3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
173 The source of C<isl> can be obtained either as a tarball
174 or from the git repository. Both are available from
175 L<http://freshmeat.net/projects/isl/>.
176 The installation process depends on how you obtained
179 =head2 Installation from the git repository
183 =item 1 Clone or update the repository
185 The first time the source is obtained, you need to clone
188 git clone git://repo.or.cz/isl.git
190 To obtain updates, you need to pull in the latest changes
194 =item 2 Generate C<configure>
200 After performing the above steps, continue
201 with the L<Common installation instructions>.
203 =head2 Common installation instructions
207 =item 1 Obtain C<GMP>
209 Building C<isl> requires C<GMP>, including its headers files.
210 Your distribution may not provide these header files by default
211 and you may need to install a package called C<gmp-devel> or something
212 similar. Alternatively, C<GMP> can be built from
213 source, available from L<http://gmplib.org/>.
217 C<isl> uses the standard C<autoconf> C<configure> script.
222 optionally followed by some configure options.
223 A complete list of options can be obtained by running
227 Below we discuss some of the more common options.
229 C<isl> can optionally use C<piplib>, but no
230 C<piplib> functionality is currently used by default.
231 The C<--with-piplib> option can
232 be used to specify which C<piplib>
233 library to use, either an installed version (C<system>),
234 an externally built version (C<build>)
235 or no version (C<no>). The option C<build> is mostly useful
236 in C<configure> scripts of larger projects that bundle both C<isl>
243 Installation prefix for C<isl>
245 =item C<--with-gmp-prefix>
247 Installation prefix for C<GMP> (architecture-independent files).
249 =item C<--with-gmp-exec-prefix>
251 Installation prefix for C<GMP> (architecture-dependent files).
253 =item C<--with-piplib>
255 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
257 =item C<--with-piplib-prefix>
259 Installation prefix for C<system> C<piplib> (architecture-independent files).
261 =item C<--with-piplib-exec-prefix>
263 Installation prefix for C<system> C<piplib> (architecture-dependent files).
265 =item C<--with-piplib-builddir>
267 Location where C<build> C<piplib> was built.
275 =item 4 Install (optional)
283 =head2 Initialization
285 All manipulations of integer sets and relations occur within
286 the context of an C<isl_ctx>.
287 A given C<isl_ctx> can only be used within a single thread.
288 All arguments of a function are required to have been allocated
289 within the same context.
290 There are currently no functions available for moving an object
291 from one C<isl_ctx> to another C<isl_ctx>. This means that
292 there is currently no way of safely moving an object from one
293 thread to another, unless the whole C<isl_ctx> is moved.
295 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
296 freed using C<isl_ctx_free>.
297 All objects allocated within an C<isl_ctx> should be freed
298 before the C<isl_ctx> itself is freed.
300 isl_ctx *isl_ctx_alloc();
301 void isl_ctx_free(isl_ctx *ctx);
305 All operations on integers, mainly the coefficients
306 of the constraints describing the sets and relations,
307 are performed in exact integer arithmetic using C<GMP>.
308 However, to allow future versions of C<isl> to optionally
309 support fixed integer arithmetic, all calls to C<GMP>
310 are wrapped inside C<isl> specific macros.
311 The basic type is C<isl_int> and the operations below
312 are available on this type.
313 The meanings of these operations are essentially the same
314 as their C<GMP> C<mpz_> counterparts.
315 As always with C<GMP> types, C<isl_int>s need to be
316 initialized with C<isl_int_init> before they can be used
317 and they need to be released with C<isl_int_clear>
319 The user should not assume that an C<isl_int> is represented
320 as a C<mpz_t>, but should instead explicitly convert between
321 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
322 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
326 =item isl_int_init(i)
328 =item isl_int_clear(i)
330 =item isl_int_set(r,i)
332 =item isl_int_set_si(r,i)
334 =item isl_int_set_gmp(r,g)
336 =item isl_int_get_gmp(i,g)
338 =item isl_int_abs(r,i)
340 =item isl_int_neg(r,i)
342 =item isl_int_swap(i,j)
344 =item isl_int_swap_or_set(i,j)
346 =item isl_int_add_ui(r,i,j)
348 =item isl_int_sub_ui(r,i,j)
350 =item isl_int_add(r,i,j)
352 =item isl_int_sub(r,i,j)
354 =item isl_int_mul(r,i,j)
356 =item isl_int_mul_ui(r,i,j)
358 =item isl_int_addmul(r,i,j)
360 =item isl_int_submul(r,i,j)
362 =item isl_int_gcd(r,i,j)
364 =item isl_int_lcm(r,i,j)
366 =item isl_int_divexact(r,i,j)
368 =item isl_int_cdiv_q(r,i,j)
370 =item isl_int_fdiv_q(r,i,j)
372 =item isl_int_fdiv_r(r,i,j)
374 =item isl_int_fdiv_q_ui(r,i,j)
376 =item isl_int_read(r,s)
378 =item isl_int_print(out,i,width)
382 =item isl_int_cmp(i,j)
384 =item isl_int_cmp_si(i,si)
386 =item isl_int_eq(i,j)
388 =item isl_int_ne(i,j)
390 =item isl_int_lt(i,j)
392 =item isl_int_le(i,j)
394 =item isl_int_gt(i,j)
396 =item isl_int_ge(i,j)
398 =item isl_int_abs_eq(i,j)
400 =item isl_int_abs_ne(i,j)
402 =item isl_int_abs_lt(i,j)
404 =item isl_int_abs_gt(i,j)
406 =item isl_int_abs_ge(i,j)
408 =item isl_int_is_zero(i)
410 =item isl_int_is_one(i)
412 =item isl_int_is_negone(i)
414 =item isl_int_is_pos(i)
416 =item isl_int_is_neg(i)
418 =item isl_int_is_nonpos(i)
420 =item isl_int_is_nonneg(i)
422 =item isl_int_is_divisible_by(i,j)
426 =head2 Sets and Relations
428 C<isl> uses six types of objects for representing sets and relations,
429 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
430 C<isl_union_set> and C<isl_union_map>.
431 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
432 can be described as a conjunction of affine constraints, while
433 C<isl_set> and C<isl_map> represent unions of
434 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
435 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
436 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
437 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
438 where spaces are considered different if they have a different number
439 of dimensions and/or different names (see L<"Spaces">).
440 The difference between sets and relations (maps) is that sets have
441 one set of variables, while relations have two sets of variables,
442 input variables and output variables.
444 =head2 Memory Management
446 Since a high-level operation on sets and/or relations usually involves
447 several substeps and since the user is usually not interested in
448 the intermediate results, most functions that return a new object
449 will also release all the objects passed as arguments.
450 If the user still wants to use one or more of these arguments
451 after the function call, she should pass along a copy of the
452 object rather than the object itself.
453 The user is then responsible for making sure that the original
454 object gets used somewhere else or is explicitly freed.
456 The arguments and return values of all documented functions are
457 annotated to make clear which arguments are released and which
458 arguments are preserved. In particular, the following annotations
465 C<__isl_give> means that a new object is returned.
466 The user should make sure that the returned pointer is
467 used exactly once as a value for an C<__isl_take> argument.
468 In between, it can be used as a value for as many
469 C<__isl_keep> arguments as the user likes.
470 There is one exception, and that is the case where the
471 pointer returned is C<NULL>. Is this case, the user
472 is free to use it as an C<__isl_take> argument or not.
476 C<__isl_take> means that the object the argument points to
477 is taken over by the function and may no longer be used
478 by the user as an argument to any other function.
479 The pointer value must be one returned by a function
480 returning an C<__isl_give> pointer.
481 If the user passes in a C<NULL> value, then this will
482 be treated as an error in the sense that the function will
483 not perform its usual operation. However, it will still
484 make sure that all the other C<__isl_take> arguments
489 C<__isl_keep> means that the function will only use the object
490 temporarily. After the function has finished, the user
491 can still use it as an argument to other functions.
492 A C<NULL> value will be treated in the same way as
493 a C<NULL> value for an C<__isl_take> argument.
497 =head2 Error Handling
499 C<isl> supports different ways to react in case a runtime error is triggered.
500 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
501 with two maps that have incompatible spaces. There are three possible ways
502 to react on error: to warn, to continue or to abort.
504 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
505 the last error in the corresponding C<isl_ctx> and the function in which the
506 error was triggered returns C<NULL>. An error does not corrupt internal state,
507 such that isl can continue to be used. C<isl> also provides functions to
508 read the last error and to reset the memory that stores the last error. The
509 last error is only stored for information purposes. Its presence does not
510 change the behavior of C<isl>. Hence, resetting an error is not required to
511 continue to use isl, but only to observe new errors.
514 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
515 void isl_ctx_reset_error(isl_ctx *ctx);
517 Another option is to continue on error. This is similar to warn on error mode,
518 except that C<isl> does not print any warning. This allows a program to
519 implement its own error reporting.
521 The last option is to directly abort the execution of the program from within
522 the isl library. This makes it obviously impossible to recover from an error,
523 but it allows to directly spot the error location. By aborting on error,
524 debuggers break at the location the error occurred and can provide a stack
525 trace. Other tools that automatically provide stack traces on abort or that do
526 not want to continue execution after an error was triggered may also prefer to
529 The on error behavior of isl can be specified by calling
530 C<isl_options_set_on_error> or by setting the command line option
531 C<--isl-on-error>. Valid arguments for the function call are
532 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
533 choices for the command line option are C<warn>, C<continue> and C<abort>.
534 It is also possible to query the current error mode.
536 #include <isl/options.h>
537 int isl_options_set_on_error(isl_ctx *ctx, int val);
538 int isl_options_get_on_error(isl_ctx *ctx);
542 Identifiers are used to identify both individual dimensions
543 and tuples of dimensions. They consist of a name and an optional
544 pointer. Identifiers with the same name but different pointer values
545 are considered to be distinct.
546 Identifiers can be constructed, copied, freed, inspected and printed
547 using the following functions.
550 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
551 __isl_keep const char *name, void *user);
552 __isl_give isl_id *isl_id_copy(isl_id *id);
553 void *isl_id_free(__isl_take isl_id *id);
555 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
556 void *isl_id_get_user(__isl_keep isl_id *id);
557 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
559 __isl_give isl_printer *isl_printer_print_id(
560 __isl_take isl_printer *p, __isl_keep isl_id *id);
562 Note that C<isl_id_get_name> returns a pointer to some internal
563 data structure, so the result can only be used while the
564 corresponding C<isl_id> is alive.
568 Whenever a new set or relation is created from scratch,
569 the space in which it lives needs to be specified using an C<isl_space>.
571 #include <isl/space.h>
572 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
573 unsigned nparam, unsigned n_in, unsigned n_out);
574 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
576 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
577 unsigned nparam, unsigned dim);
578 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
579 void isl_space_free(__isl_take isl_space *space);
580 unsigned isl_space_dim(__isl_keep isl_space *space,
581 enum isl_dim_type type);
583 The space used for creating a parameter domain
584 needs to be created using C<isl_space_params_alloc>.
585 For other sets, the space
586 needs to be created using C<isl_space_set_alloc>, while
587 for a relation, the space
588 needs to be created using C<isl_space_alloc>.
589 C<isl_space_dim> can be used
590 to find out the number of dimensions of each type in
591 a space, where type may be
592 C<isl_dim_param>, C<isl_dim_in> (only for relations),
593 C<isl_dim_out> (only for relations), C<isl_dim_set>
594 (only for sets) or C<isl_dim_all>.
596 To check whether a given space is that of a set or a map
597 or whether it is a parameter space, use these functions:
599 #include <isl/space.h>
600 int isl_space_is_params(__isl_keep isl_space *space);
601 int isl_space_is_set(__isl_keep isl_space *space);
603 It is often useful to create objects that live in the
604 same space as some other object. This can be accomplished
605 by creating the new objects
606 (see L<Creating New Sets and Relations> or
607 L<Creating New (Piecewise) Quasipolynomials>) based on the space
608 of the original object.
611 __isl_give isl_space *isl_basic_set_get_space(
612 __isl_keep isl_basic_set *bset);
613 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
615 #include <isl/union_set.h>
616 __isl_give isl_space *isl_union_set_get_space(
617 __isl_keep isl_union_set *uset);
620 __isl_give isl_space *isl_basic_map_get_space(
621 __isl_keep isl_basic_map *bmap);
622 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
624 #include <isl/union_map.h>
625 __isl_give isl_space *isl_union_map_get_space(
626 __isl_keep isl_union_map *umap);
628 #include <isl/constraint.h>
629 __isl_give isl_space *isl_constraint_get_space(
630 __isl_keep isl_constraint *constraint);
632 #include <isl/polynomial.h>
633 __isl_give isl_space *isl_qpolynomial_get_domain_space(
634 __isl_keep isl_qpolynomial *qp);
635 __isl_give isl_space *isl_qpolynomial_get_space(
636 __isl_keep isl_qpolynomial *qp);
637 __isl_give isl_space *isl_qpolynomial_fold_get_space(
638 __isl_keep isl_qpolynomial_fold *fold);
639 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
640 __isl_keep isl_pw_qpolynomial *pwqp);
641 __isl_give isl_space *isl_pw_qpolynomial_get_space(
642 __isl_keep isl_pw_qpolynomial *pwqp);
643 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
644 __isl_keep isl_pw_qpolynomial_fold *pwf);
645 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
646 __isl_keep isl_pw_qpolynomial_fold *pwf);
647 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
648 __isl_keep isl_union_pw_qpolynomial *upwqp);
649 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
650 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
653 __isl_give isl_space *isl_aff_get_domain_space(
654 __isl_keep isl_aff *aff);
655 __isl_give isl_space *isl_aff_get_space(
656 __isl_keep isl_aff *aff);
657 __isl_give isl_space *isl_pw_aff_get_domain_space(
658 __isl_keep isl_pw_aff *pwaff);
659 __isl_give isl_space *isl_pw_aff_get_space(
660 __isl_keep isl_pw_aff *pwaff);
661 __isl_give isl_space *isl_multi_aff_get_space(
662 __isl_keep isl_multi_aff *maff);
663 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
664 __isl_keep isl_pw_multi_aff *pma);
665 __isl_give isl_space *isl_pw_multi_aff_get_space(
666 __isl_keep isl_pw_multi_aff *pma);
667 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
668 __isl_keep isl_union_pw_multi_aff *upma);
670 #include <isl/point.h>
671 __isl_give isl_space *isl_point_get_space(
672 __isl_keep isl_point *pnt);
674 The identifiers or names of the individual dimensions may be set or read off
675 using the following functions.
677 #include <isl/space.h>
678 __isl_give isl_space *isl_space_set_dim_id(
679 __isl_take isl_space *space,
680 enum isl_dim_type type, unsigned pos,
681 __isl_take isl_id *id);
682 int isl_space_has_dim_id(__isl_keep isl_space *space,
683 enum isl_dim_type type, unsigned pos);
684 __isl_give isl_id *isl_space_get_dim_id(
685 __isl_keep isl_space *space,
686 enum isl_dim_type type, unsigned pos);
687 __isl_give isl_space *isl_space_set_dim_name(
688 __isl_take isl_space *space,
689 enum isl_dim_type type, unsigned pos,
690 __isl_keep const char *name);
691 int isl_space_has_dim_name(__isl_keep isl_space *space,
692 enum isl_dim_type type, unsigned pos);
693 __isl_keep const char *isl_space_get_dim_name(
694 __isl_keep isl_space *space,
695 enum isl_dim_type type, unsigned pos);
697 Note that C<isl_space_get_name> returns a pointer to some internal
698 data structure, so the result can only be used while the
699 corresponding C<isl_space> is alive.
700 Also note that every function that operates on two sets or relations
701 requires that both arguments have the same parameters. This also
702 means that if one of the arguments has named parameters, then the
703 other needs to have named parameters too and the names need to match.
704 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
705 arguments may have different parameters (as long as they are named),
706 in which case the result will have as parameters the union of the parameters of
709 Given the identifier or name of a dimension (typically a parameter),
710 its position can be obtained from the following function.
712 #include <isl/space.h>
713 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
714 enum isl_dim_type type, __isl_keep isl_id *id);
715 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
716 enum isl_dim_type type, const char *name);
718 The identifiers or names of entire spaces may be set or read off
719 using the following functions.
721 #include <isl/space.h>
722 __isl_give isl_space *isl_space_set_tuple_id(
723 __isl_take isl_space *space,
724 enum isl_dim_type type, __isl_take isl_id *id);
725 __isl_give isl_space *isl_space_reset_tuple_id(
726 __isl_take isl_space *space, enum isl_dim_type type);
727 int isl_space_has_tuple_id(__isl_keep isl_space *space,
728 enum isl_dim_type type);
729 __isl_give isl_id *isl_space_get_tuple_id(
730 __isl_keep isl_space *space, enum isl_dim_type type);
731 __isl_give isl_space *isl_space_set_tuple_name(
732 __isl_take isl_space *space,
733 enum isl_dim_type type, const char *s);
734 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
735 enum isl_dim_type type);
737 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
738 or C<isl_dim_set>. As with C<isl_space_get_name>,
739 the C<isl_space_get_tuple_name> function returns a pointer to some internal
741 Binary operations require the corresponding spaces of their arguments
742 to have the same name.
744 Spaces can be nested. In particular, the domain of a set or
745 the domain or range of a relation can be a nested relation.
746 The following functions can be used to construct and deconstruct
749 #include <isl/space.h>
750 int isl_space_is_wrapping(__isl_keep isl_space *space);
751 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
752 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
754 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
755 be the space of a set, while that of
756 C<isl_space_wrap> should be the space of a relation.
757 Conversely, the output of C<isl_space_unwrap> is the space
758 of a relation, while that of C<isl_space_wrap> is the space of a set.
760 Spaces can be created from other spaces
761 using the following functions.
763 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
764 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
765 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
766 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
767 __isl_give isl_space *isl_space_params(
768 __isl_take isl_space *space);
769 __isl_give isl_space *isl_space_set_from_params(
770 __isl_take isl_space *space);
771 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
772 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
773 __isl_take isl_space *right);
774 __isl_give isl_space *isl_space_align_params(
775 __isl_take isl_space *space1, __isl_take isl_space *space2)
776 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
777 enum isl_dim_type type, unsigned pos, unsigned n);
778 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
779 enum isl_dim_type type, unsigned n);
780 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
781 enum isl_dim_type type, unsigned first, unsigned n);
782 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
783 enum isl_dim_type dst_type, unsigned dst_pos,
784 enum isl_dim_type src_type, unsigned src_pos,
786 __isl_give isl_space *isl_space_map_from_set(
787 __isl_take isl_space *space);
788 __isl_give isl_space *isl_space_map_from_domain_and_range(
789 __isl_take isl_space *domain,
790 __isl_take isl_space *range);
791 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
793 Note that if dimensions are added or removed from a space, then
794 the name and the internal structure are lost.
798 A local space is essentially a space with
799 zero or more existentially quantified variables.
800 The local space of a basic set or relation can be obtained
801 using the following functions.
804 __isl_give isl_local_space *isl_basic_set_get_local_space(
805 __isl_keep isl_basic_set *bset);
808 __isl_give isl_local_space *isl_basic_map_get_local_space(
809 __isl_keep isl_basic_map *bmap);
811 A new local space can be created from a space using
813 #include <isl/local_space.h>
814 __isl_give isl_local_space *isl_local_space_from_space(
815 __isl_take isl_space *space);
817 They can be inspected, modified, copied and freed using the following functions.
819 #include <isl/local_space.h>
820 isl_ctx *isl_local_space_get_ctx(
821 __isl_keep isl_local_space *ls);
822 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
823 int isl_local_space_dim(__isl_keep isl_local_space *ls,
824 enum isl_dim_type type);
825 const char *isl_local_space_get_dim_name(
826 __isl_keep isl_local_space *ls,
827 enum isl_dim_type type, unsigned pos);
828 __isl_give isl_local_space *isl_local_space_set_dim_name(
829 __isl_take isl_local_space *ls,
830 enum isl_dim_type type, unsigned pos, const char *s);
831 __isl_give isl_local_space *isl_local_space_set_dim_id(
832 __isl_take isl_local_space *ls,
833 enum isl_dim_type type, unsigned pos,
834 __isl_take isl_id *id);
835 __isl_give isl_space *isl_local_space_get_space(
836 __isl_keep isl_local_space *ls);
837 __isl_give isl_aff *isl_local_space_get_div(
838 __isl_keep isl_local_space *ls, int pos);
839 __isl_give isl_local_space *isl_local_space_copy(
840 __isl_keep isl_local_space *ls);
841 void *isl_local_space_free(__isl_take isl_local_space *ls);
843 Two local spaces can be compared using
845 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
846 __isl_keep isl_local_space *ls2);
848 Local spaces can be created from other local spaces
849 using the following functions.
851 __isl_give isl_local_space *isl_local_space_domain(
852 __isl_take isl_local_space *ls);
853 __isl_give isl_local_space *isl_local_space_range(
854 __isl_take isl_local_space *ls);
855 __isl_give isl_local_space *isl_local_space_from_domain(
856 __isl_take isl_local_space *ls);
857 __isl_give isl_local_space *isl_local_space_intersect(
858 __isl_take isl_local_space *ls1,
859 __isl_take isl_local_space *ls2);
860 __isl_give isl_local_space *isl_local_space_add_dims(
861 __isl_take isl_local_space *ls,
862 enum isl_dim_type type, unsigned n);
863 __isl_give isl_local_space *isl_local_space_insert_dims(
864 __isl_take isl_local_space *ls,
865 enum isl_dim_type type, unsigned first, unsigned n);
866 __isl_give isl_local_space *isl_local_space_drop_dims(
867 __isl_take isl_local_space *ls,
868 enum isl_dim_type type, unsigned first, unsigned n);
870 =head2 Input and Output
872 C<isl> supports its own input/output format, which is similar
873 to the C<Omega> format, but also supports the C<PolyLib> format
878 The C<isl> format is similar to that of C<Omega>, but has a different
879 syntax for describing the parameters and allows for the definition
880 of an existentially quantified variable as the integer division
881 of an affine expression.
882 For example, the set of integers C<i> between C<0> and C<n>
883 such that C<i % 10 <= 6> can be described as
885 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
888 A set or relation can have several disjuncts, separated
889 by the keyword C<or>. Each disjunct is either a conjunction
890 of constraints or a projection (C<exists>) of a conjunction
891 of constraints. The constraints are separated by the keyword
894 =head3 C<PolyLib> format
896 If the represented set is a union, then the first line
897 contains a single number representing the number of disjuncts.
898 Otherwise, a line containing the number C<1> is optional.
900 Each disjunct is represented by a matrix of constraints.
901 The first line contains two numbers representing
902 the number of rows and columns,
903 where the number of rows is equal to the number of constraints
904 and the number of columns is equal to two plus the number of variables.
905 The following lines contain the actual rows of the constraint matrix.
906 In each row, the first column indicates whether the constraint
907 is an equality (C<0>) or inequality (C<1>). The final column
908 corresponds to the constant term.
910 If the set is parametric, then the coefficients of the parameters
911 appear in the last columns before the constant column.
912 The coefficients of any existentially quantified variables appear
913 between those of the set variables and those of the parameters.
915 =head3 Extended C<PolyLib> format
917 The extended C<PolyLib> format is nearly identical to the
918 C<PolyLib> format. The only difference is that the line
919 containing the number of rows and columns of a constraint matrix
920 also contains four additional numbers:
921 the number of output dimensions, the number of input dimensions,
922 the number of local dimensions (i.e., the number of existentially
923 quantified variables) and the number of parameters.
924 For sets, the number of ``output'' dimensions is equal
925 to the number of set dimensions, while the number of ``input''
931 __isl_give isl_basic_set *isl_basic_set_read_from_file(
932 isl_ctx *ctx, FILE *input);
933 __isl_give isl_basic_set *isl_basic_set_read_from_str(
934 isl_ctx *ctx, const char *str);
935 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
937 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
941 __isl_give isl_basic_map *isl_basic_map_read_from_file(
942 isl_ctx *ctx, FILE *input);
943 __isl_give isl_basic_map *isl_basic_map_read_from_str(
944 isl_ctx *ctx, const char *str);
945 __isl_give isl_map *isl_map_read_from_file(
946 isl_ctx *ctx, FILE *input);
947 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
950 #include <isl/union_set.h>
951 __isl_give isl_union_set *isl_union_set_read_from_file(
952 isl_ctx *ctx, FILE *input);
953 __isl_give isl_union_set *isl_union_set_read_from_str(
954 isl_ctx *ctx, const char *str);
956 #include <isl/union_map.h>
957 __isl_give isl_union_map *isl_union_map_read_from_file(
958 isl_ctx *ctx, FILE *input);
959 __isl_give isl_union_map *isl_union_map_read_from_str(
960 isl_ctx *ctx, const char *str);
962 The input format is autodetected and may be either the C<PolyLib> format
963 or the C<isl> format.
967 Before anything can be printed, an C<isl_printer> needs to
970 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
972 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
973 void isl_printer_free(__isl_take isl_printer *printer);
974 __isl_give char *isl_printer_get_str(
975 __isl_keep isl_printer *printer);
977 The behavior of the printer can be modified in various ways
979 __isl_give isl_printer *isl_printer_set_output_format(
980 __isl_take isl_printer *p, int output_format);
981 __isl_give isl_printer *isl_printer_set_indent(
982 __isl_take isl_printer *p, int indent);
983 __isl_give isl_printer *isl_printer_indent(
984 __isl_take isl_printer *p, int indent);
985 __isl_give isl_printer *isl_printer_set_prefix(
986 __isl_take isl_printer *p, const char *prefix);
987 __isl_give isl_printer *isl_printer_set_suffix(
988 __isl_take isl_printer *p, const char *suffix);
990 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
991 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
992 and defaults to C<ISL_FORMAT_ISL>.
993 Each line in the output is indented by C<indent> (set by
994 C<isl_printer_set_indent>) spaces
995 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
996 In the C<PolyLib> format output,
997 the coefficients of the existentially quantified variables
998 appear between those of the set variables and those
1000 The function C<isl_printer_indent> increases the indentation
1001 by the specified amount (which may be negative).
1003 To actually print something, use
1005 #include <isl/set.h>
1006 __isl_give isl_printer *isl_printer_print_basic_set(
1007 __isl_take isl_printer *printer,
1008 __isl_keep isl_basic_set *bset);
1009 __isl_give isl_printer *isl_printer_print_set(
1010 __isl_take isl_printer *printer,
1011 __isl_keep isl_set *set);
1013 #include <isl/map.h>
1014 __isl_give isl_printer *isl_printer_print_basic_map(
1015 __isl_take isl_printer *printer,
1016 __isl_keep isl_basic_map *bmap);
1017 __isl_give isl_printer *isl_printer_print_map(
1018 __isl_take isl_printer *printer,
1019 __isl_keep isl_map *map);
1021 #include <isl/union_set.h>
1022 __isl_give isl_printer *isl_printer_print_union_set(
1023 __isl_take isl_printer *p,
1024 __isl_keep isl_union_set *uset);
1026 #include <isl/union_map.h>
1027 __isl_give isl_printer *isl_printer_print_union_map(
1028 __isl_take isl_printer *p,
1029 __isl_keep isl_union_map *umap);
1031 When called on a file printer, the following function flushes
1032 the file. When called on a string printer, the buffer is cleared.
1034 __isl_give isl_printer *isl_printer_flush(
1035 __isl_take isl_printer *p);
1037 =head2 Creating New Sets and Relations
1039 C<isl> has functions for creating some standard sets and relations.
1043 =item * Empty sets and relations
1045 __isl_give isl_basic_set *isl_basic_set_empty(
1046 __isl_take isl_space *space);
1047 __isl_give isl_basic_map *isl_basic_map_empty(
1048 __isl_take isl_space *space);
1049 __isl_give isl_set *isl_set_empty(
1050 __isl_take isl_space *space);
1051 __isl_give isl_map *isl_map_empty(
1052 __isl_take isl_space *space);
1053 __isl_give isl_union_set *isl_union_set_empty(
1054 __isl_take isl_space *space);
1055 __isl_give isl_union_map *isl_union_map_empty(
1056 __isl_take isl_space *space);
1058 For C<isl_union_set>s and C<isl_union_map>s, the space
1059 is only used to specify the parameters.
1061 =item * Universe sets and relations
1063 __isl_give isl_basic_set *isl_basic_set_universe(
1064 __isl_take isl_space *space);
1065 __isl_give isl_basic_map *isl_basic_map_universe(
1066 __isl_take isl_space *space);
1067 __isl_give isl_set *isl_set_universe(
1068 __isl_take isl_space *space);
1069 __isl_give isl_map *isl_map_universe(
1070 __isl_take isl_space *space);
1071 __isl_give isl_union_set *isl_union_set_universe(
1072 __isl_take isl_union_set *uset);
1073 __isl_give isl_union_map *isl_union_map_universe(
1074 __isl_take isl_union_map *umap);
1076 The sets and relations constructed by the functions above
1077 contain all integer values, while those constructed by the
1078 functions below only contain non-negative values.
1080 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1081 __isl_take isl_space *space);
1082 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1083 __isl_take isl_space *space);
1084 __isl_give isl_set *isl_set_nat_universe(
1085 __isl_take isl_space *space);
1086 __isl_give isl_map *isl_map_nat_universe(
1087 __isl_take isl_space *space);
1089 =item * Identity relations
1091 __isl_give isl_basic_map *isl_basic_map_identity(
1092 __isl_take isl_space *space);
1093 __isl_give isl_map *isl_map_identity(
1094 __isl_take isl_space *space);
1096 The number of input and output dimensions in C<space> needs
1099 =item * Lexicographic order
1101 __isl_give isl_map *isl_map_lex_lt(
1102 __isl_take isl_space *set_space);
1103 __isl_give isl_map *isl_map_lex_le(
1104 __isl_take isl_space *set_space);
1105 __isl_give isl_map *isl_map_lex_gt(
1106 __isl_take isl_space *set_space);
1107 __isl_give isl_map *isl_map_lex_ge(
1108 __isl_take isl_space *set_space);
1109 __isl_give isl_map *isl_map_lex_lt_first(
1110 __isl_take isl_space *space, unsigned n);
1111 __isl_give isl_map *isl_map_lex_le_first(
1112 __isl_take isl_space *space, unsigned n);
1113 __isl_give isl_map *isl_map_lex_gt_first(
1114 __isl_take isl_space *space, unsigned n);
1115 __isl_give isl_map *isl_map_lex_ge_first(
1116 __isl_take isl_space *space, unsigned n);
1118 The first four functions take a space for a B<set>
1119 and return relations that express that the elements in the domain
1120 are lexicographically less
1121 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1122 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1123 than the elements in the range.
1124 The last four functions take a space for a map
1125 and return relations that express that the first C<n> dimensions
1126 in the domain are lexicographically less
1127 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1128 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1129 than the first C<n> dimensions in the range.
1133 A basic set or relation can be converted to a set or relation
1134 using the following functions.
1136 __isl_give isl_set *isl_set_from_basic_set(
1137 __isl_take isl_basic_set *bset);
1138 __isl_give isl_map *isl_map_from_basic_map(
1139 __isl_take isl_basic_map *bmap);
1141 Sets and relations can be converted to union sets and relations
1142 using the following functions.
1144 __isl_give isl_union_map *isl_union_map_from_map(
1145 __isl_take isl_map *map);
1146 __isl_give isl_union_set *isl_union_set_from_set(
1147 __isl_take isl_set *set);
1149 The inverse conversions below can only be used if the input
1150 union set or relation is known to contain elements in exactly one
1153 __isl_give isl_set *isl_set_from_union_set(
1154 __isl_take isl_union_set *uset);
1155 __isl_give isl_map *isl_map_from_union_map(
1156 __isl_take isl_union_map *umap);
1158 A zero-dimensional set can be constructed on a given parameter domain
1159 using the following function.
1161 __isl_give isl_set *isl_set_from_params(
1162 __isl_take isl_set *set);
1164 Sets and relations can be copied and freed again using the following
1167 __isl_give isl_basic_set *isl_basic_set_copy(
1168 __isl_keep isl_basic_set *bset);
1169 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1170 __isl_give isl_union_set *isl_union_set_copy(
1171 __isl_keep isl_union_set *uset);
1172 __isl_give isl_basic_map *isl_basic_map_copy(
1173 __isl_keep isl_basic_map *bmap);
1174 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1175 __isl_give isl_union_map *isl_union_map_copy(
1176 __isl_keep isl_union_map *umap);
1177 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1178 void isl_set_free(__isl_take isl_set *set);
1179 void *isl_union_set_free(__isl_take isl_union_set *uset);
1180 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1181 void isl_map_free(__isl_take isl_map *map);
1182 void *isl_union_map_free(__isl_take isl_union_map *umap);
1184 Other sets and relations can be constructed by starting
1185 from a universe set or relation, adding equality and/or
1186 inequality constraints and then projecting out the
1187 existentially quantified variables, if any.
1188 Constraints can be constructed, manipulated and
1189 added to (or removed from) (basic) sets and relations
1190 using the following functions.
1192 #include <isl/constraint.h>
1193 __isl_give isl_constraint *isl_equality_alloc(
1194 __isl_take isl_local_space *ls);
1195 __isl_give isl_constraint *isl_inequality_alloc(
1196 __isl_take isl_local_space *ls);
1197 __isl_give isl_constraint *isl_constraint_set_constant(
1198 __isl_take isl_constraint *constraint, isl_int v);
1199 __isl_give isl_constraint *isl_constraint_set_constant_si(
1200 __isl_take isl_constraint *constraint, int v);
1201 __isl_give isl_constraint *isl_constraint_set_coefficient(
1202 __isl_take isl_constraint *constraint,
1203 enum isl_dim_type type, int pos, isl_int v);
1204 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1205 __isl_take isl_constraint *constraint,
1206 enum isl_dim_type type, int pos, int v);
1207 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1208 __isl_take isl_basic_map *bmap,
1209 __isl_take isl_constraint *constraint);
1210 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1211 __isl_take isl_basic_set *bset,
1212 __isl_take isl_constraint *constraint);
1213 __isl_give isl_map *isl_map_add_constraint(
1214 __isl_take isl_map *map,
1215 __isl_take isl_constraint *constraint);
1216 __isl_give isl_set *isl_set_add_constraint(
1217 __isl_take isl_set *set,
1218 __isl_take isl_constraint *constraint);
1219 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1220 __isl_take isl_basic_set *bset,
1221 __isl_take isl_constraint *constraint);
1223 For example, to create a set containing the even integers
1224 between 10 and 42, you would use the following code.
1227 isl_local_space *ls;
1229 isl_basic_set *bset;
1231 space = isl_space_set_alloc(ctx, 0, 2);
1232 bset = isl_basic_set_universe(isl_space_copy(space));
1233 ls = isl_local_space_from_space(space);
1235 c = isl_equality_alloc(isl_local_space_copy(ls));
1236 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1237 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1238 bset = isl_basic_set_add_constraint(bset, c);
1240 c = isl_inequality_alloc(isl_local_space_copy(ls));
1241 c = isl_constraint_set_constant_si(c, -10);
1242 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1243 bset = isl_basic_set_add_constraint(bset, c);
1245 c = isl_inequality_alloc(ls);
1246 c = isl_constraint_set_constant_si(c, 42);
1247 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1248 bset = isl_basic_set_add_constraint(bset, c);
1250 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1254 isl_basic_set *bset;
1255 bset = isl_basic_set_read_from_str(ctx,
1256 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1258 A basic set or relation can also be constructed from two matrices
1259 describing the equalities and the inequalities.
1261 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1262 __isl_take isl_space *space,
1263 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1264 enum isl_dim_type c1,
1265 enum isl_dim_type c2, enum isl_dim_type c3,
1266 enum isl_dim_type c4);
1267 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1268 __isl_take isl_space *space,
1269 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1270 enum isl_dim_type c1,
1271 enum isl_dim_type c2, enum isl_dim_type c3,
1272 enum isl_dim_type c4, enum isl_dim_type c5);
1274 The C<isl_dim_type> arguments indicate the order in which
1275 different kinds of variables appear in the input matrices
1276 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1277 C<isl_dim_set> and C<isl_dim_div> for sets and
1278 of C<isl_dim_cst>, C<isl_dim_param>,
1279 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1281 A (basic) set or relation can also be constructed from a (piecewise)
1282 (multiple) affine expression
1283 or a list of affine expressions
1284 (See L<"Piecewise Quasi Affine Expressions"> and
1285 L<"Piecewise Multiple Quasi Affine Expressions">).
1287 __isl_give isl_basic_map *isl_basic_map_from_aff(
1288 __isl_take isl_aff *aff);
1289 __isl_give isl_set *isl_set_from_pw_aff(
1290 __isl_take isl_pw_aff *pwaff);
1291 __isl_give isl_map *isl_map_from_pw_aff(
1292 __isl_take isl_pw_aff *pwaff);
1293 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1294 __isl_take isl_space *domain_space,
1295 __isl_take isl_aff_list *list);
1296 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1297 __isl_take isl_multi_aff *maff)
1298 __isl_give isl_map *isl_map_from_multi_aff(
1299 __isl_take isl_multi_aff *maff)
1300 __isl_give isl_set *isl_set_from_pw_multi_aff(
1301 __isl_take isl_pw_multi_aff *pma);
1302 __isl_give isl_map *isl_map_from_pw_multi_aff(
1303 __isl_take isl_pw_multi_aff *pma);
1305 The C<domain_dim> argument describes the domain of the resulting
1306 basic relation. It is required because the C<list> may consist
1307 of zero affine expressions.
1309 =head2 Inspecting Sets and Relations
1311 Usually, the user should not have to care about the actual constraints
1312 of the sets and maps, but should instead apply the abstract operations
1313 explained in the following sections.
1314 Occasionally, however, it may be required to inspect the individual
1315 coefficients of the constraints. This section explains how to do so.
1316 In these cases, it may also be useful to have C<isl> compute
1317 an explicit representation of the existentially quantified variables.
1319 __isl_give isl_set *isl_set_compute_divs(
1320 __isl_take isl_set *set);
1321 __isl_give isl_map *isl_map_compute_divs(
1322 __isl_take isl_map *map);
1323 __isl_give isl_union_set *isl_union_set_compute_divs(
1324 __isl_take isl_union_set *uset);
1325 __isl_give isl_union_map *isl_union_map_compute_divs(
1326 __isl_take isl_union_map *umap);
1328 This explicit representation defines the existentially quantified
1329 variables as integer divisions of the other variables, possibly
1330 including earlier existentially quantified variables.
1331 An explicitly represented existentially quantified variable therefore
1332 has a unique value when the values of the other variables are known.
1333 If, furthermore, the same existentials, i.e., existentials
1334 with the same explicit representations, should appear in the
1335 same order in each of the disjuncts of a set or map, then the user should call
1336 either of the following functions.
1338 __isl_give isl_set *isl_set_align_divs(
1339 __isl_take isl_set *set);
1340 __isl_give isl_map *isl_map_align_divs(
1341 __isl_take isl_map *map);
1343 Alternatively, the existentially quantified variables can be removed
1344 using the following functions, which compute an overapproximation.
1346 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1347 __isl_take isl_basic_set *bset);
1348 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1349 __isl_take isl_basic_map *bmap);
1350 __isl_give isl_set *isl_set_remove_divs(
1351 __isl_take isl_set *set);
1352 __isl_give isl_map *isl_map_remove_divs(
1353 __isl_take isl_map *map);
1355 To iterate over all the sets or maps in a union set or map, use
1357 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1358 int (*fn)(__isl_take isl_set *set, void *user),
1360 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1361 int (*fn)(__isl_take isl_map *map, void *user),
1364 The number of sets or maps in a union set or map can be obtained
1367 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1368 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1370 To extract the set or map in a given space from a union, use
1372 __isl_give isl_set *isl_union_set_extract_set(
1373 __isl_keep isl_union_set *uset,
1374 __isl_take isl_space *space);
1375 __isl_give isl_map *isl_union_map_extract_map(
1376 __isl_keep isl_union_map *umap,
1377 __isl_take isl_space *space);
1379 To iterate over all the basic sets or maps in a set or map, use
1381 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1382 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1384 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1385 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1388 The callback function C<fn> should return 0 if successful and
1389 -1 if an error occurs. In the latter case, or if any other error
1390 occurs, the above functions will return -1.
1392 It should be noted that C<isl> does not guarantee that
1393 the basic sets or maps passed to C<fn> are disjoint.
1394 If this is required, then the user should call one of
1395 the following functions first.
1397 __isl_give isl_set *isl_set_make_disjoint(
1398 __isl_take isl_set *set);
1399 __isl_give isl_map *isl_map_make_disjoint(
1400 __isl_take isl_map *map);
1402 The number of basic sets in a set can be obtained
1405 int isl_set_n_basic_set(__isl_keep isl_set *set);
1407 To iterate over the constraints of a basic set or map, use
1409 #include <isl/constraint.h>
1411 int isl_basic_map_foreach_constraint(
1412 __isl_keep isl_basic_map *bmap,
1413 int (*fn)(__isl_take isl_constraint *c, void *user),
1415 void *isl_constraint_free(__isl_take isl_constraint *c);
1417 Again, the callback function C<fn> should return 0 if successful and
1418 -1 if an error occurs. In the latter case, or if any other error
1419 occurs, the above functions will return -1.
1420 The constraint C<c> represents either an equality or an inequality.
1421 Use the following function to find out whether a constraint
1422 represents an equality. If not, it represents an inequality.
1424 int isl_constraint_is_equality(
1425 __isl_keep isl_constraint *constraint);
1427 The coefficients of the constraints can be inspected using
1428 the following functions.
1430 void isl_constraint_get_constant(
1431 __isl_keep isl_constraint *constraint, isl_int *v);
1432 void isl_constraint_get_coefficient(
1433 __isl_keep isl_constraint *constraint,
1434 enum isl_dim_type type, int pos, isl_int *v);
1435 int isl_constraint_involves_dims(
1436 __isl_keep isl_constraint *constraint,
1437 enum isl_dim_type type, unsigned first, unsigned n);
1439 The explicit representations of the existentially quantified
1440 variables can be inspected using the following function.
1441 Note that the user is only allowed to use this function
1442 if the inspected set or map is the result of a call
1443 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1444 The existentially quantified variable is equal to the floor
1445 of the returned affine expression. The affine expression
1446 itself can be inspected using the functions in
1447 L<"Piecewise Quasi Affine Expressions">.
1449 __isl_give isl_aff *isl_constraint_get_div(
1450 __isl_keep isl_constraint *constraint, int pos);
1452 To obtain the constraints of a basic set or map in matrix
1453 form, use the following functions.
1455 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1456 __isl_keep isl_basic_set *bset,
1457 enum isl_dim_type c1, enum isl_dim_type c2,
1458 enum isl_dim_type c3, enum isl_dim_type c4);
1459 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1460 __isl_keep isl_basic_set *bset,
1461 enum isl_dim_type c1, enum isl_dim_type c2,
1462 enum isl_dim_type c3, enum isl_dim_type c4);
1463 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1464 __isl_keep isl_basic_map *bmap,
1465 enum isl_dim_type c1,
1466 enum isl_dim_type c2, enum isl_dim_type c3,
1467 enum isl_dim_type c4, enum isl_dim_type c5);
1468 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1469 __isl_keep isl_basic_map *bmap,
1470 enum isl_dim_type c1,
1471 enum isl_dim_type c2, enum isl_dim_type c3,
1472 enum isl_dim_type c4, enum isl_dim_type c5);
1474 The C<isl_dim_type> arguments dictate the order in which
1475 different kinds of variables appear in the resulting matrix
1476 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1477 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1479 The number of parameters, input, output or set dimensions can
1480 be obtained using the following functions.
1482 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1483 enum isl_dim_type type);
1484 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1485 enum isl_dim_type type);
1486 unsigned isl_set_dim(__isl_keep isl_set *set,
1487 enum isl_dim_type type);
1488 unsigned isl_map_dim(__isl_keep isl_map *map,
1489 enum isl_dim_type type);
1491 To check whether the description of a set or relation depends
1492 on one or more given dimensions, it is not necessary to iterate over all
1493 constraints. Instead the following functions can be used.
1495 int isl_basic_set_involves_dims(
1496 __isl_keep isl_basic_set *bset,
1497 enum isl_dim_type type, unsigned first, unsigned n);
1498 int isl_set_involves_dims(__isl_keep isl_set *set,
1499 enum isl_dim_type type, unsigned first, unsigned n);
1500 int isl_basic_map_involves_dims(
1501 __isl_keep isl_basic_map *bmap,
1502 enum isl_dim_type type, unsigned first, unsigned n);
1503 int isl_map_involves_dims(__isl_keep isl_map *map,
1504 enum isl_dim_type type, unsigned first, unsigned n);
1506 Similarly, the following functions can be used to check whether
1507 a given dimension is involved in any lower or upper bound.
1509 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1510 enum isl_dim_type type, unsigned pos);
1511 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1512 enum isl_dim_type type, unsigned pos);
1514 The identifiers or names of the domain and range spaces of a set
1515 or relation can be read off or set using the following functions.
1517 __isl_give isl_set *isl_set_set_tuple_id(
1518 __isl_take isl_set *set, __isl_take isl_id *id);
1519 __isl_give isl_set *isl_set_reset_tuple_id(
1520 __isl_take isl_set *set);
1521 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1522 __isl_give isl_id *isl_set_get_tuple_id(
1523 __isl_keep isl_set *set);
1524 __isl_give isl_map *isl_map_set_tuple_id(
1525 __isl_take isl_map *map, enum isl_dim_type type,
1526 __isl_take isl_id *id);
1527 __isl_give isl_map *isl_map_reset_tuple_id(
1528 __isl_take isl_map *map, enum isl_dim_type type);
1529 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1530 enum isl_dim_type type);
1531 __isl_give isl_id *isl_map_get_tuple_id(
1532 __isl_keep isl_map *map, enum isl_dim_type type);
1534 const char *isl_basic_set_get_tuple_name(
1535 __isl_keep isl_basic_set *bset);
1536 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1537 __isl_take isl_basic_set *set, const char *s);
1538 const char *isl_set_get_tuple_name(
1539 __isl_keep isl_set *set);
1540 const char *isl_basic_map_get_tuple_name(
1541 __isl_keep isl_basic_map *bmap,
1542 enum isl_dim_type type);
1543 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1544 __isl_take isl_basic_map *bmap,
1545 enum isl_dim_type type, const char *s);
1546 const char *isl_map_get_tuple_name(
1547 __isl_keep isl_map *map,
1548 enum isl_dim_type type);
1550 As with C<isl_space_get_tuple_name>, the value returned points to
1551 an internal data structure.
1552 The identifiers, positions or names of individual dimensions can be
1553 read off using the following functions.
1555 __isl_give isl_set *isl_set_set_dim_id(
1556 __isl_take isl_set *set, enum isl_dim_type type,
1557 unsigned pos, __isl_take isl_id *id);
1558 int isl_set_has_dim_id(__isl_keep isl_set *set,
1559 enum isl_dim_type type, unsigned pos);
1560 __isl_give isl_id *isl_set_get_dim_id(
1561 __isl_keep isl_set *set, enum isl_dim_type type,
1563 int isl_basic_map_has_dim_id(
1564 __isl_keep isl_basic_map *bmap,
1565 enum isl_dim_type type, unsigned pos);
1566 __isl_give isl_map *isl_map_set_dim_id(
1567 __isl_take isl_map *map, enum isl_dim_type type,
1568 unsigned pos, __isl_take isl_id *id);
1569 int isl_map_has_dim_id(__isl_keep isl_map *map,
1570 enum isl_dim_type type, unsigned pos);
1571 __isl_give isl_id *isl_map_get_dim_id(
1572 __isl_keep isl_map *map, enum isl_dim_type type,
1575 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1576 enum isl_dim_type type, __isl_keep isl_id *id);
1577 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1578 enum isl_dim_type type, __isl_keep isl_id *id);
1579 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1580 enum isl_dim_type type, const char *name);
1581 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1582 enum isl_dim_type type, const char *name);
1584 const char *isl_constraint_get_dim_name(
1585 __isl_keep isl_constraint *constraint,
1586 enum isl_dim_type type, unsigned pos);
1587 const char *isl_basic_set_get_dim_name(
1588 __isl_keep isl_basic_set *bset,
1589 enum isl_dim_type type, unsigned pos);
1590 int isl_set_has_dim_name(__isl_keep isl_set *set,
1591 enum isl_dim_type type, unsigned pos);
1592 const char *isl_set_get_dim_name(
1593 __isl_keep isl_set *set,
1594 enum isl_dim_type type, unsigned pos);
1595 const char *isl_basic_map_get_dim_name(
1596 __isl_keep isl_basic_map *bmap,
1597 enum isl_dim_type type, unsigned pos);
1598 const char *isl_map_get_dim_name(
1599 __isl_keep isl_map *map,
1600 enum isl_dim_type type, unsigned pos);
1602 These functions are mostly useful to obtain the identifiers, positions
1603 or names of the parameters. Identifiers of individual dimensions are
1604 essentially only useful for printing. They are ignored by all other
1605 operations and may not be preserved across those operations.
1609 =head3 Unary Properties
1615 The following functions test whether the given set or relation
1616 contains any integer points. The ``plain'' variants do not perform
1617 any computations, but simply check if the given set or relation
1618 is already known to be empty.
1620 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1621 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1622 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1623 int isl_set_is_empty(__isl_keep isl_set *set);
1624 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1625 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1626 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1627 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1628 int isl_map_is_empty(__isl_keep isl_map *map);
1629 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1631 =item * Universality
1633 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1634 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1635 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1637 =item * Single-valuedness
1639 int isl_map_plain_is_single_valued(
1640 __isl_keep isl_map *map);
1641 int isl_map_is_single_valued(__isl_keep isl_map *map);
1642 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1646 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1647 int isl_map_is_injective(__isl_keep isl_map *map);
1648 int isl_union_map_plain_is_injective(
1649 __isl_keep isl_union_map *umap);
1650 int isl_union_map_is_injective(
1651 __isl_keep isl_union_map *umap);
1655 int isl_map_is_bijective(__isl_keep isl_map *map);
1656 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1660 int isl_basic_map_plain_is_fixed(
1661 __isl_keep isl_basic_map *bmap,
1662 enum isl_dim_type type, unsigned pos,
1664 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1665 enum isl_dim_type type, unsigned pos,
1667 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1668 enum isl_dim_type type, unsigned pos,
1671 Check if the relation obviously lies on a hyperplane where the given dimension
1672 has a fixed value and if so, return that value in C<*val>.
1676 To check whether a set is a parameter domain, use this function:
1678 int isl_set_is_params(__isl_keep isl_set *set);
1679 int isl_union_set_is_params(
1680 __isl_keep isl_union_set *uset);
1684 The following functions check whether the domain of the given
1685 (basic) set is a wrapped relation.
1687 int isl_basic_set_is_wrapping(
1688 __isl_keep isl_basic_set *bset);
1689 int isl_set_is_wrapping(__isl_keep isl_set *set);
1691 =item * Internal Product
1693 int isl_basic_map_can_zip(
1694 __isl_keep isl_basic_map *bmap);
1695 int isl_map_can_zip(__isl_keep isl_map *map);
1697 Check whether the product of domain and range of the given relation
1699 i.e., whether both domain and range are nested relations.
1703 =head3 Binary Properties
1709 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1710 __isl_keep isl_set *set2);
1711 int isl_set_is_equal(__isl_keep isl_set *set1,
1712 __isl_keep isl_set *set2);
1713 int isl_union_set_is_equal(
1714 __isl_keep isl_union_set *uset1,
1715 __isl_keep isl_union_set *uset2);
1716 int isl_basic_map_is_equal(
1717 __isl_keep isl_basic_map *bmap1,
1718 __isl_keep isl_basic_map *bmap2);
1719 int isl_map_is_equal(__isl_keep isl_map *map1,
1720 __isl_keep isl_map *map2);
1721 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1722 __isl_keep isl_map *map2);
1723 int isl_union_map_is_equal(
1724 __isl_keep isl_union_map *umap1,
1725 __isl_keep isl_union_map *umap2);
1727 =item * Disjointness
1729 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1730 __isl_keep isl_set *set2);
1734 int isl_basic_set_is_subset(
1735 __isl_keep isl_basic_set *bset1,
1736 __isl_keep isl_basic_set *bset2);
1737 int isl_set_is_subset(__isl_keep isl_set *set1,
1738 __isl_keep isl_set *set2);
1739 int isl_set_is_strict_subset(
1740 __isl_keep isl_set *set1,
1741 __isl_keep isl_set *set2);
1742 int isl_union_set_is_subset(
1743 __isl_keep isl_union_set *uset1,
1744 __isl_keep isl_union_set *uset2);
1745 int isl_union_set_is_strict_subset(
1746 __isl_keep isl_union_set *uset1,
1747 __isl_keep isl_union_set *uset2);
1748 int isl_basic_map_is_subset(
1749 __isl_keep isl_basic_map *bmap1,
1750 __isl_keep isl_basic_map *bmap2);
1751 int isl_basic_map_is_strict_subset(
1752 __isl_keep isl_basic_map *bmap1,
1753 __isl_keep isl_basic_map *bmap2);
1754 int isl_map_is_subset(
1755 __isl_keep isl_map *map1,
1756 __isl_keep isl_map *map2);
1757 int isl_map_is_strict_subset(
1758 __isl_keep isl_map *map1,
1759 __isl_keep isl_map *map2);
1760 int isl_union_map_is_subset(
1761 __isl_keep isl_union_map *umap1,
1762 __isl_keep isl_union_map *umap2);
1763 int isl_union_map_is_strict_subset(
1764 __isl_keep isl_union_map *umap1,
1765 __isl_keep isl_union_map *umap2);
1769 =head2 Unary Operations
1775 __isl_give isl_set *isl_set_complement(
1776 __isl_take isl_set *set);
1777 __isl_give isl_map *isl_map_complement(
1778 __isl_take isl_map *map);
1782 __isl_give isl_basic_map *isl_basic_map_reverse(
1783 __isl_take isl_basic_map *bmap);
1784 __isl_give isl_map *isl_map_reverse(
1785 __isl_take isl_map *map);
1786 __isl_give isl_union_map *isl_union_map_reverse(
1787 __isl_take isl_union_map *umap);
1791 __isl_give isl_basic_set *isl_basic_set_project_out(
1792 __isl_take isl_basic_set *bset,
1793 enum isl_dim_type type, unsigned first, unsigned n);
1794 __isl_give isl_basic_map *isl_basic_map_project_out(
1795 __isl_take isl_basic_map *bmap,
1796 enum isl_dim_type type, unsigned first, unsigned n);
1797 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1798 enum isl_dim_type type, unsigned first, unsigned n);
1799 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1800 enum isl_dim_type type, unsigned first, unsigned n);
1801 __isl_give isl_basic_set *isl_basic_set_params(
1802 __isl_take isl_basic_set *bset);
1803 __isl_give isl_basic_set *isl_basic_map_domain(
1804 __isl_take isl_basic_map *bmap);
1805 __isl_give isl_basic_set *isl_basic_map_range(
1806 __isl_take isl_basic_map *bmap);
1807 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1808 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1809 __isl_give isl_set *isl_map_domain(
1810 __isl_take isl_map *bmap);
1811 __isl_give isl_set *isl_map_range(
1812 __isl_take isl_map *map);
1813 __isl_give isl_set *isl_union_set_params(
1814 __isl_take isl_union_set *uset);
1815 __isl_give isl_set *isl_union_map_params(
1816 __isl_take isl_union_map *umap);
1817 __isl_give isl_union_set *isl_union_map_domain(
1818 __isl_take isl_union_map *umap);
1819 __isl_give isl_union_set *isl_union_map_range(
1820 __isl_take isl_union_map *umap);
1822 __isl_give isl_basic_map *isl_basic_map_domain_map(
1823 __isl_take isl_basic_map *bmap);
1824 __isl_give isl_basic_map *isl_basic_map_range_map(
1825 __isl_take isl_basic_map *bmap);
1826 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1827 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1828 __isl_give isl_union_map *isl_union_map_domain_map(
1829 __isl_take isl_union_map *umap);
1830 __isl_give isl_union_map *isl_union_map_range_map(
1831 __isl_take isl_union_map *umap);
1833 The functions above construct a (basic, regular or union) relation
1834 that maps (a wrapped version of) the input relation to its domain or range.
1838 __isl_give isl_set *isl_set_eliminate(
1839 __isl_take isl_set *set, enum isl_dim_type type,
1840 unsigned first, unsigned n);
1841 __isl_give isl_basic_map *isl_basic_map_eliminate(
1842 __isl_take isl_basic_map *bmap,
1843 enum isl_dim_type type,
1844 unsigned first, unsigned n);
1845 __isl_give isl_map *isl_map_eliminate(
1846 __isl_take isl_map *map, enum isl_dim_type type,
1847 unsigned first, unsigned n);
1849 Eliminate the coefficients for the given dimensions from the constraints,
1850 without removing the dimensions.
1854 __isl_give isl_basic_set *isl_basic_set_fix(
1855 __isl_take isl_basic_set *bset,
1856 enum isl_dim_type type, unsigned pos,
1858 __isl_give isl_basic_set *isl_basic_set_fix_si(
1859 __isl_take isl_basic_set *bset,
1860 enum isl_dim_type type, unsigned pos, int value);
1861 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1862 enum isl_dim_type type, unsigned pos,
1864 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1865 enum isl_dim_type type, unsigned pos, int value);
1866 __isl_give isl_basic_map *isl_basic_map_fix_si(
1867 __isl_take isl_basic_map *bmap,
1868 enum isl_dim_type type, unsigned pos, int value);
1869 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1870 enum isl_dim_type type, unsigned pos, int value);
1872 Intersect the set or relation with the hyperplane where the given
1873 dimension has the fixed given value.
1875 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
1876 __isl_take isl_basic_map *bmap,
1877 enum isl_dim_type type, unsigned pos, int value);
1878 __isl_give isl_set *isl_set_lower_bound(
1879 __isl_take isl_set *set,
1880 enum isl_dim_type type, unsigned pos,
1882 __isl_give isl_set *isl_set_lower_bound_si(
1883 __isl_take isl_set *set,
1884 enum isl_dim_type type, unsigned pos, int value);
1885 __isl_give isl_map *isl_map_lower_bound_si(
1886 __isl_take isl_map *map,
1887 enum isl_dim_type type, unsigned pos, int value);
1888 __isl_give isl_set *isl_set_upper_bound(
1889 __isl_take isl_set *set,
1890 enum isl_dim_type type, unsigned pos,
1892 __isl_give isl_set *isl_set_upper_bound_si(
1893 __isl_take isl_set *set,
1894 enum isl_dim_type type, unsigned pos, int value);
1895 __isl_give isl_map *isl_map_upper_bound_si(
1896 __isl_take isl_map *map,
1897 enum isl_dim_type type, unsigned pos, int value);
1899 Intersect the set or relation with the half-space where the given
1900 dimension has a value bounded by the fixed given value.
1902 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1903 enum isl_dim_type type1, int pos1,
1904 enum isl_dim_type type2, int pos2);
1905 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1906 enum isl_dim_type type1, int pos1,
1907 enum isl_dim_type type2, int pos2);
1909 Intersect the set or relation with the hyperplane where the given
1910 dimensions are equal to each other.
1912 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1913 enum isl_dim_type type1, int pos1,
1914 enum isl_dim_type type2, int pos2);
1916 Intersect the relation with the hyperplane where the given
1917 dimensions have opposite values.
1921 __isl_give isl_map *isl_set_identity(
1922 __isl_take isl_set *set);
1923 __isl_give isl_union_map *isl_union_set_identity(
1924 __isl_take isl_union_set *uset);
1926 Construct an identity relation on the given (union) set.
1930 __isl_give isl_basic_set *isl_basic_map_deltas(
1931 __isl_take isl_basic_map *bmap);
1932 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1933 __isl_give isl_union_set *isl_union_map_deltas(
1934 __isl_take isl_union_map *umap);
1936 These functions return a (basic) set containing the differences
1937 between image elements and corresponding domain elements in the input.
1939 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1940 __isl_take isl_basic_map *bmap);
1941 __isl_give isl_map *isl_map_deltas_map(
1942 __isl_take isl_map *map);
1943 __isl_give isl_union_map *isl_union_map_deltas_map(
1944 __isl_take isl_union_map *umap);
1946 The functions above construct a (basic, regular or union) relation
1947 that maps (a wrapped version of) the input relation to its delta set.
1951 Simplify the representation of a set or relation by trying
1952 to combine pairs of basic sets or relations into a single
1953 basic set or relation.
1955 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1956 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1957 __isl_give isl_union_set *isl_union_set_coalesce(
1958 __isl_take isl_union_set *uset);
1959 __isl_give isl_union_map *isl_union_map_coalesce(
1960 __isl_take isl_union_map *umap);
1962 One of the methods for combining pairs of basic sets or relations
1963 can result in coefficients that are much larger than those that appear
1964 in the constraints of the input. By default, the coefficients are
1965 not allowed to grow larger, but this can be changed by unsetting
1966 the following option.
1968 int isl_options_set_coalesce_bounded_wrapping(
1969 isl_ctx *ctx, int val);
1970 int isl_options_get_coalesce_bounded_wrapping(
1973 =item * Detecting equalities
1975 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1976 __isl_take isl_basic_set *bset);
1977 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1978 __isl_take isl_basic_map *bmap);
1979 __isl_give isl_set *isl_set_detect_equalities(
1980 __isl_take isl_set *set);
1981 __isl_give isl_map *isl_map_detect_equalities(
1982 __isl_take isl_map *map);
1983 __isl_give isl_union_set *isl_union_set_detect_equalities(
1984 __isl_take isl_union_set *uset);
1985 __isl_give isl_union_map *isl_union_map_detect_equalities(
1986 __isl_take isl_union_map *umap);
1988 Simplify the representation of a set or relation by detecting implicit
1991 =item * Removing redundant constraints
1993 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1994 __isl_take isl_basic_set *bset);
1995 __isl_give isl_set *isl_set_remove_redundancies(
1996 __isl_take isl_set *set);
1997 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1998 __isl_take isl_basic_map *bmap);
1999 __isl_give isl_map *isl_map_remove_redundancies(
2000 __isl_take isl_map *map);
2004 __isl_give isl_basic_set *isl_set_convex_hull(
2005 __isl_take isl_set *set);
2006 __isl_give isl_basic_map *isl_map_convex_hull(
2007 __isl_take isl_map *map);
2009 If the input set or relation has any existentially quantified
2010 variables, then the result of these operations is currently undefined.
2014 __isl_give isl_basic_set *isl_set_simple_hull(
2015 __isl_take isl_set *set);
2016 __isl_give isl_basic_map *isl_map_simple_hull(
2017 __isl_take isl_map *map);
2018 __isl_give isl_union_map *isl_union_map_simple_hull(
2019 __isl_take isl_union_map *umap);
2021 These functions compute a single basic set or relation
2022 that contains the whole input set or relation.
2023 In particular, the output is described by translates
2024 of the constraints describing the basic sets or relations in the input.
2028 (See \autoref{s:simple hull}.)
2034 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2035 __isl_take isl_basic_set *bset);
2036 __isl_give isl_basic_set *isl_set_affine_hull(
2037 __isl_take isl_set *set);
2038 __isl_give isl_union_set *isl_union_set_affine_hull(
2039 __isl_take isl_union_set *uset);
2040 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2041 __isl_take isl_basic_map *bmap);
2042 __isl_give isl_basic_map *isl_map_affine_hull(
2043 __isl_take isl_map *map);
2044 __isl_give isl_union_map *isl_union_map_affine_hull(
2045 __isl_take isl_union_map *umap);
2047 In case of union sets and relations, the affine hull is computed
2050 =item * Polyhedral hull
2052 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2053 __isl_take isl_set *set);
2054 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2055 __isl_take isl_map *map);
2056 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2057 __isl_take isl_union_set *uset);
2058 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2059 __isl_take isl_union_map *umap);
2061 These functions compute a single basic set or relation
2062 not involving any existentially quantified variables
2063 that contains the whole input set or relation.
2064 In case of union sets and relations, the polyhedral hull is computed
2069 __isl_give isl_basic_set *isl_basic_set_sample(
2070 __isl_take isl_basic_set *bset);
2071 __isl_give isl_basic_set *isl_set_sample(
2072 __isl_take isl_set *set);
2073 __isl_give isl_basic_map *isl_basic_map_sample(
2074 __isl_take isl_basic_map *bmap);
2075 __isl_give isl_basic_map *isl_map_sample(
2076 __isl_take isl_map *map);
2078 If the input (basic) set or relation is non-empty, then return
2079 a singleton subset of the input. Otherwise, return an empty set.
2081 =item * Optimization
2083 #include <isl/ilp.h>
2084 enum isl_lp_result isl_basic_set_max(
2085 __isl_keep isl_basic_set *bset,
2086 __isl_keep isl_aff *obj, isl_int *opt)
2087 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2088 __isl_keep isl_aff *obj, isl_int *opt);
2089 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2090 __isl_keep isl_aff *obj, isl_int *opt);
2092 Compute the minimum or maximum of the integer affine expression C<obj>
2093 over the points in C<set>, returning the result in C<opt>.
2094 The return value may be one of C<isl_lp_error>,
2095 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2097 =item * Parametric optimization
2099 __isl_give isl_pw_aff *isl_set_dim_min(
2100 __isl_take isl_set *set, int pos);
2101 __isl_give isl_pw_aff *isl_set_dim_max(
2102 __isl_take isl_set *set, int pos);
2103 __isl_give isl_pw_aff *isl_map_dim_max(
2104 __isl_take isl_map *map, int pos);
2106 Compute the minimum or maximum of the given set or output dimension
2107 as a function of the parameters (and input dimensions), but independently
2108 of the other set or output dimensions.
2109 For lexicographic optimization, see L<"Lexicographic Optimization">.
2113 The following functions compute either the set of (rational) coefficient
2114 values of valid constraints for the given set or the set of (rational)
2115 values satisfying the constraints with coefficients from the given set.
2116 Internally, these two sets of functions perform essentially the
2117 same operations, except that the set of coefficients is assumed to
2118 be a cone, while the set of values may be any polyhedron.
2119 The current implementation is based on the Farkas lemma and
2120 Fourier-Motzkin elimination, but this may change or be made optional
2121 in future. In particular, future implementations may use different
2122 dualization algorithms or skip the elimination step.
2124 __isl_give isl_basic_set *isl_basic_set_coefficients(
2125 __isl_take isl_basic_set *bset);
2126 __isl_give isl_basic_set *isl_set_coefficients(
2127 __isl_take isl_set *set);
2128 __isl_give isl_union_set *isl_union_set_coefficients(
2129 __isl_take isl_union_set *bset);
2130 __isl_give isl_basic_set *isl_basic_set_solutions(
2131 __isl_take isl_basic_set *bset);
2132 __isl_give isl_basic_set *isl_set_solutions(
2133 __isl_take isl_set *set);
2134 __isl_give isl_union_set *isl_union_set_solutions(
2135 __isl_take isl_union_set *bset);
2139 __isl_give isl_map *isl_map_fixed_power(
2140 __isl_take isl_map *map, isl_int exp);
2141 __isl_give isl_union_map *isl_union_map_fixed_power(
2142 __isl_take isl_union_map *umap, isl_int exp);
2144 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2145 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2146 of C<map> is computed.
2148 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2150 __isl_give isl_union_map *isl_union_map_power(
2151 __isl_take isl_union_map *umap, int *exact);
2153 Compute a parametric representation for all positive powers I<k> of C<map>.
2154 The result maps I<k> to a nested relation corresponding to the
2155 I<k>th power of C<map>.
2156 The result may be an overapproximation. If the result is known to be exact,
2157 then C<*exact> is set to C<1>.
2159 =item * Transitive closure
2161 __isl_give isl_map *isl_map_transitive_closure(
2162 __isl_take isl_map *map, int *exact);
2163 __isl_give isl_union_map *isl_union_map_transitive_closure(
2164 __isl_take isl_union_map *umap, int *exact);
2166 Compute the transitive closure of C<map>.
2167 The result may be an overapproximation. If the result is known to be exact,
2168 then C<*exact> is set to C<1>.
2170 =item * Reaching path lengths
2172 __isl_give isl_map *isl_map_reaching_path_lengths(
2173 __isl_take isl_map *map, int *exact);
2175 Compute a relation that maps each element in the range of C<map>
2176 to the lengths of all paths composed of edges in C<map> that
2177 end up in the given element.
2178 The result may be an overapproximation. If the result is known to be exact,
2179 then C<*exact> is set to C<1>.
2180 To compute the I<maximal> path length, the resulting relation
2181 should be postprocessed by C<isl_map_lexmax>.
2182 In particular, if the input relation is a dependence relation
2183 (mapping sources to sinks), then the maximal path length corresponds
2184 to the free schedule.
2185 Note, however, that C<isl_map_lexmax> expects the maximum to be
2186 finite, so if the path lengths are unbounded (possibly due to
2187 the overapproximation), then you will get an error message.
2191 __isl_give isl_basic_set *isl_basic_map_wrap(
2192 __isl_take isl_basic_map *bmap);
2193 __isl_give isl_set *isl_map_wrap(
2194 __isl_take isl_map *map);
2195 __isl_give isl_union_set *isl_union_map_wrap(
2196 __isl_take isl_union_map *umap);
2197 __isl_give isl_basic_map *isl_basic_set_unwrap(
2198 __isl_take isl_basic_set *bset);
2199 __isl_give isl_map *isl_set_unwrap(
2200 __isl_take isl_set *set);
2201 __isl_give isl_union_map *isl_union_set_unwrap(
2202 __isl_take isl_union_set *uset);
2206 Remove any internal structure of domain (and range) of the given
2207 set or relation. If there is any such internal structure in the input,
2208 then the name of the space is also removed.
2210 __isl_give isl_basic_set *isl_basic_set_flatten(
2211 __isl_take isl_basic_set *bset);
2212 __isl_give isl_set *isl_set_flatten(
2213 __isl_take isl_set *set);
2214 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2215 __isl_take isl_basic_map *bmap);
2216 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2217 __isl_take isl_basic_map *bmap);
2218 __isl_give isl_map *isl_map_flatten_range(
2219 __isl_take isl_map *map);
2220 __isl_give isl_map *isl_map_flatten_domain(
2221 __isl_take isl_map *map);
2222 __isl_give isl_basic_map *isl_basic_map_flatten(
2223 __isl_take isl_basic_map *bmap);
2224 __isl_give isl_map *isl_map_flatten(
2225 __isl_take isl_map *map);
2227 __isl_give isl_map *isl_set_flatten_map(
2228 __isl_take isl_set *set);
2230 The function above constructs a relation
2231 that maps the input set to a flattened version of the set.
2235 Lift the input set to a space with extra dimensions corresponding
2236 to the existentially quantified variables in the input.
2237 In particular, the result lives in a wrapped map where the domain
2238 is the original space and the range corresponds to the original
2239 existentially quantified variables.
2241 __isl_give isl_basic_set *isl_basic_set_lift(
2242 __isl_take isl_basic_set *bset);
2243 __isl_give isl_set *isl_set_lift(
2244 __isl_take isl_set *set);
2245 __isl_give isl_union_set *isl_union_set_lift(
2246 __isl_take isl_union_set *uset);
2248 Given a local space that contains the existentially quantified
2249 variables of a set, a basic relation that, when applied to
2250 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2251 can be constructed using the following function.
2253 #include <isl/local_space.h>
2254 __isl_give isl_basic_map *isl_local_space_lifting(
2255 __isl_take isl_local_space *ls);
2257 =item * Internal Product
2259 __isl_give isl_basic_map *isl_basic_map_zip(
2260 __isl_take isl_basic_map *bmap);
2261 __isl_give isl_map *isl_map_zip(
2262 __isl_take isl_map *map);
2263 __isl_give isl_union_map *isl_union_map_zip(
2264 __isl_take isl_union_map *umap);
2266 Given a relation with nested relations for domain and range,
2267 interchange the range of the domain with the domain of the range.
2269 =item * Aligning parameters
2271 __isl_give isl_set *isl_set_align_params(
2272 __isl_take isl_set *set,
2273 __isl_take isl_space *model);
2274 __isl_give isl_map *isl_map_align_params(
2275 __isl_take isl_map *map,
2276 __isl_take isl_space *model);
2278 Change the order of the parameters of the given set or relation
2279 such that the first parameters match those of C<model>.
2280 This may involve the introduction of extra parameters.
2281 All parameters need to be named.
2283 =item * Dimension manipulation
2285 __isl_give isl_set *isl_set_add_dims(
2286 __isl_take isl_set *set,
2287 enum isl_dim_type type, unsigned n);
2288 __isl_give isl_map *isl_map_add_dims(
2289 __isl_take isl_map *map,
2290 enum isl_dim_type type, unsigned n);
2291 __isl_give isl_set *isl_set_insert_dims(
2292 __isl_take isl_set *set,
2293 enum isl_dim_type type, unsigned pos, unsigned n);
2294 __isl_give isl_map *isl_map_insert_dims(
2295 __isl_take isl_map *map,
2296 enum isl_dim_type type, unsigned pos, unsigned n);
2297 __isl_give isl_basic_set *isl_basic_set_move_dims(
2298 __isl_take isl_basic_set *bset,
2299 enum isl_dim_type dst_type, unsigned dst_pos,
2300 enum isl_dim_type src_type, unsigned src_pos,
2302 __isl_give isl_basic_map *isl_basic_map_move_dims(
2303 __isl_take isl_basic_map *bmap,
2304 enum isl_dim_type dst_type, unsigned dst_pos,
2305 enum isl_dim_type src_type, unsigned src_pos,
2307 __isl_give isl_set *isl_set_move_dims(
2308 __isl_take isl_set *set,
2309 enum isl_dim_type dst_type, unsigned dst_pos,
2310 enum isl_dim_type src_type, unsigned src_pos,
2312 __isl_give isl_map *isl_map_move_dims(
2313 __isl_take isl_map *map,
2314 enum isl_dim_type dst_type, unsigned dst_pos,
2315 enum isl_dim_type src_type, unsigned src_pos,
2318 It is usually not advisable to directly change the (input or output)
2319 space of a set or a relation as this removes the name and the internal
2320 structure of the space. However, the above functions can be useful
2321 to add new parameters, assuming
2322 C<isl_set_align_params> and C<isl_map_align_params>
2327 =head2 Binary Operations
2329 The two arguments of a binary operation not only need to live
2330 in the same C<isl_ctx>, they currently also need to have
2331 the same (number of) parameters.
2333 =head3 Basic Operations
2337 =item * Intersection
2339 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2340 __isl_take isl_basic_set *bset1,
2341 __isl_take isl_basic_set *bset2);
2342 __isl_give isl_basic_set *isl_basic_set_intersect(
2343 __isl_take isl_basic_set *bset1,
2344 __isl_take isl_basic_set *bset2);
2345 __isl_give isl_set *isl_set_intersect_params(
2346 __isl_take isl_set *set,
2347 __isl_take isl_set *params);
2348 __isl_give isl_set *isl_set_intersect(
2349 __isl_take isl_set *set1,
2350 __isl_take isl_set *set2);
2351 __isl_give isl_union_set *isl_union_set_intersect_params(
2352 __isl_take isl_union_set *uset,
2353 __isl_take isl_set *set);
2354 __isl_give isl_union_map *isl_union_map_intersect_params(
2355 __isl_take isl_union_map *umap,
2356 __isl_take isl_set *set);
2357 __isl_give isl_union_set *isl_union_set_intersect(
2358 __isl_take isl_union_set *uset1,
2359 __isl_take isl_union_set *uset2);
2360 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2361 __isl_take isl_basic_map *bmap,
2362 __isl_take isl_basic_set *bset);
2363 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2364 __isl_take isl_basic_map *bmap,
2365 __isl_take isl_basic_set *bset);
2366 __isl_give isl_basic_map *isl_basic_map_intersect(
2367 __isl_take isl_basic_map *bmap1,
2368 __isl_take isl_basic_map *bmap2);
2369 __isl_give isl_map *isl_map_intersect_params(
2370 __isl_take isl_map *map,
2371 __isl_take isl_set *params);
2372 __isl_give isl_map *isl_map_intersect_domain(
2373 __isl_take isl_map *map,
2374 __isl_take isl_set *set);
2375 __isl_give isl_map *isl_map_intersect_range(
2376 __isl_take isl_map *map,
2377 __isl_take isl_set *set);
2378 __isl_give isl_map *isl_map_intersect(
2379 __isl_take isl_map *map1,
2380 __isl_take isl_map *map2);
2381 __isl_give isl_union_map *isl_union_map_intersect_domain(
2382 __isl_take isl_union_map *umap,
2383 __isl_take isl_union_set *uset);
2384 __isl_give isl_union_map *isl_union_map_intersect_range(
2385 __isl_take isl_union_map *umap,
2386 __isl_take isl_union_set *uset);
2387 __isl_give isl_union_map *isl_union_map_intersect(
2388 __isl_take isl_union_map *umap1,
2389 __isl_take isl_union_map *umap2);
2393 __isl_give isl_set *isl_basic_set_union(
2394 __isl_take isl_basic_set *bset1,
2395 __isl_take isl_basic_set *bset2);
2396 __isl_give isl_map *isl_basic_map_union(
2397 __isl_take isl_basic_map *bmap1,
2398 __isl_take isl_basic_map *bmap2);
2399 __isl_give isl_set *isl_set_union(
2400 __isl_take isl_set *set1,
2401 __isl_take isl_set *set2);
2402 __isl_give isl_map *isl_map_union(
2403 __isl_take isl_map *map1,
2404 __isl_take isl_map *map2);
2405 __isl_give isl_union_set *isl_union_set_union(
2406 __isl_take isl_union_set *uset1,
2407 __isl_take isl_union_set *uset2);
2408 __isl_give isl_union_map *isl_union_map_union(
2409 __isl_take isl_union_map *umap1,
2410 __isl_take isl_union_map *umap2);
2412 =item * Set difference
2414 __isl_give isl_set *isl_set_subtract(
2415 __isl_take isl_set *set1,
2416 __isl_take isl_set *set2);
2417 __isl_give isl_map *isl_map_subtract(
2418 __isl_take isl_map *map1,
2419 __isl_take isl_map *map2);
2420 __isl_give isl_map *isl_map_subtract_domain(
2421 __isl_take isl_map *map,
2422 __isl_take isl_set *dom);
2423 __isl_give isl_map *isl_map_subtract_range(
2424 __isl_take isl_map *map,
2425 __isl_take isl_set *dom);
2426 __isl_give isl_union_set *isl_union_set_subtract(
2427 __isl_take isl_union_set *uset1,
2428 __isl_take isl_union_set *uset2);
2429 __isl_give isl_union_map *isl_union_map_subtract(
2430 __isl_take isl_union_map *umap1,
2431 __isl_take isl_union_map *umap2);
2435 __isl_give isl_basic_set *isl_basic_set_apply(
2436 __isl_take isl_basic_set *bset,
2437 __isl_take isl_basic_map *bmap);
2438 __isl_give isl_set *isl_set_apply(
2439 __isl_take isl_set *set,
2440 __isl_take isl_map *map);
2441 __isl_give isl_union_set *isl_union_set_apply(
2442 __isl_take isl_union_set *uset,
2443 __isl_take isl_union_map *umap);
2444 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2445 __isl_take isl_basic_map *bmap1,
2446 __isl_take isl_basic_map *bmap2);
2447 __isl_give isl_basic_map *isl_basic_map_apply_range(
2448 __isl_take isl_basic_map *bmap1,
2449 __isl_take isl_basic_map *bmap2);
2450 __isl_give isl_map *isl_map_apply_domain(
2451 __isl_take isl_map *map1,
2452 __isl_take isl_map *map2);
2453 __isl_give isl_union_map *isl_union_map_apply_domain(
2454 __isl_take isl_union_map *umap1,
2455 __isl_take isl_union_map *umap2);
2456 __isl_give isl_map *isl_map_apply_range(
2457 __isl_take isl_map *map1,
2458 __isl_take isl_map *map2);
2459 __isl_give isl_union_map *isl_union_map_apply_range(
2460 __isl_take isl_union_map *umap1,
2461 __isl_take isl_union_map *umap2);
2463 =item * Cartesian Product
2465 __isl_give isl_set *isl_set_product(
2466 __isl_take isl_set *set1,
2467 __isl_take isl_set *set2);
2468 __isl_give isl_union_set *isl_union_set_product(
2469 __isl_take isl_union_set *uset1,
2470 __isl_take isl_union_set *uset2);
2471 __isl_give isl_basic_map *isl_basic_map_domain_product(
2472 __isl_take isl_basic_map *bmap1,
2473 __isl_take isl_basic_map *bmap2);
2474 __isl_give isl_basic_map *isl_basic_map_range_product(
2475 __isl_take isl_basic_map *bmap1,
2476 __isl_take isl_basic_map *bmap2);
2477 __isl_give isl_map *isl_map_domain_product(
2478 __isl_take isl_map *map1,
2479 __isl_take isl_map *map2);
2480 __isl_give isl_map *isl_map_range_product(
2481 __isl_take isl_map *map1,
2482 __isl_take isl_map *map2);
2483 __isl_give isl_union_map *isl_union_map_range_product(
2484 __isl_take isl_union_map *umap1,
2485 __isl_take isl_union_map *umap2);
2486 __isl_give isl_map *isl_map_product(
2487 __isl_take isl_map *map1,
2488 __isl_take isl_map *map2);
2489 __isl_give isl_union_map *isl_union_map_product(
2490 __isl_take isl_union_map *umap1,
2491 __isl_take isl_union_map *umap2);
2493 The above functions compute the cross product of the given
2494 sets or relations. The domains and ranges of the results
2495 are wrapped maps between domains and ranges of the inputs.
2496 To obtain a ``flat'' product, use the following functions
2499 __isl_give isl_basic_set *isl_basic_set_flat_product(
2500 __isl_take isl_basic_set *bset1,
2501 __isl_take isl_basic_set *bset2);
2502 __isl_give isl_set *isl_set_flat_product(
2503 __isl_take isl_set *set1,
2504 __isl_take isl_set *set2);
2505 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2506 __isl_take isl_basic_map *bmap1,
2507 __isl_take isl_basic_map *bmap2);
2508 __isl_give isl_map *isl_map_flat_domain_product(
2509 __isl_take isl_map *map1,
2510 __isl_take isl_map *map2);
2511 __isl_give isl_map *isl_map_flat_range_product(
2512 __isl_take isl_map *map1,
2513 __isl_take isl_map *map2);
2514 __isl_give isl_union_map *isl_union_map_flat_range_product(
2515 __isl_take isl_union_map *umap1,
2516 __isl_take isl_union_map *umap2);
2517 __isl_give isl_basic_map *isl_basic_map_flat_product(
2518 __isl_take isl_basic_map *bmap1,
2519 __isl_take isl_basic_map *bmap2);
2520 __isl_give isl_map *isl_map_flat_product(
2521 __isl_take isl_map *map1,
2522 __isl_take isl_map *map2);
2524 =item * Simplification
2526 __isl_give isl_basic_set *isl_basic_set_gist(
2527 __isl_take isl_basic_set *bset,
2528 __isl_take isl_basic_set *context);
2529 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2530 __isl_take isl_set *context);
2531 __isl_give isl_set *isl_set_gist_params(
2532 __isl_take isl_set *set,
2533 __isl_take isl_set *context);
2534 __isl_give isl_union_set *isl_union_set_gist(
2535 __isl_take isl_union_set *uset,
2536 __isl_take isl_union_set *context);
2537 __isl_give isl_union_set *isl_union_set_gist_params(
2538 __isl_take isl_union_set *uset,
2539 __isl_take isl_set *set);
2540 __isl_give isl_basic_map *isl_basic_map_gist(
2541 __isl_take isl_basic_map *bmap,
2542 __isl_take isl_basic_map *context);
2543 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2544 __isl_take isl_map *context);
2545 __isl_give isl_map *isl_map_gist_params(
2546 __isl_take isl_map *map,
2547 __isl_take isl_set *context);
2548 __isl_give isl_map *isl_map_gist_domain(
2549 __isl_take isl_map *map,
2550 __isl_take isl_set *context);
2551 __isl_give isl_map *isl_map_gist_range(
2552 __isl_take isl_map *map,
2553 __isl_take isl_set *context);
2554 __isl_give isl_union_map *isl_union_map_gist(
2555 __isl_take isl_union_map *umap,
2556 __isl_take isl_union_map *context);
2557 __isl_give isl_union_map *isl_union_map_gist_params(
2558 __isl_take isl_union_map *umap,
2559 __isl_take isl_set *set);
2560 __isl_give isl_union_map *isl_union_map_gist_domain(
2561 __isl_take isl_union_map *umap,
2562 __isl_take isl_union_set *uset);
2563 __isl_give isl_union_map *isl_union_map_gist_range(
2564 __isl_take isl_union_map *umap,
2565 __isl_take isl_union_set *uset);
2567 The gist operation returns a set or relation that has the
2568 same intersection with the context as the input set or relation.
2569 Any implicit equality in the intersection is made explicit in the result,
2570 while all inequalities that are redundant with respect to the intersection
2572 In case of union sets and relations, the gist operation is performed
2577 =head3 Lexicographic Optimization
2579 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2580 the following functions
2581 compute a set that contains the lexicographic minimum or maximum
2582 of the elements in C<set> (or C<bset>) for those values of the parameters
2583 that satisfy C<dom>.
2584 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2585 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2587 In other words, the union of the parameter values
2588 for which the result is non-empty and of C<*empty>
2591 __isl_give isl_set *isl_basic_set_partial_lexmin(
2592 __isl_take isl_basic_set *bset,
2593 __isl_take isl_basic_set *dom,
2594 __isl_give isl_set **empty);
2595 __isl_give isl_set *isl_basic_set_partial_lexmax(
2596 __isl_take isl_basic_set *bset,
2597 __isl_take isl_basic_set *dom,
2598 __isl_give isl_set **empty);
2599 __isl_give isl_set *isl_set_partial_lexmin(
2600 __isl_take isl_set *set, __isl_take isl_set *dom,
2601 __isl_give isl_set **empty);
2602 __isl_give isl_set *isl_set_partial_lexmax(
2603 __isl_take isl_set *set, __isl_take isl_set *dom,
2604 __isl_give isl_set **empty);
2606 Given a (basic) set C<set> (or C<bset>), the following functions simply
2607 return a set containing the lexicographic minimum or maximum
2608 of the elements in C<set> (or C<bset>).
2609 In case of union sets, the optimum is computed per space.
2611 __isl_give isl_set *isl_basic_set_lexmin(
2612 __isl_take isl_basic_set *bset);
2613 __isl_give isl_set *isl_basic_set_lexmax(
2614 __isl_take isl_basic_set *bset);
2615 __isl_give isl_set *isl_set_lexmin(
2616 __isl_take isl_set *set);
2617 __isl_give isl_set *isl_set_lexmax(
2618 __isl_take isl_set *set);
2619 __isl_give isl_union_set *isl_union_set_lexmin(
2620 __isl_take isl_union_set *uset);
2621 __isl_give isl_union_set *isl_union_set_lexmax(
2622 __isl_take isl_union_set *uset);
2624 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2625 the following functions
2626 compute a relation that maps each element of C<dom>
2627 to the single lexicographic minimum or maximum
2628 of the elements that are associated to that same
2629 element in C<map> (or C<bmap>).
2630 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2631 that contains the elements in C<dom> that do not map
2632 to any elements in C<map> (or C<bmap>).
2633 In other words, the union of the domain of the result and of C<*empty>
2636 __isl_give isl_map *isl_basic_map_partial_lexmax(
2637 __isl_take isl_basic_map *bmap,
2638 __isl_take isl_basic_set *dom,
2639 __isl_give isl_set **empty);
2640 __isl_give isl_map *isl_basic_map_partial_lexmin(
2641 __isl_take isl_basic_map *bmap,
2642 __isl_take isl_basic_set *dom,
2643 __isl_give isl_set **empty);
2644 __isl_give isl_map *isl_map_partial_lexmax(
2645 __isl_take isl_map *map, __isl_take isl_set *dom,
2646 __isl_give isl_set **empty);
2647 __isl_give isl_map *isl_map_partial_lexmin(
2648 __isl_take isl_map *map, __isl_take isl_set *dom,
2649 __isl_give isl_set **empty);
2651 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2652 return a map mapping each element in the domain of
2653 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2654 of all elements associated to that element.
2655 In case of union relations, the optimum is computed per space.
2657 __isl_give isl_map *isl_basic_map_lexmin(
2658 __isl_take isl_basic_map *bmap);
2659 __isl_give isl_map *isl_basic_map_lexmax(
2660 __isl_take isl_basic_map *bmap);
2661 __isl_give isl_map *isl_map_lexmin(
2662 __isl_take isl_map *map);
2663 __isl_give isl_map *isl_map_lexmax(
2664 __isl_take isl_map *map);
2665 __isl_give isl_union_map *isl_union_map_lexmin(
2666 __isl_take isl_union_map *umap);
2667 __isl_give isl_union_map *isl_union_map_lexmax(
2668 __isl_take isl_union_map *umap);
2670 The following functions return their result in the form of
2671 a piecewise multi-affine expression
2672 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2673 but are otherwise equivalent to the corresponding functions
2674 returning a basic set or relation.
2676 __isl_give isl_pw_multi_aff *
2677 isl_basic_map_lexmin_pw_multi_aff(
2678 __isl_take isl_basic_map *bmap);
2679 __isl_give isl_pw_multi_aff *
2680 isl_basic_set_partial_lexmin_pw_multi_aff(
2681 __isl_take isl_basic_set *bset,
2682 __isl_take isl_basic_set *dom,
2683 __isl_give isl_set **empty);
2684 __isl_give isl_pw_multi_aff *
2685 isl_basic_set_partial_lexmax_pw_multi_aff(
2686 __isl_take isl_basic_set *bset,
2687 __isl_take isl_basic_set *dom,
2688 __isl_give isl_set **empty);
2689 __isl_give isl_pw_multi_aff *
2690 isl_basic_map_partial_lexmin_pw_multi_aff(
2691 __isl_take isl_basic_map *bmap,
2692 __isl_take isl_basic_set *dom,
2693 __isl_give isl_set **empty);
2694 __isl_give isl_pw_multi_aff *
2695 isl_basic_map_partial_lexmax_pw_multi_aff(
2696 __isl_take isl_basic_map *bmap,
2697 __isl_take isl_basic_set *dom,
2698 __isl_give isl_set **empty);
2702 Lists are defined over several element types, including
2703 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2704 Here we take lists of C<isl_set>s as an example.
2705 Lists can be created, copied and freed using the following functions.
2707 #include <isl/list.h>
2708 __isl_give isl_set_list *isl_set_list_from_set(
2709 __isl_take isl_set *el);
2710 __isl_give isl_set_list *isl_set_list_alloc(
2711 isl_ctx *ctx, int n);
2712 __isl_give isl_set_list *isl_set_list_copy(
2713 __isl_keep isl_set_list *list);
2714 __isl_give isl_set_list *isl_set_list_add(
2715 __isl_take isl_set_list *list,
2716 __isl_take isl_set *el);
2717 __isl_give isl_set_list *isl_set_list_concat(
2718 __isl_take isl_set_list *list1,
2719 __isl_take isl_set_list *list2);
2720 void *isl_set_list_free(__isl_take isl_set_list *list);
2722 C<isl_set_list_alloc> creates an empty list with a capacity for
2723 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2726 Lists can be inspected using the following functions.
2728 #include <isl/list.h>
2729 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2730 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2731 __isl_give isl_set *isl_set_list_get_set(
2732 __isl_keep isl_set_list *list, int index);
2733 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2734 int (*fn)(__isl_take isl_set *el, void *user),
2737 Lists can be printed using
2739 #include <isl/list.h>
2740 __isl_give isl_printer *isl_printer_print_set_list(
2741 __isl_take isl_printer *p,
2742 __isl_keep isl_set_list *list);
2746 Vectors can be created, copied and freed using the following functions.
2748 #include <isl/vec.h>
2749 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
2751 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
2752 void isl_vec_free(__isl_take isl_vec *vec);
2754 Note that the elements of a newly created vector may have arbitrary values.
2755 The elements can be changed and inspected using the following functions.
2757 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
2758 int isl_vec_size(__isl_keep isl_vec *vec);
2759 int isl_vec_get_element(__isl_keep isl_vec *vec,
2760 int pos, isl_int *v);
2761 __isl_give isl_vec *isl_vec_set_element(
2762 __isl_take isl_vec *vec, int pos, isl_int v);
2763 __isl_give isl_vec *isl_vec_set_element_si(
2764 __isl_take isl_vec *vec, int pos, int v);
2765 __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
2767 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
2770 C<isl_vec_get_element> will return a negative value if anything went wrong.
2771 In that case, the value of C<*v> is undefined.
2775 Matrices can be created, copied and freed using the following functions.
2777 #include <isl/mat.h>
2778 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2779 unsigned n_row, unsigned n_col);
2780 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2781 void isl_mat_free(__isl_take isl_mat *mat);
2783 Note that the elements of a newly created matrix may have arbitrary values.
2784 The elements can be changed and inspected using the following functions.
2786 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2787 int isl_mat_rows(__isl_keep isl_mat *mat);
2788 int isl_mat_cols(__isl_keep isl_mat *mat);
2789 int isl_mat_get_element(__isl_keep isl_mat *mat,
2790 int row, int col, isl_int *v);
2791 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2792 int row, int col, isl_int v);
2793 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2794 int row, int col, int v);
2796 C<isl_mat_get_element> will return a negative value if anything went wrong.
2797 In that case, the value of C<*v> is undefined.
2799 The following function can be used to compute the (right) inverse
2800 of a matrix, i.e., a matrix such that the product of the original
2801 and the inverse (in that order) is a multiple of the identity matrix.
2802 The input matrix is assumed to be of full row-rank.
2804 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2806 The following function can be used to compute the (right) kernel
2807 (or null space) of a matrix, i.e., a matrix such that the product of
2808 the original and the kernel (in that order) is the zero matrix.
2810 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2812 =head2 Piecewise Quasi Affine Expressions
2814 The zero quasi affine expression on a given domain can be created using
2816 __isl_give isl_aff *isl_aff_zero_on_domain(
2817 __isl_take isl_local_space *ls);
2819 Note that the space in which the resulting object lives is a map space
2820 with the given space as domain and a one-dimensional range.
2822 An empty piecewise quasi affine expression (one with no cells)
2823 or a piecewise quasi affine expression with a single cell can
2824 be created using the following functions.
2826 #include <isl/aff.h>
2827 __isl_give isl_pw_aff *isl_pw_aff_empty(
2828 __isl_take isl_space *space);
2829 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2830 __isl_take isl_set *set, __isl_take isl_aff *aff);
2831 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2832 __isl_take isl_aff *aff);
2834 A piecewise quasi affine expression that is equal to 1 on a set
2835 and 0 outside the set can be created using the following function.
2837 #include <isl/aff.h>
2838 __isl_give isl_pw_aff *isl_set_indicator_function(
2839 __isl_take isl_set *set);
2841 Quasi affine expressions can be copied and freed using
2843 #include <isl/aff.h>
2844 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2845 void *isl_aff_free(__isl_take isl_aff *aff);
2847 __isl_give isl_pw_aff *isl_pw_aff_copy(
2848 __isl_keep isl_pw_aff *pwaff);
2849 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2851 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2852 using the following function. The constraint is required to have
2853 a non-zero coefficient for the specified dimension.
2855 #include <isl/constraint.h>
2856 __isl_give isl_aff *isl_constraint_get_bound(
2857 __isl_keep isl_constraint *constraint,
2858 enum isl_dim_type type, int pos);
2860 The entire affine expression of the constraint can also be extracted
2861 using the following function.
2863 #include <isl/constraint.h>
2864 __isl_give isl_aff *isl_constraint_get_aff(
2865 __isl_keep isl_constraint *constraint);
2867 Conversely, an equality constraint equating
2868 the affine expression to zero or an inequality constraint enforcing
2869 the affine expression to be non-negative, can be constructed using
2871 __isl_give isl_constraint *isl_equality_from_aff(
2872 __isl_take isl_aff *aff);
2873 __isl_give isl_constraint *isl_inequality_from_aff(
2874 __isl_take isl_aff *aff);
2876 The expression can be inspected using
2878 #include <isl/aff.h>
2879 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2880 int isl_aff_dim(__isl_keep isl_aff *aff,
2881 enum isl_dim_type type);
2882 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2883 __isl_keep isl_aff *aff);
2884 __isl_give isl_local_space *isl_aff_get_local_space(
2885 __isl_keep isl_aff *aff);
2886 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2887 enum isl_dim_type type, unsigned pos);
2888 const char *isl_pw_aff_get_dim_name(
2889 __isl_keep isl_pw_aff *pa,
2890 enum isl_dim_type type, unsigned pos);
2891 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
2892 enum isl_dim_type type, unsigned pos);
2893 __isl_give isl_id *isl_pw_aff_get_dim_id(
2894 __isl_keep isl_pw_aff *pa,
2895 enum isl_dim_type type, unsigned pos);
2896 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2898 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2899 enum isl_dim_type type, int pos, isl_int *v);
2900 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2902 __isl_give isl_aff *isl_aff_get_div(
2903 __isl_keep isl_aff *aff, int pos);
2905 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
2906 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2907 int (*fn)(__isl_take isl_set *set,
2908 __isl_take isl_aff *aff,
2909 void *user), void *user);
2911 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2912 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2914 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2915 enum isl_dim_type type, unsigned first, unsigned n);
2916 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2917 enum isl_dim_type type, unsigned first, unsigned n);
2919 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2920 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2921 enum isl_dim_type type);
2922 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2924 It can be modified using
2926 #include <isl/aff.h>
2927 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2928 __isl_take isl_pw_aff *pwaff,
2929 enum isl_dim_type type, __isl_take isl_id *id);
2930 __isl_give isl_aff *isl_aff_set_dim_name(
2931 __isl_take isl_aff *aff, enum isl_dim_type type,
2932 unsigned pos, const char *s);
2933 __isl_give isl_aff *isl_aff_set_dim_id(
2934 __isl_take isl_aff *aff, enum isl_dim_type type,
2935 unsigned pos, __isl_take isl_id *id);
2936 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
2937 __isl_take isl_pw_aff *pma,
2938 enum isl_dim_type type, unsigned pos,
2939 __isl_take isl_id *id);
2940 __isl_give isl_aff *isl_aff_set_constant(
2941 __isl_take isl_aff *aff, isl_int v);
2942 __isl_give isl_aff *isl_aff_set_constant_si(
2943 __isl_take isl_aff *aff, int v);
2944 __isl_give isl_aff *isl_aff_set_coefficient(
2945 __isl_take isl_aff *aff,
2946 enum isl_dim_type type, int pos, isl_int v);
2947 __isl_give isl_aff *isl_aff_set_coefficient_si(
2948 __isl_take isl_aff *aff,
2949 enum isl_dim_type type, int pos, int v);
2950 __isl_give isl_aff *isl_aff_set_denominator(
2951 __isl_take isl_aff *aff, isl_int v);
2953 __isl_give isl_aff *isl_aff_add_constant(
2954 __isl_take isl_aff *aff, isl_int v);
2955 __isl_give isl_aff *isl_aff_add_constant_si(
2956 __isl_take isl_aff *aff, int v);
2957 __isl_give isl_aff *isl_aff_add_coefficient(
2958 __isl_take isl_aff *aff,
2959 enum isl_dim_type type, int pos, isl_int v);
2960 __isl_give isl_aff *isl_aff_add_coefficient_si(
2961 __isl_take isl_aff *aff,
2962 enum isl_dim_type type, int pos, int v);
2964 __isl_give isl_aff *isl_aff_insert_dims(
2965 __isl_take isl_aff *aff,
2966 enum isl_dim_type type, unsigned first, unsigned n);
2967 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2968 __isl_take isl_pw_aff *pwaff,
2969 enum isl_dim_type type, unsigned first, unsigned n);
2970 __isl_give isl_aff *isl_aff_add_dims(
2971 __isl_take isl_aff *aff,
2972 enum isl_dim_type type, unsigned n);
2973 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2974 __isl_take isl_pw_aff *pwaff,
2975 enum isl_dim_type type, unsigned n);
2976 __isl_give isl_aff *isl_aff_drop_dims(
2977 __isl_take isl_aff *aff,
2978 enum isl_dim_type type, unsigned first, unsigned n);
2979 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2980 __isl_take isl_pw_aff *pwaff,
2981 enum isl_dim_type type, unsigned first, unsigned n);
2983 Note that the C<set_constant> and C<set_coefficient> functions
2984 set the I<numerator> of the constant or coefficient, while
2985 C<add_constant> and C<add_coefficient> add an integer value to
2986 the possibly rational constant or coefficient.
2988 To check whether an affine expressions is obviously zero
2989 or obviously equal to some other affine expression, use
2991 #include <isl/aff.h>
2992 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2993 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2994 __isl_keep isl_aff *aff2);
2995 int isl_pw_aff_plain_is_equal(
2996 __isl_keep isl_pw_aff *pwaff1,
2997 __isl_keep isl_pw_aff *pwaff2);
3001 #include <isl/aff.h>
3002 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3003 __isl_take isl_aff *aff2);
3004 __isl_give isl_pw_aff *isl_pw_aff_add(
3005 __isl_take isl_pw_aff *pwaff1,
3006 __isl_take isl_pw_aff *pwaff2);
3007 __isl_give isl_pw_aff *isl_pw_aff_min(
3008 __isl_take isl_pw_aff *pwaff1,
3009 __isl_take isl_pw_aff *pwaff2);
3010 __isl_give isl_pw_aff *isl_pw_aff_max(
3011 __isl_take isl_pw_aff *pwaff1,
3012 __isl_take isl_pw_aff *pwaff2);
3013 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3014 __isl_take isl_aff *aff2);
3015 __isl_give isl_pw_aff *isl_pw_aff_sub(
3016 __isl_take isl_pw_aff *pwaff1,
3017 __isl_take isl_pw_aff *pwaff2);
3018 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3019 __isl_give isl_pw_aff *isl_pw_aff_neg(
3020 __isl_take isl_pw_aff *pwaff);
3021 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3022 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3023 __isl_take isl_pw_aff *pwaff);
3024 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3025 __isl_give isl_pw_aff *isl_pw_aff_floor(
3026 __isl_take isl_pw_aff *pwaff);
3027 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
3029 __isl_give isl_pw_aff *isl_pw_aff_mod(
3030 __isl_take isl_pw_aff *pwaff, isl_int mod);
3031 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
3033 __isl_give isl_pw_aff *isl_pw_aff_scale(
3034 __isl_take isl_pw_aff *pwaff, isl_int f);
3035 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
3037 __isl_give isl_aff *isl_aff_scale_down_ui(
3038 __isl_take isl_aff *aff, unsigned f);
3039 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
3040 __isl_take isl_pw_aff *pwaff, isl_int f);
3042 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3043 __isl_take isl_pw_aff_list *list);
3044 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3045 __isl_take isl_pw_aff_list *list);
3047 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3048 __isl_take isl_pw_aff *pwqp);
3050 __isl_give isl_aff *isl_aff_align_params(
3051 __isl_take isl_aff *aff,
3052 __isl_take isl_space *model);
3053 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3054 __isl_take isl_pw_aff *pwaff,
3055 __isl_take isl_space *model);
3057 __isl_give isl_aff *isl_aff_project_domain_on_params(
3058 __isl_take isl_aff *aff);
3060 __isl_give isl_aff *isl_aff_gist_params(
3061 __isl_take isl_aff *aff,
3062 __isl_take isl_set *context);
3063 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3064 __isl_take isl_set *context);
3065 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3066 __isl_take isl_pw_aff *pwaff,
3067 __isl_take isl_set *context);
3068 __isl_give isl_pw_aff *isl_pw_aff_gist(
3069 __isl_take isl_pw_aff *pwaff,
3070 __isl_take isl_set *context);
3072 __isl_give isl_set *isl_pw_aff_domain(
3073 __isl_take isl_pw_aff *pwaff);
3074 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3075 __isl_take isl_pw_aff *pa,
3076 __isl_take isl_set *set);
3077 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3078 __isl_take isl_pw_aff *pa,
3079 __isl_take isl_set *set);
3081 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3082 __isl_take isl_aff *aff2);
3083 __isl_give isl_pw_aff *isl_pw_aff_mul(
3084 __isl_take isl_pw_aff *pwaff1,
3085 __isl_take isl_pw_aff *pwaff2);
3087 When multiplying two affine expressions, at least one of the two needs
3090 #include <isl/aff.h>
3091 __isl_give isl_basic_set *isl_aff_le_basic_set(
3092 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3093 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3094 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3095 __isl_give isl_set *isl_pw_aff_eq_set(
3096 __isl_take isl_pw_aff *pwaff1,
3097 __isl_take isl_pw_aff *pwaff2);
3098 __isl_give isl_set *isl_pw_aff_ne_set(
3099 __isl_take isl_pw_aff *pwaff1,
3100 __isl_take isl_pw_aff *pwaff2);
3101 __isl_give isl_set *isl_pw_aff_le_set(
3102 __isl_take isl_pw_aff *pwaff1,
3103 __isl_take isl_pw_aff *pwaff2);
3104 __isl_give isl_set *isl_pw_aff_lt_set(
3105 __isl_take isl_pw_aff *pwaff1,
3106 __isl_take isl_pw_aff *pwaff2);
3107 __isl_give isl_set *isl_pw_aff_ge_set(
3108 __isl_take isl_pw_aff *pwaff1,
3109 __isl_take isl_pw_aff *pwaff2);
3110 __isl_give isl_set *isl_pw_aff_gt_set(
3111 __isl_take isl_pw_aff *pwaff1,
3112 __isl_take isl_pw_aff *pwaff2);
3114 __isl_give isl_set *isl_pw_aff_list_eq_set(
3115 __isl_take isl_pw_aff_list *list1,
3116 __isl_take isl_pw_aff_list *list2);
3117 __isl_give isl_set *isl_pw_aff_list_ne_set(
3118 __isl_take isl_pw_aff_list *list1,
3119 __isl_take isl_pw_aff_list *list2);
3120 __isl_give isl_set *isl_pw_aff_list_le_set(
3121 __isl_take isl_pw_aff_list *list1,
3122 __isl_take isl_pw_aff_list *list2);
3123 __isl_give isl_set *isl_pw_aff_list_lt_set(
3124 __isl_take isl_pw_aff_list *list1,
3125 __isl_take isl_pw_aff_list *list2);
3126 __isl_give isl_set *isl_pw_aff_list_ge_set(
3127 __isl_take isl_pw_aff_list *list1,
3128 __isl_take isl_pw_aff_list *list2);
3129 __isl_give isl_set *isl_pw_aff_list_gt_set(
3130 __isl_take isl_pw_aff_list *list1,
3131 __isl_take isl_pw_aff_list *list2);
3133 The function C<isl_aff_ge_basic_set> returns a basic set
3134 containing those elements in the shared space
3135 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3136 The function C<isl_aff_ge_set> returns a set
3137 containing those elements in the shared domain
3138 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3139 The functions operating on C<isl_pw_aff_list> apply the corresponding
3140 C<isl_pw_aff> function to each pair of elements in the two lists.
3142 #include <isl/aff.h>
3143 __isl_give isl_set *isl_pw_aff_nonneg_set(
3144 __isl_take isl_pw_aff *pwaff);
3145 __isl_give isl_set *isl_pw_aff_zero_set(
3146 __isl_take isl_pw_aff *pwaff);
3147 __isl_give isl_set *isl_pw_aff_non_zero_set(
3148 __isl_take isl_pw_aff *pwaff);
3150 The function C<isl_pw_aff_nonneg_set> returns a set
3151 containing those elements in the domain
3152 of C<pwaff> where C<pwaff> is non-negative.
3154 #include <isl/aff.h>
3155 __isl_give isl_pw_aff *isl_pw_aff_cond(
3156 __isl_take isl_pw_aff *cond,
3157 __isl_take isl_pw_aff *pwaff_true,
3158 __isl_take isl_pw_aff *pwaff_false);
3160 The function C<isl_pw_aff_cond> performs a conditional operator
3161 and returns an expression that is equal to C<pwaff_true>
3162 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
3163 where C<cond> is zero.
3165 #include <isl/aff.h>
3166 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3167 __isl_take isl_pw_aff *pwaff1,
3168 __isl_take isl_pw_aff *pwaff2);
3169 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3170 __isl_take isl_pw_aff *pwaff1,
3171 __isl_take isl_pw_aff *pwaff2);
3172 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3173 __isl_take isl_pw_aff *pwaff1,
3174 __isl_take isl_pw_aff *pwaff2);
3176 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3177 expression with a domain that is the union of those of C<pwaff1> and
3178 C<pwaff2> and such that on each cell, the quasi-affine expression is
3179 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3180 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3181 associated expression is the defined one.
3183 An expression can be read from input using
3185 #include <isl/aff.h>
3186 __isl_give isl_aff *isl_aff_read_from_str(
3187 isl_ctx *ctx, const char *str);
3188 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3189 isl_ctx *ctx, const char *str);
3191 An expression can be printed using
3193 #include <isl/aff.h>
3194 __isl_give isl_printer *isl_printer_print_aff(
3195 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3197 __isl_give isl_printer *isl_printer_print_pw_aff(
3198 __isl_take isl_printer *p,
3199 __isl_keep isl_pw_aff *pwaff);
3201 =head2 Piecewise Multiple Quasi Affine Expressions
3203 An C<isl_multi_aff> object represents a sequence of
3204 zero or more affine expressions, all defined on the same domain space.
3206 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
3209 #include <isl/aff.h>
3210 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3211 __isl_take isl_space *space,
3212 __isl_take isl_aff_list *list);
3214 An empty piecewise multiple quasi affine expression (one with no cells),
3215 the zero piecewise multiple quasi affine expression (with value zero
3216 for each output dimension),
3217 a piecewise multiple quasi affine expression with a single cell (with
3218 either a universe or a specified domain) or
3219 a zero-dimensional piecewise multiple quasi affine expression
3221 can be created using the following functions.
3223 #include <isl/aff.h>
3224 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3225 __isl_take isl_space *space);
3226 __isl_give isl_multi_aff *isl_multi_aff_zero(
3227 __isl_take isl_space *space);
3228 __isl_give isl_pw_multi_aff *
3229 isl_pw_multi_aff_from_multi_aff(
3230 __isl_take isl_multi_aff *ma);
3231 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3232 __isl_take isl_set *set,
3233 __isl_take isl_multi_aff *maff);
3234 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
3235 __isl_take isl_set *set);
3237 __isl_give isl_union_pw_multi_aff *
3238 isl_union_pw_multi_aff_empty(
3239 __isl_take isl_space *space);
3240 __isl_give isl_union_pw_multi_aff *
3241 isl_union_pw_multi_aff_add_pw_multi_aff(
3242 __isl_take isl_union_pw_multi_aff *upma,
3243 __isl_take isl_pw_multi_aff *pma);
3244 __isl_give isl_union_pw_multi_aff *
3245 isl_union_pw_multi_aff_from_domain(
3246 __isl_take isl_union_set *uset);
3248 A piecewise multiple quasi affine expression can also be initialized
3249 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3250 and the C<isl_map> is single-valued.
3252 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3253 __isl_take isl_set *set);
3254 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3255 __isl_take isl_map *map);
3257 Multiple quasi affine expressions can be copied and freed using
3259 #include <isl/aff.h>
3260 __isl_give isl_multi_aff *isl_multi_aff_copy(
3261 __isl_keep isl_multi_aff *maff);
3262 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3264 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3265 __isl_keep isl_pw_multi_aff *pma);
3266 void *isl_pw_multi_aff_free(
3267 __isl_take isl_pw_multi_aff *pma);
3269 __isl_give isl_union_pw_multi_aff *
3270 isl_union_pw_multi_aff_copy(
3271 __isl_keep isl_union_pw_multi_aff *upma);
3272 void *isl_union_pw_multi_aff_free(
3273 __isl_take isl_union_pw_multi_aff *upma);
3275 The expression can be inspected using
3277 #include <isl/aff.h>
3278 isl_ctx *isl_multi_aff_get_ctx(
3279 __isl_keep isl_multi_aff *maff);
3280 isl_ctx *isl_pw_multi_aff_get_ctx(
3281 __isl_keep isl_pw_multi_aff *pma);
3282 isl_ctx *isl_union_pw_multi_aff_get_ctx(
3283 __isl_keep isl_union_pw_multi_aff *upma);
3284 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3285 enum isl_dim_type type);
3286 unsigned isl_pw_multi_aff_dim(
3287 __isl_keep isl_pw_multi_aff *pma,
3288 enum isl_dim_type type);
3289 __isl_give isl_aff *isl_multi_aff_get_aff(
3290 __isl_keep isl_multi_aff *multi, int pos);
3291 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3292 __isl_keep isl_pw_multi_aff *pma, int pos);
3293 const char *isl_pw_multi_aff_get_dim_name(
3294 __isl_keep isl_pw_multi_aff *pma,
3295 enum isl_dim_type type, unsigned pos);
3296 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3297 __isl_keep isl_pw_multi_aff *pma,
3298 enum isl_dim_type type, unsigned pos);
3299 const char *isl_multi_aff_get_tuple_name(
3300 __isl_keep isl_multi_aff *multi,
3301 enum isl_dim_type type);
3302 const char *isl_pw_multi_aff_get_tuple_name(
3303 __isl_keep isl_pw_multi_aff *pma,
3304 enum isl_dim_type type);
3305 int isl_pw_multi_aff_has_tuple_id(
3306 __isl_keep isl_pw_multi_aff *pma,
3307 enum isl_dim_type type);
3308 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3309 __isl_keep isl_pw_multi_aff *pma,
3310 enum isl_dim_type type);
3312 int isl_pw_multi_aff_foreach_piece(
3313 __isl_keep isl_pw_multi_aff *pma,
3314 int (*fn)(__isl_take isl_set *set,
3315 __isl_take isl_multi_aff *maff,
3316 void *user), void *user);
3318 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
3319 __isl_keep isl_union_pw_multi_aff *upma,
3320 int (*fn)(__isl_take isl_pw_multi_aff *pma,
3321 void *user), void *user);
3323 It can be modified using
3325 #include <isl/aff.h>
3326 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
3327 __isl_take isl_multi_aff *multi, int pos,
3328 __isl_take isl_aff *aff);
3329 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3330 __isl_take isl_multi_aff *maff,
3331 enum isl_dim_type type, unsigned pos, const char *s);
3332 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3333 __isl_take isl_multi_aff *maff,
3334 enum isl_dim_type type, __isl_take isl_id *id);
3335 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3336 __isl_take isl_pw_multi_aff *pma,
3337 enum isl_dim_type type, __isl_take isl_id *id);
3339 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3340 __isl_take isl_multi_aff *maff,
3341 enum isl_dim_type type, unsigned first, unsigned n);
3343 To check whether two multiple affine expressions are
3344 obviously equal to each other, use
3346 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3347 __isl_keep isl_multi_aff *maff2);
3348 int isl_pw_multi_aff_plain_is_equal(
3349 __isl_keep isl_pw_multi_aff *pma1,
3350 __isl_keep isl_pw_multi_aff *pma2);
3354 #include <isl/aff.h>
3355 __isl_give isl_multi_aff *isl_multi_aff_add(
3356 __isl_take isl_multi_aff *maff1,
3357 __isl_take isl_multi_aff *maff2);
3358 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3359 __isl_take isl_pw_multi_aff *pma1,
3360 __isl_take isl_pw_multi_aff *pma2);
3361 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
3362 __isl_take isl_union_pw_multi_aff *upma1,
3363 __isl_take isl_union_pw_multi_aff *upma2);
3364 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3365 __isl_take isl_pw_multi_aff *pma1,
3366 __isl_take isl_pw_multi_aff *pma2);
3367 __isl_give isl_multi_aff *isl_multi_aff_scale(
3368 __isl_take isl_multi_aff *maff,
3370 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3371 __isl_take isl_pw_multi_aff *pma,
3372 __isl_take isl_set *set);
3373 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3374 __isl_take isl_pw_multi_aff *pma,
3375 __isl_take isl_set *set);
3376 __isl_give isl_multi_aff *isl_multi_aff_lift(
3377 __isl_take isl_multi_aff *maff,
3378 __isl_give isl_local_space **ls);
3379 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3380 __isl_take isl_pw_multi_aff *pma);
3381 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3382 __isl_take isl_multi_aff *maff,
3383 __isl_take isl_set *context);
3384 __isl_give isl_multi_aff *isl_multi_aff_gist(
3385 __isl_take isl_multi_aff *maff,
3386 __isl_take isl_set *context);
3387 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3388 __isl_take isl_pw_multi_aff *pma,
3389 __isl_take isl_set *set);
3390 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3391 __isl_take isl_pw_multi_aff *pma,
3392 __isl_take isl_set *set);
3393 __isl_give isl_set *isl_pw_multi_aff_domain(
3394 __isl_take isl_pw_multi_aff *pma);
3395 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
3396 __isl_take isl_union_pw_multi_aff *upma);
3398 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3399 then it is assigned the local space that lies at the basis of
3400 the lifting applied.
3402 An expression can be read from input using
3404 #include <isl/aff.h>
3405 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3406 isl_ctx *ctx, const char *str);
3407 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3408 isl_ctx *ctx, const char *str);
3410 An expression can be printed using
3412 #include <isl/aff.h>
3413 __isl_give isl_printer *isl_printer_print_multi_aff(
3414 __isl_take isl_printer *p,
3415 __isl_keep isl_multi_aff *maff);
3416 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3417 __isl_take isl_printer *p,
3418 __isl_keep isl_pw_multi_aff *pma);
3419 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3420 __isl_take isl_printer *p,
3421 __isl_keep isl_union_pw_multi_aff *upma);
3425 Points are elements of a set. They can be used to construct
3426 simple sets (boxes) or they can be used to represent the
3427 individual elements of a set.
3428 The zero point (the origin) can be created using
3430 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3432 The coordinates of a point can be inspected, set and changed
3435 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
3436 enum isl_dim_type type, int pos, isl_int *v);
3437 __isl_give isl_point *isl_point_set_coordinate(
3438 __isl_take isl_point *pnt,
3439 enum isl_dim_type type, int pos, isl_int v);
3441 __isl_give isl_point *isl_point_add_ui(
3442 __isl_take isl_point *pnt,
3443 enum isl_dim_type type, int pos, unsigned val);
3444 __isl_give isl_point *isl_point_sub_ui(
3445 __isl_take isl_point *pnt,
3446 enum isl_dim_type type, int pos, unsigned val);
3448 Other properties can be obtained using
3450 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3452 Points can be copied or freed using
3454 __isl_give isl_point *isl_point_copy(
3455 __isl_keep isl_point *pnt);
3456 void isl_point_free(__isl_take isl_point *pnt);
3458 A singleton set can be created from a point using
3460 __isl_give isl_basic_set *isl_basic_set_from_point(
3461 __isl_take isl_point *pnt);
3462 __isl_give isl_set *isl_set_from_point(
3463 __isl_take isl_point *pnt);
3465 and a box can be created from two opposite extremal points using
3467 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3468 __isl_take isl_point *pnt1,
3469 __isl_take isl_point *pnt2);
3470 __isl_give isl_set *isl_set_box_from_points(
3471 __isl_take isl_point *pnt1,
3472 __isl_take isl_point *pnt2);
3474 All elements of a B<bounded> (union) set can be enumerated using
3475 the following functions.
3477 int isl_set_foreach_point(__isl_keep isl_set *set,
3478 int (*fn)(__isl_take isl_point *pnt, void *user),
3480 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3481 int (*fn)(__isl_take isl_point *pnt, void *user),
3484 The function C<fn> is called for each integer point in
3485 C<set> with as second argument the last argument of
3486 the C<isl_set_foreach_point> call. The function C<fn>
3487 should return C<0> on success and C<-1> on failure.
3488 In the latter case, C<isl_set_foreach_point> will stop
3489 enumerating and return C<-1> as well.
3490 If the enumeration is performed successfully and to completion,
3491 then C<isl_set_foreach_point> returns C<0>.
3493 To obtain a single point of a (basic) set, use
3495 __isl_give isl_point *isl_basic_set_sample_point(
3496 __isl_take isl_basic_set *bset);
3497 __isl_give isl_point *isl_set_sample_point(
3498 __isl_take isl_set *set);
3500 If C<set> does not contain any (integer) points, then the
3501 resulting point will be ``void'', a property that can be
3504 int isl_point_is_void(__isl_keep isl_point *pnt);
3506 =head2 Piecewise Quasipolynomials
3508 A piecewise quasipolynomial is a particular kind of function that maps
3509 a parametric point to a rational value.
3510 More specifically, a quasipolynomial is a polynomial expression in greatest
3511 integer parts of affine expressions of parameters and variables.
3512 A piecewise quasipolynomial is a subdivision of a given parametric
3513 domain into disjoint cells with a quasipolynomial associated to
3514 each cell. The value of the piecewise quasipolynomial at a given
3515 point is the value of the quasipolynomial associated to the cell
3516 that contains the point. Outside of the union of cells,
3517 the value is assumed to be zero.
3518 For example, the piecewise quasipolynomial
3520 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3522 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3523 A given piecewise quasipolynomial has a fixed domain dimension.
3524 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3525 defined over different domains.
3526 Piecewise quasipolynomials are mainly used by the C<barvinok>
3527 library for representing the number of elements in a parametric set or map.
3528 For example, the piecewise quasipolynomial above represents
3529 the number of points in the map
3531 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3533 =head3 Input and Output
3535 Piecewise quasipolynomials can be read from input using
3537 __isl_give isl_union_pw_qpolynomial *
3538 isl_union_pw_qpolynomial_read_from_str(
3539 isl_ctx *ctx, const char *str);
3541 Quasipolynomials and piecewise quasipolynomials can be printed
3542 using the following functions.
3544 __isl_give isl_printer *isl_printer_print_qpolynomial(
3545 __isl_take isl_printer *p,
3546 __isl_keep isl_qpolynomial *qp);
3548 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3549 __isl_take isl_printer *p,
3550 __isl_keep isl_pw_qpolynomial *pwqp);
3552 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3553 __isl_take isl_printer *p,
3554 __isl_keep isl_union_pw_qpolynomial *upwqp);
3556 The output format of the printer
3557 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3558 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3560 In case of printing in C<ISL_FORMAT_C>, the user may want
3561 to set the names of all dimensions
3563 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3564 __isl_take isl_qpolynomial *qp,
3565 enum isl_dim_type type, unsigned pos,
3567 __isl_give isl_pw_qpolynomial *
3568 isl_pw_qpolynomial_set_dim_name(
3569 __isl_take isl_pw_qpolynomial *pwqp,
3570 enum isl_dim_type type, unsigned pos,
3573 =head3 Creating New (Piecewise) Quasipolynomials
3575 Some simple quasipolynomials can be created using the following functions.
3576 More complicated quasipolynomials can be created by applying
3577 operations such as addition and multiplication
3578 on the resulting quasipolynomials
3580 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3581 __isl_take isl_space *domain);
3582 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3583 __isl_take isl_space *domain);
3584 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3585 __isl_take isl_space *domain);
3586 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3587 __isl_take isl_space *domain);
3588 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3589 __isl_take isl_space *domain);
3590 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3591 __isl_take isl_space *domain,
3592 const isl_int n, const isl_int d);
3593 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3594 __isl_take isl_space *domain,
3595 enum isl_dim_type type, unsigned pos);
3596 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3597 __isl_take isl_aff *aff);
3599 Note that the space in which a quasipolynomial lives is a map space
3600 with a one-dimensional range. The C<domain> argument in some of
3601 the functions above corresponds to the domain of this map space.
3603 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3604 with a single cell can be created using the following functions.
3605 Multiple of these single cell piecewise quasipolynomials can
3606 be combined to create more complicated piecewise quasipolynomials.
3608 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3609 __isl_take isl_space *space);
3610 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3611 __isl_take isl_set *set,
3612 __isl_take isl_qpolynomial *qp);
3613 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3614 __isl_take isl_qpolynomial *qp);
3615 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3616 __isl_take isl_pw_aff *pwaff);
3618 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3619 __isl_take isl_space *space);
3620 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3621 __isl_take isl_pw_qpolynomial *pwqp);
3622 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3623 __isl_take isl_union_pw_qpolynomial *upwqp,
3624 __isl_take isl_pw_qpolynomial *pwqp);
3626 Quasipolynomials can be copied and freed again using the following
3629 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3630 __isl_keep isl_qpolynomial *qp);
3631 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3633 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3634 __isl_keep isl_pw_qpolynomial *pwqp);
3635 void *isl_pw_qpolynomial_free(
3636 __isl_take isl_pw_qpolynomial *pwqp);
3638 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3639 __isl_keep isl_union_pw_qpolynomial *upwqp);
3640 void *isl_union_pw_qpolynomial_free(
3641 __isl_take isl_union_pw_qpolynomial *upwqp);
3643 =head3 Inspecting (Piecewise) Quasipolynomials
3645 To iterate over all piecewise quasipolynomials in a union
3646 piecewise quasipolynomial, use the following function
3648 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3649 __isl_keep isl_union_pw_qpolynomial *upwqp,
3650 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3653 To extract the piecewise quasipolynomial in a given space from a union, use
3655 __isl_give isl_pw_qpolynomial *
3656 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3657 __isl_keep isl_union_pw_qpolynomial *upwqp,
3658 __isl_take isl_space *space);
3660 To iterate over the cells in a piecewise quasipolynomial,
3661 use either of the following two functions
3663 int isl_pw_qpolynomial_foreach_piece(
3664 __isl_keep isl_pw_qpolynomial *pwqp,
3665 int (*fn)(__isl_take isl_set *set,
3666 __isl_take isl_qpolynomial *qp,
3667 void *user), void *user);
3668 int isl_pw_qpolynomial_foreach_lifted_piece(
3669 __isl_keep isl_pw_qpolynomial *pwqp,
3670 int (*fn)(__isl_take isl_set *set,
3671 __isl_take isl_qpolynomial *qp,
3672 void *user), void *user);
3674 As usual, the function C<fn> should return C<0> on success
3675 and C<-1> on failure. The difference between
3676 C<isl_pw_qpolynomial_foreach_piece> and
3677 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3678 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3679 compute unique representations for all existentially quantified
3680 variables and then turn these existentially quantified variables
3681 into extra set variables, adapting the associated quasipolynomial
3682 accordingly. This means that the C<set> passed to C<fn>
3683 will not have any existentially quantified variables, but that
3684 the dimensions of the sets may be different for different
3685 invocations of C<fn>.
3687 To iterate over all terms in a quasipolynomial,
3690 int isl_qpolynomial_foreach_term(
3691 __isl_keep isl_qpolynomial *qp,
3692 int (*fn)(__isl_take isl_term *term,
3693 void *user), void *user);
3695 The terms themselves can be inspected and freed using
3698 unsigned isl_term_dim(__isl_keep isl_term *term,
3699 enum isl_dim_type type);
3700 void isl_term_get_num(__isl_keep isl_term *term,
3702 void isl_term_get_den(__isl_keep isl_term *term,
3704 int isl_term_get_exp(__isl_keep isl_term *term,
3705 enum isl_dim_type type, unsigned pos);
3706 __isl_give isl_aff *isl_term_get_div(
3707 __isl_keep isl_term *term, unsigned pos);
3708 void isl_term_free(__isl_take isl_term *term);
3710 Each term is a product of parameters, set variables and
3711 integer divisions. The function C<isl_term_get_exp>
3712 returns the exponent of a given dimensions in the given term.
3713 The C<isl_int>s in the arguments of C<isl_term_get_num>
3714 and C<isl_term_get_den> need to have been initialized
3715 using C<isl_int_init> before calling these functions.
3717 =head3 Properties of (Piecewise) Quasipolynomials
3719 To check whether a quasipolynomial is actually a constant,
3720 use the following function.
3722 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3723 isl_int *n, isl_int *d);
3725 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3726 then the numerator and denominator of the constant
3727 are returned in C<*n> and C<*d>, respectively.
3729 To check whether two union piecewise quasipolynomials are
3730 obviously equal, use
3732 int isl_union_pw_qpolynomial_plain_is_equal(
3733 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3734 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3736 =head3 Operations on (Piecewise) Quasipolynomials
3738 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3739 __isl_take isl_qpolynomial *qp, isl_int v);
3740 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3741 __isl_take isl_qpolynomial *qp);
3742 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3743 __isl_take isl_qpolynomial *qp1,
3744 __isl_take isl_qpolynomial *qp2);
3745 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3746 __isl_take isl_qpolynomial *qp1,
3747 __isl_take isl_qpolynomial *qp2);
3748 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3749 __isl_take isl_qpolynomial *qp1,
3750 __isl_take isl_qpolynomial *qp2);
3751 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3752 __isl_take isl_qpolynomial *qp, unsigned exponent);
3754 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3755 __isl_take isl_pw_qpolynomial *pwqp1,
3756 __isl_take isl_pw_qpolynomial *pwqp2);
3757 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3758 __isl_take isl_pw_qpolynomial *pwqp1,
3759 __isl_take isl_pw_qpolynomial *pwqp2);
3760 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3761 __isl_take isl_pw_qpolynomial *pwqp1,
3762 __isl_take isl_pw_qpolynomial *pwqp2);
3763 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3764 __isl_take isl_pw_qpolynomial *pwqp);
3765 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3766 __isl_take isl_pw_qpolynomial *pwqp1,
3767 __isl_take isl_pw_qpolynomial *pwqp2);
3768 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3769 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3771 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3772 __isl_take isl_union_pw_qpolynomial *upwqp1,
3773 __isl_take isl_union_pw_qpolynomial *upwqp2);
3774 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3775 __isl_take isl_union_pw_qpolynomial *upwqp1,
3776 __isl_take isl_union_pw_qpolynomial *upwqp2);
3777 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3778 __isl_take isl_union_pw_qpolynomial *upwqp1,
3779 __isl_take isl_union_pw_qpolynomial *upwqp2);
3781 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3782 __isl_take isl_pw_qpolynomial *pwqp,
3783 __isl_take isl_point *pnt);
3785 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3786 __isl_take isl_union_pw_qpolynomial *upwqp,
3787 __isl_take isl_point *pnt);
3789 __isl_give isl_set *isl_pw_qpolynomial_domain(
3790 __isl_take isl_pw_qpolynomial *pwqp);
3791 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3792 __isl_take isl_pw_qpolynomial *pwpq,
3793 __isl_take isl_set *set);
3794 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
3795 __isl_take isl_pw_qpolynomial *pwpq,
3796 __isl_take isl_set *set);
3798 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3799 __isl_take isl_union_pw_qpolynomial *upwqp);
3800 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3801 __isl_take isl_union_pw_qpolynomial *upwpq,
3802 __isl_take isl_union_set *uset);
3803 __isl_give isl_union_pw_qpolynomial *
3804 isl_union_pw_qpolynomial_intersect_params(
3805 __isl_take isl_union_pw_qpolynomial *upwpq,
3806 __isl_take isl_set *set);
3808 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3809 __isl_take isl_qpolynomial *qp,
3810 __isl_take isl_space *model);
3812 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3813 __isl_take isl_qpolynomial *qp);
3814 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3815 __isl_take isl_pw_qpolynomial *pwqp);
3817 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3818 __isl_take isl_union_pw_qpolynomial *upwqp);
3820 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3821 __isl_take isl_qpolynomial *qp,
3822 __isl_take isl_set *context);
3823 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3824 __isl_take isl_qpolynomial *qp,
3825 __isl_take isl_set *context);
3827 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
3828 __isl_take isl_pw_qpolynomial *pwqp,
3829 __isl_take isl_set *context);
3830 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3831 __isl_take isl_pw_qpolynomial *pwqp,
3832 __isl_take isl_set *context);
3834 __isl_give isl_union_pw_qpolynomial *
3835 isl_union_pw_qpolynomial_gist_params(
3836 __isl_take isl_union_pw_qpolynomial *upwqp,
3837 __isl_take isl_set *context);
3838 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3839 __isl_take isl_union_pw_qpolynomial *upwqp,
3840 __isl_take isl_union_set *context);
3842 The gist operation applies the gist operation to each of
3843 the cells in the domain of the input piecewise quasipolynomial.
3844 The context is also exploited
3845 to simplify the quasipolynomials associated to each cell.
3847 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3848 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3849 __isl_give isl_union_pw_qpolynomial *
3850 isl_union_pw_qpolynomial_to_polynomial(
3851 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3853 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3854 the polynomial will be an overapproximation. If C<sign> is negative,
3855 it will be an underapproximation. If C<sign> is zero, the approximation
3856 will lie somewhere in between.
3858 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3860 A piecewise quasipolynomial reduction is a piecewise
3861 reduction (or fold) of quasipolynomials.
3862 In particular, the reduction can be maximum or a minimum.
3863 The objects are mainly used to represent the result of
3864 an upper or lower bound on a quasipolynomial over its domain,
3865 i.e., as the result of the following function.
3867 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3868 __isl_take isl_pw_qpolynomial *pwqp,
3869 enum isl_fold type, int *tight);
3871 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3872 __isl_take isl_union_pw_qpolynomial *upwqp,
3873 enum isl_fold type, int *tight);
3875 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3876 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3877 is the returned bound is known be tight, i.e., for each value
3878 of the parameters there is at least
3879 one element in the domain that reaches the bound.
3880 If the domain of C<pwqp> is not wrapping, then the bound is computed
3881 over all elements in that domain and the result has a purely parametric
3882 domain. If the domain of C<pwqp> is wrapping, then the bound is
3883 computed over the range of the wrapped relation. The domain of the
3884 wrapped relation becomes the domain of the result.
3886 A (piecewise) quasipolynomial reduction can be copied or freed using the
3887 following functions.
3889 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3890 __isl_keep isl_qpolynomial_fold *fold);
3891 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3892 __isl_keep isl_pw_qpolynomial_fold *pwf);
3893 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3894 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3895 void isl_qpolynomial_fold_free(
3896 __isl_take isl_qpolynomial_fold *fold);
3897 void *isl_pw_qpolynomial_fold_free(
3898 __isl_take isl_pw_qpolynomial_fold *pwf);
3899 void *isl_union_pw_qpolynomial_fold_free(
3900 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3902 =head3 Printing Piecewise Quasipolynomial Reductions
3904 Piecewise quasipolynomial reductions can be printed
3905 using the following function.
3907 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3908 __isl_take isl_printer *p,
3909 __isl_keep isl_pw_qpolynomial_fold *pwf);
3910 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3911 __isl_take isl_printer *p,
3912 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3914 For C<isl_printer_print_pw_qpolynomial_fold>,
3915 output format of the printer
3916 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3917 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3918 output format of the printer
3919 needs to be set to C<ISL_FORMAT_ISL>.
3920 In case of printing in C<ISL_FORMAT_C>, the user may want
3921 to set the names of all dimensions
3923 __isl_give isl_pw_qpolynomial_fold *
3924 isl_pw_qpolynomial_fold_set_dim_name(
3925 __isl_take isl_pw_qpolynomial_fold *pwf,
3926 enum isl_dim_type type, unsigned pos,
3929 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3931 To iterate over all piecewise quasipolynomial reductions in a union
3932 piecewise quasipolynomial reduction, use the following function
3934 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3935 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3936 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3937 void *user), void *user);
3939 To iterate over the cells in a piecewise quasipolynomial reduction,
3940 use either of the following two functions
3942 int isl_pw_qpolynomial_fold_foreach_piece(
3943 __isl_keep isl_pw_qpolynomial_fold *pwf,
3944 int (*fn)(__isl_take isl_set *set,
3945 __isl_take isl_qpolynomial_fold *fold,
3946 void *user), void *user);
3947 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3948 __isl_keep isl_pw_qpolynomial_fold *pwf,
3949 int (*fn)(__isl_take isl_set *set,
3950 __isl_take isl_qpolynomial_fold *fold,
3951 void *user), void *user);
3953 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3954 of the difference between these two functions.
3956 To iterate over all quasipolynomials in a reduction, use
3958 int isl_qpolynomial_fold_foreach_qpolynomial(
3959 __isl_keep isl_qpolynomial_fold *fold,
3960 int (*fn)(__isl_take isl_qpolynomial *qp,
3961 void *user), void *user);
3963 =head3 Properties of Piecewise Quasipolynomial Reductions
3965 To check whether two union piecewise quasipolynomial reductions are
3966 obviously equal, use
3968 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3969 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3970 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3972 =head3 Operations on Piecewise Quasipolynomial Reductions
3974 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3975 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3977 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3978 __isl_take isl_pw_qpolynomial_fold *pwf1,
3979 __isl_take isl_pw_qpolynomial_fold *pwf2);
3981 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3982 __isl_take isl_pw_qpolynomial_fold *pwf1,
3983 __isl_take isl_pw_qpolynomial_fold *pwf2);
3985 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3986 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3987 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3989 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3990 __isl_take isl_pw_qpolynomial_fold *pwf,
3991 __isl_take isl_point *pnt);
3993 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3994 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3995 __isl_take isl_point *pnt);
3997 __isl_give isl_pw_qpolynomial_fold *
3998 sl_pw_qpolynomial_fold_intersect_params(
3999 __isl_take isl_pw_qpolynomial_fold *pwf,
4000 __isl_take isl_set *set);
4002 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4003 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4004 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
4005 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4006 __isl_take isl_union_set *uset);
4007 __isl_give isl_union_pw_qpolynomial_fold *
4008 isl_union_pw_qpolynomial_fold_intersect_params(
4009 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4010 __isl_take isl_set *set);
4012 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
4013 __isl_take isl_pw_qpolynomial_fold *pwf);
4015 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
4016 __isl_take isl_pw_qpolynomial_fold *pwf);
4018 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
4019 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4021 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
4022 __isl_take isl_qpolynomial_fold *fold,
4023 __isl_take isl_set *context);
4024 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
4025 __isl_take isl_qpolynomial_fold *fold,
4026 __isl_take isl_set *context);
4028 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
4029 __isl_take isl_pw_qpolynomial_fold *pwf,
4030 __isl_take isl_set *context);
4031 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
4032 __isl_take isl_pw_qpolynomial_fold *pwf,
4033 __isl_take isl_set *context);
4035 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
4036 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4037 __isl_take isl_union_set *context);
4038 __isl_give isl_union_pw_qpolynomial_fold *
4039 isl_union_pw_qpolynomial_fold_gist_params(
4040 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4041 __isl_take isl_set *context);
4043 The gist operation applies the gist operation to each of
4044 the cells in the domain of the input piecewise quasipolynomial reduction.
4045 In future, the operation will also exploit the context
4046 to simplify the quasipolynomial reductions associated to each cell.
4048 __isl_give isl_pw_qpolynomial_fold *
4049 isl_set_apply_pw_qpolynomial_fold(
4050 __isl_take isl_set *set,
4051 __isl_take isl_pw_qpolynomial_fold *pwf,
4053 __isl_give isl_pw_qpolynomial_fold *
4054 isl_map_apply_pw_qpolynomial_fold(
4055 __isl_take isl_map *map,
4056 __isl_take isl_pw_qpolynomial_fold *pwf,
4058 __isl_give isl_union_pw_qpolynomial_fold *
4059 isl_union_set_apply_union_pw_qpolynomial_fold(
4060 __isl_take isl_union_set *uset,
4061 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4063 __isl_give isl_union_pw_qpolynomial_fold *
4064 isl_union_map_apply_union_pw_qpolynomial_fold(
4065 __isl_take isl_union_map *umap,
4066 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4069 The functions taking a map
4070 compose the given map with the given piecewise quasipolynomial reduction.
4071 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
4072 over all elements in the intersection of the range of the map
4073 and the domain of the piecewise quasipolynomial reduction
4074 as a function of an element in the domain of the map.
4075 The functions taking a set compute a bound over all elements in the
4076 intersection of the set and the domain of the
4077 piecewise quasipolynomial reduction.
4079 =head2 Dependence Analysis
4081 C<isl> contains specialized functionality for performing
4082 array dataflow analysis. That is, given a I<sink> access relation
4083 and a collection of possible I<source> access relations,
4084 C<isl> can compute relations that describe
4085 for each iteration of the sink access, which iteration
4086 of which of the source access relations was the last
4087 to access the same data element before the given iteration
4089 The resulting dependence relations map source iterations
4090 to the corresponding sink iterations.
4091 To compute standard flow dependences, the sink should be
4092 a read, while the sources should be writes.
4093 If any of the source accesses are marked as being I<may>
4094 accesses, then there will be a dependence from the last
4095 I<must> access B<and> from any I<may> access that follows
4096 this last I<must> access.
4097 In particular, if I<all> sources are I<may> accesses,
4098 then memory based dependence analysis is performed.
4099 If, on the other hand, all sources are I<must> accesses,
4100 then value based dependence analysis is performed.
4102 #include <isl/flow.h>
4104 typedef int (*isl_access_level_before)(void *first, void *second);
4106 __isl_give isl_access_info *isl_access_info_alloc(
4107 __isl_take isl_map *sink,
4108 void *sink_user, isl_access_level_before fn,
4110 __isl_give isl_access_info *isl_access_info_add_source(
4111 __isl_take isl_access_info *acc,
4112 __isl_take isl_map *source, int must,
4114 void isl_access_info_free(__isl_take isl_access_info *acc);
4116 __isl_give isl_flow *isl_access_info_compute_flow(
4117 __isl_take isl_access_info *acc);
4119 int isl_flow_foreach(__isl_keep isl_flow *deps,
4120 int (*fn)(__isl_take isl_map *dep, int must,
4121 void *dep_user, void *user),
4123 __isl_give isl_map *isl_flow_get_no_source(
4124 __isl_keep isl_flow *deps, int must);
4125 void isl_flow_free(__isl_take isl_flow *deps);
4127 The function C<isl_access_info_compute_flow> performs the actual
4128 dependence analysis. The other functions are used to construct
4129 the input for this function or to read off the output.
4131 The input is collected in an C<isl_access_info>, which can
4132 be created through a call to C<isl_access_info_alloc>.
4133 The arguments to this functions are the sink access relation
4134 C<sink>, a token C<sink_user> used to identify the sink
4135 access to the user, a callback function for specifying the
4136 relative order of source and sink accesses, and the number
4137 of source access relations that will be added.
4138 The callback function has type C<int (*)(void *first, void *second)>.
4139 The function is called with two user supplied tokens identifying
4140 either a source or the sink and it should return the shared nesting
4141 level and the relative order of the two accesses.
4142 In particular, let I<n> be the number of loops shared by
4143 the two accesses. If C<first> precedes C<second> textually,
4144 then the function should return I<2 * n + 1>; otherwise,
4145 it should return I<2 * n>.
4146 The sources can be added to the C<isl_access_info> by performing
4147 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4148 C<must> indicates whether the source is a I<must> access
4149 or a I<may> access. Note that a multi-valued access relation
4150 should only be marked I<must> if every iteration in the domain
4151 of the relation accesses I<all> elements in its image.
4152 The C<source_user> token is again used to identify
4153 the source access. The range of the source access relation
4154 C<source> should have the same dimension as the range
4155 of the sink access relation.
4156 The C<isl_access_info_free> function should usually not be
4157 called explicitly, because it is called implicitly by
4158 C<isl_access_info_compute_flow>.
4160 The result of the dependence analysis is collected in an
4161 C<isl_flow>. There may be elements of
4162 the sink access for which no preceding source access could be
4163 found or for which all preceding sources are I<may> accesses.
4164 The relations containing these elements can be obtained through
4165 calls to C<isl_flow_get_no_source>, the first with C<must> set
4166 and the second with C<must> unset.
4167 In the case of standard flow dependence analysis,
4168 with the sink a read and the sources I<must> writes,
4169 the first relation corresponds to the reads from uninitialized
4170 array elements and the second relation is empty.
4171 The actual flow dependences can be extracted using
4172 C<isl_flow_foreach>. This function will call the user-specified
4173 callback function C<fn> for each B<non-empty> dependence between
4174 a source and the sink. The callback function is called
4175 with four arguments, the actual flow dependence relation
4176 mapping source iterations to sink iterations, a boolean that
4177 indicates whether it is a I<must> or I<may> dependence, a token
4178 identifying the source and an additional C<void *> with value
4179 equal to the third argument of the C<isl_flow_foreach> call.
4180 A dependence is marked I<must> if it originates from a I<must>
4181 source and if it is not followed by any I<may> sources.
4183 After finishing with an C<isl_flow>, the user should call
4184 C<isl_flow_free> to free all associated memory.
4186 A higher-level interface to dependence analysis is provided
4187 by the following function.
4189 #include <isl/flow.h>
4191 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4192 __isl_take isl_union_map *must_source,
4193 __isl_take isl_union_map *may_source,
4194 __isl_take isl_union_map *schedule,
4195 __isl_give isl_union_map **must_dep,
4196 __isl_give isl_union_map **may_dep,
4197 __isl_give isl_union_map **must_no_source,
4198 __isl_give isl_union_map **may_no_source);
4200 The arrays are identified by the tuple names of the ranges
4201 of the accesses. The iteration domains by the tuple names
4202 of the domains of the accesses and of the schedule.
4203 The relative order of the iteration domains is given by the
4204 schedule. The relations returned through C<must_no_source>
4205 and C<may_no_source> are subsets of C<sink>.
4206 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4207 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4208 any of the other arguments is treated as an error.
4210 =head3 Interaction with Dependence Analysis
4212 During the dependence analysis, we frequently need to perform
4213 the following operation. Given a relation between sink iterations
4214 and potential soure iterations from a particular source domain,
4215 what is the last potential source iteration corresponding to each
4216 sink iteration. It can sometimes be convenient to adjust
4217 the set of potential source iterations before or after each such operation.
4218 The prototypical example is fuzzy array dataflow analysis,
4219 where we need to analyze if, based on data-dependent constraints,
4220 the sink iteration can ever be executed without one or more of
4221 the corresponding potential source iterations being executed.
4222 If so, we can introduce extra parameters and select an unknown
4223 but fixed source iteration from the potential source iterations.
4224 To be able to perform such manipulations, C<isl> provides the following
4227 #include <isl/flow.h>
4229 typedef __isl_give isl_restriction *(*isl_access_restrict)(
4230 __isl_keep isl_map *source_map,
4231 __isl_keep isl_set *sink, void *source_user,
4233 __isl_give isl_access_info *isl_access_info_set_restrict(
4234 __isl_take isl_access_info *acc,
4235 isl_access_restrict fn, void *user);
4237 The function C<isl_access_info_set_restrict> should be called
4238 before calling C<isl_access_info_compute_flow> and registers a callback function
4239 that will be called any time C<isl> is about to compute the last
4240 potential source. The first argument is the (reverse) proto-dependence,
4241 mapping sink iterations to potential source iterations.
4242 The second argument represents the sink iterations for which
4243 we want to compute the last source iteration.
4244 The third argument is the token corresponding to the source
4245 and the final argument is the token passed to C<isl_access_info_set_restrict>.
4246 The callback is expected to return a restriction on either the input or
4247 the output of the operation computing the last potential source.
4248 If the input needs to be restricted then restrictions are needed
4249 for both the source and the sink iterations. The sink iterations
4250 and the potential source iterations will be intersected with these sets.
4251 If the output needs to be restricted then only a restriction on the source
4252 iterations is required.
4253 If any error occurs, the callback should return C<NULL>.
4254 An C<isl_restriction> object can be created and freed using the following
4257 #include <isl/flow.h>
4259 __isl_give isl_restriction *isl_restriction_input(
4260 __isl_take isl_set *source_restr,
4261 __isl_take isl_set *sink_restr);
4262 __isl_give isl_restriction *isl_restriction_output(
4263 __isl_take isl_set *source_restr);
4264 __isl_give isl_restriction *isl_restriction_none(
4265 __isl_keep isl_map *source_map);
4266 __isl_give isl_restriction *isl_restriction_empty(
4267 __isl_keep isl_map *source_map);
4268 void *isl_restriction_free(
4269 __isl_take isl_restriction *restr);
4271 C<isl_restriction_none> and C<isl_restriction_empty> are special
4272 cases of C<isl_restriction_input>. C<isl_restriction_none>
4273 is essentially equivalent to
4275 isl_restriction_input(isl_set_universe(
4276 isl_space_range(isl_map_get_space(source_map))),
4278 isl_space_domain(isl_map_get_space(source_map))));
4280 whereas C<isl_restriction_empty> is essentially equivalent to
4282 isl_restriction_input(isl_set_empty(
4283 isl_space_range(isl_map_get_space(source_map))),
4285 isl_space_domain(isl_map_get_space(source_map))));
4289 B<The functionality described in this section is fairly new
4290 and may be subject to change.>
4292 The following function can be used to compute a schedule
4293 for a union of domains.
4294 By default, the algorithm used to construct the schedule is similar
4295 to that of C<Pluto>.
4296 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4298 The generated schedule respects all C<validity> dependences.
4299 That is, all dependence distances over these dependences in the
4300 scheduled space are lexicographically positive.
4301 The default algorithm tries to minimize the dependence distances over
4302 C<proximity> dependences.
4303 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4304 for groups of domains where the dependence distances have only
4305 non-negative values.
4306 When using Feautrier's algorithm, the C<proximity> dependence
4307 distances are only minimized during the extension to a
4308 full-dimensional schedule.
4310 #include <isl/schedule.h>
4311 __isl_give isl_schedule *isl_union_set_compute_schedule(
4312 __isl_take isl_union_set *domain,
4313 __isl_take isl_union_map *validity,
4314 __isl_take isl_union_map *proximity);
4315 void *isl_schedule_free(__isl_take isl_schedule *sched);
4317 A mapping from the domains to the scheduled space can be obtained
4318 from an C<isl_schedule> using the following function.
4320 __isl_give isl_union_map *isl_schedule_get_map(
4321 __isl_keep isl_schedule *sched);
4323 A representation of the schedule can be printed using
4325 __isl_give isl_printer *isl_printer_print_schedule(
4326 __isl_take isl_printer *p,
4327 __isl_keep isl_schedule *schedule);
4329 A representation of the schedule as a forest of bands can be obtained
4330 using the following function.
4332 __isl_give isl_band_list *isl_schedule_get_band_forest(
4333 __isl_keep isl_schedule *schedule);
4335 The list can be manipulated as explained in L<"Lists">.
4336 The bands inside the list can be copied and freed using the following
4339 #include <isl/band.h>
4340 __isl_give isl_band *isl_band_copy(
4341 __isl_keep isl_band *band);
4342 void *isl_band_free(__isl_take isl_band *band);
4344 Each band contains zero or more scheduling dimensions.
4345 These are referred to as the members of the band.
4346 The section of the schedule that corresponds to the band is
4347 referred to as the partial schedule of the band.
4348 For those nodes that participate in a band, the outer scheduling
4349 dimensions form the prefix schedule, while the inner scheduling
4350 dimensions form the suffix schedule.
4351 That is, if we take a cut of the band forest, then the union of
4352 the concatenations of the prefix, partial and suffix schedules of
4353 each band in the cut is equal to the entire schedule (modulo
4354 some possible padding at the end with zero scheduling dimensions).
4355 The properties of a band can be inspected using the following functions.
4357 #include <isl/band.h>
4358 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
4360 int isl_band_has_children(__isl_keep isl_band *band);
4361 __isl_give isl_band_list *isl_band_get_children(
4362 __isl_keep isl_band *band);
4364 __isl_give isl_union_map *isl_band_get_prefix_schedule(
4365 __isl_keep isl_band *band);
4366 __isl_give isl_union_map *isl_band_get_partial_schedule(
4367 __isl_keep isl_band *band);
4368 __isl_give isl_union_map *isl_band_get_suffix_schedule(
4369 __isl_keep isl_band *band);
4371 int isl_band_n_member(__isl_keep isl_band *band);
4372 int isl_band_member_is_zero_distance(
4373 __isl_keep isl_band *band, int pos);
4375 Note that a scheduling dimension is considered to be ``zero
4376 distance'' if it does not carry any proximity dependences
4378 That is, if the dependence distances of the proximity
4379 dependences are all zero in that direction (for fixed
4380 iterations of outer bands).
4382 A representation of the band can be printed using
4384 #include <isl/band.h>
4385 __isl_give isl_printer *isl_printer_print_band(
4386 __isl_take isl_printer *p,
4387 __isl_keep isl_band *band);
4391 #include <isl/schedule.h>
4392 int isl_options_set_schedule_max_coefficient(
4393 isl_ctx *ctx, int val);
4394 int isl_options_get_schedule_max_coefficient(
4396 int isl_options_set_schedule_max_constant_term(
4397 isl_ctx *ctx, int val);
4398 int isl_options_get_schedule_max_constant_term(
4400 int isl_options_set_schedule_maximize_band_depth(
4401 isl_ctx *ctx, int val);
4402 int isl_options_get_schedule_maximize_band_depth(
4404 int isl_options_set_schedule_outer_zero_distance(
4405 isl_ctx *ctx, int val);
4406 int isl_options_get_schedule_outer_zero_distance(
4408 int isl_options_set_schedule_split_scaled(
4409 isl_ctx *ctx, int val);
4410 int isl_options_get_schedule_split_scaled(
4412 int isl_options_set_schedule_algorithm(
4413 isl_ctx *ctx, int val);
4414 int isl_options_get_schedule_algorithm(
4420 =item * schedule_max_coefficient
4422 This option enforces that the coefficients for variable and parameter
4423 dimensions in the calculated schedule are not larger than the specified value.
4424 This option can significantly increase the speed of the scheduling calculation
4425 and may also prevent fusing of unrelated dimensions. A value of -1 means that
4426 this option does not introduce bounds on the variable or parameter
4429 =item * schedule_max_constant_term
4431 This option enforces that the constant coefficients in the calculated schedule
4432 are not larger than the maximal constant term. This option can significantly
4433 increase the speed of the scheduling calculation and may also prevent fusing of
4434 unrelated dimensions. A value of -1 means that this option does not introduce
4435 bounds on the constant coefficients.
4437 =item * schedule_maximize_band_depth
4439 If this option is set, we do not split bands at the point
4440 where we detect splitting is necessary. Instead, we
4441 backtrack and split bands as early as possible. This
4442 reduces the number of splits and maximizes the width of
4443 the bands. Wider bands give more possibilities for tiling.
4445 =item * schedule_outer_zero_distance
4447 If this option is set, then we try to construct schedules
4448 where the outermost scheduling dimension in each band
4449 results in a zero dependence distance over the proximity
4452 =item * schedule_split_scaled
4454 If this option is set, then we try to construct schedules in which the
4455 constant term is split off from the linear part if the linear parts of
4456 the scheduling rows for all nodes in the graphs have a common non-trivial
4458 The constant term is then placed in a separate band and the linear
4461 =item * schedule_algorithm
4463 Selects the scheduling algorithm to be used.
4464 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
4465 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
4469 =head2 Parametric Vertex Enumeration
4471 The parametric vertex enumeration described in this section
4472 is mainly intended to be used internally and by the C<barvinok>
4475 #include <isl/vertices.h>
4476 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4477 __isl_keep isl_basic_set *bset);
4479 The function C<isl_basic_set_compute_vertices> performs the
4480 actual computation of the parametric vertices and the chamber
4481 decomposition and store the result in an C<isl_vertices> object.
4482 This information can be queried by either iterating over all
4483 the vertices or iterating over all the chambers or cells
4484 and then iterating over all vertices that are active on the chamber.
4486 int isl_vertices_foreach_vertex(
4487 __isl_keep isl_vertices *vertices,
4488 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4491 int isl_vertices_foreach_cell(
4492 __isl_keep isl_vertices *vertices,
4493 int (*fn)(__isl_take isl_cell *cell, void *user),
4495 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4496 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4499 Other operations that can be performed on an C<isl_vertices> object are
4502 isl_ctx *isl_vertices_get_ctx(
4503 __isl_keep isl_vertices *vertices);
4504 int isl_vertices_get_n_vertices(
4505 __isl_keep isl_vertices *vertices);
4506 void isl_vertices_free(__isl_take isl_vertices *vertices);
4508 Vertices can be inspected and destroyed using the following functions.
4510 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4511 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4512 __isl_give isl_basic_set *isl_vertex_get_domain(
4513 __isl_keep isl_vertex *vertex);
4514 __isl_give isl_basic_set *isl_vertex_get_expr(
4515 __isl_keep isl_vertex *vertex);
4516 void isl_vertex_free(__isl_take isl_vertex *vertex);
4518 C<isl_vertex_get_expr> returns a singleton parametric set describing
4519 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4521 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4522 B<rational> basic sets, so they should mainly be used for inspection
4523 and should not be mixed with integer sets.
4525 Chambers can be inspected and destroyed using the following functions.
4527 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4528 __isl_give isl_basic_set *isl_cell_get_domain(
4529 __isl_keep isl_cell *cell);
4530 void isl_cell_free(__isl_take isl_cell *cell);
4534 Although C<isl> is mainly meant to be used as a library,
4535 it also contains some basic applications that use some
4536 of the functionality of C<isl>.
4537 The input may be specified in either the L<isl format>
4538 or the L<PolyLib format>.
4540 =head2 C<isl_polyhedron_sample>
4542 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4543 an integer element of the polyhedron, if there is any.
4544 The first column in the output is the denominator and is always
4545 equal to 1. If the polyhedron contains no integer points,
4546 then a vector of length zero is printed.
4550 C<isl_pip> takes the same input as the C<example> program
4551 from the C<piplib> distribution, i.e., a set of constraints
4552 on the parameters, a line containing only -1 and finally a set
4553 of constraints on a parametric polyhedron.
4554 The coefficients of the parameters appear in the last columns
4555 (but before the final constant column).
4556 The output is the lexicographic minimum of the parametric polyhedron.
4557 As C<isl> currently does not have its own output format, the output
4558 is just a dump of the internal state.
4560 =head2 C<isl_polyhedron_minimize>
4562 C<isl_polyhedron_minimize> computes the minimum of some linear
4563 or affine objective function over the integer points in a polyhedron.
4564 If an affine objective function
4565 is given, then the constant should appear in the last column.
4567 =head2 C<isl_polytope_scan>
4569 Given a polytope, C<isl_polytope_scan> prints
4570 all integer points in the polytope.