2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
22 #include <isl_config.h>
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
33 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
34 unsigned n_row
, unsigned n_var
, unsigned M
)
40 tab
= isl_calloc_type(ctx
, struct isl_tab
);
43 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
46 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
47 if (n_var
&& !tab
->var
)
49 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
50 if (n_row
&& !tab
->con
)
52 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
53 if (n_var
&& !tab
->col_var
)
55 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
56 if (n_row
&& !tab
->row_var
)
58 for (i
= 0; i
< n_var
; ++i
) {
59 tab
->var
[i
].index
= i
;
60 tab
->var
[i
].is_row
= 0;
61 tab
->var
[i
].is_nonneg
= 0;
62 tab
->var
[i
].is_zero
= 0;
63 tab
->var
[i
].is_redundant
= 0;
64 tab
->var
[i
].frozen
= 0;
65 tab
->var
[i
].negated
= 0;
79 tab
->strict_redundant
= 0;
86 tab
->bottom
.type
= isl_tab_undo_bottom
;
87 tab
->bottom
.next
= NULL
;
88 tab
->top
= &tab
->bottom
;
100 isl_ctx
*isl_tab_get_ctx(struct isl_tab
*tab
)
102 return tab
? isl_mat_get_ctx(tab
->mat
) : NULL
;
105 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
114 if (tab
->max_con
< tab
->n_con
+ n_new
) {
115 struct isl_tab_var
*con
;
117 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
118 struct isl_tab_var
, tab
->max_con
+ n_new
);
122 tab
->max_con
+= n_new
;
124 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
127 tab
->mat
= isl_mat_extend(tab
->mat
,
128 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
131 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
132 int, tab
->mat
->n_row
);
135 tab
->row_var
= row_var
;
137 enum isl_tab_row_sign
*s
;
138 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
139 enum isl_tab_row_sign
, tab
->mat
->n_row
);
148 /* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
151 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
153 struct isl_tab_var
*var
;
154 unsigned off
= 2 + tab
->M
;
156 if (tab
->max_var
< tab
->n_var
+ n_new
) {
157 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
158 struct isl_tab_var
, tab
->n_var
+ n_new
);
162 tab
->max_var
= tab
->n_var
+ n_new
;
165 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
168 tab
->mat
= isl_mat_extend(tab
->mat
,
169 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
172 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
173 int, tab
->n_col
+ n_new
);
182 static void free_undo_record(struct isl_tab_undo
*undo
)
184 switch (undo
->type
) {
185 case isl_tab_undo_saved_basis
:
186 free(undo
->u
.col_var
);
193 static void free_undo(struct isl_tab
*tab
)
195 struct isl_tab_undo
*undo
, *next
;
197 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
199 free_undo_record(undo
);
204 void isl_tab_free(struct isl_tab
*tab
)
209 isl_mat_free(tab
->mat
);
210 isl_vec_free(tab
->dual
);
211 isl_basic_map_free(tab
->bmap
);
217 isl_mat_free(tab
->samples
);
218 free(tab
->sample_index
);
219 isl_mat_free(tab
->basis
);
223 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
233 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
236 dup
->mat
= isl_mat_dup(tab
->mat
);
239 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
240 if (tab
->max_var
&& !dup
->var
)
242 for (i
= 0; i
< tab
->n_var
; ++i
)
243 dup
->var
[i
] = tab
->var
[i
];
244 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
245 if (tab
->max_con
&& !dup
->con
)
247 for (i
= 0; i
< tab
->n_con
; ++i
)
248 dup
->con
[i
] = tab
->con
[i
];
249 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
250 if ((tab
->mat
->n_col
- off
) && !dup
->col_var
)
252 for (i
= 0; i
< tab
->n_col
; ++i
)
253 dup
->col_var
[i
] = tab
->col_var
[i
];
254 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
255 if (tab
->mat
->n_row
&& !dup
->row_var
)
257 for (i
= 0; i
< tab
->n_row
; ++i
)
258 dup
->row_var
[i
] = tab
->row_var
[i
];
260 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
262 if (tab
->mat
->n_row
&& !dup
->row_sign
)
264 for (i
= 0; i
< tab
->n_row
; ++i
)
265 dup
->row_sign
[i
] = tab
->row_sign
[i
];
268 dup
->samples
= isl_mat_dup(tab
->samples
);
271 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
272 tab
->samples
->n_row
);
273 if (tab
->samples
->n_row
&& !dup
->sample_index
)
275 dup
->n_sample
= tab
->n_sample
;
276 dup
->n_outside
= tab
->n_outside
;
278 dup
->n_row
= tab
->n_row
;
279 dup
->n_con
= tab
->n_con
;
280 dup
->n_eq
= tab
->n_eq
;
281 dup
->max_con
= tab
->max_con
;
282 dup
->n_col
= tab
->n_col
;
283 dup
->n_var
= tab
->n_var
;
284 dup
->max_var
= tab
->max_var
;
285 dup
->n_param
= tab
->n_param
;
286 dup
->n_div
= tab
->n_div
;
287 dup
->n_dead
= tab
->n_dead
;
288 dup
->n_redundant
= tab
->n_redundant
;
289 dup
->rational
= tab
->rational
;
290 dup
->empty
= tab
->empty
;
291 dup
->strict_redundant
= 0;
295 dup
->cone
= tab
->cone
;
296 dup
->bottom
.type
= isl_tab_undo_bottom
;
297 dup
->bottom
.next
= NULL
;
298 dup
->top
= &dup
->bottom
;
300 dup
->n_zero
= tab
->n_zero
;
301 dup
->n_unbounded
= tab
->n_unbounded
;
302 dup
->basis
= isl_mat_dup(tab
->basis
);
310 /* Construct the coefficient matrix of the product tableau
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
323 static __isl_give isl_mat
*tab_mat_product(__isl_keep isl_mat
*mat1
,
324 __isl_keep isl_mat
*mat2
, unsigned row1
, unsigned row2
,
325 unsigned col1
, unsigned col2
,
326 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
329 struct isl_mat
*prod
;
332 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
338 for (i
= 0; i
< r1
; ++i
) {
339 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
340 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
341 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
342 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
343 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
347 for (i
= 0; i
< r2
; ++i
) {
348 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
349 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
350 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
351 mat2
->row
[i
] + off
, d2
);
352 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
353 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
354 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
358 for (i
= 0; i
< row1
- r1
; ++i
) {
359 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
360 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
361 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
362 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
363 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
367 for (i
= 0; i
< row2
- r2
; ++i
) {
368 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
369 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
370 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
371 mat2
->row
[r2
+ i
] + off
, d2
);
372 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
373 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
374 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
380 /* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
383 static void update_index1(struct isl_tab_var
*var
,
384 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
386 if (var
->index
== -1)
388 if (var
->is_row
&& var
->index
>= r1
)
390 if (!var
->is_row
&& var
->index
>= d1
)
394 /* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
397 static void update_index2(struct isl_tab_var
*var
,
398 unsigned row1
, unsigned col1
,
399 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
401 if (var
->index
== -1)
416 /* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
434 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
437 struct isl_tab
*prod
;
439 unsigned r1
, r2
, d1
, d2
;
444 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
445 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
446 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
447 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
448 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
449 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
450 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
451 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
452 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
455 r1
= tab1
->n_redundant
;
456 r2
= tab2
->n_redundant
;
459 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
462 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
463 tab1
->n_row
, tab2
->n_row
,
464 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
467 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
468 tab1
->max_var
+ tab2
->max_var
);
469 if ((tab1
->max_var
+ tab2
->max_var
) && !prod
->var
)
471 for (i
= 0; i
< tab1
->n_var
; ++i
) {
472 prod
->var
[i
] = tab1
->var
[i
];
473 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
475 for (i
= 0; i
< tab2
->n_var
; ++i
) {
476 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
477 update_index2(&prod
->var
[tab1
->n_var
+ i
],
478 tab1
->n_row
, tab1
->n_col
,
481 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
482 tab1
->max_con
+ tab2
->max_con
);
483 if ((tab1
->max_con
+ tab2
->max_con
) && !prod
->con
)
485 for (i
= 0; i
< tab1
->n_con
; ++i
) {
486 prod
->con
[i
] = tab1
->con
[i
];
487 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
489 for (i
= 0; i
< tab2
->n_con
; ++i
) {
490 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
491 update_index2(&prod
->con
[tab1
->n_con
+ i
],
492 tab1
->n_row
, tab1
->n_col
,
495 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
496 tab1
->n_col
+ tab2
->n_col
);
497 if ((tab1
->n_col
+ tab2
->n_col
) && !prod
->col_var
)
499 for (i
= 0; i
< tab1
->n_col
; ++i
) {
500 int pos
= i
< d1
? i
: i
+ d2
;
501 prod
->col_var
[pos
] = tab1
->col_var
[i
];
503 for (i
= 0; i
< tab2
->n_col
; ++i
) {
504 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
505 int t
= tab2
->col_var
[i
];
510 prod
->col_var
[pos
] = t
;
512 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
513 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
514 if ((tab1
->mat
->n_row
+ tab2
->mat
->n_row
) && !prod
->row_var
)
516 for (i
= 0; i
< tab1
->n_row
; ++i
) {
517 int pos
= i
< r1
? i
: i
+ r2
;
518 prod
->row_var
[pos
] = tab1
->row_var
[i
];
520 for (i
= 0; i
< tab2
->n_row
; ++i
) {
521 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
522 int t
= tab2
->row_var
[i
];
527 prod
->row_var
[pos
] = t
;
529 prod
->samples
= NULL
;
530 prod
->sample_index
= NULL
;
531 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
532 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
534 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
535 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
536 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
537 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
540 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
541 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
542 prod
->rational
= tab1
->rational
;
543 prod
->empty
= tab1
->empty
|| tab2
->empty
;
544 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
548 prod
->cone
= tab1
->cone
;
549 prod
->bottom
.type
= isl_tab_undo_bottom
;
550 prod
->bottom
.next
= NULL
;
551 prod
->top
= &prod
->bottom
;
554 prod
->n_unbounded
= 0;
563 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
568 return &tab
->con
[~i
];
571 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
573 return var_from_index(tab
, tab
->row_var
[i
]);
576 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
578 return var_from_index(tab
, tab
->col_var
[i
]);
581 /* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
585 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
586 struct isl_tab_var
*var
)
589 unsigned off
= 2 + tab
->M
;
593 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
594 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
596 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
602 /* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
606 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
607 struct isl_tab_var
*var
)
610 unsigned off
= 2 + tab
->M
;
614 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
615 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
617 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
623 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int
*t
)
625 unsigned off
= 2 + tab
->M
;
629 isl_int_mul(*t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
630 isl_int_submul(*t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
635 isl_int_mul(*t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
636 isl_int_submul(*t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
637 return isl_int_sgn(*t
);
640 /* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
646 * Each row in the tableau is of the form
648 * x_r = a_r0 + \sum_i a_ri x_i
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
660 static int pivot_row(struct isl_tab
*tab
,
661 struct isl_tab_var
*var
, int sgn
, int c
)
665 unsigned off
= 2 + tab
->M
;
669 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
670 if (var
&& j
== var
->index
)
672 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
674 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
680 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, &t
);
681 if (tsgn
< 0 || (tsgn
== 0 &&
682 tab
->row_var
[j
] < tab
->row_var
[r
]))
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
694 * As the given row in the tableau is of the form
696 * x_r = a_r0 + \sum_i a_ri x_i
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
705 static void find_pivot(struct isl_tab
*tab
,
706 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
707 int sgn
, int *row
, int *col
)
714 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
715 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
718 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
719 if (isl_int_is_zero(tr
[j
]))
721 if (isl_int_sgn(tr
[j
]) != sgn
&&
722 var_from_col(tab
, j
)->is_nonneg
)
724 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
730 sgn
*= isl_int_sgn(tr
[c
]);
731 r
= pivot_row(tab
, skip_var
, sgn
, c
);
732 *row
= r
< 0 ? var
->index
: r
;
736 /* Return 1 if row "row" represents an obviously redundant inequality.
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
742 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
745 unsigned off
= 2 + tab
->M
;
747 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
750 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
752 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
754 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
757 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
758 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
760 if (tab
->col_var
[i
] >= 0)
762 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
764 if (!var_from_col(tab
, i
)->is_nonneg
)
770 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
773 enum isl_tab_row_sign s
;
775 t
= tab
->row_var
[row1
];
776 tab
->row_var
[row1
] = tab
->row_var
[row2
];
777 tab
->row_var
[row2
] = t
;
778 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
779 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
780 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
784 s
= tab
->row_sign
[row1
];
785 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
786 tab
->row_sign
[row2
] = s
;
789 static isl_stat
push_union(struct isl_tab
*tab
,
790 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
792 /* Push record "u" onto the undo stack of "tab", provided "tab"
793 * keeps track of undo information.
795 * If the record cannot be pushed, then mark the undo stack as invalid
796 * such that a later rollback attempt will not try to undo earlier
797 * records without having been able to undo the current record.
799 static isl_stat
push_union(struct isl_tab
*tab
,
800 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
802 struct isl_tab_undo
*undo
;
805 return isl_stat_error
;
809 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
814 undo
->next
= tab
->top
;
821 return isl_stat_error
;
824 isl_stat
isl_tab_push_var(struct isl_tab
*tab
,
825 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
827 union isl_tab_undo_val u
;
829 u
.var_index
= tab
->row_var
[var
->index
];
831 u
.var_index
= tab
->col_var
[var
->index
];
832 return push_union(tab
, type
, u
);
835 isl_stat
isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
837 union isl_tab_undo_val u
= { 0 };
838 return push_union(tab
, type
, u
);
841 /* Push a record on the undo stack describing the current basic
842 * variables, so that the this state can be restored during rollback.
844 isl_stat
isl_tab_push_basis(struct isl_tab
*tab
)
847 union isl_tab_undo_val u
;
849 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
850 if (tab
->n_col
&& !u
.col_var
)
851 return isl_stat_error
;
852 for (i
= 0; i
< tab
->n_col
; ++i
)
853 u
.col_var
[i
] = tab
->col_var
[i
];
854 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
857 isl_stat
isl_tab_push_callback(struct isl_tab
*tab
,
858 struct isl_tab_callback
*callback
)
860 union isl_tab_undo_val u
;
861 u
.callback
= callback
;
862 return push_union(tab
, isl_tab_undo_callback
, u
);
865 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
872 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
875 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
876 if (!tab
->sample_index
)
884 int isl_tab_add_sample(struct isl_tab
*tab
, __isl_take isl_vec
*sample
)
889 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
890 int *t
= isl_realloc_array(tab
->mat
->ctx
,
891 tab
->sample_index
, int, tab
->n_sample
+ 1);
894 tab
->sample_index
= t
;
897 tab
->samples
= isl_mat_extend(tab
->samples
,
898 tab
->n_sample
+ 1, tab
->samples
->n_col
);
902 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
903 isl_vec_free(sample
);
904 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
909 isl_vec_free(sample
);
913 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
915 if (s
!= tab
->n_outside
) {
916 int t
= tab
->sample_index
[tab
->n_outside
];
917 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
918 tab
->sample_index
[s
] = t
;
919 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
922 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
930 /* Record the current number of samples so that we can remove newer
931 * samples during a rollback.
933 isl_stat
isl_tab_save_samples(struct isl_tab
*tab
)
935 union isl_tab_undo_val u
;
938 return isl_stat_error
;
941 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
944 /* Mark row with index "row" as being redundant.
945 * If we may need to undo the operation or if the row represents
946 * a variable of the original problem, the row is kept,
947 * but no longer considered when looking for a pivot row.
948 * Otherwise, the row is simply removed.
950 * The row may be interchanged with some other row. If it
951 * is interchanged with a later row, return 1. Otherwise return 0.
952 * If the rows are checked in order in the calling function,
953 * then a return value of 1 means that the row with the given
954 * row number may now contain a different row that hasn't been checked yet.
956 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
958 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
959 var
->is_redundant
= 1;
960 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
961 if (tab
->preserve
|| tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
962 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
964 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
967 if (row
!= tab
->n_redundant
)
968 swap_rows(tab
, row
, tab
->n_redundant
);
970 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
972 if (row
!= tab
->n_row
- 1)
973 swap_rows(tab
, row
, tab
->n_row
- 1);
974 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
980 /* Mark "tab" as a rational tableau.
981 * If it wasn't marked as a rational tableau already and if we may
982 * need to undo changes, then arrange for the marking to be undone
985 int isl_tab_mark_rational(struct isl_tab
*tab
)
989 if (!tab
->rational
&& tab
->need_undo
)
990 if (isl_tab_push(tab
, isl_tab_undo_rational
) < 0)
996 isl_stat
isl_tab_mark_empty(struct isl_tab
*tab
)
999 return isl_stat_error
;
1000 if (!tab
->empty
&& tab
->need_undo
)
1001 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
1002 return isl_stat_error
;
1007 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
1009 struct isl_tab_var
*var
;
1014 var
= &tab
->con
[con
];
1022 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
1027 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1028 * the original sign of the pivot element.
1029 * We only keep track of row signs during PILP solving and in this case
1030 * we only pivot a row with negative sign (meaning the value is always
1031 * non-positive) using a positive pivot element.
1033 * For each row j, the new value of the parametric constant is equal to
1035 * a_j0 - a_jc a_r0/a_rc
1037 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1038 * a_r0 is the parametric constant of the pivot row and a_jc is the
1039 * pivot column entry of the row j.
1040 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1041 * remains the same if a_jc has the same sign as the row j or if
1042 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1044 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1047 struct isl_mat
*mat
= tab
->mat
;
1048 unsigned off
= 2 + tab
->M
;
1053 if (tab
->row_sign
[row
] == 0)
1055 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1056 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1057 tab
->row_sign
[row
] = isl_tab_row_pos
;
1058 for (i
= 0; i
< tab
->n_row
; ++i
) {
1062 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1065 if (!tab
->row_sign
[i
])
1067 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1069 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1071 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1075 /* Given a row number "row" and a column number "col", pivot the tableau
1076 * such that the associated variables are interchanged.
1077 * The given row in the tableau expresses
1079 * x_r = a_r0 + \sum_i a_ri x_i
1083 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1085 * Substituting this equality into the other rows
1087 * x_j = a_j0 + \sum_i a_ji x_i
1089 * with a_jc \ne 0, we obtain
1091 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1098 * where i is any other column and j is any other row,
1099 * is therefore transformed into
1101 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1102 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1104 * The transformation is performed along the following steps
1106 * d_r/n_rc n_ri/n_rc
1109 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1112 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1113 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1115 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1116 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1118 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1119 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1121 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1122 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1125 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1131 struct isl_mat
*mat
= tab
->mat
;
1132 struct isl_tab_var
*var
;
1133 unsigned off
= 2 + tab
->M
;
1135 ctx
= isl_tab_get_ctx(tab
);
1136 if (isl_ctx_next_operation(ctx
) < 0)
1139 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1140 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1142 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1143 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1145 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1146 if (j
== off
- 1 + col
)
1148 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1150 if (!isl_int_is_one(mat
->row
[row
][0]))
1151 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1152 for (i
= 0; i
< tab
->n_row
; ++i
) {
1155 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1157 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1158 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1159 if (j
== off
- 1 + col
)
1161 isl_int_mul(mat
->row
[i
][1 + j
],
1162 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1163 isl_int_addmul(mat
->row
[i
][1 + j
],
1164 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1166 isl_int_mul(mat
->row
[i
][off
+ col
],
1167 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1168 if (!isl_int_is_one(mat
->row
[i
][0]))
1169 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1171 t
= tab
->row_var
[row
];
1172 tab
->row_var
[row
] = tab
->col_var
[col
];
1173 tab
->col_var
[col
] = t
;
1174 var
= isl_tab_var_from_row(tab
, row
);
1177 var
= var_from_col(tab
, col
);
1180 update_row_sign(tab
, row
, col
, sgn
);
1183 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1184 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1186 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1187 isl_tab_row_is_redundant(tab
, i
)) {
1188 int redo
= isl_tab_mark_redundant(tab
, i
);
1198 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1199 * or down (sgn < 0) to a row. The variable is assumed not to be
1200 * unbounded in the specified direction.
1201 * If sgn = 0, then the variable is unbounded in both directions,
1202 * and we pivot with any row we can find.
1204 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1205 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1208 unsigned off
= 2 + tab
->M
;
1214 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1215 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1217 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1219 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1220 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1223 return isl_tab_pivot(tab
, r
, var
->index
);
1226 /* Check whether all variables that are marked as non-negative
1227 * also have a non-negative sample value. This function is not
1228 * called from the current code but is useful during debugging.
1230 static void check_table(struct isl_tab
*tab
) __attribute__ ((unused
));
1231 static void check_table(struct isl_tab
*tab
)
1237 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1238 struct isl_tab_var
*var
;
1239 var
= isl_tab_var_from_row(tab
, i
);
1240 if (!var
->is_nonneg
)
1243 isl_assert(tab
->mat
->ctx
,
1244 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1245 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1248 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1253 /* Return the sign of the maximal value of "var".
1254 * If the sign is not negative, then on return from this function,
1255 * the sample value will also be non-negative.
1257 * If "var" is manifestly unbounded wrt positive values, we are done.
1258 * Otherwise, we pivot the variable up to a row if needed.
1259 * Then we continue pivoting up until either
1260 * - no more up pivots can be performed
1261 * - the sample value is positive
1262 * - the variable is pivoted into a manifestly unbounded column
1264 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1268 if (max_is_manifestly_unbounded(tab
, var
))
1270 if (to_row(tab
, var
, 1) < 0)
1272 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1273 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1275 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1276 if (isl_tab_pivot(tab
, row
, col
) < 0)
1278 if (!var
->is_row
) /* manifestly unbounded */
1284 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1286 struct isl_tab_var
*var
;
1291 var
= &tab
->con
[con
];
1292 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1293 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1295 return sign_of_max(tab
, var
);
1298 static int row_is_neg(struct isl_tab
*tab
, int row
)
1301 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1302 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1304 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1306 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1309 static int row_sgn(struct isl_tab
*tab
, int row
)
1312 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1313 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1314 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1316 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1319 /* Perform pivots until the row variable "var" has a non-negative
1320 * sample value or until no more upward pivots can be performed.
1321 * Return the sign of the sample value after the pivots have been
1324 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1328 while (row_is_neg(tab
, var
->index
)) {
1329 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1332 if (isl_tab_pivot(tab
, row
, col
) < 0)
1334 if (!var
->is_row
) /* manifestly unbounded */
1337 return row_sgn(tab
, var
->index
);
1340 /* Perform pivots until we are sure that the row variable "var"
1341 * can attain non-negative values. After return from this
1342 * function, "var" is still a row variable, but its sample
1343 * value may not be non-negative, even if the function returns 1.
1345 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1349 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1350 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1353 if (row
== var
->index
) /* manifestly unbounded */
1355 if (isl_tab_pivot(tab
, row
, col
) < 0)
1358 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1361 /* Return a negative value if "var" can attain negative values.
1362 * Return a non-negative value otherwise.
1364 * If "var" is manifestly unbounded wrt negative values, we are done.
1365 * Otherwise, if var is in a column, we can pivot it down to a row.
1366 * Then we continue pivoting down until either
1367 * - the pivot would result in a manifestly unbounded column
1368 * => we don't perform the pivot, but simply return -1
1369 * - no more down pivots can be performed
1370 * - the sample value is negative
1371 * If the sample value becomes negative and the variable is supposed
1372 * to be nonnegative, then we undo the last pivot.
1373 * However, if the last pivot has made the pivoting variable
1374 * obviously redundant, then it may have moved to another row.
1375 * In that case we look for upward pivots until we reach a non-negative
1378 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1381 struct isl_tab_var
*pivot_var
= NULL
;
1383 if (min_is_manifestly_unbounded(tab
, var
))
1387 row
= pivot_row(tab
, NULL
, -1, col
);
1388 pivot_var
= var_from_col(tab
, col
);
1389 if (isl_tab_pivot(tab
, row
, col
) < 0)
1391 if (var
->is_redundant
)
1393 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1394 if (var
->is_nonneg
) {
1395 if (!pivot_var
->is_redundant
&&
1396 pivot_var
->index
== row
) {
1397 if (isl_tab_pivot(tab
, row
, col
) < 0)
1400 if (restore_row(tab
, var
) < -1)
1406 if (var
->is_redundant
)
1408 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1409 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1410 if (row
== var
->index
)
1413 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1414 pivot_var
= var_from_col(tab
, col
);
1415 if (isl_tab_pivot(tab
, row
, col
) < 0)
1417 if (var
->is_redundant
)
1420 if (pivot_var
&& var
->is_nonneg
) {
1421 /* pivot back to non-negative value */
1422 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1423 if (isl_tab_pivot(tab
, row
, col
) < 0)
1426 if (restore_row(tab
, var
) < -1)
1432 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1435 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1437 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1440 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1441 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1442 tab
->mat
->row
[row
][0]);
1445 /* Return 1 if "var" can attain values <= -1.
1446 * Return 0 otherwise.
1448 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1449 * then the sample value of "var" is assumed to be non-negative when the
1450 * the function is called. If 1 is returned then the constraint
1451 * is not redundant and the sample value is made non-negative again before
1452 * the function returns.
1454 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1457 struct isl_tab_var
*pivot_var
;
1459 if (min_is_manifestly_unbounded(tab
, var
))
1463 row
= pivot_row(tab
, NULL
, -1, col
);
1464 pivot_var
= var_from_col(tab
, col
);
1465 if (isl_tab_pivot(tab
, row
, col
) < 0)
1467 if (var
->is_redundant
)
1469 if (row_at_most_neg_one(tab
, var
->index
)) {
1470 if (var
->is_nonneg
) {
1471 if (!pivot_var
->is_redundant
&&
1472 pivot_var
->index
== row
) {
1473 if (isl_tab_pivot(tab
, row
, col
) < 0)
1476 if (restore_row(tab
, var
) < -1)
1482 if (var
->is_redundant
)
1485 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1486 if (row
== var
->index
) {
1487 if (var
->is_nonneg
&& restore_row(tab
, var
) < -1)
1493 pivot_var
= var_from_col(tab
, col
);
1494 if (isl_tab_pivot(tab
, row
, col
) < 0)
1496 if (var
->is_redundant
)
1498 } while (!row_at_most_neg_one(tab
, var
->index
));
1499 if (var
->is_nonneg
) {
1500 /* pivot back to non-negative value */
1501 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1502 if (isl_tab_pivot(tab
, row
, col
) < 0)
1504 if (restore_row(tab
, var
) < -1)
1510 /* Return 1 if "var" can attain values >= 1.
1511 * Return 0 otherwise.
1513 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1518 if (max_is_manifestly_unbounded(tab
, var
))
1520 if (to_row(tab
, var
, 1) < 0)
1522 r
= tab
->mat
->row
[var
->index
];
1523 while (isl_int_lt(r
[1], r
[0])) {
1524 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1526 return isl_int_ge(r
[1], r
[0]);
1527 if (row
== var
->index
) /* manifestly unbounded */
1529 if (isl_tab_pivot(tab
, row
, col
) < 0)
1535 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1538 unsigned off
= 2 + tab
->M
;
1539 t
= tab
->col_var
[col1
];
1540 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1541 tab
->col_var
[col2
] = t
;
1542 var_from_col(tab
, col1
)->index
= col1
;
1543 var_from_col(tab
, col2
)->index
= col2
;
1544 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1547 /* Mark column with index "col" as representing a zero variable.
1548 * If we may need to undo the operation the column is kept,
1549 * but no longer considered.
1550 * Otherwise, the column is simply removed.
1552 * The column may be interchanged with some other column. If it
1553 * is interchanged with a later column, return 1. Otherwise return 0.
1554 * If the columns are checked in order in the calling function,
1555 * then a return value of 1 means that the column with the given
1556 * column number may now contain a different column that
1557 * hasn't been checked yet.
1559 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1561 var_from_col(tab
, col
)->is_zero
= 1;
1562 if (tab
->need_undo
) {
1563 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1564 var_from_col(tab
, col
)) < 0)
1566 if (col
!= tab
->n_dead
)
1567 swap_cols(tab
, col
, tab
->n_dead
);
1571 if (col
!= tab
->n_col
- 1)
1572 swap_cols(tab
, col
, tab
->n_col
- 1);
1573 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1579 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1581 unsigned off
= 2 + tab
->M
;
1583 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1584 tab
->mat
->row
[row
][0]))
1586 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1587 tab
->n_col
- tab
->n_dead
) != -1)
1590 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1591 tab
->mat
->row
[row
][0]);
1594 /* For integer tableaus, check if any of the coordinates are stuck
1595 * at a non-integral value.
1597 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1606 for (i
= 0; i
< tab
->n_var
; ++i
) {
1607 if (!tab
->var
[i
].is_row
)
1609 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1616 /* Row variable "var" is non-negative and cannot attain any values
1617 * larger than zero. This means that the coefficients of the unrestricted
1618 * column variables are zero and that the coefficients of the non-negative
1619 * column variables are zero or negative.
1620 * Each of the non-negative variables with a negative coefficient can
1621 * then also be written as the negative sum of non-negative variables
1622 * and must therefore also be zero.
1624 * If "temp_var" is set, then "var" is a temporary variable that
1625 * will be removed after this function returns and for which
1626 * no information is recorded on the undo stack.
1627 * Do not add any undo records involving this variable in this case
1628 * since the variable will have been removed before any future undo
1629 * operations. Also avoid marking the variable as redundant,
1630 * since that either adds an undo record or needlessly removes the row
1631 * (the caller will take care of removing the row).
1633 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1634 int temp_var
) WARN_UNUSED
;
1635 static isl_stat
close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
,
1639 struct isl_mat
*mat
= tab
->mat
;
1640 unsigned off
= 2 + tab
->M
;
1642 if (!var
->is_nonneg
)
1643 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1644 "expecting non-negative variable",
1645 return isl_stat_error
);
1647 if (!temp_var
&& tab
->need_undo
)
1648 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1649 return isl_stat_error
;
1650 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1652 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1654 if (isl_int_is_pos(mat
->row
[var
->index
][off
+ j
]))
1655 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1656 "row cannot have positive coefficients",
1657 return isl_stat_error
);
1658 recheck
= isl_tab_kill_col(tab
, j
);
1660 return isl_stat_error
;
1664 if (!temp_var
&& isl_tab_mark_redundant(tab
, var
->index
) < 0)
1665 return isl_stat_error
;
1666 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1667 return isl_stat_error
;
1671 /* Add a constraint to the tableau and allocate a row for it.
1672 * Return the index into the constraint array "con".
1674 * This function assumes that at least one more row and at least
1675 * one more element in the constraint array are available in the tableau.
1677 int isl_tab_allocate_con(struct isl_tab
*tab
)
1681 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1682 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1685 tab
->con
[r
].index
= tab
->n_row
;
1686 tab
->con
[r
].is_row
= 1;
1687 tab
->con
[r
].is_nonneg
= 0;
1688 tab
->con
[r
].is_zero
= 0;
1689 tab
->con
[r
].is_redundant
= 0;
1690 tab
->con
[r
].frozen
= 0;
1691 tab
->con
[r
].negated
= 0;
1692 tab
->row_var
[tab
->n_row
] = ~r
;
1696 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1702 /* Move the entries in tab->var up one position, starting at "first",
1703 * creating room for an extra entry at position "first".
1704 * Since some of the entries of tab->row_var and tab->col_var contain
1705 * indices into this array, they have to be updated accordingly.
1707 static int var_insert_entry(struct isl_tab
*tab
, int first
)
1711 if (tab
->n_var
>= tab
->max_var
)
1712 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1713 "not enough room for new variable", return -1);
1714 if (first
> tab
->n_var
)
1715 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1716 "invalid initial position", return -1);
1718 for (i
= tab
->n_var
- 1; i
>= first
; --i
) {
1719 tab
->var
[i
+ 1] = tab
->var
[i
];
1720 if (tab
->var
[i
+ 1].is_row
)
1721 tab
->row_var
[tab
->var
[i
+ 1].index
]++;
1723 tab
->col_var
[tab
->var
[i
+ 1].index
]++;
1731 /* Drop the entry at position "first" in tab->var, moving all
1732 * subsequent entries down.
1733 * Since some of the entries of tab->row_var and tab->col_var contain
1734 * indices into this array, they have to be updated accordingly.
1736 static int var_drop_entry(struct isl_tab
*tab
, int first
)
1740 if (first
>= tab
->n_var
)
1741 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
1742 "invalid initial position", return -1);
1746 for (i
= first
; i
< tab
->n_var
; ++i
) {
1747 tab
->var
[i
] = tab
->var
[i
+ 1];
1748 if (tab
->var
[i
+ 1].is_row
)
1749 tab
->row_var
[tab
->var
[i
].index
]--;
1751 tab
->col_var
[tab
->var
[i
].index
]--;
1757 /* Add a variable to the tableau at position "r" and allocate a column for it.
1758 * Return the index into the variable array "var", i.e., "r",
1761 int isl_tab_insert_var(struct isl_tab
*tab
, int r
)
1764 unsigned off
= 2 + tab
->M
;
1766 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1768 if (var_insert_entry(tab
, r
) < 0)
1771 tab
->var
[r
].index
= tab
->n_col
;
1772 tab
->var
[r
].is_row
= 0;
1773 tab
->var
[r
].is_nonneg
= 0;
1774 tab
->var
[r
].is_zero
= 0;
1775 tab
->var
[r
].is_redundant
= 0;
1776 tab
->var
[r
].frozen
= 0;
1777 tab
->var
[r
].negated
= 0;
1778 tab
->col_var
[tab
->n_col
] = r
;
1780 for (i
= 0; i
< tab
->n_row
; ++i
)
1781 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1784 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1790 /* Add a row to the tableau. The row is given as an affine combination
1791 * of the original variables and needs to be expressed in terms of the
1794 * This function assumes that at least one more row and at least
1795 * one more element in the constraint array are available in the tableau.
1797 * We add each term in turn.
1798 * If r = n/d_r is the current sum and we need to add k x, then
1799 * if x is a column variable, we increase the numerator of
1800 * this column by k d_r
1801 * if x = f/d_x is a row variable, then the new representation of r is
1803 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1804 * --- + --- = ------------------- = -------------------
1805 * d_r d_r d_r d_x/g m
1807 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1809 * If tab->M is set, then, internally, each variable x is represented
1810 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1812 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1818 unsigned off
= 2 + tab
->M
;
1820 r
= isl_tab_allocate_con(tab
);
1826 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1827 isl_int_set_si(row
[0], 1);
1828 isl_int_set(row
[1], line
[0]);
1829 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1830 for (i
= 0; i
< tab
->n_var
; ++i
) {
1831 if (tab
->var
[i
].is_zero
)
1833 if (tab
->var
[i
].is_row
) {
1835 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1836 isl_int_swap(a
, row
[0]);
1837 isl_int_divexact(a
, row
[0], a
);
1839 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1840 isl_int_mul(b
, b
, line
[1 + i
]);
1841 isl_seq_combine(row
+ 1, a
, row
+ 1,
1842 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1843 1 + tab
->M
+ tab
->n_col
);
1845 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1846 line
[1 + i
], row
[0]);
1847 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1848 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1850 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1855 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1860 static isl_stat
drop_row(struct isl_tab
*tab
, int row
)
1862 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1,
1863 return isl_stat_error
);
1864 if (row
!= tab
->n_row
- 1)
1865 swap_rows(tab
, row
, tab
->n_row
- 1);
1871 /* Drop the variable in column "col" along with the column.
1872 * The column is removed first because it may need to be moved
1873 * into the last position and this process requires
1874 * the contents of the col_var array in a state
1875 * before the removal of the variable.
1877 static isl_stat
drop_col(struct isl_tab
*tab
, int col
)
1881 var
= tab
->col_var
[col
];
1882 if (col
!= tab
->n_col
- 1)
1883 swap_cols(tab
, col
, tab
->n_col
- 1);
1885 if (var_drop_entry(tab
, var
) < 0)
1886 return isl_stat_error
;
1890 /* Add inequality "ineq" and check if it conflicts with the
1891 * previously added constraints or if it is obviously redundant.
1893 * This function assumes that at least one more row and at least
1894 * one more element in the constraint array are available in the tableau.
1896 isl_stat
isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1903 return isl_stat_error
;
1905 struct isl_basic_map
*bmap
= tab
->bmap
;
1907 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
,
1908 return isl_stat_error
);
1909 isl_assert(tab
->mat
->ctx
,
1910 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
,
1911 return isl_stat_error
);
1912 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1913 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1914 return isl_stat_error
;
1916 return isl_stat_error
;
1920 isl_int_set_si(cst
, 0);
1921 isl_int_swap(ineq
[0], cst
);
1923 r
= isl_tab_add_row(tab
, ineq
);
1925 isl_int_swap(ineq
[0], cst
);
1929 return isl_stat_error
;
1930 tab
->con
[r
].is_nonneg
= 1;
1931 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1932 return isl_stat_error
;
1933 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1934 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1935 return isl_stat_error
;
1939 sgn
= restore_row(tab
, &tab
->con
[r
]);
1941 return isl_stat_error
;
1943 return isl_tab_mark_empty(tab
);
1944 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1945 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1946 return isl_stat_error
;
1950 /* Pivot a non-negative variable down until it reaches the value zero
1951 * and then pivot the variable into a column position.
1953 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1954 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1958 unsigned off
= 2 + tab
->M
;
1963 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1964 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1965 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1966 if (isl_tab_pivot(tab
, row
, col
) < 0)
1972 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1973 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1976 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1977 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1983 /* We assume Gaussian elimination has been performed on the equalities.
1984 * The equalities can therefore never conflict.
1985 * Adding the equalities is currently only really useful for a later call
1986 * to isl_tab_ineq_type.
1988 * This function assumes that at least one more row and at least
1989 * one more element in the constraint array are available in the tableau.
1991 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1998 r
= isl_tab_add_row(tab
, eq
);
2002 r
= tab
->con
[r
].index
;
2003 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
2004 tab
->n_col
- tab
->n_dead
);
2005 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
2007 if (isl_tab_pivot(tab
, r
, i
) < 0)
2009 if (isl_tab_kill_col(tab
, i
) < 0)
2019 /* Does the sample value of row "row" of "tab" involve the big parameter,
2022 static int row_is_big(struct isl_tab
*tab
, int row
)
2024 return tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]);
2027 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
2029 unsigned off
= 2 + tab
->M
;
2031 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
2033 if (row_is_big(tab
, row
))
2035 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2036 tab
->n_col
- tab
->n_dead
) == -1;
2039 /* Add an equality that is known to be valid for the given tableau.
2041 * This function assumes that at least one more row and at least
2042 * one more element in the constraint array are available in the tableau.
2044 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
2046 struct isl_tab_var
*var
;
2051 r
= isl_tab_add_row(tab
, eq
);
2057 if (row_is_manifestly_zero(tab
, r
)) {
2059 if (isl_tab_mark_redundant(tab
, r
) < 0)
2064 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
2065 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
2070 if (to_col(tab
, var
) < 0)
2073 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2079 /* Add a zero row to "tab" and return the corresponding index
2080 * in the constraint array.
2082 * This function assumes that at least one more row and at least
2083 * one more element in the constraint array are available in the tableau.
2085 static int add_zero_row(struct isl_tab
*tab
)
2090 r
= isl_tab_allocate_con(tab
);
2094 row
= tab
->mat
->row
[tab
->con
[r
].index
];
2095 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
2096 isl_int_set_si(row
[0], 1);
2101 /* Add equality "eq" and check if it conflicts with the
2102 * previously added constraints or if it is obviously redundant.
2104 * This function assumes that at least one more row and at least
2105 * one more element in the constraint array are available in the tableau.
2106 * If tab->bmap is set, then two rows are needed instead of one.
2108 isl_stat
isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
2110 struct isl_tab_undo
*snap
= NULL
;
2111 struct isl_tab_var
*var
;
2118 return isl_stat_error
;
2119 isl_assert(tab
->mat
->ctx
, !tab
->M
, return isl_stat_error
);
2122 snap
= isl_tab_snap(tab
);
2126 isl_int_set_si(cst
, 0);
2127 isl_int_swap(eq
[0], cst
);
2129 r
= isl_tab_add_row(tab
, eq
);
2131 isl_int_swap(eq
[0], cst
);
2135 return isl_stat_error
;
2139 if (row_is_manifestly_zero(tab
, row
)) {
2141 return isl_tab_rollback(tab
, snap
);
2142 return drop_row(tab
, row
);
2146 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2147 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2148 return isl_stat_error
;
2149 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2150 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2151 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2152 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2153 return isl_stat_error
;
2155 return isl_stat_error
;
2156 if (add_zero_row(tab
) < 0)
2157 return isl_stat_error
;
2160 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2163 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2170 sgn
= sign_of_max(tab
, var
);
2172 return isl_stat_error
;
2174 if (isl_tab_mark_empty(tab
) < 0)
2175 return isl_stat_error
;
2181 if (to_col(tab
, var
) < 0)
2182 return isl_stat_error
;
2184 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2185 return isl_stat_error
;
2190 /* Construct and return an inequality that expresses an upper bound
2192 * In particular, if the div is given by
2196 * then the inequality expresses
2200 static __isl_give isl_vec
*ineq_for_div(__isl_keep isl_basic_map
*bmap
,
2205 struct isl_vec
*ineq
;
2207 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2211 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2213 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2217 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2218 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2222 /* For a div d = floor(f/m), add the constraints
2225 * -(f-(m-1)) + m d >= 0
2227 * Note that the second constraint is the negation of
2231 * If add_ineq is not NULL, then this function is used
2232 * instead of isl_tab_add_ineq to effectively add the inequalities.
2234 * This function assumes that at least two more rows and at least
2235 * two more elements in the constraint array are available in the tableau.
2237 static isl_stat
add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2238 isl_stat (*add_ineq
)(void *user
, isl_int
*), void *user
)
2242 struct isl_vec
*ineq
;
2244 total
= isl_basic_map_dim(tab
->bmap
, isl_dim_all
);
2246 return isl_stat_error
;
2247 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2249 ineq
= ineq_for_div(tab
->bmap
, div
);
2254 if (add_ineq(user
, ineq
->el
) < 0)
2257 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2261 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2262 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2263 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2264 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2267 if (add_ineq(user
, ineq
->el
) < 0)
2270 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2279 return isl_stat_error
;
2282 /* Check whether the div described by "div" is obviously non-negative.
2283 * If we are using a big parameter, then we will encode the div
2284 * as div' = M + div, which is always non-negative.
2285 * Otherwise, we check whether div is a non-negative affine combination
2286 * of non-negative variables.
2288 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2295 if (isl_int_is_neg(div
->el
[1]))
2298 for (i
= 0; i
< tab
->n_var
; ++i
) {
2299 if (isl_int_is_neg(div
->el
[2 + i
]))
2301 if (isl_int_is_zero(div
->el
[2 + i
]))
2303 if (!tab
->var
[i
].is_nonneg
)
2310 /* Insert an extra div, prescribed by "div", to the tableau and
2311 * the associated bmap (which is assumed to be non-NULL).
2312 * The extra integer division is inserted at (tableau) position "pos".
2313 * Return "pos" or -1 if an error occurred.
2315 * If add_ineq is not NULL, then this function is used instead
2316 * of isl_tab_add_ineq to add the div constraints.
2317 * This complication is needed because the code in isl_tab_pip
2318 * wants to perform some extra processing when an inequality
2319 * is added to the tableau.
2321 int isl_tab_insert_div(struct isl_tab
*tab
, int pos
, __isl_keep isl_vec
*div
,
2322 isl_stat (*add_ineq
)(void *user
, isl_int
*), void *user
)
2332 if (div
->size
!= 1 + 1 + tab
->n_var
)
2333 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2334 "unexpected size", return -1);
2336 n_div
= isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
2339 o_div
= tab
->n_var
- n_div
;
2340 if (pos
< o_div
|| pos
> tab
->n_var
)
2341 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2342 "invalid position", return -1);
2344 nonneg
= div_is_nonneg(tab
, div
);
2346 if (isl_tab_extend_cons(tab
, 3) < 0)
2348 if (isl_tab_extend_vars(tab
, 1) < 0)
2350 r
= isl_tab_insert_var(tab
, pos
);
2355 tab
->var
[r
].is_nonneg
= 1;
2357 tab
->bmap
= isl_basic_map_insert_div(tab
->bmap
, pos
- o_div
, div
);
2360 if (isl_tab_push_var(tab
, isl_tab_undo_bmap_div
, &tab
->var
[r
]) < 0)
2363 if (add_div_constraints(tab
, pos
- o_div
, add_ineq
, user
) < 0)
2369 /* Add an extra div, prescribed by "div", to the tableau and
2370 * the associated bmap (which is assumed to be non-NULL).
2372 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2376 return isl_tab_insert_div(tab
, tab
->n_var
, div
, NULL
, NULL
);
2379 /* If "track" is set, then we want to keep track of all constraints in tab
2380 * in its bmap field. This field is initialized from a copy of "bmap",
2381 * so we need to make sure that all constraints in "bmap" also appear
2382 * in the constructed tab.
2384 __isl_give
struct isl_tab
*isl_tab_from_basic_map(
2385 __isl_keep isl_basic_map
*bmap
, int track
)
2388 struct isl_tab
*tab
;
2391 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2394 tab
= isl_tab_alloc(bmap
->ctx
, total
+ bmap
->n_ineq
+ 1, total
, 0);
2397 tab
->preserve
= track
;
2398 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2399 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2400 if (isl_tab_mark_empty(tab
) < 0)
2404 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2405 tab
= add_eq(tab
, bmap
->eq
[i
]);
2409 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2410 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2416 if (track
&& isl_tab_track_bmap(tab
, isl_basic_map_copy(bmap
)) < 0)
2424 __isl_give
struct isl_tab
*isl_tab_from_basic_set(
2425 __isl_keep isl_basic_set
*bset
, int track
)
2427 return isl_tab_from_basic_map(bset
, track
);
2430 /* Construct a tableau corresponding to the recession cone of "bset".
2432 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2437 struct isl_tab
*tab
;
2438 isl_size offset
= 0;
2441 total
= isl_basic_set_dim(bset
, isl_dim_all
);
2443 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2444 if (total
< 0 || offset
< 0)
2446 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2450 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2454 isl_int_set_si(cst
, 0);
2455 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2456 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2458 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2461 tab
= add_eq(tab
, bset
->eq
[i
]);
2462 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2466 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2468 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2469 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2470 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2473 tab
->con
[r
].is_nonneg
= 1;
2474 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2486 /* Assuming "tab" is the tableau of a cone, check if the cone is
2487 * bounded, i.e., if it is empty or only contains the origin.
2489 isl_bool
isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2494 return isl_bool_error
;
2496 return isl_bool_true
;
2497 if (tab
->n_dead
== tab
->n_col
)
2498 return isl_bool_true
;
2501 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2502 struct isl_tab_var
*var
;
2504 var
= isl_tab_var_from_row(tab
, i
);
2505 if (!var
->is_nonneg
)
2507 sgn
= sign_of_max(tab
, var
);
2509 return isl_bool_error
;
2511 return isl_bool_false
;
2512 if (close_row(tab
, var
, 0) < 0)
2513 return isl_bool_error
;
2516 if (tab
->n_dead
== tab
->n_col
)
2517 return isl_bool_true
;
2518 if (i
== tab
->n_row
)
2519 return isl_bool_false
;
2523 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2530 for (i
= 0; i
< tab
->n_var
; ++i
) {
2532 if (!tab
->var
[i
].is_row
)
2534 row
= tab
->var
[i
].index
;
2535 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2536 tab
->mat
->row
[row
][0]))
2542 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2545 struct isl_vec
*vec
;
2547 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2551 isl_int_set_si(vec
->block
.data
[0], 1);
2552 for (i
= 0; i
< tab
->n_var
; ++i
) {
2553 if (!tab
->var
[i
].is_row
)
2554 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2556 int row
= tab
->var
[i
].index
;
2557 isl_int_divexact(vec
->block
.data
[1 + i
],
2558 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2565 __isl_give isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2568 struct isl_vec
*vec
;
2574 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2580 isl_int_set_si(vec
->block
.data
[0], 1);
2581 for (i
= 0; i
< tab
->n_var
; ++i
) {
2583 if (!tab
->var
[i
].is_row
) {
2584 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2587 row
= tab
->var
[i
].index
;
2588 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2589 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2590 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2591 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2592 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2594 vec
= isl_vec_normalize(vec
);
2600 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2601 * or down (if sgn < 0) to the nearest integer in *v.
2603 static void get_rounded_sample_value(struct isl_tab
*tab
,
2604 struct isl_tab_var
*var
, int sgn
, isl_int
*v
)
2607 isl_int_set_si(*v
, 0);
2609 isl_int_cdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2610 tab
->mat
->row
[var
->index
][0]);
2612 isl_int_fdiv_q(*v
, tab
->mat
->row
[var
->index
][1],
2613 tab
->mat
->row
[var
->index
][0]);
2616 /* Update "bmap" based on the results of the tableau "tab".
2617 * In particular, implicit equalities are made explicit, redundant constraints
2618 * are removed and if the sample value happens to be integer, it is stored
2619 * in "bmap" (unless "bmap" already had an integer sample).
2621 * The tableau is assumed to have been created from "bmap" using
2622 * isl_tab_from_basic_map.
2624 __isl_give isl_basic_map
*isl_basic_map_update_from_tab(
2625 __isl_take isl_basic_map
*bmap
, struct isl_tab
*tab
)
2637 bmap
= isl_basic_map_set_to_empty(bmap
);
2639 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2640 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2641 isl_basic_map_inequality_to_equality(bmap
, i
);
2642 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2643 isl_basic_map_drop_inequality(bmap
, i
);
2645 if (bmap
->n_eq
!= n_eq
)
2646 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2647 if (!tab
->rational
&&
2648 bmap
&& !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2649 bmap
->sample
= extract_integer_sample(tab
);
2653 __isl_give isl_basic_set
*isl_basic_set_update_from_tab(
2654 __isl_take isl_basic_set
*bset
, struct isl_tab
*tab
)
2656 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset
),
2660 /* Drop the last constraint added to "tab" in position "r".
2661 * The constraint is expected to have remained in a row.
2663 static isl_stat
drop_last_con_in_row(struct isl_tab
*tab
, int r
)
2665 if (!tab
->con
[r
].is_row
)
2666 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2667 "row unexpectedly moved to column",
2668 return isl_stat_error
);
2669 if (r
+ 1 != tab
->n_con
)
2670 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
2671 "additional constraints added", return isl_stat_error
);
2672 if (drop_row(tab
, tab
->con
[r
].index
) < 0)
2673 return isl_stat_error
;
2678 /* Given a non-negative variable "var", temporarily add a new non-negative
2679 * variable that is the opposite of "var", ensuring that "var" can only attain
2680 * the value zero. The new variable is removed again before this function
2681 * returns. However, the effect of forcing "var" to be zero remains.
2682 * If var = n/d is a row variable, then the new variable = -n/d.
2683 * If var is a column variables, then the new variable = -var.
2684 * If the new variable cannot attain non-negative values, then
2685 * the resulting tableau is empty.
2686 * Otherwise, we know the value will be zero and we close the row.
2688 static isl_stat
cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2693 unsigned off
= 2 + tab
->M
;
2697 if (var
->is_redundant
|| !var
->is_nonneg
)
2698 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2699 "expecting non-redundant non-negative variable",
2700 return isl_stat_error
);
2702 if (isl_tab_extend_cons(tab
, 1) < 0)
2703 return isl_stat_error
;
2706 tab
->con
[r
].index
= tab
->n_row
;
2707 tab
->con
[r
].is_row
= 1;
2708 tab
->con
[r
].is_nonneg
= 0;
2709 tab
->con
[r
].is_zero
= 0;
2710 tab
->con
[r
].is_redundant
= 0;
2711 tab
->con
[r
].frozen
= 0;
2712 tab
->con
[r
].negated
= 0;
2713 tab
->row_var
[tab
->n_row
] = ~r
;
2714 row
= tab
->mat
->row
[tab
->n_row
];
2717 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2718 isl_seq_neg(row
+ 1,
2719 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2721 isl_int_set_si(row
[0], 1);
2722 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2723 isl_int_set_si(row
[off
+ var
->index
], -1);
2729 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2731 return isl_stat_error
;
2733 if (drop_last_con_in_row(tab
, r
) < 0)
2734 return isl_stat_error
;
2735 if (isl_tab_mark_empty(tab
) < 0)
2736 return isl_stat_error
;
2739 tab
->con
[r
].is_nonneg
= 1;
2741 if (close_row(tab
, &tab
->con
[r
], 1) < 0)
2742 return isl_stat_error
;
2743 if (drop_last_con_in_row(tab
, r
) < 0)
2744 return isl_stat_error
;
2749 /* Check that "con" is a valid constraint position for "tab".
2751 static isl_stat
isl_tab_check_con(struct isl_tab
*tab
, int con
)
2754 return isl_stat_error
;
2755 if (con
< 0 || con
>= tab
->n_con
)
2756 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
2757 "position out of bounds", return isl_stat_error
);
2761 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2762 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2763 * by r' = r + 1 >= 0.
2764 * If r is a row variable, we simply increase the constant term by one
2765 * (taking into account the denominator).
2766 * If r is a column variable, then we need to modify each row that
2767 * refers to r = r' - 1 by substituting this equality, effectively
2768 * subtracting the coefficient of the column from the constant.
2769 * We should only do this if the minimum is manifestly unbounded,
2770 * however. Otherwise, we may end up with negative sample values
2771 * for non-negative variables.
2772 * So, if r is a column variable with a minimum that is not
2773 * manifestly unbounded, then we need to move it to a row.
2774 * However, the sample value of this row may be negative,
2775 * even after the relaxation, so we need to restore it.
2776 * We therefore prefer to pivot a column up to a row, if possible.
2778 int isl_tab_relax(struct isl_tab
*tab
, int con
)
2780 struct isl_tab_var
*var
;
2785 var
= &tab
->con
[con
];
2787 if (var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_redundant
))
2788 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2789 "cannot relax redundant constraint", return -1);
2790 if (!var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_dead
))
2791 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2792 "cannot relax dead constraint", return -1);
2794 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2795 if (to_row(tab
, var
, 1) < 0)
2797 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2798 if (to_row(tab
, var
, -1) < 0)
2802 isl_int_add(tab
->mat
->row
[var
->index
][1],
2803 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2804 if (restore_row(tab
, var
) < 0)
2808 unsigned off
= 2 + tab
->M
;
2810 for (i
= 0; i
< tab
->n_row
; ++i
) {
2811 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2813 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2814 tab
->mat
->row
[i
][off
+ var
->index
]);
2819 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2825 /* Replace the variable v at position "pos" in the tableau "tab"
2826 * by v' = v + shift.
2828 * If the variable is in a column, then we first check if we can
2829 * simply plug in v = v' - shift. The effect on a row with
2830 * coefficient f/d for variable v is that the constant term c/d
2831 * is replaced by (c - f * shift)/d. If shift is positive and
2832 * f is negative for each row that needs to remain non-negative,
2833 * then this is clearly safe. In other words, if the minimum of v
2834 * is manifestly unbounded, then we can keep v in a column position.
2835 * Otherwise, we can pivot it down to a row.
2836 * Similarly, if shift is negative, we need to check if the maximum
2837 * of is manifestly unbounded.
2839 * If the variable is in a row (from the start or after pivoting),
2840 * then the constant term c/d is replaced by (c + d * shift)/d.
2842 int isl_tab_shift_var(struct isl_tab
*tab
, int pos
, isl_int shift
)
2844 struct isl_tab_var
*var
;
2848 if (isl_int_is_zero(shift
))
2851 var
= &tab
->var
[pos
];
2853 if (isl_int_is_neg(shift
)) {
2854 if (!max_is_manifestly_unbounded(tab
, var
))
2855 if (to_row(tab
, var
, 1) < 0)
2858 if (!min_is_manifestly_unbounded(tab
, var
))
2859 if (to_row(tab
, var
, -1) < 0)
2865 isl_int_addmul(tab
->mat
->row
[var
->index
][1],
2866 shift
, tab
->mat
->row
[var
->index
][0]);
2869 unsigned off
= 2 + tab
->M
;
2871 for (i
= 0; i
< tab
->n_row
; ++i
) {
2872 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2874 isl_int_submul(tab
->mat
->row
[i
][1],
2875 shift
, tab
->mat
->row
[i
][off
+ var
->index
]);
2883 /* Remove the sign constraint from constraint "con".
2885 * If the constraint variable was originally marked non-negative,
2886 * then we make sure we mark it non-negative again during rollback.
2888 int isl_tab_unrestrict(struct isl_tab
*tab
, int con
)
2890 struct isl_tab_var
*var
;
2895 var
= &tab
->con
[con
];
2896 if (!var
->is_nonneg
)
2900 if (isl_tab_push_var(tab
, isl_tab_undo_unrestrict
, var
) < 0)
2906 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2911 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2914 static int may_be_equality(struct isl_tab
*tab
, int row
)
2916 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2917 : isl_int_lt(tab
->mat
->row
[row
][1],
2918 tab
->mat
->row
[row
][0]);
2921 /* Return an isl_tab_var that has been marked or NULL if no such
2922 * variable can be found.
2923 * The marked field has only been set for variables that
2924 * appear in non-redundant rows or non-dead columns.
2926 * Pick the last constraint variable that is marked and
2927 * that appears in either a non-redundant row or a non-dead columns.
2928 * Since the returned variable is tested for being a redundant constraint or
2929 * an implicit equality, there is no need to return any tab variable that
2930 * corresponds to a variable.
2932 static struct isl_tab_var
*select_marked(struct isl_tab
*tab
)
2935 struct isl_tab_var
*var
;
2937 for (i
= tab
->n_con
- 1; i
>= 0; --i
) {
2941 if (var
->is_row
&& var
->index
< tab
->n_redundant
)
2943 if (!var
->is_row
&& var
->index
< tab
->n_dead
)
2952 /* Check for (near) equalities among the constraints.
2953 * A constraint is an equality if it is non-negative and if
2954 * its maximal value is either
2955 * - zero (in case of rational tableaus), or
2956 * - strictly less than 1 (in case of integer tableaus)
2958 * We first mark all non-redundant and non-dead variables that
2959 * are not frozen and not obviously not an equality.
2960 * Then we iterate over all marked variables if they can attain
2961 * any values larger than zero or at least one.
2962 * If the maximal value is zero, we mark any column variables
2963 * that appear in the row as being zero and mark the row as being redundant.
2964 * Otherwise, if the maximal value is strictly less than one (and the
2965 * tableau is integer), then we restrict the value to being zero
2966 * by adding an opposite non-negative variable.
2967 * The order in which the variables are considered is not important.
2969 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2978 if (tab
->n_dead
== tab
->n_col
)
2982 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2983 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2984 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2985 may_be_equality(tab
, i
);
2989 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2990 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2991 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2996 struct isl_tab_var
*var
;
2998 var
= select_marked(tab
);
3003 sgn
= sign_of_max(tab
, var
);
3007 if (close_row(tab
, var
, 0) < 0)
3009 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
3010 if (cut_to_hyperplane(tab
, var
) < 0)
3012 return isl_tab_detect_implicit_equalities(tab
);
3014 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
3015 var
= isl_tab_var_from_row(tab
, i
);
3018 if (may_be_equality(tab
, i
))
3028 /* Update the element of row_var or col_var that corresponds to
3029 * constraint tab->con[i] to a move from position "old" to position "i".
3031 static int update_con_after_move(struct isl_tab
*tab
, int i
, int old
)
3036 index
= tab
->con
[i
].index
;
3039 p
= tab
->con
[i
].is_row
? tab
->row_var
: tab
->col_var
;
3040 if (p
[index
] != ~old
)
3041 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3042 "broken internal state", return -1);
3048 /* Interchange constraints "con1" and "con2" in "tab".
3049 * In particular, interchange the contents of these entries in tab->con.
3050 * Since tab->col_var and tab->row_var point back into this array,
3051 * they need to be updated accordingly.
3053 isl_stat
isl_tab_swap_constraints(struct isl_tab
*tab
, int con1
, int con2
)
3055 struct isl_tab_var var
;
3057 if (isl_tab_check_con(tab
, con1
) < 0 ||
3058 isl_tab_check_con(tab
, con2
) < 0)
3059 return isl_stat_error
;
3061 var
= tab
->con
[con1
];
3062 tab
->con
[con1
] = tab
->con
[con2
];
3063 if (update_con_after_move(tab
, con1
, con2
) < 0)
3064 return isl_stat_error
;
3065 tab
->con
[con2
] = var
;
3066 if (update_con_after_move(tab
, con2
, con1
) < 0)
3067 return isl_stat_error
;
3072 /* Rotate the "n" constraints starting at "first" to the right,
3073 * putting the last constraint in the position of the first constraint.
3075 static int rotate_constraints(struct isl_tab
*tab
, int first
, int n
)
3078 struct isl_tab_var var
;
3083 last
= first
+ n
- 1;
3084 var
= tab
->con
[last
];
3085 for (i
= last
; i
> first
; --i
) {
3086 tab
->con
[i
] = tab
->con
[i
- 1];
3087 if (update_con_after_move(tab
, i
, i
- 1) < 0)
3090 tab
->con
[first
] = var
;
3091 if (update_con_after_move(tab
, first
, last
) < 0)
3097 /* Drop the "n" entries starting at position "first" in tab->con, moving all
3098 * subsequent entries down.
3099 * Since some of the entries of tab->row_var and tab->col_var contain
3100 * indices into this array, they have to be updated accordingly.
3102 static isl_stat
con_drop_entries(struct isl_tab
*tab
,
3103 unsigned first
, unsigned n
)
3107 if (first
+ n
> tab
->n_con
|| first
+ n
< first
)
3108 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3109 "invalid range", return isl_stat_error
);
3113 for (i
= first
; i
< tab
->n_con
; ++i
) {
3114 tab
->con
[i
] = tab
->con
[i
+ n
];
3115 if (update_con_after_move(tab
, i
, i
+ n
) < 0)
3116 return isl_stat_error
;
3122 /* isl_basic_map_gauss5 callback that gets called when
3123 * two (equality) constraints "a" and "b" get interchanged
3124 * in the basic map. Perform the same interchange in "tab".
3126 static isl_stat
swap_eq(unsigned a
, unsigned b
, void *user
)
3128 struct isl_tab
*tab
= user
;
3130 return isl_tab_swap_constraints(tab
, a
, b
);
3133 /* isl_basic_map_gauss5 callback that gets called when
3134 * the final "n" equality constraints get removed.
3135 * As a special case, if "n" is equal to the total number
3136 * of equality constraints, then this means the basic map
3137 * turned out to be empty.
3138 * Drop the same number of equality constraints from "tab" or
3139 * mark it empty in the special case.
3141 static isl_stat
drop_eq(unsigned n
, void *user
)
3143 struct isl_tab
*tab
= user
;
3146 return isl_tab_mark_empty(tab
);
3149 return con_drop_entries(tab
, tab
->n_eq
, n
);
3152 /* If "bmap" has more than a single reference, then call
3153 * isl_basic_map_gauss on it, updating "tab" accordingly.
3155 static __isl_give isl_basic_map
*gauss_if_shared(__isl_take isl_basic_map
*bmap
,
3156 struct isl_tab
*tab
)
3160 single
= isl_basic_map_has_single_reference(bmap
);
3162 return isl_basic_map_free(bmap
);
3165 return isl_basic_map_gauss5(bmap
, NULL
, &swap_eq
, &drop_eq
, tab
);
3168 /* Make the equalities that are implicit in "bmap" but that have been
3169 * detected in the corresponding "tab" explicit in "bmap" and update
3170 * "tab" to reflect the new order of the constraints.
3172 * In particular, if inequality i is an implicit equality then
3173 * isl_basic_map_inequality_to_equality will move the inequality
3174 * in front of the other equality and it will move the last inequality
3175 * in the position of inequality i.
3176 * In the tableau, the inequalities of "bmap" are stored after the equalities
3177 * and so the original order
3179 * E E E E E A A A I B B B B L
3183 * I E E E E E A A A L B B B B
3185 * where I is the implicit equality, the E are equalities,
3186 * the A inequalities before I, the B inequalities after I and
3187 * L the last inequality.
3188 * We therefore need to rotate to the right two sets of constraints,
3189 * those up to and including I and those after I.
3191 * If "tab" contains any constraints that are not in "bmap" then they
3192 * appear after those in "bmap" and they should be left untouched.
3194 * Note that this function only calls isl_basic_map_gauss
3195 * (in case some equality constraints got detected)
3196 * if "bmap" has more than one reference.
3197 * If it only has a single reference, then it is left in a temporary state,
3198 * because the caller may require this state.
3199 * Calling isl_basic_map_gauss is then the responsibility of the caller.
3201 __isl_give isl_basic_map
*isl_tab_make_equalities_explicit(struct isl_tab
*tab
,
3202 __isl_take isl_basic_map
*bmap
)
3208 return isl_basic_map_free(bmap
);
3213 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
3214 if (!isl_tab_is_equality(tab
, bmap
->n_eq
+ i
))
3216 isl_basic_map_inequality_to_equality(bmap
, i
);
3217 if (rotate_constraints(tab
, 0, tab
->n_eq
+ i
+ 1) < 0)
3218 return isl_basic_map_free(bmap
);
3219 if (rotate_constraints(tab
, tab
->n_eq
+ i
+ 1,
3220 bmap
->n_ineq
- i
) < 0)
3221 return isl_basic_map_free(bmap
);
3225 if (n_eq
!= tab
->n_eq
)
3226 bmap
= gauss_if_shared(bmap
, tab
);
3231 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3235 if (tab
->rational
) {
3236 int sgn
= sign_of_min(tab
, var
);
3241 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
3248 /* Check for (near) redundant constraints.
3249 * A constraint is redundant if it is non-negative and if
3250 * its minimal value (temporarily ignoring the non-negativity) is either
3251 * - zero (in case of rational tableaus), or
3252 * - strictly larger than -1 (in case of integer tableaus)
3254 * We first mark all non-redundant and non-dead variables that
3255 * are not frozen and not obviously negatively unbounded.
3256 * Then we iterate over all marked variables if they can attain
3257 * any values smaller than zero or at most negative one.
3258 * If not, we mark the row as being redundant (assuming it hasn't
3259 * been detected as being obviously redundant in the mean time).
3261 int isl_tab_detect_redundant(struct isl_tab
*tab
)
3270 if (tab
->n_redundant
== tab
->n_row
)
3274 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
3275 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
3276 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
3280 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3281 struct isl_tab_var
*var
= var_from_col(tab
, i
);
3282 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
3283 !min_is_manifestly_unbounded(tab
, var
);
3288 struct isl_tab_var
*var
;
3290 var
= select_marked(tab
);
3295 red
= con_is_redundant(tab
, var
);
3298 if (red
&& !var
->is_redundant
)
3299 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
3301 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
3302 var
= var_from_col(tab
, i
);
3305 if (!min_is_manifestly_unbounded(tab
, var
))
3315 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
3322 if (tab
->con
[con
].is_zero
)
3324 if (tab
->con
[con
].is_redundant
)
3326 if (!tab
->con
[con
].is_row
)
3327 return tab
->con
[con
].index
< tab
->n_dead
;
3329 row
= tab
->con
[con
].index
;
3332 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
3333 !row_is_big(tab
, row
) &&
3334 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3335 tab
->n_col
- tab
->n_dead
) == -1;
3338 /* Return the minimal value of the affine expression "f" with denominator
3339 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3340 * the expression cannot attain arbitrarily small values.
3341 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3342 * The return value reflects the nature of the result (empty, unbounded,
3343 * minimal value returned in *opt).
3345 * This function assumes that at least one more row and at least
3346 * one more element in the constraint array are available in the tableau.
3348 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
3349 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
3353 enum isl_lp_result res
= isl_lp_ok
;
3354 struct isl_tab_var
*var
;
3355 struct isl_tab_undo
*snap
;
3358 return isl_lp_error
;
3361 return isl_lp_empty
;
3363 snap
= isl_tab_snap(tab
);
3364 r
= isl_tab_add_row(tab
, f
);
3366 return isl_lp_error
;
3370 find_pivot(tab
, var
, var
, -1, &row
, &col
);
3371 if (row
== var
->index
) {
3372 res
= isl_lp_unbounded
;
3377 if (isl_tab_pivot(tab
, row
, col
) < 0)
3378 return isl_lp_error
;
3380 isl_int_mul(tab
->mat
->row
[var
->index
][0],
3381 tab
->mat
->row
[var
->index
][0], denom
);
3382 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
3385 isl_vec_free(tab
->dual
);
3386 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
3388 return isl_lp_error
;
3389 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
3390 for (i
= 0; i
< tab
->n_con
; ++i
) {
3392 if (tab
->con
[i
].is_row
) {
3393 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
3396 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
3397 if (tab
->con
[i
].negated
)
3398 isl_int_neg(tab
->dual
->el
[1 + i
],
3399 tab
->mat
->row
[var
->index
][pos
]);
3401 isl_int_set(tab
->dual
->el
[1 + i
],
3402 tab
->mat
->row
[var
->index
][pos
]);
3405 if (opt
&& res
== isl_lp_ok
) {
3407 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
3408 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
3410 get_rounded_sample_value(tab
, var
, 1, opt
);
3412 if (isl_tab_rollback(tab
, snap
) < 0)
3413 return isl_lp_error
;
3417 /* Is the constraint at position "con" marked as being redundant?
3418 * If it is marked as representing an equality, then it is not
3419 * considered to be redundant.
3420 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3421 * redundant and moves the corresponding row into the first
3422 * tab->n_redundant positions (or removes the row, assigning it index -1),
3423 * so the final test is actually redundant itself.
3425 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
3427 if (isl_tab_check_con(tab
, con
) < 0)
3429 if (tab
->con
[con
].is_zero
)
3431 if (tab
->con
[con
].is_redundant
)
3433 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
3436 /* Is variable "var" of "tab" fixed to a constant value by its row
3438 * If so and if "value" is not NULL, then store this constant value
3441 * That is, is it a row variable that only has non-zero coefficients
3444 static isl_bool
is_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3447 unsigned off
= 2 + tab
->M
;
3448 isl_mat
*mat
= tab
->mat
;
3454 return isl_bool_false
;
3456 if (row_is_big(tab
, row
))
3457 return isl_bool_false
;
3458 n
= tab
->n_col
- tab
->n_dead
;
3459 pos
= isl_seq_first_non_zero(mat
->row
[row
] + off
+ tab
->n_dead
, n
);
3461 return isl_bool_false
;
3463 isl_int_divexact(*value
, mat
->row
[row
][1], mat
->row
[row
][0]);
3464 return isl_bool_true
;
3467 /* Has the variable "var' of "tab" reached a value that is greater than
3468 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3469 * "tmp" has been initialized by the caller and can be used
3470 * to perform local computations.
3472 * If the sample value involves the big parameter, then any value
3474 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3475 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3477 static int reached(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sgn
,
3478 isl_int target
, isl_int
*tmp
)
3480 if (row_is_big(tab
, var
->index
))
3482 isl_int_mul(*tmp
, tab
->mat
->row
[var
->index
][0], target
);
3484 return isl_int_ge(tab
->mat
->row
[var
->index
][1], *tmp
);
3486 return isl_int_le(tab
->mat
->row
[var
->index
][1], *tmp
);
3489 /* Can variable "var" of "tab" attain the value "target" by
3490 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3491 * If not, then pivot up [down] to the greatest [smallest]
3493 * "tmp" has been initialized by the caller and can be used
3494 * to perform local computations.
3496 * If the variable is manifestly unbounded in the desired direction,
3497 * then it can attain any value.
3498 * Otherwise, it can be moved to a row.
3499 * Continue pivoting until the target is reached.
3500 * If no more pivoting can be performed, the maximal [minimal]
3501 * rational value has been reached and the target cannot be reached.
3502 * If the variable would be pivoted into a manifestly unbounded column,
3503 * then the target can be reached.
3505 static isl_bool
var_reaches(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3506 int sgn
, isl_int target
, isl_int
*tmp
)
3510 if (sgn
< 0 && min_is_manifestly_unbounded(tab
, var
))
3511 return isl_bool_true
;
3512 if (sgn
> 0 && max_is_manifestly_unbounded(tab
, var
))
3513 return isl_bool_true
;
3514 if (to_row(tab
, var
, sgn
) < 0)
3515 return isl_bool_error
;
3516 while (!reached(tab
, var
, sgn
, target
, tmp
)) {
3517 find_pivot(tab
, var
, var
, sgn
, &row
, &col
);
3519 return isl_bool_false
;
3520 if (row
== var
->index
)
3521 return isl_bool_true
;
3522 if (isl_tab_pivot(tab
, row
, col
) < 0)
3523 return isl_bool_error
;
3526 return isl_bool_true
;
3529 /* Check if variable "var" of "tab" can only attain a single (integer)
3530 * value, and, if so, add an equality constraint to fix the variable
3531 * to this single value and store the result in "target".
3532 * "target" and "tmp" have been initialized by the caller.
3534 * Given the current sample value, round it down and check
3535 * whether it is possible to attain a strictly smaller integer value.
3536 * If so, the variable is not restricted to a single integer value.
3537 * Otherwise, the search stops at the smallest rational value.
3538 * Round up this value and check whether it is possible to attain
3539 * a strictly greater integer value.
3540 * If so, the variable is not restricted to a single integer value.
3541 * Otherwise, the search stops at the greatest rational value.
3542 * If rounding down this value yields a value that is different
3543 * from rounding up the smallest rational value, then the variable
3544 * cannot attain any integer value. Mark the tableau empty.
3545 * Otherwise, add an equality constraint that fixes the variable
3546 * to the single integer value found.
3548 static isl_bool
detect_constant_with_tmp(struct isl_tab
*tab
,
3549 struct isl_tab_var
*var
, isl_int
*target
, isl_int
*tmp
)
3556 get_rounded_sample_value(tab
, var
, -1, target
);
3557 isl_int_sub_ui(*target
, *target
, 1);
3558 reached
= var_reaches(tab
, var
, -1, *target
, tmp
);
3559 if (reached
< 0 || reached
)
3560 return isl_bool_not(reached
);
3561 get_rounded_sample_value(tab
, var
, 1, target
);
3562 isl_int_add_ui(*target
, *target
, 1);
3563 reached
= var_reaches(tab
, var
, 1, *target
, tmp
);
3564 if (reached
< 0 || reached
)
3565 return isl_bool_not(reached
);
3566 get_rounded_sample_value(tab
, var
, -1, tmp
);
3567 isl_int_sub_ui(*target
, *target
, 1);
3568 if (isl_int_ne(*target
, *tmp
)) {
3569 if (isl_tab_mark_empty(tab
) < 0)
3570 return isl_bool_error
;
3571 return isl_bool_false
;
3574 if (isl_tab_extend_cons(tab
, 1) < 0)
3575 return isl_bool_error
;
3576 eq
= isl_vec_alloc(isl_tab_get_ctx(tab
), 1 + tab
->n_var
);
3578 return isl_bool_error
;
3579 pos
= var
- tab
->var
;
3580 isl_seq_clr(eq
->el
+ 1, tab
->n_var
);
3581 isl_int_set_si(eq
->el
[1 + pos
], -1);
3582 isl_int_set(eq
->el
[0], *target
);
3583 r
= isl_tab_add_eq(tab
, eq
->el
);
3586 return r
< 0 ? isl_bool_error
: isl_bool_true
;
3589 /* Check if variable "var" of "tab" can only attain a single (integer)
3590 * value, and, if so, add an equality constraint to fix the variable
3591 * to this single value and store the result in "value" (if "value"
3594 * If the current sample value involves the big parameter,
3595 * then the variable cannot have a fixed integer value.
3596 * If the variable is already fixed to a single value by its row, then
3597 * there is no need to add another equality constraint.
3599 * Otherwise, allocate some temporary variables and continue
3600 * with detect_constant_with_tmp.
3602 static isl_bool
get_constant(struct isl_tab
*tab
, struct isl_tab_var
*var
,
3605 isl_int target
, tmp
;
3608 if (var
->is_row
&& row_is_big(tab
, var
->index
))
3609 return isl_bool_false
;
3610 is_cst
= is_constant(tab
, var
, value
);
3611 if (is_cst
< 0 || is_cst
)
3615 isl_int_init(target
);
3618 is_cst
= detect_constant_with_tmp(tab
, var
,
3619 value
? value
: &target
, &tmp
);
3623 isl_int_clear(target
);
3628 /* Check if variable "var" of "tab" can only attain a single (integer)
3629 * value, and, if so, add an equality constraint to fix the variable
3630 * to this single value and store the result in "value" (if "value"
3633 * For rational tableaus, nothing needs to be done.
3635 isl_bool
isl_tab_is_constant(struct isl_tab
*tab
, int var
, isl_int
*value
)
3638 return isl_bool_error
;
3639 if (var
< 0 || var
>= tab
->n_var
)
3640 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3641 "position out of bounds", return isl_bool_error
);
3643 return isl_bool_false
;
3645 return get_constant(tab
, &tab
->var
[var
], value
);
3648 /* Check if any of the variables of "tab" can only attain a single (integer)
3649 * value, and, if so, add equality constraints to fix those variables
3650 * to these single values.
3652 * For rational tableaus, nothing needs to be done.
3654 isl_stat
isl_tab_detect_constants(struct isl_tab
*tab
)
3659 return isl_stat_error
;
3663 for (i
= 0; i
< tab
->n_var
; ++i
) {
3664 if (get_constant(tab
, &tab
->var
[i
], NULL
) < 0)
3665 return isl_stat_error
;
3671 /* Take a snapshot of the tableau that can be restored by a call to
3674 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
3682 /* Does "tab" need to keep track of undo information?
3683 * That is, was a snapshot taken that may need to be restored?
3685 isl_bool
isl_tab_need_undo(struct isl_tab
*tab
)
3688 return isl_bool_error
;
3690 return isl_bool_ok(tab
->need_undo
);
3693 /* Remove all tracking of undo information from "tab", invalidating
3694 * any snapshots that may have been taken of the tableau.
3695 * Since all snapshots have been invalidated, there is also
3696 * no need to start keeping track of undo information again.
3698 void isl_tab_clear_undo(struct isl_tab
*tab
)
3707 /* Undo the operation performed by isl_tab_relax.
3709 static isl_stat
unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3711 static isl_stat
unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3713 unsigned off
= 2 + tab
->M
;
3715 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
3716 if (to_row(tab
, var
, 1) < 0)
3717 return isl_stat_error
;
3720 isl_int_sub(tab
->mat
->row
[var
->index
][1],
3721 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
3722 if (var
->is_nonneg
) {
3723 int sgn
= restore_row(tab
, var
);
3724 isl_assert(tab
->mat
->ctx
, sgn
>= 0,
3725 return isl_stat_error
);
3730 for (i
= 0; i
< tab
->n_row
; ++i
) {
3731 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
3733 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
3734 tab
->mat
->row
[i
][off
+ var
->index
]);
3742 /* Undo the operation performed by isl_tab_unrestrict.
3744 * In particular, mark the variable as being non-negative and make
3745 * sure the sample value respects this constraint.
3747 static isl_stat
ununrestrict(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3751 if (var
->is_row
&& restore_row(tab
, var
) < -1)
3752 return isl_stat_error
;
3757 /* Unmark the last redundant row in "tab" as being redundant.
3758 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3759 * In particular, remove the redundant mark and make
3760 * sure the sample value respects the constraint again.
3761 * A variable that is marked non-negative by isl_tab_mark_redundant
3762 * is covered by a separate undo record.
3764 static isl_stat
restore_last_redundant(struct isl_tab
*tab
)
3766 struct isl_tab_var
*var
;
3768 if (tab
->n_redundant
< 1)
3769 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3770 "no redundant rows", return isl_stat_error
);
3772 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3773 var
->is_redundant
= 0;
3775 restore_row(tab
, var
);
3780 static isl_stat
perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3782 static isl_stat
perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3784 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
3785 switch (undo
->type
) {
3786 case isl_tab_undo_nonneg
:
3789 case isl_tab_undo_redundant
:
3790 if (!var
->is_row
|| var
->index
!= tab
->n_redundant
- 1)
3791 isl_die(isl_tab_get_ctx(tab
), isl_error_internal
,
3792 "not undoing last redundant row",
3793 return isl_stat_error
);
3794 return restore_last_redundant(tab
);
3795 case isl_tab_undo_freeze
:
3798 case isl_tab_undo_zero
:
3803 case isl_tab_undo_allocate
:
3804 if (undo
->u
.var_index
>= 0) {
3805 isl_assert(tab
->mat
->ctx
, !var
->is_row
,
3806 return isl_stat_error
);
3807 return drop_col(tab
, var
->index
);
3810 if (!max_is_manifestly_unbounded(tab
, var
)) {
3811 if (to_row(tab
, var
, 1) < 0)
3812 return isl_stat_error
;
3813 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
3814 if (to_row(tab
, var
, -1) < 0)
3815 return isl_stat_error
;
3817 if (to_row(tab
, var
, 0) < 0)
3818 return isl_stat_error
;
3820 return drop_row(tab
, var
->index
);
3821 case isl_tab_undo_relax
:
3822 return unrelax(tab
, var
);
3823 case isl_tab_undo_unrestrict
:
3824 return ununrestrict(tab
, var
);
3826 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3827 "perform_undo_var called on invalid undo record",
3828 return isl_stat_error
);
3834 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3835 * and that have been preserved in the tableau.
3836 * Note that isl_tab_mark_redundant may also have marked some variables
3837 * as being non-negative before marking them redundant. These need
3838 * to be removed as well as otherwise some constraints could end up
3839 * getting marked redundant with respect to the variable.
3841 isl_stat
isl_tab_restore_redundant(struct isl_tab
*tab
)
3844 return isl_stat_error
;
3847 isl_die(isl_tab_get_ctx(tab
), isl_error_invalid
,
3848 "manually restoring redundant constraints "
3849 "interferes with undo history",
3850 return isl_stat_error
);
3852 while (tab
->n_redundant
> 0) {
3853 if (tab
->row_var
[tab
->n_redundant
- 1] >= 0) {
3854 struct isl_tab_var
*var
;
3856 var
= isl_tab_var_from_row(tab
, tab
->n_redundant
- 1);
3859 restore_last_redundant(tab
);
3864 /* Undo the addition of an integer division to the basic map representation
3865 * of "tab" in position "pos".
3867 static isl_stat
drop_bmap_div(struct isl_tab
*tab
, int pos
)
3872 n_div
= isl_basic_map_dim(tab
->bmap
, isl_dim_div
);
3874 return isl_stat_error
;
3875 off
= tab
->n_var
- n_div
;
3876 tab
->bmap
= isl_basic_map_drop_div(tab
->bmap
, pos
- off
);
3878 return isl_stat_error
;
3880 tab
->samples
= isl_mat_drop_cols(tab
->samples
, 1 + pos
, 1);
3882 return isl_stat_error
;
3888 /* Restore the tableau to the state where the basic variables
3889 * are those in "col_var".
3890 * We first construct a list of variables that are currently in
3891 * the basis, but shouldn't. Then we iterate over all variables
3892 * that should be in the basis and for each one that is currently
3893 * not in the basis, we exchange it with one of the elements of the
3894 * list constructed before.
3895 * We can always find an appropriate variable to pivot with because
3896 * the current basis is mapped to the old basis by a non-singular
3897 * matrix and so we can never end up with a zero row.
3899 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
3903 int *extra
= NULL
; /* current columns that contain bad stuff */
3904 unsigned off
= 2 + tab
->M
;
3906 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
3907 if (tab
->n_col
&& !extra
)
3909 for (i
= 0; i
< tab
->n_col
; ++i
) {
3910 for (j
= 0; j
< tab
->n_col
; ++j
)
3911 if (tab
->col_var
[i
] == col_var
[j
])
3915 extra
[n_extra
++] = i
;
3917 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
3918 struct isl_tab_var
*var
;
3921 for (j
= 0; j
< tab
->n_col
; ++j
)
3922 if (col_var
[i
] == tab
->col_var
[j
])
3926 var
= var_from_index(tab
, col_var
[i
]);
3928 for (j
= 0; j
< n_extra
; ++j
)
3929 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
3931 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
3932 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
3934 extra
[j
] = extra
[--n_extra
];
3944 /* Remove all samples with index n or greater, i.e., those samples
3945 * that were added since we saved this number of samples in
3946 * isl_tab_save_samples.
3948 static void drop_samples_since(struct isl_tab
*tab
, int n
)
3952 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
3953 if (tab
->sample_index
[i
] < n
)
3956 if (i
!= tab
->n_sample
- 1) {
3957 int t
= tab
->sample_index
[tab
->n_sample
-1];
3958 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
3959 tab
->sample_index
[i
] = t
;
3960 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
3966 static isl_stat
perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3968 static isl_stat
perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3970 switch (undo
->type
) {
3971 case isl_tab_undo_rational
:
3974 case isl_tab_undo_empty
:
3977 case isl_tab_undo_nonneg
:
3978 case isl_tab_undo_redundant
:
3979 case isl_tab_undo_freeze
:
3980 case isl_tab_undo_zero
:
3981 case isl_tab_undo_allocate
:
3982 case isl_tab_undo_relax
:
3983 case isl_tab_undo_unrestrict
:
3984 return perform_undo_var(tab
, undo
);
3985 case isl_tab_undo_bmap_eq
:
3986 tab
->bmap
= isl_basic_map_free_equality(tab
->bmap
, 1);
3987 return tab
->bmap
? isl_stat_ok
: isl_stat_error
;
3988 case isl_tab_undo_bmap_ineq
:
3989 tab
->bmap
= isl_basic_map_free_inequality(tab
->bmap
, 1);
3990 return tab
->bmap
? isl_stat_ok
: isl_stat_error
;
3991 case isl_tab_undo_bmap_div
:
3992 return drop_bmap_div(tab
, undo
->u
.var_index
);
3993 case isl_tab_undo_saved_basis
:
3994 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
3995 return isl_stat_error
;
3997 case isl_tab_undo_drop_sample
:
4000 case isl_tab_undo_saved_samples
:
4001 drop_samples_since(tab
, undo
->u
.n
);
4003 case isl_tab_undo_callback
:
4004 return undo
->u
.callback
->run(undo
->u
.callback
);
4006 isl_assert(tab
->mat
->ctx
, 0, return isl_stat_error
);
4011 /* Return the tableau to the state it was in when the snapshot "snap"
4014 isl_stat
isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
4016 struct isl_tab_undo
*undo
, *next
;
4019 return isl_stat_error
;
4022 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
4026 if (perform_undo(tab
, undo
) < 0) {
4030 return isl_stat_error
;
4032 free_undo_record(undo
);
4037 return isl_stat_error
;
4041 /* The given row "row" represents an inequality violated by all
4042 * points in the tableau. Check for some special cases of such
4043 * separating constraints.
4044 * In particular, if the row has been reduced to the constant -1,
4045 * then we know the inequality is adjacent (but opposite) to
4046 * an equality in the tableau.
4047 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
4048 * of the tableau and c a positive constant, then the inequality
4049 * is adjacent (but opposite) to the inequality r'.
4051 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
4054 unsigned off
= 2 + tab
->M
;
4057 return isl_ineq_separate
;
4059 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
4060 return isl_ineq_separate
;
4062 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
4063 tab
->n_col
- tab
->n_dead
);
4065 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
4066 return isl_ineq_adj_eq
;
4068 return isl_ineq_separate
;
4071 if (!isl_int_eq(tab
->mat
->row
[row
][1],
4072 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
4073 return isl_ineq_separate
;
4075 pos
= isl_seq_first_non_zero(
4076 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
4077 tab
->n_col
- tab
->n_dead
- pos
- 1);
4079 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
4082 /* Check the effect of inequality "ineq" on the tableau "tab".
4084 * isl_ineq_redundant: satisfied by all points in the tableau
4085 * isl_ineq_separate: satisfied by no point in the tableau
4086 * isl_ineq_cut: satisfied by some by not all points
4087 * isl_ineq_adj_eq: adjacent to an equality
4088 * isl_ineq_adj_ineq: adjacent to an inequality.
4090 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
4092 enum isl_ineq_type type
= isl_ineq_error
;
4093 struct isl_tab_undo
*snap
= NULL
;
4098 return isl_ineq_error
;
4100 if (isl_tab_extend_cons(tab
, 1) < 0)
4101 return isl_ineq_error
;
4103 snap
= isl_tab_snap(tab
);
4105 con
= isl_tab_add_row(tab
, ineq
);
4109 row
= tab
->con
[con
].index
;
4110 if (isl_tab_row_is_redundant(tab
, row
))
4111 type
= isl_ineq_redundant
;
4112 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
4114 isl_int_abs_ge(tab
->mat
->row
[row
][1],
4115 tab
->mat
->row
[row
][0]))) {
4116 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
4120 type
= isl_ineq_cut
;
4122 type
= separation_type(tab
, row
);
4124 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
4128 type
= isl_ineq_cut
;
4130 type
= isl_ineq_redundant
;
4133 if (isl_tab_rollback(tab
, snap
))
4134 return isl_ineq_error
;
4137 return isl_ineq_error
;
4140 isl_stat
isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
4142 bmap
= isl_basic_map_cow(bmap
);
4147 bmap
= isl_basic_map_set_to_empty(bmap
);
4154 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, goto error
);
4155 isl_assert(tab
->mat
->ctx
,
4156 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, goto error
);
4162 isl_basic_map_free(bmap
);
4163 return isl_stat_error
;
4166 isl_stat
isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
4168 return isl_tab_track_bmap(tab
, bset_to_bmap(bset
));
4171 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
4176 return bset_from_bmap(tab
->bmap
);
4179 /* Print information about a tab variable representing a variable or
4181 * In particular, print its position (row or column) in the tableau and
4182 * an indication of whether it is zero, redundant and/or frozen.
4183 * Note that only constraints can be frozen.
4185 static void print_tab_var(FILE *out
, struct isl_tab_var
*var
)
4187 fprintf(out
, "%c%d%s%s", var
->is_row
? 'r' : 'c',
4189 var
->is_zero
? " [=0]" :
4190 var
->is_redundant
? " [R]" : "",
4191 var
->frozen
? " [F]" : "");
4194 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
4195 FILE *out
, int indent
)
4201 fprintf(out
, "%*snull tab\n", indent
, "");
4204 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
4205 tab
->n_redundant
, tab
->n_dead
);
4207 fprintf(out
, ", rational");
4209 fprintf(out
, ", empty");
4211 fprintf(out
, "%*s[", indent
, "");
4212 for (i
= 0; i
< tab
->n_var
; ++i
) {
4214 fprintf(out
, (i
== tab
->n_param
||
4215 i
== tab
->n_var
- tab
->n_div
) ? "; "
4217 print_tab_var(out
, &tab
->var
[i
]);
4219 fprintf(out
, "]\n");
4220 fprintf(out
, "%*s[", indent
, "");
4221 for (i
= 0; i
< tab
->n_con
; ++i
) {
4224 print_tab_var(out
, &tab
->con
[i
]);
4226 fprintf(out
, "]\n");
4227 fprintf(out
, "%*s[", indent
, "");
4228 for (i
= 0; i
< tab
->n_row
; ++i
) {
4229 const char *sign
= "";
4232 if (tab
->row_sign
) {
4233 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
4235 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
4237 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
4242 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
4243 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
4245 fprintf(out
, "]\n");
4246 fprintf(out
, "%*s[", indent
, "");
4247 for (i
= 0; i
< tab
->n_col
; ++i
) {
4250 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
4251 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
4253 fprintf(out
, "]\n");
4254 r
= tab
->mat
->n_row
;
4255 tab
->mat
->n_row
= tab
->n_row
;
4256 c
= tab
->mat
->n_col
;
4257 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
4258 isl_mat_print_internal(tab
->mat
, out
, indent
);
4259 tab
->mat
->n_row
= r
;
4260 tab
->mat
->n_col
= c
;
4262 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
4265 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
4267 isl_tab_print_internal(tab
, stderr
, 0);