2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/constraint.h>
15 #include <isl_ast_build_expr.h>
16 #include <isl_ast_private.h>
17 #include <isl_ast_build_private.h>
20 /* Compute the "opposite" of the (numerator of the) argument of a div
21 * with denominator "d".
23 * In particular, compute
27 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
28 __isl_take isl_val
*d
)
30 aff
= isl_aff_neg(aff
);
31 aff
= isl_aff_add_constant_val(aff
, d
);
32 aff
= isl_aff_add_constant_si(aff
, -1);
37 /* Internal data structure used inside isl_ast_expr_add_term.
38 * The domain of "build" is used to simplify the expressions.
39 * "build" needs to be set by the caller of isl_ast_expr_add_term.
40 * "cst" is the constant term of the expression in which the added term
41 * appears. It may be modified by isl_ast_expr_add_term.
43 * "v" is the coefficient of the term that is being constructed and
44 * is set internally by isl_ast_expr_add_term.
46 struct isl_ast_add_term_data
{
52 /* Given the numerator "aff" of the argument of an integer division
53 * with denominator "d", check if it can be made non-negative over
54 * data->build->domain by stealing part of the constant term of
55 * the expression in which the integer division appears.
57 * In particular, the outer expression is of the form
59 * v * floor(aff/d) + cst
61 * We already know that "aff" itself may attain negative values.
62 * Here we check if aff + d*floor(cst/v) is non-negative, such
63 * that we could rewrite the expression to
65 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
67 * Note that aff + d*floor(cst/v) can only possibly be non-negative
68 * if data->cst and data->v have the same sign.
69 * Similarly, if floor(cst/v) is zero, then there is no point in
72 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
73 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
80 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
83 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
84 shift
= isl_val_floor(shift
);
85 is_zero
= isl_val_is_zero(shift
);
86 if (is_zero
< 0 || is_zero
) {
88 return is_zero
< 0 ? -1 : 0;
90 shift
= isl_val_mul(shift
, isl_val_copy(d
));
91 shifted
= isl_aff_copy(aff
);
92 shifted
= isl_aff_add_constant_val(shifted
, shift
);
93 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
94 isl_aff_free(shifted
);
99 /* Given the numerator "aff' of the argument of an integer division
100 * with denominator "d", steal part of the constant term of
101 * the expression in which the integer division appears to make it
102 * non-negative over data->build->domain.
104 * In particular, the outer expression is of the form
106 * v * floor(aff/d) + cst
108 * We know that "aff" itself may attain negative values,
109 * but that aff + d*floor(cst/v) is non-negative.
110 * Find the minimal positive value that we need to add to "aff"
111 * to make it positive and adjust data->cst accordingly.
112 * That is, compute the minimal value "m" of "aff" over
113 * data->build->domain and take
121 * and rewrite the expression to
123 * v * floor((aff + s*d)/d) + (cst - v*s)
125 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
126 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
131 domain
= isl_ast_build_get_domain(data
->build
);
132 shift
= isl_set_min_val(domain
, aff
);
133 isl_set_free(domain
);
135 shift
= isl_val_neg(shift
);
136 shift
= isl_val_div(shift
, isl_val_copy(d
));
137 shift
= isl_val_ceil(shift
);
139 t
= isl_val_copy(shift
);
140 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
141 data
->cst
= isl_val_sub(data
->cst
, t
);
143 shift
= isl_val_mul(shift
, isl_val_copy(d
));
144 return isl_aff_add_constant_val(aff
, shift
);
147 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
148 * The result is simplified in terms of data->build->domain.
149 * This function may change (the sign of) data->v.
151 * "ls" is known to be non-NULL.
153 * Let the div be of the form floor(e/d).
154 * If the ast_build_prefer_pdiv option is set then we check if "e"
155 * is non-negative, so that we can generate
157 * (pdiv_q, expr(e), expr(d))
161 * (fdiv_q, expr(e), expr(d))
163 * If the ast_build_prefer_pdiv option is set and
164 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
165 * If so, we can rewrite
167 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
169 * and still use pdiv_q, while changing the sign of data->v.
171 * Otherwise, we check if
175 * is non-negative and if so, replace floor(e/d) by
177 * floor((e + s*d)/d) - s
179 * with s the minimal shift that makes the argument non-negative.
181 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
182 __isl_keep isl_local_space
*ls
, int pos
)
184 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
186 isl_ast_expr
*num
, *den
;
188 enum isl_ast_op_type type
;
190 aff
= isl_local_space_get_div(ls
, pos
);
191 d
= isl_aff_get_denominator_val(aff
);
192 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
193 den
= isl_ast_expr_from_val(isl_val_copy(d
));
195 type
= isl_ast_op_fdiv_q
;
196 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
197 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
198 if (non_neg
>= 0 && !non_neg
) {
199 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
201 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
202 if (non_neg
>= 0 && non_neg
) {
203 data
->v
= isl_val_neg(data
->v
);
209 if (non_neg
>= 0 && !non_neg
) {
210 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
211 if (non_neg
>= 0 && non_neg
)
212 aff
= steal_from_cst(aff
, d
, data
);
215 aff
= isl_aff_free(aff
);
217 type
= isl_ast_op_pdiv_q
;
221 num
= isl_ast_expr_from_aff(aff
, data
->build
);
222 return isl_ast_expr_alloc_binary(type
, num
, den
);
225 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
226 * The result is simplified in terms of data->build->domain.
227 * This function may change (the sign of) data->v.
229 * The isl_ast_expr is constructed based on the type of the dimension.
230 * - divs are constructed by var_div
231 * - set variables are constructed from the iterator isl_ids in data->build
232 * - parameters are constructed from the isl_ids in "ls"
234 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
235 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
237 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
240 if (type
== isl_dim_div
)
241 return var_div(data
, ls
, pos
);
243 if (type
== isl_dim_set
) {
244 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
245 return isl_ast_expr_from_id(id
);
248 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
249 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
251 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
252 return isl_ast_expr_from_id(id
);
255 /* Does "expr" represent the zero integer?
257 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
261 if (expr
->type
!= isl_ast_expr_int
)
263 return isl_val_is_zero(expr
->u
.v
);
266 /* Create an expression representing the sum of "expr1" and "expr2",
267 * provided neither of the two expressions is identically zero.
269 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
270 __isl_take isl_ast_expr
*expr2
)
272 if (!expr1
|| !expr2
)
275 if (ast_expr_is_zero(expr1
)) {
276 isl_ast_expr_free(expr1
);
280 if (ast_expr_is_zero(expr2
)) {
281 isl_ast_expr_free(expr2
);
285 return isl_ast_expr_add(expr1
, expr2
);
287 isl_ast_expr_free(expr1
);
288 isl_ast_expr_free(expr2
);
292 /* Subtract expr2 from expr1.
294 * If expr2 is zero, we simply return expr1.
295 * If expr1 is zero, we return
297 * (isl_ast_op_minus, expr2)
299 * Otherwise, we return
301 * (isl_ast_op_sub, expr1, expr2)
303 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
304 __isl_take isl_ast_expr
*expr2
)
306 if (!expr1
|| !expr2
)
309 if (ast_expr_is_zero(expr2
)) {
310 isl_ast_expr_free(expr2
);
314 if (ast_expr_is_zero(expr1
)) {
315 isl_ast_expr_free(expr1
);
316 return isl_ast_expr_neg(expr2
);
319 return isl_ast_expr_sub(expr1
, expr2
);
321 isl_ast_expr_free(expr1
);
322 isl_ast_expr_free(expr2
);
326 /* Return an isl_ast_expr that represents
330 * v is assumed to be non-negative.
331 * The result is simplified in terms of build->domain.
333 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
334 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
335 __isl_keep isl_ast_build
*build
)
343 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
345 c
= isl_ast_expr_from_val(isl_val_copy(d
));
346 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
348 if (!isl_val_is_one(v
)) {
349 c
= isl_ast_expr_from_val(isl_val_copy(v
));
350 expr
= isl_ast_expr_mul(c
, expr
);
356 /* Create an isl_ast_expr that scales "expr" by "v".
358 * If v is 1, we simply return expr.
359 * If v is -1, we return
361 * (isl_ast_op_minus, expr)
363 * Otherwise, we return
365 * (isl_ast_op_mul, expr(v), expr)
367 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
368 __isl_take isl_val
*v
)
374 if (isl_val_is_one(v
)) {
379 if (isl_val_is_negone(v
)) {
381 expr
= isl_ast_expr_neg(expr
);
383 c
= isl_ast_expr_from_val(v
);
384 expr
= isl_ast_expr_mul(c
, expr
);
390 isl_ast_expr_free(expr
);
394 /* Add an expression for "*v" times the specified dimension of "ls"
396 * If the dimension is an integer division, then this function
397 * may modify data->cst in order to make the numerator non-negative.
398 * The result is simplified in terms of data->build->domain.
400 * Let e be the expression for the specified dimension,
401 * multiplied by the absolute value of "*v".
402 * If "*v" is negative, we create
404 * (isl_ast_op_sub, expr, e)
406 * except when expr is trivially zero, in which case we create
408 * (isl_ast_op_minus, e)
412 * If "*v" is positive, we simply create
414 * (isl_ast_op_add, expr, e)
417 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
418 __isl_take isl_ast_expr
*expr
,
419 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
420 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
428 term
= var(data
, ls
, type
, pos
);
431 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
433 term
= scale(term
, v
);
434 return ast_expr_sub(expr
, term
);
436 term
= scale(term
, v
);
437 return ast_expr_add(expr
, term
);
441 /* Add an expression for "v" to expr.
443 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
444 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
446 isl_ast_expr
*expr_int
;
451 if (isl_val_is_zero(v
)) {
456 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
458 expr_int
= isl_ast_expr_from_val(v
);
459 return ast_expr_sub(expr
, expr_int
);
461 expr_int
= isl_ast_expr_from_val(v
);
462 return ast_expr_add(expr
, expr_int
);
465 isl_ast_expr_free(expr
);
470 /* Internal data structure used inside extract_modulos.
472 * If any modulo expressions are detected in "aff", then the
473 * expression is removed from "aff" and added to either "pos" or "neg"
474 * depending on the sign of the coefficient of the modulo expression
477 * "add" is an expression that needs to be added to "aff" at the end of
478 * the computation. It is NULL as long as no modulos have been extracted.
480 * "i" is the position in "aff" of the div under investigation
481 * "v" is the coefficient in "aff" of the div
482 * "div" is the argument of the div, with the denominator removed
483 * "d" is the original denominator of the argument of the div
485 * "nonneg" is an affine expression that is non-negative over "build"
486 * and that can be used to extract a modulo expression from "div".
487 * In particular, if "sign" is 1, then the coefficients of "nonneg"
488 * are equal to those of "div" modulo "d". If "sign" is -1, then
489 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
490 * If "sign" is 0, then no such affine expression has been found (yet).
492 struct isl_extract_mod_data
{
493 isl_ast_build
*build
;
510 /* Given that data->v * div_i in data->aff is equal to
512 * f * (term - (arg mod d))
514 * with data->d * f = data->v, add
520 * abs(f) * (arg mod d)
522 * to data->neg or data->pos depending on the sign of -f.
524 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
525 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
530 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
531 s
= isl_val_sgn(data
->v
);
532 data
->v
= isl_val_abs(data
->v
);
533 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
536 data
->neg
= ast_expr_add(data
->neg
, expr
);
538 data
->pos
= ast_expr_add(data
->pos
, expr
);
539 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
540 isl_dim_div
, data
->i
, 0);
542 data
->v
= isl_val_neg(data
->v
);
543 term
= isl_aff_scale_val(term
, isl_val_copy(data
->v
));
548 data
->add
= isl_aff_add(data
->add
, term
);
555 /* Given that data->v * div_i in data->aff is of the form
557 * f * d * floor(div/d)
559 * with div nonnegative on data->build, rewrite it as
561 * f * (div - (div mod d)) = f * div - f * (div mod d)
569 * abs(f) * (div mod d)
571 * to data->neg or data->pos depending on the sign of -f.
573 static int extract_mod(struct isl_extract_mod_data
*data
)
575 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
576 isl_aff_copy(data
->div
));
579 /* Given that data->v * div_i in data->aff is of the form
581 * f * d * floor(div/d) (1)
583 * check if div is non-negative on data->build and, if so,
584 * extract the corresponding modulo from data->aff.
585 * If not, then check if
589 * is non-negative on data->build. If so, replace (1) by
591 * -f * d * floor((-div + d - 1)/d)
593 * and extract the corresponding modulo from data->aff.
595 * This function may modify data->div.
597 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
601 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
605 return extract_mod(data
);
607 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
608 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
612 data
->v
= isl_val_neg(data
->v
);
613 return extract_mod(data
);
618 data
->aff
= isl_aff_free(data
->aff
);
622 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
623 * for use in extracting a modulo expression?
625 * We currently only consider the constant term of the affine expression.
626 * In particular, we prefer the affine expression with the smallest constant
628 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
629 * then we would pick x >= 0
631 * More detailed heuristics could be used if it turns out that there is a need.
633 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
634 __isl_keep isl_constraint
*c
)
642 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
643 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
644 simpler
= isl_val_lt(v1
, v2
);
651 /* Check if the coefficients of "c" are either equal or opposite to those
652 * of data->div modulo data->d. If so, and if "c" is "simpler" than
653 * data->nonneg, then replace data->nonneg by the affine expression of "c"
654 * and set data->sign accordingly.
656 * Both "c" and data->div are assumed not to involve any integer divisions.
658 * Before we start the actual comparison, we first quickly check if
659 * "c" and data->div have the same non-zero coefficients.
660 * If not, then we assume that "c" is not of the desired form.
661 * Note that while the coefficients of data->div can be reasonably expected
662 * not to involve any coefficients that are multiples of d, "c" may
663 * very well involve such coefficients. This means that we may actually
666 * If the constant term is "too large", then the constraint is rejected,
667 * where "too large" is fairly arbitrarily set to 1 << 15.
668 * We do this to avoid picking up constraints that bound a variable
669 * by a very large number, say the largest or smallest possible
670 * variable in the representation of some integer type.
672 static isl_stat
check_parallel_or_opposite(__isl_take isl_constraint
*c
,
675 struct isl_extract_mod_data
*data
= user
;
676 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
677 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
680 int parallel
= 1, opposite
= 1;
682 for (t
= 0; t
< 2; ++t
) {
683 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
684 for (i
= 0; i
< n
[t
]; ++i
) {
687 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
688 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
690 parallel
= opposite
= 0;
694 if (parallel
|| opposite
) {
697 v
= isl_val_abs(isl_constraint_get_constant_val(c
));
698 if (isl_val_cmp_si(v
, 1 << 15) > 0)
699 parallel
= opposite
= 0;
703 for (t
= 0; t
< 2; ++t
) {
704 for (i
= 0; i
< n
[t
]; ++i
) {
707 if (!parallel
&& !opposite
)
709 v1
= isl_constraint_get_coefficient_val(c
,
711 v2
= isl_aff_get_coefficient_val(data
->div
,
714 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
715 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
716 v1
= isl_val_add(v1
, isl_val_copy(v2
));
719 v1
= isl_val_add(v1
, isl_val_copy(v2
));
720 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
727 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
728 isl_aff_free(data
->nonneg
);
729 data
->nonneg
= isl_constraint_get_aff(c
);
730 data
->sign
= parallel
? 1 : -1;
733 isl_constraint_free(c
);
735 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
736 return isl_stat_error
;
741 /* Given that data->v * div_i in data->aff is of the form
743 * f * d * floor(div/d) (1)
745 * see if we can find an expression div' that is non-negative over data->build
746 * and that is related to div through
752 * div' = -div + d - 1 + d * e
754 * with e some affine expression.
755 * If so, we write (1) as
757 * f * div + f * (div' mod d)
761 * -f * (-div + d - 1) - f * (div' mod d)
763 * exploiting (in the second case) the fact that
765 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
768 * We first try to find an appropriate expression for div'
769 * from the constraints of data->build->domain (which is therefore
770 * guaranteed to be non-negative on data->build), where we remove
771 * any integer divisions from the constraints and skip this step
772 * if "div" itself involves any integer divisions.
773 * If we cannot find an appropriate expression this way, then
774 * we pass control to extract_nonneg_mod where check
775 * if div or "-div + d -1" themselves happen to be
776 * non-negative on data->build.
778 * While looking for an appropriate constraint in data->build->domain,
779 * we ignore the constant term, so after finding such a constraint,
780 * we still need to fix up the constant term.
781 * In particular, if a is the constant term of "div"
782 * (or d - 1 - the constant term of "div" if data->sign < 0)
783 * and b is the constant term of the constraint, then we need to find
784 * a non-negative constant c such that
786 * b + c \equiv a mod d
792 * and add it to b to obtain the constant term of div'.
793 * If this constant term is "too negative", then we add an appropriate
794 * multiple of d to make it positive.
797 * Note that the above is a only a very simple heuristic for finding an
798 * appropriate expression. We could try a bit harder by also considering
799 * sums of constraints that involve disjoint sets of variables or
800 * we could consider arbitrary linear combinations of constraints,
801 * although that could potentially be much more expensive as it involves
802 * the solution of an LP problem.
804 * In particular, if v_i is a column vector representing constraint i,
805 * w represents div and e_i is the i-th unit vector, then we are looking
806 * for a solution of the constraints
808 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
810 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
811 * If we are not just interested in a non-negative expression, but
812 * also in one with a minimal range, then we don't just want
813 * c = \sum_i lambda_i v_i to be non-negative over the domain,
814 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
815 * that we want to minimize and we now also have to take into account
816 * the constant terms of the constraints.
817 * Alternatively, we could first compute the dual of the domain
818 * and plug in the constraints on the coefficients.
820 static int try_extract_mod(struct isl_extract_mod_data
*data
)
829 n
= isl_aff_dim(data
->div
, isl_dim_div
);
831 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
832 return extract_nonneg_mod(data
);
834 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
835 hull
= isl_basic_set_remove_divs(hull
);
838 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
840 isl_basic_set_free(hull
);
842 if (!data
->sign
|| r
< 0) {
843 isl_aff_free(data
->nonneg
);
846 return extract_nonneg_mod(data
);
849 v1
= isl_aff_get_constant_val(data
->div
);
850 v2
= isl_aff_get_constant_val(data
->nonneg
);
851 if (data
->sign
< 0) {
852 v1
= isl_val_neg(v1
);
853 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
854 v1
= isl_val_sub_ui(v1
, 1);
856 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
857 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
858 v1
= isl_val_add(v1
, v2
);
859 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
860 v2
= isl_val_ceil(v2
);
861 if (isl_val_is_neg(v2
)) {
862 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
863 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
865 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
868 if (data
->sign
< 0) {
869 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
870 data
->v
= isl_val_neg(data
->v
);
873 return extract_term_and_mod(data
,
874 isl_aff_copy(data
->div
), data
->nonneg
);
876 data
->aff
= isl_aff_free(data
->aff
);
880 /* Check if "data->aff" involves any (implicit) modulo computations based
882 * If so, remove them from aff and add expressions corresponding
883 * to those modulo computations to data->pos and/or data->neg.
885 * "aff" is assumed to be an integer affine expression.
887 * In particular, check if (v * div_j) is of the form
889 * f * m * floor(a / m)
891 * and, if so, rewrite it as
893 * f * (a - (a mod m)) = f * a - f * (a mod m)
895 * and extract out -f * (a mod m).
896 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
897 * If f < 0, we add ((-f) * (a mod m)) to *pos.
899 * Note that in order to represent "a mod m" as
901 * (isl_ast_op_pdiv_r, a, m)
903 * we need to make sure that a is non-negative.
904 * If not, we check if "-a + m - 1" is non-negative.
905 * If so, we can rewrite
907 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
909 * and still extract a modulo.
911 static int extract_modulo(struct isl_extract_mod_data
*data
)
913 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
914 data
->d
= isl_aff_get_denominator_val(data
->div
);
915 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
916 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
917 if (try_extract_mod(data
) < 0)
918 data
->aff
= isl_aff_free(data
->aff
);
920 isl_aff_free(data
->div
);
921 isl_val_free(data
->d
);
925 /* Check if "aff" involves any (implicit) modulo computations.
926 * If so, remove them from aff and add expressions corresponding
927 * to those modulo computations to *pos and/or *neg.
928 * We only do this if the option ast_build_prefer_pdiv is set.
930 * "aff" is assumed to be an integer affine expression.
932 * A modulo expression is of the form
934 * a mod m = a - m * floor(a / m)
936 * To detect them in aff, we look for terms of the form
938 * f * m * floor(a / m)
942 * f * (a - (a mod m)) = f * a - f * (a mod m)
944 * and extract out -f * (a mod m).
945 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
946 * If f < 0, we add ((-f) * (a mod m)) to *pos.
948 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
949 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
950 __isl_keep isl_ast_build
*build
)
952 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
959 ctx
= isl_aff_get_ctx(aff
);
960 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
963 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
964 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
965 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
966 isl_dim_div
, data
.i
);
968 return isl_aff_free(aff
);
969 if (isl_val_is_zero(data
.v
) ||
970 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
971 isl_val_free(data
.v
);
974 if (extract_modulo(&data
) < 0)
975 data
.aff
= isl_aff_free(data
.aff
);
976 isl_val_free(data
.v
);
982 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
989 /* Check if aff involves any non-integer coefficients.
990 * If so, split aff into
992 * aff = aff1 + (aff2 / d)
994 * with both aff1 and aff2 having only integer coefficients.
995 * Return aff1 and add (aff2 / d) to *expr.
997 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
998 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
1001 isl_aff
*rat
= NULL
;
1002 isl_local_space
*ls
= NULL
;
1003 isl_ast_expr
*rat_expr
;
1005 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1006 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1010 d
= isl_aff_get_denominator_val(aff
);
1013 if (isl_val_is_one(d
)) {
1018 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1020 ls
= isl_aff_get_domain_local_space(aff
);
1021 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1023 for (i
= 0; i
< 3; ++i
) {
1024 n
= isl_aff_dim(aff
, t
[i
]);
1025 for (j
= 0; j
< n
; ++j
) {
1028 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1031 if (isl_val_is_divisible_by(v
, d
)) {
1035 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1037 rat_j
= isl_aff_scale_val(rat_j
, v
);
1038 rat
= isl_aff_add(rat
, rat_j
);
1042 v
= isl_aff_get_constant_val(aff
);
1043 if (isl_val_is_divisible_by(v
, d
)) {
1048 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1049 rat
= isl_aff_add(rat
, rat_0
);
1052 isl_local_space_free(ls
);
1054 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1055 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1057 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1058 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1059 *expr
= ast_expr_add(*expr
, rat_expr
);
1064 isl_local_space_free(ls
);
1070 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1071 * The result is simplified in terms of build->domain.
1073 * We first extract hidden modulo computations from the affine expression
1074 * and then add terms for each variable with a non-zero coefficient.
1075 * Finally, if the affine expression has a non-trivial denominator,
1076 * we divide the resulting isl_ast_expr by this denominator.
1078 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1079 __isl_keep isl_ast_build
*build
)
1084 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1085 isl_ast_expr
*expr
, *expr_neg
;
1086 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1087 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1088 isl_local_space
*ls
;
1089 struct isl_ast_add_term_data data
;
1094 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1095 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1097 aff
= extract_rational(aff
, &expr
, build
);
1099 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1100 expr
= ast_expr_sub(expr
, expr_neg
);
1102 ls
= isl_aff_get_domain_local_space(aff
);
1105 data
.cst
= isl_aff_get_constant_val(aff
);
1106 for (i
= 0; i
< 3; ++i
) {
1107 n
= isl_aff_dim(aff
, t
[i
]);
1108 for (j
= 0; j
< n
; ++j
) {
1109 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1111 expr
= isl_ast_expr_free(expr
);
1112 if (isl_val_is_zero(v
)) {
1116 expr
= isl_ast_expr_add_term(expr
,
1117 ls
, l
[i
], j
, v
, &data
);
1121 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1123 isl_local_space_free(ls
);
1128 /* Add terms to "expr" for each variable in "aff" with a coefficient
1129 * with sign equal to "sign".
1130 * The result is simplified in terms of data->build->domain.
1132 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1133 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1137 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1138 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1139 isl_local_space
*ls
;
1141 ls
= isl_aff_get_domain_local_space(aff
);
1143 for (i
= 0; i
< 3; ++i
) {
1144 int n
= isl_aff_dim(aff
, t
[i
]);
1145 for (j
= 0; j
< n
; ++j
) {
1146 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1147 if (sign
* isl_val_sgn(v
) <= 0) {
1152 expr
= isl_ast_expr_add_term(expr
,
1153 ls
, l
[i
], j
, v
, data
);
1157 isl_local_space_free(ls
);
1162 /* Should the constant term "v" be considered positive?
1164 * A positive constant will be added to "pos" by the caller,
1165 * while a negative constant will be added to "neg".
1166 * If either "pos" or "neg" is exactly zero, then we prefer
1167 * to add the constant "v" to that side, irrespective of the sign of "v".
1168 * This results in slightly shorter expressions and may reduce the risk
1171 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1172 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1174 if (ast_expr_is_zero(pos
))
1176 if (ast_expr_is_zero(neg
))
1178 return isl_val_is_pos(v
);
1181 /* Check if the equality
1185 * represents a stride constraint on the integer division "pos".
1187 * In particular, if the integer division "pos" is equal to
1191 * then check if aff is equal to
1197 * If so, the equality is exactly
1201 * Note that in principle we could also accept
1205 * where e and e' differ by a constant.
1207 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1213 div
= isl_aff_get_div(aff
, pos
);
1214 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1215 d
= isl_aff_get_denominator_val(div
);
1216 eq
= isl_val_abs_eq(c
, d
);
1217 if (eq
>= 0 && eq
) {
1218 aff
= isl_aff_copy(aff
);
1219 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1220 div
= isl_aff_scale_val(div
, d
);
1221 if (isl_val_is_pos(c
))
1222 div
= isl_aff_neg(div
);
1223 eq
= isl_aff_plain_is_equal(div
, aff
);
1233 /* Are all coefficients of "aff" (zero or) negative?
1235 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1242 n
= isl_aff_dim(aff
, isl_dim_param
);
1243 for (i
= 0; i
< n
; ++i
)
1244 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1247 n
= isl_aff_dim(aff
, isl_dim_in
);
1248 for (i
= 0; i
< n
; ++i
)
1249 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1255 /* Give an equality of the form
1257 * aff = e - d floor(e/d) = 0
1261 * aff = -e + d floor(e/d) = 0
1263 * with the integer division "pos" equal to floor(e/d),
1264 * construct the AST expression
1266 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1268 * If e only has negative coefficients, then construct
1270 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1274 static __isl_give isl_ast_expr
*extract_stride_constraint(
1275 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1279 isl_ast_expr
*expr
, *cst
;
1284 ctx
= isl_aff_get_ctx(aff
);
1286 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1287 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1289 if (all_negative_coefficients(aff
))
1290 aff
= isl_aff_neg(aff
);
1292 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1293 expr
= isl_ast_expr_from_aff(aff
, build
);
1295 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1296 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1297 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1302 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1303 * The result is simplified in terms of build->domain.
1305 * We first check if the constraint is an equality of the form
1307 * e - d floor(e/d) = 0
1313 * If so, we convert it to
1315 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1317 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1318 * We first extract hidden modulo computations from "a"
1319 * and then collect all the terms with a positive coefficient in cons_pos
1320 * and the terms with a negative coefficient in cons_neg.
1322 * The result is then of the form
1324 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1328 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1330 * However, if the first expression is an integer constant (and the second
1331 * is not), then we swap the two expressions. This ensures that we construct,
1332 * e.g., "i <= 5" rather than "5 >= i".
1334 * Furthermore, is there are no terms with positive coefficients (or no terms
1335 * with negative coefficients), then the constant term is added to "pos"
1336 * (or "neg"), ignoring the sign of the constant term.
1338 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1339 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1343 isl_ast_expr
*expr_pos
;
1344 isl_ast_expr
*expr_neg
;
1348 enum isl_ast_op_type type
;
1349 struct isl_ast_add_term_data data
;
1354 aff
= isl_constraint_get_aff(constraint
);
1355 eq
= isl_constraint_is_equality(constraint
);
1356 isl_constraint_free(constraint
);
1358 n
= isl_aff_dim(aff
, isl_dim_div
);
1360 for (i
= 0; i
< n
; ++i
) {
1362 is_stride
= is_stride_constraint(aff
, i
);
1366 return extract_stride_constraint(aff
, i
, build
);
1369 ctx
= isl_aff_get_ctx(aff
);
1370 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1371 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1373 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1376 data
.cst
= isl_aff_get_constant_val(aff
);
1377 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1378 data
.cst
= isl_val_neg(data
.cst
);
1379 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1380 data
.cst
= isl_val_neg(data
.cst
);
1382 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1383 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1385 data
.cst
= isl_val_neg(data
.cst
);
1386 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1389 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1390 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1391 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1392 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1394 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1395 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1405 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1406 * as a callback to isl_constraint_list_sort.
1407 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1408 * apart, then use isl_constraint_plain_cmp instead.
1410 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1411 __isl_keep isl_constraint
*b
, void *user
)
1415 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1418 return isl_constraint_plain_cmp(a
, b
);
1421 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1422 * The result is simplified in terms of build->domain.
1424 * If "bset" is not bounded by any constraint, then we contruct
1425 * the expression "1", i.e., "true".
1427 * Otherwise, we sort the constraints, putting constraints that involve
1428 * integer divisions after those that do not, and construct an "and"
1429 * of the ast expressions of the individual constraints.
1431 * Each constraint is added to the generated constraints of the build
1432 * after it has been converted to an AST expression so that it can be used
1433 * to simplify the following constraints. This may change the truth value
1434 * of subsequent constraints that do not satisfy the earlier constraints,
1435 * but this does not affect the outcome of the conjunction as it is
1436 * only true if all the conjuncts are true (no matter in what order
1437 * they are evaluated). In particular, the constraints that do not
1438 * involve integer divisions may serve to simplify some constraints
1439 * that do involve integer divisions.
1441 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1442 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1446 isl_constraint_list
*list
;
1450 list
= isl_basic_set_get_constraint_list(bset
);
1451 isl_basic_set_free(bset
);
1452 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1455 n
= isl_constraint_list_n_constraint(list
);
1457 isl_ctx
*ctx
= isl_constraint_list_get_ctx(list
);
1458 isl_constraint_list_free(list
);
1459 return isl_ast_expr_alloc_int_si(ctx
, 1);
1462 build
= isl_ast_build_copy(build
);
1464 c
= isl_constraint_list_get_constraint(list
, 0);
1465 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1466 set
= isl_set_from_basic_set(bset
);
1467 res
= isl_ast_expr_from_constraint(c
, build
);
1468 build
= isl_ast_build_restrict_generated(build
, set
);
1470 for (i
= 1; i
< n
; ++i
) {
1473 c
= isl_constraint_list_get_constraint(list
, i
);
1474 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1475 set
= isl_set_from_basic_set(bset
);
1476 expr
= isl_ast_expr_from_constraint(c
, build
);
1477 build
= isl_ast_build_restrict_generated(build
, set
);
1478 res
= isl_ast_expr_and(res
, expr
);
1481 isl_constraint_list_free(list
);
1482 isl_ast_build_free(build
);
1486 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1487 * The result is simplified in terms of build->domain.
1489 * If "set" is an (obviously) empty set, then return the expression "0".
1491 * If there are multiple disjuncts in the description of the set,
1492 * then subsequent disjuncts are simplified in a context where
1493 * the previous disjuncts have been removed from build->domain.
1494 * In particular, constraints that ensure that there is no overlap
1495 * with these previous disjuncts, can be removed.
1496 * This is mostly useful for disjuncts that are only defined by
1497 * a single constraint (relative to the build domain) as the opposite
1498 * of that single constraint can then be removed from the other disjuncts.
1499 * In order not to increase the number of disjuncts in the build domain
1500 * after subtracting the previous disjuncts of "set", the simple hull
1501 * is computed after taking the difference with each of these disjuncts.
1502 * This means that constraints that prevent overlap with a union
1503 * of multiple previous disjuncts are not removed.
1505 * "set" lives in the internal schedule space.
1507 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1508 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1511 isl_basic_set
*bset
;
1512 isl_basic_set_list
*list
;
1516 list
= isl_set_get_basic_set_list(set
);
1521 n
= isl_basic_set_list_n_basic_set(list
);
1523 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1524 isl_basic_set_list_free(list
);
1525 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1528 domain
= isl_ast_build_get_domain(build
);
1530 bset
= isl_basic_set_list_get_basic_set(list
, 0);
1531 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1532 res
= isl_ast_build_expr_from_basic_set(build
, bset
);
1534 for (i
= 1; i
< n
; ++i
) {
1538 rest
= isl_set_subtract(isl_set_copy(domain
), set
);
1539 rest
= isl_set_from_basic_set(isl_set_simple_hull(rest
));
1540 domain
= isl_set_intersect(domain
, rest
);
1541 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1542 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
1543 bset
= isl_basic_set_gist(bset
,
1544 isl_set_simple_hull(isl_set_copy(domain
)));
1545 expr
= isl_ast_build_expr_from_basic_set(build
, bset
);
1546 res
= isl_ast_expr_or(res
, expr
);
1549 isl_set_free(domain
);
1551 isl_basic_set_list_free(list
);
1555 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1556 * The result is simplified in terms of build->domain.
1558 * If "set" is an (obviously) empty set, then return the expression "0".
1560 * "set" lives in the external schedule space.
1562 * The internal AST expression generation assumes that there are
1563 * no unknown divs, so make sure an explicit representation is available.
1564 * Since the set comes from the outside, it may have constraints that
1565 * are redundant with respect to the build domain. Remove them first.
1567 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1568 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1570 if (isl_ast_build_need_schedule_map(build
)) {
1572 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1573 set
= isl_set_preimage_multi_aff(set
, ma
);
1576 set
= isl_set_compute_divs(set
);
1577 set
= isl_ast_build_compute_gist(build
, set
);
1578 return isl_ast_build_expr_from_set_internal(build
, set
);
1581 /* State of data about previous pieces in
1582 * isl_ast_build_expr_from_pw_aff_internal.
1584 * isl_state_none: no data about previous pieces
1585 * isl_state_single: data about a single previous piece
1586 * isl_state_min: data represents minimum of several pieces
1587 * isl_state_max: data represents maximum of several pieces
1589 enum isl_from_pw_aff_state
{
1596 /* Internal date structure representing a single piece in the input of
1597 * isl_ast_build_expr_from_pw_aff_internal.
1599 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
1600 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
1601 * single previous subpiece.
1602 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
1603 * a sequence of several previous subpieces that are equal to the minimum
1604 * of the entries in "aff_list" over the union of "set_list"
1605 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
1606 * a sequence of several previous subpieces that are equal to the maximum
1607 * of the entries in "aff_list" over the union of "set_list"
1609 * During the construction of the pieces, "set" is NULL.
1610 * After the construction, "set" is set to the union of the elements
1611 * in "set_list", at which point "set_list" is set to NULL.
1613 struct isl_from_pw_aff_piece
{
1614 enum isl_from_pw_aff_state state
;
1616 isl_set_list
*set_list
;
1617 isl_aff_list
*aff_list
;
1620 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
1622 * "build" specifies the domain against which the result is simplified.
1623 * "dom" is the domain of the entire isl_pw_aff.
1625 * "n" is the number of pieces constructed already.
1626 * In particular, during the construction of the pieces, "n" points to
1627 * the piece that is being constructed. After the construction of the
1628 * pieces, "n" is set to the total number of pieces.
1629 * "max" is the total number of allocated entries.
1630 * "p" contains the individual pieces.
1632 struct isl_from_pw_aff_data
{
1633 isl_ast_build
*build
;
1638 struct isl_from_pw_aff_piece
*p
;
1641 /* Initialize "data" based on "build" and "pa".
1643 static isl_stat
isl_from_pw_aff_data_init(struct isl_from_pw_aff_data
*data
,
1644 __isl_keep isl_ast_build
*build
, __isl_keep isl_pw_aff
*pa
)
1649 ctx
= isl_pw_aff_get_ctx(pa
);
1650 n
= isl_pw_aff_n_piece(pa
);
1652 isl_die(ctx
, isl_error_invalid
,
1653 "cannot handle void expression", return isl_stat_error
);
1655 data
->p
= isl_calloc_array(ctx
, struct isl_from_pw_aff_piece
, n
);
1657 return isl_stat_error
;
1658 data
->build
= build
;
1659 data
->dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1665 /* Free all memory allocated for "data".
1667 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data
*data
)
1671 isl_set_free(data
->dom
);
1675 for (i
= 0; i
< data
->max
; ++i
) {
1676 isl_set_free(data
->p
[i
].set
);
1677 isl_set_list_free(data
->p
[i
].set_list
);
1678 isl_aff_list_free(data
->p
[i
].aff_list
);
1683 /* Initialize the current entry of "data" to an unused piece.
1685 static void set_none(struct isl_from_pw_aff_data
*data
)
1687 data
->p
[data
->n
].state
= isl_state_none
;
1688 data
->p
[data
->n
].set_list
= NULL
;
1689 data
->p
[data
->n
].aff_list
= NULL
;
1692 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
1694 static void set_single(struct isl_from_pw_aff_data
*data
,
1695 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1697 data
->p
[data
->n
].state
= isl_state_single
;
1698 data
->p
[data
->n
].set_list
= isl_set_list_from_set(set
);
1699 data
->p
[data
->n
].aff_list
= isl_aff_list_from_aff(aff
);
1702 /* Extend the current entry of "data" with "set" and "aff"
1703 * as a minimum expression.
1705 static isl_stat
extend_min(struct isl_from_pw_aff_data
*data
,
1706 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1709 data
->p
[n
].state
= isl_state_min
;
1710 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1711 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1713 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1714 return isl_stat_error
;
1718 /* Extend the current entry of "data" with "set" and "aff"
1719 * as a maximum expression.
1721 static isl_stat
extend_max(struct isl_from_pw_aff_data
*data
,
1722 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
1725 data
->p
[n
].state
= isl_state_max
;
1726 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
1727 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
1729 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1730 return isl_stat_error
;
1734 /* Extend the domain of the current entry of "data", which is assumed
1735 * to contain a single subpiece, with "set". If "replace" is set,
1736 * then also replace the affine function by "aff". Otherwise,
1737 * simply free "aff".
1739 static isl_stat
extend_domain(struct isl_from_pw_aff_data
*data
,
1740 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
, int replace
)
1745 set_n
= isl_set_list_get_set(data
->p
[n
].set_list
, 0);
1746 set_n
= isl_set_union(set_n
, set
);
1747 data
->p
[n
].set_list
=
1748 isl_set_list_set_set(data
->p
[n
].set_list
, 0, set_n
);
1751 data
->p
[n
].aff_list
=
1752 isl_aff_list_set_aff(data
->p
[n
].aff_list
, 0, aff
);
1756 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
1757 return isl_stat_error
;
1761 /* Construct an isl_ast_expr from "list" within "build".
1762 * If "state" is isl_state_single, then "list" contains a single entry and
1763 * an isl_ast_expr is constructed for that entry.
1764 * Otherwise a min or max expression is constructed from "list"
1765 * depending on "state".
1767 static __isl_give isl_ast_expr
*ast_expr_from_aff_list(
1768 __isl_take isl_aff_list
*list
, enum isl_from_pw_aff_state state
,
1769 __isl_keep isl_ast_build
*build
)
1774 enum isl_ast_op_type op_type
;
1776 if (state
== isl_state_single
) {
1777 aff
= isl_aff_list_get_aff(list
, 0);
1778 isl_aff_list_free(list
);
1779 return isl_ast_expr_from_aff(aff
, build
);
1781 n
= isl_aff_list_n_aff(list
);
1782 op_type
= state
== isl_state_min
? isl_ast_op_min
: isl_ast_op_max
;
1783 expr
= isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build
), op_type
, n
);
1787 for (i
= 0; i
< n
; ++i
) {
1788 isl_ast_expr
*expr_i
;
1790 aff
= isl_aff_list_get_aff(list
, i
);
1791 expr_i
= isl_ast_expr_from_aff(aff
, build
);
1794 expr
->u
.op
.args
[i
] = expr_i
;
1797 isl_aff_list_free(list
);
1800 isl_aff_list_free(list
);
1801 isl_ast_expr_free(expr
);
1805 /* Extend the expression in "next" to take into account
1806 * the piece at position "pos" in "data", allowing for a further extension
1807 * for the next piece(s).
1808 * In particular, "next" is set to a select operation that selects
1809 * an isl_ast_expr corresponding to data->aff_list on data->set and
1810 * to an expression that will be filled in by later calls.
1811 * Return a pointer to this location.
1812 * Afterwards, the state of "data" is set to isl_state_none.
1814 * The constraints of data->set are added to the generated
1815 * constraints of the build such that they can be exploited to simplify
1816 * the AST expression constructed from data->aff_list.
1818 static isl_ast_expr
**add_intermediate_piece(struct isl_from_pw_aff_data
*data
,
1819 int pos
, isl_ast_expr
**next
)
1822 isl_ast_build
*build
;
1823 isl_ast_expr
*ternary
, *arg
;
1824 isl_set
*set
, *gist
;
1826 set
= data
->p
[pos
].set
;
1827 data
->p
[pos
].set
= NULL
;
1828 ctx
= isl_ast_build_get_ctx(data
->build
);
1829 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1830 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1831 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1832 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1833 build
= isl_ast_build_copy(data
->build
);
1834 build
= isl_ast_build_restrict_generated(build
, set
);
1835 arg
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1836 data
->p
[pos
].state
, build
);
1837 data
->p
[pos
].aff_list
= NULL
;
1838 isl_ast_build_free(build
);
1839 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1840 data
->p
[pos
].state
= isl_state_none
;
1845 return &ternary
->u
.op
.args
[2];
1848 /* Extend the expression in "next" to take into account
1849 * the final piece, located at position "pos" in "data".
1850 * In particular, "next" is set to evaluate data->aff_list
1851 * and the domain is ignored.
1852 * Return isl_stat_ok on success and isl_stat_error on failure.
1854 * The constraints of data->set are however added to the generated
1855 * constraints of the build such that they can be exploited to simplify
1856 * the AST expression constructed from data->aff_list.
1858 static isl_stat
add_last_piece(struct isl_from_pw_aff_data
*data
,
1859 int pos
, isl_ast_expr
**next
)
1861 isl_ast_build
*build
;
1863 if (data
->p
[pos
].state
== isl_state_none
)
1864 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1865 "cannot handle void expression", return isl_stat_error
);
1867 build
= isl_ast_build_copy(data
->build
);
1868 build
= isl_ast_build_restrict_generated(build
, data
->p
[pos
].set
);
1869 data
->p
[pos
].set
= NULL
;
1870 *next
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
1871 data
->p
[pos
].state
, build
);
1872 data
->p
[pos
].aff_list
= NULL
;
1873 isl_ast_build_free(build
);
1874 data
->p
[pos
].state
= isl_state_none
;
1876 return isl_stat_error
;
1881 /* Return -1 if the piece "p1" should be sorted before "p2"
1882 * and 1 if it should be sorted after "p2".
1883 * Return 0 if they do not need to be sorted in a specific order.
1885 * Pieces are sorted according to the number of disjuncts
1888 static int sort_pieces_cmp(const void *p1
, const void *p2
, void *arg
)
1890 const struct isl_from_pw_aff_piece
*piece1
= p1
;
1891 const struct isl_from_pw_aff_piece
*piece2
= p2
;
1894 n1
= isl_set_n_basic_set(piece1
->set
);
1895 n2
= isl_set_n_basic_set(piece2
->set
);
1900 /* Construct an isl_ast_expr from the pieces in "data".
1901 * Return the result or NULL on failure.
1903 * When this function is called, data->n points to the current piece.
1904 * If this is an effective piece, then first increment data->n such
1905 * that data->n contains the number of pieces.
1906 * The "set_list" fields are subsequently replaced by the corresponding
1907 * "set" fields, after which the pieces are sorted according to
1908 * the number of disjuncts in these "set" fields.
1910 * Construct intermediate AST expressions for the initial pieces and
1911 * finish off with the final pieces.
1913 static isl_ast_expr
*build_pieces(struct isl_from_pw_aff_data
*data
)
1916 isl_ast_expr
*res
= NULL
;
1917 isl_ast_expr
**next
= &res
;
1919 if (data
->p
[data
->n
].state
!= isl_state_none
)
1922 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
1923 "cannot handle void expression", return NULL
);
1925 for (i
= 0; i
< data
->n
; ++i
) {
1926 data
->p
[i
].set
= isl_set_list_union(data
->p
[i
].set_list
);
1927 if (data
->p
[i
].state
!= isl_state_single
)
1928 data
->p
[i
].set
= isl_set_coalesce(data
->p
[i
].set
);
1929 data
->p
[i
].set_list
= NULL
;
1932 if (isl_sort(data
->p
, data
->n
, sizeof(data
->p
[0]),
1933 &sort_pieces_cmp
, NULL
) < 0)
1934 return isl_ast_expr_free(res
);
1936 for (i
= 0; i
+ 1 < data
->n
; ++i
) {
1937 next
= add_intermediate_piece(data
, i
, next
);
1939 return isl_ast_expr_free(res
);
1942 if (add_last_piece(data
, data
->n
- 1, next
) < 0)
1943 return isl_ast_expr_free(res
);
1948 /* Is the domain of the current entry of "data", which is assumed
1949 * to contain a single subpiece, a subset of "set"?
1951 static isl_bool
single_is_subset(struct isl_from_pw_aff_data
*data
,
1952 __isl_keep isl_set
*set
)
1957 set_n
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, 0);
1958 subset
= isl_set_is_subset(set_n
, set
);
1959 isl_set_free(set_n
);
1964 /* Is "aff" a rational expression, i.e., does it have a denominator
1965 * different from one?
1967 static isl_bool
aff_is_rational(__isl_keep isl_aff
*aff
)
1972 den
= isl_aff_get_denominator_val(aff
);
1973 rational
= isl_bool_not(isl_val_is_one(den
));
1979 /* Does "list" consist of a single rational affine expression?
1981 static isl_bool
is_single_rational_aff(__isl_keep isl_aff_list
*list
)
1986 if (isl_aff_list_n_aff(list
) != 1)
1987 return isl_bool_false
;
1988 aff
= isl_aff_list_get_aff(list
, 0);
1989 rational
= aff_is_rational(aff
);
1995 /* Can the list of subpieces in the last piece of "data" be extended with
1996 * "set" and "aff" based on "test"?
1997 * In particular, is it the case for each entry (set_i, aff_i) that
1999 * test(aff, aff_i) holds on set_i, and
2000 * test(aff_i, aff) holds on set?
2002 * "test" returns the set of elements where the tests holds, meaning
2003 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2005 * This function is used to detect min/max expressions.
2006 * If the ast_build_detect_min_max option is turned off, then
2007 * do not even try and perform any detection and return false instead.
2009 * Rational affine expressions are not considered for min/max expressions
2010 * since the combined expression will be defined on the union of the domains,
2011 * while a rational expression may only yield integer values
2012 * on its own definition domain.
2014 static isl_bool
extends(struct isl_from_pw_aff_data
*data
,
2015 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
,
2016 __isl_give isl_basic_set
*(*test
)(__isl_take isl_aff
*aff1
,
2017 __isl_take isl_aff
*aff2
))
2020 isl_bool is_rational
;
2024 is_rational
= aff_is_rational(aff
);
2025 if (is_rational
>= 0 && !is_rational
)
2026 is_rational
= is_single_rational_aff(data
->p
[data
->n
].aff_list
);
2027 if (is_rational
< 0 || is_rational
)
2028 return isl_bool_not(is_rational
);
2030 ctx
= isl_ast_build_get_ctx(data
->build
);
2031 if (!isl_options_get_ast_build_detect_min_max(ctx
))
2032 return isl_bool_false
;
2034 dom
= isl_ast_build_get_domain(data
->build
);
2035 set
= isl_set_intersect(dom
, isl_set_copy(set
));
2037 n
= isl_set_list_n_set(data
->p
[data
->n
].set_list
);
2038 for (i
= 0; i
< n
; ++i
) {
2041 isl_set
*dom
, *required
;
2044 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2045 valid
= isl_set_from_basic_set(test(isl_aff_copy(aff
), aff_i
));
2046 required
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, i
);
2047 dom
= isl_ast_build_get_domain(data
->build
);
2048 required
= isl_set_intersect(dom
, required
);
2049 is_valid
= isl_set_is_subset(required
, valid
);
2050 isl_set_free(required
);
2051 isl_set_free(valid
);
2052 if (is_valid
< 0 || !is_valid
) {
2057 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2058 valid
= isl_set_from_basic_set(test(aff_i
, isl_aff_copy(aff
)));
2059 is_valid
= isl_set_is_subset(set
, valid
);
2060 isl_set_free(valid
);
2061 if (is_valid
< 0 || !is_valid
) {
2068 return isl_bool_true
;
2071 /* Can the list of pieces in "data" be extended with "set" and "aff"
2072 * to form/preserve a minimum expression?
2073 * In particular, is it the case for each entry (set_i, aff_i) that
2075 * aff >= aff_i on set_i, and
2076 * aff_i >= aff on set?
2078 static isl_bool
extends_min(struct isl_from_pw_aff_data
*data
,
2079 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2081 return extends(data
, set
, aff
, &isl_aff_ge_basic_set
);
2084 /* Can the list of pieces in "data" be extended with "set" and "aff"
2085 * to form/preserve a maximum expression?
2086 * In particular, is it the case for each entry (set_i, aff_i) that
2088 * aff <= aff_i on set_i, and
2089 * aff_i <= aff on set?
2091 static isl_bool
extends_max(struct isl_from_pw_aff_data
*data
,
2092 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2094 return extends(data
, set
, aff
, &isl_aff_le_basic_set
);
2097 /* This function is called during the construction of an isl_ast_expr
2098 * that evaluates an isl_pw_aff.
2099 * If the last piece of "data" contains a single subpiece and
2100 * if its affine function is equal to "aff" on a part of the domain
2101 * that includes either "set" or the domain of that single subpiece,
2102 * then extend the domain of that single subpiece with "set".
2103 * If it was the original domain of the single subpiece where
2104 * the two affine functions are equal, then also replace
2105 * the affine function of the single subpiece by "aff".
2106 * If the last piece of "data" contains either a single subpiece
2107 * or a minimum, then check if this minimum expression can be extended
2109 * If so, extend the sequence and return.
2110 * Perform the same operation for maximum expressions.
2111 * If no such extension can be performed, then move to the next piece
2112 * in "data" (if the current piece contains any data), and then store
2113 * the current subpiece in the current piece of "data" for later handling.
2115 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
2116 __isl_take isl_aff
*aff
, void *user
)
2118 struct isl_from_pw_aff_data
*data
= user
;
2120 enum isl_from_pw_aff_state state
;
2122 state
= data
->p
[data
->n
].state
;
2123 if (state
== isl_state_single
) {
2126 isl_bool subset1
, subset2
= isl_bool_false
;
2127 aff0
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, 0);
2128 eq
= isl_aff_eq_set(isl_aff_copy(aff
), aff0
);
2129 subset1
= isl_set_is_subset(set
, eq
);
2130 if (subset1
>= 0 && !subset1
)
2131 subset2
= single_is_subset(data
, eq
);
2133 if (subset1
< 0 || subset2
< 0)
2136 return extend_domain(data
, set
, aff
, 0);
2138 return extend_domain(data
, set
, aff
, 1);
2140 if (state
== isl_state_single
|| state
== isl_state_min
) {
2141 test
= extends_min(data
, set
, aff
);
2145 return extend_min(data
, set
, aff
);
2147 if (state
== isl_state_single
|| state
== isl_state_max
) {
2148 test
= extends_max(data
, set
, aff
);
2152 return extend_max(data
, set
, aff
);
2154 if (state
!= isl_state_none
)
2156 set_single(data
, set
, aff
);
2162 return isl_stat_error
;
2165 /* Construct an isl_ast_expr that evaluates "pa".
2166 * The result is simplified in terms of build->domain.
2168 * The domain of "pa" lives in the internal schedule space.
2170 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
2171 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2173 struct isl_from_pw_aff_data data
= { NULL
};
2174 isl_ast_expr
*res
= NULL
;
2176 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
2177 pa
= isl_pw_aff_coalesce(pa
);
2181 if (isl_from_pw_aff_data_init(&data
, build
, pa
) < 0)
2185 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) >= 0)
2186 res
= build_pieces(&data
);
2188 isl_pw_aff_free(pa
);
2189 isl_from_pw_aff_data_clear(&data
);
2192 isl_pw_aff_free(pa
);
2193 isl_from_pw_aff_data_clear(&data
);
2197 /* Construct an isl_ast_expr that evaluates "pa".
2198 * The result is simplified in terms of build->domain.
2200 * The domain of "pa" lives in the external schedule space.
2202 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
2203 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2207 if (isl_ast_build_need_schedule_map(build
)) {
2209 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2210 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
2212 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2216 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2219 * The domain of "mpa" is assumed to live in the internal schedule domain.
2221 static __isl_give isl_multi_pw_aff
*set_iterator_names(
2222 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2226 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
2227 for (i
= 0; i
< n
; ++i
) {
2230 id
= isl_ast_build_get_iterator_id(build
, i
);
2231 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
2237 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2238 * the remaining arguments derived from "mpa".
2239 * That is, construct a call or access expression that calls/accesses "arg0"
2240 * with arguments/indices specified by "mpa".
2242 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
2243 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2244 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
2250 ctx
= isl_ast_build_get_ctx(build
);
2252 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
2253 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
2254 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
2255 for (i
= 0; i
< n
; ++i
) {
2259 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
2260 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2261 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
2264 isl_multi_pw_aff_free(mpa
);
2268 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2269 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2270 __isl_take isl_multi_pw_aff
*mpa
);
2272 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2273 * The range of "mpa" is assumed to be wrapped relation.
2274 * The domain of this wrapped relation specifies the structure being
2275 * accessed, while the range of this wrapped relation spacifies the
2276 * member of the structure being accessed.
2278 * The domain of "mpa" is assumed to live in the internal schedule domain.
2280 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
2281 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2284 isl_multi_pw_aff
*domain
;
2285 isl_ast_expr
*domain_expr
, *expr
;
2286 enum isl_ast_op_type type
= isl_ast_op_access
;
2288 domain
= isl_multi_pw_aff_copy(mpa
);
2289 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
2290 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
2292 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
2293 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2294 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2295 "missing field name", goto error
);
2296 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2297 expr
= isl_ast_expr_from_id(id
);
2298 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
2299 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2301 isl_multi_pw_aff_free(mpa
);
2305 /* Construct an isl_ast_expr of type "type" that calls or accesses
2306 * the element specified by "mpa".
2307 * The first argument is obtained from the output tuple name.
2308 * The remaining arguments are given by the piecewise affine expressions.
2310 * If the range of "mpa" is a mapped relation, then we assume it
2311 * represents an access to a member of a structure.
2313 * The domain of "mpa" is assumed to live in the internal schedule domain.
2315 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2316 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2317 __isl_take isl_multi_pw_aff
*mpa
)
2326 if (type
== isl_ast_op_access
&&
2327 isl_multi_pw_aff_range_is_wrapping(mpa
))
2328 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
2330 mpa
= set_iterator_names(build
, mpa
);
2334 ctx
= isl_ast_build_get_ctx(build
);
2336 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2337 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2339 id
= isl_id_alloc(ctx
, "", NULL
);
2341 expr
= isl_ast_expr_from_id(id
);
2342 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2344 isl_multi_pw_aff_free(mpa
);
2348 /* Construct an isl_ast_expr of type "type" that calls or accesses
2349 * the element specified by "pma".
2350 * The first argument is obtained from the output tuple name.
2351 * The remaining arguments are given by the piecewise affine expressions.
2353 * The domain of "pma" is assumed to live in the internal schedule domain.
2355 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
2356 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2357 __isl_take isl_pw_multi_aff
*pma
)
2359 isl_multi_pw_aff
*mpa
;
2361 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2362 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2365 /* Construct an isl_ast_expr of type "type" that calls or accesses
2366 * the element specified by "mpa".
2367 * The first argument is obtained from the output tuple name.
2368 * The remaining arguments are given by the piecewise affine expressions.
2370 * The domain of "mpa" is assumed to live in the external schedule domain.
2372 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
2373 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2374 __isl_take isl_multi_pw_aff
*mpa
)
2378 isl_space
*space_build
, *space_mpa
;
2380 space_build
= isl_ast_build_get_space(build
, 0);
2381 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
2382 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
2383 space_mpa
, isl_dim_in
);
2384 isl_space_free(space_build
);
2385 isl_space_free(space_mpa
);
2389 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2390 "spaces don't match", goto error
);
2392 if (isl_ast_build_need_schedule_map(build
)) {
2394 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2395 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
2398 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2401 isl_multi_pw_aff_free(mpa
);
2405 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
2406 * The name of the function is obtained from the output tuple name.
2407 * The arguments are given by the piecewise affine expressions.
2409 * The domain of "mpa" is assumed to live in the external schedule domain.
2411 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
2412 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2414 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
2417 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
2418 * The name of the array is obtained from the output tuple name.
2419 * The index expressions are given by the piecewise affine expressions.
2421 * The domain of "mpa" is assumed to live in the external schedule domain.
2423 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
2424 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2426 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
2429 /* Construct an isl_ast_expr of type "type" that calls or accesses
2430 * the element specified by "pma".
2431 * The first argument is obtained from the output tuple name.
2432 * The remaining arguments are given by the piecewise affine expressions.
2434 * The domain of "pma" is assumed to live in the external schedule domain.
2436 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
2437 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
2438 __isl_take isl_pw_multi_aff
*pma
)
2440 isl_multi_pw_aff
*mpa
;
2442 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2443 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
2446 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
2447 * The name of the function is obtained from the output tuple name.
2448 * The arguments are given by the piecewise affine expressions.
2450 * The domain of "pma" is assumed to live in the external schedule domain.
2452 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
2453 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2455 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
2458 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
2459 * The name of the array is obtained from the output tuple name.
2460 * The index expressions are given by the piecewise affine expressions.
2462 * The domain of "pma" is assumed to live in the external schedule domain.
2464 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
2465 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
2467 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
2470 /* Construct an isl_ast_expr that calls the domain element
2471 * specified by "executed".
2473 * "executed" is assumed to be single-valued, with a domain that lives
2474 * in the internal schedule space.
2476 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
2477 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
2479 isl_pw_multi_aff
*iteration
;
2482 iteration
= isl_pw_multi_aff_from_map(executed
);
2483 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
2484 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
2485 isl_ast_build_get_domain(build
));
2486 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
2488 return isl_ast_node_alloc_user(expr
);