrices
2024 describing the equalities and the inequalities.
2026 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
2027 __isl_take isl_space *space,
2028 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2029 enum isl_dim_type c1,
2030 enum isl_dim_type c2, enum isl_dim_type c3,
2031 enum isl_dim_type c4);
2032 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
2033 __isl_take isl_space *space,
2034 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2035 enum isl_dim_type c1,
2036 enum isl_dim_type c2, enum isl_dim_type c3,
2037 enum isl_dim_type c4, enum isl_dim_type c5);
2039 The C<isl_dim_type> arguments indicate the order in which
2040 different kinds of variables appear in the input matrices
2041 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
2042 C<isl_dim_set> and C<isl_dim_div> for sets and
2043 of C<isl_dim_cst>, C<isl_dim_param>,
2044 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
2046 A (basic or union) set or relation can also be constructed from a
2047 (union) (piecewise) (multiple) affine expression
2048 or a list of affine expressions
2049 (See L</"Functions">), provided these affine expressions do not
2052 __isl_give isl_basic_map *isl_basic_map_from_aff(
2053 __isl_take isl_aff *aff);
2054 __isl_give isl_map *isl_map_from_aff(
2055 __isl_take isl_aff *aff);
2056 __isl_give isl_set *isl_set_from_pw_aff(
2057 __isl_take isl_pw_aff *pwaff);
2058 __isl_give isl_map *isl_map_from_pw_aff(
2059 __isl_take isl_pw_aff *pwaff);
2060 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
2061 __isl_take isl_space *domain_space,
2062 __isl_take isl_aff_list *list);
2063 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
2064 __isl_take isl_multi_aff *maff)
2065 __isl_give isl_map *isl_map_from_multi_aff(
2066 __isl_take isl_multi_aff *maff)
2067 __isl_give isl_set *isl_set_from_pw_multi_aff(
2068 __isl_take isl_pw_multi_aff *pma);
2069 __isl_give isl_map *isl_map_from_pw_multi_aff(
2070 __isl_take isl_pw_multi_aff *pma);
2071 __isl_give isl_set *isl_set_from_multi_pw_aff(
2072 __isl_take isl_multi_pw_aff *mpa);
2073 __isl_give isl_map *isl_map_from_multi_pw_aff(
2074 __isl_take isl_multi_pw_aff *mpa);
2075 __isl_give isl_union_map *isl_union_map_from_union_pw_aff(
2076 __isl_take isl_union_pw_aff *upa);
2077 __isl_give isl_union_map *
2078 isl_union_map_from_union_pw_multi_aff(
2079 __isl_take isl_union_pw_multi_aff *upma);
2080 __isl_give isl_union_map *
2081 isl_union_map_from_multi_union_pw_aff(
2082 __isl_take isl_multi_union_pw_aff *mupa);
2084 The C<domain_space> argument describes the domain of the resulting
2085 basic relation. It is required because the C<list> may consist
2086 of zero affine expressions.
2087 The C<mupa> passed to C<isl_union_map_from_multi_union_pw_aff>
2088 is not allowed to be zero-dimensional. The domain of the result
2089 is the shared domain of the union piecewise affine elements.
2091 =head2 Inspecting Sets and Relations
2093 Usually, the user should not have to care about the actual constraints
2094 of the sets and maps, but should instead apply the abstract operations
2095 explained in the following sections.
2096 Occasionally, however, it may be required to inspect the individual
2097 coefficients of the constraints. This section explains how to do so.
2098 In these cases, it may also be useful to have C<isl> compute
2099 an explicit representation of the existentially quantified variables.
2101 __isl_give isl_set *isl_set_compute_divs(
2102 __isl_take isl_set *set);
2103 __isl_give isl_map *isl_map_compute_divs(
2104 __isl_take isl_map *map);
2105 __isl_give isl_union_set *isl_union_set_compute_divs(
2106 __isl_take isl_union_set *uset);
2107 __isl_give isl_union_map *isl_union_map_compute_divs(
2108 __isl_take isl_union_map *umap);
2110 This explicit representation defines the existentially quantified
2111 variables as integer divisions of the other variables, possibly
2112 including earlier existentially quantified variables.
2113 An explicitly represented existentially quantified variable therefore
2114 has a unique value when the values of the other variables are known.
2116 Alternatively, the existentially quantified variables can be removed
2117 using the following functions, which compute an overapproximation.
2119 __isl_give isl_basic_set *isl_basic_set_remove_divs(
2120 __isl_take isl_basic_set *bset);
2121 __isl_give isl_basic_map *isl_basic_map_remove_divs(
2122 __isl_take isl_basic_map *bmap);
2123 __isl_give isl_set *isl_set_remove_divs(
2124 __isl_take isl_set *set);
2125 __isl_give isl_map *isl_map_remove_divs(
2126 __isl_take isl_map *map);
2128 It is also possible to only remove those divs that are defined
2129 in terms of a given range of dimensions or only those for which
2130 no explicit representation is known.
2132 __isl_give isl_basic_set *
2133 isl_basic_set_remove_divs_involving_dims(
2134 __isl_take isl_basic_set *bset,
2135 enum isl_dim_type type,
2136 unsigned first, unsigned n);
2137 __isl_give isl_basic_map *
2138 isl_basic_map_remove_divs_involving_dims(
2139 __isl_take isl_basic_map *bmap,
2140 enum isl_dim_type type,
2141 unsigned first, unsigned n);
2142 __isl_give isl_set *isl_set_remove_divs_involving_dims(
2143 __isl_take isl_set *set, enum isl_dim_type type,
2144 unsigned first, unsigned n);
2145 __isl_give isl_map *isl_map_remove_divs_involving_dims(
2146 __isl_take isl_map *map, enum isl_dim_type type,
2147 unsigned first, unsigned n);
2149 __isl_give isl_basic_set *
2150 isl_basic_set_remove_unknown_divs(
2151 __isl_take isl_basic_set *bset);
2152 __isl_give isl_set *isl_set_remove_unknown_divs(
2153 __isl_take isl_set *set);
2154 __isl_give isl_map *isl_map_remove_unknown_divs(
2155 __isl_take isl_map *map);
2157 To iterate over all the sets or maps in a union set or map, use
2159 isl_stat isl_union_set_foreach_set(
2160 __isl_keep isl_union_set *uset,
2161 isl_stat (*fn)(__isl_take isl_set *set, void *user),
2163 isl_stat isl_union_map_foreach_map(
2164 __isl_keep isl_union_map *umap,
2165 isl_stat (*fn)(__isl_take isl_map *map, void *user),
2168 These functions call the callback function once for each
2169 (pair of) space(s) for which there are elements in the input.
2170 The argument to the callback contains all elements in the input
2171 with that (pair of) space(s).
2173 The number of sets or maps in a union set or map can be obtained
2176 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
2177 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
2179 To extract the set or map in a given space from a union, use
2181 __isl_give isl_set *isl_union_set_extract_set(
2182 __isl_keep isl_union_set *uset,
2183 __isl_take isl_space *space);
2184 __isl_give isl_map *isl_union_map_extract_map(
2185 __isl_keep isl_union_map *umap,
2186 __isl_take isl_space *space);
2188 To iterate over all the basic sets or maps in a set or map, use
2190 isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set,
2191 isl_stat (*fn)(__isl_take isl_basic_set *bset,
2194 isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map,
2195 isl_stat (*fn)(__isl_take isl_basic_map *bmap,
2199 The callback function C<fn> should return 0 if successful and
2200 -1 if an error occurs. In the latter case, or if any other error
2201 occurs, the above functions will return -1.
2203 It should be noted that C<isl> does not guarantee that
2204 the basic sets or maps passed to C<fn> are disjoint.
2205 If this is required, then the user should call one of
2206 the following functions first.
2208 __isl_give isl_set *isl_set_make_disjoint(
2209 __isl_take isl_set *set);
2210 __isl_give isl_map *isl_map_make_disjoint(
2211 __isl_take isl_map *map);
2213 The number of basic sets in a set can be obtained
2214 or the number of basic maps in a map can be obtained
2217 #include <isl/set.h>
2218 int isl_set_n_basic_set(__isl_keep isl_set *set);
2220 #include <isl/map.h>
2221 int isl_map_n_basic_map(__isl_keep isl_map *map);
2223 It is also possible to obtain a list of basic sets from a set
2225 #include <isl/set.h>
2226 __isl_give isl_basic_set_list *isl_set_get_basic_set_list(
2227 __isl_keep isl_set *set);
2229 The returned list can be manipulated using the functions in L<"Lists">.
2231 To iterate over the constraints of a basic set or map, use
2233 #include <isl/constraint.h>
2235 int isl_basic_set_n_constraint(
2236 __isl_keep isl_basic_set *bset);
2237 isl_stat isl_basic_set_foreach_constraint(
2238 __isl_keep isl_basic_set *bset,
2239 isl_stat (*fn)(__isl_take isl_constraint *c,
2242 int isl_basic_map_n_constraint(
2243 __isl_keep isl_basic_map *bmap);
2244 isl_stat isl_basic_map_foreach_constraint(
2245 __isl_keep isl_basic_map *bmap,
2246 isl_stat (*fn)(__isl_take isl_constraint *c,
2249 __isl_null isl_constraint *isl_constraint_free(
2250 __isl_take isl_constraint *c);
2252 Again, the callback function C<fn> should return 0 if successful and
2253 -1 if an error occurs. In the latter case, or if any other error
2254 occurs, the above functions will return -1.
2255 The constraint C<c> represents either an equality or an inequality.
2256 Use the following function to find out whether a constraint
2257 represents an equality. If not, it represents an inequality.
2259 isl_bool isl_constraint_is_equality(
2260 __isl_keep isl_constraint *constraint);
2262 It is also possible to obtain a list of constraints from a basic
2265 #include <isl/constraint.h>
2266 __isl_give isl_constraint_list *
2267 isl_basic_map_get_constraint_list(
2268 __isl_keep isl_basic_map *bmap);
2269 __isl_give isl_constraint_list *
2270 isl_basic_set_get_constraint_list(
2271 __isl_keep isl_basic_set *bset);
2273 These functions require that all existentially quantified variables
2274 have an explicit representation.
2275 The returned list can be manipulated using the functions in L<"Lists">.
2277 The coefficients of the constraints can be inspected using
2278 the following functions.
2280 isl_bool isl_constraint_is_lower_bound(
2281 __isl_keep isl_constraint *constraint,
2282 enum isl_dim_type type, unsigned pos);
2283 isl_bool isl_constraint_is_upper_bound(
2284 __isl_keep isl_constraint *constraint,
2285 enum isl_dim_type type, unsigned pos);
2286 __isl_give isl_val *isl_constraint_get_constant_val(
2287 __isl_keep isl_constraint *constraint);
2288 __isl_give isl_val *isl_constraint_get_coefficient_val(
2289 __isl_keep isl_constraint *constraint,
2290 enum isl_dim_type type, int pos);
2292 The explicit representations of the existentially quantified
2293 variables can be inspected using the following function.
2294 Note that the user is only allowed to use this function
2295 if the inspected set or map is the result of a call
2296 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
2297 The existentially quantified variable is equal to the floor
2298 of the returned affine expression. The affine expression
2299 itself can be inspected using the functions in
2302 __isl_give isl_aff *isl_constraint_get_div(
2303 __isl_keep isl_constraint *constraint, int pos);
2305 To obtain the constraints of a basic set or map in matrix
2306 form, use the following functions.
2308 __isl_give isl_mat *isl_basic_set_equalities_matrix(
2309 __isl_keep isl_basic_set *bset,
2310 enum isl_dim_type c1, enum isl_dim_type c2,
2311 enum isl_dim_type c3, enum isl_dim_type c4);
2312 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
2313 __isl_keep isl_basic_set *bset,
2314 enum isl_dim_type c1, enum isl_dim_type c2,
2315 enum isl_dim_type c3, enum isl_dim_type c4);
2316 __isl_give isl_mat *isl_basic_map_equalities_matrix(
2317 __isl_keep isl_basic_map *bmap,
2318 enum isl_dim_type c1,
2319 enum isl_dim_type c2, enum isl_dim_type c3,
2320 enum isl_dim_type c4, enum isl_dim_type c5);
2321 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
2322 __isl_keep isl_basic_map *bmap,
2323 enum isl_dim_type c1,
2324 enum isl_dim_type c2, enum isl_dim_type c3,
2325 enum isl_dim_type c4, enum isl_dim_type c5);
2327 The C<isl_dim_type> arguments dictate the order in which
2328 different kinds of variables appear in the resulting matrix.
2329 For set inputs, they should be a permutation of
2330 C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
2331 For map inputs, they should be a permutation of
2332 C<isl_dim_cst>, C<isl_dim_param>,
2333 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
2337 Points are elements of a set. They can be used to construct
2338 simple sets (boxes) or they can be used to represent the
2339 individual elements of a set.
2340 The zero point (the origin) can be created using
2342 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2344 The coordinates of a point can be inspected, set and changed
2347 __isl_give isl_val *isl_point_get_coordinate_val(
2348 __isl_keep isl_point *pnt,
2349 enum isl_dim_type type, int pos);
2350 __isl_give isl_point *isl_point_set_coordinate_val(
2351 __isl_take isl_point *pnt,
2352 enum isl_dim_type type, int pos,
2353 __isl_take isl_val *v);
2355 __isl_give isl_point *isl_point_add_ui(
2356 __isl_take isl_point *pnt,
2357 enum isl_dim_type type, int pos, unsigned val);
2358 __isl_give isl_point *isl_point_sub_ui(
2359 __isl_take isl_point *pnt,
2360 enum isl_dim_type type, int pos, unsigned val);
2362 Points can be copied or freed using
2364 __isl_give isl_point *isl_point_copy(
2365 __isl_keep isl_point *pnt);
2366 __isl_null isl_point *isl_point_free(
2367 __isl_take isl_point *pnt);
2369 A singleton set can be created from a point using
2371 __isl_give isl_basic_set *isl_basic_set_from_point(
2372 __isl_take isl_point *pnt);
2373 __isl_give isl_set *isl_set_from_point(
2374 __isl_take isl_point *pnt);
2375 __isl_give isl_union_set *isl_union_set_from_point(
2376 __isl_take isl_point *pnt);
2378 and a box can be created from two opposite extremal points using
2380 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2381 __isl_take isl_point *pnt1,
2382 __isl_take isl_point *pnt2);
2383 __isl_give isl_set *isl_set_box_from_points(
2384 __isl_take isl_point *pnt1,
2385 __isl_take isl_point *pnt2);
2387 All elements of a B<bounded> (union) set can be enumerated using
2388 the following functions.
2390 isl_stat isl_set_foreach_point(__isl_keep isl_set *set,
2391 isl_stat (*fn)(__isl_take isl_point *pnt,
2394 isl_stat isl_union_set_foreach_point(
2395 __isl_keep isl_union_set *uset,
2396 isl_stat (*fn)(__isl_take isl_point *pnt,
2400 The function C<fn> is called for each integer point in
2401 C<set> with as second argument the last argument of
2402 the C<isl_set_foreach_point> call. The function C<fn>
2403 should return C<0> on success and C<-1> on failure.
2404 In the latter case, C<isl_set_foreach_point> will stop
2405 enumerating and return C<-1> as well.
2406 If the enumeration is performed successfully and to completion,
2407 then C<isl_set_foreach_point> returns C<0>.
2409 To obtain a single point of a (basic or union) set, use
2411 __isl_give isl_point *isl_basic_set_sample_point(
2412 __isl_take isl_basic_set *bset);
2413 __isl_give isl_point *isl_set_sample_point(
2414 __isl_take isl_set *set);
2415 __isl_give isl_point *isl_union_set_sample_point(
2416 __isl_take isl_union_set *uset);
2418 If C<set> does not contain any (integer) points, then the
2419 resulting point will be ``void'', a property that can be
2422 isl_bool isl_point_is_void(__isl_keep isl_point *pnt);
2426 Besides sets and relation, C<isl> also supports various types of functions.
2427 Each of these types is derived from the value type (see L</"Values">)
2428 or from one of two primitive function types
2429 through the application of zero or more type constructors.
2430 We first describe the primitive type and then we describe
2431 the types derived from these primitive types.
2433 =head3 Primitive Functions
2435 C<isl> support two primitive function types, quasi-affine
2436 expressions and quasipolynomials.
2437 A quasi-affine expression is defined either over a parameter
2438 space or over a set and is composed of integer constants,
2439 parameters and set variables, addition, subtraction and
2440 integer division by an integer constant.
2441 For example, the quasi-affine expression
2443 [n] -> { [x] -> [2*floor((4 n + x)/9] }
2445 maps C<x> to C<2*floor((4 n + x)/9>.
2446 A quasipolynomial is a polynomial expression in quasi-affine
2447 expression. That is, it additionally allows for multiplication.
2448 Note, though, that it is not allowed to construct an integer
2449 division of an expression involving multiplications.
2450 Here is an example of a quasipolynomial that is not
2451 quasi-affine expression
2453 [n] -> { [x] -> (n*floor((4 n + x)/9) }
2455 Note that the external representations of quasi-affine expressions
2456 and quasipolynomials are different. Quasi-affine expressions
2457 use a notation with square brackets just like binary relations,
2458 while quasipolynomials do not. This might change at some point.
2460 If a primitive function is defined over a parameter space,
2461 then the space of the function itself is that of a set.
2462 If it is defined over a set, then the space of the function
2463 is that of a relation. In both cases, the set space (or
2464 the output space) is single-dimensional, anonymous and unstructured.
2465 To create functions with multiple dimensions or with other kinds
2466 of set or output spaces, use multiple expressions
2467 (see L</"Multiple Expressions">).
2471 =item * Quasi-affine Expressions
2473 Besides the expressions described above, a quasi-affine
2474 expression can also be set to NaN. Such expressions
2475 typically represent a failure to represent a result
2476 as a quasi-affine expression.
2478 The zero quasi affine expression or the quasi affine expression
2479 that is equal to a given value or
2480 a specified dimension on a given domain can be created using
2482 #include <isl/aff.h>
2483 __isl_give isl_aff *isl_aff_zero_on_domain(
2484 __isl_take isl_local_space *ls);
2485 __isl_give isl_aff *isl_aff_val_on_domain(
2486 __isl_take isl_local_space *ls,
2487 __isl_take isl_val *val);
2488 __isl_give isl_aff *isl_aff_var_on_domain(
2489 __isl_take isl_local_space *ls,
2490 enum isl_dim_type type, unsigned pos);
2491 __isl_give isl_aff *isl_aff_nan_on_domain(
2492 __isl_take isl_local_space *ls);
2494 Quasi affine expressions can be copied and freed using
2496 #include <isl/aff.h>
2497 __isl_give isl_aff *isl_aff_copy(
2498 __isl_keep isl_aff *aff);
2499 __isl_null isl_aff *isl_aff_free(
2500 __isl_take isl_aff *aff);
2502 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2503 using the following function. The constraint is required to have
2504 a non-zero coefficient for the specified dimension.
2506 #include <isl/constraint.h>
2507 __isl_give isl_aff *isl_constraint_get_bound(
2508 __isl_keep isl_constraint *constraint,
2509 enum isl_dim_type type, int pos);
2511 The entire affine expression of the constraint can also be extracted
2512 using the following function.
2514 #include <isl/constraint.h>
2515 __isl_give isl_aff *isl_constraint_get_aff(
2516 __isl_keep isl_constraint *constraint);
2518 Conversely, an equality constraint equating
2519 the affine expression to zero or an inequality constraint enforcing
2520 the affine expression to be non-negative, can be constructed using
2522 __isl_give isl_constraint *isl_equality_from_aff(
2523 __isl_take isl_aff *aff);
2524 __isl_give isl_constraint *isl_inequality_from_aff(
2525 __isl_take isl_aff *aff);
2527 The coefficients and the integer divisions of an affine expression
2528 can be inspected using the following functions.
2530 #include <isl/aff.h>
2531 __isl_give isl_val *isl_aff_get_constant_val(
2532 __isl_keep isl_aff *aff);
2533 __isl_give isl_val *isl_aff_get_coefficient_val(
2534 __isl_keep isl_aff *aff,
2535 enum isl_dim_type type, int pos);
2536 int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
2537 enum isl_dim_type type, int pos);
2538 __isl_give isl_val *isl_aff_get_denominator_val(
2539 __isl_keep isl_aff *aff);
2540 __isl_give isl_aff *isl_aff_get_div(
2541 __isl_keep isl_aff *aff, int pos);
2543 They can be modified using the following functions.
2545 #include <isl/aff.h>
2546 __isl_give isl_aff *isl_aff_set_constant_si(
2547 __isl_take isl_aff *aff, int v);
2548 __isl_give isl_aff *isl_aff_set_constant_val(
2549 __isl_take isl_aff *aff, __isl_take isl_val *v);
2550 __isl_give isl_aff *isl_aff_set_coefficient_si(
2551 __isl_take isl_aff *aff,
2552 enum isl_dim_type type, int pos, int v);
2553 __isl_give isl_aff *isl_aff_set_coefficient_val(
2554 __isl_take isl_aff *aff,
2555 enum isl_dim_type type, int pos,
2556 __isl_take isl_val *v);
2558 __isl_give isl_aff *isl_aff_add_constant_si(
2559 __isl_take isl_aff *aff, int v);
2560 __isl_give isl_aff *isl_aff_add_constant_val(
2561 __isl_take isl_aff *aff, __isl_take isl_val *v);
2562 __isl_give isl_aff *isl_aff_add_constant_num_si(
2563 __isl_take isl_aff *aff, int v);
2564 __isl_give isl_aff *isl_aff_add_coefficient_si(
2565 __isl_take isl_aff *aff,
2566 enum isl_dim_type type, int pos, int v);
2567 __isl_give isl_aff *isl_aff_add_coefficient_val(
2568 __isl_take isl_aff *aff,
2569 enum isl_dim_type type, int pos,
2570 __isl_take isl_val *v);
2572 Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
2573 set the I<numerator> of the constant or coefficient, while
2574 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
2575 the constant or coefficient as a whole.
2576 The C<add_constant> and C<add_coefficient> functions add an integer
2577 or rational value to
2578 the possibly rational constant or coefficient.
2579 The C<add_constant_num> functions add an integer value to
2582 =item * Quasipolynomials
2584 Some simple quasipolynomials can be created using the following functions.
2586 #include <isl/polynomial.h>
2587 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
2588 __isl_take isl_space *domain);
2589 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
2590 __isl_take isl_space *domain);
2591 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
2592 __isl_take isl_space *domain);
2593 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
2594 __isl_take isl_space *domain);
2595 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
2596 __isl_take isl_space *domain);
2597 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2598 __isl_take isl_space *domain,
2599 __isl_take isl_val *val);
2600 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2601 __isl_take isl_space *domain,
2602 enum isl_dim_type type, unsigned pos);
2603 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2604 __isl_take isl_aff *aff);
2606 Recall that the space in which a quasipolynomial lives is a map space
2607 with a one-dimensional range. The C<domain> argument in some of
2608 the functions above corresponds to the domain of this map space.
2610 Quasipolynomials can be copied and freed again using the following
2613 #include <isl/polynomial.h>
2614 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2615 __isl_keep isl_qpolynomial *qp);
2616 __isl_null isl_qpolynomial *isl_qpolynomial_free(
2617 __isl_take isl_qpolynomial *qp);
2619 The constant term of a quasipolynomial can be extracted using
2621 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2622 __isl_keep isl_qpolynomial *qp);
2624 To iterate over all terms in a quasipolynomial,
2627 isl_stat isl_qpolynomial_foreach_term(
2628 __isl_keep isl_qpolynomial *qp,
2629 isl_stat (*fn)(__isl_take isl_term *term,
2630 void *user), void *user);
2632 The terms themselves can be inspected and freed using
2635 unsigned isl_term_dim(__isl_keep isl_term *term,
2636 enum isl_dim_type type);
2637 __isl_give isl_val *isl_term_get_coefficient_val(
2638 __isl_keep isl_term *term);
2639 int isl_term_get_exp(__isl_keep isl_term *term,
2640 enum isl_dim_type type, unsigned pos);
2641 __isl_give isl_aff *isl_term_get_div(
2642 __isl_keep isl_term *term, unsigned pos);
2643 void isl_term_free(__isl_take isl_term *term);
2645 Each term is a product of parameters, set variables and
2646 integer divisions. The function C<isl_term_get_exp>
2647 returns the exponent of a given dimensions in the given term.
2653 A reduction represents a maximum or a minimum of its
2655 The only reduction type defined by C<isl> is
2656 C<isl_qpolynomial_fold>.
2658 There are currently no functions to directly create such
2659 objects, but they do appear in the piecewise quasipolynomial
2660 reductions returned by the C<isl_pw_qpolynomial_bound> function.
2662 L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.
2664 Reductions can be copied and freed using
2665 the following functions.
2667 #include <isl/polynomial.h>
2668 __isl_give isl_qpolynomial_fold *
2669 isl_qpolynomial_fold_copy(
2670 __isl_keep isl_qpolynomial_fold *fold);
2671 void isl_qpolynomial_fold_free(
2672 __isl_take isl_qpolynomial_fold *fold);
2674 To iterate over all quasipolynomials in a reduction, use
2676 isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
2677 __isl_keep isl_qpolynomial_fold *fold,
2678 isl_stat (*fn)(__isl_take isl_qpolynomial *qp,
2679 void *user), void *user);
2681 =head3 Multiple Expressions
2683 A multiple expression represents a sequence of zero or
2684 more base expressions, all defined on the same domain space.
2685 The domain space of the multiple expression is the same
2686 as that of the base expressions, but the range space
2687 can be any space. In case the base expressions have
2688 a set space, the corresponding multiple expression
2689 also has a set space.
2690 Objects of the value type do not have an associated space.
2691 The space of a multiple value is therefore always a set space.
2692 Similarly, the space of a multiple union piecewise
2693 affine expression is always a set space.
2695 The multiple expression types defined by C<isl>
2696 are C<isl_multi_val>, C<isl_multi_aff>, C<isl_multi_pw_aff>,
2697 C<isl_multi_union_pw_aff>.
2699 A multiple expression with the value zero for
2700 each output (or set) dimension can be created
2701 using the following functions.
2703 #include <isl/val.h>
2704 __isl_give isl_multi_val *isl_multi_val_zero(
2705 __isl_take isl_space *space);
2707 #include <isl/aff.h>
2708 __isl_give isl_multi_aff *isl_multi_aff_zero(
2709 __isl_take isl_space *space);
2710 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
2711 __isl_take isl_space *space);
2712 __isl_give isl_multi_union_pw_aff *
2713 isl_multi_union_pw_aff_zero(
2714 __isl_take isl_space *space);
2716 Since there is no canonical way of representing a zero
2717 value of type C<isl_union_pw_aff>, the space passed
2718 to C<isl_multi_union_pw_aff_zero> needs to be zero-dimensional.
2720 An identity function can be created using the following
2721 functions. The space needs to be that of a relation
2722 with the same number of input and output dimensions.
2724 #include <isl/aff.h>
2725 __isl_give isl_multi_aff *isl_multi_aff_identity(
2726 __isl_take isl_space *space);
2727 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
2728 __isl_take isl_space *space);
2730 A function that performs a projection on a universe
2731 relation or set can be created using the following functions.
2732 See also the corresponding
2733 projection operations in L</"Unary Operations">.
2735 #include <isl/aff.h>
2736 __isl_give isl_multi_aff *isl_multi_aff_domain_map(
2737 __isl_take isl_space *space);
2738 __isl_give isl_multi_aff *isl_multi_aff_range_map(
2739 __isl_take isl_space *space);
2740 __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
2741 __isl_take isl_space *space,
2742 enum isl_dim_type type,
2743 unsigned first, unsigned n);
2745 A multiple expression can be created from a single
2746 base expression using the following functions.
2747 The space of the created multiple expression is the same
2748 as that of the base expression, except for
2749 C<isl_multi_union_pw_aff_from_union_pw_aff> where the input
2750 lives in a parameter space and the output lives
2751 in a single-dimensional set space.
2753 #include <isl/aff.h>
2754 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
2755 __isl_take isl_aff *aff);
2756 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
2757 __isl_take isl_pw_aff *pa);
2758 __isl_give isl_multi_union_pw_aff *
2759 isl_multi_union_pw_aff_from_union_pw_aff(
2760 __isl_take isl_union_pw_aff *upa);
2762 A multiple expression can be created from a list
2763 of base expression in a specified space.
2764 The domain of this space needs to be the same
2765 as the domains of the base expressions in the list.
2766 If the base expressions have a set space (or no associated space),
2767 then this space also needs to be a set space.
2769 #include <isl/val.h>
2770 __isl_give isl_multi_val *isl_multi_val_from_val_list(
2771 __isl_take isl_space *space,
2772 __isl_take isl_val_list *list);
2774 #include <isl/aff.h>
2775 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
2776 __isl_take isl_space *space,
2777 __isl_take isl_aff_list *list);
2778 __isl_give isl_multi_pw_aff *
2779 isl_multi_pw_aff_from_pw_aff_list(
2780 __isl_take isl_space *space,
2781 __isl_take isl_pw_aff_list *list);
2782 __isl_give isl_multi_union_pw_aff *
2783 isl_multi_union_pw_aff_from_union_pw_aff_list(
2784 __isl_take isl_space *space,
2785 __isl_take isl_union_pw_aff_list *list);
2787 As a convenience, a multiple piecewise expression can
2788 also be created from a multiple expression.
2789 Each piecewise expression in the result has a single
2792 #include <isl/aff.h>
2793 __isl_give isl_multi_pw_aff *
2794 isl_multi_pw_aff_from_multi_aff(
2795 __isl_take isl_multi_aff *ma);
2797 Similarly, a multiple union expression can be
2798 created from a multiple expression.
2800 #include <isl/aff.h>
2801 __isl_give isl_multi_union_pw_aff *
2802 isl_multi_union_pw_aff_from_multi_aff(
2803 __isl_take isl_multi_aff *ma);
2804 __isl_give isl_multi_union_pw_aff *
2805 isl_multi_union_pw_aff_from_multi_pw_aff(
2806 __isl_take isl_multi_pw_aff *mpa);
2808 A multiple quasi-affine expression can be created from
2809 a multiple value with a given domain space using the following
2812 #include <isl/aff.h>
2813 __isl_give isl_multi_aff *
2814 isl_multi_aff_multi_val_on_space(
2815 __isl_take isl_space *space,
2816 __isl_take isl_multi_val *mv);
2819 a multiple union piecewise affine expression can be created from
2820 a multiple value with a given domain or
2821 a multiple affine expression with a given domain
2822 using the following functions.
2824 #include <isl/aff.h>
2825 __isl_give isl_multi_union_pw_aff *
2826 isl_multi_union_pw_aff_multi_val_on_domain(
2827 __isl_take isl_union_set *domain,
2828 __isl_take isl_multi_val *mv);
2829 __isl_give isl_multi_union_pw_aff *
2830 isl_multi_union_pw_aff_multi_aff_on_domain(
2831 __isl_take isl_union_set *domain,
2832 __isl_take isl_multi_aff *ma);
2834 Multiple expressions can be copied and freed using
2835 the following functions.
2837 #include <isl/val.h>
2838 __isl_give isl_multi_val *isl_multi_val_copy(
2839 __isl_keep isl_multi_val *mv);
2840 __isl_null isl_multi_val *isl_multi_val_free(
2841 __isl_take isl_multi_val *mv);
2843 #include <isl/aff.h>
2844 __isl_give isl_multi_aff *isl_multi_aff_copy(
2845 __isl_keep isl_multi_aff *maff);
2846 __isl_null isl_multi_aff *isl_multi_aff_free(
2847 __isl_take isl_multi_aff *maff);
2848 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
2849 __isl_keep isl_multi_pw_aff *mpa);
2850 __isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
2851 __isl_take isl_multi_pw_aff *mpa);
2852 __isl_give isl_multi_union_pw_aff *
2853 isl_multi_union_pw_aff_copy(
2854 __isl_keep isl_multi_union_pw_aff *mupa);
2855 __isl_null isl_multi_union_pw_aff *
2856 isl_multi_union_pw_aff_free(
2857 __isl_take isl_multi_union_pw_aff *mupa);
2859 The base expression at a given position of a multiple
2860 expression can be extracted using the following functions.
2862 #include <isl/val.h>
2863 __isl_give isl_val *isl_multi_val_get_val(
2864 __isl_keep isl_multi_val *mv, int pos);
2866 #include <isl/aff.h>
2867 __isl_give isl_aff *isl_multi_aff_get_aff(
2868 __isl_keep isl_multi_aff *multi, int pos);
2869 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
2870 __isl_keep isl_multi_pw_aff *mpa, int pos);
2871 __isl_give isl_union_pw_aff *
2872 isl_multi_union_pw_aff_get_union_pw_aff(
2873 __isl_keep isl_multi_union_pw_aff *mupa, int pos);
2875 It can be replaced using the following functions.
2877 #include <isl/val.h>
2878 __isl_give isl_multi_val *isl_multi_val_set_val(
2879 __isl_take isl_multi_val *mv, int pos,
2880 __isl_take isl_val *val);
2882 #include <isl/aff.h>
2883 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
2884 __isl_take isl_multi_aff *multi, int pos,
2885 __isl_take isl_aff *aff);
2886 __isl_give isl_multi_union_pw_aff *
2887 isl_multi_union_pw_aff_set_union_pw_aff(
2888 __isl_take isl_multi_union_pw_aff *mupa, int pos,
2889 __isl_take isl_union_pw_aff *upa);
2891 As a convenience, a sequence of base expressions that have
2892 their domains in a given space can be extracted from a sequence
2893 of union expressions using the following function.
2895 #include <isl/aff.h>
2896 __isl_give isl_multi_pw_aff *
2897 isl_multi_union_pw_aff_extract_multi_pw_aff(
2898 __isl_keep isl_multi_union_pw_aff *mupa,
2899 __isl_take isl_space *space);
2901 Note that there is a difference between C<isl_multi_union_pw_aff>
2902 and C<isl_union_pw_multi_aff> objects. The first is a sequence
2903 of unions of piecewise expressions, while the second is a union
2904 of piecewise sequences. In particular, multiple affine expressions
2905 in an C<isl_union_pw_multi_aff> may live in different spaces,
2906 while there is only a single multiple expression in
2907 an C<isl_multi_union_pw_aff>, which can therefore only live
2908 in a single space. This means that not every
2909 C<isl_union_pw_multi_aff> can be converted to
2910 an C<isl_multi_union_pw_aff>. Conversely, a zero-dimensional
2911 C<isl_multi_union_pw_aff> carries no information
2912 about any possible domain and therefore cannot be converted
2913 to an C<isl_union_pw_multi_aff>. Moreover, the elements
2914 of an C<isl_multi_union_pw_aff> may be defined over different domains,
2915 while each multiple expression inside an C<isl_union_pw_multi_aff>
2916 has a single domain. The conversion of an C<isl_union_pw_multi_aff>
2917 of dimension greater than one may therefore not be exact.
2918 The following functions can
2919 be used to perform these conversions when they are possible.
2921 #include <isl/aff.h>
2922 __isl_give isl_multi_union_pw_aff *
2923 isl_multi_union_pw_aff_from_union_pw_multi_aff(
2924 __isl_take isl_union_pw_multi_aff *upma);
2925 __isl_give isl_union_pw_multi_aff *
2926 isl_union_pw_multi_aff_from_multi_union_pw_aff(
2927 __isl_take isl_multi_union_pw_aff *mupa);
2929 =head3 Piecewise Expressions
2931 A piecewise expression is an expression that is described
2932 using zero or more base expression defined over the same
2933 number of cells in the domain space of the base expressions.
2934 All base expressions are defined over the same
2935 domain space and the cells are disjoint.
2936 The space of a piecewise expression is the same as
2937 that of the base expressions.
2938 If the union of the cells is a strict subset of the domain
2939 space, then the value of the piecewise expression outside
2940 this union is different for types derived from quasi-affine
2941 expressions and those derived from quasipolynomials.
2942 Piecewise expressions derived from quasi-affine expressions
2943 are considered to be undefined outside the union of their cells.
2944 Piecewise expressions derived from quasipolynomials
2945 are considered to be zero outside the union of their cells.
2947 Piecewise quasipolynomials are mainly used by the C<barvinok>
2948 library for representing the number of elements in a parametric set or map.
2949 For example, the piecewise quasipolynomial
2951 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2953 represents the number of points in the map
2955 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2957 The piecewise expression types defined by C<isl>
2958 are C<isl_pw_aff>, C<isl_pw_multi_aff>,
2959 C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.
2961 A piecewise expression with no cells can be created using
2962 the following functions.
2964 #include <isl/aff.h>
2965 __isl_give isl_pw_aff *isl_pw_aff_empty(
2966 __isl_take isl_space *space);
2967 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
2968 __isl_take isl_space *space);
2970 A piecewise expression with a single universe cell can be
2971 created using the following functions.
2973 #include <isl/aff.h>
2974 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2975 __isl_take isl_aff *aff);
2976 __isl_give isl_pw_multi_aff *
2977 isl_pw_multi_aff_from_multi_aff(
2978 __isl_take isl_multi_aff *ma);
2980 #include <isl/polynomial.h>
2981 __isl_give isl_pw_qpolynomial *
2982 isl_pw_qpolynomial_from_qpolynomial(
2983 __isl_take isl_qpolynomial *qp);
2985 A piecewise expression with a single specified cell can be
2986 created using the following functions.
2988 #include <isl/aff.h>
2989 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2990 __isl_take isl_set *set, __isl_take isl_aff *aff);
2991 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
2992 __isl_take isl_set *set,
2993 __isl_take isl_multi_aff *maff);
2995 #include <isl/polynomial.h>
2996 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
2997 __isl_take isl_set *set,
2998 __isl_take isl_qpolynomial *qp);
3000 The following convenience functions first create a base expression and
3001 then create a piecewise expression over a universe domain.
3003 #include <isl/aff.h>
3004 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
3005 __isl_take isl_local_space *ls);
3006 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3007 __isl_take isl_local_space *ls,
3008 enum isl_dim_type type, unsigned pos);
3009 __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
3010 __isl_take isl_local_space *ls);
3011 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
3012 __isl_take isl_space *space);
3013 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
3014 __isl_take isl_space *space);
3015 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
3016 __isl_take isl_space *space);
3017 __isl_give isl_pw_multi_aff *
3018 isl_pw_multi_aff_project_out_map(
3019 __isl_take isl_space *space,
3020 enum isl_dim_type type,
3021 unsigned first, unsigned n);
3023 #include <isl/polynomial.h>
3024 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3025 __isl_take isl_space *space);
3027 The following convenience functions first create a base expression and
3028 then create a piecewise expression over a given domain.
3030 #include <isl/aff.h>
3031 __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
3032 __isl_take isl_set *domain,
3033 __isl_take isl_val *v);
3034 __isl_give isl_pw_multi_aff *
3035 isl_pw_multi_aff_multi_val_on_domain(
3036 __isl_take isl_set *domain,
3037 __isl_take isl_multi_val *mv);
3039 As a convenience, a piecewise multiple expression can
3040 also be created from a piecewise expression.
3041 Each multiple expression in the result is derived
3042 from the corresponding base expression.
3044 #include <isl/aff.h>
3045 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
3046 __isl_take isl_pw_aff *pa);
3048 Similarly, a piecewise quasipolynomial can be
3049 created from a piecewise quasi-affine expression using
3050 the following function.
3052 #include <isl/polynomial.h>
3053 __isl_give isl_pw_qpolynomial *
3054 isl_pw_qpolynomial_from_pw_aff(
3055 __isl_take isl_pw_aff *pwaff);
3057 Piecewise expressions can be copied and freed using the following functions.
3059 #include <isl/aff.h>
3060 __isl_give isl_pw_aff *isl_pw_aff_copy(
3061 __isl_keep isl_pw_aff *pwaff);
3062 __isl_null isl_pw_aff *isl_pw_aff_free(
3063 __isl_take isl_pw_aff *pwaff);
3064 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3065 __isl_keep isl_pw_multi_aff *pma);
3066 __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
3067 __isl_take isl_pw_multi_aff *pma);
3069 #include <isl/polynomial.h>
3070 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3071 __isl_keep isl_pw_qpolynomial *pwqp);
3072 __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
3073 __isl_take isl_pw_qpolynomial *pwqp);
3074 __isl_give isl_pw_qpolynomial_fold *
3075 isl_pw_qpolynomial_fold_copy(
3076 __isl_keep isl_pw_qpolynomial_fold *pwf);
3077 __isl_null isl_pw_qpolynomial_fold *
3078 isl_pw_qpolynomial_fold_free(
3079 __isl_take isl_pw_qpolynomial_fold *pwf);
3081 To iterate over the different cells of a piecewise expression,
3082 use the following functions.
3084 #include <isl/aff.h>
3085 isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3086 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3087 isl_stat isl_pw_aff_foreach_piece(
3088 __isl_keep isl_pw_aff *pwaff,
3089 isl_stat (*fn)(__isl_take isl_set *set,
3090 __isl_take isl_aff *aff,
3091 void *user), void *user);
3092 int isl_pw_multi_aff_n_piece(
3093 __isl_keep isl_pw_multi_aff *pma);
3094 isl_stat isl_pw_multi_aff_foreach_piece(
3095 __isl_keep isl_pw_multi_aff *pma,
3096 isl_stat (*fn)(__isl_take isl_set *set,
3097 __isl_take isl_multi_aff *maff,
3098 void *user), void *user);
3100 #include <isl/polynomial.h>
3101 int isl_pw_qpolynomial_n_piece(
3102 __isl_keep isl_pw_qpolynomial *pwqp);
3103 isl_stat isl_pw_qpolynomial_foreach_piece(
3104 __isl_keep isl_pw_qpolynomial *pwqp,
3105 isl_stat (*fn)(__isl_take isl_set *set,
3106 __isl_take isl_qpolynomial *qp,
3107 void *user), void *user);
3108 isl_stat isl_pw_qpolynomial_foreach_lifted_piece(
3109 __isl_keep isl_pw_qpolynomial *pwqp,
3110 isl_stat (*fn)(__isl_take isl_set *set,
3111 __isl_take isl_qpolynomial *qp,
3112 void *user), void *user);
3113 int isl_pw_qpolynomial_fold_n_piece(
3114 __isl_keep isl_pw_qpolynomial_fold *pwf);
3115 isl_stat isl_pw_qpolynomial_fold_foreach_piece(
3116 __isl_keep isl_pw_qpolynomial_fold *pwf,
3117 isl_stat (*fn)(__isl_take isl_set *set,
3118 __isl_take isl_qpolynomial_fold *fold,
3119 void *user), void *user);
3120 isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece(
3121 __isl_keep isl_pw_qpolynomial_fold *pwf,
3122 isl_stat (*fn)(__isl_take isl_set *set,
3123 __isl_take isl_qpolynomial_fold *fold,
3124 void *user), void *user);
3126 As usual, the function C<fn> should return C<0> on success
3127 and C<-1> on failure. The difference between
3128 C<isl_pw_qpolynomial_foreach_piece> and
3129 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3130 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3131 compute unique representations for all existentially quantified
3132 variables and then turn these existentially quantified variables
3133 into extra set variables, adapting the associated quasipolynomial
3134 accordingly. This means that the C<set> passed to C<fn>
3135 will not have any existentially quantified variables, but that
3136 the dimensions of the sets may be different for different
3137 invocations of C<fn>.
3138 Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
3139 and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.
3141 A piecewise expression consisting of the expressions at a given
3142 position of a piecewise multiple expression can be extracted
3143 using the following function.
3145 #include <isl/aff.h>
3146 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3147 __isl_keep isl_pw_multi_aff *pma, int pos);
3149 These expressions can be replaced using the following function.
3151 #include <isl/aff.h>
3152 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
3153 __isl_take isl_pw_multi_aff *pma, unsigned pos,
3154 __isl_take isl_pw_aff *pa);
3156 Note that there is a difference between C<isl_multi_pw_aff> and
3157 C<isl_pw_multi_aff> objects. The first is a sequence of piecewise
3158 affine expressions, while the second is a piecewise sequence
3159 of affine expressions. In particular, each of the piecewise
3160 affine expressions in an C<isl_multi_pw_aff> may have a different
3161 domain, while all multiple expressions associated to a cell
3162 in an C<isl_pw_multi_aff> have the same domain.
3163 It is possible to convert between the two, but when converting
3164 an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
3165 of the result is the intersection of the domains of the input.
3166 The reverse conversion is exact.
3168 #include <isl/aff.h>
3169 __isl_give isl_pw_multi_aff *
3170 isl_pw_multi_aff_from_multi_pw_aff(
3171 __isl_take isl_multi_pw_aff *mpa);
3172 __isl_give isl_multi_pw_aff *
3173 isl_multi_pw_aff_from_pw_multi_aff(
3174 __isl_take isl_pw_multi_aff *pma);
3176 =head3 Union Expressions
3178 A union expression collects base expressions defined
3179 over different domains. The space of a union expression
3180 is that of the shared parameter space.
3182 The union expression types defined by C<isl>
3183 are C<isl_union_pw_aff>, C<isl_union_pw_multi_aff>,
3184 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>.
3186 C<isl_union_pw_aff>,
3187 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>,
3188 there can be at most one base expression for a given domain space.
3190 C<isl_union_pw_multi_aff>,
3191 there can be multiple such expressions for a given domain space,
3192 but the domains of these expressions need to be disjoint.
3194 An empty union expression can be created using the following functions.
3196 #include <isl/aff.h>
3197 __isl_give isl_union_pw_aff *isl_union_pw_aff_empty(
3198 __isl_take isl_space *space);
3199 __isl_give isl_union_pw_multi_aff *
3200 isl_union_pw_multi_aff_empty(
3201 __isl_take isl_space *space);
3203 #include <isl/polynomial.h>
3204 __isl_give isl_union_pw_qpolynomial *
3205 isl_union_pw_qpolynomial_zero(
3206 __isl_take isl_space *space);
3208 A union expression containing a single base expression
3209 can be created using the following functions.
3211 #include <isl/aff.h>
3212 __isl_give isl_union_pw_aff *
3213 isl_union_pw_aff_from_pw_aff(
3214 __isl_take isl_pw_aff *pa);
3215 __isl_give isl_union_pw_multi_aff *
3216 isl_union_pw_multi_aff_from_aff(
3217 __isl_take isl_aff *aff);
3218 __isl_give isl_union_pw_multi_aff *
3219 isl_union_pw_multi_aff_from_pw_multi_aff(
3220 __isl_take isl_pw_multi_aff *pma);
3222 #include <isl/polynomial.h>
3223 __isl_give isl_union_pw_qpolynomial *
3224 isl_union_pw_qpolynomial_from_pw_qpolynomial(
3225 __isl_take isl_pw_qpolynomial *pwqp);
3227 The following functions create a base expression on each
3228 of the sets in the union set and collect the results.
3230 #include <isl/aff.h>
3231 __isl_give isl_union_pw_multi_aff *
3232 isl_union_pw_multi_aff_from_union_pw_aff(
3233 __isl_take isl_union_pw_aff *upa);
3234 __isl_give isl_union_pw_aff *
3235 isl_union_pw_multi_aff_get_union_pw_aff(
3236 __isl_keep isl_union_pw_multi_aff *upma, int pos);
3237 __isl_give isl_union_pw_aff *
3238 isl_union_pw_aff_val_on_domain(
3239 __isl_take isl_union_set *domain,
3240 __isl_take isl_val *v);
3241 __isl_give isl_union_pw_multi_aff *
3242 isl_union_pw_multi_aff_multi_val_on_domain(
3243 __isl_take isl_union_set *domain,
3244 __isl_take isl_multi_val *mv);
3246 An C<isl_union_pw_aff> that is equal to a (parametric) affine
3247 expression on a given domain can be created using the following
3250 #include <isl/aff.h>
3251 __isl_give isl_union_pw_aff *
3252 isl_union_pw_aff_aff_on_domain(
3253 __isl_take isl_union_set *domain,
3254 __isl_take isl_aff *aff);
3256 A base expression can be added to a union expression using
3257 the following functions.
3259 #include <isl/aff.h>
3260 __isl_give isl_union_pw_aff *
3261 isl_union_pw_aff_add_pw_aff(
3262 __isl_take isl_union_pw_aff *upa,
3263 __isl_take isl_pw_aff *pa);
3264 __isl_give isl_union_pw_multi_aff *
3265 isl_union_pw_multi_aff_add_pw_multi_aff(
3266 __isl_take isl_union_pw_multi_aff *upma,
3267 __isl_take isl_pw_multi_aff *pma);
3269 #include <isl/polynomial.h>
3270 __isl_give isl_union_pw_qpolynomial *
3271 isl_union_pw_qpolynomial_add_pw_qpolynomial(
3272 __isl_take isl_union_pw_qpolynomial *upwqp,
3273 __isl_take isl_pw_qpolynomial *pwqp);
3275 Union expressions can be copied and freed using
3276 the following functions.
3278 #include <isl/aff.h>
3279 __isl_give isl_union_pw_aff *isl_union_pw_aff_copy(
3280 __isl_keep isl_union_pw_aff *upa);
3281 __isl_null isl_union_pw_aff *isl_union_pw_aff_free(
3282 __isl_take isl_union_pw_aff *upa);
3283 __isl_give isl_union_pw_multi_aff *
3284 isl_union_pw_multi_aff_copy(
3285 __isl_keep isl_union_pw_multi_aff *upma);
3286 __isl_null isl_union_pw_multi_aff *
3287 isl_union_pw_multi_aff_free(
3288 __isl_take isl_union_pw_multi_aff *upma);
3290 #include <isl/polynomial.h>
3291 __isl_give isl_union_pw_qpolynomial *
3292 isl_union_pw_qpolynomial_copy(
3293 __isl_keep isl_union_pw_qpolynomial *upwqp);
3294 __isl_null isl_union_pw_qpolynomial *
3295 isl_union_pw_qpolynomial_free(
3296 __isl_take isl_union_pw_qpolynomial *upwqp);
3297 __isl_give isl_union_pw_qpolynomial_fold *
3298 isl_union_pw_qpolynomial_fold_copy(
3299 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3300 __isl_null isl_union_pw_qpolynomial_fold *
3301 isl_union_pw_qpolynomial_fold_free(
3302 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3304 To iterate over the base expressions in a union expression,
3305 use the following functions.
3307 #include <isl/aff.h>
3308 int isl_union_pw_aff_n_pw_aff(
3309 __isl_keep isl_union_pw_aff *upa);
3310 isl_stat isl_union_pw_aff_foreach_pw_aff(
3311 __isl_keep isl_union_pw_aff *upa,
3312 isl_stat (*fn)(__isl_take isl_pw_aff *pa,
3313 void *user), void *user);
3314 int isl_union_pw_multi_aff_n_pw_multi_aff(
3315 __isl_keep isl_union_pw_multi_aff *upma);
3316 isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff(
3317 __isl_keep isl_union_pw_multi_aff *upma,
3318 isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma,
3319 void *user), void *user);
3321 #include <isl/polynomial.h>
3322 int isl_union_pw_qpolynomial_n_pw_qpolynomial(
3323 __isl_keep isl_union_pw_qpolynomial *upwqp);
3324 isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3325 __isl_keep isl_union_pw_qpolynomial *upwqp,
3326 isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
3327 void *user), void *user);
3328 int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold(
3329 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3330 isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3331 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3332 isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3333 void *user), void *user);
3335 To extract the base expression in a given space from a union, use
3336 the following functions.
3338 #include <isl/aff.h>
3339 __isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff(
3340 __isl_keep isl_union_pw_aff *upa,
3341 __isl_take isl_space *space);
3342 __isl_give isl_pw_multi_aff *
3343 isl_union_pw_multi_aff_extract_pw_multi_aff(
3344 __isl_keep isl_union_pw_multi_aff *upma,
3345 __isl_take isl_space *space);
3347 #include <isl/polynomial.h>
3348 __isl_give isl_pw_qpolynomial *
3349 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3350 __isl_keep isl_union_pw_qpolynomial *upwqp,
3351 __isl_take isl_space *space);
3353 =head2 Input and Output
3355 For set and relation,
3356 C<isl> supports its own input/output format, which is similar
3357 to the C<Omega> format, but also supports the C<PolyLib> format
3359 For other object types, typically only an C<isl> format is supported.
3361 =head3 C<isl> format
3363 The C<isl> format is similar to that of C<Omega>, but has a different
3364 syntax for describing the parameters and allows for the definition
3365 of an existentially quantified variable as the integer division
3366 of an affine expression.
3367 For example, the set of integers C<i> between C<0> and C<n>
3368 such that C<i % 10 <= 6> can be described as
3370 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
3373 A set or relation can have several disjuncts, separated
3374 by the keyword C<or>. Each disjunct is either a conjunction
3375 of constraints or a projection (C<exists>) of a conjunction
3376 of constraints. The constraints are separated by the keyword
3379 =head3 C<PolyLib> format
3381 If the represented set is a union, then the first line
3382 contains a single number representing the number of disjuncts.
3383 Otherwise, a line containing the number C<1> is optional.
3385 Each disjunct is represented by a matrix of constraints.
3386 The first line contains two numbers representing
3387 the number of rows and columns,
3388 where the number of rows is equal to the number of constraints
3389 and the number of columns is equal to two plus the number of variables.
3390 The following lines contain the actual rows of the constraint matrix.
3391 In each row, the first column indicates whether the constraint
3392 is an equality (C<0>) or inequality (C<1>). The final column
3393 corresponds to the constant term.
3395 If the set is parametric, then the coefficients of the parameters
3396 appear in the last columns before the constant column.
3397 The coefficients of any existentially quantified variables appear
3398 between those of the set variables and those of the parameters.
3400 =head3 Extended C<PolyLib> format
3402 The extended C<PolyLib> format is nearly identical to the
3403 C<PolyLib> format. The only difference is that the line
3404 containing the number of rows and columns of a constraint matrix
3405 also contains four additional numbers:
3406 the number of output dimensions, the number of input dimensions,
3407 the number of local dimensions (i.e., the number of existentially
3408 quantified variables) and the number of parameters.
3409 For sets, the number of ``output'' dimensions is equal
3410 to the number of set dimensions, while the number of ``input''
3415 Objects can be read from input using the following functions.
3417 #include <isl/val.h>
3418 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
3420 __isl_give isl_multi_val *isl_multi_val_read_from_str(
3421 isl_ctx *ctx, const char *str);
3423 #include <isl/set.h>
3424 __isl_give isl_basic_set *isl_basic_set_read_from_file(
3425 isl_ctx *ctx, FILE *input);
3426 __isl_give isl_basic_set *isl_basic_set_read_from_str(
3427 isl_ctx *ctx, const char *str);
3428 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
3430 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
3433 #include <isl/map.h>
3434 __isl_give isl_basic_map *isl_basic_map_read_from_file(
3435 isl_ctx *ctx, FILE *input);
3436 __isl_give isl_basic_map *isl_basic_map_read_from_str(
3437 isl_ctx *ctx, const char *str);
3438 __isl_give isl_map *isl_map_read_from_file(
3439 isl_ctx *ctx, FILE *input);
3440 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
3443 #include <isl/union_set.h>
3444 __isl_give isl_union_set *isl_union_set_read_from_file(
3445 isl_ctx *ctx, FILE *input);
3446 __isl_give isl_union_set *isl_union_set_read_from_str(
3447 isl_ctx *ctx, const char *str);
3449 #include <isl/union_map.h>
3450 __isl_give isl_union_map *isl_union_map_read_from_file(
3451 isl_ctx *ctx, FILE *input);
3452 __isl_give isl_union_map *isl_union_map_read_from_str(
3453 isl_ctx *ctx, const char *str);
3455 #include <isl/aff.h>
3456 __isl_give isl_aff *isl_aff_read_from_str(
3457 isl_ctx *ctx, const char *str);
3458 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3459 isl_ctx *ctx, const char *str);
3460 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3461 isl_ctx *ctx, const char *str);
3462 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3463 isl_ctx *ctx, const char *str);
3464 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
3465 isl_ctx *ctx, const char *str);
3466 __isl_give isl_union_pw_aff *
3467 isl_union_pw_aff_read_from_str(
3468 isl_ctx *ctx, const char *str);
3469 __isl_give isl_union_pw_multi_aff *
3470 isl_union_pw_multi_aff_read_from_str(
3471 isl_ctx *ctx, const char *str);
3472 __isl_give isl_multi_union_pw_aff *
3473 isl_multi_union_pw_aff_read_from_str(
3474 isl_ctx *ctx, const char *str);
3476 #include <isl/polynomial.h>
3477 __isl_give isl_union_pw_qpolynomial *
3478 isl_union_pw_qpolynomial_read_from_str(
3479 isl_ctx *ctx, const char *str);
3481 For sets and relations,
3482 the input format is autodetected and may be either the C<PolyLib> format
3483 or the C<isl> format.
3487 Before anything can be printed, an C<isl_printer> needs to
3490 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
3492 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
3493 __isl_null isl_printer *isl_printer_free(
3494 __isl_take isl_printer *printer);
3496 C<isl_printer_to_file> prints to the given file, while
3497 C<isl_printer_to_str> prints to a string that can be extracted
3498 using the following function.
3500 #include <isl/printer.h>
3501 __isl_give char *isl_printer_get_str(
3502 __isl_keep isl_printer *printer);
3504 The printer can be inspected using the following functions.
3506 FILE *isl_printer_get_file(
3507 __isl_keep isl_printer *printer);
3508 int isl_printer_get_output_format(
3509 __isl_keep isl_printer *p);
3510 int isl_printer_get_yaml_style(__isl_keep isl_printer *p);
3512 The behavior of the printer can be modified in various ways
3514 __isl_give isl_printer *isl_printer_set_output_format(
3515 __isl_take isl_printer *p, int output_format);
3516 __isl_give isl_printer *isl_printer_set_indent(
3517 __isl_take isl_printer *p, int indent);
3518 __isl_give isl_printer *isl_printer_set_indent_prefix(
3519 __isl_take isl_printer *p, const char *prefix);
3520 __isl_give isl_printer *isl_printer_indent(
3521 __isl_take isl_printer *p, int indent);
3522 __isl_give isl_printer *isl_printer_set_prefix(
3523 __isl_take isl_printer *p, const char *prefix);
3524 __isl_give isl_printer *isl_printer_set_suffix(
3525 __isl_take isl_printer *p, const char *suffix);
3526 __isl_give isl_printer *isl_printer_set_yaml_style(
3527 __isl_take isl_printer *p, int yaml_style);
3529 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
3530 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
3531 and defaults to C<ISL_FORMAT_ISL>.
3532 Each line in the output is prefixed by C<indent_prefix>,
3533 indented by C<indent> (set by C<isl_printer_set_indent>) spaces
3534 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
3535 In the C<PolyLib> format output,
3536 the coefficients of the existentially quantified variables
3537 appear between those of the set variables and those
3539 The function C<isl_printer_indent> increases the indentation
3540 by the specified amount (which may be negative).
3541 The YAML style may be either C<ISL_YAML_STYLE_BLOCK> or
3542 C<ISL_YAML_STYLE_FLOW> and when we are printing something
3545 To actually print something, use
3547 #include <isl/printer.h>
3548 __isl_give isl_printer *isl_printer_print_double(
3549 __isl_take isl_printer *p, double d);
3551 #include <isl/val.h>
3552 __isl_give isl_printer *isl_printer_print_val(
3553 __isl_take isl_printer *p, __isl_keep isl_val *v);
3555 #include <isl/set.h>
3556 __isl_give isl_printer *isl_printer_print_basic_set(
3557 __isl_take isl_printer *printer,
3558 __isl_keep isl_basic_set *bset);
3559 __isl_give isl_printer *isl_printer_print_set(
3560 __isl_take isl_printer *printer,
3561 __isl_keep isl_set *set);
3563 #include <isl/map.h>
3564 __isl_give isl_printer *isl_printer_print_basic_map(
3565 __isl_take isl_printer *printer,
3566 __isl_keep isl_basic_map *bmap);
3567 __isl_give isl_printer *isl_printer_print_map(
3568 __isl_take isl_printer *printer,
3569 __isl_keep isl_map *map);
3571 #include <isl/union_set.h>
3572 __isl_give isl_printer *isl_printer_print_union_set(
3573 __isl_take isl_printer *p,
3574 __isl_keep isl_union_set *uset);
3576 #include <isl/union_map.h>
3577 __isl_give isl_printer *isl_printer_print_union_map(
3578 __isl_take isl_printer *p,
3579 __isl_keep isl_union_map *umap);
3581 #include <isl/val.h>
3582 __isl_give isl_printer *isl_printer_print_multi_val(
3583 __isl_take isl_printer *p,
3584 __isl_keep isl_multi_val *mv);
3586 #include <isl/aff.h>
3587 __isl_give isl_printer *isl_printer_print_aff(
3588 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3589 __isl_give isl_printer *isl_printer_print_multi_aff(
3590 __isl_take isl_printer *p,
3591 __isl_keep isl_multi_aff *maff);
3592 __isl_give isl_printer *isl_printer_print_pw_aff(
3593 __isl_take isl_printer *p,
3594 __isl_keep isl_pw_aff *pwaff);
3595 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3596 __isl_take isl_printer *p,
3597 __isl_keep isl_pw_multi_aff *pma);
3598 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
3599 __isl_take isl_printer *p,
3600 __isl_keep isl_multi_pw_aff *mpa);
3601 __isl_give isl_printer *isl_printer_print_union_pw_aff(
3602 __isl_take isl_printer *p,
3603 __isl_keep isl_union_pw_aff *upa);
3604 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3605 __isl_take isl_printer *p,
3606 __isl_keep isl_union_pw_multi_aff *upma);
3607 __isl_give isl_printer *
3608 isl_printer_print_multi_union_pw_aff(
3609 __isl_take isl_printer *p,
3610 __isl_keep isl_multi_union_pw_aff *mupa);
3612 #include <isl/polynomial.h>
3613 __isl_give isl_printer *isl_printer_print_qpolynomial(
3614 __isl_take isl_printer *p,
3615 __isl_keep isl_qpolynomial *qp);
3616 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3617 __isl_take isl_printer *p,
3618 __isl_keep isl_pw_qpolynomial *pwqp);
3619 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3620 __isl_take isl_printer *p,
3621 __isl_keep isl_union_pw_qpolynomial *upwqp);
3623 __isl_give isl_printer *
3624 isl_printer_print_pw_qpolynomial_fold(
3625 __isl_take isl_printer *p,
3626 __isl_keep isl_pw_qpolynomial_fold *pwf);
3627 __isl_give isl_printer *
3628 isl_printer_print_union_pw_qpolynomial_fold(
3629 __isl_take isl_printer *p,
3630 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3632 For C<isl_printer_print_qpolynomial>,
3633 C<isl_printer_print_pw_qpolynomial> and
3634 C<isl_printer_print_pw_qpolynomial_fold>,
3635 the output format of the printer
3636 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3637 For C<isl_printer_print_union_pw_qpolynomial> and
3638 C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
3640 In case of printing in C<ISL_FORMAT_C>, the user may want
3641 to set the names of all dimensions first.
3643 C<isl> also provides limited support for printing YAML documents,
3644 just enough for the internal use for printing such documents.
3646 #include <isl/printer.h>
3647 __isl_give isl_printer *isl_printer_yaml_start_mapping(
3648 __isl_take isl_printer *p);
3649 __isl_give isl_printer *isl_printer_yaml_end_mapping(
3650 __isl_take isl_printer *p);
3651 __isl_give isl_printer *isl_printer_yaml_start_sequence(
3652 __isl_take isl_printer *p);
3653 __isl_give isl_printer *isl_printer_yaml_end_sequence(
3654 __isl_take isl_printer *p);
3655 __isl_give isl_printer *isl_printer_yaml_next(
3656 __isl_take isl_printer *p);
3658 A document is started by a call to either
3659 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3660 Anything printed to the printer after such a call belong to the
3661 first key of the mapping or the first element in the sequence.
3662 The function C<isl_printer_yaml_next> moves to the value if
3663 we are currently printing a mapping key, the next key if we
3664 are printing a value or the next element if we are printing
3665 an element in a sequence.
3666 Nested mappings and sequences are initiated by the same
3667 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3668 Each call to these functions needs to have a corresponding call to
3669 C<isl_printer_yaml_end_mapping> or C<isl_printer_yaml_end_sequence>.
3671 When called on a file printer, the following function flushes
3672 the file. When called on a string printer, the buffer is cleared.
3674 __isl_give isl_printer *isl_printer_flush(
3675 __isl_take isl_printer *p);
3677 The following functions allow the user to attach
3678 notes to a printer in order to keep track of additional state.
3680 #include <isl/printer.h>
3681 isl_bool isl_printer_has_note(__isl_keep isl_printer *p,
3682 __isl_keep isl_id *id);
3683 __isl_give isl_id *isl_printer_get_note(
3684 __isl_keep isl_printer *p, __isl_take isl_id *id);
3685 __isl_give isl_printer *isl_printer_set_note(
3686 __isl_take isl_printer *p,
3687 __isl_take isl_id *id, __isl_take isl_id *note);
3689 C<isl_printer_set_note> associates the given note to the given
3690 identifier in the printer.
3691 C<isl_printer_get_note> retrieves a note associated to an
3693 C<isl_printer_has_note> checks if there is such a note.
3694 C<isl_printer_get_note> fails if the requested note does not exist.
3696 Alternatively, a string representation can be obtained
3697 directly using the following functions, which always print
3701 __isl_give char *isl_id_to_str(
3702 __isl_keep isl_id *id);
3704 #include <isl/space.h>
3705 __isl_give char *isl_space_to_str(
3706 __isl_keep isl_space *space);
3708 #include <isl/val.h>
3709 __isl_give char *isl_val_to_str(__isl_keep isl_val *v);
3710 __isl_give char *isl_multi_val_to_str(
3711 __isl_keep isl_multi_val *mv);
3713 #include <isl/set.h>
3714 __isl_give char *isl_basic_set_to_str(
3715 __isl_keep isl_basic_set *bset);
3716 __isl_give char *isl_set_to_str(
3717 __isl_keep isl_set *set);
3719 #include <isl/union_set.h>
3720 __isl_give char *isl_union_set_to_str(
3721 __isl_keep isl_union_set *uset);
3723 #include <isl/map.h>
3724 __isl_give char *isl_basic_map_to_str(
3725 __isl_keep isl_basic_map *bmap);
3726 __isl_give char *isl_map_to_str(
3727 __isl_keep isl_map *map);
3729 #include <isl/union_map.h>
3730 __isl_give char *isl_union_map_to_str(
3731 __isl_keep isl_union_map *umap);
3733 #include <isl/aff.h>
3734 __isl_give char *isl_aff_to_str(__isl_keep isl_aff *aff);
3735 __isl_give char *isl_pw_aff_to_str(
3736 __isl_keep isl_pw_aff *pa);
3737 __isl_give char *isl_multi_aff_to_str(
3738 __isl_keep isl_multi_aff *ma);
3739 __isl_give char *isl_pw_multi_aff_to_str(
3740 __isl_keep isl_pw_multi_aff *pma);
3741 __isl_give char *isl_multi_pw_aff_to_str(
3742 __isl_keep isl_multi_pw_aff *mpa);
3743 __isl_give char *isl_union_pw_aff_to_str(
3744 __isl_keep isl_union_pw_aff *upa);
3745 __isl_give char *isl_union_pw_multi_aff_to_str(
3746 __isl_keep isl_union_pw_multi_aff *upma);
3747 __isl_give char *isl_multi_union_pw_aff_to_str(
3748 __isl_keep isl_multi_union_pw_aff *mupa);
3750 #include <isl/point.h>
3751 __isl_give char *isl_point_to_str(
3752 __isl_keep isl_point *pnt);
3754 #include <isl/polynomial.h>
3755 __isl_give char *isl_pw_qpolynomial_to_str(
3756 __isl_keep isl_pw_qpolynomial *pwqp);
3757 __isl_give char *isl_union_pw_qpolynomial_to_str(
3758 __isl_keep isl_union_pw_qpolynomial *upwqp);
3762 =head3 Unary Properties
3768 The following functions test whether the given set or relation
3769 contains any integer points. The ``plain'' variants do not perform
3770 any computations, but simply check if the given set or relation
3771 is already known to be empty.
3773 isl_bool isl_basic_set_plain_is_empty(
3774 __isl_keep isl_basic_set *bset);
3775 isl_bool isl_basic_set_is_empty(
3776 __isl_keep isl_basic_set *bset);
3777 isl_bool isl_set_plain_is_empty(
3778 __isl_keep isl_set *set);
3779 isl_bool isl_set_is_empty(__isl_keep isl_set *set);
3780 isl_bool isl_union_set_is_empty(
3781 __isl_keep isl_union_set *uset);
3782 isl_bool isl_basic_map_plain_is_empty(
3783 __isl_keep isl_basic_map *bmap);
3784 isl_bool isl_basic_map_is_empty(
3785 __isl_keep isl_basic_map *bmap);
3786 isl_bool isl_map_plain_is_empty(
3787 __isl_keep isl_map *map);
3788 isl_bool isl_map_is_empty(__isl_keep isl_map *map);
3789 isl_bool isl_union_map_is_empty(
3790 __isl_keep isl_union_map *umap);
3792 =item * Universality
3794 isl_bool isl_basic_set_plain_is_universe(
3795 __isl_keep isl_basic_set *bset);
3796 isl_bool isl_basic_set_is_universe(
3797 __isl_keep isl_basic_set *bset);
3798 isl_bool isl_basic_map_plain_is_universe(
3799 __isl_keep isl_basic_map *bmap);
3800 isl_bool isl_basic_map_is_universe(
3801 __isl_keep isl_basic_map *bmap);
3802 isl_bool isl_set_plain_is_universe(
3803 __isl_keep isl_set *set);
3804 isl_bool isl_map_plain_is_universe(
3805 __isl_keep isl_map *map);
3807 =item * Single-valuedness
3809 #include <isl/set.h>
3810 isl_bool isl_set_is_singleton(__isl_keep isl_set *set);
3812 #include <isl/map.h>
3813 isl_bool isl_basic_map_is_single_valued(
3814 __isl_keep isl_basic_map *bmap);
3815 isl_bool isl_map_plain_is_single_valued(
3816 __isl_keep isl_map *map);
3817 isl_bool isl_map_is_single_valued(__isl_keep isl_map *map);
3819 #include <isl/union_map.h>
3820 isl_bool isl_union_map_is_single_valued(
3821 __isl_keep isl_union_map *umap);
3825 isl_bool isl_map_plain_is_injective(
3826 __isl_keep isl_map *map);
3827 isl_bool isl_map_is_injective(
3828 __isl_keep isl_map *map);
3829 isl_bool isl_union_map_plain_is_injective(
3830 __isl_keep isl_union_map *umap);
3831 isl_bool isl_union_map_is_injective(
3832 __isl_keep isl_union_map *umap);
3836 isl_bool isl_map_is_bijective(
3837 __isl_keep isl_map *map);
3838 isl_bool isl_union_map_is_bijective(
3839 __isl_keep isl_union_map *umap);
3843 The following functions test whether the given relation
3844 only maps elements to themselves.
3846 #include <isl/map.h>
3847 isl_bool isl_map_is_identity(
3848 __isl_keep isl_map *map);
3850 #include <isl/union_map.h>
3851 isl_bool isl_union_map_is_identity(
3852 __isl_keep isl_union_map *umap);
3856 __isl_give isl_val *
3857 isl_basic_map_plain_get_val_if_fixed(
3858 __isl_keep isl_basic_map *bmap,
3859 enum isl_dim_type type, unsigned pos);
3860 __isl_give isl_val *isl_set_plain_get_val_if_fixed(
3861 __isl_keep isl_set *set,
3862 enum isl_dim_type type, unsigned pos);
3863 __isl_give isl_val *isl_map_plain_get_val_if_fixed(
3864 __isl_keep isl_map *map,
3865 enum isl_dim_type type, unsigned pos);
3867 If the set or relation obviously lies on a hyperplane where the given dimension
3868 has a fixed value, then return that value.
3869 Otherwise return NaN.
3873 isl_stat isl_set_dim_residue_class_val(
3874 __isl_keep isl_set *set,
3875 int pos, __isl_give isl_val **modulo,
3876 __isl_give isl_val **residue);
3878 Check if the values of the given set dimension are equal to a fixed
3879 value modulo some integer value. If so, assign the modulo to C<*modulo>
3880 and the fixed value to C<*residue>. If the given dimension attains only
3881 a single value, then assign C<0> to C<*modulo> and the fixed value to
3883 If the dimension does not attain only a single value and if no modulo
3884 can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
3888 To check whether the description of a set, relation or function depends
3889 on one or more given dimensions,
3890 the following functions can be used.
3892 #include <isl/constraint.h>
3893 isl_bool isl_constraint_involves_dims(
3894 __isl_keep isl_constraint *constraint,
3895 enum isl_dim_type type, unsigned first, unsigned n);
3897 #include <isl/set.h>
3898 isl_bool isl_basic_set_involves_dims(
3899 __isl_keep isl_basic_set *bset,
3900 enum isl_dim_type type, unsigned first, unsigned n);
3901 isl_bool isl_set_involves_dims(__isl_keep isl_set *set,
3902 enum isl_dim_type type, unsigned first, unsigned n);
3904 #include <isl/map.h>
3905 isl_bool isl_basic_map_involves_dims(
3906 __isl_keep isl_basic_map *bmap,
3907 enum isl_dim_type type, unsigned first, unsigned n);
3908 isl_bool isl_map_involves_dims(__isl_keep isl_map *map,
3909 enum isl_dim_type type, unsigned first, unsigned n);
3911 #include <isl/union_map.h>
3912 isl_bool isl_union_map_involves_dims(
3913 __isl_keep isl_union_map *umap,
3914 enum isl_dim_type type, unsigned first, unsigned n);
3916 #include <isl/aff.h>
3917 isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
3918 enum isl_dim_type type, unsigned first, unsigned n);
3919 isl_bool isl_pw_aff_involves_dims(
3920 __isl_keep isl_pw_aff *pwaff,
3921 enum isl_dim_type type, unsigned first, unsigned n);
3922 isl_bool isl_multi_aff_involves_dims(
3923 __isl_keep isl_multi_aff *ma,
3924 enum isl_dim_type type, unsigned first, unsigned n);
3925 isl_bool isl_multi_pw_aff_involves_dims(
3926 __isl_keep isl_multi_pw_aff *mpa,
3927 enum isl_dim_type type, unsigned first, unsigned n);
3929 #include <isl/polynomial.h>
3930 isl_bool isl_qpolynomial_involves_dims(
3931 __isl_keep isl_qpolynomial *qp,
3932 enum isl_dim_type type, unsigned first, unsigned n);
3934 Similarly, the following functions can be used to check whether
3935 a given dimension is involved in any lower or upper bound.
3937 #include <isl/set.h>
3938 isl_bool isl_set_dim_has_any_lower_bound(
3939 __isl_keep isl_set *set,
3940 enum isl_dim_type type, unsigned pos);
3941 isl_bool isl_set_dim_has_any_upper_bound(
3942 __isl_keep isl_set *set,
3943 enum isl_dim_type type, unsigned pos);
3945 Note that these functions return true even if there is a bound on
3946 the dimension on only some of the basic sets of C<set>.
3947 To check if they have a bound for all of the basic sets in C<set>,
3948 use the following functions instead.
3950 #include <isl/set.h>
3951 isl_bool isl_set_dim_has_lower_bound(
3952 __isl_keep isl_set *set,
3953 enum isl_dim_type type, unsigned pos);
3954 isl_bool isl_set_dim_has_upper_bound(
3955 __isl_keep isl_set *set,
3956 enum isl_dim_type type, unsigned pos);
3960 To check whether a set is a parameter domain, use this function:
3962 isl_bool isl_set_is_params(__isl_keep isl_set *set);
3963 isl_bool isl_union_set_is_params(
3964 __isl_keep isl_union_set *uset);
3968 The following functions check whether the space of the given
3969 (basic) set or relation range is a wrapped relation.
3971 #include <isl/space.h>
3972 isl_bool isl_space_is_wrapping(
3973 __isl_keep isl_space *space);
3974 isl_bool isl_space_domain_is_wrapping(
3975 __isl_keep isl_space *space);
3976 isl_bool isl_space_range_is_wrapping(
3977 __isl_keep isl_space *space);
3979 #include <isl/set.h>
3980 isl_bool isl_basic_set_is_wrapping(
3981 __isl_keep isl_basic_set *bset);
3982 isl_bool isl_set_is_wrapping(__isl_keep isl_set *set);
3984 #include <isl/map.h>
3985 isl_bool isl_map_domain_is_wrapping(
3986 __isl_keep isl_map *map);
3987 isl_bool isl_map_range_is_wrapping(
3988 __isl_keep isl_map *map);
3990 #include <isl/val.h>
3991 isl_bool isl_multi_val_range_is_wrapping(
3992 __isl_keep isl_multi_val *mv);
3994 #include <isl/aff.h>
3995 isl_bool isl_multi_aff_range_is_wrapping(
3996 __isl_keep isl_multi_aff *ma);
3997 isl_bool isl_multi_pw_aff_range_is_wrapping(
3998 __isl_keep isl_multi_pw_aff *mpa);
3999 isl_bool isl_multi_union_pw_aff_range_is_wrapping(
4000 __isl_keep isl_multi_union_pw_aff *mupa);
4002 The input to C<isl_space_is_wrapping> should
4003 be the space of a set, while that of
4004 C<isl_space_domain_is_wrapping> and
4005 C<isl_space_range_is_wrapping> should be the space of a relation.
4007 =item * Internal Product
4009 isl_bool isl_basic_map_can_zip(
4010 __isl_keep isl_basic_map *bmap);
4011 isl_bool isl_map_can_zip(__isl_keep isl_map *map);
4013 Check whether the product of domain and range of the given relation
4015 i.e., whether both domain and range are nested relations.
4019 #include <isl/space.h>
4020 isl_bool isl_space_can_curry(
4021 __isl_keep isl_space *space);
4023 #include <isl/map.h>
4024 isl_bool isl_basic_map_can_curry(
4025 __isl_keep isl_basic_map *bmap);
4026 isl_bool isl_map_can_curry(__isl_keep isl_map *map);
4028 Check whether the domain of the (basic) relation is a wrapped relation.
4030 #include <isl/space.h>
4031 __isl_give isl_space *isl_space_uncurry(
4032 __isl_take isl_space *space);
4034 #include <isl/map.h>
4035 isl_bool isl_basic_map_can_uncurry(
4036 __isl_keep isl_basic_map *bmap);
4037 isl_bool isl_map_can_uncurry(__isl_keep isl_map *map);
4039 Check whether the range of the (basic) relation is a wrapped relation.
4041 #include <isl/space.h>
4042 isl_bool isl_space_can_range_curry(
4043 __isl_keep isl_space *space);
4045 #include <isl/map.h>
4046 isl_bool isl_map_can_range_curry(
4047 __isl_keep isl_map *map);
4049 Check whether the domain of the relation wrapped in the range of
4050 the input is itself a wrapped relation.
4052 =item * Special Values
4054 #include <isl/aff.h>
4055 isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff);
4056 isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
4057 isl_bool isl_multi_pw_aff_is_cst(
4058 __isl_keep isl_multi_pw_aff *mpa);
4060 Check whether the given expression is a constant.
4062 #include <isl/val.h>
4063 isl_bool isl_multi_val_involves_nan(
4064 __isl_keep isl_multi_val *mv);
4066 #include <isl/aff.h>
4067 isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff);
4068 isl_bool isl_multi_aff_involves_nan(
4069 __isl_keep isl_multi_aff *ma);
4070 isl_bool isl_pw_aff_involves_nan(
4071 __isl_keep isl_pw_aff *pa);
4072 isl_bool isl_pw_multi_aff_involves_nan(
4073 __isl_keep isl_pw_multi_aff *pma);
4074 isl_bool isl_multi_pw_aff_involves_nan(
4075 __isl_keep isl_multi_pw_aff *mpa);
4076 isl_bool isl_union_pw_aff_involves_nan(
4077 __isl_keep isl_union_pw_aff *upa);
4078 isl_bool isl_union_pw_multi_aff_involves_nan(
4079 __isl_keep isl_union_pw_multi_aff *upma);
4080 isl_bool isl_multi_union_pw_aff_involves_nan(
4081 __isl_keep isl_multi_union_pw_aff *mupa);
4083 #include <isl/polynomial.h>
4084 isl_bool isl_qpolynomial_is_nan(
4085 __isl_keep isl_qpolynomial *qp);
4086 isl_bool isl_qpolynomial_fold_is_nan(
4087 __isl_keep isl_qpolynomial_fold *fold);
4088 isl_bool isl_pw_qpolynomial_involves_nan(
4089 __isl_keep isl_pw_qpolynomial *pwqp);
4090 isl_bool isl_pw_qpolynomial_fold_involves_nan(
4091 __isl_keep isl_pw_qpolynomial_fold *pwf);
4092 isl_bool isl_union_pw_qpolynomial_involves_nan(
4093 __isl_keep isl_union_pw_qpolynomial *upwqp);
4094 isl_bool isl_union_pw_qpolynomial_fold_involves_nan(
4095 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4097 Check whether the given expression is equal to or involves NaN.
4099 #include <isl/aff.h>
4100 isl_bool isl_aff_plain_is_zero(
4101 __isl_keep isl_aff *aff);
4103 Check whether the affine expression is obviously zero.
4107 =head3 Binary Properties
4113 The following functions check whether two objects
4114 represent the same set, relation or function.
4115 The C<plain> variants only return true if the objects
4116 are obviously the same. That is, they may return false
4117 even if the objects are the same, but they will never
4118 return true if the objects are not the same.
4120 #include <isl/set.h>
4121 isl_bool isl_basic_set_plain_is_equal(
4122 __isl_keep isl_basic_set *bset1,
4123 __isl_keep isl_basic_set *bset2);
4124 isl_bool isl_basic_set_is_equal(
4125 __isl_keep isl_basic_set *bset1,
4126 __isl_keep isl_basic_set *bset2);
4127 isl_bool isl_set_plain_is_equal(
4128 __isl_keep isl_set *set1,
4129 __isl_keep isl_set *set2);
4130 isl_bool isl_set_is_equal(__isl_keep isl_set *set1,
4131 __isl_keep isl_set *set2);
4133 #include <isl/map.h>
4134 isl_bool isl_basic_map_is_equal(
4135 __isl_keep isl_basic_map *bmap1,
4136 __isl_keep isl_basic_map *bmap2);
4137 isl_bool isl_map_is_equal(__isl_keep isl_map *map1,
4138 __isl_keep isl_map *map2);
4139 isl_bool isl_map_plain_is_equal(
4140 __isl_keep isl_map *map1,
4141 __isl_keep isl_map *map2);
4143 #include <isl/union_set.h>
4144 isl_bool isl_union_set_is_equal(
4145 __isl_keep isl_union_set *uset1,
4146 __isl_keep isl_union_set *uset2);
4148 #include <isl/union_map.h>
4149 isl_bool isl_union_map_is_equal(
4150 __isl_keep isl_union_map *umap1,
4151 __isl_keep isl_union_map *umap2);
4153 #include <isl/aff.h>
4154 isl_bool isl_aff_plain_is_equal(
4155 __isl_keep isl_aff *aff1,
4156 __isl_keep isl_aff *aff2);
4157 isl_bool isl_multi_aff_plain_is_equal(
4158 __isl_keep isl_multi_aff *maff1,
4159 __isl_keep isl_multi_aff *maff2);
4160 isl_bool isl_pw_aff_plain_is_equal(
4161 __isl_keep isl_pw_aff *pwaff1,
4162 __isl_keep isl_pw_aff *pwaff2);
4163 isl_bool isl_pw_aff_is_equal(
4164 __isl_keep isl_pw_aff *pa1,
4165 __isl_keep isl_pw_aff *pa2);
4166 isl_bool isl_pw_multi_aff_plain_is_equal(
4167 __isl_keep isl_pw_multi_aff *pma1,
4168 __isl_keep isl_pw_multi_aff *pma2);
4169 isl_bool isl_pw_multi_aff_is_equal(
4170 __isl_keep isl_pw_multi_aff *pma1,
4171 __isl_keep isl_pw_multi_aff *pma2);
4172 isl_bool isl_multi_pw_aff_plain_is_equal(
4173 __isl_keep isl_multi_pw_aff *mpa1,
4174 __isl_keep isl_multi_pw_aff *mpa2);
4175 isl_bool isl_multi_pw_aff_is_equal(
4176 __isl_keep isl_multi_pw_aff *mpa1,
4177 __isl_keep isl_multi_pw_aff *mpa2);
4178 isl_bool isl_union_pw_aff_plain_is_equal(
4179 __isl_keep isl_union_pw_aff *upa1,
4180 __isl_keep isl_union_pw_aff *upa2);
4181 isl_bool isl_union_pw_multi_aff_plain_is_equal(
4182 __isl_keep isl_union_pw_multi_aff *upma1,
4183 __isl_keep isl_union_pw_multi_aff *upma2);
4184 isl_bool isl_multi_union_pw_aff_plain_is_equal(
4185 __isl_keep isl_multi_union_pw_aff *mupa1,
4186 __isl_keep isl_multi_union_pw_aff *mupa2);
4188 #include <isl/polynomial.h>
4189 isl_bool isl_union_pw_qpolynomial_plain_is_equal(
4190 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4191 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4192 isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal(
4193 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4194 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4196 =item * Disjointness
4198 #include <isl/set.h>
4199 isl_bool isl_basic_set_is_disjoint(
4200 __isl_keep isl_basic_set *bset1,
4201 __isl_keep isl_basic_set *bset2);
4202 isl_bool isl_set_plain_is_disjoint(
4203 __isl_keep isl_set *set1,
4204 __isl_keep isl_set *set2);
4205 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1,
4206 __isl_keep isl_set *set2);
4208 #include <isl/map.h>
4209 isl_bool isl_basic_map_is_disjoint(
4210 __isl_keep isl_basic_map *bmap1,
4211 __isl_keep isl_basic_map *bmap2);
4212 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1,
4213 __isl_keep isl_map *map2);
4215 #include <isl/union_set.h>
4216 isl_bool isl_union_set_is_disjoint(
4217 __isl_keep isl_union_set *uset1,
4218 __isl_keep isl_union_set *uset2);
4220 #include <isl/union_map.h>
4221 isl_bool isl_union_map_is_disjoint(
4222 __isl_keep isl_union_map *umap1,
4223 __isl_keep isl_union_map *umap2);
4227 isl_bool isl_basic_set_is_subset(
4228 __isl_keep isl_basic_set *bset1,
4229 __isl_keep isl_basic_set *bset2);
4230 isl_bool isl_set_is_subset(__isl_keep isl_set *set1,
4231 __isl_keep isl_set *set2);
4232 isl_bool isl_set_is_strict_subset(
4233 __isl_keep isl_set *set1,
4234 __isl_keep isl_set *set2);
4235 isl_bool isl_union_set_is_subset(
4236 __isl_keep isl_union_set *uset1,
4237 __isl_keep isl_union_set *uset2);
4238 isl_bool isl_union_set_is_strict_subset(
4239 __isl_keep isl_union_set *uset1,
4240 __isl_keep isl_union_set *uset2);
4241 isl_bool isl_basic_map_is_subset(
4242 __isl_keep isl_basic_map *bmap1,
4243 __isl_keep isl_basic_map *bmap2);
4244 isl_bool isl_basic_map_is_strict_subset(
4245 __isl_keep isl_basic_map *bmap1,
4246 __isl_keep isl_basic_map *bmap2);
4247 isl_bool isl_map_is_subset(
4248 __isl_keep isl_map *map1,
4249 __isl_keep isl_map *map2);
4250 isl_bool isl_map_is_strict_subset(
4251 __isl_keep isl_map *map1,
4252 __isl_keep isl_map *map2);
4253 isl_bool isl_union_map_is_subset(
4254 __isl_keep isl_union_map *umap1,
4255 __isl_keep isl_union_map *umap2);
4256 isl_bool isl_union_map_is_strict_subset(
4257 __isl_keep isl_union_map *umap1,
4258 __isl_keep isl_union_map *umap2);
4260 Check whether the first argument is a (strict) subset of the
4265 Every comparison function returns a negative value if the first
4266 argument is considered smaller than the second, a positive value
4267 if the first argument is considered greater and zero if the two
4268 constraints are considered the same by the comparison criterion.
4270 #include <isl/constraint.h>
4271 int isl_constraint_plain_cmp(
4272 __isl_keep isl_constraint *c1,
4273 __isl_keep isl_constraint *c2);
4275 This function is useful for sorting C<isl_constraint>s.
4276 The order depends on the internal representation of the inputs.
4277 The order is fixed over different calls to the function (assuming
4278 the internal representation of the inputs has not changed), but may
4279 change over different versions of C<isl>.
4281 #include <isl/constraint.h>
4282 int isl_constraint_cmp_last_non_zero(
4283 __isl_keep isl_constraint *c1,
4284 __isl_keep isl_constraint *c2);
4286 This function can be used to sort constraints that live in the same
4287 local space. Constraints that involve ``earlier'' dimensions or
4288 that have a smaller coefficient for the shared latest dimension
4289 are considered smaller than other constraints.
4290 This function only defines a B<partial> order.
4292 #include <isl/set.h>
4293 int isl_set_plain_cmp(__isl_keep isl_set *set1,
4294 __isl_keep isl_set *set2);
4296 This function is useful for sorting C<isl_set>s.
4297 The order depends on the internal representation of the inputs.
4298 The order is fixed over different calls to the function (assuming
4299 the internal representation of the inputs has not changed), but may
4300 change over different versions of C<isl>.
4302 #include <isl/aff.h>
4303 int isl_multi_aff_plain_cmp(
4304 __isl_keep isl_multi_aff *ma1,
4305 __isl_keep isl_multi_aff *ma2);
4306 int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
4307 __isl_keep isl_pw_aff *pa2);
4309 The functions C<isl_multi_aff_plain_cmp> and
4310 C<isl_pw_aff_plain_cmp> can be used to sort C<isl_multi_aff>s and
4311 C<isl_pw_aff>s. The order is not strictly defined.
4312 The current order sorts expressions that only involve
4313 earlier dimensions before those that involve later dimensions.
4317 =head2 Unary Operations
4323 __isl_give isl_set *isl_set_complement(
4324 __isl_take isl_set *set);
4325 __isl_give isl_map *isl_map_complement(
4326 __isl_take isl_map *map);
4330 #include <isl/space.h>
4331 __isl_give isl_space *isl_space_reverse(
4332 __isl_take isl_space *space);
4334 #include <isl/map.h>
4335 __isl_give isl_basic_map *isl_basic_map_reverse(
4336 __isl_take isl_basic_map *bmap);
4337 __isl_give isl_map *isl_map_reverse(
4338 __isl_take isl_map *map);
4340 #include <isl/union_map.h>
4341 __isl_give isl_union_map *isl_union_map_reverse(
4342 __isl_take isl_union_map *umap);
4346 #include <isl/space.h>
4347 __isl_give isl_space *isl_space_domain(
4348 __isl_take isl_space *space);
4349 __isl_give isl_space *isl_space_range(
4350 __isl_take isl_space *space);
4351 __isl_give isl_space *isl_space_params(
4352 __isl_take isl_space *space);
4354 #include <isl/local_space.h>
4355 __isl_give isl_local_space *isl_local_space_domain(
4356 __isl_take isl_local_space *ls);
4357 __isl_give isl_local_space *isl_local_space_range(
4358 __isl_take isl_local_space *ls);
4360 #include <isl/set.h>
4361 __isl_give isl_basic_set *isl_basic_set_project_out(
4362 __isl_take isl_basic_set *bset,
4363 enum isl_dim_type type, unsigned first, unsigned n);
4364 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
4365 enum isl_dim_type type, unsigned first, unsigned n);
4366 __isl_give isl_map *isl_set_project_onto_map(
4367 __isl_take isl_set *set,
4368 enum isl_dim_type type, unsigned first,
4370 __isl_give isl_basic_set *isl_basic_set_params(
4371 __isl_take isl_basic_set *bset);
4372 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
4374 The function C<isl_set_project_onto_map> returns a relation
4375 that projects the input set onto the given set dimensions.
4377 #include <isl/map.h>
4378 __isl_give isl_basic_map *isl_basic_map_project_out(
4379 __isl_take isl_basic_map *bmap,
4380 enum isl_dim_type type, unsigned first, unsigned n);
4381 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
4382 enum isl_dim_type type, unsigned first, unsigned n);
4383 __isl_give isl_basic_set *isl_basic_map_domain(
4384 __isl_take isl_basic_map *bmap);
4385 __isl_give isl_basic_set *isl_basic_map_range(
4386 __isl_take isl_basic_map *bmap);
4387 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
4388 __isl_give isl_set *isl_map_domain(
4389 __isl_take isl_map *bmap);
4390 __isl_give isl_set *isl_map_range(
4391 __isl_take isl_map *map);
4393 #include <isl/union_set.h>
4394 __isl_give isl_union_set *isl_union_set_project_out(
4395 __isl_take isl_union_set *uset,
4396 enum isl_dim_type type,
4397 unsigned first, unsigned n);
4398 __isl_give isl_set *isl_union_set_params(
4399 __isl_take isl_union_set *uset);
4401 The function C<isl_union_set_project_out> can only project out
4404 #include <isl/union_map.h>
4405 __isl_give isl_union_map *isl_union_map_project_out(
4406 __isl_take isl_union_map *umap,
4407 enum isl_dim_type type, unsigned first, unsigned n);
4408 __isl_give isl_set *isl_union_map_params(
4409 __isl_take isl_union_map *umap);
4410 __isl_give isl_union_set *isl_union_map_domain(
4411 __isl_take isl_union_map *umap);
4412 __isl_give isl_union_set *isl_union_map_range(
4413 __isl_take isl_union_map *umap);
4415 The function C<isl_union_map_project_out> can only project out
4418 #include <isl/aff.h>
4419 __isl_give isl_aff *isl_aff_project_domain_on_params(
4420 __isl_take isl_aff *aff);
4421 __isl_give isl_pw_aff *
4422 isl_pw_aff_project_domain_on_params(
4423 __isl_take isl_pw_aff *pa);
4424 __isl_give isl_pw_multi_aff *
4425 isl_pw_multi_aff_project_domain_on_params(
4426 __isl_take isl_pw_multi_aff *pma);
4427 __isl_give isl_set *isl_pw_aff_domain(
4428 __isl_take isl_pw_aff *pwaff);
4429 __isl_give isl_set *isl_pw_multi_aff_domain(
4430 __isl_take isl_pw_multi_aff *pma);
4431 __isl_give isl_set *isl_multi_pw_aff_domain(
4432 __isl_take isl_multi_pw_aff *mpa);
4433 __isl_give isl_union_set *isl_union_pw_aff_domain(
4434 __isl_take isl_union_pw_aff *upa);
4435 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
4436 __isl_take isl_union_pw_multi_aff *upma);
4437 __isl_give isl_union_set *
4438 isl_multi_union_pw_aff_domain(
4439 __isl_take isl_multi_union_pw_aff *mupa);
4440 __isl_give isl_set *isl_pw_aff_params(
4441 __isl_take isl_pw_aff *pwa);
4443 The function C<isl_multi_union_pw_aff_domain> requires its
4444 input to have at least one set dimension.
4446 #include <isl/polynomial.h>
4447 __isl_give isl_qpolynomial *
4448 isl_qpolynomial_project_domain_on_params(
4449 __isl_take isl_qpolynomial *qp);
4450 __isl_give isl_pw_qpolynomial *
4451 isl_pw_qpolynomial_project_domain_on_params(
4452 __isl_take isl_pw_qpolynomial *pwqp);
4453 __isl_give isl_pw_qpolynomial_fold *
4454 isl_pw_qpolynomial_fold_project_domain_on_params(
4455 __isl_take isl_pw_qpolynomial_fold *pwf);
4456 __isl_give isl_set *isl_pw_qpolynomial_domain(
4457 __isl_take isl_pw_qpolynomial *pwqp);
4458 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4459 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4460 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4461 __isl_take isl_union_pw_qpolynomial *upwqp);
4463 #include <isl/space.h>
4464 __isl_give isl_space *isl_space_domain_map(
4465 __isl_take isl_space *space);
4466 __isl_give isl_space *isl_space_range_map(
4467 __isl_take isl_space *space);
4469 #include <isl/map.h>
4470 __isl_give isl_map *isl_set_wrapped_domain_map(
4471 __isl_take isl_set *set);
4472 __isl_give isl_basic_map *isl_basic_map_domain_map(
4473 __isl_take isl_basic_map *bmap);
4474 __isl_give isl_basic_map *isl_basic_map_range_map(
4475 __isl_take isl_basic_map *bmap);
4476 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
4477 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
4479 #include <isl/union_map.h>
4480 __isl_give isl_union_map *isl_union_map_domain_map(
4481 __isl_take isl_union_map *umap);
4482 __isl_give isl_union_pw_multi_aff *
4483 isl_union_map_domain_map_union_pw_multi_aff(
4484 __isl_take isl_union_map *umap);
4485 __isl_give isl_union_map *isl_union_map_range_map(
4486 __isl_take isl_union_map *umap);
4487 __isl_give isl_union_map *
4488 isl_union_set_wrapped_domain_map(
4489 __isl_take isl_union_set *uset);
4491 The functions above construct a (basic, regular or union) relation
4492 that maps (a wrapped version of) the input relation to its domain or range.
4493 C<isl_set_wrapped_domain_map> maps the input set to the domain
4494 of its wrapped relation.
4498 __isl_give isl_basic_set *isl_basic_set_eliminate(
4499 __isl_take isl_basic_set *bset,
4500 enum isl_dim_type type,
4501 unsigned first, unsigned n);
4502 __isl_give isl_set *isl_set_eliminate(
4503 __isl_take isl_set *set, enum isl_dim_type type,
4504 unsigned first, unsigned n);
4505 __isl_give isl_basic_map *isl_basic_map_eliminate(
4506 __isl_take isl_basic_map *bmap,
4507 enum isl_dim_type type,
4508 unsigned first, unsigned n);
4509 __isl_give isl_map *isl_map_eliminate(
4510 __isl_take isl_map *map, enum isl_dim_type type,
4511 unsigned first, unsigned n);
4513 Eliminate the coefficients for the given dimensions from the constraints,
4514 without removing the dimensions.
4516 =item * Constructing a set from a parameter domain
4518 A zero-dimensional space or (basic) set can be constructed
4519 on a given parameter domain using the following functions.
4521 #include <isl/space.h>
4522 __isl_give isl_space *isl_space_set_from_params(
4523 __isl_take isl_space *space);
4525 #include <isl/set.h>
4526 __isl_give isl_basic_set *isl_basic_set_from_params(
4527 __isl_take isl_basic_set *bset);
4528 __isl_give isl_set *isl_set_from_params(
4529 __isl_take isl_set *set);
4531 =item * Constructing a relation from one or two sets
4533 Create a relation with the given set(s) as domain and/or range.
4534 If only the domain or the range is specified, then
4535 the range or domain of the created relation is a zero-dimensional
4536 flat anonymous space.
4538 #include <isl/space.h>
4539 __isl_give isl_space *isl_space_from_domain(
4540 __isl_take isl_space *space);
4541 __isl_give isl_space *isl_space_from_range(
4542 __isl_take isl_space *space);
4543 __isl_give isl_space *isl_space_map_from_set(
4544 __isl_take isl_space *space);
4545 __isl_give isl_space *isl_space_map_from_domain_and_range(
4546 __isl_take isl_space *domain,
4547 __isl_take isl_space *range);
4549 #include <isl/local_space.h>
4550 __isl_give isl_local_space *isl_local_space_from_domain(
4551 __isl_take isl_local_space *ls);
4553 #include <isl/map.h>
4554 __isl_give isl_map *isl_map_from_domain(
4555 __isl_take isl_set *set);
4556 __isl_give isl_map *isl_map_from_range(
4557 __isl_take isl_set *set);
4559 #include <isl/union_map.h>
4560 __isl_give isl_union_map *
4561 isl_union_map_from_domain_and_range(
4562 __isl_take isl_union_set *domain,
4563 __isl_take isl_union_set *range);
4565 #include <isl/val.h>
4566 __isl_give isl_multi_val *isl_multi_val_from_range(
4567 __isl_take isl_multi_val *mv);
4569 #include <isl/aff.h>
4570 __isl_give isl_multi_aff *isl_multi_aff_from_range(
4571 __isl_take isl_multi_aff *ma);
4572 __isl_give isl_pw_aff *isl_pw_aff_from_range(
4573 __isl_take isl_pw_aff *pwa);
4574 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
4575 __isl_take isl_multi_pw_aff *mpa);
4576 __isl_give isl_multi_union_pw_aff *
4577 isl_multi_union_pw_aff_from_range(
4578 __isl_take isl_multi_union_pw_aff *mupa);
4579 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4580 __isl_take isl_set *set);
4581 __isl_give isl_union_pw_multi_aff *
4582 isl_union_pw_multi_aff_from_domain(
4583 __isl_take isl_union_set *uset);
4585 #include <isl/polynomial.h>
4586 __isl_give isl_pw_qpolynomial *
4587 isl_pw_qpolynomial_from_range(
4588 __isl_take isl_pw_qpolynomial *pwqp);
4589 __isl_give isl_pw_qpolynomial_fold *
4590 isl_pw_qpolynomial_fold_from_range(
4591 __isl_take isl_pw_qpolynomial_fold *pwf);
4595 #include <isl/set.h>
4596 __isl_give isl_basic_set *isl_basic_set_fix_si(
4597 __isl_take isl_basic_set *bset,
4598 enum isl_dim_type type, unsigned pos, int value);
4599 __isl_give isl_basic_set *isl_basic_set_fix_val(
4600 __isl_take isl_basic_set *bset,
4601 enum isl_dim_type type, unsigned pos,
4602 __isl_take isl_val *v);
4603 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
4604 enum isl_dim_type type, unsigned pos, int value);
4605 __isl_give isl_set *isl_set_fix_val(
4606 __isl_take isl_set *set,
4607 enum isl_dim_type type, unsigned pos,
4608 __isl_take isl_val *v);
4610 #include <isl/map.h>
4611 __isl_give isl_basic_map *isl_basic_map_fix_si(
4612 __isl_take isl_basic_map *bmap,
4613 enum isl_dim_type type, unsigned pos, int value);
4614 __isl_give isl_basic_map *isl_basic_map_fix_val(
4615 __isl_take isl_basic_map *bmap,
4616 enum isl_dim_type type, unsigned pos,
4617 __isl_take isl_val *v);
4618 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
4619 enum isl_dim_type type, unsigned pos, int value);
4620 __isl_give isl_map *isl_map_fix_val(
4621 __isl_take isl_map *map,
4622 enum isl_dim_type type, unsigned pos,
4623 __isl_take isl_val *v);
4625 #include <isl/aff.h>
4626 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
4627 __isl_take isl_pw_multi_aff *pma,
4628 enum isl_dim_type type, unsigned pos, int value);
4630 #include <isl/polynomial.h>
4631 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
4632 __isl_take isl_pw_qpolynomial *pwqp,
4633 enum isl_dim_type type, unsigned n,
4634 __isl_take isl_val *v);
4636 Intersect the set, relation or function domain
4637 with the hyperplane where the given
4638 dimension has the fixed given value.
4640 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
4641 __isl_take isl_basic_map *bmap,
4642 enum isl_dim_type type, unsigned pos, int value);
4643 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
4644 __isl_take isl_basic_map *bmap,
4645 enum isl_dim_type type, unsigned pos, int value);
4646 __isl_give isl_set *isl_set_lower_bound_si(
4647 __isl_take isl_set *set,
4648 enum isl_dim_type type, unsigned pos, int value);
4649 __isl_give isl_set *isl_set_lower_bound_val(
4650 __isl_take isl_set *set,
4651 enum isl_dim_type type, unsigned pos,
4652 __isl_take isl_val *value);
4653 __isl_give isl_map *isl_map_lower_bound_si(
4654 __isl_take isl_map *map,
4655 enum isl_dim_type type, unsigned pos, int value);
4656 __isl_give isl_set *isl_set_upper_bound_si(
4657 __isl_take isl_set *set,
4658 enum isl_dim_type type, unsigned pos, int value);
4659 __isl_give isl_set *isl_set_upper_bound_val(
4660 __isl_take isl_set *set,
4661 enum isl_dim_type type, unsigned pos,
4662 __isl_take isl_val *value);
4663 __isl_give isl_map *isl_map_upper_bound_si(
4664 __isl_take isl_map *map,
4665 enum isl_dim_type type, unsigned pos, int value);
4667 Intersect the set or relation with the half-space where the given
4668 dimension has a value bounded by the fixed given integer value.
4670 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
4671 enum isl_dim_type type1, int pos1,
4672 enum isl_dim_type type2, int pos2);
4673 __isl_give isl_basic_map *isl_basic_map_equate(
4674 __isl_take isl_basic_map *bmap,
4675 enum isl_dim_type type1, int pos1,
4676 enum isl_dim_type type2, int pos2);
4677 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
4678 enum isl_dim_type type1, int pos1,
4679 enum isl_dim_type type2, int pos2);
4681 Intersect the set or relation with the hyperplane where the given
4682 dimensions are equal to each other.
4684 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
4685 enum isl_dim_type type1, int pos1,
4686 enum isl_dim_type type2, int pos2);
4688 Intersect the relation with the hyperplane where the given
4689 dimensions have opposite values.
4691 __isl_give isl_map *isl_map_order_le(
4692 __isl_take isl_map *map,
4693 enum isl_dim_type type1, int pos1,
4694 enum isl_dim_type type2, int pos2);
4695 __isl_give isl_basic_map *isl_basic_map_order_ge(
4696 __isl_take isl_basic_map *bmap,
4697 enum isl_dim_type type1, int pos1,
4698 enum isl_dim_type type2, int pos2);
4699 __isl_give isl_map *isl_map_order_ge(
4700 __isl_take isl_map *map,
4701 enum isl_dim_type type1, int pos1,
4702 enum isl_dim_type type2, int pos2);
4703 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
4704 enum isl_dim_type type1, int pos1,
4705 enum isl_dim_type type2, int pos2);
4706 __isl_give isl_basic_map *isl_basic_map_order_gt(
4707 __isl_take isl_basic_map *bmap,
4708 enum isl_dim_type type1, int pos1,
4709 enum isl_dim_type type2, int pos2);
4710 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
4711 enum isl_dim_type type1, int pos1,
4712 enum isl_dim_type type2, int pos2);
4714 Intersect the relation with the half-space where the given
4715 dimensions satisfy the given ordering.
4719 #include <isl/aff.h>
4720 __isl_give isl_basic_set *isl_aff_zero_basic_set(
4721 __isl_take isl_aff *aff);
4722 __isl_give isl_basic_set *isl_aff_neg_basic_set(
4723 __isl_take isl_aff *aff);
4724 __isl_give isl_set *isl_pw_aff_pos_set(
4725 __isl_take isl_pw_aff *pa);
4726 __isl_give isl_set *isl_pw_aff_nonneg_set(
4727 __isl_take isl_pw_aff *pwaff);
4728 __isl_give isl_set *isl_pw_aff_zero_set(
4729 __isl_take isl_pw_aff *pwaff);
4730 __isl_give isl_set *isl_pw_aff_non_zero_set(
4731 __isl_take isl_pw_aff *pwaff);
4732 __isl_give isl_union_set *
4733 isl_union_pw_aff_zero_union_set(
4734 __isl_take isl_union_pw_aff *upa);
4735 __isl_give isl_union_set *
4736 isl_multi_union_pw_aff_zero_union_set(
4737 __isl_take isl_multi_union_pw_aff *mupa);
4739 The function C<isl_aff_neg_basic_set> returns a basic set
4740 containing those elements in the domain space
4741 of C<aff> where C<aff> is negative.
4742 The function C<isl_pw_aff_nonneg_set> returns a set
4743 containing those elements in the domain
4744 of C<pwaff> where C<pwaff> is non-negative.
4745 The function C<isl_multi_union_pw_aff_zero_union_set>
4746 returns a union set containing those elements
4747 in the domains of its elements where they are all zero.
4751 __isl_give isl_map *isl_set_identity(
4752 __isl_take isl_set *set);
4753 __isl_give isl_union_map *isl_union_set_identity(
4754 __isl_take isl_union_set *uset);
4755 __isl_give isl_union_pw_multi_aff *
4756 isl_union_set_identity_union_pw_multi_aff(
4757 __isl_take isl_union_set *uset);
4759 Construct an identity relation on the given (union) set.
4761 =item * Function Extraction
4763 A piecewise quasi affine expression that is equal to 1 on a set
4764 and 0 outside the set can be created using the following function.
4766 #include <isl/aff.h>
4767 __isl_give isl_pw_aff *isl_set_indicator_function(
4768 __isl_take isl_set *set);
4770 A piecewise multiple quasi affine expression can be extracted
4771 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4772 and the C<isl_map> is single-valued.
4773 In case of a conversion from an C<isl_union_map>
4774 to an C<isl_union_pw_multi_aff>, these properties need to hold
4775 in each domain space.
4776 A conversion to a C<isl_multi_union_pw_aff> additionally
4777 requires that the input is non-empty and involves only a single
4780 #include <isl/aff.h>
4781 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4782 __isl_take isl_set *set);
4783 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4784 __isl_take isl_map *map);
4786 __isl_give isl_union_pw_multi_aff *
4787 isl_union_pw_multi_aff_from_union_set(
4788 __isl_take isl_union_set *uset);
4789 __isl_give isl_union_pw_multi_aff *
4790 isl_union_pw_multi_aff_from_union_map(
4791 __isl_take isl_union_map *umap);
4793 __isl_give isl_multi_union_pw_aff *
4794 isl_multi_union_pw_aff_from_union_map(
4795 __isl_take isl_union_map *umap);
4799 __isl_give isl_basic_set *isl_basic_map_deltas(
4800 __isl_take isl_basic_map *bmap);
4801 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
4802 __isl_give isl_union_set *isl_union_map_deltas(
4803 __isl_take isl_union_map *umap);
4805 These functions return a (basic) set containing the differences
4806 between image elements and corresponding domain elements in the input.
4808 __isl_give isl_basic_map *isl_basic_map_deltas_map(
4809 __isl_take isl_basic_map *bmap);
4810 __isl_give isl_map *isl_map_deltas_map(
4811 __isl_take isl_map *map);
4812 __isl_give isl_union_map *isl_union_map_deltas_map(
4813 __isl_take isl_union_map *umap);
4815 The functions above construct a (basic, regular or union) relation
4816 that maps (a wrapped version of) the input relation to its delta set.
4820 Simplify the representation of a set, relation or functions by trying
4821 to combine pairs of basic sets or relations into a single
4822 basic set or relation.
4824 #include <isl/set.h>
4825 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
4827 #include <isl/map.h>
4828 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
4830 #include <isl/union_set.h>
4831 __isl_give isl_union_set *isl_union_set_coalesce(
4832 __isl_take isl_union_set *uset);
4834 #include <isl/union_map.h>
4835 __isl_give isl_union_map *isl_union_map_coalesce(
4836 __isl_take isl_union_map *umap);
4838 #include <isl/aff.h>
4839 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
4840 __isl_take isl_pw_aff *pwqp);
4841 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
4842 __isl_take isl_pw_multi_aff *pma);
4843 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
4844 __isl_take isl_multi_pw_aff *mpa);
4845 __isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce(
4846 __isl_take isl_union_pw_aff *upa);
4847 __isl_give isl_union_pw_multi_aff *
4848 isl_union_pw_multi_aff_coalesce(
4849 __isl_take isl_union_pw_multi_aff *upma);
4850 __isl_give isl_multi_union_pw_aff *
4851 isl_multi_union_pw_aff_coalesce(
4852 __isl_take isl_multi_union_pw_aff *aff);
4854 #include <isl/polynomial.h>
4855 __isl_give isl_pw_qpolynomial_fold *
4856 isl_pw_qpolynomial_fold_coalesce(
4857 __isl_take isl_pw_qpolynomial_fold *pwf);
4858 __isl_give isl_union_pw_qpolynomial *
4859 isl_union_pw_qpolynomial_coalesce(
4860 __isl_take isl_union_pw_qpolynomial *upwqp);
4861 __isl_give isl_union_pw_qpolynomial_fold *
4862 isl_union_pw_qpolynomial_fold_coalesce(
4863 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4865 One of the methods for combining pairs of basic sets or relations
4866 can result in coefficients that are much larger than those that appear
4867 in the constraints of the input. By default, the coefficients are
4868 not allowed to grow larger, but this can be changed by unsetting
4869 the following option.
4871 isl_stat isl_options_set_coalesce_bounded_wrapping(
4872 isl_ctx *ctx, int val);
4873 int isl_options_get_coalesce_bounded_wrapping(
4876 =item * Detecting equalities
4878 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
4879 __isl_take isl_basic_set *bset);
4880 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
4881 __isl_take isl_basic_map *bmap);
4882 __isl_give isl_set *isl_set_detect_equalities(
4883 __isl_take isl_set *set);
4884 __isl_give isl_map *isl_map_detect_equalities(
4885 __isl_take isl_map *map);
4886 __isl_give isl_union_set *isl_union_set_detect_equalities(
4887 __isl_take isl_union_set *uset);
4888 __isl_give isl_union_map *isl_union_map_detect_equalities(
4889 __isl_take isl_union_map *umap);
4891 Simplify the representation of a set or relation by detecting implicit
4894 =item * Removing redundant constraints
4896 #include <isl/set.h>
4897 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
4898 __isl_take isl_basic_set *bset);
4899 __isl_give isl_set *isl_set_remove_redundancies(
4900 __isl_take isl_set *set);
4902 #include <isl/union_set.h>
4903 __isl_give isl_union_set *
4904 isl_union_set_remove_redundancies(
4905 __isl_take isl_union_set *uset);
4907 #include <isl/map.h>
4908 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
4909 __isl_take isl_basic_map *bmap);
4910 __isl_give isl_map *isl_map_remove_redundancies(
4911 __isl_take isl_map *map);
4913 #include <isl/union_map.h>
4914 __isl_give isl_union_map *
4915 isl_union_map_remove_redundancies(
4916 __isl_take isl_union_map *umap);
4920 __isl_give isl_basic_set *isl_set_convex_hull(
4921 __isl_take isl_set *set);
4922 __isl_give isl_basic_map *isl_map_convex_hull(
4923 __isl_take isl_map *map);
4925 If the input set or relation has any existentially quantified
4926 variables, then the result of these operations is currently undefined.
4930 #include <isl/set.h>
4931 __isl_give isl_basic_set *
4932 isl_set_unshifted_simple_hull(
4933 __isl_take isl_set *set);
4934 __isl_give isl_basic_set *isl_set_simple_hull(
4935 __isl_take isl_set *set);
4936 __isl_give isl_basic_set *
4937 isl_set_plain_unshifted_simple_hull(
4938 __isl_take isl_set *set);
4939 __isl_give isl_basic_set *
4940 isl_set_unshifted_simple_hull_from_set_list(
4941 __isl_take isl_set *set,
4942 __isl_take isl_set_list *list);
4944 #include <isl/map.h>
4945 __isl_give isl_basic_map *
4946 isl_map_unshifted_simple_hull(
4947 __isl_take isl_map *map);
4948 __isl_give isl_basic_map *isl_map_simple_hull(
4949 __isl_take isl_map *map);
4950 __isl_give isl_basic_map *
4951 isl_map_plain_unshifted_simple_hull(
4952 __isl_take isl_map *map);
4953 __isl_give isl_basic_map *
4954 isl_map_unshifted_simple_hull_from_map_list(
4955 __isl_take isl_map *map,
4956 __isl_take isl_map_list *list);
4958 #include <isl/union_map.h>
4959 __isl_give isl_union_map *isl_union_map_simple_hull(
4960 __isl_take isl_union_map *umap);
4962 These functions compute a single basic set or relation
4963 that contains the whole input set or relation.
4964 In particular, the output is described by translates
4965 of the constraints describing the basic sets or relations in the input.
4966 In case of C<isl_set_unshifted_simple_hull>, only the original
4967 constraints are used, without any translation.
4968 In case of C<isl_set_plain_unshifted_simple_hull> and
4969 C<isl_map_plain_unshifted_simple_hull>, the result is described
4970 by original constraints that are obviously satisfied
4971 by the entire input set or relation.
4972 In case of C<isl_set_unshifted_simple_hull_from_set_list> and
4973 C<isl_map_unshifted_simple_hull_from_map_list>, the
4974 constraints are taken from the elements of the second argument.
4978 (See \autoref{s:simple hull}.)
4984 __isl_give isl_basic_set *isl_basic_set_affine_hull(
4985 __isl_take isl_basic_set *bset);
4986 __isl_give isl_basic_set *isl_set_affine_hull(
4987 __isl_take isl_set *set);
4988 __isl_give isl_union_set *isl_union_set_affine_hull(
4989 __isl_take isl_union_set *uset);
4990 __isl_give isl_basic_map *isl_basic_map_affine_hull(
4991 __isl_take isl_basic_map *bmap);
4992 __isl_give isl_basic_map *isl_map_affine_hull(
4993 __isl_take isl_map *map);
4994 __isl_give isl_union_map *isl_union_map_affine_hull(
4995 __isl_take isl_union_map *umap);
4997 In case of union sets and relations, the affine hull is computed
5000 =item * Polyhedral hull
5002 __isl_give isl_basic_set *isl_set_polyhedral_hull(
5003 __isl_take isl_set *set);
5004 __isl_give isl_basic_map *isl_map_polyhedral_hull(
5005 __isl_take isl_map *map);
5006 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
5007 __isl_take isl_union_set *uset);
5008 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
5009 __isl_take isl_union_map *umap);
5011 These functions compute a single basic set or relation
5012 not involving any existentially quantified variables
5013 that contains the whole input set or relation.
5014 In case of union sets and relations, the polyhedral hull is computed
5017 =item * Other approximations
5019 #include <isl/set.h>
5020 __isl_give isl_basic_set *
5021 isl_basic_set_drop_constraints_involving_dims(
5022 __isl_take isl_basic_set *bset,
5023 enum isl_dim_type type,
5024 unsigned first, unsigned n);
5025 __isl_give isl_basic_set *
5026 isl_basic_set_drop_constraints_not_involving_dims(
5027 __isl_take isl_basic_set *bset,
5028 enum isl_dim_type type,
5029 unsigned first, unsigned n);
5030 __isl_give isl_set *
5031 isl_set_drop_constraints_involving_dims(
5032 __isl_take isl_set *set,
5033 enum isl_dim_type type,
5034 unsigned first, unsigned n);
5035 __isl_give isl_set *
5036 isl_set_drop_constraints_not_involving_dims(
5037 __isl_take isl_set *set,
5038 enum isl_dim_type type,
5039 unsigned first, unsigned n);
5041 #include <isl/map.h>
5042 __isl_give isl_basic_map *
5043 isl_basic_map_drop_constraints_involving_dims(
5044 __isl_take isl_basic_map *bmap,
5045 enum isl_dim_type type,
5046 unsigned first, unsigned n);
5047 __isl_give isl_basic_map *
5048 isl_basic_map_drop_constraints_not_involving_dims(
5049 __isl_take isl_basic_map *bmap,
5050 enum isl_dim_type type,
5051 unsigned first, unsigned n);
5052 __isl_give isl_map *
5053 isl_map_drop_constraints_involving_dims(
5054 __isl_take isl_map *map,
5055 enum isl_dim_type type,
5056 unsigned first, unsigned n);
5057 __isl_give isl_map *
5058 isl_map_drop_constraints_not_involving_dims(
5059 __isl_take isl_map *map,
5060 enum isl_dim_type type,
5061 unsigned first, unsigned n);
5063 These functions drop any constraints (not) involving the specified dimensions.
5064 Note that the result depends on the representation of the input.
5066 #include <isl/polynomial.h>
5067 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5068 __isl_take isl_pw_qpolynomial *pwqp, int sign);
5069 __isl_give isl_union_pw_qpolynomial *
5070 isl_union_pw_qpolynomial_to_polynomial(
5071 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
5073 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
5074 the polynomial will be an overapproximation. If C<sign> is negative,
5075 it will be an underapproximation. If C<sign> is zero, the approximation
5076 will lie somewhere in between.
5080 __isl_give isl_basic_set *isl_basic_set_sample(
5081 __isl_take isl_basic_set *bset);
5082 __isl_give isl_basic_set *isl_set_sample(
5083 __isl_take isl_set *set);
5084 __isl_give isl_basic_map *isl_basic_map_sample(
5085 __isl_take isl_basic_map *bmap);
5086 __isl_give isl_basic_map *isl_map_sample(
5087 __isl_take isl_map *map);
5089 If the input (basic) set or relation is non-empty, then return
5090 a singleton subset of the input. Otherwise, return an empty set.
5092 =item * Optimization
5094 #include <isl/ilp.h>
5095 __isl_give isl_val *isl_basic_set_max_val(
5096 __isl_keep isl_basic_set *bset,
5097 __isl_keep isl_aff *obj);
5098 __isl_give isl_val *isl_set_min_val(
5099 __isl_keep isl_set *set,
5100 __isl_keep isl_aff *obj);
5101 __isl_give isl_val *isl_set_max_val(
5102 __isl_keep isl_set *set,
5103 __isl_keep isl_aff *obj);
5104 __isl_give isl_multi_val *
5105 isl_union_set_min_multi_union_pw_aff(
5106 __isl_keep isl_union_set *set,
5107 __isl_keep isl_multi_union_pw_aff *obj);
5109 Compute the minimum or maximum of the integer affine expression C<obj>
5110 over the points in C<set>, returning the result in C<opt>.
5111 The result is C<NULL> in case of an error, the optimal value in case
5112 there is one, negative infinity or infinity if the problem is unbounded and
5113 NaN if the problem is empty.
5115 =item * Parametric optimization
5117 __isl_give isl_pw_aff *isl_set_dim_min(
5118 __isl_take isl_set *set, int pos);
5119 __isl_give isl_pw_aff *isl_set_dim_max(
5120 __isl_take isl_set *set, int pos);
5121 __isl_give isl_pw_aff *isl_map_dim_min(
5122 __isl_take isl_map *map, int pos);
5123 __isl_give isl_pw_aff *isl_map_dim_max(
5124 __isl_take isl_map *map, int pos);
5126 Compute the minimum or maximum of the given set or output dimension
5127 as a function of the parameters (and input dimensions), but independently
5128 of the other set or output dimensions.
5129 For lexicographic optimization, see L<"Lexicographic Optimization">.
5133 The following functions compute either the set of (rational) coefficient
5134 values of valid constraints for the given set or the set of (rational)
5135 values satisfying the constraints with coefficients from the given set.
5136 Internally, these two sets of functions perform essentially the
5137 same operations, except that the set of coefficients is assumed to
5138 be a cone, while the set of values may be any polyhedron.
5139 The current implementation is based on the Farkas lemma and
5140 Fourier-Motzkin elimination, but this may change or be made optional
5141 in future. In particular, future implementations may use different
5142 dualization algorithms or skip the elimination step.
5144 __isl_give isl_basic_set *isl_basic_set_coefficients(
5145 __isl_take isl_basic_set *bset);
5146 __isl_give isl_basic_set *isl_set_coefficients(
5147 __isl_take isl_set *set);
5148 __isl_give isl_union_set *isl_union_set_coefficients(
5149 __isl_take isl_union_set *bset);
5150 __isl_give isl_basic_set *isl_basic_set_solutions(
5151 __isl_take isl_basic_set *bset);
5152 __isl_give isl_basic_set *isl_set_solutions(
5153 __isl_take isl_set *set);
5154 __isl_give isl_union_set *isl_union_set_solutions(
5155 __isl_take isl_union_set *bset);
5159 __isl_give isl_map *isl_map_fixed_power_val(
5160 __isl_take isl_map *map,
5161 __isl_take isl_val *exp);
5162 __isl_give isl_union_map *
5163 isl_union_map_fixed_power_val(
5164 __isl_take isl_union_map *umap,
5165 __isl_take isl_val *exp);
5167 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
5168 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
5169 of C<map> is computed.
5171 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
5173 __isl_give isl_union_map *isl_union_map_power(
5174 __isl_take isl_union_map *umap, int *exact);
5176 Compute a parametric representation for all positive powers I<k> of C<map>.
5177 The result maps I<k> to a nested relation corresponding to the
5178 I<k>th power of C<map>.
5179 The result may be an overapproximation. If the result is known to be exact,
5180 then C<*exact> is set to C<1>.
5182 =item * Transitive closure
5184 __isl_give isl_map *isl_map_transitive_closure(
5185 __isl_take isl_map *map, int *exact);
5186 __isl_give isl_union_map *isl_union_map_transitive_closure(
5187 __isl_take isl_union_map *umap, int *exact);
5189 Compute the transitive closure of C<map>.
5190 The result may be an overapproximation. If the result is known to be exact,
5191 then C<*exact> is set to C<1>.
5193 =item * Reaching path lengths
5195 __isl_give isl_map *isl_map_reaching_path_lengths(
5196 __isl_take isl_map *map, int *exact);
5198 Compute a relation that maps each element in the range of C<map>
5199 to the lengths of all paths composed of edges in C<map> that
5200 end up in the given element.
5201 The result may be an overapproximation. If the result is known to be exact,
5202 then C<*exact> is set to C<1>.
5203 To compute the I<maximal> path length, the resulting relation
5204 should be postprocessed by C<isl_map_lexmax>.
5205 In particular, if the input relation is a dependence relation
5206 (mapping sources to sinks), then the maximal path length corresponds
5207 to the free schedule.
5208 Note, however, that C<isl_map_lexmax> expects the maximum to be
5209 finite, so if the path lengths are unbounded (possibly due to
5210 the overapproximation), then you will get an error message.
5214 #include <isl/space.h>
5215 __isl_give isl_space *isl_space_wrap(
5216 __isl_take isl_space *space);
5217 __isl_give isl_space *isl_space_unwrap(
5218 __isl_take isl_space *space);
5220 #include <isl/local_space.h>
5221 __isl_give isl_local_space *isl_local_space_wrap(
5222 __isl_take isl_local_space *ls);
5224 #include <isl/set.h>
5225 __isl_give isl_basic_map *isl_basic_set_unwrap(
5226 __isl_take isl_basic_set *bset);
5227 __isl_give isl_map *isl_set_unwrap(
5228 __isl_take isl_set *set);
5230 #include <isl/map.h>
5231 __isl_give isl_basic_set *isl_basic_map_wrap(
5232 __isl_take isl_basic_map *bmap);
5233 __isl_give isl_set *isl_map_wrap(
5234 __isl_take isl_map *map);
5236 #include <isl/union_set.h>
5237 __isl_give isl_union_map *isl_union_set_unwrap(
5238 __isl_take isl_union_set *uset);
5240 #include <isl/union_map.h>
5241 __isl_give isl_union_set *isl_union_map_wrap(
5242 __isl_take isl_union_map *umap);
5244 The input to C<isl_space_unwrap> should
5245 be the space of a set, while that of
5246 C<isl_space_wrap> should be the space of a relation.
5247 Conversely, the output of C<isl_space_unwrap> is the space
5248 of a relation, while that of C<isl_space_wrap> is the space of a set.
5252 Remove any internal structure of domain (and range) of the given
5253 set or relation. If there is any such internal structure in the input,
5254 then the name of the space is also removed.
5256 #include <isl/local_space.h>
5257 __isl_give isl_local_space *
5258 isl_local_space_flatten_domain(
5259 __isl_take isl_local_space *ls);
5260 __isl_give isl_local_space *
5261 isl_local_space_flatten_range(
5262 __isl_take isl_local_space *ls);
5264 #include <isl/set.h>
5265 __isl_give isl_basic_set *isl_basic_set_flatten(
5266 __isl_take isl_basic_set *bset);
5267 __isl_give isl_set *isl_set_flatten(
5268 __isl_take isl_set *set);
5270 #include <isl/map.h>
5271 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
5272 __isl_take isl_basic_map *bmap);
5273 __isl_give isl_basic_map *isl_basic_map_flatten_range(
5274 __isl_take isl_basic_map *bmap);
5275 __isl_give isl_map *isl_map_flatten_range(
5276 __isl_take isl_map *map);
5277 __isl_give isl_map *isl_map_flatten_domain(
5278 __isl_take isl_map *map);
5279 __isl_give isl_basic_map *isl_basic_map_flatten(
5280 __isl_take isl_basic_map *bmap);
5281 __isl_give isl_map *isl_map_flatten(
5282 __isl_take isl_map *map);
5284 #include <isl/val.h>
5285 __isl_give isl_multi_val *isl_multi_val_flatten_range(
5286 __isl_take isl_multi_val *mv);
5288 #include <isl/aff.h>
5289 __isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
5290 __isl_take isl_multi_aff *ma);
5291 __isl_give isl_multi_aff *isl_multi_aff_flatten_range(
5292 __isl_take isl_multi_aff *ma);
5293 __isl_give isl_multi_pw_aff *
5294 isl_multi_pw_aff_flatten_range(
5295 __isl_take isl_multi_pw_aff *mpa);
5296 __isl_give isl_multi_union_pw_aff *
5297 isl_multi_union_pw_aff_flatten_range(
5298 __isl_take isl_multi_union_pw_aff *mupa);
5300 #include <isl/map.h>
5301 __isl_give isl_map *isl_set_flatten_map(
5302 __isl_take isl_set *set);
5304 The function above constructs a relation
5305 that maps the input set to a flattened version of the set.
5309 Lift the input set to a space with extra dimensions corresponding
5310 to the existentially quantified variables in the input.
5311 In particular, the result lives in a wrapped map where the domain
5312 is the original space and the range corresponds to the original
5313 existentially quantified variables.
5315 #include <isl/set.h>
5316 __isl_give isl_basic_set *isl_basic_set_lift(
5317 __isl_take isl_basic_set *bset);
5318 __isl_give isl_set *isl_set_lift(
5319 __isl_take isl_set *set);
5320 __isl_give isl_union_set *isl_union_set_lift(
5321 __isl_take isl_union_set *uset);
5323 Given a local space that contains the existentially quantified
5324 variables of a set, a basic relation that, when applied to
5325 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
5326 can be constructed using the following function.
5328 #include <isl/local_space.h>
5329 __isl_give isl_basic_map *isl_local_space_lifting(
5330 __isl_take isl_local_space *ls);
5332 #include <isl/aff.h>
5333 __isl_give isl_multi_aff *isl_multi_aff_lift(
5334 __isl_take isl_multi_aff *maff,
5335 __isl_give isl_local_space **ls);
5337 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
5338 then it is assigned the local space that lies at the basis of
5339 the lifting applied.
5341 =item * Internal Product
5343 #include <isl/space.h>
5344 __isl_give isl_space *isl_space_zip(
5345 __isl_take isl_space *space);
5347 #include <isl/map.h>
5348 __isl_give isl_basic_map *isl_basic_map_zip(
5349 __isl_take isl_basic_map *bmap);
5350 __isl_give isl_map *isl_map_zip(
5351 __isl_take isl_map *map);
5353 #include <isl/union_map.h>
5354 __isl_give isl_union_map *isl_union_map_zip(
5355 __isl_take isl_union_map *umap);
5357 Given a relation with nested relations for domain and range,
5358 interchange the range of the domain with the domain of the range.
5362 #include <isl/space.h>
5363 __isl_give isl_space *isl_space_curry(
5364 __isl_take isl_space *space);
5365 __isl_give isl_space *isl_space_uncurry(
5366 __isl_take isl_space *space);
5368 #include <isl/map.h>
5369 __isl_give isl_basic_map *isl_basic_map_curry(
5370 __isl_take isl_basic_map *bmap);
5371 __isl_give isl_basic_map *isl_basic_map_uncurry(
5372 __isl_take isl_basic_map *bmap);
5373 __isl_give isl_map *isl_map_curry(
5374 __isl_take isl_map *map);
5375 __isl_give isl_map *isl_map_uncurry(
5376 __isl_take isl_map *map);
5378 #include <isl/union_map.h>
5379 __isl_give isl_union_map *isl_union_map_curry(
5380 __isl_take isl_union_map *umap);
5381 __isl_give isl_union_map *isl_union_map_uncurry(
5382 __isl_take isl_union_map *umap);
5384 Given a relation with a nested relation for domain,
5385 the C<curry> functions
5386 move the range of the nested relation out of the domain
5387 and use it as the domain of a nested relation in the range,
5388 with the original range as range of this nested relation.
5389 The C<uncurry> functions perform the inverse operation.
5391 #include <isl/space.h>
5392 __isl_give isl_space *isl_space_range_curry(
5393 __isl_take isl_space *space);
5395 #include <isl/map.h>
5396 __isl_give isl_map *isl_map_range_curry(
5397 __isl_take isl_map *map);
5399 #include <isl/union_map.h>
5400 __isl_give isl_union_map *isl_union_map_range_curry(
5401 __isl_take isl_union_map *umap);
5403 These functions apply the currying to the relation that
5404 is nested inside the range of the input.
5406 =item * Aligning parameters
5408 Change the order of the parameters of the given set, relation
5410 such that the first parameters match those of C<model>.
5411 This may involve the introduction of extra parameters.
5412 All parameters need to be named.
5414 #include <isl/space.h>
5415 __isl_give isl_space *isl_space_align_params(
5416 __isl_take isl_space *space1,
5417 __isl_take isl_space *space2)
5419 #include <isl/set.h>
5420 __isl_give isl_basic_set *isl_basic_set_align_params(
5421 __isl_take isl_basic_set *bset,
5422 __isl_take isl_space *model);
5423 __isl_give isl_set *isl_set_align_params(
5424 __isl_take isl_set *set,
5425 __isl_take isl_space *model);
5427 #include <isl/map.h>
5428 __isl_give isl_basic_map *isl_basic_map_align_params(
5429 __isl_take isl_basic_map *bmap,
5430 __isl_take isl_space *model);
5431 __isl_give isl_map *isl_map_align_params(
5432 __isl_take isl_map *map,
5433 __isl_take isl_space *model);
5435 #include <isl/val.h>
5436 __isl_give isl_multi_val *isl_multi_val_align_params(
5437 __isl_take isl_multi_val *mv,
5438 __isl_take isl_space *model);
5440 #include <isl/aff.h>
5441 __isl_give isl_aff *isl_aff_align_params(
5442 __isl_take isl_aff *aff,
5443 __isl_take isl_space *model);
5444 __isl_give isl_multi_aff *isl_multi_aff_align_params(
5445 __isl_take isl_multi_aff *multi,
5446 __isl_take isl_space *model);
5447 __isl_give isl_pw_aff *isl_pw_aff_align_params(
5448 __isl_take isl_pw_aff *pwaff,
5449 __isl_take isl_space *model);
5450 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
5451 __isl_take isl_pw_multi_aff *pma,
5452 __isl_take isl_space *model);
5453 __isl_give isl_union_pw_aff *
5454 isl_union_pw_aff_align_params(
5455 __isl_take isl_union_pw_aff *upa,
5456 __isl_take isl_space *model);
5457 __isl_give isl_union_pw_multi_aff *
5458 isl_union_pw_multi_aff_align_params(
5459 __isl_take isl_union_pw_multi_aff *upma,
5460 __isl_take isl_space *model);
5461 __isl_give isl_multi_union_pw_aff *
5462 isl_multi_union_pw_aff_align_params(
5463 __isl_take isl_multi_union_pw_aff *mupa,
5464 __isl_take isl_space *model);
5466 #include <isl/polynomial.h>
5467 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
5468 __isl_take isl_qpolynomial *qp,
5469 __isl_take isl_space *model);
5471 =item * Unary Arithmetic Operations
5473 #include <isl/set.h>
5474 __isl_give isl_set *isl_set_neg(
5475 __isl_take isl_set *set);
5476 #include <isl/map.h>
5477 __isl_give isl_map *isl_map_neg(
5478 __isl_take isl_map *map);
5480 C<isl_set_neg> constructs a set containing the opposites of
5481 the elements in its argument.
5482 The domain of the result of C<isl_map_neg> is the same
5483 as the domain of its argument. The corresponding range
5484 elements are the opposites of the corresponding range
5485 elements in the argument.
5487 #include <isl/val.h>
5488 __isl_give isl_multi_val *isl_multi_val_neg(
5489 __isl_take isl_multi_val *mv);
5491 #include <isl/aff.h>
5492 __isl_give isl_aff *isl_aff_neg(
5493 __isl_take isl_aff *aff);
5494 __isl_give isl_multi_aff *isl_multi_aff_neg(
5495 __isl_take isl_multi_aff *ma);
5496 __isl_give isl_pw_aff *isl_pw_aff_neg(
5497 __isl_take isl_pw_aff *pwaff);
5498 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg(
5499 __isl_take isl_pw_multi_aff *pma);
5500 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg(
5501 __isl_take isl_multi_pw_aff *mpa);
5502 __isl_give isl_union_pw_aff *isl_union_pw_aff_neg(
5503 __isl_take isl_union_pw_aff *upa);
5504 __isl_give isl_union_pw_multi_aff *
5505 isl_union_pw_multi_aff_neg(
5506 __isl_take isl_union_pw_multi_aff *upma);
5507 __isl_give isl_multi_union_pw_aff *
5508 isl_multi_union_pw_aff_neg(
5509 __isl_take isl_multi_union_pw_aff *mupa);
5510 __isl_give isl_aff *isl_aff_ceil(
5511 __isl_take isl_aff *aff);
5512 __isl_give isl_pw_aff *isl_pw_aff_ceil(
5513 __isl_take isl_pw_aff *pwaff);
5514 __isl_give isl_aff *isl_aff_floor(
5515 __isl_take isl_aff *aff);
5516 __isl_give isl_multi_aff *isl_multi_aff_floor(
5517 __isl_take isl_multi_aff *ma);
5518 __isl_give isl_pw_aff *isl_pw_aff_floor(
5519 __isl_take isl_pw_aff *pwaff);
5520 __isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
5521 __isl_take isl_union_pw_aff *upa);
5522 __isl_give isl_multi_union_pw_aff *
5523 isl_multi_union_pw_aff_floor(
5524 __isl_take isl_multi_union_pw_aff *mupa);
5526 #include <isl/aff.h>
5527 __isl_give isl_pw_aff *isl_pw_aff_list_min(
5528 __isl_take isl_pw_aff_list *list);
5529 __isl_give isl_pw_aff *isl_pw_aff_list_max(
5530 __isl_take isl_pw_aff_list *list);
5532 #include <isl/polynomial.h>
5533 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
5534 __isl_take isl_qpolynomial *qp);
5535 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
5536 __isl_take isl_pw_qpolynomial *pwqp);
5537 __isl_give isl_union_pw_qpolynomial *
5538 isl_union_pw_qpolynomial_neg(
5539 __isl_take isl_union_pw_qpolynomial *upwqp);
5540 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
5541 __isl_take isl_qpolynomial *qp,
5543 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
5544 __isl_take isl_pw_qpolynomial *pwqp,
5549 The following functions evaluate a function in a point.
5551 #include <isl/polynomial.h>
5552 __isl_give isl_val *isl_pw_qpolynomial_eval(
5553 __isl_take isl_pw_qpolynomial *pwqp,
5554 __isl_take isl_point *pnt);
5555 __isl_give isl_val *isl_pw_qpolynomial_fold_eval(
5556 __isl_take isl_pw_qpolynomial_fold *pwf,
5557 __isl_take isl_point *pnt);
5558 __isl_give isl_val *isl_union_pw_qpolynomial_eval(
5559 __isl_take isl_union_pw_qpolynomial *upwqp,
5560 __isl_take isl_point *pnt);
5561 __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
5562 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5563 __isl_take isl_point *pnt);
5565 =item * Dimension manipulation
5567 It is usually not advisable to directly change the (input or output)
5568 space of a set or a relation as this removes the name and the internal
5569 structure of the space. However, the functions below can be useful
5570 to add new parameters, assuming
5571 C<isl_set_align_params> and C<isl_map_align_params>
5574 #include <isl/space.h>
5575 __isl_give isl_space *isl_space_add_dims(
5576 __isl_take isl_space *space,
5577 enum isl_dim_type type, unsigned n);
5578 __isl_give isl_space *isl_space_insert_dims(
5579 __isl_take isl_space *space,
5580 enum isl_dim_type type, unsigned pos, unsigned n);
5581 __isl_give isl_space *isl_space_drop_dims(
5582 __isl_take isl_space *space,
5583 enum isl_dim_type type, unsigned first, unsigned n);
5584 __isl_give isl_space *isl_space_move_dims(
5585 __isl_take isl_space *space,
5586 enum isl_dim_type dst_type, unsigned dst_pos,
5587 enum isl_dim_type src_type, unsigned src_pos,
5590 #include <isl/local_space.h>
5591 __isl_give isl_local_space *isl_local_space_add_dims(
5592 __isl_take isl_local_space *ls,
5593 enum isl_dim_type type, unsigned n);
5594 __isl_give isl_local_space *isl_local_space_insert_dims(
5595 __isl_take isl_local_space *ls,
5596 enum isl_dim_type type, unsigned first, unsigned n);
5597 __isl_give isl_local_space *isl_local_space_drop_dims(
5598 __isl_take isl_local_space *ls,
5599 enum isl_dim_type type, unsigned first, unsigned n);
5601 #include <isl/set.h>
5602 __isl_give isl_basic_set *isl_basic_set_add_dims(
5603 __isl_take isl_basic_set *bset,
5604 enum isl_dim_type type, unsigned n);
5605 __isl_give isl_set *isl_set_add_dims(
5606 __isl_take isl_set *set,
5607 enum isl_dim_type type, unsigned n);
5608 __isl_give isl_basic_set *isl_basic_set_insert_dims(
5609 __isl_take isl_basic_set *bset,
5610 enum isl_dim_type type, unsigned pos,
5612 __isl_give isl_set *isl_set_insert_dims(
5613 __isl_take isl_set *set,
5614 enum isl_dim_type type, unsigned pos, unsigned n);
5615 __isl_give isl_basic_set *isl_basic_set_move_dims(
5616 __isl_take isl_basic_set *bset,
5617 enum isl_dim_type dst_type, unsigned dst_pos,
5618 enum isl_dim_type src_type, unsigned src_pos,
5620 __isl_give isl_set *isl_set_move_dims(
5621 __isl_take isl_set *set,
5622 enum isl_dim_type dst_type, unsigned dst_pos,
5623 enum isl_dim_type src_type, unsigned src_pos,
5626 #include <isl/map.h>
5627 __isl_give isl_basic_map *isl_basic_map_add_dims(
5628 __isl_take isl_basic_map *bmap,
5629 enum isl_dim_type type, unsigned n);
5630 __isl_give isl_map *isl_map_add_dims(
5631 __isl_take isl_map *map,
5632 enum isl_dim_type type, unsigned n);
5633 __isl_give isl_basic_map *isl_basic_map_insert_dims(
5634 __isl_take isl_basic_map *bmap,
5635 enum isl_dim_type type, unsigned pos,
5637 __isl_give isl_map *isl_map_insert_dims(
5638 __isl_take isl_map *map,
5639 enum isl_dim_type type, unsigned pos, unsigned n);
5640 __isl_give isl_basic_map *isl_basic_map_move_dims(
5641 __isl_take isl_basic_map *bmap,
5642 enum isl_dim_type dst_type, unsigned dst_pos,
5643 enum isl_dim_type src_type, unsigned src_pos,
5645 __isl_give isl_map *isl_map_move_dims(
5646 __isl_take isl_map *map,
5647 enum isl_dim_type dst_type, unsigned dst_pos,
5648 enum isl_dim_type src_type, unsigned src_pos,
5651 #include <isl/val.h>
5652 __isl_give isl_multi_val *isl_multi_val_insert_dims(
5653 __isl_take isl_multi_val *mv,
5654 enum isl_dim_type type, unsigned first, unsigned n);
5655 __isl_give isl_multi_val *isl_multi_val_add_dims(
5656 __isl_take isl_multi_val *mv,
5657 enum isl_dim_type type, unsigned n);
5658 __isl_give isl_multi_val *isl_multi_val_drop_dims(
5659 __isl_take isl_multi_val *mv,
5660 enum isl_dim_type type, unsigned first, unsigned n);
5662 #include <isl/aff.h>
5663 __isl_give isl_aff *isl_aff_insert_dims(
5664 __isl_take isl_aff *aff,
5665 enum isl_dim_type type, unsigned first, unsigned n);
5666 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
5667 __isl_take isl_multi_aff *ma,
5668 enum isl_dim_type type, unsigned first, unsigned n);
5669 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
5670 __isl_take isl_pw_aff *pwaff,
5671 enum isl_dim_type type, unsigned first, unsigned n);
5672 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
5673 __isl_take isl_multi_pw_aff *mpa,
5674 enum isl_dim_type type, unsigned first, unsigned n);
5675 __isl_give isl_aff *isl_aff_add_dims(
5676 __isl_take isl_aff *aff,
5677 enum isl_dim_type type, unsigned n);
5678 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
5679 __isl_take isl_multi_aff *ma,
5680 enum isl_dim_type type, unsigned n);
5681 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
5682 __isl_take isl_pw_aff *pwaff,
5683 enum isl_dim_type type, unsigned n);
5684 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
5685 __isl_take isl_multi_pw_aff *mpa,
5686 enum isl_dim_type type, unsigned n);
5687 __isl_give isl_aff *isl_aff_drop_dims(
5688 __isl_take isl_aff *aff,
5689 enum isl_dim_type type, unsigned first, unsigned n);
5690 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
5691 __isl_take isl_multi_aff *maff,
5692 enum isl_dim_type type, unsigned first, unsigned n);
5693 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
5694 __isl_take isl_pw_aff *pwaff,
5695 enum isl_dim_type type, unsigned first, unsigned n);
5696 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
5697 __isl_take isl_pw_multi_aff *pma,
5698 enum isl_dim_type type, unsigned first, unsigned n);
5699 __isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims(
5700 __isl_take isl_union_pw_aff *upa,
5701 enum isl_dim_type type, unsigned first, unsigned n);
5702 __isl_give isl_union_pw_multi_aff *
5703 isl_union_pw_multi_aff_drop_dims(
5704 __isl_take isl_union_pw_multi_aff *upma,
5705 enum isl_dim_type type,
5706 unsigned first, unsigned n);
5707 __isl_give isl_multi_union_pw_aff *
5708 isl_multi_union_pw_aff_drop_dims(
5709 __isl_take isl_multi_union_pw_aff *mupa,
5710 enum isl_dim_type type, unsigned first,
5712 __isl_give isl_aff *isl_aff_move_dims(
5713 __isl_take isl_aff *aff,
5714 enum isl_dim_type dst_type, unsigned dst_pos,
5715 enum isl_dim_type src_type, unsigned src_pos,
5717 __isl_give isl_multi_aff *isl_multi_aff_move_dims(
5718 __isl_take isl_multi_aff *ma,
5719 enum isl_dim_type dst_type, unsigned dst_pos,
5720 enum isl_dim_type src_type, unsigned src_pos,
5722 __isl_give isl_pw_aff *isl_pw_aff_move_dims(
5723 __isl_take isl_pw_aff *pa,
5724 enum isl_dim_type dst_type, unsigned dst_pos,
5725 enum isl_dim_type src_type, unsigned src_pos,
5727 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
5728 __isl_take isl_multi_pw_aff *pma,
5729 enum isl_dim_type dst_type, unsigned dst_pos,
5730 enum isl_dim_type src_type, unsigned src_pos,
5733 #include <isl/polynomial.h>
5734 __isl_give isl_union_pw_qpolynomial *
5735 isl_union_pw_qpolynomial_drop_dims(
5736 __isl_take isl_union_pw_qpolynomial *upwqp,
5737 enum isl_dim_type type,
5738 unsigned first, unsigned n);
5739 __isl_give isl_union_pw_qpolynomial_fold *
5740 isl_union_pw_qpolynomial_fold_drop_dims(
5741 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5742 enum isl_dim_type type,
5743 unsigned first, unsigned n);
5745 The operations on union expressions can only manipulate parameters.
5749 =head2 Binary Operations
5751 The two arguments of a binary operation not only need to live
5752 in the same C<isl_ctx>, they currently also need to have
5753 the same (number of) parameters.
5755 =head3 Basic Operations
5759 =item * Intersection
5761 #include <isl/local_space.h>
5762 __isl_give isl_local_space *isl_local_space_intersect(
5763 __isl_take isl_local_space *ls1,
5764 __isl_take isl_local_space *ls2);
5766 #include <isl/set.h>
5767 __isl_give isl_basic_set *isl_basic_set_intersect_params(
5768 __isl_take isl_basic_set *bset1,
5769 __isl_take isl_basic_set *bset2);
5770 __isl_give isl_basic_set *isl_basic_set_intersect(
5771 __isl_take isl_basic_set *bset1,
5772 __isl_take isl_basic_set *bset2);
5773 __isl_give isl_basic_set *isl_basic_set_list_intersect(
5774 __isl_take struct isl_basic_set_list *list);
5775 __isl_give isl_set *isl_set_intersect_params(
5776 __isl_take isl_set *set,
5777 __isl_take isl_set *params);
5778 __isl_give isl_set *isl_set_intersect(
5779 __isl_take isl_set *set1,
5780 __isl_take isl_set *set2);
5782 #include <isl/map.h>
5783 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
5784 __isl_take isl_basic_map *bmap,
5785 __isl_take isl_basic_set *bset);
5786 __isl_give isl_basic_map *isl_basic_map_intersect_range(
5787 __isl_take isl_basic_map *bmap,
5788 __isl_take isl_basic_set *bset);
5789 __isl_give isl_basic_map *isl_basic_map_intersect(
5790 __isl_take isl_basic_map *bmap1,
5791 __isl_take isl_basic_map *bmap2);
5792 __isl_give isl_basic_map *isl_basic_map_list_intersect(
5793 __isl_take isl_basic_map_list *list);
5794 __isl_give isl_map *isl_map_intersect_params(
5795 __isl_take isl_map *map,
5796 __isl_take isl_set *params);
5797 __isl_give isl_map *isl_map_intersect_domain(
5798 __isl_take isl_map *map,
5799 __isl_take isl_set *set);
5800 __isl_give isl_map *isl_map_intersect_range(
5801 __isl_take isl_map *map,
5802 __isl_take isl_set *set);
5803 __isl_give isl_map *isl_map_intersect(
5804 __isl_take isl_map *map1,
5805 __isl_take isl_map *map2);
5807 #include <isl/union_set.h>
5808 __isl_give isl_union_set *isl_union_set_intersect_params(
5809 __isl_take isl_union_set *uset,
5810 __isl_take isl_set *set);
5811 __isl_give isl_union_set *isl_union_set_intersect(
5812 __isl_take isl_union_set *uset1,
5813 __isl_take isl_union_set *uset2);
5815 #include <isl/union_map.h>
5816 __isl_give isl_union_map *isl_union_map_intersect_params(
5817 __isl_take isl_union_map *umap,
5818 __isl_take isl_set *set);
5819 __isl_give isl_union_map *isl_union_map_intersect_domain(
5820 __isl_take isl_union_map *umap,
5821 __isl_take isl_union_set *uset);
5822 __isl_give isl_union_map *isl_union_map_intersect_range(
5823 __isl_take isl_union_map *umap,
5824 __isl_take isl_union_set *uset);
5825 __isl_give isl_union_map *isl_union_map_intersect(
5826 __isl_take isl_union_map *umap1,
5827 __isl_take isl_union_map *umap2);
5829 #include <isl/aff.h>
5830 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
5831 __isl_take isl_pw_aff *pa,
5832 __isl_take isl_set *set);
5833 __isl_give isl_multi_pw_aff *
5834 isl_multi_pw_aff_intersect_domain(
5835 __isl_take isl_multi_pw_aff *mpa,
5836 __isl_take isl_set *domain);
5837 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
5838 __isl_take isl_pw_multi_aff *pma,
5839 __isl_take isl_set *set);
5840 __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain(
5841 __isl_take isl_union_pw_aff *upa,
5842 __isl_take isl_union_set *uset);
5843 __isl_give isl_union_pw_multi_aff *
5844 isl_union_pw_multi_aff_intersect_domain(
5845 __isl_take isl_union_pw_multi_aff *upma,
5846 __isl_take isl_union_set *uset);
5847 __isl_give isl_multi_union_pw_aff *
5848 isl_multi_union_pw_aff_intersect_domain(
5849 __isl_take isl_multi_union_pw_aff *mupa,
5850 __isl_take isl_union_set *uset);
5851 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
5852 __isl_take isl_pw_aff *pa,
5853 __isl_take isl_set *set);
5854 __isl_give isl_multi_pw_aff *
5855 isl_multi_pw_aff_intersect_params(
5856 __isl_take isl_multi_pw_aff *mpa,
5857 __isl_take isl_set *set);
5858 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
5859 __isl_take isl_pw_multi_aff *pma,
5860 __isl_take isl_set *set);
5861 __isl_give isl_union_pw_aff *
5862 isl_union_pw_aff_intersect_params(
5863 __isl_take isl_union_pw_aff *upa,
5864 __isl_give isl_union_pw_multi_aff *
5865 isl_union_pw_multi_aff_intersect_params(
5866 __isl_take isl_union_pw_multi_aff *upma,
5867 __isl_take isl_set *set);
5868 __isl_give isl_multi_union_pw_aff *
5869 isl_multi_union_pw_aff_intersect_params(
5870 __isl_take isl_multi_union_pw_aff *mupa,
5871 __isl_take isl_set *params);
5872 isl_multi_union_pw_aff_intersect_range(
5873 __isl_take isl_multi_union_pw_aff *mupa,
5874 __isl_take isl_set *set);
5876 #include <isl/polynomial.h>
5877 __isl_give isl_pw_qpolynomial *
5878 isl_pw_qpolynomial_intersect_domain(
5879 __isl_take isl_pw_qpolynomial *pwpq,
5880 __isl_take isl_set *set);
5881 __isl_give isl_union_pw_qpolynomial *
5882 isl_union_pw_qpolynomial_intersect_domain(
5883 __isl_take isl_union_pw_qpolynomial *upwpq,
5884 __isl_take isl_union_set *uset);
5885 __isl_give isl_union_pw_qpolynomial_fold *
5886 isl_union_pw_qpolynomial_fold_intersect_domain(
5887 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5888 __isl_take isl_union_set *uset);
5889 __isl_give isl_pw_qpolynomial *
5890 isl_pw_qpolynomial_intersect_params(
5891 __isl_take isl_pw_qpolynomial *pwpq,
5892 __isl_take isl_set *set);
5893 __isl_give isl_pw_qpolynomial_fold *
5894 isl_pw_qpolynomial_fold_intersect_params(
5895 __isl_take isl_pw_qpolynomial_fold *pwf,
5896 __isl_take isl_set *set);
5897 __isl_give isl_union_pw_qpolynomial *
5898 isl_union_pw_qpolynomial_intersect_params(
5899 __isl_take isl_union_pw_qpolynomial *upwpq,
5900 __isl_take isl_set *set);
5901 __isl_give isl_union_pw_qpolynomial_fold *
5902 isl_union_pw_qpolynomial_fold_intersect_params(
5903 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5904 __isl_take isl_set *set);
5906 The second argument to the C<_params> functions needs to be
5907 a parametric (basic) set. For the other functions, a parametric set
5908 for either argument is only allowed if the other argument is
5909 a parametric set as well.
5910 The list passed to C<isl_basic_set_list_intersect> needs to have
5911 at least one element and all elements need to live in the same space.
5912 The function C<isl_multi_union_pw_aff_intersect_range>
5913 restricts the input function to those shared domain elements
5914 that map to the specified range.
5918 #include <isl/set.h>
5919 __isl_give isl_set *isl_basic_set_union(
5920 __isl_take isl_basic_set *bset1,
5921 __isl_take isl_basic_set *bset2);
5922 __isl_give isl_set *isl_set_union(
5923 __isl_take isl_set *set1,
5924 __isl_take isl_set *set2);
5925 __isl_give isl_set *isl_set_list_union(
5926 __isl_take isl_set_list *list);
5928 #include <isl/map.h>
5929 __isl_give isl_map *isl_basic_map_union(
5930 __isl_take isl_basic_map *bmap1,
5931 __isl_take isl_basic_map *bmap2);
5932 __isl_give isl_map *isl_map_union(
5933 __isl_take isl_map *map1,
5934 __isl_take isl_map *map2);
5936 #include <isl/union_set.h>
5937 __isl_give isl_union_set *isl_union_set_union(
5938 __isl_take isl_union_set *uset1,
5939 __isl_take isl_union_set *uset2);
5940 __isl_give isl_union_set *isl_union_set_list_union(
5941 __isl_take isl_union_set_list *list);
5943 #include <isl/union_map.h>
5944 __isl_give isl_union_map *isl_union_map_union(
5945 __isl_take isl_union_map *umap1,
5946 __isl_take isl_union_map *umap2);
5948 The list passed to C<isl_set_list_union> needs to have
5949 at least one element and all elements need to live in the same space.
5951 =item * Set difference
5953 #include <isl/set.h>
5954 __isl_give isl_set *isl_set_subtract(
5955 __isl_take isl_set *set1,
5956 __isl_take isl_set *set2);
5958 #include <isl/map.h>
5959 __isl_give isl_map *isl_map_subtract(
5960 __isl_take isl_map *map1,
5961 __isl_take isl_map *map2);
5962 __isl_give isl_map *isl_map_subtract_domain(
5963 __isl_take isl_map *map,
5964 __isl_take isl_set *dom);
5965 __isl_give isl_map *isl_map_subtract_range(
5966 __isl_take isl_map *map,
5967 __isl_take isl_set *dom);
5969 #include <isl/union_set.h>
5970 __isl_give isl_union_set *isl_union_set_subtract(
5971 __isl_take isl_union_set *uset1,
5972 __isl_take isl_union_set *uset2);
5974 #include <isl/union_map.h>
5975 __isl_give isl_union_map *isl_union_map_subtract(
5976 __isl_take isl_union_map *umap1,
5977 __isl_take isl_union_map *umap2);
5978 __isl_give isl_union_map *isl_union_map_subtract_domain(
5979 __isl_take isl_union_map *umap,
5980 __isl_take isl_union_set *dom);
5981 __isl_give isl_union_map *isl_union_map_subtract_range(
5982 __isl_take isl_union_map *umap,
5983 __isl_take isl_union_set *dom);
5985 #include <isl/aff.h>
5986 __isl_give isl_pw_aff *isl_pw_aff_subtract_domain(
5987 __isl_take isl_pw_aff *pa,
5988 __isl_take isl_set *set);
5989 __isl_give isl_pw_multi_aff *
5990 isl_pw_multi_aff_subtract_domain(
5991 __isl_take isl_pw_multi_aff *pma,
5992 __isl_take isl_set *set);
5993 __isl_give isl_union_pw_aff *
5994 isl_union_pw_aff_subtract_domain(
5995 __isl_take isl_union_pw_aff *upa,
5996 __isl_take isl_union_set *uset);
5997 __isl_give isl_union_pw_multi_aff *
5998 isl_union_pw_multi_aff_subtract_domain(
5999 __isl_take isl_union_pw_multi_aff *upma,
6000 __isl_take isl_set *set);
6002 #include <isl/polynomial.h>
6003 __isl_give isl_pw_qpolynomial *
6004 isl_pw_qpolynomial_subtract_domain(
6005 __isl_take isl_pw_qpolynomial *pwpq,
6006 __isl_take isl_set *set);
6007 __isl_give isl_pw_qpolynomial_fold *
6008 isl_pw_qpolynomial_fold_subtract_domain(
6009 __isl_take isl_pw_qpolynomial_fold *pwf,
6010 __isl_take isl_set *set);
6011 __isl_give isl_union_pw_qpolynomial *
6012 isl_union_pw_qpolynomial_subtract_domain(
6013 __isl_take isl_union_pw_qpolynomial *upwpq,
6014 __isl_take isl_union_set *uset);
6015 __isl_give isl_union_pw_qpolynomial_fold *
6016 isl_union_pw_qpolynomial_fold_subtract_domain(
6017 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6018 __isl_take isl_union_set *uset);
6022 #include <isl/space.h>
6023 __isl_give isl_space *isl_space_join(
6024 __isl_take isl_space *left,
6025 __isl_take isl_space *right);
6027 #include <isl/map.h>
6028 __isl_give isl_basic_set *isl_basic_set_apply(
6029 __isl_take isl_basic_set *bset,
6030 __isl_take isl_basic_map *bmap);
6031 __isl_give isl_set *isl_set_apply(
6032 __isl_take isl_set *set,
6033 __isl_take isl_map *map);
6034 __isl_give isl_union_set *isl_union_set_apply(
6035 __isl_take isl_union_set *uset,
6036 __isl_take isl_union_map *umap);
6037 __isl_give isl_basic_map *isl_basic_map_apply_domain(
6038 __isl_take isl_basic_map *bmap1,
6039 __isl_take isl_basic_map *bmap2);
6040 __isl_give isl_basic_map *isl_basic_map_apply_range(
6041 __isl_take isl_basic_map *bmap1,
6042 __isl_take isl_basic_map *bmap2);
6043 __isl_give isl_map *isl_map_apply_domain(
6044 __isl_take isl_map *map1,
6045 __isl_take isl_map *map2);
6046 __isl_give isl_map *isl_map_apply_range(
6047 __isl_take isl_map *map1,
6048 __isl_take isl_map *map2);
6050 #include <isl/union_map.h>
6051 __isl_give isl_union_map *isl_union_map_apply_domain(
6052 __isl_take isl_union_map *umap1,
6053 __isl_take isl_union_map *umap2);
6054 __isl_give isl_union_map *isl_union_map_apply_range(
6055 __isl_take isl_union_map *umap1,
6056 __isl_take isl_union_map *umap2);
6058 #include <isl/aff.h>
6059 __isl_give isl_union_pw_aff *
6060 isl_multi_union_pw_aff_apply_aff(
6061 __isl_take isl_multi_union_pw_aff *mupa,
6062 __isl_take isl_aff *aff);
6063 __isl_give isl_union_pw_aff *
6064 isl_multi_union_pw_aff_apply_pw_aff(
6065 __isl_take isl_multi_union_pw_aff *mupa,
6066 __isl_take isl_pw_aff *pa);
6067 __isl_give isl_multi_union_pw_aff *
6068 isl_multi_union_pw_aff_apply_multi_aff(
6069 __isl_take isl_multi_union_pw_aff *mupa,
6070 __isl_take isl_multi_aff *ma);
6071 __isl_give isl_multi_union_pw_aff *
6072 isl_multi_union_pw_aff_apply_pw_multi_aff(
6073 __isl_take isl_multi_union_pw_aff *mupa,
6074 __isl_take isl_pw_multi_aff *pma);
6076 The result of C<isl_multi_union_pw_aff_apply_aff> is defined
6077 over the shared domain of the elements of the input. The dimension is
6078 required to be greater than zero.
6079 The C<isl_multi_union_pw_aff> argument of
6080 C<isl_multi_union_pw_aff_apply_multi_aff> is allowed to be zero-dimensional,
6081 but only if the range of the C<isl_multi_aff> argument
6082 is also zero-dimensional.
6083 Similarly for C<isl_multi_union_pw_aff_apply_pw_multi_aff>.
6085 #include <isl/polynomial.h>
6086 __isl_give isl_pw_qpolynomial_fold *
6087 isl_set_apply_pw_qpolynomial_fold(
6088 __isl_take isl_set *set,
6089 __isl_take isl_pw_qpolynomial_fold *pwf,
6091 __isl_give isl_pw_qpolynomial_fold *
6092 isl_map_apply_pw_qpolynomial_fold(
6093 __isl_take isl_map *map,
6094 __isl_take isl_pw_qpolynomial_fold *pwf,
6096 __isl_give isl_union_pw_qpolynomial_fold *
6097 isl_union_set_apply_union_pw_qpolynomial_fold(
6098 __isl_take isl_union_set *uset,
6099 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6101 __isl_give isl_union_pw_qpolynomial_fold *
6102 isl_union_map_apply_union_pw_qpolynomial_fold(
6103 __isl_take isl_union_map *umap,
6104 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6107 The functions taking a map
6108 compose the given map with the given piecewise quasipolynomial reduction.
6109 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
6110 over all elements in the intersection of the range of the map
6111 and the domain of the piecewise quasipolynomial reduction
6112 as a function of an element in the domain of the map.
6113 The functions taking a set compute a bound over all elements in the
6114 intersection of the set and the domain of the
6115 piecewise quasipolynomial reduction.
6119 #include <isl/set.h>
6120 __isl_give isl_basic_set *
6121 isl_basic_set_preimage_multi_aff(
6122 __isl_take isl_basic_set *bset,
6123 __isl_take isl_multi_aff *ma);
6124 __isl_give isl_set *isl_set_preimage_multi_aff(
6125 __isl_take isl_set *set,
6126 __isl_take isl_multi_aff *ma);
6127 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
6128 __isl_take isl_set *set,
6129 __isl_take isl_pw_multi_aff *pma);
6130 __isl_give isl_set *isl_set_preimage_multi_pw_aff(
6131 __isl_take isl_set *set,
6132 __isl_take isl_multi_pw_aff *mpa);
6134 #include <isl/union_set.h>
6135 __isl_give isl_union_set *
6136 isl_union_set_preimage_multi_aff(
6137 __isl_take isl_union_set *uset,
6138 __isl_take isl_multi_aff *ma);
6139 __isl_give isl_union_set *
6140 isl_union_set_preimage_pw_multi_aff(
6141 __isl_take isl_union_set *uset,
6142 __isl_take isl_pw_multi_aff *pma);
6143 __isl_give isl_union_set *
6144 isl_union_set_preimage_union_pw_multi_aff(
6145 __isl_take isl_union_set *uset,
6146 __isl_take isl_union_pw_multi_aff *upma);
6148 #include <isl/map.h>
6149 __isl_give isl_basic_map *
6150 isl_basic_map_preimage_domain_multi_aff(
6151 __isl_take isl_basic_map *bmap,
6152 __isl_take isl_multi_aff *ma);
6153 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
6154 __isl_take isl_map *map,
6155 __isl_take isl_multi_aff *ma);
6156 __isl_give isl_map *isl_map_preimage_range_multi_aff(
6157 __isl_take isl_map *map,
6158 __isl_take isl_multi_aff *ma);
6159 __isl_give isl_map *
6160 isl_map_preimage_domain_pw_multi_aff(
6161 __isl_take isl_map *map,
6162 __isl_take isl_pw_multi_aff *pma);
6163 __isl_give isl_map *
6164 isl_map_preimage_range_pw_multi_aff(
6165 __isl_take isl_map *map,
6166 __isl_take isl_pw_multi_aff *pma);
6167 __isl_give isl_map *
6168 isl_map_preimage_domain_multi_pw_aff(
6169 __isl_take isl_map *map,
6170 __isl_take isl_multi_pw_aff *mpa);
6171 __isl_give isl_basic_map *
6172 isl_basic_map_preimage_range_multi_aff(
6173 __isl_take isl_basic_map *bmap,
6174 __isl_take isl_multi_aff *ma);
6176 #include <isl/union_map.h>
6177 __isl_give isl_union_map *
6178 isl_union_map_preimage_domain_multi_aff(
6179 __isl_take isl_union_map *umap,
6180 __isl_take isl_multi_aff *ma);
6181 __isl_give isl_union_map *
6182 isl_union_map_preimage_range_multi_aff(
6183 __isl_take isl_union_map *umap,
6184 __isl_take isl_multi_aff *ma);
6185 __isl_give isl_union_map *
6186 isl_union_map_preimage_domain_pw_multi_aff(
6187 __isl_take isl_union_map *umap,
6188 __isl_take isl_pw_multi_aff *pma);
6189 __isl_give isl_union_map *
6190 isl_union_map_preimage_range_pw_multi_aff(
6191 __isl_take isl_union_map *umap,
6192 __isl_take isl_pw_multi_aff *pma);
6193 __isl_give isl_union_map *
6194 isl_union_map_preimage_domain_union_pw_multi_aff(
6195 __isl_take isl_union_map *umap,
6196 __isl_take isl_union_pw_multi_aff *upma);
6197 __isl_give isl_union_map *
6198 isl_union_map_preimage_range_union_pw_multi_aff(
6199 __isl_take isl_union_map *umap,
6200 __isl_take isl_union_pw_multi_aff *upma);
6202 These functions compute the preimage of the given set or map domain/range under
6203 the given function. In other words, the expression is plugged
6204 into the set description or into the domain/range of the map.
6208 #include <isl/aff.h>
6209 __isl_give isl_aff *isl_aff_pullback_aff(
6210 __isl_take isl_aff *aff1,
6211 __isl_take isl_aff *aff2);
6212 __isl_give isl_aff *isl_aff_pullback_multi_aff(
6213 __isl_take isl_aff *aff,
6214 __isl_take isl_multi_aff *ma);
6215 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
6216 __isl_take isl_pw_aff *pa,
6217 __isl_take isl_multi_aff *ma);
6218 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
6219 __isl_take isl_pw_aff *pa,
6220 __isl_take isl_pw_multi_aff *pma);
6221 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
6222 __isl_take isl_pw_aff *pa,
6223 __isl_take isl_multi_pw_aff *mpa);
6224 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
6225 __isl_take isl_multi_aff *ma1,
6226 __isl_take isl_multi_aff *ma2);
6227 __isl_give isl_pw_multi_aff *
6228 isl_pw_multi_aff_pullback_multi_aff(
6229 __isl_take isl_pw_multi_aff *pma,
6230 __isl_take isl_multi_aff *ma);
6231 __isl_give isl_multi_pw_aff *
6232 isl_multi_pw_aff_pullback_multi_aff(
6233 __isl_take isl_multi_pw_aff *mpa,
6234 __isl_take isl_multi_aff *ma);
6235 __isl_give isl_pw_multi_aff *
6236 isl_pw_multi_aff_pullback_pw_multi_aff(
6237 __isl_take isl_pw_multi_aff *pma1,
6238 __isl_take isl_pw_multi_aff *pma2);
6239 __isl_give isl_multi_pw_aff *
6240 isl_multi_pw_aff_pullback_pw_multi_aff(
6241 __isl_take isl_multi_pw_aff *mpa,
6242 __isl_take isl_pw_multi_aff *pma);
6243 __isl_give isl_multi_pw_aff *
6244 isl_multi_pw_aff_pullback_multi_pw_aff(
6245 __isl_take isl_multi_pw_aff *mpa1,
6246 __isl_take isl_multi_pw_aff *mpa2);
6247 __isl_give isl_union_pw_aff *
6248 isl_union_pw_aff_pullback_union_pw_multi_aff(
6249 __isl_take isl_union_pw_aff *upa,
6250 __isl_take isl_union_pw_multi_aff *upma);
6251 __isl_give isl_union_pw_multi_aff *
6252 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
6253 __isl_take isl_union_pw_multi_aff *upma1,
6254 __isl_take isl_union_pw_multi_aff *upma2);
6255 __isl_give isl_multi_union_pw_aff *
6256 isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
6257 __isl_take isl_multi_union_pw_aff *mupa,
6258 __isl_take isl_union_pw_multi_aff *upma);
6260 These functions precompose the first expression by the second function.
6261 In other words, the second function is plugged
6262 into the first expression.
6266 #include <isl/aff.h>
6267 __isl_give isl_basic_set *isl_aff_eq_basic_set(
6268 __isl_take isl_aff *aff1,
6269 __isl_take isl_aff *aff2);
6270 __isl_give isl_set *isl_aff_eq_set(
6271 __isl_take isl_aff *aff1,
6272 __isl_take isl_aff *aff2);
6273 __isl_give isl_basic_set *isl_aff_le_basic_set(
6274 __isl_take isl_aff *aff1,
6275 __isl_take isl_aff *aff2);
6276 __isl_give isl_set *isl_aff_le_set(
6277 __isl_take isl_aff *aff1,
6278 __isl_take isl_aff *aff2);
6279 __isl_give isl_basic_set *isl_aff_lt_basic_set(
6280 __isl_take isl_aff *aff1,
6281 __isl_take isl_aff *aff2);
6282 __isl_give isl_set *isl_aff_lt_set(
6283 __isl_take isl_aff *aff1,
6284 __isl_take isl_aff *aff2);
6285 __isl_give isl_basic_set *isl_aff_ge_basic_set(
6286 __isl_take isl_aff *aff1,
6287 __isl_take isl_aff *aff2);
6288 __isl_give isl_set *isl_aff_ge_set(
6289 __isl_take isl_aff *aff1,
6290 __isl_take isl_aff *aff2);
6291 __isl_give isl_basic_set *isl_aff_gt_basic_set(
6292 __isl_take isl_aff *aff1,
6293 __isl_take isl_aff *aff2);
6294 __isl_give isl_set *isl_pw_aff_eq_set(
6295 __isl_take isl_pw_aff *pwaff1,
6296 __isl_take isl_pw_aff *pwaff2);
6297 __isl_give isl_set *isl_pw_aff_ne_set(
6298 __isl_take isl_pw_aff *pwaff1,
6299 __isl_take isl_pw_aff *pwaff2);
6300 __isl_give isl_set *isl_pw_aff_le_set(
6301 __isl_take isl_pw_aff *pwaff1,
6302 __isl_take isl_pw_aff *pwaff2);
6303 __isl_give isl_set *isl_pw_aff_lt_set(
6304 __isl_take isl_pw_aff *pwaff1,
6305 __isl_take isl_pw_aff *pwaff2);
6306 __isl_give isl_set *isl_pw_aff_ge_set(
6307 __isl_take isl_pw_aff *pwaff1,
6308 __isl_take isl_pw_aff *pwaff2);
6309 __isl_give isl_set *isl_pw_aff_gt_set(
6310 __isl_take isl_pw_aff *pwaff1,
6311 __isl_take isl_pw_aff *pwaff2);
6313 __isl_give isl_set *isl_multi_aff_lex_le_set(
6314 __isl_take isl_multi_aff *ma1,
6315 __isl_take isl_multi_aff *ma2);
6316 __isl_give isl_set *isl_multi_aff_lex_lt_set(
6317 __isl_take isl_multi_aff *ma1,
6318 __isl_take isl_multi_aff *ma2);
6319 __isl_give isl_set *isl_multi_aff_lex_ge_set(
6320 __isl_take isl_multi_aff *ma1,
6321 __isl_take isl_multi_aff *ma2);
6322 __isl_give isl_set *isl_multi_aff_lex_gt_set(
6323 __isl_take isl_multi_aff *ma1,
6324 __isl_take isl_multi_aff *ma2);
6326 __isl_give isl_set *isl_pw_aff_list_eq_set(
6327 __isl_take isl_pw_aff_list *list1,
6328 __isl_take isl_pw_aff_list *list2);
6329 __isl_give isl_set *isl_pw_aff_list_ne_set(
6330 __isl_take isl_pw_aff_list *list1,
6331 __isl_take isl_pw_aff_list *list2);
6332 __isl_give isl_set *isl_pw_aff_list_le_set(
6333 __isl_take isl_pw_aff_list *list1,
6334 __isl_take isl_pw_aff_list *list2);
6335 __isl_give isl_set *isl_pw_aff_list_lt_set(
6336 __isl_take isl_pw_aff_list *list1,
6337 __isl_take isl_pw_aff_list *list2);
6338 __isl_give isl_set *isl_pw_aff_list_ge_set(
6339 __isl_take isl_pw_aff_list *list1,
6340 __isl_take isl_pw_aff_list *list2);
6341 __isl_give isl_set *isl_pw_aff_list_gt_set(
6342 __isl_take isl_pw_aff_list *list1,
6343 __isl_take isl_pw_aff_list *list2);
6345 The function C<isl_aff_ge_basic_set> returns a basic set
6346 containing those elements in the shared space
6347 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
6348 The function C<isl_pw_aff_ge_set> returns a set
6349 containing those elements in the shared domain
6350 of C<pwaff1> and C<pwaff2> where C<pwaff1> is
6351 greater than or equal to C<pwaff2>.
6352 The function C<isl_multi_aff_lex_le_set> returns a set
6353 containing those elements in the shared domain space
6354 where C<ma1> is lexicographically smaller than or
6356 The functions operating on C<isl_pw_aff_list> apply the corresponding
6357 C<isl_pw_aff> function to each pair of elements in the two lists.
6359 #include <isl/aff.h>
6360 __isl_give isl_map *isl_pw_aff_eq_map(
6361 __isl_take isl_pw_aff *pa1,
6362 __isl_take isl_pw_aff *pa2);
6363 __isl_give isl_map *isl_pw_aff_lt_map(
6364 __isl_take isl_pw_aff *pa1,
6365 __isl_take isl_pw_aff *pa2);
6366 __isl_give isl_map *isl_pw_aff_gt_map(
6367 __isl_take isl_pw_aff *pa1,
6368 __isl_take isl_pw_aff *pa2);
6370 __isl_give isl_map *isl_multi_pw_aff_eq_map(
6371 __isl_take isl_multi_pw_aff *mpa1,
6372 __isl_take isl_multi_pw_aff *mpa2);
6373 __isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
6374 __isl_take isl_multi_pw_aff *mpa1,
6375 __isl_take isl_multi_pw_aff *mpa2);
6376 __isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
6377 __isl_take isl_multi_pw_aff *mpa1,
6378 __isl_take isl_multi_pw_aff *mpa2);
6380 These functions return a map between domain elements of the arguments
6381 where the function values satisfy the given relation.
6383 #include <isl/union_map.h>
6384 __isl_give isl_union_map *
6385 isl_union_map_eq_at_multi_union_pw_aff(
6386 __isl_take isl_union_map *umap,
6387 __isl_take isl_multi_union_pw_aff *mupa);
6388 __isl_give isl_union_map *
6389 isl_union_map_lex_lt_at_multi_union_pw_aff(
6390 __isl_take isl_union_map *umap,
6391 __isl_take isl_multi_union_pw_aff *mupa);
6392 __isl_give isl_union_map *
6393 isl_union_map_lex_gt_at_multi_union_pw_aff(
6394 __isl_take isl_union_map *umap,
6395 __isl_take isl_multi_union_pw_aff *mupa);
6397 These functions select the subset of elements in the union map
6398 that have an equal or lexicographically smaller function value.
6400 =item * Cartesian Product
6402 #include <isl/space.h>
6403 __isl_give isl_space *isl_space_product(
6404 __isl_take isl_space *space1,
6405 __isl_take isl_space *space2);
6406 __isl_give isl_space *isl_space_domain_product(
6407 __isl_take isl_space *space1,
6408 __isl_take isl_space *space2);
6409 __isl_give isl_space *isl_space_range_product(
6410 __isl_take isl_space *space1,
6411 __isl_take isl_space *space2);
6414 C<isl_space_product>, C<isl_space_domain_product>
6415 and C<isl_space_range_product> take pairs or relation spaces and
6416 produce a single relations space, where either the domain, the range
6417 or both domain and range are wrapped spaces of relations between
6418 the domains and/or ranges of the input spaces.
6419 If the product is only constructed over the domain or the range
6420 then the ranges or the domains of the inputs should be the same.
6421 The function C<isl_space_product> also accepts a pair of set spaces,
6422 in which case it returns a wrapped space of a relation between the
6425 #include <isl/set.h>
6426 __isl_give isl_set *isl_set_product(
6427 __isl_take isl_set *set1,
6428 __isl_take isl_set *set2);
6430 #include <isl/map.h>
6431 __isl_give isl_basic_map *isl_basic_map_domain_product(
6432 __isl_take isl_basic_map *bmap1,
6433 __isl_take isl_basic_map *bmap2);
6434 __isl_give isl_basic_map *isl_basic_map_range_product(
6435 __isl_take isl_basic_map *bmap1,
6436 __isl_take isl_basic_map *bmap2);
6437 __isl_give isl_basic_map *isl_basic_map_product(
6438 __isl_take isl_basic_map *bmap1,
6439 __isl_take isl_basic_map *bmap2);
6440 __isl_give isl_map *isl_map_domain_product(
6441 __isl_take isl_map *map1,
6442 __isl_take isl_map *map2);
6443 __isl_give isl_map *isl_map_range_product(
6444 __isl_take isl_map *map1,
6445 __isl_take isl_map *map2);
6446 __isl_give isl_map *isl_map_product(
6447 __isl_take isl_map *map1,
6448 __isl_take isl_map *map2);
6450 #include <isl/union_set.h>
6451 __isl_give isl_union_set *isl_union_set_product(
6452 __isl_take isl_union_set *uset1,
6453 __isl_take isl_union_set *uset2);
6455 #include <isl/union_map.h>
6456 __isl_give isl_union_map *isl_union_map_domain_product(
6457 __isl_take isl_union_map *umap1,
6458 __isl_take isl_union_map *umap2);
6459 __isl_give isl_union_map *isl_union_map_range_product(
6460 __isl_take isl_union_map *umap1,
6461 __isl_take isl_union_map *umap2);
6462 __isl_give isl_union_map *isl_union_map_product(
6463 __isl_take isl_union_map *umap1,
6464 __isl_take isl_union_map *umap2);
6466 #include <isl/val.h>
6467 __isl_give isl_multi_val *isl_multi_val_range_product(
6468 __isl_take isl_multi_val *mv1,
6469 __isl_take isl_multi_val *mv2);
6470 __isl_give isl_multi_val *isl_multi_val_product(
6471 __isl_take isl_multi_val *mv1,
6472 __isl_take isl_multi_val *mv2);
6474 #include <isl/aff.h>
6475 __isl_give isl_multi_aff *isl_multi_aff_range_product(
6476 __isl_take isl_multi_aff *ma1,
6477 __isl_take isl_multi_aff *ma2);
6478 __isl_give isl_multi_aff *isl_multi_aff_product(
6479 __isl_take isl_multi_aff *ma1,
6480 __isl_take isl_multi_aff *ma2);
6481 __isl_give isl_multi_pw_aff *
6482 isl_multi_pw_aff_range_product(
6483 __isl_take isl_multi_pw_aff *mpa1,
6484 __isl_take isl_multi_pw_aff *mpa2);
6485 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
6486 __isl_take isl_multi_pw_aff *mpa1,
6487 __isl_take isl_multi_pw_aff *mpa2);
6488 __isl_give isl_pw_multi_aff *
6489 isl_pw_multi_aff_range_product(
6490 __isl_take isl_pw_multi_aff *pma1,
6491 __isl_take isl_pw_multi_aff *pma2);
6492 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
6493 __isl_take isl_pw_multi_aff *pma1,
6494 __isl_take isl_pw_multi_aff *pma2);
6495 __isl_give isl_multi_union_pw_aff *
6496 isl_multi_union_pw_aff_range_product(
6497 __isl_take isl_multi_union_pw_aff *mupa1,
6498 __isl_take isl_multi_union_pw_aff *mupa2);
6500 The above functions compute the cross product of the given
6501 sets, relations or functions. The domains and ranges of the results
6502 are wrapped maps between domains and ranges of the inputs.
6503 To obtain a ``flat'' product, use the following functions
6506 #include <isl/set.h>
6507 __isl_give isl_basic_set *isl_basic_set_flat_product(
6508 __isl_take isl_basic_set *bset1,
6509 __isl_take isl_basic_set *bset2);
6510 __isl_give isl_set *isl_set_flat_product(
6511 __isl_take isl_set *set1,
6512 __isl_take isl_set *set2);
6514 #include <isl/map.h>
6515 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
6516 __isl_take isl_basic_map *bmap1,
6517 __isl_take isl_basic_map *bmap2);
6518 __isl_give isl_map *isl_map_flat_domain_product(
6519 __isl_take isl_map *map1,
6520 __isl_take isl_map *map2);
6521 __isl_give isl_map *isl_map_flat_range_product(
6522 __isl_take isl_map *map1,
6523 __isl_take isl_map *map2);
6524 __isl_give isl_basic_map *isl_basic_map_flat_product(
6525 __isl_take isl_basic_map *bmap1,
6526 __isl_take isl_basic_map *bmap2);
6527 __isl_give isl_map *isl_map_flat_product(
6528 __isl_take isl_map *map1,
6529 __isl_take isl_map *map2);
6531 #include <isl/union_map.h>
6532 __isl_give isl_union_map *
6533 isl_union_map_flat_domain_product(
6534 __isl_take isl_union_map *umap1,
6535 __isl_take isl_union_map *umap2);
6536 __isl_give isl_union_map *
6537 isl_union_map_flat_range_product(
6538 __isl_take isl_union_map *umap1,
6539 __isl_take isl_union_map *umap2);
6541 #include <isl/val.h>
6542 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
6543 __isl_take isl_multi_val *mv1,
6544 __isl_take isl_multi_aff *mv2);
6546 #include <isl/aff.h>
6547 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
6548 __isl_take isl_multi_aff *ma1,
6549 __isl_take isl_multi_aff *ma2);
6550 __isl_give isl_pw_multi_aff *
6551 isl_pw_multi_aff_flat_range_product(
6552 __isl_take isl_pw_multi_aff *pma1,
6553 __isl_take isl_pw_multi_aff *pma2);
6554 __isl_give isl_multi_pw_aff *
6555 isl_multi_pw_aff_flat_range_product(
6556 __isl_take isl_multi_pw_aff *mpa1,
6557 __isl_take isl_multi_pw_aff *mpa2);
6558 __isl_give isl_union_pw_multi_aff *
6559 isl_union_pw_multi_aff_flat_range_product(
6560 __isl_take isl_union_pw_multi_aff *upma1,
6561 __isl_take isl_union_pw_multi_aff *upma2);
6562 __isl_give isl_multi_union_pw_aff *
6563 isl_multi_union_pw_aff_flat_range_product(
6564 __isl_take isl_multi_union_pw_aff *mupa1,
6565 __isl_take isl_multi_union_pw_aff *mupa2);
6567 #include <isl/space.h>
6568 __isl_give isl_space *isl_space_factor_domain(
6569 __isl_take isl_space *space);
6570 __isl_give isl_space *isl_space_factor_range(
6571 __isl_take isl_space *space);
6572 __isl_give isl_space *isl_space_domain_factor_domain(
6573 __isl_take isl_space *space);
6574 __isl_give isl_space *isl_space_domain_factor_range(
6575 __isl_take isl_space *space);
6576 __isl_give isl_space *isl_space_range_factor_domain(
6577 __isl_take isl_space *space);
6578 __isl_give isl_space *isl_space_range_factor_range(
6579 __isl_take isl_space *space);
6581 The functions C<isl_space_range_factor_domain> and
6582 C<isl_space_range_factor_range> extract the two arguments from
6583 the result of a call to C<isl_space_range_product>.
6585 The arguments of a call to a product can be extracted
6586 from the result using the following functions.
6588 #include <isl/map.h>
6589 __isl_give isl_map *isl_map_factor_domain(
6590 __isl_take isl_map *map);
6591 __isl_give isl_map *isl_map_factor_range(
6592 __isl_take isl_map *map);
6593 __isl_give isl_map *isl_map_domain_factor_domain(
6594 __isl_take isl_map *map);
6595 __isl_give isl_map *isl_map_domain_factor_range(
6596 __isl_take isl_map *map);
6597 __isl_give isl_map *isl_map_range_factor_domain(
6598 __isl_take isl_map *map);
6599 __isl_give isl_map *isl_map_range_factor_range(
6600 __isl_take isl_map *map);
6602 #include <isl/union_map.h>
6603 __isl_give isl_union_map *isl_union_map_factor_domain(
6604 __isl_take isl_union_map *umap);
6605 __isl_give isl_union_map *isl_union_map_factor_range(
6606 __isl_take isl_union_map *umap);
6607 __isl_give isl_union_map *
6608 isl_union_map_domain_factor_domain(
6609 __isl_take isl_union_map *umap);
6610 __isl_give isl_union_map *
6611 isl_union_map_domain_factor_range(
6612 __isl_take isl_union_map *umap);
6613 __isl_give isl_union_map *
6614 isl_union_map_range_factor_domain(
6615 __isl_take isl_union_map *umap);
6616 __isl_give isl_union_map *
6617 isl_union_map_range_factor_range(
6618 __isl_take isl_union_map *umap);
6620 #include <isl/val.h>
6621 __isl_give isl_multi_val *isl_multi_val_factor_range(
6622 __isl_take isl_multi_val *mv);
6623 __isl_give isl_multi_val *
6624 isl_multi_val_range_factor_domain(
6625 __isl_take isl_multi_val *mv);
6626 __isl_give isl_multi_val *
6627 isl_multi_val_range_factor_range(
6628 __isl_take isl_multi_val *mv);
6630 #include <isl/aff.h>
6631 __isl_give isl_multi_aff *isl_multi_aff_factor_range(
6632 __isl_take isl_multi_aff *ma);
6633 __isl_give isl_multi_aff *
6634 isl_multi_aff_range_factor_domain(
6635 __isl_take isl_multi_aff *ma);
6636 __isl_give isl_multi_aff *
6637 isl_multi_aff_range_factor_range(
6638 __isl_take isl_multi_aff *ma);
6639 __isl_give isl_multi_pw_aff *
6640 isl_multi_pw_aff_factor_range(
6641 __isl_take isl_multi_pw_aff *mpa);
6642 __isl_give isl_multi_pw_aff *
6643 isl_multi_pw_aff_range_factor_domain(
6644 __isl_take isl_multi_pw_aff *mpa);
6645 __isl_give isl_multi_pw_aff *
6646 isl_multi_pw_aff_range_factor_range(
6647 __isl_take isl_multi_pw_aff *mpa);
6648 __isl_give isl_multi_union_pw_aff *
6649 isl_multi_union_pw_aff_factor_range(
6650 __isl_take isl_multi_union_pw_aff *mupa);
6651 __isl_give isl_multi_union_pw_aff *
6652 isl_multi_union_pw_aff_range_factor_domain(
6653 __isl_take isl_multi_union_pw_aff *mupa);
6654 __isl_give isl_multi_union_pw_aff *
6655 isl_multi_union_pw_aff_range_factor_range(
6656 __isl_take isl_multi_union_pw_aff *mupa);
6658 The splice functions are a generalization of the flat product functions,
6659 where the second argument may be inserted at any position inside
6660 the first argument rather than being placed at the end.
6661 The functions C<isl_multi_val_factor_range>,
6662 C<isl_multi_aff_factor_range>,
6663 C<isl_multi_pw_aff_factor_range> and
6664 C<isl_multi_union_pw_aff_factor_range>
6665 take functions that live in a set space.
6667 #include <isl/val.h>
6668 __isl_give isl_multi_val *isl_multi_val_range_splice(
6669 __isl_take isl_multi_val *mv1, unsigned pos,
6670 __isl_take isl_multi_val *mv2);
6672 #include <isl/aff.h>
6673 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
6674 __isl_take isl_multi_aff *ma1, unsigned pos,
6675 __isl_take isl_multi_aff *ma2);
6676 __isl_give isl_multi_aff *isl_multi_aff_splice(
6677 __isl_take isl_multi_aff *ma1,
6678 unsigned in_pos, unsigned out_pos,
6679 __isl_take isl_multi_aff *ma2);
6680 __isl_give isl_multi_pw_aff *
6681 isl_multi_pw_aff_range_splice(
6682 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
6683 __isl_take isl_multi_pw_aff *mpa2);
6684 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
6685 __isl_take isl_multi_pw_aff *mpa1,
6686 unsigned in_pos, unsigned out_pos,
6687 __isl_take isl_multi_pw_aff *mpa2);
6688 __isl_give isl_multi_union_pw_aff *
6689 isl_multi_union_pw_aff_range_splice(
6690 __isl_take isl_multi_union_pw_aff *mupa1,
6692 __isl_take isl_multi_union_pw_aff *mupa2);
6694 =item * Simplification
6696 When applied to a set or relation,
6697 the gist operation returns a set or relation that has the
6698 same intersection with the context as the input set or relation.
6699 Any implicit equality in the intersection is made explicit in the result,
6700 while all inequalities that are redundant with respect to the intersection
6702 In case of union sets and relations, the gist operation is performed
6705 When applied to a function,
6706 the gist operation applies the set gist operation to each of
6707 the cells in the domain of the input piecewise expression.
6708 The context is also exploited
6709 to simplify the expression associated to each cell.
6711 #include <isl/set.h>
6712 __isl_give isl_basic_set *isl_basic_set_gist(
6713 __isl_take isl_basic_set *bset,
6714 __isl_take isl_basic_set *context);
6715 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
6716 __isl_take isl_set *context);
6717 __isl_give isl_set *isl_set_gist_params(
6718 __isl_take isl_set *set,
6719 __isl_take isl_set *context);
6721 #include <isl/map.h>
6722 __isl_give isl_basic_map *isl_basic_map_gist(
6723 __isl_take isl_basic_map *bmap,
6724 __isl_take isl_basic_map *context);
6725 __isl_give isl_basic_map *isl_basic_map_gist_domain(
6726 __isl_take isl_basic_map *bmap,
6727 __isl_take isl_basic_set *context);
6728 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
6729 __isl_take isl_map *context);
6730 __isl_give isl_map *isl_map_gist_params(
6731 __isl_take isl_map *map,
6732 __isl_take isl_set *context);
6733 __isl_give isl_map *isl_map_gist_domain(
6734 __isl_take isl_map *map,
6735 __isl_take isl_set *context);
6736 __isl_give isl_map *isl_map_gist_range(
6737 __isl_take isl_map *map,
6738 __isl_take isl_set *context);
6740 #include <isl/union_set.h>
6741 __isl_give isl_union_set *isl_union_set_gist(
6742 __isl_take isl_union_set *uset,
6743 __isl_take isl_union_set *context);
6744 __isl_give isl_union_set *isl_union_set_gist_params(
6745 __isl_take isl_union_set *uset,
6746 __isl_take isl_set *set);
6748 #include <isl/union_map.h>
6749 __isl_give isl_union_map *isl_union_map_gist(
6750 __isl_take isl_union_map *umap,
6751 __isl_take isl_union_map *context);
6752 __isl_give isl_union_map *isl_union_map_gist_params(
6753 __isl_take isl_union_map *umap,
6754 __isl_take isl_set *set);
6755 __isl_give isl_union_map *isl_union_map_gist_domain(
6756 __isl_take isl_union_map *umap,
6757 __isl_take isl_union_set *uset);
6758 __isl_give isl_union_map *isl_union_map_gist_range(
6759 __isl_take isl_union_map *umap,
6760 __isl_take isl_union_set *uset);
6762 #include <isl/aff.h>
6763 __isl_give isl_aff *isl_aff_gist_params(
6764 __isl_take isl_aff *aff,
6765 __isl_take isl_set *context);
6766 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
6767 __isl_take isl_set *context);
6768 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
6769 __isl_take isl_multi_aff *maff,
6770 __isl_take isl_set *context);
6771 __isl_give isl_multi_aff *isl_multi_aff_gist(
6772 __isl_take isl_multi_aff *maff,
6773 __isl_take isl_set *context);
6774 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
6775 __isl_take isl_pw_aff *pwaff,
6776 __isl_take isl_set *context);
6777 __isl_give isl_pw_aff *isl_pw_aff_gist(
6778 __isl_take isl_pw_aff *pwaff,
6779 __isl_take isl_set *context);
6780 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
6781 __isl_take isl_pw_multi_aff *pma,
6782 __isl_take isl_set *set);
6783 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
6784 __isl_take isl_pw_multi_aff *pma,
6785 __isl_take isl_set *set);
6786 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
6787 __isl_take isl_multi_pw_aff *mpa,
6788 __isl_take isl_set *set);
6789 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
6790 __isl_take isl_multi_pw_aff *mpa,
6791 __isl_take isl_set *set);
6792 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist(
6793 __isl_take isl_union_pw_aff *upa,
6794 __isl_take isl_union_set *context);
6795 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params(
6796 __isl_take isl_union_pw_aff *upa,
6797 __isl_take isl_set *context);
6798 __isl_give isl_union_pw_multi_aff *
6799 isl_union_pw_multi_aff_gist_params(
6800 __isl_take isl_union_pw_multi_aff *upma,
6801 __isl_take isl_set *context);
6802 __isl_give isl_union_pw_multi_aff *
6803 isl_union_pw_multi_aff_gist(
6804 __isl_take isl_union_pw_multi_aff *upma,
6805 __isl_take isl_union_set *context);
6806 __isl_give isl_multi_union_pw_aff *
6807 isl_multi_union_pw_aff_gist_params(
6808 __isl_take isl_multi_union_pw_aff *aff,
6809 __isl_take isl_set *context);
6810 __isl_give isl_multi_union_pw_aff *
6811 isl_multi_union_pw_aff_gist(
6812 __isl_take isl_multi_union_pw_aff *aff,
6813 __isl_take isl_union_set *context);
6815 #include <isl/polynomial.h>
6816 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
6817 __isl_take isl_qpolynomial *qp,
6818 __isl_take isl_set *context);
6819 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
6820 __isl_take isl_qpolynomial *qp,
6821 __isl_take isl_set *context);
6822 __isl_give isl_qpolynomial_fold *
6823 isl_qpolynomial_fold_gist_params(
6824 __isl_take isl_qpolynomial_fold *fold,
6825 __isl_take isl_set *context);
6826 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
6827 __isl_take isl_qpolynomial_fold *fold,
6828 __isl_take isl_set *context);
6829 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
6830 __isl_take isl_pw_qpolynomial *pwqp,
6831 __isl_take isl_set *context);
6832 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
6833 __isl_take isl_pw_qpolynomial *pwqp,
6834 __isl_take isl_set *context);
6835 __isl_give isl_pw_qpolynomial_fold *
6836 isl_pw_qpolynomial_fold_gist(
6837 __isl_take isl_pw_qpolynomial_fold *pwf,
6838 __isl_take isl_set *context);
6839 __isl_give isl_pw_qpolynomial_fold *
6840 isl_pw_qpolynomial_fold_gist_params(
6841 __isl_take isl_pw_qpolynomial_fold *pwf,
6842 __isl_take isl_set *context);
6843 __isl_give isl_union_pw_qpolynomial *
6844 isl_union_pw_qpolynomial_gist_params(
6845 __isl_take isl_union_pw_qpolynomial *upwqp,
6846 __isl_take isl_set *context);
6847 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
6848 __isl_take isl_union_pw_qpolynomial *upwqp,
6849 __isl_take isl_union_set *context);
6850 __isl_give isl_union_pw_qpolynomial_fold *
6851 isl_union_pw_qpolynomial_fold_gist(
6852 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6853 __isl_take isl_union_set *context);
6854 __isl_give isl_union_pw_qpolynomial_fold *
6855 isl_union_pw_qpolynomial_fold_gist_params(
6856 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6857 __isl_take isl_set *context);
6859 =item * Binary Arithmetic Operations
6861 #include <isl/set.h>
6862 __isl_give isl_set *isl_set_sum(
6863 __isl_take isl_set *set1,
6864 __isl_take isl_set *set2);
6865 #include <isl/map.h>
6866 __isl_give isl_map *isl_map_sum(
6867 __isl_take isl_map *map1,
6868 __isl_take isl_map *map2);
6870 C<isl_set_sum> computes the Minkowski sum of its two arguments,
6871 i.e., the set containing the sums of pairs of elements from
6872 C<set1> and C<set2>.
6873 The domain of the result of C<isl_map_sum> is the intersection
6874 of the domains of its two arguments. The corresponding range
6875 elements are the sums of the corresponding range elements
6876 in the two arguments.
6878 #include <isl/val.h>
6879 __isl_give isl_multi_val *isl_multi_val_add(
6880 __isl_take isl_multi_val *mv1,
6881 __isl_take isl_multi_val *mv2);
6882 __isl_give isl_multi_val *isl_multi_val_sub(
6883 __isl_take isl_multi_val *mv1,
6884 __isl_take isl_multi_val *mv2);
6886 #include <isl/aff.h>
6887 __isl_give isl_aff *isl_aff_add(
6888 __isl_take isl_aff *aff1,
6889 __isl_take isl_aff *aff2);
6890 __isl_give isl_multi_aff *isl_multi_aff_add(
6891 __isl_take isl_multi_aff *maff1,
6892 __isl_take isl_multi_aff *maff2);
6893 __isl_give isl_pw_aff *isl_pw_aff_add(
6894 __isl_take isl_pw_aff *pwaff1,
6895 __isl_take isl_pw_aff *pwaff2);
6896 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add(
6897 __isl_take isl_multi_pw_aff *mpa1,
6898 __isl_take isl_multi_pw_aff *mpa2);
6899 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
6900 __isl_take isl_pw_multi_aff *pma1,
6901 __isl_take isl_pw_multi_aff *pma2);
6902 __isl_give isl_union_pw_aff *isl_union_pw_aff_add(
6903 __isl_take isl_union_pw_aff *upa1,
6904 __isl_take isl_union_pw_aff *upa2);
6905 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
6906 __isl_take isl_union_pw_multi_aff *upma1,
6907 __isl_take isl_union_pw_multi_aff *upma2);
6908 __isl_give isl_multi_union_pw_aff *
6909 isl_multi_union_pw_aff_add(
6910 __isl_take isl_multi_union_pw_aff *mupa1,
6911 __isl_take isl_multi_union_pw_aff *mupa2);
6912 __isl_give isl_pw_aff *isl_pw_aff_min(
6913 __isl_take isl_pw_aff *pwaff1,
6914 __isl_take isl_pw_aff *pwaff2);
6915 __isl_give isl_pw_aff *isl_pw_aff_max(
6916 __isl_take isl_pw_aff *pwaff1,
6917 __isl_take isl_pw_aff *pwaff2);
6918 __isl_give isl_aff *isl_aff_sub(
6919 __isl_take isl_aff *aff1,
6920 __isl_take isl_aff *aff2);
6921 __isl_give isl_multi_aff *isl_multi_aff_sub(
6922 __isl_take isl_multi_aff *ma1,
6923 __isl_take isl_multi_aff *ma2);
6924 __isl_give isl_pw_aff *isl_pw_aff_sub(
6925 __isl_take isl_pw_aff *pwaff1,
6926 __isl_take isl_pw_aff *pwaff2);
6927 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub(
6928 __isl_take isl_multi_pw_aff *mpa1,
6929 __isl_take isl_multi_pw_aff *mpa2);
6930 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
6931 __isl_take isl_pw_multi_aff *pma1,
6932 __isl_take isl_pw_multi_aff *pma2);
6933 __isl_give isl_union_pw_aff *isl_union_pw_aff_sub(
6934 __isl_take isl_union_pw_aff *upa1,
6935 __isl_take isl_union_pw_aff *upa2);
6936 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
6937 __isl_take isl_union_pw_multi_aff *upma1,
6938 __isl_take isl_union_pw_multi_aff *upma2);
6939 __isl_give isl_multi_union_pw_aff *
6940 isl_multi_union_pw_aff_sub(
6941 __isl_take isl_multi_union_pw_aff *mupa1,
6942 __isl_take isl_multi_union_pw_aff *mupa2);
6944 C<isl_aff_sub> subtracts the second argument from the first.
6946 #include <isl/polynomial.h>
6947 __isl_give isl_qpolynomial *isl_qpolynomial_add(
6948 __isl_take isl_qpolynomial *qp1,
6949 __isl_take isl_qpolynomial *qp2);
6950 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
6951 __isl_take isl_pw_qpolynomial *pwqp1,
6952 __isl_take isl_pw_qpolynomial *pwqp2);
6953 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
6954 __isl_take isl_pw_qpolynomial *pwqp1,
6955 __isl_take isl_pw_qpolynomial *pwqp2);
6956 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
6957 __isl_take isl_pw_qpolynomial_fold *pwf1,
6958 __isl_take isl_pw_qpolynomial_fold *pwf2);
6959 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
6960 __isl_take isl_union_pw_qpolynomial *upwqp1,
6961 __isl_take isl_union_pw_qpolynomial *upwqp2);
6962 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
6963 __isl_take isl_qpolynomial *qp1,
6964 __isl_take isl_qpolynomial *qp2);
6965 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
6966 __isl_take isl_pw_qpolynomial *pwqp1,
6967 __isl_take isl_pw_qpolynomial *pwqp2);
6968 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
6969 __isl_take isl_union_pw_qpolynomial *upwqp1,
6970 __isl_take isl_union_pw_qpolynomial *upwqp2);
6971 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
6972 __isl_take isl_pw_qpolynomial_fold *pwf1,
6973 __isl_take isl_pw_qpolynomial_fold *pwf2);
6974 __isl_give isl_union_pw_qpolynomial_fold *
6975 isl_union_pw_qpolynomial_fold_fold(
6976 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
6977 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
6979 #include <isl/aff.h>
6980 __isl_give isl_pw_aff *isl_pw_aff_union_add(
6981 __isl_take isl_pw_aff *pwaff1,
6982 __isl_take isl_pw_aff *pwaff2);
6983 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
6984 __isl_take isl_pw_multi_aff *pma1,
6985 __isl_take isl_pw_multi_aff *pma2);
6986 __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
6987 __isl_take isl_union_pw_aff *upa1,
6988 __isl_take isl_union_pw_aff *upa2);
6989 __isl_give isl_union_pw_multi_aff *
6990 isl_union_pw_multi_aff_union_add(
6991 __isl_take isl_union_pw_multi_aff *upma1,
6992 __isl_take isl_union_pw_multi_aff *upma2);
6993 __isl_give isl_multi_union_pw_aff *
6994 isl_multi_union_pw_aff_union_add(
6995 __isl_take isl_multi_union_pw_aff *mupa1,
6996 __isl_take isl_multi_union_pw_aff *mupa2);
6997 __isl_give isl_pw_aff *isl_pw_aff_union_min(
6998 __isl_take isl_pw_aff *pwaff1,
6999 __isl_take isl_pw_aff *pwaff2);
7000 __isl_give isl_pw_aff *isl_pw_aff_union_max(
7001 __isl_take isl_pw_aff *pwaff1,
7002 __isl_take isl_pw_aff *pwaff2);
7004 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
7005 expression with a domain that is the union of those of C<pwaff1> and
7006 C<pwaff2> and such that on each cell, the quasi-affine expression is
7007 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
7008 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
7009 associated expression is the defined one.
7010 This in contrast to the C<isl_pw_aff_max> function, which is
7011 only defined on the shared definition domain of the arguments.
7013 #include <isl/val.h>
7014 __isl_give isl_multi_val *isl_multi_val_add_val(
7015 __isl_take isl_multi_val *mv,
7016 __isl_take isl_val *v);
7017 __isl_give isl_multi_val *isl_multi_val_mod_val(
7018 __isl_take isl_multi_val *mv,
7019 __isl_take isl_val *v);
7020 __isl_give isl_multi_val *isl_multi_val_scale_val(
7021 __isl_take isl_multi_val *mv,
7022 __isl_take isl_val *v);
7023 __isl_give isl_multi_val *isl_multi_val_scale_down_val(
7024 __isl_take isl_multi_val *mv,
7025 __isl_take isl_val *v);
7027 #include <isl/aff.h>
7028 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
7029 __isl_take isl_val *mod);
7030 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
7031 __isl_take isl_pw_aff *pa,
7032 __isl_take isl_val *mod);
7033 __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
7034 __isl_take isl_union_pw_aff *upa,
7035 __isl_take isl_val *f);
7036 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
7037 __isl_take isl_val *v);
7038 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
7039 __isl_take isl_multi_aff *ma,
7040 __isl_take isl_val *v);
7041 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
7042 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
7043 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
7044 __isl_take isl_multi_pw_aff *mpa,
7045 __isl_take isl_val *v);
7046 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
7047 __isl_take isl_pw_multi_aff *pma,
7048 __isl_take isl_val *v);
7049 __isl_give isl_union_pw_multi_aff *
7050 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val(
7051 __isl_take isl_union_pw_aff *upa,
7052 __isl_take isl_val *f);
7053 isl_union_pw_multi_aff_scale_val(
7054 __isl_take isl_union_pw_multi_aff *upma,
7055 __isl_take isl_val *val);
7056 __isl_give isl_multi_union_pw_aff *
7057 isl_multi_union_pw_aff_scale_val(
7058 __isl_take isl_multi_union_pw_aff *mupa,
7059 __isl_take isl_val *v);
7060 __isl_give isl_aff *isl_aff_scale_down_ui(
7061 __isl_take isl_aff *aff, unsigned f);
7062 __isl_give isl_aff *isl_aff_scale_down_val(
7063 __isl_take isl_aff *aff, __isl_take isl_val *v);
7064 __isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
7065 __isl_take isl_multi_aff *ma,
7066 __isl_take isl_val *v);
7067 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
7068 __isl_take isl_pw_aff *pa,
7069 __isl_take isl_val *f);
7070 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
7071 __isl_take isl_multi_pw_aff *mpa,
7072 __isl_take isl_val *v);
7073 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
7074 __isl_take isl_pw_multi_aff *pma,
7075 __isl_take isl_val *v);
7076 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val(
7077 __isl_take isl_union_pw_aff *upa,
7078 __isl_take isl_val *v);
7079 __isl_give isl_union_pw_multi_aff *
7080 isl_union_pw_multi_aff_scale_down_val(
7081 __isl_take isl_union_pw_multi_aff *upma,
7082 __isl_take isl_val *val);
7083 __isl_give isl_multi_union_pw_aff *
7084 isl_multi_union_pw_aff_scale_down_val(
7085 __isl_take isl_multi_union_pw_aff *mupa,
7086 __isl_take isl_val *v);
7088 #include <isl/polynomial.h>
7089 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
7090 __isl_take isl_qpolynomial *qp,
7091 __isl_take isl_val *v);
7092 __isl_give isl_qpolynomial_fold *
7093 isl_qpolynomial_fold_scale_val(
7094 __isl_take isl_qpolynomial_fold *fold,
7095 __isl_take isl_val *v);
7096 __isl_give isl_pw_qpolynomial *
7097 isl_pw_qpolynomial_scale_val(
7098 __isl_take isl_pw_qpolynomial *pwqp,
7099 __isl_take isl_val *v);
7100 __isl_give isl_pw_qpolynomial_fold *
7101 isl_pw_qpolynomial_fold_scale_val(
7102 __isl_take isl_pw_qpolynomial_fold *pwf,
7103 __isl_take isl_val *v);
7104 __isl_give isl_union_pw_qpolynomial *
7105 isl_union_pw_qpolynomial_scale_val(
7106 __isl_take isl_union_pw_qpolynomial *upwqp,
7107 __isl_take isl_val *v);
7108 __isl_give isl_union_pw_qpolynomial_fold *
7109 isl_union_pw_qpolynomial_fold_scale_val(
7110 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7111 __isl_take isl_val *v);
7112 __isl_give isl_qpolynomial *
7113 isl_qpolynomial_scale_down_val(
7114 __isl_take isl_qpolynomial *qp,
7115 __isl_take isl_val *v);
7116 __isl_give isl_qpolynomial_fold *
7117 isl_qpolynomial_fold_scale_down_val(
7118 __isl_take isl_qpolynomial_fold *fold,
7119 __isl_take isl_val *v);
7120 __isl_give isl_pw_qpolynomial *
7121 isl_pw_qpolynomial_scale_down_val(
7122 __isl_take isl_pw_qpolynomial *pwqp,
7123 __isl_take isl_val *v);
7124 __isl_give isl_pw_qpolynomial_fold *
7125 isl_pw_qpolynomial_fold_scale_down_val(
7126 __isl_take isl_pw_qpolynomial_fold *pwf,
7127 __isl_take isl_val *v);
7128 __isl_give isl_union_pw_qpolynomial *
7129 isl_union_pw_qpolynomial_scale_down_val(
7130 __isl_take isl_union_pw_qpolynomial *upwqp,
7131 __isl_take isl_val *v);
7132 __isl_give isl_union_pw_qpolynomial_fold *
7133 isl_union_pw_qpolynomial_fold_scale_down_val(
7134 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7135 __isl_take isl_val *v);
7137 #include <isl/val.h>
7138 __isl_give isl_multi_val *isl_multi_val_mod_multi_val(
7139 __isl_take isl_multi_val *mv1,
7140 __isl_take isl_multi_val *mv2);
7141 __isl_give isl_multi_val *isl_multi_val_scale_multi_val(
7142 __isl_take isl_multi_val *mv1,
7143 __isl_take isl_multi_val *mv2);
7144 __isl_give isl_multi_val *
7145 isl_multi_val_scale_down_multi_val(
7146 __isl_take isl_multi_val *mv1,
7147 __isl_take isl_multi_val *mv2);
7149 #include <isl/aff.h>
7150 __isl_give isl_multi_aff *isl_multi_aff_mod_multi_val(
7151 __isl_take isl_multi_aff *ma,
7152 __isl_take isl_multi_val *mv);
7153 __isl_give isl_multi_union_pw_aff *
7154 isl_multi_union_pw_aff_mod_multi_val(
7155 __isl_take isl_multi_union_pw_aff *upma,
7156 __isl_take isl_multi_val *mv);
7157 __isl_give isl_multi_pw_aff *
7158 isl_multi_pw_aff_mod_multi_val(
7159 __isl_take isl_multi_pw_aff *mpa,
7160 __isl_take isl_multi_val *mv);
7161 __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
7162 __isl_take isl_multi_aff *ma,
7163 __isl_take isl_multi_val *mv);
7164 __isl_give isl_pw_multi_aff *
7165 isl_pw_multi_aff_scale_multi_val(
7166 __isl_take isl_pw_multi_aff *pma,
7167 __isl_take isl_multi_val *mv);
7168 __isl_give isl_multi_pw_aff *
7169 isl_multi_pw_aff_scale_multi_val(
7170 __isl_take isl_multi_pw_aff *mpa,
7171 __isl_take isl_multi_val *mv);
7172 __isl_give isl_multi_union_pw_aff *
7173 isl_multi_union_pw_aff_scale_multi_val(
7174 __isl_take isl_multi_union_pw_aff *mupa,
7175 __isl_take isl_multi_val *mv);
7176 __isl_give isl_union_pw_multi_aff *
7177 isl_union_pw_multi_aff_scale_multi_val(
7178 __isl_take isl_union_pw_multi_aff *upma,
7179 __isl_take isl_multi_val *mv);
7180 __isl_give isl_multi_aff *
7181 isl_multi_aff_scale_down_multi_val(
7182 __isl_take isl_multi_aff *ma,
7183 __isl_take isl_multi_val *mv);
7184 __isl_give isl_multi_pw_aff *
7185 isl_multi_pw_aff_scale_down_multi_val(
7186 __isl_take isl_multi_pw_aff *mpa,
7187 __isl_take isl_multi_val *mv);
7188 __isl_give isl_multi_union_pw_aff *
7189 isl_multi_union_pw_aff_scale_down_multi_val(
7190 __isl_take isl_multi_union_pw_aff *mupa,
7191 __isl_take isl_multi_val *mv);
7193 C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
7194 by the corresponding elements of C<mv>.
7196 #include <isl/aff.h>
7197 __isl_give isl_aff *isl_aff_mul(
7198 __isl_take isl_aff *aff1,
7199 __isl_take isl_aff *aff2);
7200 __isl_give isl_aff *isl_aff_div(
7201 __isl_take isl_aff *aff1,
7202 __isl_take isl_aff *aff2);
7203 __isl_give isl_pw_aff *isl_pw_aff_mul(
7204 __isl_take isl_pw_aff *pwaff1,
7205 __isl_take isl_pw_aff *pwaff2);
7206 __isl_give isl_pw_aff *isl_pw_aff_div(
7207 __isl_take isl_pw_aff *pa1,
7208 __isl_take isl_pw_aff *pa2);
7209 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
7210 __isl_take isl_pw_aff *pa1,
7211 __isl_take isl_pw_aff *pa2);
7212 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
7213 __isl_take isl_pw_aff *pa1,
7214 __isl_take isl_pw_aff *pa2);
7216 When multiplying two affine expressions, at least one of the two needs
7217 to be a constant. Similarly, when dividing an affine expression by another,
7218 the second expression needs to be a constant.
7219 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
7220 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
7223 #include <isl/polynomial.h>
7224 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
7225 __isl_take isl_qpolynomial *qp1,
7226 __isl_take isl_qpolynomial *qp2);
7227 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
7228 __isl_take isl_pw_qpolynomial *pwqp1,
7229 __isl_take isl_pw_qpolynomial *pwqp2);
7230 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
7231 __isl_take isl_union_pw_qpolynomial *upwqp1,
7232 __isl_take isl_union_pw_qpolynomial *upwqp2);
7236 =head3 Lexicographic Optimization
7238 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
7239 the following functions
7240 compute a set that contains the lexicographic minimum or maximum
7241 of the elements in C<set> (or C<bset>) for those values of the parameters
7242 that satisfy C<dom>.
7243 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7244 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
7246 In other words, the union of the parameter values
7247 for which the result is non-empty and of C<*empty>
7250 #include <isl/set.h>
7251 __isl_give isl_set *isl_basic_set_partial_lexmin(
7252 __isl_take isl_basic_set *bset,
7253 __isl_take isl_basic_set *dom,
7254 __isl_give isl_set **empty);
7255 __isl_give isl_set *isl_basic_set_partial_lexmax(
7256 __isl_take isl_basic_set *bset,
7257 __isl_take isl_basic_set *dom,
7258 __isl_give isl_set **empty);
7259 __isl_give isl_set *isl_set_partial_lexmin(
7260 __isl_take isl_set *set, __isl_take isl_set *dom,
7261 __isl_give isl_set **empty);
7262 __isl_give isl_set *isl_set_partial_lexmax(
7263 __isl_take isl_set *set, __isl_take isl_set *dom,
7264 __isl_give isl_set **empty);
7266 Given a (basic) set C<set> (or C<bset>), the following functions simply
7267 return a set containing the lexicographic minimum or maximum
7268 of the elements in C<set> (or C<bset>).
7269 In case of union sets, the optimum is computed per space.
7271 #include <isl/set.h>
7272 __isl_give isl_set *isl_basic_set_lexmin(
7273 __isl_take isl_basic_set *bset);
7274 __isl_give isl_set *isl_basic_set_lexmax(
7275 __isl_take isl_basic_set *bset);
7276 __isl_give isl_set *isl_set_lexmin(
7277 __isl_take isl_set *set);
7278 __isl_give isl_set *isl_set_lexmax(
7279 __isl_take isl_set *set);
7280 __isl_give isl_union_set *isl_union_set_lexmin(
7281 __isl_take isl_union_set *uset);
7282 __isl_give isl_union_set *isl_union_set_lexmax(
7283 __isl_take isl_union_set *uset);
7285 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
7286 the following functions
7287 compute a relation that maps each element of C<dom>
7288 to the single lexicographic minimum or maximum
7289 of the elements that are associated to that same
7290 element in C<map> (or C<bmap>).
7291 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7292 that contains the elements in C<dom> that do not map
7293 to any elements in C<map> (or C<bmap>).
7294 In other words, the union of the domain of the result and of C<*empty>
7297 #include <isl/map.h>
7298 __isl_give isl_map *isl_basic_map_partial_lexmax(
7299 __isl_take isl_basic_map *bmap,
7300 __isl_take isl_basic_set *dom,
7301 __isl_give isl_set **empty);
7302 __isl_give isl_map *isl_basic_map_partial_lexmin(
7303 __isl_take isl_basic_map *bmap,
7304 __isl_take isl_basic_set *dom,
7305 __isl_give isl_set **empty);
7306 __isl_give isl_map *isl_map_partial_lexmax(
7307 __isl_take isl_map *map, __isl_take isl_set *dom,
7308 __isl_give isl_set **empty);
7309 __isl_give isl_map *isl_map_partial_lexmin(
7310 __isl_take isl_map *map, __isl_take isl_set *dom,
7311 __isl_give isl_set **empty);
7313 Given a (basic) map C<map> (or C<bmap>), the following functions simply
7314 return a map mapping each element in the domain of
7315 C<map> (or C<bmap>) to the lexicographic minimum or maximum
7316 of all elements associated to that element.
7317 In case of union relations, the optimum is computed per space.
7319 #include <isl/map.h>
7320 __isl_give isl_map *isl_basic_map_lexmin(
7321 __isl_take isl_basic_map *bmap);
7322 __isl_give isl_map *isl_basic_map_lexmax(
7323 __isl_take isl_basic_map *bmap);
7324 __isl_give isl_map *isl_map_lexmin(
7325 __isl_take isl_map *map);
7326 __isl_give isl_map *isl_map_lexmax(
7327 __isl_take isl_map *map);
7328 __isl_give isl_union_map *isl_union_map_lexmin(
7329 __isl_take isl_union_map *umap);
7330 __isl_give isl_union_map *isl_union_map_lexmax(
7331 __isl_take isl_union_map *umap);
7333 The following functions return their result in the form of
7334 a piecewise multi-affine expression,
7335 but are otherwise equivalent to the corresponding functions
7336 returning a basic set or relation.
7338 #include <isl/set.h>
7339 __isl_give isl_pw_multi_aff *
7340 isl_basic_set_partial_lexmin_pw_multi_aff(
7341 __isl_take isl_basic_set *bset,
7342 __isl_take isl_basic_set *dom,
7343 __isl_give isl_set **empty);
7344 __isl_give isl_pw_multi_aff *
7345 isl_basic_set_partial_lexmax_pw_multi_aff(
7346 __isl_take isl_basic_set *bset,
7347 __isl_take isl_basic_set *dom,
7348 __isl_give isl_set **empty);
7349 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
7350 __isl_take isl_set *set);
7351 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
7352 __isl_take isl_set *set);
7354 #include <isl/map.h>
7355 __isl_give isl_pw_multi_aff *
7356 isl_basic_map_lexmin_pw_multi_aff(
7357 __isl_take isl_basic_map *bmap);
7358 __isl_give isl_pw_multi_aff *
7359 isl_basic_map_partial_lexmin_pw_multi_aff(
7360 __isl_take isl_basic_map *bmap,
7361 __isl_take isl_basic_set *dom,
7362 __isl_give isl_set **empty);
7363 __isl_give isl_pw_multi_aff *
7364 isl_basic_map_partial_lexmax_pw_multi_aff(
7365 __isl_take isl_basic_map *bmap,
7366 __isl_take isl_basic_set *dom,
7367 __isl_give isl_set **empty);
7368 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
7369 __isl_take isl_map *map);
7370 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
7371 __isl_take isl_map *map);
7373 The following functions return the lexicographic minimum or maximum
7374 on the shared domain of the inputs and the single defined function
7375 on those parts of the domain where only a single function is defined.
7377 #include <isl/aff.h>
7378 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
7379 __isl_take isl_pw_multi_aff *pma1,
7380 __isl_take isl_pw_multi_aff *pma2);
7381 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
7382 __isl_take isl_pw_multi_aff *pma1,
7383 __isl_take isl_pw_multi_aff *pma2);
7385 If the input to a lexicographic optimization problem has
7386 multiple constraints with the same coefficients for the optimized
7387 variables, then, by default, this symmetry is exploited by
7388 replacing those constraints by a single constraint with
7389 an abstract bound, which is in turn bounded by the corresponding terms
7390 in the original constraints.
7391 Without this optimization, the solver would typically consider
7392 all possible orderings of those original bounds, resulting in a needless
7393 decomposition of the domain.
7394 However, the optimization can also result in slowdowns since
7395 an extra parameter is introduced that may get used in additional
7397 The following option determines whether symmetry detection is applied
7398 during lexicographic optimization.
7400 #include <isl/options.h>
7401 isl_stat isl_options_set_pip_symmetry(isl_ctx *ctx,
7403 int isl_options_get_pip_symmetry(isl_ctx *ctx);
7407 See also \autoref{s:offline}.
7411 =head2 Ternary Operations
7413 #include <isl/aff.h>
7414 __isl_give isl_pw_aff *isl_pw_aff_cond(
7415 __isl_take isl_pw_aff *cond,
7416 __isl_take isl_pw_aff *pwaff_true,
7417 __isl_take isl_pw_aff *pwaff_false);
7419 The function C<isl_pw_aff_cond> performs a conditional operator
7420 and returns an expression that is equal to C<pwaff_true>
7421 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
7422 where C<cond> is zero.
7426 Lists are defined over several element types, including
7427 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_union_pw_aff>,
7428 C<isl_union_pw_multi_aff>, C<isl_constraint>,
7429 C<isl_basic_set>, C<isl_set>, C<isl_basic_map>, C<isl_map>, C<isl_union_set>,
7430 C<isl_union_map>, C<isl_ast_expr> and C<isl_ast_node>.
7431 Here we take lists of C<isl_set>s as an example.
7432 Lists can be created, copied, modified and freed using the following functions.
7434 #include <isl/set.h>
7435 __isl_give isl_set_list *isl_set_list_from_set(
7436 __isl_take isl_set *el);
7437 __isl_give isl_set_list *isl_set_list_alloc(
7438 isl_ctx *ctx, int n);
7439 __isl_give isl_set_list *isl_set_list_copy(
7440 __isl_keep isl_set_list *list);
7441 __isl_give isl_set_list *isl_set_list_insert(
7442 __isl_take isl_set_list *list, unsigned pos,
7443 __isl_take isl_set *el);
7444 __isl_give isl_set_list *isl_set_list_add(
7445 __isl_take isl_set_list *list,
7446 __isl_take isl_set *el);
7447 __isl_give isl_set_list *isl_set_list_drop(
7448 __isl_take isl_set_list *list,
7449 unsigned first, unsigned n);
7450 __isl_give isl_set_list *isl_set_list_set_set(
7451 __isl_take isl_set_list *list, int index,
7452 __isl_take isl_set *set);
7453 __isl_give isl_set_list *isl_set_list_concat(
7454 __isl_take isl_set_list *list1,
7455 __isl_take isl_set_list *list2);
7456 __isl_give isl_set_list *isl_set_list_sort(
7457 __isl_take isl_set_list *list,
7458 int (*cmp)(__isl_keep isl_set *a,
7459 __isl_keep isl_set *b, void *user),
7461 __isl_null isl_set_list *isl_set_list_free(
7462 __isl_take isl_set_list *list);
7464 C<isl_set_list_alloc> creates an empty list with an initial capacity
7465 for C<n> elements. C<isl_set_list_insert> and C<isl_set_list_add>
7466 add elements to a list, increasing its capacity as needed.
7467 C<isl_set_list_from_set> creates a list with a single element.
7469 Lists can be inspected using the following functions.
7471 #include <isl/set.h>
7472 int isl_set_list_n_set(__isl_keep isl_set_list *list);
7473 __isl_give isl_set *isl_set_list_get_set(
7474 __isl_keep isl_set_list *list, int index);
7475 isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list,
7476 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7478 isl_stat isl_set_list_foreach_scc(
7479 __isl_keep isl_set_list *list,
7480 isl_bool (*follows)(__isl_keep isl_set *a,
7481 __isl_keep isl_set *b, void *user),
7483 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7486 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
7487 strongly connected components of the graph with as vertices the elements
7488 of C<list> and a directed edge from vertex C<b> to vertex C<a>
7489 iff C<follows(a, b)> returns C<isl_bool_true>. The callbacks C<follows> and
7490 C<fn> should return C<isl_bool_error> or C<isl_stat_error> on error.
7492 Lists can be printed using
7494 #include <isl/set.h>
7495 __isl_give isl_printer *isl_printer_print_set_list(
7496 __isl_take isl_printer *p,
7497 __isl_keep isl_set_list *list);
7499 =head2 Associative arrays
7501 Associative arrays map isl objects of a specific type to isl objects
7502 of some (other) specific type. They are defined for several pairs
7503 of types, including (C<isl_map>, C<isl_basic_set>),
7504 (C<isl_id>, C<isl_ast_expr>),
7505 (C<isl_id>, C<isl_id>) and
7506 (C<isl_id>, C<isl_pw_aff>).
7507 Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
7510 Associative arrays can be created, copied and freed using
7511 the following functions.
7513 #include <isl/id_to_ast_expr.h>
7514 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc(
7515 isl_ctx *ctx, int min_size);
7516 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy(
7517 __isl_keep isl_id_to_ast_expr *id2expr);
7518 __isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free(
7519 __isl_take isl_id_to_ast_expr *id2expr);
7521 The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
7522 to specify the expected size of the associative array.
7523 The associative array will be grown automatically as needed.
7525 Associative arrays can be inspected using the following functions.
7527 #include <isl/id_to_ast_expr.h>
7528 __isl_give isl_maybe_isl_ast_expr
7529 isl_id_to_ast_expr_try_get(
7530 __isl_keep isl_id_to_ast_expr *id2expr,
7531 __isl_keep isl_id *key);
7532 isl_bool isl_id_to_ast_expr_has(
7533 __isl_keep isl_id_to_ast_expr *id2expr,
7534 __isl_keep isl_id *key);
7535 __isl_give isl_ast_expr *isl_id_to_ast_expr_get(
7536 __isl_keep isl_id_to_ast_expr *id2expr,
7537 __isl_take isl_id *key);
7538 isl_stat isl_id_to_ast_expr_foreach(
7539 __isl_keep isl_id_to_ast_expr *id2expr,
7540 isl_stat (*fn)(__isl_take isl_id *key,
7541 __isl_take isl_ast_expr *val, void *user),
7544 The function C<isl_id_to_ast_expr_try_get> returns a structure
7545 containing two elements, C<valid> and C<value>.
7546 If there is a value associated to the key, then C<valid>
7547 is set to C<isl_bool_true> and C<value> contains a copy of
7548 the associated value. Otherwise C<value> is C<NULL> and
7549 C<valid> may be C<isl_bool_error> or C<isl_bool_false> depending
7550 on whether some error has occurred or there simply is no associated value.
7551 The function C<isl_id_to_ast_expr_has> returns the C<valid> field
7552 in the structure and
7553 the function C<isl_id_to_ast_expr_get> returns the C<value> field.
7555 Associative arrays can be modified using the following functions.
7557 #include <isl/id_to_ast_expr.h>
7558 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set(
7559 __isl_take isl_id_to_ast_expr *id2expr,
7560 __isl_take isl_id *key,
7561 __isl_take isl_ast_expr *val);
7562 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop(
7563 __isl_take isl_id_to_ast_expr *id2expr,
7564 __isl_take isl_id *key);
7566 Associative arrays can be printed using the following function.
7568 #include <isl/id_to_ast_expr.h>
7569 __isl_give isl_printer *isl_printer_print_id_to_ast_expr(
7570 __isl_take isl_printer *p,
7571 __isl_keep isl_id_to_ast_expr *id2expr);
7575 Vectors can be created, copied and freed using the following functions.
7577 #include <isl/vec.h>
7578 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
7580 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
7581 __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);
7583 Note that the elements of a newly created vector may have arbitrary values.
7584 The elements can be changed and inspected using the following functions.
7586 int isl_vec_size(__isl_keep isl_vec *vec);
7587 __isl_give isl_val *isl_vec_get_element_val(
7588 __isl_keep isl_vec *vec, int pos);
7589 __isl_give isl_vec *isl_vec_set_element_si(
7590 __isl_take isl_vec *vec, int pos, int v);
7591 __isl_give isl_vec *isl_vec_set_element_val(
7592 __isl_take isl_vec *vec, int pos,
7593 __isl_take isl_val *v);
7594 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
7596 __isl_give isl_vec *isl_vec_set_val(
7597 __isl_take isl_vec *vec, __isl_take isl_val *v);
7598 int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
7599 __isl_keep isl_vec *vec2, int pos);
7601 C<isl_vec_get_element> will return a negative value if anything went wrong.
7602 In that case, the value of C<*v> is undefined.
7604 The following function can be used to concatenate two vectors.
7606 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
7607 __isl_take isl_vec *vec2);
7611 Matrices can be created, copied and freed using the following functions.
7613 #include <isl/mat.h>
7614 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
7615 unsigned n_row, unsigned n_col);
7616 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
7617 __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);
7619 Note that the elements of a newly created matrix may have arbitrary values.
7620 The elements can be changed and inspected using the following functions.
7622 int isl_mat_rows(__isl_keep isl_mat *mat);
7623 int isl_mat_cols(__isl_keep isl_mat *mat);
7624 __isl_give isl_val *isl_mat_get_element_val(
7625 __isl_keep isl_mat *mat, int row, int col);
7626 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
7627 int row, int col, int v);
7628 __isl_give isl_mat *isl_mat_set_element_val(
7629 __isl_take isl_mat *mat, int row, int col,
7630 __isl_take isl_val *v);
7632 C<isl_mat_get_element> will return a negative value if anything went wrong.
7633 In that case, the value of C<*v> is undefined.
7635 The following function can be used to compute the (right) inverse
7636 of a matrix, i.e., a matrix such that the product of the original
7637 and the inverse (in that order) is a multiple of the identity matrix.
7638 The input matrix is assumed to be of full row-rank.
7640 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
7642 The following function can be used to compute the (right) kernel
7643 (or null space) of a matrix, i.e., a matrix such that the product of
7644 the original and the kernel (in that order) is the zero matrix.
7646 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
7648 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
7650 The following functions determine
7651 an upper or lower bound on a quasipolynomial over its domain.
7653 __isl_give isl_pw_qpolynomial_fold *
7654 isl_pw_qpolynomial_bound(
7655 __isl_take isl_pw_qpolynomial *pwqp,
7656 enum isl_fold type, int *tight);
7658 __isl_give isl_union_pw_qpolynomial_fold *
7659 isl_union_pw_qpolynomial_bound(
7660 __isl_take isl_union_pw_qpolynomial *upwqp,
7661 enum isl_fold type, int *tight);
7663 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
7664 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
7665 is the returned bound is known be tight, i.e., for each value
7666 of the parameters there is at least
7667 one element in the domain that reaches the bound.
7668 If the domain of C<pwqp> is not wrapping, then the bound is computed
7669 over all elements in that domain and the result has a purely parametric
7670 domain. If the domain of C<pwqp> is wrapping, then the bound is
7671 computed over the range of the wrapped relation. The domain of the
7672 wrapped relation becomes the domain of the result.
7674 =head2 Parametric Vertex Enumeration
7676 The parametric vertex enumeration described in this section
7677 is mainly intended to be used internally and by the C<barvinok>
7680 #include <isl/vertices.h>
7681 __isl_give isl_vertices *isl_basic_set_compute_vertices(
7682 __isl_keep isl_basic_set *bset);
7684 The function C<isl_basic_set_compute_vertices> performs the
7685 actual computation of the parametric vertices and the chamber
7686 decomposition and stores the result in an C<isl_vertices> object.
7687 This information can be queried by either iterating over all
7688 the vertices or iterating over all the chambers or cells
7689 and then iterating over all vertices that are active on the chamber.
7691 isl_stat isl_vertices_foreach_vertex(
7692 __isl_keep isl_vertices *vertices,
7693 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7694 void *user), void *user);
7696 isl_stat isl_vertices_foreach_cell(
7697 __isl_keep isl_vertices *vertices,
7698 isl_stat (*fn)(__isl_take isl_cell *cell,
7699 void *user), void *user);
7700 isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
7701 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7702 void *user), void *user);
7704 Other operations that can be performed on an C<isl_vertices> object are
7707 int isl_vertices_get_n_vertices(
7708 __isl_keep isl_vertices *vertices);
7709 __isl_null isl_vertices *isl_vertices_free(
7710 __isl_take isl_vertices *vertices);
7712 Vertices can be inspected and destroyed using the following functions.
7714 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
7715 __isl_give isl_basic_set *isl_vertex_get_domain(
7716 __isl_keep isl_vertex *vertex);
7717 __isl_give isl_multi_aff *isl_vertex_get_expr(
7718 __isl_keep isl_vertex *vertex);
7719 void isl_vertex_free(__isl_take isl_vertex *vertex);
7721 C<isl_vertex_get_expr> returns a multiple quasi-affine expression
7722 describing the vertex in terms of the parameters,
7723 while C<isl_vertex_get_domain> returns the activity domain
7726 Chambers can be inspected and destroyed using the following functions.
7728 __isl_give isl_basic_set *isl_cell_get_domain(
7729 __isl_keep isl_cell *cell);
7730 void isl_cell_free(__isl_take isl_cell *cell);
7732 =head1 Polyhedral Compilation Library
7734 This section collects functionality in C<isl> that has been specifically
7735 designed for use during polyhedral compilation.
7737 =head2 Schedule Trees
7739 A schedule tree is a structured representation of a schedule,
7740 assigning a relative order to a set of domain elements.
7741 The relative order expressed by the schedule tree is
7742 defined recursively. In particular, the order between
7743 two domain elements is determined by the node that is closest
7744 to the root that refers to both elements and that orders them apart.
7745 Each node in the tree is of one of several types.
7746 The root node is always of type C<isl_schedule_node_domain>
7747 (or C<isl_schedule_node_extension>)
7748 and it describes the (extra) domain elements to which the schedule applies.
7749 The other types of nodes are as follows.
7753 =item C<isl_schedule_node_band>
7755 A band of schedule dimensions. Each schedule dimension is represented
7756 by a union piecewise quasi-affine expression. If this expression
7757 assigns a different value to two domain elements, while all previous
7758 schedule dimensions in the same band assign them the same value,
7759 then the two domain elements are ordered according to these two
7761 Each expression is required to be total in the domain elements
7762 that reach the band node.
7764 =item C<isl_schedule_node_expansion>
7766 An expansion node maps each of the domain elements that reach the node
7767 to one or more domain elements. The image of this mapping forms
7768 the set of domain elements that reach the child of the expansion node.
7769 The function that maps each of the expanded domain elements
7770 to the original domain element from which it was expanded
7771 is called the contraction.
7773 =item C<isl_schedule_node_filter>
7775 A filter node does not impose any ordering, but rather intersects
7776 the set of domain elements that the current subtree refers to
7777 with a given union set. The subtree of the filter node only
7778 refers to domain elements in the intersection.
7779 A filter node is typically only used as a child of a sequence or
7782 =item C<isl_schedule_node_leaf>
7784 A leaf of the schedule tree. Leaf nodes do not impose any ordering.
7786 =item C<isl_schedule_node_mark>
7788 A mark node can be used to attach any kind of information to a subtree
7789 of the schedule tree.
7791 =item C<isl_schedule_node_sequence>
7793 A sequence node has one or more children, each of which is a filter node.
7794 The filters on these filter nodes form a partition of
7795 the domain elements that the current subtree refers to.
7796 If two domain elements appear in distinct filters then the sequence
7797 node orders them according to the child positions of the corresponding
7800 =item C<isl_schedule_node_set>
7802 A set node is similar to a sequence node, except that
7803 it expresses that domain elements appearing in distinct filters
7804 may have any order. The order of the children of a set node
7805 is therefore also immaterial.
7809 The following node types are only supported by the AST generator.
7813 =item C<isl_schedule_node_context>
7815 The context describes constraints on the parameters and
7816 the schedule dimensions of outer
7817 bands that the AST generator may assume to hold. It is also the only
7818 kind of node that may introduce additional parameters.
7819 The space of the context is that of the flat product of the outer
7820 band nodes. In particular, if there are no outer band nodes, then
7821 this space is the unnamed zero-dimensional space.
7822 Since a context node references the outer band nodes, any tree
7823 containing a context node is considered to be anchored.
7825 =item C<isl_schedule_node_extension>
7827 An extension node instructs the AST generator to add additional
7828 domain elements that need to be scheduled.
7829 The additional domain elements are described by the range of
7830 the extension map in terms of the outer schedule dimensions,
7831 i.e., the flat product of the outer band nodes.
7832 Note that domain elements are added whenever the AST generator
7833 reaches the extension node, meaning that there are still some
7834 active domain elements for which an AST needs to be generated.
7835 The conditions under which some domain elements are still active
7836 may however not be completely described by the outer AST nodes
7837 generated at that point.
7839 An extension node may also appear as the root of a schedule tree,
7840 when it is intended to be inserted into another tree
7841 using C<isl_schedule_node_graft_before> or C<isl_schedule_node_graft_after>.
7842 In this case, the domain of the extension node should
7843 correspond to the flat product of the outer band nodes
7844 in this other schedule tree at the point where the extension tree
7847 =item C<isl_schedule_node_guard>
7849 The guard describes constraints on the parameters and
7850 the schedule dimensions of outer
7851 bands that need to be enforced by the outer nodes
7852 in the generated AST.
7853 The space of the guard is that of the flat product of the outer
7854 band nodes. In particular, if there are no outer band nodes, then
7855 this space is the unnamed zero-dimensional space.
7856 Since a guard node references the outer band nodes, any tree
7857 containing a guard node is considered to be anchored.
7861 Except for the C<isl_schedule_node_context> nodes,
7862 none of the nodes may introduce any parameters that were not
7863 already present in the root domain node.
7865 A schedule tree is encapsulated in an C<isl_schedule> object.
7866 The simplest such objects, those with a tree consisting of single domain node,
7867 can be created using the following functions with either an empty
7868 domain or a given domain.
7870 #include <isl/schedule.h>
7871 __isl_give isl_schedule *isl_schedule_empty(
7872 __isl_take isl_space *space);
7873 __isl_give isl_schedule *isl_schedule_from_domain(
7874 __isl_take isl_union_set *domain);
7876 The function C<isl_schedule_constraints_compute_schedule> described
7877 in L</"Scheduling"> can also be used to construct schedules.
7879 C<isl_schedule> objects may be copied and freed using the following functions.
7881 #include <isl/schedule.h>
7882 __isl_give isl_schedule *isl_schedule_copy(
7883 __isl_keep isl_schedule *sched);
7884 __isl_null isl_schedule *isl_schedule_free(
7885 __isl_take isl_schedule *sched);
7887 The following functions checks whether two C<isl_schedule> objects
7888 are obviously the same.
7890 #include <isl/schedule.h>
7891 isl_bool isl_schedule_plain_is_equal(
7892 __isl_keep isl_schedule *schedule1,
7893 __isl_keep isl_schedule *schedule2);
7895 The domain of the schedule, i.e., the domain described by the root node,
7896 can be obtained using the following function.
7898 #include <isl/schedule.h>
7899 __isl_give isl_union_set *isl_schedule_get_domain(
7900 __isl_keep isl_schedule *schedule);
7902 An extra top-level band node (right underneath the domain node) can
7903 be introduced into the schedule using the following function.
7904 The schedule tree is assumed not to have any anchored nodes.
7906 #include <isl/schedule.h>
7907 __isl_give isl_schedule *
7908 isl_schedule_insert_partial_schedule(
7909 __isl_take isl_schedule *schedule,
7910 __isl_take isl_multi_union_pw_aff *partial);
7912 A top-level context node (right underneath the domain node) can
7913 be introduced into the schedule using the following function.
7915 #include <isl/schedule.h>
7916 __isl_give isl_schedule *isl_schedule_insert_context(
7917 __isl_take isl_schedule *schedule,
7918 __isl_take isl_set *context)
7920 A top-level guard node (right underneath the domain node) can
7921 be introduced into the schedule using the following function.
7923 #include <isl/schedule.h>
7924 __isl_give isl_schedule *isl_schedule_insert_guard(
7925 __isl_take isl_schedule *schedule,
7926 __isl_take isl_set *guard)
7928 A schedule that combines two schedules either in the given
7929 order or in an arbitrary order, i.e., with an C<isl_schedule_node_sequence>
7930 or an C<isl_schedule_node_set> node,
7931 can be created using the following functions.
7933 #include <isl/schedule.h>
7934 __isl_give isl_schedule *isl_schedule_sequence(
7935 __isl_take isl_schedule *schedule1,
7936 __isl_take isl_schedule *schedule2);
7937 __isl_give isl_schedule *isl_schedule_set(
7938 __isl_take isl_schedule *schedule1,
7939 __isl_take isl_schedule *schedule2);
7941 The domains of the two input schedules need to be disjoint.
7943 The following function can be used to restrict the domain
7944 of a schedule with a domain node as root to be a subset of the given union set.
7945 This operation may remove nodes in the tree that have become
7948 #include <isl/schedule.h>
7949 __isl_give isl_schedule *isl_schedule_intersect_domain(
7950 __isl_take isl_schedule *schedule,
7951 __isl_take isl_union_set *domain);
7953 The following function can be used to simplify the domain
7954 of a schedule with a domain node as root with respect to the given
7957 #include <isl/schedule.h>
7958 __isl_give isl_schedule *isl_schedule_gist_domain_params(
7959 __isl_take isl_schedule *schedule,
7960 __isl_take isl_set *context);
7962 The following function resets the user pointers on all parameter
7963 and tuple identifiers referenced by the nodes of the given schedule.
7965 #include <isl/schedule.h>
7966 __isl_give isl_schedule *isl_schedule_reset_user(
7967 __isl_take isl_schedule *schedule);
7969 The following function aligns the parameters of all nodes
7970 in the given schedule to the given space.
7972 #include <isl/schedule.h>
7973 __isl_give isl_schedule *isl_schedule_align_params(
7974 __isl_take isl_schedule *schedule,
7975 __isl_take isl_space *space);
7977 The following function allows the user to plug in a given function
7978 in the iteration domains. The input schedule is not allowed to contain
7979 any expansion nodes.
7981 #include <isl/schedule.h>
7982 __isl_give isl_schedule *
7983 isl_schedule_pullback_union_pw_multi_aff(
7984 __isl_take isl_schedule *schedule,
7985 __isl_take isl_union_pw_multi_aff *upma);
7987 The following function can be used to plug in the schedule C<expansion>
7988 in the leaves of C<schedule>, where C<contraction> describes how
7989 the domain elements of C<expansion> map to the domain elements
7990 at the original leaves of C<schedule>.
7991 The resulting schedule will contain expansion nodes, unless
7992 C<contraction> is an identity function.
7994 #include <isl/schedule.h>
7995 __isl_give isl_schedule *isl_schedule_expand(
7996 __isl_take isl_schedule *schedule,
7997 __isl_take isl_union_pw_multi_aff *contraction,
7998 __isl_take isl_schedule *expansion);
8000 An C<isl_union_map> representation of the schedule can be obtained
8001 from an C<isl_schedule> using the following function.
8003 #include <isl/schedule.h>
8004 __isl_give isl_union_map *isl_schedule_get_map(
8005 __isl_keep isl_schedule *sched);
8007 The resulting relation encodes the same relative ordering as
8008 the schedule by mapping the domain elements to a common schedule space.
8009 If the schedule_separate_components option is set, then the order
8010 of the children of a set node is explicitly encoded in the result.
8011 If the tree contains any expansion nodes, then the relation
8012 is formulated in terms of the expanded domain elements.
8014 Schedules can be read from input using the following functions.
8016 #include <isl/schedule.h>
8017 __isl_give isl_schedule *isl_schedule_read_from_file(
8018 isl_ctx *ctx, FILE *input);
8019 __isl_give isl_schedule *isl_schedule_read_from_str(
8020 isl_ctx *ctx, const char *str);
8022 A representation of the schedule can be printed using
8024 #include <isl/schedule.h>
8025 __isl_give isl_printer *isl_printer_print_schedule(
8026 __isl_take isl_printer *p,
8027 __isl_keep isl_schedule *schedule);
8028 __isl_give char *isl_schedule_to_str(
8029 __isl_keep isl_schedule *schedule);
8031 C<isl_schedule_to_str> prints the schedule in flow format.
8033 The schedule tree can be traversed through the use of
8034 C<isl_schedule_node> objects that point to a particular
8035 position in the schedule tree. Whenever a C<isl_schedule_node>
8036 is use to modify a node in the schedule tree, the original schedule
8037 tree is left untouched and the modifications are performed to a copy
8038 of the tree. The returned C<isl_schedule_node> then points to
8039 this modified copy of the tree.
8041 The root of the schedule tree can be obtained using the following function.
8043 #include <isl/schedule.h>
8044 __isl_give isl_schedule_node *isl_schedule_get_root(
8045 __isl_keep isl_schedule *schedule);
8047 A pointer to a newly created schedule tree with a single domain
8048 node can be created using the following functions.
8050 #include <isl/schedule_node.h>
8051 __isl_give isl_schedule_node *
8052 isl_schedule_node_from_domain(
8053 __isl_take isl_union_set *domain);
8054 __isl_give isl_schedule_node *
8055 isl_schedule_node_from_extension(
8056 __isl_take isl_union_map *extension);
8058 C<isl_schedule_node_from_extension> creates a tree with an extension
8061 Schedule nodes can be copied and freed using the following functions.
8063 #include <isl/schedule_node.h>
8064 __isl_give isl_schedule_node *isl_schedule_node_copy(
8065 __isl_keep isl_schedule_node *node);
8066 __isl_null isl_schedule_node *isl_schedule_node_free(
8067 __isl_take isl_schedule_node *node);
8069 The following functions can be used to check if two schedule
8070 nodes point to the same position in the same schedule.
8072 #include <isl/schedule_node.h>
8073 isl_bool isl_schedule_node_is_equal(
8074 __isl_keep isl_schedule_node *node1,
8075 __isl_keep isl_schedule_node *node2);
8077 The following properties can be obtained from a schedule node.
8079 #include <isl/schedule_node.h>
8080 enum isl_schedule_node_type isl_schedule_node_get_type(
8081 __isl_keep isl_schedule_node *node);
8082 enum isl_schedule_node_type
8083 isl_schedule_node_get_parent_type(
8084 __isl_keep isl_schedule_node *node);
8085 __isl_give isl_schedule *isl_schedule_node_get_schedule(
8086 __isl_keep isl_schedule_node *node);
8088 The function C<isl_schedule_node_get_type> returns the type of
8089 the node, while C<isl_schedule_node_get_parent_type> returns
8090 type of the parent of the node, which is required to exist.
8091 The function C<isl_schedule_node_get_schedule> returns a copy
8092 to the schedule to which the node belongs.
8094 The following functions can be used to move the schedule node
8095 to a different position in the tree or to check if such a position
8098 #include <isl/schedule_node.h>
8099 isl_bool isl_schedule_node_has_parent(
8100 __isl_keep isl_schedule_node *node);
8101 __isl_give isl_schedule_node *isl_schedule_node_parent(
8102 __isl_take isl_schedule_node *node);
8103 __isl_give isl_schedule_node *isl_schedule_node_root(
8104 __isl_take isl_schedule_node *node);
8105 __isl_give isl_schedule_node *isl_schedule_node_ancestor(
8106 __isl_take isl_schedule_node *node,
8108 int isl_schedule_node_n_children(
8109 __isl_keep isl_schedule_node *node);
8110 __isl_give isl_schedule_node *isl_schedule_node_child(
8111 __isl_take isl_schedule_node *node, int pos);
8112 isl_bool isl_schedule_node_has_children(
8113 __isl_keep isl_schedule_node *node);
8114 __isl_give isl_schedule_node *isl_schedule_node_first_child(
8115 __isl_take isl_schedule_node *node);
8116 isl_bool isl_schedule_node_has_previous_sibling(
8117 __isl_keep isl_schedule_node *node);
8118 __isl_give isl_schedule_node *
8119 isl_schedule_node_previous_sibling(
8120 __isl_take isl_schedule_node *node);
8121 isl_bool isl_schedule_node_has_next_sibling(
8122 __isl_keep isl_schedule_node *node);
8123 __isl_give isl_schedule_node *
8124 isl_schedule_node_next_sibling(
8125 __isl_take isl_schedule_node *node);
8127 For C<isl_schedule_node_ancestor>, the ancestor of generation 0
8128 is the node itself, the ancestor of generation 1 is its parent and so on.
8130 It is also possible to query the number of ancestors of a node,
8131 the position of the current node
8132 within the children of its parent, the position of the subtree
8133 containing a node within the children of an ancestor
8134 or to obtain a copy of a given
8135 child without destroying the current node.
8136 Given two nodes that point to the same schedule, their closest
8137 shared ancestor can be obtained using
8138 C<isl_schedule_node_get_shared_ancestor>.
8140 #include <isl/schedule_node.h>
8141 int isl_schedule_node_get_tree_depth(
8142 __isl_keep isl_schedule_node *node);
8143 int isl_schedule_node_get_child_position(
8144 __isl_keep isl_schedule_node *node);
8145 int isl_schedule_node_get_ancestor_child_position(
8146 __isl_keep isl_schedule_node *node,
8147 __isl_keep isl_schedule_node *ancestor);
8148 __isl_give isl_schedule_node *isl_schedule_node_get_child(
8149 __isl_keep isl_schedule_node *node, int pos);
8150 __isl_give isl_schedule_node *
8151 isl_schedule_node_get_shared_ancestor(
8152 __isl_keep isl_schedule_node *node1,
8153 __isl_keep isl_schedule_node *node2);
8155 All nodes in a schedule tree or
8156 all descendants of a specific node (including the node) can be visited
8157 in depth-first pre-order using the following functions.
8159 #include <isl/schedule.h>
8160 isl_stat isl_schedule_foreach_schedule_node_top_down(
8161 __isl_keep isl_schedule *sched,
8162 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8163 void *user), void *user);
8165 #include <isl/schedule_node.h>
8166 isl_stat isl_schedule_node_foreach_descendant_top_down(
8167 __isl_keep isl_schedule_node *node,
8168 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8169 void *user), void *user);
8171 The callback function is slightly different from the usual
8172 callbacks in that it not only indicates success (non-negative result)
8173 or failure (negative result), but also indicates whether the children
8174 of the given node should be visited. In particular, if the callback
8175 returns a positive value, then the children are visited, but if
8176 the callback returns zero, then the children are not visited.
8178 The ancestors of a node in a schedule tree can be visited from
8179 the root down to and including the parent of the node using
8180 the following function.
8182 #include <isl/schedule_node.h>
8183 isl_stat isl_schedule_node_foreach_ancestor_top_down(
8184 __isl_keep isl_schedule_node *node,
8185 isl_stat (*fn)(__isl_keep isl_schedule_node *node,
8186 void *user), void *user);
8188 The following functions allows for a depth-first post-order
8189 traversal of the nodes in a schedule tree or
8190 of the descendants of a specific node (including the node
8191 itself), where the user callback is allowed to modify the
8194 #include <isl/schedule.h>
8195 __isl_give isl_schedule *
8196 isl_schedule_map_schedule_node_bottom_up(
8197 __isl_take isl_schedule *schedule,
8198 __isl_give isl_schedule_node *(*fn)(
8199 __isl_take isl_schedule_node *node,
8200 void *user), void *user);
8202 #include <isl/schedule_node.h>
8203 __isl_give isl_schedule_node *
8204 isl_schedule_node_map_descendant_bottom_up(
8205 __isl_take isl_schedule_node *node,
8206 __isl_give isl_schedule_node *(*fn)(
8207 __isl_take isl_schedule_node *node,
8208 void *user), void *user);
8210 The traversal continues from the node returned by the callback function.
8211 It is the responsibility of the user to ensure that this does not
8212 lead to an infinite loop. It is safest to always return a pointer
8213 to the same position (same ancestors and child positions) as the input node.
8215 The following function removes a node (along with its descendants)
8216 from a schedule tree and returns a pointer to the leaf at the
8217 same position in the updated tree.
8218 It is not allowed to remove the root of a schedule tree or
8219 a child of a set or sequence node.
8221 #include <isl/schedule_node.h>
8222 __isl_give isl_schedule_node *isl_schedule_node_cut(
8223 __isl_take isl_schedule_node *node);
8225 The following function removes a single node
8226 from a schedule tree and returns a pointer to the child
8227 of the node, now located at the position of the original node
8228 or to a leaf node at that position if there was no child.
8229 It is not allowed to remove the root of a schedule tree,
8230 a set or sequence node, a child of a set or sequence node or
8231 a band node with an anchored subtree.
8233 #include <isl/schedule_node.h>
8234 __isl_give isl_schedule_node *isl_schedule_node_delete(
8235 __isl_take isl_schedule_node *node);
8237 Most nodes in a schedule tree only contain local information.
8238 In some cases, however, a node may also refer to the schedule dimensions
8239 of its outer band nodes.
8240 This means that the position of the node within the tree should
8241 not be changed, or at least that no changes are performed to the
8242 outer band nodes. The following function can be used to test
8243 whether the subtree rooted at a given node contains any such nodes.
8245 #include <isl/schedule_node.h>
8246 isl_bool isl_schedule_node_is_subtree_anchored(
8247 __isl_keep isl_schedule_node *node);
8249 The following function resets the user pointers on all parameter
8250 and tuple identifiers referenced by the given schedule node.
8252 #include <isl/schedule_node.h>
8253 __isl_give isl_schedule_node *isl_schedule_node_reset_user(
8254 __isl_take isl_schedule_node *node);
8256 The following function aligns the parameters of the given schedule
8257 node to the given space.
8259 #include <isl/schedule_node.h>
8260 __isl_give isl_schedule_node *
8261 isl_schedule_node_align_params(
8262 __isl_take isl_schedule_node *node,
8263 __isl_take isl_space *space);
8265 Several node types have their own functions for querying
8266 (and in some cases setting) some node type specific properties.
8268 #include <isl/schedule_node.h>
8269 __isl_give isl_space *isl_schedule_node_band_get_space(
8270 __isl_keep isl_schedule_node *node);
8271 __isl_give isl_multi_union_pw_aff *
8272 isl_schedule_node_band_get_partial_schedule(
8273 __isl_keep isl_schedule_node *node);
8274 __isl_give isl_union_map *
8275 isl_schedule_node_band_get_partial_schedule_union_map(
8276 __isl_keep isl_schedule_node *node);
8277 unsigned isl_schedule_node_band_n_member(
8278 __isl_keep isl_schedule_node *node);
8279 isl_bool isl_schedule_node_band_member_get_coincident(
8280 __isl_keep isl_schedule_node *node, int pos);
8281 __isl_give isl_schedule_node *
8282 isl_schedule_node_band_member_set_coincident(
8283 __isl_take isl_schedule_node *node, int pos,
8285 isl_bool isl_schedule_node_band_get_permutable(
8286 __isl_keep isl_schedule_node *node);
8287 __isl_give isl_schedule_node *
8288 isl_schedule_node_band_set_permutable(
8289 __isl_take isl_schedule_node *node, int permutable);
8290 enum isl_ast_loop_type
8291 isl_schedule_node_band_member_get_ast_loop_type(
8292 __isl_keep isl_schedule_node *node, int pos);
8293 __isl_give isl_schedule_node *
8294 isl_schedule_node_band_member_set_ast_loop_type(
8295 __isl_take isl_schedule_node *node, int pos,
8296 enum isl_ast_loop_type type);
8297 __isl_give isl_union_set *
8298 enum isl_ast_loop_type
8299 isl_schedule_node_band_member_get_isolate_ast_loop_type(
8300 __isl_keep isl_schedule_node *node, int pos);
8301 __isl_give isl_schedule_node *
8302 isl_schedule_node_band_member_set_isolate_ast_loop_type(
8303 __isl_take isl_schedule_node *node, int pos,
8304 enum isl_ast_loop_type type);
8305 isl_schedule_node_band_get_ast_build_options(
8306 __isl_keep isl_schedule_node *node);
8307 __isl_give isl_schedule_node *
8308 isl_schedule_node_band_set_ast_build_options(
8309 __isl_take isl_schedule_node *node,
8310 __isl_take isl_union_set *options);
8311 __isl_give isl_set *
8312 isl_schedule_node_band_get_ast_isolate_option(
8313 __isl_keep isl_schedule_node *node);
8315 The function C<isl_schedule_node_band_get_space> returns the space
8316 of the partial schedule of the band.
8317 The function C<isl_schedule_node_band_get_partial_schedule_union_map>
8318 returns a representation of the partial schedule of the band node
8319 in the form of an C<isl_union_map>.
8320 The coincident and permutable properties are set by
8321 C<isl_schedule_constraints_compute_schedule> on the schedule tree
8323 A scheduling dimension is considered to be ``coincident''
8324 if it satisfies the coincidence constraints within its band.
8325 That is, if the dependence distances of the coincidence
8326 constraints are all zero in that direction (for fixed
8327 iterations of outer bands).
8328 A band is marked permutable if it was produced using the Pluto-like scheduler.
8329 Note that the scheduler may have to resort to a Feautrier style scheduling
8330 step even if the default scheduler is used.
8331 An C<isl_ast_loop_type> is one of C<isl_ast_loop_default>,
8332 C<isl_ast_loop_atomic>, C<isl_ast_loop_unroll> or C<isl_ast_loop_separate>.
8333 For the meaning of these loop AST generation types and the difference
8334 between the regular loop AST generation type and the isolate
8335 loop AST generation type, see L</"AST Generation Options (Schedule Tree)">.
8336 The functions C<isl_schedule_node_band_member_get_ast_loop_type>
8337 and C<isl_schedule_node_band_member_get_isolate_ast_loop_type>
8338 may return C<isl_ast_loop_error> if an error occurs.
8339 The AST build options govern how an AST is generated for
8340 the individual schedule dimensions during AST generation.
8341 See L</"AST Generation Options (Schedule Tree)">.
8342 The isolate option for the given node can be extracted from these
8343 AST build options using the function
8344 C<isl_schedule_node_band_get_ast_isolate_option>.
8346 #include <isl/schedule_node.h>
8347 __isl_give isl_set *
8348 isl_schedule_node_context_get_context(
8349 __isl_keep isl_schedule_node *node);
8351 #include <isl/schedule_node.h>
8352 __isl_give isl_union_set *
8353 isl_schedule_node_domain_get_domain(
8354 __isl_keep isl_schedule_node *node);
8356 #include <isl/schedule_node.h>
8357 __isl_give isl_union_map *
8358 isl_schedule_node_expansion_get_expansion(
8359 __isl_keep isl_schedule_node *node);
8360 __isl_give isl_union_pw_multi_aff *
8361 isl_schedule_node_expansion_get_contraction(
8362 __isl_keep isl_schedule_node *node);
8364 #include <isl/schedule_node.h>
8365 __isl_give isl_union_map *
8366 isl_schedule_node_extension_get_extension(
8367 __isl_keep isl_schedule_node *node);
8369 #include <isl/schedule_node.h>
8370 __isl_give isl_union_set *
8371 isl_schedule_node_filter_get_filter(
8372 __isl_keep isl_schedule_node *node);
8374 #include <isl/schedule_node.h>
8375 __isl_give isl_set *isl_schedule_node_guard_get_guard(
8376 __isl_keep isl_schedule_node *node);
8378 #include <isl/schedule_node.h>
8379 __isl_give isl_id *isl_schedule_node_mark_get_id(
8380 __isl_keep isl_schedule_node *node);
8382 The following functions can be used to obtain an C<isl_multi_union_pw_aff>,
8383 an C<isl_union_pw_multi_aff> or C<isl_union_map> representation of
8384 partial schedules related to the node.
8386 #include <isl/schedule_node.h>
8387 __isl_give isl_multi_union_pw_aff *
8388 isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
8389 __isl_keep isl_schedule_node *node);
8390 __isl_give isl_union_pw_multi_aff *
8391 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
8392 __isl_keep isl_schedule_node *node);
8393 __isl_give isl_union_map *
8394 isl_schedule_node_get_prefix_schedule_union_map(
8395 __isl_keep isl_schedule_node *node);
8396 __isl_give isl_union_map *
8397 isl_schedule_node_get_prefix_schedule_relation(
8398 __isl_keep isl_schedule_node *node);
8399 __isl_give isl_union_map *
8400 isl_schedule_node_get_subtree_schedule_union_map(
8401 __isl_keep isl_schedule_node *node);
8403 In particular, the functions
8404 C<isl_schedule_node_get_prefix_schedule_multi_union_pw_aff>,
8405 C<isl_schedule_node_get_prefix_schedule_union_pw_multi_aff>
8406 and C<isl_schedule_node_get_prefix_schedule_union_map>
8407 return a relative ordering on the domain elements that reach the given
8408 node determined by its ancestors.
8409 The function C<isl_schedule_node_get_prefix_schedule_relation>
8410 additionally includes the domain constraints in the result.
8411 The function C<isl_schedule_node_get_subtree_schedule_union_map>
8412 returns a representation of the partial schedule defined by the
8413 subtree rooted at the given node.
8414 If the tree contains any expansion nodes, then the subtree schedule
8415 is formulated in terms of the expanded domain elements.
8416 The tree passed to functions returning a prefix schedule
8417 may only contain extension nodes if these would not affect
8418 the result of these functions. That is, if one of the ancestors
8419 is an extension node, then all of the domain elements that were
8420 added by the extension node need to have been filtered out
8421 by filter nodes between the extension node and the input node.
8422 The tree passed to C<isl_schedule_node_get_subtree_schedule_union_map>
8423 may not contain in extension nodes in the selected subtree.
8425 The expansion/contraction defined by an entire subtree, combining
8426 the expansions/contractions
8427 on the expansion nodes in the subtree, can be obtained using
8428 the following functions.
8430 #include <isl/schedule_node.h>
8431 __isl_give isl_union_map *
8432 isl_schedule_node_get_subtree_expansion(
8433 __isl_keep isl_schedule_node *node);
8434 __isl_give isl_union_pw_multi_aff *
8435 isl_schedule_node_get_subtree_contraction(
8436 __isl_keep isl_schedule_node *node);
8438 The total number of outer band members of given node, i.e.,
8439 the shared output dimension of the maps in the result
8440 of C<isl_schedule_node_get_prefix_schedule_union_map> can be obtained
8441 using the following function.
8443 #include <isl/schedule_node.h>
8444 int isl_schedule_node_get_schedule_depth(
8445 __isl_keep isl_schedule_node *node);
8447 The following functions return the elements that reach the given node
8448 or the union of universes in the spaces that contain these elements.
8450 #include <isl/schedule_node.h>
8451 __isl_give isl_union_set *
8452 isl_schedule_node_get_domain(
8453 __isl_keep isl_schedule_node *node);
8454 __isl_give isl_union_set *
8455 isl_schedule_node_get_universe_domain(
8456 __isl_keep isl_schedule_node *node);
8458 The input tree of C<isl_schedule_node_get_domain>
8459 may only contain extension nodes if these would not affect
8460 the result of this function. That is, if one of the ancestors
8461 is an extension node, then all of the domain elements that were
8462 added by the extension node need to have been filtered out
8463 by filter nodes between the extension node and the input node.
8465 The following functions can be used to introduce additional nodes
8466 in the schedule tree. The new node is introduced at the point
8467 in the tree where the C<isl_schedule_node> points to and
8468 the results points to the new node.
8470 #include <isl/schedule_node.h>
8471 __isl_give isl_schedule_node *
8472 isl_schedule_node_insert_partial_schedule(
8473 __isl_take isl_schedule_node *node,
8474 __isl_take isl_multi_union_pw_aff *schedule);
8476 This function inserts a new band node with (the greatest integer
8477 part of) the given partial schedule.
8478 The subtree rooted at the given node is assumed not to have
8481 #include <isl/schedule_node.h>
8482 __isl_give isl_schedule_node *
8483 isl_schedule_node_insert_context(
8484 __isl_take isl_schedule_node *node,
8485 __isl_take isl_set *context);
8487 This function inserts a new context node with the given context constraints.
8489 #include <isl/schedule_node.h>
8490 __isl_give isl_schedule_node *
8491 isl_schedule_node_insert_filter(
8492 __isl_take isl_schedule_node *node,
8493 __isl_take isl_union_set *filter);
8495 This function inserts a new filter node with the given filter.
8496 If the original node already pointed to a filter node, then the
8497 two filter nodes are merged into one.
8499 #include <isl/schedule_node.h>
8500 __isl_give isl_schedule_node *
8501 isl_schedule_node_insert_guard(
8502 __isl_take isl_schedule_node *node,
8503 __isl_take isl_set *guard);
8505 This function inserts a new guard node with the given guard constraints.
8507 #include <isl/schedule_node.h>
8508 __isl_give isl_schedule_node *
8509 isl_schedule_node_insert_mark(
8510 __isl_take isl_schedule_node *node,
8511 __isl_take isl_id *mark);
8513 This function inserts a new mark node with the give mark identifier.
8515 #include <isl/schedule_node.h>
8516 __isl_give isl_schedule_node *
8517 isl_schedule_node_insert_sequence(
8518 __isl_take isl_schedule_node *node,
8519 __isl_take isl_union_set_list *filters);
8520 __isl_give isl_schedule_node *
8521 isl_schedule_node_insert_set(
8522 __isl_take isl_schedule_node *node,
8523 __isl_take isl_union_set_list *filters);
8525 These functions insert a new sequence or set node with the given
8526 filters as children.
8528 #include <isl/schedule_node.h>
8529 __isl_give isl_schedule_node *isl_schedule_node_group(
8530 __isl_take isl_schedule_node *node,
8531 __isl_take isl_id *group_id);
8533 This function introduces an expansion node in between the current
8534 node and its parent that expands instances of a space with tuple
8535 identifier C<group_id> to the original domain elements that reach
8536 the node. The group instances are identified by the prefix schedule
8537 of those domain elements. The ancestors of the node are adjusted
8538 to refer to the group instances instead of the original domain
8539 elements. The return value points to the same node in the updated
8540 schedule tree as the input node, i.e., to the child of the newly
8541 introduced expansion node. Grouping instances of different statements
8542 ensures that they will be treated as a single statement by the
8543 AST generator up to the point of the expansion node.
8545 The following function can be used to flatten a nested
8548 #include <isl/schedule_node.h>
8549 __isl_give isl_schedule_node *
8550 isl_schedule_node_sequence_splice_child(
8551 __isl_take isl_schedule_node *node, int pos);
8553 That is, given a sequence node C<node> that has another sequence node
8554 in its child at position C<pos> (in particular, the child of that filter
8555 node is a sequence node), attach the children of that other sequence
8556 node as children of C<node>, replacing the original child at position
8559 The partial schedule of a band node can be scaled (down) or reduced using
8560 the following functions.
8562 #include <isl/schedule_node.h>
8563 __isl_give isl_schedule_node *
8564 isl_schedule_node_band_scale(
8565 __isl_take isl_schedule_node *node,
8566 __isl_take isl_multi_val *mv);
8567 __isl_give isl_schedule_node *
8568 isl_schedule_node_band_scale_down(
8569 __isl_take isl_schedule_node *node,
8570 __isl_take isl_multi_val *mv);
8571 __isl_give isl_schedule_node *
8572 isl_schedule_node_band_mod(
8573 __isl_take isl_schedule_node *node,
8574 __isl_take isl_multi_val *mv);
8576 The spaces of the two arguments need to match.
8577 After scaling, the partial schedule is replaced by its greatest
8578 integer part to ensure that the schedule remains integral.
8580 The partial schedule of a band node can be shifted by an
8581 C<isl_multi_union_pw_aff> with a domain that is a superset
8582 of the domain of the partial schedule using
8583 the following function.
8585 #include <isl/schedule_node.h>
8586 __isl_give isl_schedule_node *
8587 isl_schedule_node_band_shift(
8588 __isl_take isl_schedule_node *node,
8589 __isl_take isl_multi_union_pw_aff *shift);
8591 A band node can be tiled using the following function.
8593 #include <isl/schedule_node.h>
8594 __isl_give isl_schedule_node *isl_schedule_node_band_tile(
8595 __isl_take isl_schedule_node *node,
8596 __isl_take isl_multi_val *sizes);
8598 isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
8600 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
8601 isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
8603 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
8605 The C<isl_schedule_node_band_tile> function tiles
8606 the band using the given tile sizes inside its schedule.
8607 A new child band node is created to represent the point loops and it is
8608 inserted between the modified band and its children.
8609 The subtree rooted at the given node is assumed not to have
8611 The C<tile_scale_tile_loops> option specifies whether the tile
8612 loops iterators should be scaled by the tile sizes.
8613 If the C<tile_shift_point_loops> option is set, then the point loops
8614 are shifted to start at zero.
8616 A band node can be split into two nested band nodes
8617 using the following function.
8619 #include <isl/schedule_node.h>
8620 __isl_give isl_schedule_node *isl_schedule_node_band_split(
8621 __isl_take isl_schedule_node *node, int pos);
8623 The resulting outer band node contains the first C<pos> dimensions of
8624 the schedule of C<node> while the inner band contains the remaining dimensions.
8625 The schedules of the two band nodes live in anonymous spaces.
8626 The loop AST generation type options and the isolate option
8627 are split over the the two band nodes.
8629 A band node can be moved down to the leaves of the subtree rooted
8630 at the band node using the following function.
8632 #include <isl/schedule_node.h>
8633 __isl_give isl_schedule_node *isl_schedule_node_band_sink(
8634 __isl_take isl_schedule_node *node);
8636 The subtree rooted at the given node is assumed not to have
8638 The result points to the node in the resulting tree that is in the same
8639 position as the node pointed to by C<node> in the original tree.
8641 #include <isl/schedule_node.h>
8642 __isl_give isl_schedule_node *
8643 isl_schedule_node_order_before(
8644 __isl_take isl_schedule_node *node,
8645 __isl_take isl_union_set *filter);
8646 __isl_give isl_schedule_node *
8647 isl_schedule_node_order_after(
8648 __isl_take isl_schedule_node *node,
8649 __isl_take isl_union_set *filter);
8651 These functions split the domain elements that reach C<node>
8652 into those that satisfy C<filter> and those that do not and
8653 arranges for the elements that do satisfy the filter to be
8654 executed before (in case of C<isl_schedule_node_order_before>)
8655 or after (in case of C<isl_schedule_node_order_after>)
8656 those that do not. The order is imposed by
8657 a sequence node, possibly reusing the grandparent of C<node>
8658 on two copies of the subtree attached to the original C<node>.
8659 Both copies are simplified with respect to their filter.
8661 Return a pointer to the copy of the subtree that does not
8662 satisfy C<filter>. If there is no such copy (because all
8663 reaching domain elements satisfy the filter), then return
8664 the original pointer.
8666 #include <isl/schedule_node.h>
8667 __isl_give isl_schedule_node *
8668 isl_schedule_node_graft_before(
8669 __isl_take isl_schedule_node *node,
8670 __isl_take isl_schedule_node *graft);
8671 __isl_give isl_schedule_node *
8672 isl_schedule_node_graft_after(
8673 __isl_take isl_schedule_node *node,
8674 __isl_take isl_schedule_node *graft);
8676 This function inserts the C<graft> tree into the tree containing C<node>
8677 such that it is executed before (in case of C<isl_schedule_node_graft_before>)
8678 or after (in case of C<isl_schedule_node_graft_after>) C<node>.
8679 The root node of C<graft>
8680 should be an extension node where the domain of the extension
8681 is the flat product of all outer band nodes of C<node>.
8682 The root node may also be a domain node.
8683 The elements of the domain or the range of the extension may not
8684 intersect with the domain elements that reach "node".
8685 The schedule tree of C<graft> may not be anchored.
8687 The schedule tree of C<node> is modified to include an extension node
8688 corresponding to the root node of C<graft> as a child of the original
8689 parent of C<node>. The original node that C<node> points to and the
8690 child of the root node of C<graft> are attached to this extension node
8691 through a sequence, with appropriate filters and with the child
8692 of C<graft> appearing before or after the original C<node>.
8694 If C<node> already appears inside a sequence that is the child of
8695 an extension node and if the spaces of the new domain elements
8696 do not overlap with those of the original domain elements,
8697 then that extension node is extended with the new extension
8698 rather than introducing a new segment of extension and sequence nodes.
8700 Return a pointer to the same node in the modified tree that
8701 C<node> pointed to in the original tree.
8703 A representation of the schedule node can be printed using
8705 #include <isl/schedule_node.h>
8706 __isl_give isl_printer *isl_printer_print_schedule_node(
8707 __isl_take isl_printer *p,
8708 __isl_keep isl_schedule_node *node);
8709 __isl_give char *isl_schedule_node_to_str(
8710 __isl_keep isl_schedule_node *node);
8712 C<isl_schedule_node_to_str> prints the schedule node in block format.
8714 =head2 Dependence Analysis
8716 C<isl> contains specialized functionality for performing
8717 array dataflow analysis. That is, given a I<sink> access relation
8718 and a collection of possible I<source> access relations,
8719 C<isl> can compute relations that describe
8720 for each iteration of the sink access, which iteration
8721 of which of the source access relations was the last
8722 to access the same data element before the given iteration
8724 The resulting dependence relations map source iterations
8725 to either the corresponding sink iterations or
8726 pairs of corresponding sink iterations and accessed data elements.
8727 To compute standard flow dependences, the sink should be
8728 a read, while the sources should be writes.
8729 If any of the source accesses are marked as being I<may>
8730 accesses, then there will be a (may) dependence from the last
8731 I<must> access B<and> from any I<may> access that follows
8732 this last I<must> access, but still precedes the sink access.
8733 Only dependences originating in a must access and without
8734 any may accesses between the must access and the sink access
8735 are considered to be must dependences.
8736 In particular, if I<all> sources are I<may> accesses,
8737 then memory based dependence analysis is performed.
8738 If, on the other hand, all sources are I<must> accesses,
8739 then value based dependence analysis is performed.
8741 =head3 High-level Interface
8743 A high-level interface to dependence analysis is provided
8744 by the following function.
8746 #include <isl/flow.h>
8747 __isl_give isl_union_flow *
8748 isl_union_access_info_compute_flow(
8749 __isl_take isl_union_access_info *access);
8751 The input C<isl_union_access_info> object describes the sink
8752 access relations, the source access relations and a schedule,
8753 while the output C<isl_union_flow> object describes
8754 the resulting dependence relations and the subsets of the
8755 sink relations for which no source was found.
8757 An C<isl_union_access_info> is created, modified, copied and freed using
8758 the following functions.
8760 #include <isl/flow.h>
8761 __isl_give isl_union_access_info *
8762 isl_union_access_info_from_sink(
8763 __isl_take isl_union_map *sink);
8764 __isl_give isl_union_access_info *
8765 isl_union_access_info_set_must_source(
8766 __isl_take isl_union_access_info *access,
8767 __isl_take isl_union_map *must_source);
8768 __isl_give isl_union_access_info *
8769 isl_union_access_info_set_may_source(
8770 __isl_take isl_union_access_info *access,
8771 __isl_take isl_union_map *may_source);
8772 __isl_give isl_union_access_info *
8773 isl_union_access_info_set_schedule(
8774 __isl_take isl_union_access_info *access,
8775 __isl_take isl_schedule *schedule);
8776 __isl_give isl_union_access_info *
8777 isl_union_access_info_set_schedule_map(
8778 __isl_take isl_union_access_info *access,
8779 __isl_take isl_union_map *schedule_map);
8780 __isl_give isl_union_access_info *
8781 isl_union_access_info_copy(
8782 __isl_keep isl_union_access_info *access);
8783 __isl_null isl_union_access_info *
8784 isl_union_access_info_free(
8785 __isl_take isl_union_access_info *access);
8787 The may sources set by C<isl_union_access_info_set_may_source>
8788 do not need to include the must sources set by
8789 C<isl_union_access_info_set_must_source> as a subset.
8790 The user is free not to call one (or both) of these functions,
8791 in which case the corresponding set is kept to its empty default.
8792 Similarly, the default schedule initialized by
8793 C<isl_union_access_info_from_sink> is empty.
8794 The current schedule is determined by the last call to either
8795 C<isl_union_access_info_set_schedule> or
8796 C<isl_union_access_info_set_schedule_map>.
8797 The domain of the schedule corresponds to the domains of
8798 the access relations. In particular, the domains of the access
8799 relations are effectively intersected with the domain of the schedule
8800 and only the resulting accesses are considered by the dependence analysis.
8802 A representation of the information contained in an object
8803 of type C<isl_union_access_info> can be obtained using
8805 #include <isl/flow.h>
8806 __isl_give isl_printer *
8807 isl_printer_print_union_access_info(
8808 __isl_take isl_printer *p,
8809 __isl_keep isl_union_access_info *access);
8810 __isl_give char *isl_union_access_info_to_str(
8811 __isl_keep isl_union_access_info *access);
8813 C<isl_union_access_info_to_str> prints the information in flow format.
8815 The output of C<isl_union_access_info_compute_flow> can be examined,
8816 copied, and freed using the following functions.
8818 #include <isl/flow.h>
8819 __isl_give isl_union_map *isl_union_flow_get_must_dependence(
8820 __isl_keep isl_union_flow *flow);
8821 __isl_give isl_union_map *isl_union_flow_get_may_dependence(
8822 __isl_keep isl_union_flow *flow);
8823 __isl_give isl_union_map *
8824 isl_union_flow_get_full_must_dependence(
8825 __isl_keep isl_union_flow *flow);
8826 __isl_give isl_union_map *
8827 isl_union_flow_get_full_may_dependence(
8828 __isl_keep isl_union_flow *flow);
8829 __isl_give isl_union_map *isl_union_flow_get_must_no_source(
8830 __isl_keep isl_union_flow *flow);
8831 __isl_give isl_union_map *isl_union_flow_get_may_no_source(
8832 __isl_keep isl_union_flow *flow);
8833 __isl_give isl_union_flow *isl_union_flow_copy(
8834 __isl_keep isl_union_flow *flow);
8835 __isl_null isl_union_flow *isl_union_flow_free(
8836 __isl_take isl_union_flow *flow);
8838 The relation returned by C<isl_union_flow_get_must_dependence>
8839 relates domain elements of must sources to domain elements of the sink.
8840 The relation returned by C<isl_union_flow_get_may_dependence>
8841 relates domain elements of must or may sources to domain elements of the sink
8842 and includes the previous relation as a subset.
8843 The relation returned by C<isl_union_flow_get_full_must_dependence>
8844 relates domain elements of must sources to pairs of domain elements of the sink
8845 and accessed data elements.
8846 The relation returned by C<isl_union_flow_get_full_may_dependence>
8847 relates domain elements of must or may sources to pairs of
8848 domain elements of the sink and accessed data elements.
8849 This relation includes the previous relation as a subset.
8850 The relation returned by C<isl_union_flow_get_must_no_source> is the subset
8851 of the sink relation for which no dependences have been found.
8852 The relation returned by C<isl_union_flow_get_may_no_source> is the subset
8853 of the sink relation for which no definite dependences have been found.
8854 That is, it contains those sink access that do not contribute to any
8855 of the elements in the relation returned
8856 by C<isl_union_flow_get_must_dependence>.
8858 A representation of the information contained in an object
8859 of type C<isl_union_flow> can be obtained using
8861 #include <isl/flow.h>
8862 __isl_give isl_printer *isl_printer_print_union_flow(
8863 __isl_take isl_printer *p,
8864 __isl_keep isl_union_flow *flow);
8865 __isl_give char *isl_union_flow_to_str(
8866 __isl_keep isl_union_flow *flow);
8868 C<isl_union_flow_to_str> prints the information in flow format.
8870 =head3 Low-level Interface
8872 A lower-level interface is provided by the following functions.
8874 #include <isl/flow.h>
8876 typedef int (*isl_access_level_before)(void *first, void *second);
8878 __isl_give isl_access_info *isl_access_info_alloc(
8879 __isl_take isl_map *sink,
8880 void *sink_user, isl_access_level_before fn,
8882 __isl_give isl_access_info *isl_access_info_add_source(
8883 __isl_take isl_access_info *acc,
8884 __isl_take isl_map *source, int must,
8886 __isl_null isl_access_info *isl_access_info_free(
8887 __isl_take isl_access_info *acc);
8889 __isl_give isl_flow *isl_access_info_compute_flow(
8890 __isl_take isl_access_info *acc);
8892 isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
8893 isl_stat (*fn)(__isl_take isl_map *dep, int must,
8894 void *dep_user, void *user),
8896 __isl_give isl_map *isl_flow_get_no_source(
8897 __isl_keep isl_flow *deps, int must);
8898 void isl_flow_free(__isl_take isl_flow *deps);
8900 The function C<isl_access_info_compute_flow> performs the actual
8901 dependence analysis. The other functions are used to construct
8902 the input for this function or to read off the output.
8904 The input is collected in an C<isl_access_info>, which can
8905 be created through a call to C<isl_access_info_alloc>.
8906 The arguments to this functions are the sink access relation
8907 C<sink>, a token C<sink_user> used to identify the sink
8908 access to the user, a callback function for specifying the
8909 relative order of source and sink accesses, and the number
8910 of source access relations that will be added.
8911 The callback function has type C<int (*)(void *first, void *second)>.
8912 The function is called with two user supplied tokens identifying
8913 either a source or the sink and it should return the shared nesting
8914 level and the relative order of the two accesses.
8915 In particular, let I<n> be the number of loops shared by
8916 the two accesses. If C<first> precedes C<second> textually,
8917 then the function should return I<2 * n + 1>; otherwise,
8918 it should return I<2 * n>.
8919 The sources can be added to the C<isl_access_info> by performing
8920 (at most) C<max_source> calls to C<isl_access_info_add_source>.
8921 C<must> indicates whether the source is a I<must> access
8922 or a I<may> access. Note that a multi-valued access relation
8923 should only be marked I<must> if every iteration in the domain
8924 of the relation accesses I<all> elements in its image.
8925 The C<source_user> token is again used to identify
8926 the source access. The range of the source access relation
8927 C<source> should have the same dimension as the range
8928 of the sink access relation.
8929 The C<isl_access_info_free> function should usually not be
8930 called explicitly, because it is called implicitly by
8931 C<isl_access_info_compute_flow>.
8933 The result of the dependence analysis is collected in an
8934 C<isl_flow>. There may be elements of
8935 the sink access for which no preceding source access could be
8936 found or for which all preceding sources are I<may> accesses.
8937 The relations containing these elements can be obtained through
8938 calls to C<isl_flow_get_no_source>, the first with C<must> set
8939 and the second with C<must> unset.
8940 In the case of standard flow dependence analysis,
8941 with the sink a read and the sources I<must> writes,
8942 the first relation corresponds to the reads from uninitialized
8943 array elements and the second relation is empty.
8944 The actual flow dependences can be extracted using
8945 C<isl_flow_foreach>. This function will call the user-specified
8946 callback function C<fn> for each B<non-empty> dependence between
8947 a source and the sink. The callback function is called
8948 with four arguments, the actual flow dependence relation
8949 mapping source iterations to sink iterations, a boolean that
8950 indicates whether it is a I<must> or I<may> dependence, a token
8951 identifying the source and an additional C<void *> with value
8952 equal to the third argument of the C<isl_flow_foreach> call.
8953 A dependence is marked I<must> if it originates from a I<must>
8954 source and if it is not followed by any I<may> sources.
8956 After finishing with an C<isl_flow>, the user should call
8957 C<isl_flow_free> to free all associated memory.
8959 =head3 Interaction with the Low-level Interface
8961 During the dependence analysis, we frequently need to perform
8962 the following operation. Given a relation between sink iterations
8963 and potential source iterations from a particular source domain,
8964 what is the last potential source iteration corresponding to each
8965 sink iteration. It can sometimes be convenient to adjust
8966 the set of potential source iterations before or after each such operation.
8967 The prototypical example is fuzzy array dataflow analysis,
8968 where we need to analyze if, based on data-dependent constraints,
8969 the sink iteration can ever be executed without one or more of
8970 the corresponding potential source iterations being executed.
8971 If so, we can introduce extra parameters and select an unknown
8972 but fixed source iteration from the potential source iterations.
8973 To be able to perform such manipulations, C<isl> provides the following
8976 #include <isl/flow.h>
8978 typedef __isl_give isl_restriction *(*isl_access_restrict)(
8979 __isl_keep isl_map *source_map,
8980 __isl_keep isl_set *sink, void *source_user,
8982 __isl_give isl_access_info *isl_access_info_set_restrict(
8983 __isl_take isl_access_info *acc,
8984 isl_access_restrict fn, void *user);
8986 The function C<isl_access_info_set_restrict> should be called
8987 before calling C<isl_access_info_compute_flow> and registers a callback function
8988 that will be called any time C<isl> is about to compute the last
8989 potential source. The first argument is the (reverse) proto-dependence,
8990 mapping sink iterations to potential source iterations.
8991 The second argument represents the sink iterations for which
8992 we want to compute the last source iteration.
8993 The third argument is the token corresponding to the source
8994 and the final argument is the token passed to C<isl_access_info_set_restrict>.
8995 The callback is expected to return a restriction on either the input or
8996 the output of the operation computing the last potential source.
8997 If the input needs to be restricted then restrictions are needed
8998 for both the source and the sink iterations. The sink iterations
8999 and the potential source iterations will be intersected with these sets.
9000 If the output needs to be restricted then only a restriction on the source
9001 iterations is required.
9002 If any error occurs, the callback should return C<NULL>.
9003 An C<isl_restriction> object can be created, freed and inspected
9004 using the following functions.
9006 #include <isl/flow.h>
9008 __isl_give isl_restriction *isl_restriction_input(
9009 __isl_take isl_set *source_restr,
9010 __isl_take isl_set *sink_restr);
9011 __isl_give isl_restriction *isl_restriction_output(
9012 __isl_take isl_set *source_restr);
9013 __isl_give isl_restriction *isl_restriction_none(
9014 __isl_take isl_map *source_map);
9015 __isl_give isl_restriction *isl_restriction_empty(
9016 __isl_take isl_map *source_map);
9017 __isl_null isl_restriction *isl_restriction_free(
9018 __isl_take isl_restriction *restr);
9020 C<isl_restriction_none> and C<isl_restriction_empty> are special
9021 cases of C<isl_restriction_input>. C<isl_restriction_none>
9022 is essentially equivalent to
9024 isl_restriction_input(isl_set_universe(
9025 isl_space_range(isl_map_get_space(source_map))),
9027 isl_space_domain(isl_map_get_space(source_map))));
9029 whereas C<isl_restriction_empty> is essentially equivalent to
9031 isl_restriction_input(isl_set_empty(
9032 isl_space_range(isl_map_get_space(source_map))),
9034 isl_space_domain(isl_map_get_space(source_map))));
9038 #include <isl/schedule.h>
9039 __isl_give isl_schedule *
9040 isl_schedule_constraints_compute_schedule(
9041 __isl_take isl_schedule_constraints *sc);
9043 The function C<isl_schedule_constraints_compute_schedule> can be
9044 used to compute a schedule that satisfies the given schedule constraints.
9045 These schedule constraints include the iteration domain for which
9046 a schedule should be computed and dependences between pairs of
9047 iterations. In particular, these dependences include
9048 I<validity> dependences and I<proximity> dependences.
9049 By default, the algorithm used to construct the schedule is similar
9050 to that of C<Pluto>.
9051 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
9053 The generated schedule respects all validity dependences.
9054 That is, all dependence distances over these dependences in the
9055 scheduled space are lexicographically positive.
9057 The default algorithm tries to ensure that the dependence distances
9058 over coincidence constraints are zero and to minimize the
9059 dependence distances over proximity dependences.
9060 Moreover, it tries to obtain sequences (bands) of schedule dimensions
9061 for groups of domains where the dependence distances over validity
9062 dependences have only non-negative values.
9063 Note that when minimizing the maximal dependence distance
9064 over proximity dependences, a single affine expression in the parameters
9065 is constructed that bounds all dependence distances. If no such expression
9066 exists, then the algorithm will fail and resort to an alternative
9067 scheduling algorithm. In particular, this means that adding proximity
9068 dependences may eliminate valid solutions. A typical example where this
9069 phenomenon may occur is when some subset of the proximity dependences
9070 has no restriction on some parameter, forcing the coefficient of that
9071 parameter to be zero, while some other subset forces the dependence
9072 distance to depend on that parameter, requiring the same coefficient
9074 When using Feautrier's algorithm, the coincidence and proximity constraints
9075 are only taken into account during the extension to a
9076 full-dimensional schedule.
9078 An C<isl_schedule_constraints> object can be constructed
9079 and manipulated using the following functions.
9081 #include <isl/schedule.h>
9082 __isl_give isl_schedule_constraints *
9083 isl_schedule_constraints_copy(
9084 __isl_keep isl_schedule_constraints *sc);
9085 __isl_give isl_schedule_constraints *
9086 isl_schedule_constraints_on_domain(
9087 __isl_take isl_union_set *domain);
9088 __isl_give isl_schedule_constraints *
9089 isl_schedule_constraints_set_context(
9090 __isl_take isl_schedule_constraints *sc,
9091 __isl_take isl_set *context);
9092 __isl_give isl_schedule_constraints *
9093 isl_schedule_constraints_set_validity(
9094 __isl_take isl_schedule_constraints *sc,
9095 __isl_take isl_union_map *validity);
9096 __isl_give isl_schedule_constraints *
9097 isl_schedule_constraints_set_coincidence(
9098 __isl_take isl_schedule_constraints *sc,
9099 __isl_take isl_union_map *coincidence);
9100 __isl_give isl_schedule_constraints *
9101 isl_schedule_constraints_set_proximity(
9102 __isl_take isl_schedule_constraints *sc,
9103 __isl_take isl_union_map *proximity);
9104 __isl_give isl_schedule_constraints *
9105 isl_schedule_constraints_set_conditional_validity(
9106 __isl_take isl_schedule_constraints *sc,
9107 __isl_take isl_union_map *condition,
9108 __isl_take isl_union_map *validity);
9109 __isl_give isl_schedule_constraints *
9110 isl_schedule_constraints_apply(
9111 __isl_take isl_schedule_constraints *sc,
9112 __isl_take isl_union_map *umap);
9113 __isl_null isl_schedule_constraints *
9114 isl_schedule_constraints_free(
9115 __isl_take isl_schedule_constraints *sc);
9117 The initial C<isl_schedule_constraints> object created by
9118 C<isl_schedule_constraints_on_domain> does not impose any constraints.
9119 That is, it has an empty set of dependences.
9120 The function C<isl_schedule_constraints_set_context> allows the user
9121 to specify additional constraints on the parameters that may
9122 be assumed to hold during the construction of the schedule.
9123 The function C<isl_schedule_constraints_set_validity> replaces the
9124 validity dependences, mapping domain elements I<i> to domain
9125 elements that should be scheduled after I<i>.
9126 The function C<isl_schedule_constraints_set_coincidence> replaces the
9127 coincidence dependences, mapping domain elements I<i> to domain
9128 elements that should be scheduled together with I<I>, if possible.
9129 The function C<isl_schedule_constraints_set_proximity> replaces the
9130 proximity dependences, mapping domain elements I<i> to domain
9131 elements that should be scheduled either before I<I>
9132 or as early as possible after I<i>.
9134 The function C<isl_schedule_constraints_set_conditional_validity>
9135 replaces the conditional validity constraints.
9136 A conditional validity constraint is only imposed when any of the corresponding
9137 conditions is satisfied, i.e., when any of them is non-zero.
9138 That is, the scheduler ensures that within each band if the dependence
9139 distances over the condition constraints are not all zero
9140 then all corresponding conditional validity constraints are respected.
9141 A conditional validity constraint corresponds to a condition
9142 if the two are adjacent, i.e., if the domain of one relation intersect
9143 the range of the other relation.
9144 The typical use case of conditional validity constraints is
9145 to allow order constraints between live ranges to be violated
9146 as long as the live ranges themselves are local to the band.
9147 To allow more fine-grained control over which conditions correspond
9148 to which conditional validity constraints, the domains and ranges
9149 of these relations may include I<tags>. That is, the domains and
9150 ranges of those relation may themselves be wrapped relations
9151 where the iteration domain appears in the domain of those wrapped relations
9152 and the range of the wrapped relations can be arbitrarily chosen
9153 by the user. Conditions and conditional validity constraints are only
9154 considered adjacent to each other if the entire wrapped relation matches.
9155 In particular, a relation with a tag will never be considered adjacent
9156 to a relation without a tag.
9158 The function C<isl_schedule_constraints_compute_schedule> takes
9159 schedule constraints that are defined on some set of domain elements
9160 and transforms them to schedule constraints on the elements
9161 to which these domain elements are mapped by the given transformation.
9163 An C<isl_schedule_constraints> object can be inspected
9164 using the following functions.
9166 #include <isl/schedule.h>
9167 __isl_give isl_union_set *
9168 isl_schedule_constraints_get_domain(
9169 __isl_keep isl_schedule_constraints *sc);
9170 __isl_give isl_set *isl_schedule_constraints_get_context(
9171 __isl_keep isl_schedule_constraints *sc);
9172 __isl_give isl_union_map *
9173 isl_schedule_constraints_get_validity(
9174 __isl_keep isl_schedule_constraints *sc);
9175 __isl_give isl_union_map *
9176 isl_schedule_constraints_get_coincidence(
9177 __isl_keep isl_schedule_constraints *sc);
9178 __isl_give isl_union_map *
9179 isl_schedule_constraints_get_proximity(
9180 __isl_keep isl_schedule_constraints *sc);
9181 __isl_give isl_union_map *
9182 isl_schedule_constraints_get_conditional_validity(
9183 __isl_keep isl_schedule_constraints *sc);
9184 __isl_give isl_union_map *
9185 isl_schedule_constraints_get_conditional_validity_condition(
9186 __isl_keep isl_schedule_constraints *sc);
9188 An C<isl_schedule_constraints> object can be read from input
9189 using the following functions.
9191 #include <isl/schedule.h>
9192 __isl_give isl_schedule_constraints *
9193 isl_schedule_constraints_read_from_str(isl_ctx *ctx,
9195 __isl_give isl_schedule_constraints *
9196 isl_schedule_constraints_read_from_file(isl_ctx *ctx,
9199 The contents of an C<isl_schedule_constraints> object can be printed
9200 using the following functions.
9202 #include <isl/schedule.h>
9203 __isl_give isl_printer *
9204 isl_printer_print_schedule_constraints(
9205 __isl_take isl_printer *p,
9206 __isl_keep isl_schedule_constraints *sc);
9207 __isl_give char *isl_schedule_constraints_to_str(
9208 __isl_keep isl_schedule_constraints *sc);
9210 The following function computes a schedule directly from
9211 an iteration domain and validity and proximity dependences
9212 and is implemented in terms of the functions described above.
9213 The use of C<isl_union_set_compute_schedule> is discouraged.
9215 #include <isl/schedule.h>
9216 __isl_give isl_schedule *isl_union_set_compute_schedule(
9217 __isl_take isl_union_set *domain,
9218 __isl_take isl_union_map *validity,
9219 __isl_take isl_union_map *proximity);
9221 The generated schedule represents a schedule tree.
9222 For more information on schedule trees, see
9223 L</"Schedule Trees">.
9227 #include <isl/schedule.h>
9228 isl_stat isl_options_set_schedule_max_coefficient(
9229 isl_ctx *ctx, int val);
9230 int isl_options_get_schedule_max_coefficient(
9232 isl_stat isl_options_set_schedule_max_constant_term(
9233 isl_ctx *ctx, int val);
9234 int isl_options_get_schedule_max_constant_term(
9236 isl_stat isl_options_set_schedule_serialize_sccs(
9237 isl_ctx *ctx, int val);
9238 int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx);
9239 isl_stat isl_options_set_schedule_whole_component(
9240 isl_ctx *ctx, int val);
9241 int isl_options_get_schedule_whole_component(
9243 isl_stat isl_options_set_schedule_maximize_band_depth(
9244 isl_ctx *ctx, int val);
9245 int isl_options_get_schedule_maximize_band_depth(
9247 isl_stat isl_options_set_schedule_maximize_coincidence(
9248 isl_ctx *ctx, int val);
9249 int isl_options_get_schedule_maximize_coincidence(
9251 isl_stat isl_options_set_schedule_outer_coincidence(
9252 isl_ctx *ctx, int val);
9253 int isl_options_get_schedule_outer_coincidence(
9255 isl_stat isl_options_set_schedule_split_scaled(
9256 isl_ctx *ctx, int val);
9257 int isl_options_get_schedule_split_scaled(
9259 isl_stat isl_options_set_schedule_treat_coalescing(
9260 isl_ctx *ctx, int val);
9261 int isl_options_get_schedule_treat_coalescing(
9263 isl_stat isl_options_set_schedule_algorithm(
9264 isl_ctx *ctx, int val);
9265 int isl_options_get_schedule_algorithm(
9267 isl_stat isl_options_set_schedule_separate_components(
9268 isl_ctx *ctx, int val);
9269 int isl_options_get_schedule_separate_components(
9274 =item * schedule_max_coefficient
9276 This option enforces that the coefficients for variable and parameter
9277 dimensions in the calculated schedule are not larger than the specified value.
9278 This option can significantly increase the speed of the scheduling calculation
9279 and may also prevent fusing of unrelated dimensions. A value of -1 means that
9280 this option does not introduce bounds on the variable or parameter
9283 =item * schedule_max_constant_term
9285 This option enforces that the constant coefficients in the calculated schedule
9286 are not larger than the maximal constant term. This option can significantly
9287 increase the speed of the scheduling calculation and may also prevent fusing of
9288 unrelated dimensions. A value of -1 means that this option does not introduce
9289 bounds on the constant coefficients.
9291 =item * schedule_serialize_sccs
9293 If this option is set, then all strongly connected components
9294 in the dependence graph are serialized as soon as they are detected.
9295 This means in particular that instances of statements will only
9296 appear in the same band node if these statements belong
9297 to the same strongly connected component at the point where
9298 the band node is constructed.
9300 =item * schedule_whole_component
9302 If this option is set, then entire (weakly) connected
9303 components in the dependence graph are scheduled together
9305 Otherwise, each strongly connected component within
9306 such a weakly connected component is first scheduled separately
9307 and then combined with other strongly connected components.
9308 This option has no effect if C<schedule_serialize_sccs> is set.
9310 =item * schedule_maximize_band_depth
9312 If this option is set, then the scheduler tries to maximize
9313 the width of the bands. Wider bands give more possibilities for tiling.
9314 In particular, if the C<schedule_whole_component> option is set,
9315 then bands are split if this might result in wider bands.
9316 Otherwise, the effect of this option is to only allow
9317 strongly connected components to be combined if this does
9318 not reduce the width of the bands.
9319 Note that if the C<schedule_serialize_sccs> options is set, then
9320 the C<schedule_maximize_band_depth> option therefore has no effect.
9322 =item * schedule_maximize_coincidence
9324 This option is only effective if the C<schedule_whole_component>
9325 option is turned off.
9326 If the C<schedule_maximize_coincidence> option is set, then (clusters of)
9327 strongly connected components are only combined with each other
9328 if this does not reduce the number of coincident band members.
9330 =item * schedule_outer_coincidence
9332 If this option is set, then we try to construct schedules
9333 where the outermost scheduling dimension in each band
9334 satisfies the coincidence constraints.
9336 =item * schedule_algorithm
9338 Selects the scheduling algorithm to be used.
9339 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
9340 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
9342 =item * schedule_split_scaled
9344 If this option is set, then we try to construct schedules in which the
9345 constant term is split off from the linear part if the linear parts of
9346 the scheduling rows for all nodes in the graph have a common non-trivial
9348 The constant term is then placed in a separate band and the linear
9350 This option is only effective when the Feautrier style scheduler is
9351 being used, either as the main scheduler or as a fallback for the
9352 Pluto-like scheduler.
9354 =item * schedule_treat_coalescing
9356 If this option is set, then the scheduler will try and avoid
9357 producing schedules that perform loop coalescing.
9358 In particular, for the Pluto-like scheduler, this option places
9359 bounds on the schedule coefficients based on the sizes of the instance sets.
9360 For the Feautrier style scheduler, this option detects potentially
9361 coalescing schedules and then tries to adjust the schedule to avoid
9364 =item * schedule_separate_components
9366 If this option is set then the function C<isl_schedule_get_map>
9367 will treat set nodes in the same way as sequence nodes.
9371 =head2 AST Generation
9373 This section describes the C<isl> functionality for generating
9374 ASTs that visit all the elements
9375 in a domain in an order specified by a schedule tree or
9377 In case the schedule given as a C<isl_union_map>, an AST is generated
9378 that visits all the elements in the domain of the C<isl_union_map>
9379 according to the lexicographic order of the corresponding image
9380 element(s). If the range of the C<isl_union_map> consists of
9381 elements in more than one space, then each of these spaces is handled
9382 separately in an arbitrary order.
9383 It should be noted that the schedule tree or the image elements
9384 in a schedule map only specify the I<order>
9385 in which the corresponding domain elements should be visited.
9386 No direct relation between the partial schedule values
9387 or the image elements on the one hand and the loop iterators
9388 in the generated AST on the other hand should be assumed.
9390 Each AST is generated within a build. The initial build
9391 simply specifies the constraints on the parameters (if any)
9392 and can be created, inspected, copied and freed using the following functions.
9394 #include <isl/ast_build.h>
9395 __isl_give isl_ast_build *isl_ast_build_alloc(
9397 __isl_give isl_ast_build *isl_ast_build_from_context(
9398 __isl_take isl_set *set);
9399 __isl_give isl_ast_build *isl_ast_build_copy(
9400 __isl_keep isl_ast_build *build);
9401 __isl_null isl_ast_build *isl_ast_build_free(
9402 __isl_take isl_ast_build *build);
9404 The C<set> argument is usually a parameter set with zero or more parameters.
9405 In fact, when creating an AST using C<isl_ast_build_node_from_schedule>,
9406 this set is required to be a parameter set.
9407 An C<isl_ast_build> created using C<isl_ast_build_alloc> does not
9408 specify any parameter constraints.
9409 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
9410 and L</"Fine-grained Control over AST Generation">.
9411 Finally, the AST itself can be constructed using one of the following
9414 #include <isl/ast_build.h>
9415 __isl_give isl_ast_node *isl_ast_build_node_from_schedule(
9416 __isl_keep isl_ast_build *build,
9417 __isl_take isl_schedule *schedule);
9418 __isl_give isl_ast_node *
9419 isl_ast_build_node_from_schedule_map(
9420 __isl_keep isl_ast_build *build,
9421 __isl_take isl_union_map *schedule);
9423 =head3 Inspecting the AST
9425 The basic properties of an AST node can be obtained as follows.
9427 #include <isl/ast.h>
9428 enum isl_ast_node_type isl_ast_node_get_type(
9429 __isl_keep isl_ast_node *node);
9431 The type of an AST node is one of
9432 C<isl_ast_node_for>,
9434 C<isl_ast_node_block>,
9435 C<isl_ast_node_mark> or
9436 C<isl_ast_node_user>.
9437 An C<isl_ast_node_for> represents a for node.
9438 An C<isl_ast_node_if> represents an if node.
9439 An C<isl_ast_node_block> represents a compound node.
9440 An C<isl_ast_node_mark> introduces a mark in the AST.
9441 An C<isl_ast_node_user> represents an expression statement.
9442 An expression statement typically corresponds to a domain element, i.e.,
9443 one of the elements that is visited by the AST.
9445 Each type of node has its own additional properties.
9447 #include <isl/ast.h>
9448 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
9449 __isl_keep isl_ast_node *node);
9450 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
9451 __isl_keep isl_ast_node *node);
9452 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
9453 __isl_keep isl_ast_node *node);
9454 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
9455 __isl_keep isl_ast_node *node);
9456 __isl_give isl_ast_node *isl_ast_node_for_get_body(
9457 __isl_keep isl_ast_node *node);
9458 isl_bool isl_ast_node_for_is_degenerate(
9459 __isl_keep isl_ast_node *node);
9461 An C<isl_ast_for> is considered degenerate if it is known to execute
9464 #include <isl/ast.h>
9465 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
9466 __isl_keep isl_ast_node *node);
9467 __isl_give isl_ast_node *isl_ast_node_if_get_then(
9468 __isl_keep isl_ast_node *node);
9469 isl_bool isl_ast_node_if_has_else(
9470 __isl_keep isl_ast_node *node);
9471 __isl_give isl_ast_node *isl_ast_node_if_get_else(
9472 __isl_keep isl_ast_node *node);
9474 __isl_give isl_ast_node_list *
9475 isl_ast_node_block_get_children(
9476 __isl_keep isl_ast_node *node);
9478 __isl_give isl_id *isl_ast_node_mark_get_id(
9479 __isl_keep isl_ast_node *node);
9480 __isl_give isl_ast_node *isl_ast_node_mark_get_node(
9481 __isl_keep isl_ast_node *node);
9483 C<isl_ast_node_mark_get_id> returns the identifier of the mark.
9484 C<isl_ast_node_mark_get_node> returns the child node that is being marked.
9486 #include <isl/ast.h>
9487 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
9488 __isl_keep isl_ast_node *node);
9490 All descendants of a specific node in the AST (including the node itself)
9492 in depth-first pre-order using the following function.
9494 #include <isl/ast.h>
9495 isl_stat isl_ast_node_foreach_descendant_top_down(
9496 __isl_keep isl_ast_node *node,
9497 isl_bool (*fn)(__isl_keep isl_ast_node *node,
9498 void *user), void *user);
9500 The callback function should return C<isl_bool_true> if the children
9501 of the given node should be visited and C<isl_bool_false> if they should not.
9502 It should return C<isl_bool_error> in case of failure, in which case
9503 the entire traversal is aborted.
9505 Each of the returned C<isl_ast_expr>s can in turn be inspected using
9506 the following functions.
9508 #include <isl/ast.h>
9509 enum isl_ast_expr_type isl_ast_expr_get_type(
9510 __isl_keep isl_ast_expr *expr);
9512 The type of an AST expression is one of
9514 C<isl_ast_expr_id> or
9515 C<isl_ast_expr_int>.
9516 An C<isl_ast_expr_op> represents the result of an operation.
9517 An C<isl_ast_expr_id> represents an identifier.
9518 An C<isl_ast_expr_int> represents an integer value.
9520 Each type of expression has its own additional properties.
9522 #include <isl/ast.h>
9523 enum isl_ast_op_type isl_ast_expr_get_op_type(
9524 __isl_keep isl_ast_expr *expr);
9525 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
9526 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
9527 __isl_keep isl_ast_expr *expr, int pos);
9528 isl_stat isl_ast_expr_foreach_ast_op_type(
9529 __isl_keep isl_ast_expr *expr,
9530 isl_stat (*fn)(enum isl_ast_op_type type,
9531 void *user), void *user);
9532 isl_stat isl_ast_node_foreach_ast_op_type(
9533 __isl_keep isl_ast_node *node,
9534 isl_stat (*fn)(enum isl_ast_op_type type,
9535 void *user), void *user);
9537 C<isl_ast_expr_get_op_type> returns the type of the operation
9538 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
9539 arguments. C<isl_ast_expr_get_op_arg> returns the specified
9541 C<isl_ast_expr_foreach_ast_op_type> calls C<fn> for each distinct
9542 C<isl_ast_op_type> that appears in C<expr>.
9543 C<isl_ast_node_foreach_ast_op_type> does the same for each distinct
9544 C<isl_ast_op_type> that appears in C<node>.
9545 The operation type is one of the following.
9549 =item C<isl_ast_op_and>
9551 Logical I<and> of two arguments.
9552 Both arguments can be evaluated.
9554 =item C<isl_ast_op_and_then>
9556 Logical I<and> of two arguments.
9557 The second argument can only be evaluated if the first evaluates to true.
9559 =item C<isl_ast_op_or>
9561 Logical I<or> of two arguments.
9562 Both arguments can be evaluated.
9564 =item C<isl_ast_op_or_else>
9566 Logical I<or> of two arguments.
9567 The second argument can only be evaluated if the first evaluates to false.
9569 =item C<isl_ast_op_max>
9571 Maximum of two or more arguments.
9573 =item C<isl_ast_op_min>
9575 Minimum of two or more arguments.
9577 =item C<isl_ast_op_minus>
9581 =item C<isl_ast_op_add>
9583 Sum of two arguments.
9585 =item C<isl_ast_op_sub>
9587 Difference of two arguments.
9589 =item C<isl_ast_op_mul>
9591 Product of two arguments.
9593 =item C<isl_ast_op_div>
9595 Exact division. That is, the result is known to be an integer.
9597 =item C<isl_ast_op_fdiv_q>
9599 Result of integer division, rounded towards negative
9602 =item C<isl_ast_op_pdiv_q>
9604 Result of integer division, where dividend is known to be non-negative.
9606 =item C<isl_ast_op_pdiv_r>
9608 Remainder of integer division, where dividend is known to be non-negative.
9610 =item C<isl_ast_op_zdiv_r>
9612 Equal to zero iff the remainder on integer division is zero.
9614 =item C<isl_ast_op_cond>
9616 Conditional operator defined on three arguments.
9617 If the first argument evaluates to true, then the result
9618 is equal to the second argument. Otherwise, the result
9619 is equal to the third argument.
9620 The second and third argument may only be evaluated if
9621 the first argument evaluates to true and false, respectively.
9622 Corresponds to C<a ? b : c> in C.
9624 =item C<isl_ast_op_select>
9626 Conditional operator defined on three arguments.
9627 If the first argument evaluates to true, then the result
9628 is equal to the second argument. Otherwise, the result
9629 is equal to the third argument.
9630 The second and third argument may be evaluated independently
9631 of the value of the first argument.
9632 Corresponds to C<a * b + (1 - a) * c> in C.
9634 =item C<isl_ast_op_eq>
9638 =item C<isl_ast_op_le>
9640 Less than or equal relation.
9642 =item C<isl_ast_op_lt>
9646 =item C<isl_ast_op_ge>
9648 Greater than or equal relation.
9650 =item C<isl_ast_op_gt>
9652 Greater than relation.
9654 =item C<isl_ast_op_call>
9657 The number of arguments of the C<isl_ast_expr> is one more than
9658 the number of arguments in the function call, the first argument
9659 representing the function being called.
9661 =item C<isl_ast_op_access>
9664 The number of arguments of the C<isl_ast_expr> is one more than
9665 the number of index expressions in the array access, the first argument
9666 representing the array being accessed.
9668 =item C<isl_ast_op_member>
9671 This operation has two arguments, a structure and the name of
9672 the member of the structure being accessed.
9676 #include <isl/ast.h>
9677 __isl_give isl_id *isl_ast_expr_get_id(
9678 __isl_keep isl_ast_expr *expr);
9680 Return the identifier represented by the AST expression.
9682 #include <isl/ast.h>
9683 __isl_give isl_val *isl_ast_expr_get_val(
9684 __isl_keep isl_ast_expr *expr);
9686 Return the integer represented by the AST expression.
9688 =head3 Properties of ASTs
9690 #include <isl/ast.h>
9691 isl_bool isl_ast_expr_is_equal(
9692 __isl_keep isl_ast_expr *expr1,
9693 __isl_keep isl_ast_expr *expr2);
9695 Check if two C<isl_ast_expr>s are equal to each other.
9697 =head3 Manipulating and printing the AST
9699 AST nodes can be copied and freed using the following functions.
9701 #include <isl/ast.h>
9702 __isl_give isl_ast_node *isl_ast_node_copy(
9703 __isl_keep isl_ast_node *node);
9704 __isl_null isl_ast_node *isl_ast_node_free(
9705 __isl_take isl_ast_node *node);
9707 AST expressions can be copied and freed using the following functions.
9709 #include <isl/ast.h>
9710 __isl_give isl_ast_expr *isl_ast_expr_copy(
9711 __isl_keep isl_ast_expr *expr);
9712 __isl_null isl_ast_expr *isl_ast_expr_free(
9713 __isl_take isl_ast_expr *expr);
9715 New AST expressions can be created either directly or within
9716 the context of an C<isl_ast_build>.
9718 #include <isl/ast.h>
9719 __isl_give isl_ast_expr *isl_ast_expr_from_val(
9720 __isl_take isl_val *v);
9721 __isl_give isl_ast_expr *isl_ast_expr_from_id(
9722 __isl_take isl_id *id);
9723 __isl_give isl_ast_expr *isl_ast_expr_neg(
9724 __isl_take isl_ast_expr *expr);
9725 __isl_give isl_ast_expr *isl_ast_expr_address_of(
9726 __isl_take isl_ast_expr *expr);
9727 __isl_give isl_ast_expr *isl_ast_expr_add(
9728 __isl_take isl_ast_expr *expr1,
9729 __isl_take isl_ast_expr *expr2);
9730 __isl_give isl_ast_expr *isl_ast_expr_sub(
9731 __isl_take isl_ast_expr *expr1,
9732 __isl_take isl_ast_expr *expr2);
9733 __isl_give isl_ast_expr *isl_ast_expr_mul(
9734 __isl_take isl_ast_expr *expr1,
9735 __isl_take isl_ast_expr *expr2);
9736 __isl_give isl_ast_expr *isl_ast_expr_div(
9737 __isl_take isl_ast_expr *expr1,
9738 __isl_take isl_ast_expr *expr2);
9739 __isl_give isl_ast_expr *isl_ast_expr_pdiv_q(
9740 __isl_take isl_ast_expr *expr1,
9741 __isl_take isl_ast_expr *expr2);
9742 __isl_give isl_ast_expr *isl_ast_expr_pdiv_r(
9743 __isl_take isl_ast_expr *expr1,
9744 __isl_take isl_ast_expr *expr2);
9745 __isl_give isl_ast_expr *isl_ast_expr_and(
9746 __isl_take isl_ast_expr *expr1,
9747 __isl_take isl_ast_expr *expr2)
9748 __isl_give isl_ast_expr *isl_ast_expr_and_then(
9749 __isl_take isl_ast_expr *expr1,
9750 __isl_take isl_ast_expr *expr2)
9751 __isl_give isl_ast_expr *isl_ast_expr_or(
9752 __isl_take isl_ast_expr *expr1,
9753 __isl_take isl_ast_expr *expr2)
9754 __isl_give isl_ast_expr *isl_ast_expr_or_else(
9755 __isl_take isl_ast_expr *expr1,
9756 __isl_take isl_ast_expr *expr2)
9757 __isl_give isl_ast_expr *isl_ast_expr_eq(
9758 __isl_take isl_ast_expr *expr1,
9759 __isl_take isl_ast_expr *expr2);
9760 __isl_give isl_ast_expr *isl_ast_expr_le(
9761 __isl_take isl_ast_expr *expr1,
9762 __isl_take isl_ast_expr *expr2);
9763 __isl_give isl_ast_expr *isl_ast_expr_lt(
9764 __isl_take isl_ast_expr *expr1,
9765 __isl_take isl_ast_expr *expr2);
9766 __isl_give isl_ast_expr *isl_ast_expr_ge(
9767 __isl_take isl_ast_expr *expr1,
9768 __isl_take isl_ast_expr *expr2);
9769 __isl_give isl_ast_expr *isl_ast_expr_gt(
9770 __isl_take isl_ast_expr *expr1,
9771 __isl_take isl_ast_expr *expr2);
9772 __isl_give isl_ast_expr *isl_ast_expr_access(
9773 __isl_take isl_ast_expr *array,
9774 __isl_take isl_ast_expr_list *indices);
9775 __isl_give isl_ast_expr *isl_ast_expr_call(
9776 __isl_take isl_ast_expr *function,
9777 __isl_take isl_ast_expr_list *arguments);
9779 The function C<isl_ast_expr_address_of> can be applied to an
9780 C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
9781 to represent the address of the C<isl_ast_expr_access>. The function
9782 C<isl_ast_expr_and_then> as well as C<isl_ast_expr_or_else> are short-circuit
9783 versions of C<isl_ast_expr_and> and C<isl_ast_expr_or>, respectively.
9785 #include <isl/ast_build.h>
9786 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
9787 __isl_keep isl_ast_build *build,
9788 __isl_take isl_set *set);
9789 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
9790 __isl_keep isl_ast_build *build,
9791 __isl_take isl_pw_aff *pa);
9792 __isl_give isl_ast_expr *
9793 isl_ast_build_access_from_pw_multi_aff(
9794 __isl_keep isl_ast_build *build,
9795 __isl_take isl_pw_multi_aff *pma);
9796 __isl_give isl_ast_expr *
9797 isl_ast_build_access_from_multi_pw_aff(
9798 __isl_keep isl_ast_build *build,
9799 __isl_take isl_multi_pw_aff *mpa);
9800 __isl_give isl_ast_expr *
9801 isl_ast_build_call_from_pw_multi_aff(
9802 __isl_keep isl_ast_build *build,
9803 __isl_take isl_pw_multi_aff *pma);
9804 __isl_give isl_ast_expr *
9805 isl_ast_build_call_from_multi_pw_aff(
9806 __isl_keep isl_ast_build *build,
9807 __isl_take isl_multi_pw_aff *mpa);
9810 the domains of C<pa>, C<mpa> and C<pma> should correspond
9811 to the schedule space of C<build>.
9812 The tuple id of C<mpa> or C<pma> is used as the array being accessed or
9813 the function being called.
9814 If the accessed space is a nested relation, then it is taken
9815 to represent an access of the member specified by the range
9816 of this nested relation of the structure specified by the domain
9817 of the nested relation.
9819 The following functions can be used to modify an C<isl_ast_expr>.
9821 #include <isl/ast.h>
9822 __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
9823 __isl_take isl_ast_expr *expr, int pos,
9824 __isl_take isl_ast_expr *arg);
9826 Replace the argument of C<expr> at position C<pos> by C<arg>.
9828 #include <isl/ast.h>
9829 __isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
9830 __isl_take isl_ast_expr *expr,
9831 __isl_take isl_id_to_ast_expr *id2expr);
9833 The function C<isl_ast_expr_substitute_ids> replaces the
9834 subexpressions of C<expr> of type C<isl_ast_expr_id>
9835 by the corresponding expression in C<id2expr>, if there is any.
9838 User specified data can be attached to an C<isl_ast_node> and obtained
9839 from the same C<isl_ast_node> using the following functions.
9841 #include <isl/ast.h>
9842 __isl_give isl_ast_node *isl_ast_node_set_annotation(
9843 __isl_take isl_ast_node *node,
9844 __isl_take isl_id *annotation);
9845 __isl_give isl_id *isl_ast_node_get_annotation(
9846 __isl_keep isl_ast_node *node);
9848 Basic printing can be performed using the following functions.
9850 #include <isl/ast.h>
9851 __isl_give isl_printer *isl_printer_print_ast_expr(
9852 __isl_take isl_printer *p,
9853 __isl_keep isl_ast_expr *expr);
9854 __isl_give isl_printer *isl_printer_print_ast_node(
9855 __isl_take isl_printer *p,
9856 __isl_keep isl_ast_node *node);
9857 __isl_give char *isl_ast_expr_to_str(
9858 __isl_keep isl_ast_expr *expr);
9859 __isl_give char *isl_ast_node_to_str(
9860 __isl_keep isl_ast_node *node);
9861 __isl_give char *isl_ast_expr_to_C_str(
9862 __isl_keep isl_ast_expr *expr);
9863 __isl_give char *isl_ast_node_to_C_str(
9864 __isl_keep isl_ast_node *node);
9866 The functions C<isl_ast_expr_to_C_str> and
9867 C<isl_ast_node_to_C_str> are convenience functions
9868 that return a string representation of the input in C format.
9870 More advanced printing can be performed using the following functions.
9872 #include <isl/ast.h>
9873 __isl_give isl_printer *isl_ast_op_type_set_print_name(
9874 __isl_take isl_printer *p,
9875 enum isl_ast_op_type type,
9876 __isl_keep const char *name);
9877 isl_stat isl_options_set_ast_print_macro_once(
9878 isl_ctx *ctx, int val);
9879 int isl_options_get_ast_print_macro_once(isl_ctx *ctx);
9880 __isl_give isl_printer *isl_ast_op_type_print_macro(
9881 enum isl_ast_op_type type,
9882 __isl_take isl_printer *p);
9883 __isl_give isl_printer *isl_ast_expr_print_macros(
9884 __isl_keep isl_ast_expr *expr,
9885 __isl_take isl_printer *p);
9886 __isl_give isl_printer *isl_ast_node_print_macros(
9887 __isl_keep isl_ast_node *node,
9888 __isl_take isl_printer *p);
9889 __isl_give isl_printer *isl_ast_node_print(
9890 __isl_keep isl_ast_node *node,
9891 __isl_take isl_printer *p,
9892 __isl_take isl_ast_print_options *options);
9893 __isl_give isl_printer *isl_ast_node_for_print(
9894 __isl_keep isl_ast_node *node,
9895 __isl_take isl_printer *p,
9896 __isl_take isl_ast_print_options *options);
9897 __isl_give isl_printer *isl_ast_node_if_print(
9898 __isl_keep isl_ast_node *node,
9899 __isl_take isl_printer *p,
9900 __isl_take isl_ast_print_options *options);
9902 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
9903 C<isl> may print out an AST that makes use of macros such
9904 as C<floord>, C<min> and C<max>.
9905 The names of these macros may be modified by a call
9906 to C<isl_ast_op_type_set_print_name>. The user-specified
9907 names are associated to the printer object.
9908 C<isl_ast_op_type_print_macro> prints out the macro
9909 corresponding to a specific C<isl_ast_op_type>.
9910 If the print-macro-once option is set, then a given macro definition
9911 is only printed once to any given printer object.
9912 C<isl_ast_expr_print_macros> scans the C<isl_ast_expr>
9913 for subexpressions where these macros would be used and prints
9914 out the required macro definitions.
9915 Essentially, C<isl_ast_expr_print_macros> calls
9916 C<isl_ast_expr_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
9917 as function argument.
9918 C<isl_ast_node_print_macros> does the same
9919 for expressions in its C<isl_ast_node> argument.
9920 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
9921 C<isl_ast_node_if_print> print an C<isl_ast_node>
9922 in C<ISL_FORMAT_C>, but allow for some extra control
9923 through an C<isl_ast_print_options> object.
9924 This object can be created using the following functions.
9926 #include <isl/ast.h>
9927 __isl_give isl_ast_print_options *
9928 isl_ast_print_options_alloc(isl_ctx *ctx);
9929 __isl_give isl_ast_print_options *
9930 isl_ast_print_options_copy(
9931 __isl_keep isl_ast_print_options *options);
9932 __isl_null isl_ast_print_options *
9933 isl_ast_print_options_free(
9934 __isl_take isl_ast_print_options *options);
9936 __isl_give isl_ast_print_options *
9937 isl_ast_print_options_set_print_user(
9938 __isl_take isl_ast_print_options *options,
9939 __isl_give isl_printer *(*print_user)(
9940 __isl_take isl_printer *p,
9941 __isl_take isl_ast_print_options *options,
9942 __isl_keep isl_ast_node *node, void *user),
9944 __isl_give isl_ast_print_options *
9945 isl_ast_print_options_set_print_for(
9946 __isl_take isl_ast_print_options *options,
9947 __isl_give isl_printer *(*print_for)(
9948 __isl_take isl_printer *p,
9949 __isl_take isl_ast_print_options *options,
9950 __isl_keep isl_ast_node *node, void *user),
9953 The callback set by C<isl_ast_print_options_set_print_user>
9954 is called whenever a node of type C<isl_ast_node_user> needs to
9956 The callback set by C<isl_ast_print_options_set_print_for>
9957 is called whenever a node of type C<isl_ast_node_for> needs to
9959 Note that C<isl_ast_node_for_print> will I<not> call the
9960 callback set by C<isl_ast_print_options_set_print_for> on the node
9961 on which C<isl_ast_node_for_print> is called, but only on nested
9962 nodes of type C<isl_ast_node_for>. It is therefore safe to
9963 call C<isl_ast_node_for_print> from within the callback set by
9964 C<isl_ast_print_options_set_print_for>.
9966 The following option determines the type to be used for iterators
9967 while printing the AST.
9969 isl_stat isl_options_set_ast_iterator_type(
9970 isl_ctx *ctx, const char *val);
9971 const char *isl_options_get_ast_iterator_type(
9974 The AST printer only prints body nodes as blocks if these
9975 blocks cannot be safely omitted.
9976 For example, a C<for> node with one body node will not be
9977 surrounded with braces in C<ISL_FORMAT_C>.
9978 A block will always be printed by setting the following option.
9980 isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx,
9982 int isl_options_get_ast_always_print_block(isl_ctx *ctx);
9986 #include <isl/ast_build.h>
9987 isl_stat isl_options_set_ast_build_atomic_upper_bound(
9988 isl_ctx *ctx, int val);
9989 int isl_options_get_ast_build_atomic_upper_bound(
9991 isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
9993 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
9994 isl_stat isl_options_set_ast_build_detect_min_max(
9995 isl_ctx *ctx, int val);
9996 int isl_options_get_ast_build_detect_min_max(
9998 isl_stat isl_options_set_ast_build_exploit_nested_bounds(
9999 isl_ctx *ctx, int val);
10000 int isl_options_get_ast_build_exploit_nested_bounds(
10002 isl_stat isl_options_set_ast_build_group_coscheduled(
10003 isl_ctx *ctx, int val);
10004 int isl_options_get_ast_build_group_coscheduled(
10006 isl_stat isl_options_set_ast_build_scale_strides(
10007 isl_ctx *ctx, int val);
10008 int isl_options_get_ast_build_scale_strides(
10010 isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx,
10012 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
10013 isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx,
10015 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
10019 =item * ast_build_atomic_upper_bound
10021 Generate loop upper bounds that consist of the current loop iterator,
10022 an operator and an expression not involving the iterator.
10023 If this option is not set, then the current loop iterator may appear
10024 several times in the upper bound.
10025 For example, when this option is turned off, AST generation
10028 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
10032 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
10035 When the option is turned on, the following AST is generated
10037 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
10040 =item * ast_build_prefer_pdiv
10042 If this option is turned off, then the AST generation will
10043 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
10044 operators, but no C<isl_ast_op_pdiv_q> or
10045 C<isl_ast_op_pdiv_r> operators.
10046 If this option is turned on, then C<isl> will try to convert
10047 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
10048 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
10050 =item * ast_build_detect_min_max
10052 If this option is turned on, then C<isl> will try and detect
10053 min or max-expressions when building AST expressions from
10054 piecewise affine expressions.
10056 =item * ast_build_exploit_nested_bounds
10058 Simplify conditions based on bounds of nested for loops.
10059 In particular, remove conditions that are implied by the fact
10060 that one or more nested loops have at least one iteration,
10061 meaning that the upper bound is at least as large as the lower bound.
10062 For example, when this option is turned off, AST generation
10065 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
10071 for (int c0 = 0; c0 <= N; c0 += 1)
10072 for (int c1 = 0; c1 <= M; c1 += 1)
10075 When the option is turned on, the following AST is generated
10077 for (int c0 = 0; c0 <= N; c0 += 1)
10078 for (int c1 = 0; c1 <= M; c1 += 1)
10081 =item * ast_build_group_coscheduled
10083 If two domain elements are assigned the same schedule point, then
10084 they may be executed in any order and they may even appear in different
10085 loops. If this options is set, then the AST generator will make
10086 sure that coscheduled domain elements do not appear in separate parts
10087 of the AST. This is useful in case of nested AST generation
10088 if the outer AST generation is given only part of a schedule
10089 and the inner AST generation should handle the domains that are
10090 coscheduled by this initial part of the schedule together.
10091 For example if an AST is generated for a schedule
10093 { A[i] -> [0]; B[i] -> [0] }
10095 then the C<isl_ast_build_set_create_leaf> callback described
10096 below may get called twice, once for each domain.
10097 Setting this option ensures that the callback is only called once
10098 on both domains together.
10100 =item * ast_build_separation_bounds
10102 This option specifies which bounds to use during separation.
10103 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
10104 then all (possibly implicit) bounds on the current dimension will
10105 be used during separation.
10106 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
10107 then only those bounds that are explicitly available will
10108 be used during separation.
10110 =item * ast_build_scale_strides
10112 This option specifies whether the AST generator is allowed
10113 to scale down iterators of strided loops.
10115 =item * ast_build_allow_else
10117 This option specifies whether the AST generator is allowed
10118 to construct if statements with else branches.
10120 =item * ast_build_allow_or
10122 This option specifies whether the AST generator is allowed
10123 to construct if conditions with disjunctions.
10127 =head3 AST Generation Options (Schedule Tree)
10129 In case of AST construction from a schedule tree, the options
10130 that control how an AST is created from the individual schedule
10131 dimensions are stored in the band nodes of the tree
10132 (see L</"Schedule Trees">).
10134 In particular, a schedule dimension can be handled in four
10135 different ways, atomic, separate, unroll or the default.
10136 This loop AST generation type can be set using
10137 C<isl_schedule_node_band_member_set_ast_loop_type>.
10139 the first three can be selected by including a one-dimensional
10140 element with as value the position of the schedule dimension
10141 within the band and as name one of C<atomic>, C<separate>
10142 or C<unroll> in the options
10143 set by C<isl_schedule_node_band_set_ast_build_options>.
10144 Only one of these three may be specified for
10145 any given schedule dimension within a band node.
10146 If none of these is specified, then the default
10147 is used. The meaning of the options is as follows.
10153 When this option is specified, the AST generator will make
10154 sure that a given domains space only appears in a single
10155 loop at the specified level.
10157 For example, for the schedule tree
10159 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10161 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10162 options: "{ atomic[x] }"
10164 the following AST will be generated
10166 for (int c0 = 0; c0 <= 10; c0 += 1) {
10173 On the other hand, for the schedule tree
10175 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10177 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10178 options: "{ separate[x] }"
10180 the following AST will be generated
10184 for (int c0 = 1; c0 <= 9; c0 += 1) {
10191 If neither C<atomic> nor C<separate> is specified, then the AST generator
10192 may produce either of these two results or some intermediate form.
10196 When this option is specified, the AST generator will
10197 split the domain of the specified schedule dimension
10198 into pieces with a fixed set of statements for which
10199 instances need to be executed by the iterations in
10200 the schedule domain part. This option tends to avoid
10201 the generation of guards inside the corresponding loops.
10202 See also the C<atomic> option.
10206 When this option is specified, the AST generator will
10207 I<completely> unroll the corresponding schedule dimension.
10208 It is the responsibility of the user to ensure that such
10209 unrolling is possible.
10210 To obtain a partial unrolling, the user should apply an additional
10211 strip-mining to the schedule and fully unroll the inner schedule
10216 The C<isolate> option is a bit more involved. It allows the user
10217 to isolate a range of schedule dimension values from smaller and
10218 greater values. Additionally, the user may specify a different
10219 atomic/separate/unroll choice for the isolated part and the remaining
10220 parts. The typical use case of the C<isolate> option is to isolate
10221 full tiles from partial tiles.
10222 The part that needs to be isolated may depend on outer schedule dimensions.
10223 The option therefore needs to be able to reference those outer schedule
10224 dimensions. In particular, the space of the C<isolate> option is that
10225 of a wrapped map with as domain the flat product of all outer band nodes
10226 and as range the space of the current band node.
10227 The atomic/separate/unroll choice for the isolated part is determined
10228 by an option that lives in an unnamed wrapped space with as domain
10229 a zero-dimensional C<isolate> space and as range the regular
10230 C<atomic>, C<separate> or C<unroll> space.
10231 This option may also be set directly using
10232 C<isl_schedule_node_band_member_set_isolate_ast_loop_type>.
10233 The atomic/separate/unroll choice for the remaining part is determined
10234 by the regular C<atomic>, C<separate> or C<unroll> option.
10235 Since the C<isolate> option references outer schedule dimensions,
10236 its use in a band node causes any tree containing the node
10237 to be considered anchored.
10239 As an example, consider the isolation of full tiles from partial tiles
10240 in a tiling of a triangular domain. The original schedule is as follows.
10242 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10244 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10245 { A[i,j] -> [floor(j/10)] }, \
10246 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10250 for (int c0 = 0; c0 <= 10; c0 += 1)
10251 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10252 for (int c2 = 10 * c0;
10253 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10254 for (int c3 = 10 * c1;
10255 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10258 Isolating the full tiles, we have the following input
10260 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10262 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10263 { A[i,j] -> [floor(j/10)] }, \
10264 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10265 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10266 10a+9+10b+9 <= 100 }"
10271 for (int c0 = 0; c0 <= 8; c0 += 1) {
10272 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10273 for (int c2 = 10 * c0;
10274 c2 <= 10 * c0 + 9; c2 += 1)
10275 for (int c3 = 10 * c1;
10276 c3 <= 10 * c1 + 9; c3 += 1)
10278 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10279 for (int c2 = 10 * c0;
10280 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10281 for (int c3 = 10 * c1;
10282 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10285 for (int c0 = 9; c0 <= 10; c0 += 1)
10286 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10287 for (int c2 = 10 * c0;
10288 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10289 for (int c3 = 10 * c1;
10290 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10294 We may then additionally unroll the innermost loop of the isolated part
10296 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10298 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10299 { A[i,j] -> [floor(j/10)] }, \
10300 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10301 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10302 10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }"
10307 for (int c0 = 0; c0 <= 8; c0 += 1) {
10308 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10309 for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) {
10311 A(c2, 10 * c1 + 1);
10312 A(c2, 10 * c1 + 2);
10313 A(c2, 10 * c1 + 3);
10314 A(c2, 10 * c1 + 4);
10315 A(c2, 10 * c1 + 5);
10316 A(c2, 10 * c1 + 6);
10317 A(c2, 10 * c1 + 7);
10318 A(c2, 10 * c1 + 8);
10319 A(c2, 10 * c1 + 9);
10321 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10322 for (int c2 = 10 * c0;
10323 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10324 for (int c3 = 10 * c1;
10325 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10328 for (int c0 = 9; c0 <= 10; c0 += 1)
10329 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10330 for (int c2 = 10 * c0;
10331 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10332 for (int c3 = 10 * c1;
10333 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10338 =head3 AST Generation Options (Schedule Map)
10340 In case of AST construction using
10341 C<isl_ast_build_node_from_schedule_map>, the options
10342 that control how an AST is created from the individual schedule
10343 dimensions are stored in the C<isl_ast_build>.
10344 They can be set using the following function.
10346 #include <isl/ast_build.h>
10347 __isl_give isl_ast_build *
10348 isl_ast_build_set_options(
10349 __isl_take isl_ast_build *control,
10350 __isl_take isl_union_map *options);
10352 The options are encoded in an C<isl_union_map>.
10353 The domain of this union relation refers to the schedule domain,
10354 i.e., the range of the schedule passed
10355 to C<isl_ast_build_node_from_schedule_map>.
10356 In the case of nested AST generation (see L</"Nested AST Generation">),
10357 the domain of C<options> should refer to the extra piece of the schedule.
10358 That is, it should be equal to the range of the wrapped relation in the
10359 range of the schedule.
10360 The range of the options can consist of elements in one or more spaces,
10361 the names of which determine the effect of the option.
10362 The values of the range typically also refer to the schedule dimension
10363 to which the option applies. In case of nested AST generation
10364 (see L</"Nested AST Generation">), these values refer to the position
10365 of the schedule dimension within the innermost AST generation.
10366 The constraints on the domain elements of
10367 the option should only refer to this dimension and earlier dimensions.
10368 We consider the following spaces.
10372 =item C<separation_class>
10374 B<This option has been deprecated. Use the isolate option on
10375 schedule trees instead.>
10377 This space is a wrapped relation between two one dimensional spaces.
10378 The input space represents the schedule dimension to which the option
10379 applies and the output space represents the separation class.
10380 While constructing a loop corresponding to the specified schedule
10381 dimension(s), the AST generator will try to generate separate loops
10382 for domain elements that are assigned different classes.
10383 If only some of the elements are assigned a class, then those elements
10384 that are not assigned any class will be treated as belonging to a class
10385 that is separate from the explicitly assigned classes.
10386 The typical use case for this option is to separate full tiles from
10388 The other options, described below, are applied after the separation
10391 As an example, consider the separation into full and partial tiles
10392 of a tiling of a triangular domain.
10393 Take, for example, the domain
10395 { A[i,j] : 0 <= i,j and i + j <= 100 }
10397 and a tiling into tiles of 10 by 10. The input to the AST generator
10398 is then the schedule
10400 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
10403 Without any options, the following AST is generated
10405 for (int c0 = 0; c0 <= 10; c0 += 1)
10406 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10407 for (int c2 = 10 * c0;
10408 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10410 for (int c3 = 10 * c1;
10411 c3 <= min(10 * c1 + 9, -c2 + 100);
10415 Separation into full and partial tiles can be obtained by assigning
10416 a class, say C<0>, to the full tiles. The full tiles are represented by those
10417 values of the first and second schedule dimensions for which there are
10418 values of the third and fourth dimensions to cover an entire tile.
10419 That is, we need to specify the following option
10421 { [a,b,c,d] -> separation_class[[0]->[0]] :
10422 exists b': 0 <= 10a,10b' and
10423 10a+9+10b'+9 <= 100;
10424 [a,b,c,d] -> separation_class[[1]->[0]] :
10425 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
10427 which simplifies to
10429 { [a, b, c, d] -> separation_class[[1] -> [0]] :
10430 a >= 0 and b >= 0 and b <= 8 - a;
10431 [a, b, c, d] -> separation_class[[0] -> [0]] :
10432 a >= 0 and a <= 8 }
10434 With this option, the generated AST is as follows
10437 for (int c0 = 0; c0 <= 8; c0 += 1) {
10438 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10439 for (int c2 = 10 * c0;
10440 c2 <= 10 * c0 + 9; c2 += 1)
10441 for (int c3 = 10 * c1;
10442 c3 <= 10 * c1 + 9; c3 += 1)
10444 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10445 for (int c2 = 10 * c0;
10446 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10448 for (int c3 = 10 * c1;
10449 c3 <= min(-c2 + 100, 10 * c1 + 9);
10453 for (int c0 = 9; c0 <= 10; c0 += 1)
10454 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10455 for (int c2 = 10 * c0;
10456 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10458 for (int c3 = 10 * c1;
10459 c3 <= min(10 * c1 + 9, -c2 + 100);
10466 This is a single-dimensional space representing the schedule dimension(s)
10467 to which ``separation'' should be applied. Separation tries to split
10468 a loop into several pieces if this can avoid the generation of guards
10470 See also the C<atomic> option.
10474 This is a single-dimensional space representing the schedule dimension(s)
10475 for which the domains should be considered ``atomic''. That is, the
10476 AST generator will make sure that any given domain space will only appear
10477 in a single loop at the specified level.
10479 Consider the following schedule
10481 { a[i] -> [i] : 0 <= i < 10;
10482 b[i] -> [i+1] : 0 <= i < 10 }
10484 If the following option is specified
10486 { [i] -> separate[x] }
10488 then the following AST will be generated
10492 for (int c0 = 1; c0 <= 9; c0 += 1) {
10499 If, on the other hand, the following option is specified
10501 { [i] -> atomic[x] }
10503 then the following AST will be generated
10505 for (int c0 = 0; c0 <= 10; c0 += 1) {
10512 If neither C<atomic> nor C<separate> is specified, then the AST generator
10513 may produce either of these two results or some intermediate form.
10517 This is a single-dimensional space representing the schedule dimension(s)
10518 that should be I<completely> unrolled.
10519 To obtain a partial unrolling, the user should apply an additional
10520 strip-mining to the schedule and fully unroll the inner loop.
10524 =head3 Fine-grained Control over AST Generation
10526 Besides specifying the constraints on the parameters,
10527 an C<isl_ast_build> object can be used to control
10528 various aspects of the AST generation process.
10529 In case of AST construction using
10530 C<isl_ast_build_node_from_schedule_map>,
10531 the most prominent way of control is through ``options'',
10532 as explained above.
10534 Additional control is available through the following functions.
10536 #include <isl/ast_build.h>
10537 __isl_give isl_ast_build *
10538 isl_ast_build_set_iterators(
10539 __isl_take isl_ast_build *control,
10540 __isl_take isl_id_list *iterators);
10542 The function C<isl_ast_build_set_iterators> allows the user to
10543 specify a list of iterator C<isl_id>s to be used as iterators.
10544 If the input schedule is injective, then
10545 the number of elements in this list should be as large as the dimension
10546 of the schedule space, but no direct correspondence should be assumed
10547 between dimensions and elements.
10548 If the input schedule is not injective, then an additional number
10549 of C<isl_id>s equal to the largest dimension of the input domains
10551 If the number of provided C<isl_id>s is insufficient, then additional
10552 names are automatically generated.
10554 #include <isl/ast_build.h>
10555 __isl_give isl_ast_build *
10556 isl_ast_build_set_create_leaf(
10557 __isl_take isl_ast_build *control,
10558 __isl_give isl_ast_node *(*fn)(
10559 __isl_take isl_ast_build *build,
10560 void *user), void *user);
10563 C<isl_ast_build_set_create_leaf> function allows for the
10564 specification of a callback that should be called whenever the AST
10565 generator arrives at an element of the schedule domain.
10566 The callback should return an AST node that should be inserted
10567 at the corresponding position of the AST. The default action (when
10568 the callback is not set) is to continue generating parts of the AST to scan
10569 all the domain elements associated to the schedule domain element
10570 and to insert user nodes, ``calling'' the domain element, for each of them.
10571 The C<build> argument contains the current state of the C<isl_ast_build>.
10572 To ease nested AST generation (see L</"Nested AST Generation">),
10573 all control information that is
10574 specific to the current AST generation such as the options and
10575 the callbacks has been removed from this C<isl_ast_build>.
10576 The callback would typically return the result of a nested
10577 AST generation or a
10578 user defined node created using the following function.
10580 #include <isl/ast.h>
10581 __isl_give isl_ast_node *isl_ast_node_alloc_user(
10582 __isl_take isl_ast_expr *expr);
10584 #include <isl/ast_build.h>
10585 __isl_give isl_ast_build *
10586 isl_ast_build_set_at_each_domain(
10587 __isl_take isl_ast_build *build,
10588 __isl_give isl_ast_node *(*fn)(
10589 __isl_take isl_ast_node *node,
10590 __isl_keep isl_ast_build *build,
10591 void *user), void *user);
10592 __isl_give isl_ast_build *
10593 isl_ast_build_set_before_each_for(
10594 __isl_take isl_ast_build *build,
10595 __isl_give isl_id *(*fn)(
10596 __isl_keep isl_ast_build *build,
10597 void *user), void *user);
10598 __isl_give isl_ast_build *
10599 isl_ast_build_set_after_each_for(
10600 __isl_take isl_ast_build *build,
10601 __isl_give isl_ast_node *(*fn)(
10602 __isl_take isl_ast_node *node,
10603 __isl_keep isl_ast_build *build,
10604 void *user), void *user);
10605 __isl_give isl_ast_build *
10606 isl_ast_build_set_before_each_mark(
10607 __isl_take isl_ast_build *build,
10608 isl_stat (*fn)(__isl_keep isl_id *mark,
10609 __isl_keep isl_ast_build *build,
10610 void *user), void *user);
10611 __isl_give isl_ast_build *
10612 isl_ast_build_set_after_each_mark(
10613 __isl_take isl_ast_build *build,
10614 __isl_give isl_ast_node *(*fn)(
10615 __isl_take isl_ast_node *node,
10616 __isl_keep isl_ast_build *build,
10617 void *user), void *user);
10619 The callback set by C<isl_ast_build_set_at_each_domain> will
10620 be called for each domain AST node.
10621 The callbacks set by C<isl_ast_build_set_before_each_for>
10622 and C<isl_ast_build_set_after_each_for> will be called
10623 for each for AST node. The first will be called in depth-first
10624 pre-order, while the second will be called in depth-first post-order.
10625 Since C<isl_ast_build_set_before_each_for> is called before the for
10626 node is actually constructed, it is only passed an C<isl_ast_build>.
10627 The returned C<isl_id> will be added as an annotation (using
10628 C<isl_ast_node_set_annotation>) to the constructed for node.
10629 In particular, if the user has also specified an C<after_each_for>
10630 callback, then the annotation can be retrieved from the node passed to
10631 that callback using C<isl_ast_node_get_annotation>.
10632 The callbacks set by C<isl_ast_build_set_before_each_mark>
10633 and C<isl_ast_build_set_after_each_mark> will be called for each
10634 mark AST node that is created, i.e., for each mark schedule node
10635 in the input schedule tree. The first will be called in depth-first
10636 pre-order, while the second will be called in depth-first post-order.
10637 Since the callback set by C<isl_ast_build_set_before_each_mark>
10638 is called before the mark AST node is actually constructed, it is passed
10639 the identifier of the mark node.
10640 All callbacks should C<NULL> (or -1) on failure.
10641 The given C<isl_ast_build> can be used to create new
10642 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
10643 or C<isl_ast_build_call_from_pw_multi_aff>.
10645 =head3 Nested AST Generation
10647 C<isl> allows the user to create an AST within the context
10648 of another AST. These nested ASTs are created using the
10649 same C<isl_ast_build_node_from_schedule_map> function that is used to create
10650 the outer AST. The C<build> argument should be an C<isl_ast_build>
10651 passed to a callback set by
10652 C<isl_ast_build_set_create_leaf>.
10653 The space of the range of the C<schedule> argument should refer
10654 to this build. In particular, the space should be a wrapped
10655 relation and the domain of this wrapped relation should be the
10656 same as that of the range of the schedule returned by
10657 C<isl_ast_build_get_schedule> below.
10658 In practice, the new schedule is typically
10659 created by calling C<isl_union_map_range_product> on the old schedule
10660 and some extra piece of the schedule.
10661 The space of the schedule domain is also available from
10662 the C<isl_ast_build>.
10664 #include <isl/ast_build.h>
10665 __isl_give isl_union_map *isl_ast_build_get_schedule(
10666 __isl_keep isl_ast_build *build);
10667 __isl_give isl_space *isl_ast_build_get_schedule_space(
10668 __isl_keep isl_ast_build *build);
10669 __isl_give isl_ast_build *isl_ast_build_restrict(
10670 __isl_take isl_ast_build *build,
10671 __isl_take isl_set *set);
10673 The C<isl_ast_build_get_schedule> function returns a (partial)
10674 schedule for the domains elements for which part of the AST still needs to
10675 be generated in the current build.
10676 In particular, the domain elements are mapped to those iterations of the loops
10677 enclosing the current point of the AST generation inside which
10678 the domain elements are executed.
10679 No direct correspondence between
10680 the input schedule and this schedule should be assumed.
10681 The space obtained from C<isl_ast_build_get_schedule_space> can be used
10682 to create a set for C<isl_ast_build_restrict> to intersect
10683 with the current build. In particular, the set passed to
10684 C<isl_ast_build_restrict> can have additional parameters.
10685 The ids of the set dimensions in the space returned by
10686 C<isl_ast_build_get_schedule_space> correspond to the
10687 iterators of the already generated loops.
10688 The user should not rely on the ids of the output dimensions
10689 of the relations in the union relation returned by
10690 C<isl_ast_build_get_schedule> having any particular value.
10692 =head1 Applications
10694 Although C<isl> is mainly meant to be used as a library,
10695 it also contains some basic applications that use some
10696 of the functionality of C<isl>.
10697 For applications that take one or more polytopes or polyhedra
10698 as input, this input may be specified in either the L<isl format>
10699 or the L<PolyLib format>.
10701 =head2 C<isl_polyhedron_sample>
10703 C<isl_polyhedron_sample> takes a polyhedron as input and prints
10704 an integer element of the polyhedron, if there is any.
10705 The first column in the output is the denominator and is always
10706 equal to 1. If the polyhedron contains no integer points,
10707 then a vector of length zero is printed.
10711 C<isl_pip> takes the same input as the C<example> program
10712 from the C<piplib> distribution, i.e., a set of constraints
10713 on the parameters, a line containing only -1 and finally a set
10714 of constraints on a parametric polyhedron.
10715 The coefficients of the parameters appear in the last columns
10716 (but before the final constant column).
10717 The output is the lexicographic minimum of the parametric polyhedron.
10718 As C<isl> currently does not have its own output format, the output
10719 is just a dump of the internal state.
10721 =head2 C<isl_polyhedron_minimize>
10723 C<isl_polyhedron_minimize> computes the minimum of some linear
10724 or affine objective function over the integer points in a polyhedron.
10725 If an affine objective function
10726 is given, then the constant should appear in the last column.
10728 =head2 C<isl_polytope_scan>
10730 Given a polytope, C<isl_polytope_scan> prints
10731 all integer points in the polytope.
10733 =head2 C<isl_codegen>
10735 Given either a schedule tree or a sequence consisting of
10736 a schedule map, a context set and an options relation,
10737 C<isl_codegen> prints out an AST that scans the domain elements
10738 of the schedule in the order of their image(s) taking into account
10739 the constraints in the context set.
10741 =head2 C<isl_schedule>
10743 Given an C<isl_schedule_constraints> object as input,
10744 C<isl_schedule> prints out a schedule that satisfies the given