isl_scheduler.c: count_map_constraints: count parametric constraints separately
[isl.git] / isl_scheduler.c
bloba8b41b5215b300e7045db5acbb40d3c4b6fe0235
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/constraint.h>
24 #include <isl/schedule.h>
25 #include <isl_schedule_constraints.h>
26 #include <isl/schedule_node.h>
27 #include <isl_mat_private.h>
28 #include <isl_vec_private.h>
29 #include <isl/set.h>
30 #include <isl/union_set.h>
31 #include <isl_seq.h>
32 #include <isl_tab.h>
33 #include <isl_dim_map.h>
34 #include <isl/map_to_basic_set.h>
35 #include <isl_sort.h>
36 #include <isl_options_private.h>
37 #include <isl_tarjan.h>
38 #include <isl_morph.h>
39 #include <isl/ilp.h>
40 #include <isl_val_private.h>
43 * The scheduling algorithm implemented in this file was inspired by
44 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
45 * Parallelization and Locality Optimization in the Polyhedral Model".
49 /* Internal information about a node that is used during the construction
50 * of a schedule.
51 * space represents the original space in which the domain lives;
52 * that is, the space is not affected by compression
53 * sched is a matrix representation of the schedule being constructed
54 * for this node; if compressed is set, then this schedule is
55 * defined over the compressed domain space
56 * sched_map is an isl_map representation of the same (partial) schedule
57 * sched_map may be NULL; if compressed is set, then this map
58 * is defined over the uncompressed domain space
59 * rank is the number of linearly independent rows in the linear part
60 * of sched
61 * the rows of "vmap" represent a change of basis for the node
62 * variables; the first rank rows span the linear part of
63 * the schedule rows; the remaining rows are linearly independent
64 * the rows of "indep" represent linear combinations of the schedule
65 * coefficients that are non-zero when the schedule coefficients are
66 * linearly independent of previously computed schedule rows.
67 * start is the first variable in the LP problem in the sequences that
68 * represents the schedule coefficients of this node
69 * nvar is the dimension of the domain
70 * nparam is the number of parameters or 0 if we are not constructing
71 * a parametric schedule
73 * If compressed is set, then hull represents the constraints
74 * that were used to derive the compression, while compress and
75 * decompress map the original space to the compressed space and
76 * vice versa.
78 * scc is the index of SCC (or WCC) this node belongs to
80 * "cluster" is only used inside extract_clusters and identifies
81 * the cluster of SCCs that the node belongs to.
83 * coincident contains a boolean for each of the rows of the schedule,
84 * indicating whether the corresponding scheduling dimension satisfies
85 * the coincidence constraints in the sense that the corresponding
86 * dependence distances are zero.
88 * If the schedule_treat_coalescing option is set, then
89 * "sizes" contains the sizes of the (compressed) instance set
90 * in each direction. If there is no fixed size in a given direction,
91 * then the corresponding size value is set to infinity.
92 * If the schedule_treat_coalescing option or the schedule_max_coefficient
93 * option is set, then "max" contains the maximal values for
94 * schedule coefficients of the (compressed) variables. If no bound
95 * needs to be imposed on a particular variable, then the corresponding
96 * value is negative.
98 struct isl_sched_node {
99 isl_space *space;
100 int compressed;
101 isl_set *hull;
102 isl_multi_aff *compress;
103 isl_multi_aff *decompress;
104 isl_mat *sched;
105 isl_map *sched_map;
106 int rank;
107 isl_mat *indep;
108 isl_mat *vmap;
109 int start;
110 int nvar;
111 int nparam;
113 int scc;
114 int cluster;
116 int *coincident;
118 isl_multi_val *sizes;
119 isl_vec *max;
122 static int node_has_tuples(const void *entry, const void *val)
124 struct isl_sched_node *node = (struct isl_sched_node *)entry;
125 isl_space *space = (isl_space *) val;
127 return isl_space_has_equal_tuples(node->space, space);
130 static int node_scc_exactly(struct isl_sched_node *node, int scc)
132 return node->scc == scc;
135 static int node_scc_at_most(struct isl_sched_node *node, int scc)
137 return node->scc <= scc;
140 static int node_scc_at_least(struct isl_sched_node *node, int scc)
142 return node->scc >= scc;
145 /* An edge in the dependence graph. An edge may be used to
146 * ensure validity of the generated schedule, to minimize the dependence
147 * distance or both
149 * map is the dependence relation, with i -> j in the map if j depends on i
150 * tagged_condition and tagged_validity contain the union of all tagged
151 * condition or conditional validity dependence relations that
152 * specialize the dependence relation "map"; that is,
153 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
154 * or "tagged_validity", then i -> j is an element of "map".
155 * If these fields are NULL, then they represent the empty relation.
156 * src is the source node
157 * dst is the sink node
159 * types is a bit vector containing the types of this edge.
160 * validity is set if the edge is used to ensure correctness
161 * coincidence is used to enforce zero dependence distances
162 * proximity is set if the edge is used to minimize dependence distances
163 * condition is set if the edge represents a condition
164 * for a conditional validity schedule constraint
165 * local can only be set for condition edges and indicates that
166 * the dependence distance over the edge should be zero
167 * conditional_validity is set if the edge is used to conditionally
168 * ensure correctness
170 * For validity edges, start and end mark the sequence of inequality
171 * constraints in the LP problem that encode the validity constraint
172 * corresponding to this edge.
174 * During clustering, an edge may be marked "no_merge" if it should
175 * not be used to merge clusters.
176 * The weight is also only used during clustering and it is
177 * an indication of how many schedule dimensions on either side
178 * of the schedule constraints can be aligned.
179 * If the weight is negative, then this means that this edge was postponed
180 * by has_bounded_distances or any_no_merge. The original weight can
181 * be retrieved by adding 1 + graph->max_weight, with "graph"
182 * the graph containing this edge.
184 struct isl_sched_edge {
185 isl_map *map;
186 isl_union_map *tagged_condition;
187 isl_union_map *tagged_validity;
189 struct isl_sched_node *src;
190 struct isl_sched_node *dst;
192 unsigned types;
194 int start;
195 int end;
197 int no_merge;
198 int weight;
201 /* Is "edge" marked as being of type "type"?
203 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
205 return ISL_FL_ISSET(edge->types, 1 << type);
208 /* Mark "edge" as being of type "type".
210 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
212 ISL_FL_SET(edge->types, 1 << type);
215 /* No longer mark "edge" as being of type "type"?
217 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
219 ISL_FL_CLR(edge->types, 1 << type);
222 /* Is "edge" marked as a validity edge?
224 static int is_validity(struct isl_sched_edge *edge)
226 return is_type(edge, isl_edge_validity);
229 /* Mark "edge" as a validity edge.
231 static void set_validity(struct isl_sched_edge *edge)
233 set_type(edge, isl_edge_validity);
236 /* Is "edge" marked as a proximity edge?
238 static int is_proximity(struct isl_sched_edge *edge)
240 return is_type(edge, isl_edge_proximity);
243 /* Is "edge" marked as a local edge?
245 static int is_local(struct isl_sched_edge *edge)
247 return is_type(edge, isl_edge_local);
250 /* Mark "edge" as a local edge.
252 static void set_local(struct isl_sched_edge *edge)
254 set_type(edge, isl_edge_local);
257 /* No longer mark "edge" as a local edge.
259 static void clear_local(struct isl_sched_edge *edge)
261 clear_type(edge, isl_edge_local);
264 /* Is "edge" marked as a coincidence edge?
266 static int is_coincidence(struct isl_sched_edge *edge)
268 return is_type(edge, isl_edge_coincidence);
271 /* Is "edge" marked as a condition edge?
273 static int is_condition(struct isl_sched_edge *edge)
275 return is_type(edge, isl_edge_condition);
278 /* Is "edge" marked as a conditional validity edge?
280 static int is_conditional_validity(struct isl_sched_edge *edge)
282 return is_type(edge, isl_edge_conditional_validity);
285 /* Internal information about the dependence graph used during
286 * the construction of the schedule.
288 * intra_hmap is a cache, mapping dependence relations to their dual,
289 * for dependences from a node to itself
290 * inter_hmap is a cache, mapping dependence relations to their dual,
291 * for dependences between distinct nodes
292 * if compression is involved then the key for these maps
293 * is the original, uncompressed dependence relation, while
294 * the value is the dual of the compressed dependence relation.
296 * n is the number of nodes
297 * node is the list of nodes
298 * maxvar is the maximal number of variables over all nodes
299 * max_row is the allocated number of rows in the schedule
300 * n_row is the current (maximal) number of linearly independent
301 * rows in the node schedules
302 * n_total_row is the current number of rows in the node schedules
303 * band_start is the starting row in the node schedules of the current band
304 * root is set if this graph is the original dependence graph,
305 * without any splitting
307 * sorted contains a list of node indices sorted according to the
308 * SCC to which a node belongs
310 * n_edge is the number of edges
311 * edge is the list of edges
312 * max_edge contains the maximal number of edges of each type;
313 * in particular, it contains the number of edges in the inital graph.
314 * edge_table contains pointers into the edge array, hashed on the source
315 * and sink spaces; there is one such table for each type;
316 * a given edge may be referenced from more than one table
317 * if the corresponding relation appears in more than one of the
318 * sets of dependences; however, for each type there is only
319 * a single edge between a given pair of source and sink space
320 * in the entire graph
322 * node_table contains pointers into the node array, hashed on the space tuples
324 * region contains a list of variable sequences that should be non-trivial
326 * lp contains the (I)LP problem used to obtain new schedule rows
328 * src_scc and dst_scc are the source and sink SCCs of an edge with
329 * conflicting constraints
331 * scc represents the number of components
332 * weak is set if the components are weakly connected
334 * max_weight is used during clustering and represents the maximal
335 * weight of the relevant proximity edges.
337 struct isl_sched_graph {
338 isl_map_to_basic_set *intra_hmap;
339 isl_map_to_basic_set *inter_hmap;
341 struct isl_sched_node *node;
342 int n;
343 int maxvar;
344 int max_row;
345 int n_row;
347 int *sorted;
349 int n_total_row;
350 int band_start;
352 int root;
354 struct isl_sched_edge *edge;
355 int n_edge;
356 int max_edge[isl_edge_last + 1];
357 struct isl_hash_table *edge_table[isl_edge_last + 1];
359 struct isl_hash_table *node_table;
360 struct isl_trivial_region *region;
362 isl_basic_set *lp;
364 int src_scc;
365 int dst_scc;
367 int scc;
368 int weak;
370 int max_weight;
373 /* Initialize node_table based on the list of nodes.
375 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
377 int i;
379 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
380 if (!graph->node_table)
381 return -1;
383 for (i = 0; i < graph->n; ++i) {
384 struct isl_hash_table_entry *entry;
385 uint32_t hash;
387 hash = isl_space_get_tuple_hash(graph->node[i].space);
388 entry = isl_hash_table_find(ctx, graph->node_table, hash,
389 &node_has_tuples,
390 graph->node[i].space, 1);
391 if (!entry)
392 return -1;
393 entry->data = &graph->node[i];
396 return 0;
399 /* Return a pointer to the node that lives within the given space,
400 * or NULL if there is no such node.
402 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
403 struct isl_sched_graph *graph, __isl_keep isl_space *space)
405 struct isl_hash_table_entry *entry;
406 uint32_t hash;
408 hash = isl_space_get_tuple_hash(space);
409 entry = isl_hash_table_find(ctx, graph->node_table, hash,
410 &node_has_tuples, space, 0);
412 return entry ? entry->data : NULL;
415 static int edge_has_src_and_dst(const void *entry, const void *val)
417 const struct isl_sched_edge *edge = entry;
418 const struct isl_sched_edge *temp = val;
420 return edge->src == temp->src && edge->dst == temp->dst;
423 /* Add the given edge to graph->edge_table[type].
425 static isl_stat graph_edge_table_add(isl_ctx *ctx,
426 struct isl_sched_graph *graph, enum isl_edge_type type,
427 struct isl_sched_edge *edge)
429 struct isl_hash_table_entry *entry;
430 uint32_t hash;
432 hash = isl_hash_init();
433 hash = isl_hash_builtin(hash, edge->src);
434 hash = isl_hash_builtin(hash, edge->dst);
435 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
436 &edge_has_src_and_dst, edge, 1);
437 if (!entry)
438 return isl_stat_error;
439 entry->data = edge;
441 return isl_stat_ok;
444 /* Allocate the edge_tables based on the maximal number of edges of
445 * each type.
447 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
449 int i;
451 for (i = 0; i <= isl_edge_last; ++i) {
452 graph->edge_table[i] = isl_hash_table_alloc(ctx,
453 graph->max_edge[i]);
454 if (!graph->edge_table[i])
455 return -1;
458 return 0;
461 /* If graph->edge_table[type] contains an edge from the given source
462 * to the given destination, then return the hash table entry of this edge.
463 * Otherwise, return NULL.
465 static struct isl_hash_table_entry *graph_find_edge_entry(
466 struct isl_sched_graph *graph,
467 enum isl_edge_type type,
468 struct isl_sched_node *src, struct isl_sched_node *dst)
470 isl_ctx *ctx = isl_space_get_ctx(src->space);
471 uint32_t hash;
472 struct isl_sched_edge temp = { .src = src, .dst = dst };
474 hash = isl_hash_init();
475 hash = isl_hash_builtin(hash, temp.src);
476 hash = isl_hash_builtin(hash, temp.dst);
477 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
478 &edge_has_src_and_dst, &temp, 0);
482 /* If graph->edge_table[type] contains an edge from the given source
483 * to the given destination, then return this edge.
484 * Otherwise, return NULL.
486 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
487 enum isl_edge_type type,
488 struct isl_sched_node *src, struct isl_sched_node *dst)
490 struct isl_hash_table_entry *entry;
492 entry = graph_find_edge_entry(graph, type, src, dst);
493 if (!entry)
494 return NULL;
496 return entry->data;
499 /* Check whether the dependence graph has an edge of the given type
500 * between the given two nodes.
502 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
503 enum isl_edge_type type,
504 struct isl_sched_node *src, struct isl_sched_node *dst)
506 struct isl_sched_edge *edge;
507 isl_bool empty;
509 edge = graph_find_edge(graph, type, src, dst);
510 if (!edge)
511 return 0;
513 empty = isl_map_plain_is_empty(edge->map);
514 if (empty < 0)
515 return isl_bool_error;
517 return !empty;
520 /* Look for any edge with the same src, dst and map fields as "model".
522 * Return the matching edge if one can be found.
523 * Return "model" if no matching edge is found.
524 * Return NULL on error.
526 static struct isl_sched_edge *graph_find_matching_edge(
527 struct isl_sched_graph *graph, struct isl_sched_edge *model)
529 enum isl_edge_type i;
530 struct isl_sched_edge *edge;
532 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
533 int is_equal;
535 edge = graph_find_edge(graph, i, model->src, model->dst);
536 if (!edge)
537 continue;
538 is_equal = isl_map_plain_is_equal(model->map, edge->map);
539 if (is_equal < 0)
540 return NULL;
541 if (is_equal)
542 return edge;
545 return model;
548 /* Remove the given edge from all the edge_tables that refer to it.
550 static void graph_remove_edge(struct isl_sched_graph *graph,
551 struct isl_sched_edge *edge)
553 isl_ctx *ctx = isl_map_get_ctx(edge->map);
554 enum isl_edge_type i;
556 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
557 struct isl_hash_table_entry *entry;
559 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
560 if (!entry)
561 continue;
562 if (entry->data != edge)
563 continue;
564 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
568 /* Check whether the dependence graph has any edge
569 * between the given two nodes.
571 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
572 struct isl_sched_node *src, struct isl_sched_node *dst)
574 enum isl_edge_type i;
575 isl_bool r;
577 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
578 r = graph_has_edge(graph, i, src, dst);
579 if (r < 0 || r)
580 return r;
583 return r;
586 /* Check whether the dependence graph has a validity edge
587 * between the given two nodes.
589 * Conditional validity edges are essentially validity edges that
590 * can be ignored if the corresponding condition edges are iteration private.
591 * Here, we are only checking for the presence of validity
592 * edges, so we need to consider the conditional validity edges too.
593 * In particular, this function is used during the detection
594 * of strongly connected components and we cannot ignore
595 * conditional validity edges during this detection.
597 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
598 struct isl_sched_node *src, struct isl_sched_node *dst)
600 isl_bool r;
602 r = graph_has_edge(graph, isl_edge_validity, src, dst);
603 if (r < 0 || r)
604 return r;
606 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
609 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
610 int n_node, int n_edge)
612 int i;
614 graph->n = n_node;
615 graph->n_edge = n_edge;
616 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
617 graph->sorted = isl_calloc_array(ctx, int, graph->n);
618 graph->region = isl_alloc_array(ctx,
619 struct isl_trivial_region, graph->n);
620 graph->edge = isl_calloc_array(ctx,
621 struct isl_sched_edge, graph->n_edge);
623 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
624 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
626 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
627 !graph->sorted)
628 return -1;
630 for(i = 0; i < graph->n; ++i)
631 graph->sorted[i] = i;
633 return 0;
636 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
638 int i;
640 isl_map_to_basic_set_free(graph->intra_hmap);
641 isl_map_to_basic_set_free(graph->inter_hmap);
643 if (graph->node)
644 for (i = 0; i < graph->n; ++i) {
645 isl_space_free(graph->node[i].space);
646 isl_set_free(graph->node[i].hull);
647 isl_multi_aff_free(graph->node[i].compress);
648 isl_multi_aff_free(graph->node[i].decompress);
649 isl_mat_free(graph->node[i].sched);
650 isl_map_free(graph->node[i].sched_map);
651 isl_mat_free(graph->node[i].indep);
652 isl_mat_free(graph->node[i].vmap);
653 if (graph->root)
654 free(graph->node[i].coincident);
655 isl_multi_val_free(graph->node[i].sizes);
656 isl_vec_free(graph->node[i].max);
658 free(graph->node);
659 free(graph->sorted);
660 if (graph->edge)
661 for (i = 0; i < graph->n_edge; ++i) {
662 isl_map_free(graph->edge[i].map);
663 isl_union_map_free(graph->edge[i].tagged_condition);
664 isl_union_map_free(graph->edge[i].tagged_validity);
666 free(graph->edge);
667 free(graph->region);
668 for (i = 0; i <= isl_edge_last; ++i)
669 isl_hash_table_free(ctx, graph->edge_table[i]);
670 isl_hash_table_free(ctx, graph->node_table);
671 isl_basic_set_free(graph->lp);
674 /* For each "set" on which this function is called, increment
675 * graph->n by one and update graph->maxvar.
677 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
679 struct isl_sched_graph *graph = user;
680 int nvar = isl_set_dim(set, isl_dim_set);
682 graph->n++;
683 if (nvar > graph->maxvar)
684 graph->maxvar = nvar;
686 isl_set_free(set);
688 return isl_stat_ok;
691 /* Compute the number of rows that should be allocated for the schedule.
692 * In particular, we need one row for each variable or one row
693 * for each basic map in the dependences.
694 * Note that it is practically impossible to exhaust both
695 * the number of dependences and the number of variables.
697 static isl_stat compute_max_row(struct isl_sched_graph *graph,
698 __isl_keep isl_schedule_constraints *sc)
700 int n_edge;
701 isl_stat r;
702 isl_union_set *domain;
704 graph->n = 0;
705 graph->maxvar = 0;
706 domain = isl_schedule_constraints_get_domain(sc);
707 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
708 isl_union_set_free(domain);
709 if (r < 0)
710 return isl_stat_error;
711 n_edge = isl_schedule_constraints_n_basic_map(sc);
712 if (n_edge < 0)
713 return isl_stat_error;
714 graph->max_row = n_edge + graph->maxvar;
716 return isl_stat_ok;
719 /* Does "bset" have any defining equalities for its set variables?
721 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
723 int i, n;
725 if (!bset)
726 return isl_bool_error;
728 n = isl_basic_set_dim(bset, isl_dim_set);
729 for (i = 0; i < n; ++i) {
730 isl_bool has;
732 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
733 NULL);
734 if (has < 0 || has)
735 return has;
738 return isl_bool_false;
741 /* Set the entries of node->max to the value of the schedule_max_coefficient
742 * option, if set.
744 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
746 int max;
748 max = isl_options_get_schedule_max_coefficient(ctx);
749 if (max == -1)
750 return isl_stat_ok;
752 node->max = isl_vec_alloc(ctx, node->nvar);
753 node->max = isl_vec_set_si(node->max, max);
754 if (!node->max)
755 return isl_stat_error;
757 return isl_stat_ok;
760 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
761 * option (if set) and half of the minimum of the sizes in the other
762 * dimensions. Round up when computing the half such that
763 * if the minimum of the sizes is one, half of the size is taken to be one
764 * rather than zero.
765 * If the global minimum is unbounded (i.e., if both
766 * the schedule_max_coefficient is not set and the sizes in the other
767 * dimensions are unbounded), then store a negative value.
768 * If the schedule coefficient is close to the size of the instance set
769 * in another dimension, then the schedule may represent a loop
770 * coalescing transformation (especially if the coefficient
771 * in that other dimension is one). Forcing the coefficient to be
772 * smaller than or equal to half the minimal size should avoid this
773 * situation.
775 static isl_stat compute_max_coefficient(isl_ctx *ctx,
776 struct isl_sched_node *node)
778 int max;
779 int i, j;
780 isl_vec *v;
782 max = isl_options_get_schedule_max_coefficient(ctx);
783 v = isl_vec_alloc(ctx, node->nvar);
784 if (!v)
785 return isl_stat_error;
787 for (i = 0; i < node->nvar; ++i) {
788 isl_int_set_si(v->el[i], max);
789 isl_int_mul_si(v->el[i], v->el[i], 2);
792 for (i = 0; i < node->nvar; ++i) {
793 isl_val *size;
795 size = isl_multi_val_get_val(node->sizes, i);
796 if (!size)
797 goto error;
798 if (!isl_val_is_int(size)) {
799 isl_val_free(size);
800 continue;
802 for (j = 0; j < node->nvar; ++j) {
803 if (j == i)
804 continue;
805 if (isl_int_is_neg(v->el[j]) ||
806 isl_int_gt(v->el[j], size->n))
807 isl_int_set(v->el[j], size->n);
809 isl_val_free(size);
812 for (i = 0; i < node->nvar; ++i)
813 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
815 node->max = v;
816 return isl_stat_ok;
817 error:
818 isl_vec_free(v);
819 return isl_stat_error;
822 /* Compute and return the size of "set" in dimension "dim".
823 * The size is taken to be the difference in values for that variable
824 * for fixed values of the other variables.
825 * In particular, the variable is first isolated from the other variables
826 * in the range of a map
828 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
830 * and then duplicated
832 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
834 * The shared variables are then projected out and the maximal value
835 * of i_dim' - i_dim is computed.
837 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
839 isl_map *map;
840 isl_local_space *ls;
841 isl_aff *obj;
842 isl_val *v;
844 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
845 map = isl_map_project_out(map, isl_dim_in, dim, 1);
846 map = isl_map_range_product(map, isl_map_copy(map));
847 map = isl_set_unwrap(isl_map_range(map));
848 set = isl_map_deltas(map);
849 ls = isl_local_space_from_space(isl_set_get_space(set));
850 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
851 v = isl_set_max_val(set, obj);
852 isl_aff_free(obj);
853 isl_set_free(set);
855 return v;
858 /* Compute the size of the instance set "set" of "node", after compression,
859 * as well as bounds on the corresponding coefficients, if needed.
861 * The sizes are needed when the schedule_treat_coalescing option is set.
862 * The bounds are needed when the schedule_treat_coalescing option or
863 * the schedule_max_coefficient option is set.
865 * If the schedule_treat_coalescing option is not set, then at most
866 * the bounds need to be set and this is done in set_max_coefficient.
867 * Otherwise, compress the domain if needed, compute the size
868 * in each direction and store the results in node->size.
869 * Finally, set the bounds on the coefficients based on the sizes
870 * and the schedule_max_coefficient option in compute_max_coefficient.
872 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
873 __isl_take isl_set *set)
875 int j, n;
876 isl_multi_val *mv;
878 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
879 isl_set_free(set);
880 return set_max_coefficient(ctx, node);
883 if (node->compressed)
884 set = isl_set_preimage_multi_aff(set,
885 isl_multi_aff_copy(node->decompress));
886 mv = isl_multi_val_zero(isl_set_get_space(set));
887 n = isl_set_dim(set, isl_dim_set);
888 for (j = 0; j < n; ++j) {
889 isl_val *v;
891 v = compute_size(isl_set_copy(set), j);
892 mv = isl_multi_val_set_val(mv, j, v);
894 node->sizes = mv;
895 isl_set_free(set);
896 if (!node->sizes)
897 return isl_stat_error;
898 return compute_max_coefficient(ctx, node);
901 /* Add a new node to the graph representing the given instance set.
902 * "nvar" is the (possibly compressed) number of variables and
903 * may be smaller than then number of set variables in "set"
904 * if "compressed" is set.
905 * If "compressed" is set, then "hull" represents the constraints
906 * that were used to derive the compression, while "compress" and
907 * "decompress" map the original space to the compressed space and
908 * vice versa.
909 * If "compressed" is not set, then "hull", "compress" and "decompress"
910 * should be NULL.
912 * Compute the size of the instance set and bounds on the coefficients,
913 * if needed.
915 static isl_stat add_node(struct isl_sched_graph *graph,
916 __isl_take isl_set *set, int nvar, int compressed,
917 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
918 __isl_take isl_multi_aff *decompress)
920 int nparam;
921 isl_ctx *ctx;
922 isl_mat *sched;
923 isl_space *space;
924 int *coincident;
925 struct isl_sched_node *node;
927 if (!set)
928 return isl_stat_error;
930 ctx = isl_set_get_ctx(set);
931 nparam = isl_set_dim(set, isl_dim_param);
932 if (!ctx->opt->schedule_parametric)
933 nparam = 0;
934 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
935 node = &graph->node[graph->n];
936 graph->n++;
937 space = isl_set_get_space(set);
938 node->space = space;
939 node->nvar = nvar;
940 node->nparam = nparam;
941 node->sched = sched;
942 node->sched_map = NULL;
943 coincident = isl_calloc_array(ctx, int, graph->max_row);
944 node->coincident = coincident;
945 node->compressed = compressed;
946 node->hull = hull;
947 node->compress = compress;
948 node->decompress = decompress;
949 if (compute_sizes_and_max(ctx, node, set) < 0)
950 return isl_stat_error;
952 if (!space || !sched || (graph->max_row && !coincident))
953 return isl_stat_error;
954 if (compressed && (!hull || !compress || !decompress))
955 return isl_stat_error;
957 return isl_stat_ok;
960 /* Construct an identifier for node "node", which will represent "set".
961 * The name of the identifier is either "compressed" or
962 * "compressed_<name>", with <name> the name of the space of "set".
963 * The user pointer of the identifier points to "node".
965 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
966 struct isl_sched_node *node)
968 isl_bool has_name;
969 isl_ctx *ctx;
970 isl_id *id;
971 isl_printer *p;
972 const char *name;
973 char *id_name;
975 has_name = isl_set_has_tuple_name(set);
976 if (has_name < 0)
977 return NULL;
979 ctx = isl_set_get_ctx(set);
980 if (!has_name)
981 return isl_id_alloc(ctx, "compressed", node);
983 p = isl_printer_to_str(ctx);
984 name = isl_set_get_tuple_name(set);
985 p = isl_printer_print_str(p, "compressed_");
986 p = isl_printer_print_str(p, name);
987 id_name = isl_printer_get_str(p);
988 isl_printer_free(p);
990 id = isl_id_alloc(ctx, id_name, node);
991 free(id_name);
993 return id;
996 /* Add a new node to the graph representing the given set.
998 * If any of the set variables is defined by an equality, then
999 * we perform variable compression such that we can perform
1000 * the scheduling on the compressed domain.
1001 * In this case, an identifier is used that references the new node
1002 * such that each compressed space is unique and
1003 * such that the node can be recovered from the compressed space.
1005 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1007 int nvar;
1008 isl_bool has_equality;
1009 isl_id *id;
1010 isl_basic_set *hull;
1011 isl_set *hull_set;
1012 isl_morph *morph;
1013 isl_multi_aff *compress, *decompress;
1014 struct isl_sched_graph *graph = user;
1016 hull = isl_set_affine_hull(isl_set_copy(set));
1017 hull = isl_basic_set_remove_divs(hull);
1018 nvar = isl_set_dim(set, isl_dim_set);
1019 has_equality = has_any_defining_equality(hull);
1021 if (has_equality < 0)
1022 goto error;
1023 if (!has_equality) {
1024 isl_basic_set_free(hull);
1025 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1028 id = construct_compressed_id(set, &graph->node[graph->n]);
1029 morph = isl_basic_set_variable_compression_with_id(hull,
1030 isl_dim_set, id);
1031 isl_id_free(id);
1032 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1033 compress = isl_morph_get_var_multi_aff(morph);
1034 morph = isl_morph_inverse(morph);
1035 decompress = isl_morph_get_var_multi_aff(morph);
1036 isl_morph_free(morph);
1038 hull_set = isl_set_from_basic_set(hull);
1039 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1040 error:
1041 isl_basic_set_free(hull);
1042 isl_set_free(set);
1043 return isl_stat_error;
1046 struct isl_extract_edge_data {
1047 enum isl_edge_type type;
1048 struct isl_sched_graph *graph;
1051 /* Merge edge2 into edge1, freeing the contents of edge2.
1052 * Return 0 on success and -1 on failure.
1054 * edge1 and edge2 are assumed to have the same value for the map field.
1056 static int merge_edge(struct isl_sched_edge *edge1,
1057 struct isl_sched_edge *edge2)
1059 edge1->types |= edge2->types;
1060 isl_map_free(edge2->map);
1062 if (is_condition(edge2)) {
1063 if (!edge1->tagged_condition)
1064 edge1->tagged_condition = edge2->tagged_condition;
1065 else
1066 edge1->tagged_condition =
1067 isl_union_map_union(edge1->tagged_condition,
1068 edge2->tagged_condition);
1071 if (is_conditional_validity(edge2)) {
1072 if (!edge1->tagged_validity)
1073 edge1->tagged_validity = edge2->tagged_validity;
1074 else
1075 edge1->tagged_validity =
1076 isl_union_map_union(edge1->tagged_validity,
1077 edge2->tagged_validity);
1080 if (is_condition(edge2) && !edge1->tagged_condition)
1081 return -1;
1082 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1083 return -1;
1085 return 0;
1088 /* Insert dummy tags in domain and range of "map".
1090 * In particular, if "map" is of the form
1092 * A -> B
1094 * then return
1096 * [A -> dummy_tag] -> [B -> dummy_tag]
1098 * where the dummy_tags are identical and equal to any dummy tags
1099 * introduced by any other call to this function.
1101 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1103 static char dummy;
1104 isl_ctx *ctx;
1105 isl_id *id;
1106 isl_space *space;
1107 isl_set *domain, *range;
1109 ctx = isl_map_get_ctx(map);
1111 id = isl_id_alloc(ctx, NULL, &dummy);
1112 space = isl_space_params(isl_map_get_space(map));
1113 space = isl_space_set_from_params(space);
1114 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1115 space = isl_space_map_from_set(space);
1117 domain = isl_map_wrap(map);
1118 range = isl_map_wrap(isl_map_universe(space));
1119 map = isl_map_from_domain_and_range(domain, range);
1120 map = isl_map_zip(map);
1122 return map;
1125 /* Given that at least one of "src" or "dst" is compressed, return
1126 * a map between the spaces of these nodes restricted to the affine
1127 * hull that was used in the compression.
1129 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1130 struct isl_sched_node *dst)
1132 isl_set *dom, *ran;
1134 if (src->compressed)
1135 dom = isl_set_copy(src->hull);
1136 else
1137 dom = isl_set_universe(isl_space_copy(src->space));
1138 if (dst->compressed)
1139 ran = isl_set_copy(dst->hull);
1140 else
1141 ran = isl_set_universe(isl_space_copy(dst->space));
1143 return isl_map_from_domain_and_range(dom, ran);
1146 /* Intersect the domains of the nested relations in domain and range
1147 * of "tagged" with "map".
1149 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1150 __isl_keep isl_map *map)
1152 isl_set *set;
1154 tagged = isl_map_zip(tagged);
1155 set = isl_map_wrap(isl_map_copy(map));
1156 tagged = isl_map_intersect_domain(tagged, set);
1157 tagged = isl_map_zip(tagged);
1158 return tagged;
1161 /* Return a pointer to the node that lives in the domain space of "map"
1162 * or NULL if there is no such node.
1164 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1165 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1167 struct isl_sched_node *node;
1168 isl_space *space;
1170 space = isl_space_domain(isl_map_get_space(map));
1171 node = graph_find_node(ctx, graph, space);
1172 isl_space_free(space);
1174 return node;
1177 /* Return a pointer to the node that lives in the range space of "map"
1178 * or NULL if there is no such node.
1180 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1181 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1183 struct isl_sched_node *node;
1184 isl_space *space;
1186 space = isl_space_range(isl_map_get_space(map));
1187 node = graph_find_node(ctx, graph, space);
1188 isl_space_free(space);
1190 return node;
1193 /* Add a new edge to the graph based on the given map
1194 * and add it to data->graph->edge_table[data->type].
1195 * If a dependence relation of a given type happens to be identical
1196 * to one of the dependence relations of a type that was added before,
1197 * then we don't create a new edge, but instead mark the original edge
1198 * as also representing a dependence of the current type.
1200 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1201 * may be specified as "tagged" dependence relations. That is, "map"
1202 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1203 * the dependence on iterations and a and b are tags.
1204 * edge->map is set to the relation containing the elements i -> j,
1205 * while edge->tagged_condition and edge->tagged_validity contain
1206 * the union of all the "map" relations
1207 * for which extract_edge is called that result in the same edge->map.
1209 * If the source or the destination node is compressed, then
1210 * intersect both "map" and "tagged" with the constraints that
1211 * were used to construct the compression.
1212 * This ensures that there are no schedule constraints defined
1213 * outside of these domains, while the scheduler no longer has
1214 * any control over those outside parts.
1216 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1218 isl_ctx *ctx = isl_map_get_ctx(map);
1219 struct isl_extract_edge_data *data = user;
1220 struct isl_sched_graph *graph = data->graph;
1221 struct isl_sched_node *src, *dst;
1222 struct isl_sched_edge *edge;
1223 isl_map *tagged = NULL;
1225 if (data->type == isl_edge_condition ||
1226 data->type == isl_edge_conditional_validity) {
1227 if (isl_map_can_zip(map)) {
1228 tagged = isl_map_copy(map);
1229 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1230 } else {
1231 tagged = insert_dummy_tags(isl_map_copy(map));
1235 src = find_domain_node(ctx, graph, map);
1236 dst = find_range_node(ctx, graph, map);
1238 if (!src || !dst) {
1239 isl_map_free(map);
1240 isl_map_free(tagged);
1241 return isl_stat_ok;
1244 if (src->compressed || dst->compressed) {
1245 isl_map *hull;
1246 hull = extract_hull(src, dst);
1247 if (tagged)
1248 tagged = map_intersect_domains(tagged, hull);
1249 map = isl_map_intersect(map, hull);
1252 graph->edge[graph->n_edge].src = src;
1253 graph->edge[graph->n_edge].dst = dst;
1254 graph->edge[graph->n_edge].map = map;
1255 graph->edge[graph->n_edge].types = 0;
1256 graph->edge[graph->n_edge].tagged_condition = NULL;
1257 graph->edge[graph->n_edge].tagged_validity = NULL;
1258 set_type(&graph->edge[graph->n_edge], data->type);
1259 if (data->type == isl_edge_condition)
1260 graph->edge[graph->n_edge].tagged_condition =
1261 isl_union_map_from_map(tagged);
1262 if (data->type == isl_edge_conditional_validity)
1263 graph->edge[graph->n_edge].tagged_validity =
1264 isl_union_map_from_map(tagged);
1266 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1267 if (!edge) {
1268 graph->n_edge++;
1269 return isl_stat_error;
1271 if (edge == &graph->edge[graph->n_edge])
1272 return graph_edge_table_add(ctx, graph, data->type,
1273 &graph->edge[graph->n_edge++]);
1275 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1276 return -1;
1278 return graph_edge_table_add(ctx, graph, data->type, edge);
1281 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1283 * The context is included in the domain before the nodes of
1284 * the graphs are extracted in order to be able to exploit
1285 * any possible additional equalities.
1286 * Note that this intersection is only performed locally here.
1288 static isl_stat graph_init(struct isl_sched_graph *graph,
1289 __isl_keep isl_schedule_constraints *sc)
1291 isl_ctx *ctx;
1292 isl_union_set *domain;
1293 isl_union_map *c;
1294 struct isl_extract_edge_data data;
1295 enum isl_edge_type i;
1296 isl_stat r;
1298 if (!sc)
1299 return isl_stat_error;
1301 ctx = isl_schedule_constraints_get_ctx(sc);
1303 domain = isl_schedule_constraints_get_domain(sc);
1304 graph->n = isl_union_set_n_set(domain);
1305 isl_union_set_free(domain);
1307 if (graph_alloc(ctx, graph, graph->n,
1308 isl_schedule_constraints_n_map(sc)) < 0)
1309 return isl_stat_error;
1311 if (compute_max_row(graph, sc) < 0)
1312 return isl_stat_error;
1313 graph->root = 1;
1314 graph->n = 0;
1315 domain = isl_schedule_constraints_get_domain(sc);
1316 domain = isl_union_set_intersect_params(domain,
1317 isl_schedule_constraints_get_context(sc));
1318 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1319 isl_union_set_free(domain);
1320 if (r < 0)
1321 return isl_stat_error;
1322 if (graph_init_table(ctx, graph) < 0)
1323 return isl_stat_error;
1324 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1325 c = isl_schedule_constraints_get(sc, i);
1326 graph->max_edge[i] = isl_union_map_n_map(c);
1327 isl_union_map_free(c);
1328 if (!c)
1329 return isl_stat_error;
1331 if (graph_init_edge_tables(ctx, graph) < 0)
1332 return isl_stat_error;
1333 graph->n_edge = 0;
1334 data.graph = graph;
1335 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1336 isl_stat r;
1338 data.type = i;
1339 c = isl_schedule_constraints_get(sc, i);
1340 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1341 isl_union_map_free(c);
1342 if (r < 0)
1343 return isl_stat_error;
1346 return isl_stat_ok;
1349 /* Check whether there is any dependence from node[j] to node[i]
1350 * or from node[i] to node[j].
1352 static isl_bool node_follows_weak(int i, int j, void *user)
1354 isl_bool f;
1355 struct isl_sched_graph *graph = user;
1357 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1358 if (f < 0 || f)
1359 return f;
1360 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1363 /* Check whether there is a (conditional) validity dependence from node[j]
1364 * to node[i], forcing node[i] to follow node[j].
1366 static isl_bool node_follows_strong(int i, int j, void *user)
1368 struct isl_sched_graph *graph = user;
1370 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1373 /* Use Tarjan's algorithm for computing the strongly connected components
1374 * in the dependence graph only considering those edges defined by "follows".
1376 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1377 isl_bool (*follows)(int i, int j, void *user))
1379 int i, n;
1380 struct isl_tarjan_graph *g = NULL;
1382 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1383 if (!g)
1384 return -1;
1386 graph->scc = 0;
1387 i = 0;
1388 n = graph->n;
1389 while (n) {
1390 while (g->order[i] != -1) {
1391 graph->node[g->order[i]].scc = graph->scc;
1392 --n;
1393 ++i;
1395 ++i;
1396 graph->scc++;
1399 isl_tarjan_graph_free(g);
1401 return 0;
1404 /* Apply Tarjan's algorithm to detect the strongly connected components
1405 * in the dependence graph.
1406 * Only consider the (conditional) validity dependences and clear "weak".
1408 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1410 graph->weak = 0;
1411 return detect_ccs(ctx, graph, &node_follows_strong);
1414 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1415 * in the dependence graph.
1416 * Consider all dependences and set "weak".
1418 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1420 graph->weak = 1;
1421 return detect_ccs(ctx, graph, &node_follows_weak);
1424 static int cmp_scc(const void *a, const void *b, void *data)
1426 struct isl_sched_graph *graph = data;
1427 const int *i1 = a;
1428 const int *i2 = b;
1430 return graph->node[*i1].scc - graph->node[*i2].scc;
1433 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1435 static int sort_sccs(struct isl_sched_graph *graph)
1437 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1440 /* Given a dependence relation R from "node" to itself,
1441 * construct the set of coefficients of valid constraints for elements
1442 * in that dependence relation.
1443 * In particular, the result contains tuples of coefficients
1444 * c_0, c_n, c_x such that
1446 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1448 * or, equivalently,
1450 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1452 * We choose here to compute the dual of delta R.
1453 * Alternatively, we could have computed the dual of R, resulting
1454 * in a set of tuples c_0, c_n, c_x, c_y, and then
1455 * plugged in (c_0, c_n, c_x, -c_x).
1457 * If "node" has been compressed, then the dependence relation
1458 * is also compressed before the set of coefficients is computed.
1460 static __isl_give isl_basic_set *intra_coefficients(
1461 struct isl_sched_graph *graph, struct isl_sched_node *node,
1462 __isl_take isl_map *map)
1464 isl_set *delta;
1465 isl_map *key;
1466 isl_basic_set *coef;
1467 isl_maybe_isl_basic_set m;
1469 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1470 if (m.valid < 0 || m.valid) {
1471 isl_map_free(map);
1472 return m.value;
1475 key = isl_map_copy(map);
1476 if (node->compressed) {
1477 map = isl_map_preimage_domain_multi_aff(map,
1478 isl_multi_aff_copy(node->decompress));
1479 map = isl_map_preimage_range_multi_aff(map,
1480 isl_multi_aff_copy(node->decompress));
1482 delta = isl_set_remove_divs(isl_map_deltas(map));
1483 coef = isl_set_coefficients(delta);
1484 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1485 isl_basic_set_copy(coef));
1487 return coef;
1490 /* Given a dependence relation R, construct the set of coefficients
1491 * of valid constraints for elements in that dependence relation.
1492 * In particular, the result contains tuples of coefficients
1493 * c_0, c_n, c_x, c_y such that
1495 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1497 * If the source or destination nodes of "edge" have been compressed,
1498 * then the dependence relation is also compressed before
1499 * the set of coefficients is computed.
1501 static __isl_give isl_basic_set *inter_coefficients(
1502 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1503 __isl_take isl_map *map)
1505 isl_set *set;
1506 isl_map *key;
1507 isl_basic_set *coef;
1508 isl_maybe_isl_basic_set m;
1510 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1511 if (m.valid < 0 || m.valid) {
1512 isl_map_free(map);
1513 return m.value;
1516 key = isl_map_copy(map);
1517 if (edge->src->compressed)
1518 map = isl_map_preimage_domain_multi_aff(map,
1519 isl_multi_aff_copy(edge->src->decompress));
1520 if (edge->dst->compressed)
1521 map = isl_map_preimage_range_multi_aff(map,
1522 isl_multi_aff_copy(edge->dst->decompress));
1523 set = isl_map_wrap(isl_map_remove_divs(map));
1524 coef = isl_set_coefficients(set);
1525 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1526 isl_basic_set_copy(coef));
1528 return coef;
1531 /* Return the position of the coefficients of the variables in
1532 * the coefficients constraints "coef".
1534 * The space of "coef" is of the form
1536 * { coefficients[[cst, params] -> S] }
1538 * Return the position of S.
1540 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1542 int offset;
1543 isl_space *space;
1545 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1546 offset = isl_space_dim(space, isl_dim_in);
1547 isl_space_free(space);
1549 return offset;
1552 /* Return the offset of the coefficient of the constant term of "node"
1553 * within the (I)LP.
1555 * Within each node, the coefficients have the following order:
1556 * - positive and negative parts of c_i_x
1557 * - c_i_n (if parametric)
1558 * - c_i_0
1560 static int node_cst_coef_offset(struct isl_sched_node *node)
1562 return node->start + 2 * node->nvar + node->nparam;
1565 /* Return the offset of the coefficients of the parameters of "node"
1566 * within the (I)LP.
1568 * Within each node, the coefficients have the following order:
1569 * - positive and negative parts of c_i_x
1570 * - c_i_n (if parametric)
1571 * - c_i_0
1573 static int node_par_coef_offset(struct isl_sched_node *node)
1575 return node->start + 2 * node->nvar;
1578 /* Return the offset of the coefficients of the variables of "node"
1579 * within the (I)LP.
1581 * Within each node, the coefficients have the following order:
1582 * - positive and negative parts of c_i_x
1583 * - c_i_n (if parametric)
1584 * - c_i_0
1586 static int node_var_coef_offset(struct isl_sched_node *node)
1588 return node->start;
1591 /* Return the position of the pair of variables encoding
1592 * coefficient "i" of "node".
1594 * The order of these variable pairs is the opposite of
1595 * that of the coefficients, with 2 variables per coefficient.
1597 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1599 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1602 /* Construct an isl_dim_map for mapping constraints on coefficients
1603 * for "node" to the corresponding positions in graph->lp.
1604 * "offset" is the offset of the coefficients for the variables
1605 * in the input constraints.
1606 * "s" is the sign of the mapping.
1608 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1609 * The mapping produced by this function essentially plugs in
1610 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1611 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1612 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1613 * Furthermore, the order of these pairs is the opposite of that
1614 * of the corresponding coefficients.
1616 * The caller can extend the mapping to also map the other coefficients
1617 * (and therefore not plug in 0).
1619 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1620 struct isl_sched_graph *graph, struct isl_sched_node *node,
1621 int offset, int s)
1623 int pos;
1624 unsigned total;
1625 isl_dim_map *dim_map;
1627 if (!node)
1628 return NULL;
1630 total = isl_basic_set_total_dim(graph->lp);
1631 pos = node_var_coef_pos(node, 0);
1632 dim_map = isl_dim_map_alloc(ctx, total);
1633 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1634 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1636 return dim_map;
1639 /* Construct an isl_dim_map for mapping constraints on coefficients
1640 * for "src" (node i) and "dst" (node j) to the corresponding positions
1641 * in graph->lp.
1642 * "offset" is the offset of the coefficients for the variables of "src"
1643 * in the input constraints.
1644 * "s" is the sign of the mapping.
1646 * The input constraints are given in terms of the coefficients
1647 * (c_0, c_n, c_x, c_y).
1648 * The mapping produced by this function essentially plugs in
1649 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1650 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1651 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1652 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1653 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1654 * Furthermore, the order of these pairs is the opposite of that
1655 * of the corresponding coefficients.
1657 * The caller can further extend the mapping.
1659 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1660 struct isl_sched_graph *graph, struct isl_sched_node *src,
1661 struct isl_sched_node *dst, int offset, int s)
1663 int pos;
1664 unsigned total;
1665 isl_dim_map *dim_map;
1667 if (!src || !dst)
1668 return NULL;
1670 total = isl_basic_set_total_dim(graph->lp);
1671 dim_map = isl_dim_map_alloc(ctx, total);
1673 pos = node_cst_coef_offset(dst);
1674 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1675 pos = node_par_coef_offset(dst);
1676 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1677 pos = node_var_coef_pos(dst, 0);
1678 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1679 dst->nvar, -s);
1680 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1681 dst->nvar, s);
1683 pos = node_cst_coef_offset(src);
1684 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1685 pos = node_par_coef_offset(src);
1686 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1687 pos = node_var_coef_pos(src, 0);
1688 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1689 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1691 return dim_map;
1694 /* Add the constraints from "src" to "dst" using "dim_map",
1695 * after making sure there is enough room in "dst" for the extra constraints.
1697 static __isl_give isl_basic_set *add_constraints_dim_map(
1698 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1699 __isl_take isl_dim_map *dim_map)
1701 int n_eq, n_ineq;
1703 n_eq = isl_basic_set_n_equality(src);
1704 n_ineq = isl_basic_set_n_inequality(src);
1705 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1706 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1707 return dst;
1710 /* Add constraints to graph->lp that force validity for the given
1711 * dependence from a node i to itself.
1712 * That is, add constraints that enforce
1714 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1715 * = c_i_x (y - x) >= 0
1717 * for each (x,y) in R.
1718 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1719 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1720 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1721 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1723 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1724 struct isl_sched_edge *edge)
1726 int offset;
1727 isl_map *map = isl_map_copy(edge->map);
1728 isl_ctx *ctx = isl_map_get_ctx(map);
1729 isl_dim_map *dim_map;
1730 isl_basic_set *coef;
1731 struct isl_sched_node *node = edge->src;
1733 coef = intra_coefficients(graph, node, map);
1735 offset = coef_var_offset(coef);
1737 if (!coef)
1738 return isl_stat_error;
1740 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1741 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1743 return isl_stat_ok;
1746 /* Add constraints to graph->lp that force validity for the given
1747 * dependence from node i to node j.
1748 * That is, add constraints that enforce
1750 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1752 * for each (x,y) in R.
1753 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1754 * of valid constraints for R and then plug in
1755 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1756 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1757 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1759 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1760 struct isl_sched_edge *edge)
1762 int offset;
1763 isl_map *map;
1764 isl_ctx *ctx;
1765 isl_dim_map *dim_map;
1766 isl_basic_set *coef;
1767 struct isl_sched_node *src = edge->src;
1768 struct isl_sched_node *dst = edge->dst;
1770 if (!graph->lp)
1771 return isl_stat_error;
1773 map = isl_map_copy(edge->map);
1774 ctx = isl_map_get_ctx(map);
1775 coef = inter_coefficients(graph, edge, map);
1777 offset = coef_var_offset(coef);
1779 if (!coef)
1780 return isl_stat_error;
1782 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1784 edge->start = graph->lp->n_ineq;
1785 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1786 if (!graph->lp)
1787 return isl_stat_error;
1788 edge->end = graph->lp->n_ineq;
1790 return isl_stat_ok;
1793 /* Add constraints to graph->lp that bound the dependence distance for the given
1794 * dependence from a node i to itself.
1795 * If s = 1, we add the constraint
1797 * c_i_x (y - x) <= m_0 + m_n n
1799 * or
1801 * -c_i_x (y - x) + m_0 + m_n n >= 0
1803 * for each (x,y) in R.
1804 * If s = -1, we add the constraint
1806 * -c_i_x (y - x) <= m_0 + m_n n
1808 * or
1810 * c_i_x (y - x) + m_0 + m_n n >= 0
1812 * for each (x,y) in R.
1813 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1814 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1815 * with each coefficient (except m_0) represented as a pair of non-negative
1816 * coefficients.
1819 * If "local" is set, then we add constraints
1821 * c_i_x (y - x) <= 0
1823 * or
1825 * -c_i_x (y - x) <= 0
1827 * instead, forcing the dependence distance to be (less than or) equal to 0.
1828 * That is, we plug in (0, 0, -s * c_i_x),
1829 * Note that dependences marked local are treated as validity constraints
1830 * by add_all_validity_constraints and therefore also have
1831 * their distances bounded by 0 from below.
1833 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1834 struct isl_sched_edge *edge, int s, int local)
1836 int offset;
1837 unsigned nparam;
1838 isl_map *map = isl_map_copy(edge->map);
1839 isl_ctx *ctx = isl_map_get_ctx(map);
1840 isl_dim_map *dim_map;
1841 isl_basic_set *coef;
1842 struct isl_sched_node *node = edge->src;
1844 coef = intra_coefficients(graph, node, map);
1846 offset = coef_var_offset(coef);
1848 if (!coef)
1849 return isl_stat_error;
1851 nparam = isl_space_dim(node->space, isl_dim_param);
1852 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1854 if (!local) {
1855 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1856 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1857 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1859 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1861 return isl_stat_ok;
1864 /* Add constraints to graph->lp that bound the dependence distance for the given
1865 * dependence from node i to node j.
1866 * If s = 1, we add the constraint
1868 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1869 * <= m_0 + m_n n
1871 * or
1873 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1874 * m_0 + m_n n >= 0
1876 * for each (x,y) in R.
1877 * If s = -1, we add the constraint
1879 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1880 * <= m_0 + m_n n
1882 * or
1884 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1885 * m_0 + m_n n >= 0
1887 * for each (x,y) in R.
1888 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1889 * of valid constraints for R and then plug in
1890 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1891 * s*c_i_x, -s*c_j_x)
1892 * with each coefficient (except m_0, c_*_0 and c_*_n)
1893 * represented as a pair of non-negative coefficients.
1896 * If "local" is set (and s = 1), then we add constraints
1898 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1900 * or
1902 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1904 * instead, forcing the dependence distance to be (less than or) equal to 0.
1905 * That is, we plug in
1906 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1907 * Note that dependences marked local are treated as validity constraints
1908 * by add_all_validity_constraints and therefore also have
1909 * their distances bounded by 0 from below.
1911 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1912 struct isl_sched_edge *edge, int s, int local)
1914 int offset;
1915 unsigned nparam;
1916 isl_map *map = isl_map_copy(edge->map);
1917 isl_ctx *ctx = isl_map_get_ctx(map);
1918 isl_dim_map *dim_map;
1919 isl_basic_set *coef;
1920 struct isl_sched_node *src = edge->src;
1921 struct isl_sched_node *dst = edge->dst;
1923 coef = inter_coefficients(graph, edge, map);
1925 offset = coef_var_offset(coef);
1927 if (!coef)
1928 return isl_stat_error;
1930 nparam = isl_space_dim(src->space, isl_dim_param);
1931 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1933 if (!local) {
1934 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1935 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1936 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1939 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1941 return isl_stat_ok;
1944 /* Should the distance over "edge" be forced to zero?
1945 * That is, is it marked as a local edge?
1946 * If "use_coincidence" is set, then coincidence edges are treated
1947 * as local edges.
1949 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
1951 return is_local(edge) || (use_coincidence && is_coincidence(edge));
1954 /* Add all validity constraints to graph->lp.
1956 * An edge that is forced to be local needs to have its dependence
1957 * distances equal to zero. We take care of bounding them by 0 from below
1958 * here. add_all_proximity_constraints takes care of bounding them by 0
1959 * from above.
1961 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1962 * Otherwise, we ignore them.
1964 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1965 int use_coincidence)
1967 int i;
1969 for (i = 0; i < graph->n_edge; ++i) {
1970 struct isl_sched_edge *edge = &graph->edge[i];
1971 int zero;
1973 zero = force_zero(edge, use_coincidence);
1974 if (!is_validity(edge) && !zero)
1975 continue;
1976 if (edge->src != edge->dst)
1977 continue;
1978 if (add_intra_validity_constraints(graph, edge) < 0)
1979 return -1;
1982 for (i = 0; i < graph->n_edge; ++i) {
1983 struct isl_sched_edge *edge = &graph->edge[i];
1984 int zero;
1986 zero = force_zero(edge, use_coincidence);
1987 if (!is_validity(edge) && !zero)
1988 continue;
1989 if (edge->src == edge->dst)
1990 continue;
1991 if (add_inter_validity_constraints(graph, edge) < 0)
1992 return -1;
1995 return 0;
1998 /* Add constraints to graph->lp that bound the dependence distance
1999 * for all dependence relations.
2000 * If a given proximity dependence is identical to a validity
2001 * dependence, then the dependence distance is already bounded
2002 * from below (by zero), so we only need to bound the distance
2003 * from above. (This includes the case of "local" dependences
2004 * which are treated as validity dependence by add_all_validity_constraints.)
2005 * Otherwise, we need to bound the distance both from above and from below.
2007 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2008 * Otherwise, we ignore them.
2010 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2011 int use_coincidence)
2013 int i;
2015 for (i = 0; i < graph->n_edge; ++i) {
2016 struct isl_sched_edge *edge = &graph->edge[i];
2017 int zero;
2019 zero = force_zero(edge, use_coincidence);
2020 if (!is_proximity(edge) && !zero)
2021 continue;
2022 if (edge->src == edge->dst &&
2023 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2024 return -1;
2025 if (edge->src != edge->dst &&
2026 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2027 return -1;
2028 if (is_validity(edge) || zero)
2029 continue;
2030 if (edge->src == edge->dst &&
2031 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2032 return -1;
2033 if (edge->src != edge->dst &&
2034 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2035 return -1;
2038 return 0;
2041 /* Normalize the rows of "indep" such that all rows are lexicographically
2042 * positive and such that each row contains as many final zeros as possible,
2043 * given the choice for the previous rows.
2044 * Do this by performing elementary row operations.
2046 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2048 indep = isl_mat_reverse_gauss(indep);
2049 indep = isl_mat_lexnonneg_rows(indep);
2050 return indep;
2053 /* Compute a basis for the rows in the linear part of the schedule
2054 * and extend this basis to a full basis. The remaining rows
2055 * can then be used to force linear independence from the rows
2056 * in the schedule.
2058 * In particular, given the schedule rows S, we compute
2060 * S = H Q
2061 * S U = H
2063 * with H the Hermite normal form of S. That is, all but the
2064 * first rank columns of H are zero and so each row in S is
2065 * a linear combination of the first rank rows of Q.
2066 * The matrix Q can be used as a variable transformation
2067 * that isolates the directions of S in the first rank rows.
2068 * Transposing S U = H yields
2070 * U^T S^T = H^T
2072 * with all but the first rank rows of H^T zero.
2073 * The last rows of U^T are therefore linear combinations
2074 * of schedule coefficients that are all zero on schedule
2075 * coefficients that are linearly dependent on the rows of S.
2076 * At least one of these combinations is non-zero on
2077 * linearly independent schedule coefficients.
2078 * The rows are normalized to involve as few of the last
2079 * coefficients as possible and to have a positive initial value.
2081 static int node_update_vmap(struct isl_sched_node *node)
2083 isl_mat *H, *U, *Q;
2084 int n_row = isl_mat_rows(node->sched);
2086 H = isl_mat_sub_alloc(node->sched, 0, n_row,
2087 1 + node->nparam, node->nvar);
2089 H = isl_mat_left_hermite(H, 0, &U, &Q);
2090 isl_mat_free(node->indep);
2091 isl_mat_free(node->vmap);
2092 node->vmap = Q;
2093 node->indep = isl_mat_transpose(U);
2094 node->rank = isl_mat_initial_non_zero_cols(H);
2095 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2096 node->indep = normalize_independent(node->indep);
2097 isl_mat_free(H);
2099 if (!node->indep || !node->vmap || node->rank < 0)
2100 return -1;
2101 return 0;
2104 /* Is "edge" marked as a validity or a conditional validity edge?
2106 static int is_any_validity(struct isl_sched_edge *edge)
2108 return is_validity(edge) || is_conditional_validity(edge);
2111 /* How many times should we count the constraints in "edge"?
2113 * We count as follows
2114 * validity -> 1 (>= 0)
2115 * validity+proximity -> 2 (>= 0 and upper bound)
2116 * proximity -> 2 (lower and upper bound)
2117 * local(+any) -> 2 (>= 0 and <= 0)
2119 * If an edge is only marked conditional_validity then it counts
2120 * as zero since it is only checked afterwards.
2122 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2123 * Otherwise, we ignore them.
2125 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2127 if (is_proximity(edge) || force_zero(edge, use_coincidence))
2128 return 2;
2129 if (is_validity(edge))
2130 return 1;
2131 return 0;
2134 /* How many times should the constraints in "edge" be counted
2135 * as a parametric intra-node constraint?
2137 * Only proximity edges that are not forced zero need
2138 * coefficient constraints that include coefficients for parameters.
2139 * If the edge is also a validity edge, then only
2140 * an upper bound is introduced. Otherwise, both lower and upper bounds
2141 * are introduced.
2143 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2144 int use_coincidence)
2146 if (edge->src != edge->dst)
2147 return 0;
2148 if (!is_proximity(edge))
2149 return 0;
2150 if (force_zero(edge, use_coincidence))
2151 return 0;
2152 if (is_validity(edge))
2153 return 1;
2154 else
2155 return 2;
2158 /* Add "f" times the number of equality and inequality constraints of "bset"
2159 * to "n_eq" and "n_ineq" and free "bset".
2161 static isl_stat update_count(__isl_take isl_basic_set *bset,
2162 int f, int *n_eq, int *n_ineq)
2164 if (!bset)
2165 return isl_stat_error;
2167 *n_eq += isl_basic_set_n_equality(bset);
2168 *n_ineq += isl_basic_set_n_inequality(bset);
2169 isl_basic_set_free(bset);
2171 return isl_stat_ok;
2174 /* Count the number of equality and inequality constraints
2175 * that will be added for the given map.
2177 * The edges that require parameter coefficients are counted separately.
2179 * "use_coincidence" is set if we should take into account coincidence edges.
2181 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2182 struct isl_sched_edge *edge, __isl_take isl_map *map,
2183 int *n_eq, int *n_ineq, int use_coincidence)
2185 isl_map *copy;
2186 isl_basic_set *coef;
2187 int f = edge_multiplicity(edge, use_coincidence);
2188 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2190 if (f == 0) {
2191 isl_map_free(map);
2192 return isl_stat_ok;
2195 if (edge->src != edge->dst) {
2196 coef = inter_coefficients(graph, edge, map);
2197 return update_count(coef, f, n_eq, n_ineq);
2200 if (fp > 0) {
2201 copy = isl_map_copy(map);
2202 coef = intra_coefficients(graph, edge->src, copy);
2203 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2204 goto error;
2207 if (f > fp) {
2208 copy = isl_map_copy(map);
2209 coef = intra_coefficients(graph, edge->src, copy);
2210 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2211 goto error;
2214 isl_map_free(map);
2215 return isl_stat_ok;
2216 error:
2217 isl_map_free(map);
2218 return isl_stat_error;
2221 /* Count the number of equality and inequality constraints
2222 * that will be added to the main lp problem.
2223 * We count as follows
2224 * validity -> 1 (>= 0)
2225 * validity+proximity -> 2 (>= 0 and upper bound)
2226 * proximity -> 2 (lower and upper bound)
2227 * local(+any) -> 2 (>= 0 and <= 0)
2229 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2230 * Otherwise, we ignore them.
2232 static int count_constraints(struct isl_sched_graph *graph,
2233 int *n_eq, int *n_ineq, int use_coincidence)
2235 int i;
2237 *n_eq = *n_ineq = 0;
2238 for (i = 0; i < graph->n_edge; ++i) {
2239 struct isl_sched_edge *edge = &graph->edge[i];
2240 isl_map *map = isl_map_copy(edge->map);
2242 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2243 use_coincidence) < 0)
2244 return -1;
2247 return 0;
2250 /* Count the number of constraints that will be added by
2251 * add_bound_constant_constraints to bound the values of the constant terms
2252 * and increment *n_eq and *n_ineq accordingly.
2254 * In practice, add_bound_constant_constraints only adds inequalities.
2256 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2257 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2259 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2260 return isl_stat_ok;
2262 *n_ineq += graph->n;
2264 return isl_stat_ok;
2267 /* Add constraints to bound the values of the constant terms in the schedule,
2268 * if requested by the user.
2270 * The maximal value of the constant terms is defined by the option
2271 * "schedule_max_constant_term".
2273 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2274 struct isl_sched_graph *graph)
2276 int i, k;
2277 int max;
2278 int total;
2280 max = isl_options_get_schedule_max_constant_term(ctx);
2281 if (max == -1)
2282 return isl_stat_ok;
2284 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2286 for (i = 0; i < graph->n; ++i) {
2287 struct isl_sched_node *node = &graph->node[i];
2288 int pos;
2290 k = isl_basic_set_alloc_inequality(graph->lp);
2291 if (k < 0)
2292 return isl_stat_error;
2293 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2294 pos = node_cst_coef_offset(node);
2295 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2296 isl_int_set_si(graph->lp->ineq[k][0], max);
2299 return isl_stat_ok;
2302 /* Count the number of constraints that will be added by
2303 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2304 * accordingly.
2306 * In practice, add_bound_coefficient_constraints only adds inequalities.
2308 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2309 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2311 int i;
2313 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2314 !isl_options_get_schedule_treat_coalescing(ctx))
2315 return 0;
2317 for (i = 0; i < graph->n; ++i)
2318 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2320 return 0;
2323 /* Add constraints to graph->lp that bound the values of
2324 * the parameter schedule coefficients of "node" to "max" and
2325 * the variable schedule coefficients to the corresponding entry
2326 * in node->max.
2327 * In either case, a negative value means that no bound needs to be imposed.
2329 * For parameter coefficients, this amounts to adding a constraint
2331 * c_n <= max
2333 * i.e.,
2335 * -c_n + max >= 0
2337 * The variables coefficients are, however, not represented directly.
2338 * Instead, the variable coefficients c_x are written as differences
2339 * c_x = c_x^+ - c_x^-.
2340 * That is,
2342 * -max_i <= c_x_i <= max_i
2344 * is encoded as
2346 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2348 * or
2350 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2351 * c_x_i^+ - c_x_i^- + max_i >= 0
2353 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2354 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2356 int i, j, k;
2357 int total;
2358 isl_vec *ineq;
2360 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2362 for (j = 0; j < node->nparam; ++j) {
2363 int dim;
2365 if (max < 0)
2366 continue;
2368 k = isl_basic_set_alloc_inequality(graph->lp);
2369 if (k < 0)
2370 return isl_stat_error;
2371 dim = 1 + node_par_coef_offset(node) + j;
2372 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2373 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2374 isl_int_set_si(graph->lp->ineq[k][0], max);
2377 ineq = isl_vec_alloc(ctx, 1 + total);
2378 ineq = isl_vec_clr(ineq);
2379 if (!ineq)
2380 return isl_stat_error;
2381 for (i = 0; i < node->nvar; ++i) {
2382 int pos = 1 + node_var_coef_pos(node, i);
2384 if (isl_int_is_neg(node->max->el[i]))
2385 continue;
2387 isl_int_set_si(ineq->el[pos], 1);
2388 isl_int_set_si(ineq->el[pos + 1], -1);
2389 isl_int_set(ineq->el[0], node->max->el[i]);
2391 k = isl_basic_set_alloc_inequality(graph->lp);
2392 if (k < 0)
2393 goto error;
2394 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2396 isl_seq_neg(ineq->el + pos, ineq->el + pos + 2 * i, 2);
2397 k = isl_basic_set_alloc_inequality(graph->lp);
2398 if (k < 0)
2399 goto error;
2400 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2402 isl_vec_free(ineq);
2404 return isl_stat_ok;
2405 error:
2406 isl_vec_free(ineq);
2407 return isl_stat_error;
2410 /* Add constraints that bound the values of the variable and parameter
2411 * coefficients of the schedule.
2413 * The maximal value of the coefficients is defined by the option
2414 * 'schedule_max_coefficient' and the entries in node->max.
2415 * These latter entries are only set if either the schedule_max_coefficient
2416 * option or the schedule_treat_coalescing option is set.
2418 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2419 struct isl_sched_graph *graph)
2421 int i;
2422 int max;
2424 max = isl_options_get_schedule_max_coefficient(ctx);
2426 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2427 return isl_stat_ok;
2429 for (i = 0; i < graph->n; ++i) {
2430 struct isl_sched_node *node = &graph->node[i];
2432 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2433 return isl_stat_error;
2436 return isl_stat_ok;
2439 /* Add a constraint to graph->lp that equates the value at position
2440 * "sum_pos" to the sum of the "n" values starting at "first".
2442 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2443 int sum_pos, int first, int n)
2445 int i, k;
2446 int total;
2448 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2450 k = isl_basic_set_alloc_equality(graph->lp);
2451 if (k < 0)
2452 return isl_stat_error;
2453 isl_seq_clr(graph->lp->eq[k], 1 + total);
2454 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2455 for (i = 0; i < n; ++i)
2456 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2458 return isl_stat_ok;
2461 /* Add a constraint to graph->lp that equates the value at position
2462 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2464 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2465 int sum_pos)
2467 int i, j, k;
2468 int total;
2470 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2472 k = isl_basic_set_alloc_equality(graph->lp);
2473 if (k < 0)
2474 return isl_stat_error;
2475 isl_seq_clr(graph->lp->eq[k], 1 + total);
2476 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2477 for (i = 0; i < graph->n; ++i) {
2478 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2480 for (j = 0; j < graph->node[i].nparam; ++j)
2481 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2484 return isl_stat_ok;
2487 /* Add a constraint to graph->lp that equates the value at position
2488 * "sum_pos" to the sum of the variable coefficients of all nodes.
2490 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2491 int sum_pos)
2493 int i, j, k;
2494 int total;
2496 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2498 k = isl_basic_set_alloc_equality(graph->lp);
2499 if (k < 0)
2500 return isl_stat_error;
2501 isl_seq_clr(graph->lp->eq[k], 1 + total);
2502 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2503 for (i = 0; i < graph->n; ++i) {
2504 struct isl_sched_node *node = &graph->node[i];
2505 int pos = 1 + node_var_coef_offset(node);
2507 for (j = 0; j < 2 * node->nvar; ++j)
2508 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2511 return isl_stat_ok;
2514 /* Construct an ILP problem for finding schedule coefficients
2515 * that result in non-negative, but small dependence distances
2516 * over all dependences.
2517 * In particular, the dependence distances over proximity edges
2518 * are bounded by m_0 + m_n n and we compute schedule coefficients
2519 * with small values (preferably zero) of m_n and m_0.
2521 * All variables of the ILP are non-negative. The actual coefficients
2522 * may be negative, so each coefficient is represented as the difference
2523 * of two non-negative variables. The negative part always appears
2524 * immediately before the positive part.
2525 * Other than that, the variables have the following order
2527 * - sum of positive and negative parts of m_n coefficients
2528 * - m_0
2529 * - sum of all c_n coefficients
2530 * (unconstrained when computing non-parametric schedules)
2531 * - sum of positive and negative parts of all c_x coefficients
2532 * - positive and negative parts of m_n coefficients
2533 * - for each node
2534 * - positive and negative parts of c_i_x, in opposite order
2535 * - c_i_n (if parametric)
2536 * - c_i_0
2538 * The constraints are those from the edges plus two or three equalities
2539 * to express the sums.
2541 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2542 * Otherwise, we ignore them.
2544 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2545 int use_coincidence)
2547 int i;
2548 unsigned nparam;
2549 unsigned total;
2550 isl_space *space;
2551 int parametric;
2552 int param_pos;
2553 int n_eq, n_ineq;
2555 parametric = ctx->opt->schedule_parametric;
2556 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2557 param_pos = 4;
2558 total = param_pos + 2 * nparam;
2559 for (i = 0; i < graph->n; ++i) {
2560 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2561 if (node_update_vmap(node) < 0)
2562 return isl_stat_error;
2563 node->start = total;
2564 total += 1 + node->nparam + 2 * node->nvar;
2567 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2568 return isl_stat_error;
2569 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2570 return isl_stat_error;
2571 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2572 return isl_stat_error;
2574 space = isl_space_set_alloc(ctx, 0, total);
2575 isl_basic_set_free(graph->lp);
2576 n_eq += 2 + parametric;
2578 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2580 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2581 return isl_stat_error;
2582 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2583 return isl_stat_error;
2584 if (add_var_sum_constraint(graph, 3) < 0)
2585 return isl_stat_error;
2586 if (add_bound_constant_constraints(ctx, graph) < 0)
2587 return isl_stat_error;
2588 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2589 return isl_stat_error;
2590 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2591 return isl_stat_error;
2592 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2593 return isl_stat_error;
2595 return isl_stat_ok;
2598 /* Analyze the conflicting constraint found by
2599 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2600 * constraint of one of the edges between distinct nodes, living, moreover
2601 * in distinct SCCs, then record the source and sink SCC as this may
2602 * be a good place to cut between SCCs.
2604 static int check_conflict(int con, void *user)
2606 int i;
2607 struct isl_sched_graph *graph = user;
2609 if (graph->src_scc >= 0)
2610 return 0;
2612 con -= graph->lp->n_eq;
2614 if (con >= graph->lp->n_ineq)
2615 return 0;
2617 for (i = 0; i < graph->n_edge; ++i) {
2618 if (!is_validity(&graph->edge[i]))
2619 continue;
2620 if (graph->edge[i].src == graph->edge[i].dst)
2621 continue;
2622 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2623 continue;
2624 if (graph->edge[i].start > con)
2625 continue;
2626 if (graph->edge[i].end <= con)
2627 continue;
2628 graph->src_scc = graph->edge[i].src->scc;
2629 graph->dst_scc = graph->edge[i].dst->scc;
2632 return 0;
2635 /* Check whether the next schedule row of the given node needs to be
2636 * non-trivial. Lower-dimensional domains may have some trivial rows,
2637 * but as soon as the number of remaining required non-trivial rows
2638 * is as large as the number or remaining rows to be computed,
2639 * all remaining rows need to be non-trivial.
2641 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2643 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2646 /* Construct a non-triviality region with triviality directions
2647 * corresponding to the rows of "indep".
2648 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2649 * while the triviality directions are expressed in terms of
2650 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2651 * before c^+_i. Furthermore,
2652 * the pairs of non-negative variables representing the coefficients
2653 * are stored in the opposite order.
2655 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2657 isl_ctx *ctx;
2658 isl_mat *mat;
2659 int i, j, n, n_var;
2661 if (!indep)
2662 return NULL;
2664 ctx = isl_mat_get_ctx(indep);
2665 n = isl_mat_rows(indep);
2666 n_var = isl_mat_cols(indep);
2667 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2668 if (!mat)
2669 return NULL;
2670 for (i = 0; i < n; ++i) {
2671 for (j = 0; j < n_var; ++j) {
2672 int nj = n_var - 1 - j;
2673 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2674 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2678 return mat;
2681 /* Solve the ILP problem constructed in setup_lp.
2682 * For each node such that all the remaining rows of its schedule
2683 * need to be non-trivial, we construct a non-triviality region.
2684 * This region imposes that the next row is independent of previous rows.
2685 * In particular, the non-triviality region enforces that at least
2686 * one of the linear combinations in the rows of node->indep is non-zero.
2688 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2690 int i;
2691 isl_vec *sol;
2692 isl_basic_set *lp;
2694 for (i = 0; i < graph->n; ++i) {
2695 struct isl_sched_node *node = &graph->node[i];
2696 isl_mat *trivial;
2698 graph->region[i].pos = node_var_coef_offset(node);
2699 if (needs_row(graph, node))
2700 trivial = construct_trivial(node->indep);
2701 else
2702 trivial = isl_mat_zero(ctx, 0, 0);
2703 graph->region[i].trivial = trivial;
2705 lp = isl_basic_set_copy(graph->lp);
2706 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2707 graph->region, &check_conflict, graph);
2708 for (i = 0; i < graph->n; ++i)
2709 isl_mat_free(graph->region[i].trivial);
2710 return sol;
2713 /* Extract the coefficients for the variables of "node" from "sol".
2715 * Each schedule coefficient c_i_x is represented as the difference
2716 * between two non-negative variables c_i_x^+ - c_i_x^-.
2717 * The c_i_x^- appear before their c_i_x^+ counterpart.
2718 * Furthermore, the order of these pairs is the opposite of that
2719 * of the corresponding coefficients.
2721 * Return c_i_x = c_i_x^+ - c_i_x^-
2723 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2724 __isl_keep isl_vec *sol)
2726 int i;
2727 int pos;
2728 isl_vec *csol;
2730 if (!sol)
2731 return NULL;
2732 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2733 if (!csol)
2734 return NULL;
2736 pos = 1 + node_var_coef_offset(node);
2737 for (i = 0; i < node->nvar; ++i)
2738 isl_int_sub(csol->el[node->nvar - 1 - i],
2739 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2741 return csol;
2744 /* Update the schedules of all nodes based on the given solution
2745 * of the LP problem.
2746 * The new row is added to the current band.
2747 * All possibly negative coefficients are encoded as a difference
2748 * of two non-negative variables, so we need to perform the subtraction
2749 * here.
2751 * If coincident is set, then the caller guarantees that the new
2752 * row satisfies the coincidence constraints.
2754 static int update_schedule(struct isl_sched_graph *graph,
2755 __isl_take isl_vec *sol, int coincident)
2757 int i, j;
2758 isl_vec *csol = NULL;
2760 if (!sol)
2761 goto error;
2762 if (sol->size == 0)
2763 isl_die(sol->ctx, isl_error_internal,
2764 "no solution found", goto error);
2765 if (graph->n_total_row >= graph->max_row)
2766 isl_die(sol->ctx, isl_error_internal,
2767 "too many schedule rows", goto error);
2769 for (i = 0; i < graph->n; ++i) {
2770 struct isl_sched_node *node = &graph->node[i];
2771 int pos;
2772 int row = isl_mat_rows(node->sched);
2774 isl_vec_free(csol);
2775 csol = extract_var_coef(node, sol);
2776 if (!csol)
2777 goto error;
2779 isl_map_free(node->sched_map);
2780 node->sched_map = NULL;
2781 node->sched = isl_mat_add_rows(node->sched, 1);
2782 if (!node->sched)
2783 goto error;
2784 pos = node_cst_coef_offset(node);
2785 node->sched = isl_mat_set_element(node->sched,
2786 row, 0, sol->el[1 + pos]);
2787 pos = node_par_coef_offset(node);
2788 for (j = 0; j < node->nparam; ++j)
2789 node->sched = isl_mat_set_element(node->sched,
2790 row, 1 + j, sol->el[1 + pos + j]);
2791 for (j = 0; j < node->nvar; ++j)
2792 node->sched = isl_mat_set_element(node->sched,
2793 row, 1 + node->nparam + j, csol->el[j]);
2794 node->coincident[graph->n_total_row] = coincident;
2796 isl_vec_free(sol);
2797 isl_vec_free(csol);
2799 graph->n_row++;
2800 graph->n_total_row++;
2802 return 0;
2803 error:
2804 isl_vec_free(sol);
2805 isl_vec_free(csol);
2806 return -1;
2809 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2810 * and return this isl_aff.
2812 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2813 struct isl_sched_node *node, int row)
2815 int j;
2816 isl_int v;
2817 isl_aff *aff;
2819 isl_int_init(v);
2821 aff = isl_aff_zero_on_domain(ls);
2822 isl_mat_get_element(node->sched, row, 0, &v);
2823 aff = isl_aff_set_constant(aff, v);
2824 for (j = 0; j < node->nparam; ++j) {
2825 isl_mat_get_element(node->sched, row, 1 + j, &v);
2826 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2828 for (j = 0; j < node->nvar; ++j) {
2829 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2830 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2833 isl_int_clear(v);
2835 return aff;
2838 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2839 * and return this multi_aff.
2841 * The result is defined over the uncompressed node domain.
2843 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2844 struct isl_sched_node *node, int first, int n)
2846 int i;
2847 isl_space *space;
2848 isl_local_space *ls;
2849 isl_aff *aff;
2850 isl_multi_aff *ma;
2851 int nrow;
2853 if (!node)
2854 return NULL;
2855 nrow = isl_mat_rows(node->sched);
2856 if (node->compressed)
2857 space = isl_multi_aff_get_domain_space(node->decompress);
2858 else
2859 space = isl_space_copy(node->space);
2860 ls = isl_local_space_from_space(isl_space_copy(space));
2861 space = isl_space_from_domain(space);
2862 space = isl_space_add_dims(space, isl_dim_out, n);
2863 ma = isl_multi_aff_zero(space);
2865 for (i = first; i < first + n; ++i) {
2866 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2867 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2870 isl_local_space_free(ls);
2872 if (node->compressed)
2873 ma = isl_multi_aff_pullback_multi_aff(ma,
2874 isl_multi_aff_copy(node->compress));
2876 return ma;
2879 /* Convert node->sched into a multi_aff and return this multi_aff.
2881 * The result is defined over the uncompressed node domain.
2883 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2884 struct isl_sched_node *node)
2886 int nrow;
2888 nrow = isl_mat_rows(node->sched);
2889 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2892 /* Convert node->sched into a map and return this map.
2894 * The result is cached in node->sched_map, which needs to be released
2895 * whenever node->sched is updated.
2896 * It is defined over the uncompressed node domain.
2898 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2900 if (!node->sched_map) {
2901 isl_multi_aff *ma;
2903 ma = node_extract_schedule_multi_aff(node);
2904 node->sched_map = isl_map_from_multi_aff(ma);
2907 return isl_map_copy(node->sched_map);
2910 /* Construct a map that can be used to update a dependence relation
2911 * based on the current schedule.
2912 * That is, construct a map expressing that source and sink
2913 * are executed within the same iteration of the current schedule.
2914 * This map can then be intersected with the dependence relation.
2915 * This is not the most efficient way, but this shouldn't be a critical
2916 * operation.
2918 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2919 struct isl_sched_node *dst)
2921 isl_map *src_sched, *dst_sched;
2923 src_sched = node_extract_schedule(src);
2924 dst_sched = node_extract_schedule(dst);
2925 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2928 /* Intersect the domains of the nested relations in domain and range
2929 * of "umap" with "map".
2931 static __isl_give isl_union_map *intersect_domains(
2932 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2934 isl_union_set *uset;
2936 umap = isl_union_map_zip(umap);
2937 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2938 umap = isl_union_map_intersect_domain(umap, uset);
2939 umap = isl_union_map_zip(umap);
2940 return umap;
2943 /* Update the dependence relation of the given edge based
2944 * on the current schedule.
2945 * If the dependence is carried completely by the current schedule, then
2946 * it is removed from the edge_tables. It is kept in the list of edges
2947 * as otherwise all edge_tables would have to be recomputed.
2949 static int update_edge(struct isl_sched_graph *graph,
2950 struct isl_sched_edge *edge)
2952 int empty;
2953 isl_map *id;
2955 id = specializer(edge->src, edge->dst);
2956 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2957 if (!edge->map)
2958 goto error;
2960 if (edge->tagged_condition) {
2961 edge->tagged_condition =
2962 intersect_domains(edge->tagged_condition, id);
2963 if (!edge->tagged_condition)
2964 goto error;
2966 if (edge->tagged_validity) {
2967 edge->tagged_validity =
2968 intersect_domains(edge->tagged_validity, id);
2969 if (!edge->tagged_validity)
2970 goto error;
2973 empty = isl_map_plain_is_empty(edge->map);
2974 if (empty < 0)
2975 goto error;
2976 if (empty)
2977 graph_remove_edge(graph, edge);
2979 isl_map_free(id);
2980 return 0;
2981 error:
2982 isl_map_free(id);
2983 return -1;
2986 /* Does the domain of "umap" intersect "uset"?
2988 static int domain_intersects(__isl_keep isl_union_map *umap,
2989 __isl_keep isl_union_set *uset)
2991 int empty;
2993 umap = isl_union_map_copy(umap);
2994 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2995 empty = isl_union_map_is_empty(umap);
2996 isl_union_map_free(umap);
2998 return empty < 0 ? -1 : !empty;
3001 /* Does the range of "umap" intersect "uset"?
3003 static int range_intersects(__isl_keep isl_union_map *umap,
3004 __isl_keep isl_union_set *uset)
3006 int empty;
3008 umap = isl_union_map_copy(umap);
3009 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3010 empty = isl_union_map_is_empty(umap);
3011 isl_union_map_free(umap);
3013 return empty < 0 ? -1 : !empty;
3016 /* Are the condition dependences of "edge" local with respect to
3017 * the current schedule?
3019 * That is, are domain and range of the condition dependences mapped
3020 * to the same point?
3022 * In other words, is the condition false?
3024 static int is_condition_false(struct isl_sched_edge *edge)
3026 isl_union_map *umap;
3027 isl_map *map, *sched, *test;
3028 int empty, local;
3030 empty = isl_union_map_is_empty(edge->tagged_condition);
3031 if (empty < 0 || empty)
3032 return empty;
3034 umap = isl_union_map_copy(edge->tagged_condition);
3035 umap = isl_union_map_zip(umap);
3036 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3037 map = isl_map_from_union_map(umap);
3039 sched = node_extract_schedule(edge->src);
3040 map = isl_map_apply_domain(map, sched);
3041 sched = node_extract_schedule(edge->dst);
3042 map = isl_map_apply_range(map, sched);
3044 test = isl_map_identity(isl_map_get_space(map));
3045 local = isl_map_is_subset(map, test);
3046 isl_map_free(map);
3047 isl_map_free(test);
3049 return local;
3052 /* For each conditional validity constraint that is adjacent
3053 * to a condition with domain in condition_source or range in condition_sink,
3054 * turn it into an unconditional validity constraint.
3056 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3057 __isl_take isl_union_set *condition_source,
3058 __isl_take isl_union_set *condition_sink)
3060 int i;
3062 condition_source = isl_union_set_coalesce(condition_source);
3063 condition_sink = isl_union_set_coalesce(condition_sink);
3065 for (i = 0; i < graph->n_edge; ++i) {
3066 int adjacent;
3067 isl_union_map *validity;
3069 if (!is_conditional_validity(&graph->edge[i]))
3070 continue;
3071 if (is_validity(&graph->edge[i]))
3072 continue;
3074 validity = graph->edge[i].tagged_validity;
3075 adjacent = domain_intersects(validity, condition_sink);
3076 if (adjacent >= 0 && !adjacent)
3077 adjacent = range_intersects(validity, condition_source);
3078 if (adjacent < 0)
3079 goto error;
3080 if (!adjacent)
3081 continue;
3083 set_validity(&graph->edge[i]);
3086 isl_union_set_free(condition_source);
3087 isl_union_set_free(condition_sink);
3088 return 0;
3089 error:
3090 isl_union_set_free(condition_source);
3091 isl_union_set_free(condition_sink);
3092 return -1;
3095 /* Update the dependence relations of all edges based on the current schedule
3096 * and enforce conditional validity constraints that are adjacent
3097 * to satisfied condition constraints.
3099 * First check if any of the condition constraints are satisfied
3100 * (i.e., not local to the outer schedule) and keep track of
3101 * their domain and range.
3102 * Then update all dependence relations (which removes the non-local
3103 * constraints).
3104 * Finally, if any condition constraints turned out to be satisfied,
3105 * then turn all adjacent conditional validity constraints into
3106 * unconditional validity constraints.
3108 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3110 int i;
3111 int any = 0;
3112 isl_union_set *source, *sink;
3114 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3115 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3116 for (i = 0; i < graph->n_edge; ++i) {
3117 int local;
3118 isl_union_set *uset;
3119 isl_union_map *umap;
3121 if (!is_condition(&graph->edge[i]))
3122 continue;
3123 if (is_local(&graph->edge[i]))
3124 continue;
3125 local = is_condition_false(&graph->edge[i]);
3126 if (local < 0)
3127 goto error;
3128 if (local)
3129 continue;
3131 any = 1;
3133 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3134 uset = isl_union_map_domain(umap);
3135 source = isl_union_set_union(source, uset);
3137 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3138 uset = isl_union_map_range(umap);
3139 sink = isl_union_set_union(sink, uset);
3142 for (i = graph->n_edge - 1; i >= 0; --i) {
3143 if (update_edge(graph, &graph->edge[i]) < 0)
3144 goto error;
3147 if (any)
3148 return unconditionalize_adjacent_validity(graph, source, sink);
3150 isl_union_set_free(source);
3151 isl_union_set_free(sink);
3152 return 0;
3153 error:
3154 isl_union_set_free(source);
3155 isl_union_set_free(sink);
3156 return -1;
3159 static void next_band(struct isl_sched_graph *graph)
3161 graph->band_start = graph->n_total_row;
3164 /* Return the union of the universe domains of the nodes in "graph"
3165 * that satisfy "pred".
3167 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3168 struct isl_sched_graph *graph,
3169 int (*pred)(struct isl_sched_node *node, int data), int data)
3171 int i;
3172 isl_set *set;
3173 isl_union_set *dom;
3175 for (i = 0; i < graph->n; ++i)
3176 if (pred(&graph->node[i], data))
3177 break;
3179 if (i >= graph->n)
3180 isl_die(ctx, isl_error_internal,
3181 "empty component", return NULL);
3183 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3184 dom = isl_union_set_from_set(set);
3186 for (i = i + 1; i < graph->n; ++i) {
3187 if (!pred(&graph->node[i], data))
3188 continue;
3189 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3190 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3193 return dom;
3196 /* Return a list of unions of universe domains, where each element
3197 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3199 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3200 struct isl_sched_graph *graph)
3202 int i;
3203 isl_union_set_list *filters;
3205 filters = isl_union_set_list_alloc(ctx, graph->scc);
3206 for (i = 0; i < graph->scc; ++i) {
3207 isl_union_set *dom;
3209 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3210 filters = isl_union_set_list_add(filters, dom);
3213 return filters;
3216 /* Return a list of two unions of universe domains, one for the SCCs up
3217 * to and including graph->src_scc and another for the other SCCs.
3219 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3220 struct isl_sched_graph *graph)
3222 isl_union_set *dom;
3223 isl_union_set_list *filters;
3225 filters = isl_union_set_list_alloc(ctx, 2);
3226 dom = isl_sched_graph_domain(ctx, graph,
3227 &node_scc_at_most, graph->src_scc);
3228 filters = isl_union_set_list_add(filters, dom);
3229 dom = isl_sched_graph_domain(ctx, graph,
3230 &node_scc_at_least, graph->src_scc + 1);
3231 filters = isl_union_set_list_add(filters, dom);
3233 return filters;
3236 /* Copy nodes that satisfy node_pred from the src dependence graph
3237 * to the dst dependence graph.
3239 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3240 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3242 int i;
3244 dst->n = 0;
3245 for (i = 0; i < src->n; ++i) {
3246 int j;
3248 if (!node_pred(&src->node[i], data))
3249 continue;
3251 j = dst->n;
3252 dst->node[j].space = isl_space_copy(src->node[i].space);
3253 dst->node[j].compressed = src->node[i].compressed;
3254 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3255 dst->node[j].compress =
3256 isl_multi_aff_copy(src->node[i].compress);
3257 dst->node[j].decompress =
3258 isl_multi_aff_copy(src->node[i].decompress);
3259 dst->node[j].nvar = src->node[i].nvar;
3260 dst->node[j].nparam = src->node[i].nparam;
3261 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3262 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3263 dst->node[j].coincident = src->node[i].coincident;
3264 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3265 dst->node[j].max = isl_vec_copy(src->node[i].max);
3266 dst->n++;
3268 if (!dst->node[j].space || !dst->node[j].sched)
3269 return -1;
3270 if (dst->node[j].compressed &&
3271 (!dst->node[j].hull || !dst->node[j].compress ||
3272 !dst->node[j].decompress))
3273 return -1;
3276 return 0;
3279 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3280 * to the dst dependence graph.
3281 * If the source or destination node of the edge is not in the destination
3282 * graph, then it must be a backward proximity edge and it should simply
3283 * be ignored.
3285 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3286 struct isl_sched_graph *src,
3287 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3289 int i;
3290 enum isl_edge_type t;
3292 dst->n_edge = 0;
3293 for (i = 0; i < src->n_edge; ++i) {
3294 struct isl_sched_edge *edge = &src->edge[i];
3295 isl_map *map;
3296 isl_union_map *tagged_condition;
3297 isl_union_map *tagged_validity;
3298 struct isl_sched_node *dst_src, *dst_dst;
3300 if (!edge_pred(edge, data))
3301 continue;
3303 if (isl_map_plain_is_empty(edge->map))
3304 continue;
3306 dst_src = graph_find_node(ctx, dst, edge->src->space);
3307 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3308 if (!dst_src || !dst_dst) {
3309 if (is_validity(edge) || is_conditional_validity(edge))
3310 isl_die(ctx, isl_error_internal,
3311 "backward (conditional) validity edge",
3312 return -1);
3313 continue;
3316 map = isl_map_copy(edge->map);
3317 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3318 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3320 dst->edge[dst->n_edge].src = dst_src;
3321 dst->edge[dst->n_edge].dst = dst_dst;
3322 dst->edge[dst->n_edge].map = map;
3323 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3324 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3325 dst->edge[dst->n_edge].types = edge->types;
3326 dst->n_edge++;
3328 if (edge->tagged_condition && !tagged_condition)
3329 return -1;
3330 if (edge->tagged_validity && !tagged_validity)
3331 return -1;
3333 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3334 if (edge !=
3335 graph_find_edge(src, t, edge->src, edge->dst))
3336 continue;
3337 if (graph_edge_table_add(ctx, dst, t,
3338 &dst->edge[dst->n_edge - 1]) < 0)
3339 return -1;
3343 return 0;
3346 /* Compute the maximal number of variables over all nodes.
3347 * This is the maximal number of linearly independent schedule
3348 * rows that we need to compute.
3349 * Just in case we end up in a part of the dependence graph
3350 * with only lower-dimensional domains, we make sure we will
3351 * compute the required amount of extra linearly independent rows.
3353 static int compute_maxvar(struct isl_sched_graph *graph)
3355 int i;
3357 graph->maxvar = 0;
3358 for (i = 0; i < graph->n; ++i) {
3359 struct isl_sched_node *node = &graph->node[i];
3360 int nvar;
3362 if (node_update_vmap(node) < 0)
3363 return -1;
3364 nvar = node->nvar + graph->n_row - node->rank;
3365 if (nvar > graph->maxvar)
3366 graph->maxvar = nvar;
3369 return 0;
3372 /* Extract the subgraph of "graph" that consists of the node satisfying
3373 * "node_pred" and the edges satisfying "edge_pred" and store
3374 * the result in "sub".
3376 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3377 int (*node_pred)(struct isl_sched_node *node, int data),
3378 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3379 int data, struct isl_sched_graph *sub)
3381 int i, n = 0, n_edge = 0;
3382 int t;
3384 for (i = 0; i < graph->n; ++i)
3385 if (node_pred(&graph->node[i], data))
3386 ++n;
3387 for (i = 0; i < graph->n_edge; ++i)
3388 if (edge_pred(&graph->edge[i], data))
3389 ++n_edge;
3390 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3391 return -1;
3392 if (copy_nodes(sub, graph, node_pred, data) < 0)
3393 return -1;
3394 if (graph_init_table(ctx, sub) < 0)
3395 return -1;
3396 for (t = 0; t <= isl_edge_last; ++t)
3397 sub->max_edge[t] = graph->max_edge[t];
3398 if (graph_init_edge_tables(ctx, sub) < 0)
3399 return -1;
3400 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3401 return -1;
3402 sub->n_row = graph->n_row;
3403 sub->max_row = graph->max_row;
3404 sub->n_total_row = graph->n_total_row;
3405 sub->band_start = graph->band_start;
3407 return 0;
3410 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3411 struct isl_sched_graph *graph);
3412 static __isl_give isl_schedule_node *compute_schedule_wcc(
3413 isl_schedule_node *node, struct isl_sched_graph *graph);
3415 /* Compute a schedule for a subgraph of "graph". In particular, for
3416 * the graph composed of nodes that satisfy node_pred and edges that
3417 * that satisfy edge_pred.
3418 * If the subgraph is known to consist of a single component, then wcc should
3419 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3420 * Otherwise, we call compute_schedule, which will check whether the subgraph
3421 * is connected.
3423 * The schedule is inserted at "node" and the updated schedule node
3424 * is returned.
3426 static __isl_give isl_schedule_node *compute_sub_schedule(
3427 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3428 struct isl_sched_graph *graph,
3429 int (*node_pred)(struct isl_sched_node *node, int data),
3430 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3431 int data, int wcc)
3433 struct isl_sched_graph split = { 0 };
3435 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3436 &split) < 0)
3437 goto error;
3439 if (wcc)
3440 node = compute_schedule_wcc(node, &split);
3441 else
3442 node = compute_schedule(node, &split);
3444 graph_free(ctx, &split);
3445 return node;
3446 error:
3447 graph_free(ctx, &split);
3448 return isl_schedule_node_free(node);
3451 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3453 return edge->src->scc == scc && edge->dst->scc == scc;
3456 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3458 return edge->dst->scc <= scc;
3461 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3463 return edge->src->scc >= scc;
3466 /* Reset the current band by dropping all its schedule rows.
3468 static int reset_band(struct isl_sched_graph *graph)
3470 int i;
3471 int drop;
3473 drop = graph->n_total_row - graph->band_start;
3474 graph->n_total_row -= drop;
3475 graph->n_row -= drop;
3477 for (i = 0; i < graph->n; ++i) {
3478 struct isl_sched_node *node = &graph->node[i];
3480 isl_map_free(node->sched_map);
3481 node->sched_map = NULL;
3483 node->sched = isl_mat_drop_rows(node->sched,
3484 graph->band_start, drop);
3486 if (!node->sched)
3487 return -1;
3490 return 0;
3493 /* Split the current graph into two parts and compute a schedule for each
3494 * part individually. In particular, one part consists of all SCCs up
3495 * to and including graph->src_scc, while the other part contains the other
3496 * SCCs. The split is enforced by a sequence node inserted at position "node"
3497 * in the schedule tree. Return the updated schedule node.
3498 * If either of these two parts consists of a sequence, then it is spliced
3499 * into the sequence containing the two parts.
3501 * The current band is reset. It would be possible to reuse
3502 * the previously computed rows as the first rows in the next
3503 * band, but recomputing them may result in better rows as we are looking
3504 * at a smaller part of the dependence graph.
3506 static __isl_give isl_schedule_node *compute_split_schedule(
3507 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3509 int is_seq;
3510 isl_ctx *ctx;
3511 isl_union_set_list *filters;
3513 if (!node)
3514 return NULL;
3516 if (reset_band(graph) < 0)
3517 return isl_schedule_node_free(node);
3519 next_band(graph);
3521 ctx = isl_schedule_node_get_ctx(node);
3522 filters = extract_split(ctx, graph);
3523 node = isl_schedule_node_insert_sequence(node, filters);
3524 node = isl_schedule_node_child(node, 1);
3525 node = isl_schedule_node_child(node, 0);
3527 node = compute_sub_schedule(node, ctx, graph,
3528 &node_scc_at_least, &edge_src_scc_at_least,
3529 graph->src_scc + 1, 0);
3530 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3531 node = isl_schedule_node_parent(node);
3532 node = isl_schedule_node_parent(node);
3533 if (is_seq)
3534 node = isl_schedule_node_sequence_splice_child(node, 1);
3535 node = isl_schedule_node_child(node, 0);
3536 node = isl_schedule_node_child(node, 0);
3537 node = compute_sub_schedule(node, ctx, graph,
3538 &node_scc_at_most, &edge_dst_scc_at_most,
3539 graph->src_scc, 0);
3540 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3541 node = isl_schedule_node_parent(node);
3542 node = isl_schedule_node_parent(node);
3543 if (is_seq)
3544 node = isl_schedule_node_sequence_splice_child(node, 0);
3546 return node;
3549 /* Insert a band node at position "node" in the schedule tree corresponding
3550 * to the current band in "graph". Mark the band node permutable
3551 * if "permutable" is set.
3552 * The partial schedules and the coincidence property are extracted
3553 * from the graph nodes.
3554 * Return the updated schedule node.
3556 static __isl_give isl_schedule_node *insert_current_band(
3557 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3558 int permutable)
3560 int i;
3561 int start, end, n;
3562 isl_multi_aff *ma;
3563 isl_multi_pw_aff *mpa;
3564 isl_multi_union_pw_aff *mupa;
3566 if (!node)
3567 return NULL;
3569 if (graph->n < 1)
3570 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3571 "graph should have at least one node",
3572 return isl_schedule_node_free(node));
3574 start = graph->band_start;
3575 end = graph->n_total_row;
3576 n = end - start;
3578 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3579 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3580 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3582 for (i = 1; i < graph->n; ++i) {
3583 isl_multi_union_pw_aff *mupa_i;
3585 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3586 start, n);
3587 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3588 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3589 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3591 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3593 for (i = 0; i < n; ++i)
3594 node = isl_schedule_node_band_member_set_coincident(node, i,
3595 graph->node[0].coincident[start + i]);
3596 node = isl_schedule_node_band_set_permutable(node, permutable);
3598 return node;
3601 /* Update the dependence relations based on the current schedule,
3602 * add the current band to "node" and then continue with the computation
3603 * of the next band.
3604 * Return the updated schedule node.
3606 static __isl_give isl_schedule_node *compute_next_band(
3607 __isl_take isl_schedule_node *node,
3608 struct isl_sched_graph *graph, int permutable)
3610 isl_ctx *ctx;
3612 if (!node)
3613 return NULL;
3615 ctx = isl_schedule_node_get_ctx(node);
3616 if (update_edges(ctx, graph) < 0)
3617 return isl_schedule_node_free(node);
3618 node = insert_current_band(node, graph, permutable);
3619 next_band(graph);
3621 node = isl_schedule_node_child(node, 0);
3622 node = compute_schedule(node, graph);
3623 node = isl_schedule_node_parent(node);
3625 return node;
3628 /* Add the constraints "coef" derived from an edge from "node" to itself
3629 * to graph->lp in order to respect the dependences and to try and carry them.
3630 * "pos" is the sequence number of the edge that needs to be carried.
3631 * "coef" represents general constraints on coefficients (c_0, c_n, c_x)
3632 * of valid constraints for (y - x) with x and y instances of the node.
3634 * The constraints added to graph->lp need to enforce
3636 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3637 * = c_j_x (y - x) >= e_i
3639 * for each (x,y) in the dependence relation of the edge.
3640 * That is, (-e_i, 0, c_j_x) needs to be plugged in for (c_0, c_n, c_x),
3641 * taking into account that each coefficient in c_j_x is represented
3642 * as a pair of non-negative coefficients.
3644 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3645 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3647 int offset;
3648 isl_ctx *ctx;
3649 isl_dim_map *dim_map;
3651 if (!coef)
3652 return isl_stat_error;
3654 ctx = isl_basic_set_get_ctx(coef);
3655 offset = coef_var_offset(coef);
3656 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3657 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3658 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3660 return isl_stat_ok;
3663 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3664 * to graph->lp in order to respect the dependences and to try and carry them.
3665 * "pos" is the sequence number of the edge that needs to be carried or
3666 * -1 if no attempt should be made to carry the dependences.
3667 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3668 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3670 * The constraints added to graph->lp need to enforce
3672 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3674 * for each (x,y) in the dependence relation of the edge or
3676 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3678 * if pos is -1.
3679 * That is,
3680 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3681 * or
3682 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3683 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3684 * taking into account that each coefficient in c_j_x and c_k_x is represented
3685 * as a pair of non-negative coefficients.
3687 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3688 struct isl_sched_node *src, struct isl_sched_node *dst,
3689 __isl_take isl_basic_set *coef, int pos)
3691 int offset;
3692 isl_ctx *ctx;
3693 isl_dim_map *dim_map;
3695 if (!coef)
3696 return isl_stat_error;
3698 ctx = isl_basic_set_get_ctx(coef);
3699 offset = coef_var_offset(coef);
3700 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3701 if (pos >= 0)
3702 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3703 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3705 return isl_stat_ok;
3708 /* Data structure collecting information used during the construction
3709 * of an LP for carrying dependences.
3711 * "intra" is a sequence of coefficient constraints for intra-node edges.
3712 * "inter" is a sequence of coefficient constraints for inter-node edges.
3714 struct isl_carry {
3715 isl_basic_set_list *intra;
3716 isl_basic_set_list *inter;
3719 /* Free all the data stored in "carry".
3721 static void isl_carry_clear(struct isl_carry *carry)
3723 isl_basic_set_list_free(carry->intra);
3724 isl_basic_set_list_free(carry->inter);
3727 /* Return a pointer to the node in "graph" that lives in "space".
3728 * If the requested node has been compressed, then "space"
3729 * corresponds to the compressed space.
3731 * First try and see if "space" is the space of an uncompressed node.
3732 * If so, return that node.
3733 * Otherwise, "space" was constructed by construct_compressed_id and
3734 * contains a user pointer pointing to the node in the tuple id.
3736 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
3737 struct isl_sched_graph *graph, __isl_keep isl_space *space)
3739 isl_id *id;
3740 struct isl_sched_node *node;
3742 if (!space)
3743 return NULL;
3745 node = graph_find_node(ctx, graph, space);
3746 if (node)
3747 return node;
3749 id = isl_space_get_tuple_id(space, isl_dim_set);
3750 node = isl_id_get_user(id);
3751 isl_id_free(id);
3753 if (!node)
3754 return NULL;
3756 if (!(node >= &graph->node[0] && node < &graph->node[graph->n]))
3757 isl_die(ctx, isl_error_internal,
3758 "space points to invalid node", return NULL);
3760 return node;
3763 /* Internal data structure for add_all_constraints.
3765 * "graph" is the schedule constraint graph for which an LP problem
3766 * is being constructed.
3767 * "carry_inter" indicates whether inter-node edges should be carried.
3768 * "pos" is the position of the next edge that needs to be carried.
3770 struct isl_add_all_constraints_data {
3771 isl_ctx *ctx;
3772 struct isl_sched_graph *graph;
3773 int carry_inter;
3774 int pos;
3777 /* Add the constraints "coef" derived from an edge from a node to itself
3778 * to data->graph->lp in order to respect the dependences and
3779 * to try and carry them.
3781 * The space of "coef" is of the form
3783 * coefficients[[c_cst, c_n] -> S[c_x]]
3785 * with S[c_x] the (compressed) space of the node.
3786 * Extract the node from the space and call add_intra_constraints.
3788 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
3790 struct isl_add_all_constraints_data *data = user;
3791 isl_space *space;
3792 struct isl_sched_node *node;
3794 space = isl_basic_set_get_space(coef);
3795 space = isl_space_range(isl_space_unwrap(space));
3796 node = graph_find_compressed_node(data->ctx, data->graph, space);
3797 isl_space_free(space);
3798 return add_intra_constraints(data->graph, node, coef, data->pos++);
3801 /* Add the constraints "coef" derived from an edge from a node j
3802 * to a node k to data->graph->lp in order to respect the dependences and
3803 * to try and carry them (provided data->carry_inter is set).
3805 * The space of "coef" is of the form
3807 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
3809 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
3810 * Extract the nodes from the space and call add_inter_constraints.
3812 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
3814 struct isl_add_all_constraints_data *data = user;
3815 isl_space *space, *dom;
3816 struct isl_sched_node *src, *dst;
3817 int pos;
3819 space = isl_basic_set_get_space(coef);
3820 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
3821 dom = isl_space_domain(isl_space_copy(space));
3822 src = graph_find_compressed_node(data->ctx, data->graph, dom);
3823 isl_space_free(dom);
3824 space = isl_space_range(space);
3825 dst = graph_find_compressed_node(data->ctx, data->graph, space);
3826 isl_space_free(space);
3828 pos = data->carry_inter ? data->pos++ : -1;
3829 return add_inter_constraints(data->graph, src, dst, coef, pos);
3832 /* Add constraints to graph->lp that force all (conditional) validity
3833 * dependences to be respected and attempt to carry them.
3834 * "intra" is the sequence of coefficient constraints for intra-node edges.
3835 * "inter" is the sequence of coefficient constraints for inter-node edges.
3836 * "carry_inter" indicates whether inter-node edges should be carried or
3837 * only respected.
3839 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
3840 __isl_keep isl_basic_set_list *intra,
3841 __isl_keep isl_basic_set_list *inter, int carry_inter)
3843 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
3845 data.pos = 0;
3846 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
3847 return isl_stat_error;
3848 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
3849 return isl_stat_error;
3850 return isl_stat_ok;
3853 /* Internal data structure for count_all_constraints
3854 * for keeping track of the number of equality and inequality constraints.
3856 struct isl_sched_count {
3857 int n_eq;
3858 int n_ineq;
3861 /* Add the number of equality and inequality constraints of "bset"
3862 * to data->n_eq and data->n_ineq.
3864 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
3866 struct isl_sched_count *data = user;
3868 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
3871 /* Count the number of equality and inequality constraints
3872 * that will be added to the carry_lp problem.
3873 * We count each edge exactly once.
3874 * "intra" is the sequence of coefficient constraints for intra-node edges.
3875 * "inter" is the sequence of coefficient constraints for inter-node edges.
3877 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
3878 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
3880 struct isl_sched_count data;
3882 data.n_eq = data.n_ineq = 0;
3883 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
3884 return isl_stat_error;
3885 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
3886 return isl_stat_error;
3888 *n_eq = data.n_eq;
3889 *n_ineq = data.n_ineq;
3891 return isl_stat_ok;
3894 /* Construct an LP problem for finding schedule coefficients
3895 * such that the schedule carries as many validity dependences as possible.
3896 * In particular, for each dependence i, we bound the dependence distance
3897 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3898 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3899 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3900 * "intra" is the sequence of coefficient constraints for intra-node edges.
3901 * "inter" is the sequence of coefficient constraints for inter-node edges.
3902 * "n_edge" is the total number of edges.
3903 * "carry_inter" indicates whether inter-node edges should be carried or
3904 * only respected. That is, if "carry_inter" is not set, then
3905 * no e_i variables are introduced for the inter-node edges.
3907 * All variables of the LP are non-negative. The actual coefficients
3908 * may be negative, so each coefficient is represented as the difference
3909 * of two non-negative variables. The negative part always appears
3910 * immediately before the positive part.
3911 * Other than that, the variables have the following order
3913 * - sum of (1 - e_i) over all edges
3914 * - sum of all c_n coefficients
3915 * (unconstrained when computing non-parametric schedules)
3916 * - sum of positive and negative parts of all c_x coefficients
3917 * - for each edge
3918 * - e_i
3919 * - for each node
3920 * - positive and negative parts of c_i_x, in opposite order
3921 * - c_i_n (if parametric)
3922 * - c_i_0
3924 * The constraints are those from the (validity) edges plus three equalities
3925 * to express the sums and n_edge inequalities to express e_i <= 1.
3927 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3928 int n_edge, __isl_keep isl_basic_set_list *intra,
3929 __isl_keep isl_basic_set_list *inter, int carry_inter)
3931 int i;
3932 int k;
3933 isl_space *dim;
3934 unsigned total;
3935 int n_eq, n_ineq;
3937 total = 3 + n_edge;
3938 for (i = 0; i < graph->n; ++i) {
3939 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3940 node->start = total;
3941 total += 1 + node->nparam + 2 * node->nvar;
3944 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
3945 return isl_stat_error;
3947 dim = isl_space_set_alloc(ctx, 0, total);
3948 isl_basic_set_free(graph->lp);
3949 n_eq += 3;
3950 n_ineq += n_edge;
3951 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3952 graph->lp = isl_basic_set_set_rational(graph->lp);
3954 k = isl_basic_set_alloc_equality(graph->lp);
3955 if (k < 0)
3956 return isl_stat_error;
3957 isl_seq_clr(graph->lp->eq[k], 1 + total);
3958 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3959 isl_int_set_si(graph->lp->eq[k][1], 1);
3960 for (i = 0; i < n_edge; ++i)
3961 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3963 if (add_param_sum_constraint(graph, 1) < 0)
3964 return isl_stat_error;
3965 if (add_var_sum_constraint(graph, 2) < 0)
3966 return isl_stat_error;
3968 for (i = 0; i < n_edge; ++i) {
3969 k = isl_basic_set_alloc_inequality(graph->lp);
3970 if (k < 0)
3971 return isl_stat_error;
3972 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3973 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3974 isl_int_set_si(graph->lp->ineq[k][0], 1);
3977 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
3978 return isl_stat_error;
3980 return isl_stat_ok;
3983 static __isl_give isl_schedule_node *compute_component_schedule(
3984 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3985 int wcc);
3987 /* If the schedule_split_scaled option is set and if the linear
3988 * parts of the scheduling rows for all nodes in the graphs have
3989 * a non-trivial common divisor, then remove this
3990 * common divisor from the linear part.
3991 * Otherwise, insert a band node directly and continue with
3992 * the construction of the schedule.
3994 * If a non-trivial common divisor is found, then
3995 * the linear part is reduced and the remainder is ignored.
3996 * The pieces of the graph that are assigned different remainders
3997 * form (groups of) strongly connected components within
3998 * the scaled down band. If needed, they can therefore
3999 * be ordered along this remainder in a sequence node.
4000 * However, this ordering is not enforced here in order to allow
4001 * the scheduler to combine some of the strongly connected components.
4003 static __isl_give isl_schedule_node *split_scaled(
4004 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4006 int i;
4007 int row;
4008 isl_ctx *ctx;
4009 isl_int gcd, gcd_i;
4011 if (!node)
4012 return NULL;
4014 ctx = isl_schedule_node_get_ctx(node);
4015 if (!ctx->opt->schedule_split_scaled)
4016 return compute_next_band(node, graph, 0);
4017 if (graph->n <= 1)
4018 return compute_next_band(node, graph, 0);
4020 isl_int_init(gcd);
4021 isl_int_init(gcd_i);
4023 isl_int_set_si(gcd, 0);
4025 row = isl_mat_rows(graph->node[0].sched) - 1;
4027 for (i = 0; i < graph->n; ++i) {
4028 struct isl_sched_node *node = &graph->node[i];
4029 int cols = isl_mat_cols(node->sched);
4031 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4032 isl_int_gcd(gcd, gcd, gcd_i);
4035 isl_int_clear(gcd_i);
4037 if (isl_int_cmp_si(gcd, 1) <= 0) {
4038 isl_int_clear(gcd);
4039 return compute_next_band(node, graph, 0);
4042 for (i = 0; i < graph->n; ++i) {
4043 struct isl_sched_node *node = &graph->node[i];
4045 isl_int_fdiv_q(node->sched->row[row][0],
4046 node->sched->row[row][0], gcd);
4047 isl_int_mul(node->sched->row[row][0],
4048 node->sched->row[row][0], gcd);
4049 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4050 if (!node->sched)
4051 goto error;
4054 isl_int_clear(gcd);
4056 return compute_next_band(node, graph, 0);
4057 error:
4058 isl_int_clear(gcd);
4059 return isl_schedule_node_free(node);
4062 /* Is the schedule row "sol" trivial on node "node"?
4063 * That is, is the solution zero on the dimensions linearly independent of
4064 * the previously found solutions?
4065 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4067 * Each coefficient is represented as the difference between
4068 * two non-negative values in "sol".
4069 * We construct the schedule row s and check if it is linearly
4070 * independent of previously computed schedule rows
4071 * by computing T s, with T the linear combinations that are zero
4072 * on linearly dependent schedule rows.
4073 * If the result consists of all zeros, then the solution is trivial.
4075 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4077 int trivial;
4078 isl_vec *node_sol;
4080 if (!sol)
4081 return -1;
4082 if (node->nvar == node->rank)
4083 return 0;
4085 node_sol = extract_var_coef(node, sol);
4086 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4087 if (!node_sol)
4088 return -1;
4090 trivial = isl_seq_first_non_zero(node_sol->el,
4091 node->nvar - node->rank) == -1;
4093 isl_vec_free(node_sol);
4095 return trivial;
4098 /* Is the schedule row "sol" trivial on any node where it should
4099 * not be trivial?
4100 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4102 static int is_any_trivial(struct isl_sched_graph *graph,
4103 __isl_keep isl_vec *sol)
4105 int i;
4107 for (i = 0; i < graph->n; ++i) {
4108 struct isl_sched_node *node = &graph->node[i];
4109 int trivial;
4111 if (!needs_row(graph, node))
4112 continue;
4113 trivial = is_trivial(node, sol);
4114 if (trivial < 0 || trivial)
4115 return trivial;
4118 return 0;
4121 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4122 * If so, return the position of the coalesced dimension.
4123 * Otherwise, return node->nvar or -1 on error.
4125 * In particular, look for pairs of coefficients c_i and c_j such that
4126 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4127 * If any such pair is found, then return i.
4128 * If size_i is infinity, then no check on c_i needs to be performed.
4130 static int find_node_coalescing(struct isl_sched_node *node,
4131 __isl_keep isl_vec *sol)
4133 int i, j;
4134 isl_int max;
4135 isl_vec *csol;
4137 if (node->nvar <= 1)
4138 return node->nvar;
4140 csol = extract_var_coef(node, sol);
4141 if (!csol)
4142 return -1;
4143 isl_int_init(max);
4144 for (i = 0; i < node->nvar; ++i) {
4145 isl_val *v;
4147 if (isl_int_is_zero(csol->el[i]))
4148 continue;
4149 v = isl_multi_val_get_val(node->sizes, i);
4150 if (!v)
4151 goto error;
4152 if (!isl_val_is_int(v)) {
4153 isl_val_free(v);
4154 continue;
4156 v = isl_val_div_ui(v, 2);
4157 v = isl_val_ceil(v);
4158 if (!v)
4159 goto error;
4160 isl_int_mul(max, v->n, csol->el[i]);
4161 isl_val_free(v);
4163 for (j = 0; j < node->nvar; ++j) {
4164 if (j == i)
4165 continue;
4166 if (isl_int_abs_gt(csol->el[j], max))
4167 break;
4169 if (j < node->nvar)
4170 break;
4173 isl_int_clear(max);
4174 isl_vec_free(csol);
4175 return i;
4176 error:
4177 isl_int_clear(max);
4178 isl_vec_free(csol);
4179 return -1;
4182 /* Force the schedule coefficient at position "pos" of "node" to be zero
4183 * in "tl".
4184 * The coefficient is encoded as the difference between two non-negative
4185 * variables. Force these two variables to have the same value.
4187 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4188 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4190 int dim;
4191 isl_ctx *ctx;
4192 isl_vec *eq;
4194 ctx = isl_space_get_ctx(node->space);
4195 dim = isl_tab_lexmin_dim(tl);
4196 if (dim < 0)
4197 return isl_tab_lexmin_free(tl);
4198 eq = isl_vec_alloc(ctx, 1 + dim);
4199 eq = isl_vec_clr(eq);
4200 if (!eq)
4201 return isl_tab_lexmin_free(tl);
4203 pos = 1 + node_var_coef_pos(node, pos);
4204 isl_int_set_si(eq->el[pos], 1);
4205 isl_int_set_si(eq->el[pos + 1], -1);
4206 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4207 isl_vec_free(eq);
4209 return tl;
4212 /* Return the lexicographically smallest rational point in the basic set
4213 * from which "tl" was constructed, double checking that this input set
4214 * was not empty.
4216 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4218 isl_vec *sol;
4220 sol = isl_tab_lexmin_get_solution(tl);
4221 if (!sol)
4222 return NULL;
4223 if (sol->size == 0)
4224 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4225 "error in schedule construction",
4226 return isl_vec_free(sol));
4227 return sol;
4230 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4231 * carry any of the "n_edge" groups of dependences?
4232 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4233 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4234 * by the edge are carried by the solution.
4235 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4236 * one of those is carried.
4238 * Note that despite the fact that the problem is solved using a rational
4239 * solver, the solution is guaranteed to be integral.
4240 * Specifically, the dependence distance lower bounds e_i (and therefore
4241 * also their sum) are integers. See Lemma 5 of [1].
4243 * Any potential denominator of the sum is cleared by this function.
4244 * The denominator is not relevant for any of the other elements
4245 * in the solution.
4247 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4248 * Problem, Part II: Multi-Dimensional Time.
4249 * In Intl. Journal of Parallel Programming, 1992.
4251 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4253 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4254 isl_int_set_si(sol->el[0], 1);
4255 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4258 /* Return the lexicographically smallest rational point in "lp",
4259 * assuming that all variables are non-negative and performing some
4260 * additional sanity checks.
4261 * If "want_integral" is set, then compute the lexicographically smallest
4262 * integer point instead.
4263 * In particular, "lp" should not be empty by construction.
4264 * Double check that this is the case.
4265 * If dependences are not carried for any of the "n_edge" edges,
4266 * then return an empty vector.
4268 * If the schedule_treat_coalescing option is set and
4269 * if the computed schedule performs loop coalescing on a given node,
4270 * i.e., if it is of the form
4272 * c_i i + c_j j + ...
4274 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4275 * to cut out this solution. Repeat this process until no more loop
4276 * coalescing occurs or until no more dependences can be carried.
4277 * In the latter case, revert to the previously computed solution.
4279 * If the caller requests an integral solution and if coalescing should
4280 * be treated, then perform the coalescing treatment first as
4281 * an integral solution computed before coalescing treatment
4282 * would carry the same number of edges and would therefore probably
4283 * also be coalescing.
4285 * To allow the coalescing treatment to be performed first,
4286 * the initial solution is allowed to be rational and it is only
4287 * cut out (if needed) in the next iteration, if no coalescing measures
4288 * were taken.
4290 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4291 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4293 int i, pos, cut;
4294 isl_ctx *ctx;
4295 isl_tab_lexmin *tl;
4296 isl_vec *sol, *prev = NULL;
4297 int treat_coalescing;
4299 if (!lp)
4300 return NULL;
4301 ctx = isl_basic_set_get_ctx(lp);
4302 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4303 tl = isl_tab_lexmin_from_basic_set(lp);
4305 cut = 0;
4306 do {
4307 int integral;
4309 if (cut)
4310 tl = isl_tab_lexmin_cut_to_integer(tl);
4311 sol = non_empty_solution(tl);
4312 if (!sol)
4313 goto error;
4315 integral = isl_int_is_one(sol->el[0]);
4316 if (!carries_dependences(sol, n_edge)) {
4317 if (!prev)
4318 prev = isl_vec_alloc(ctx, 0);
4319 isl_vec_free(sol);
4320 sol = prev;
4321 break;
4323 prev = isl_vec_free(prev);
4324 cut = want_integral && !integral;
4325 if (cut)
4326 prev = sol;
4327 if (!treat_coalescing)
4328 continue;
4329 for (i = 0; i < graph->n; ++i) {
4330 struct isl_sched_node *node = &graph->node[i];
4332 pos = find_node_coalescing(node, sol);
4333 if (pos < 0)
4334 goto error;
4335 if (pos < node->nvar)
4336 break;
4338 if (i < graph->n) {
4339 prev = sol;
4340 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4341 cut = 0;
4343 } while (prev);
4345 isl_tab_lexmin_free(tl);
4347 return sol;
4348 error:
4349 isl_tab_lexmin_free(tl);
4350 isl_vec_free(prev);
4351 isl_vec_free(sol);
4352 return NULL;
4355 /* If "edge" is an edge from a node to itself, then add the corresponding
4356 * dependence relation to "umap".
4357 * If "node" has been compressed, then the dependence relation
4358 * is also compressed first.
4360 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4361 struct isl_sched_edge *edge)
4363 isl_map *map;
4364 struct isl_sched_node *node = edge->src;
4366 if (edge->src != edge->dst)
4367 return umap;
4369 map = isl_map_copy(edge->map);
4370 if (node->compressed) {
4371 map = isl_map_preimage_domain_multi_aff(map,
4372 isl_multi_aff_copy(node->decompress));
4373 map = isl_map_preimage_range_multi_aff(map,
4374 isl_multi_aff_copy(node->decompress));
4376 umap = isl_union_map_add_map(umap, map);
4377 return umap;
4380 /* If "edge" is an edge from a node to another node, then add the corresponding
4381 * dependence relation to "umap".
4382 * If the source or destination nodes of "edge" have been compressed,
4383 * then the dependence relation is also compressed first.
4385 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4386 struct isl_sched_edge *edge)
4388 isl_map *map;
4390 if (edge->src == edge->dst)
4391 return umap;
4393 map = isl_map_copy(edge->map);
4394 if (edge->src->compressed)
4395 map = isl_map_preimage_domain_multi_aff(map,
4396 isl_multi_aff_copy(edge->src->decompress));
4397 if (edge->dst->compressed)
4398 map = isl_map_preimage_range_multi_aff(map,
4399 isl_multi_aff_copy(edge->dst->decompress));
4400 umap = isl_union_map_add_map(umap, map);
4401 return umap;
4404 /* For each (conditional) validity edge in "graph",
4405 * add the corresponding dependence relation using "add"
4406 * to a collection of dependence relations and return the result.
4407 * If "coincidence" is set, then coincidence edges are considered as well.
4409 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4410 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4411 struct isl_sched_edge *edge), int coincidence)
4413 int i;
4414 isl_space *space;
4415 isl_union_map *umap;
4417 space = isl_space_copy(graph->node[0].space);
4418 umap = isl_union_map_empty(space);
4420 for (i = 0; i < graph->n_edge; ++i) {
4421 struct isl_sched_edge *edge = &graph->edge[i];
4423 if (!is_any_validity(edge) &&
4424 (!coincidence || !is_coincidence(edge)))
4425 continue;
4427 umap = add(umap, edge);
4430 return umap;
4433 /* For each dependence relation on a (conditional) validity edge
4434 * from a node to itself,
4435 * construct the set of coefficients of valid constraints for elements
4436 * in that dependence relation and collect the results.
4437 * If "coincidence" is set, then coincidence edges are considered as well.
4439 * In particular, for each dependence relation R, constraints
4440 * on coefficients (c_0, c_n, c_x) are constructed such that
4442 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4444 * This computation is essentially the same as that performed
4445 * by intra_coefficients, except that it operates on multiple
4446 * edges together.
4448 * Note that if a dependence relation is a union of basic maps,
4449 * then each basic map needs to be treated individually as it may only
4450 * be possible to carry the dependences expressed by some of those
4451 * basic maps and not all of them.
4452 * The collected validity constraints are therefore not coalesced and
4453 * it is assumed that they are not coalesced automatically.
4454 * Duplicate basic maps can be removed, however.
4455 * In particular, if the same basic map appears as a disjunct
4456 * in multiple edges, then it only needs to be carried once.
4458 static __isl_give isl_basic_set_list *collect_intra_validity(
4459 struct isl_sched_graph *graph, int coincidence)
4461 isl_union_map *intra;
4462 isl_union_set *delta;
4463 isl_basic_set_list *list;
4465 intra = collect_validity(graph, &add_intra, coincidence);
4466 delta = isl_union_map_deltas(intra);
4467 delta = isl_union_set_remove_divs(delta);
4468 list = isl_union_set_get_basic_set_list(delta);
4469 isl_union_set_free(delta);
4471 return isl_basic_set_list_coefficients(list);
4474 /* For each dependence relation on a (conditional) validity edge
4475 * from a node to some other node,
4476 * construct the set of coefficients of valid constraints for elements
4477 * in that dependence relation and collect the results.
4478 * If "coincidence" is set, then coincidence edges are considered as well.
4480 * In particular, for each dependence relation R, constraints
4481 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
4483 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
4485 * This computation is essentially the same as that performed
4486 * by inter_coefficients, except that it operates on multiple
4487 * edges together.
4489 * Note that if a dependence relation is a union of basic maps,
4490 * then each basic map needs to be treated individually as it may only
4491 * be possible to carry the dependences expressed by some of those
4492 * basic maps and not all of them.
4493 * The collected validity constraints are therefore not coalesced and
4494 * it is assumed that they are not coalesced automatically.
4495 * Duplicate basic maps can be removed, however.
4496 * In particular, if the same basic map appears as a disjunct
4497 * in multiple edges, then it only needs to be carried once.
4499 static __isl_give isl_basic_set_list *collect_inter_validity(
4500 struct isl_sched_graph *graph, int coincidence)
4502 isl_union_map *inter;
4503 isl_union_set *wrap;
4504 isl_basic_set_list *list;
4506 inter = collect_validity(graph, &add_inter, coincidence);
4507 inter = isl_union_map_remove_divs(inter);
4508 wrap = isl_union_map_wrap(inter);
4509 list = isl_union_set_get_basic_set_list(wrap);
4510 isl_union_set_free(wrap);
4511 return isl_basic_set_list_coefficients(list);
4514 /* Construct an LP problem for finding schedule coefficients
4515 * such that the schedule carries as many of the "n_edge" groups of
4516 * dependences as possible based on the corresponding coefficient
4517 * constraints and return the lexicographically smallest non-trivial solution.
4518 * "intra" is the sequence of coefficient constraints for intra-node edges.
4519 * "inter" is the sequence of coefficient constraints for inter-node edges.
4520 * If "want_integral" is set, then compute an integral solution
4521 * for the coefficients rather than using the numerators
4522 * of a rational solution.
4523 * "carry_inter" indicates whether inter-node edges should be carried or
4524 * only respected.
4526 * If none of the "n_edge" groups can be carried
4527 * then return an empty vector.
4529 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
4530 struct isl_sched_graph *graph, int n_edge,
4531 __isl_keep isl_basic_set_list *intra,
4532 __isl_keep isl_basic_set_list *inter, int want_integral,
4533 int carry_inter)
4535 isl_basic_set *lp;
4537 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
4538 return NULL;
4540 lp = isl_basic_set_copy(graph->lp);
4541 return non_neg_lexmin(graph, lp, n_edge, want_integral);
4544 /* Construct an LP problem for finding schedule coefficients
4545 * such that the schedule carries as many of the validity dependences
4546 * as possible and
4547 * return the lexicographically smallest non-trivial solution.
4548 * If "fallback" is set, then the carrying is performed as a fallback
4549 * for the Pluto-like scheduler.
4550 * If "coincidence" is set, then try and carry coincidence edges as well.
4552 * The variable "n_edge" stores the number of groups that should be carried.
4553 * If none of the "n_edge" groups can be carried
4554 * then return an empty vector.
4555 * If, moreover, "n_edge" is zero, then the LP problem does not even
4556 * need to be constructed.
4558 * If a fallback solution is being computed, then compute an integral solution
4559 * for the coefficients rather than using the numerators
4560 * of a rational solution.
4562 * If a fallback solution is being computed, if there are any intra-node
4563 * dependences, and if requested by the user, then first try
4564 * to only carry those intra-node dependences.
4565 * If this fails to carry any dependences, then try again
4566 * with the inter-node dependences included.
4568 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
4569 struct isl_sched_graph *graph, int fallback, int coincidence)
4571 int n_intra, n_inter;
4572 int n_edge;
4573 struct isl_carry carry = { 0 };
4574 isl_vec *sol;
4576 carry.intra = collect_intra_validity(graph, coincidence);
4577 carry.inter = collect_inter_validity(graph, coincidence);
4578 if (!carry.intra || !carry.inter)
4579 goto error;
4580 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
4581 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
4583 if (fallback && n_intra > 0 &&
4584 isl_options_get_schedule_carry_self_first(ctx)) {
4585 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
4586 carry.intra, carry.inter, fallback, 0);
4587 if (!sol || sol->size != 0 || n_inter == 0) {
4588 isl_carry_clear(&carry);
4589 return sol;
4591 isl_vec_free(sol);
4594 n_edge = n_intra + n_inter;
4595 if (n_edge == 0) {
4596 isl_carry_clear(&carry);
4597 return isl_vec_alloc(ctx, 0);
4600 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
4601 carry.intra, carry.inter, fallback, 1);
4602 isl_carry_clear(&carry);
4603 return sol;
4604 error:
4605 isl_carry_clear(&carry);
4606 return NULL;
4609 /* Construct a schedule row for each node such that as many validity dependences
4610 * as possible are carried and then continue with the next band.
4611 * If "fallback" is set, then the carrying is performed as a fallback
4612 * for the Pluto-like scheduler.
4613 * If "coincidence" is set, then try and carry coincidence edges as well.
4615 * If there are no validity dependences, then no dependence can be carried and
4616 * the procedure is guaranteed to fail. If there is more than one component,
4617 * then try computing a schedule on each component separately
4618 * to prevent or at least postpone this failure.
4620 * If a schedule row is computed, then check that dependences are carried
4621 * for at least one of the edges.
4623 * If the computed schedule row turns out to be trivial on one or
4624 * more nodes where it should not be trivial, then we throw it away
4625 * and try again on each component separately.
4627 * If there is only one component, then we accept the schedule row anyway,
4628 * but we do not consider it as a complete row and therefore do not
4629 * increment graph->n_row. Note that the ranks of the nodes that
4630 * do get a non-trivial schedule part will get updated regardless and
4631 * graph->maxvar is computed based on these ranks. The test for
4632 * whether more schedule rows are required in compute_schedule_wcc
4633 * is therefore not affected.
4635 * Insert a band corresponding to the schedule row at position "node"
4636 * of the schedule tree and continue with the construction of the schedule.
4637 * This insertion and the continued construction is performed by split_scaled
4638 * after optionally checking for non-trivial common divisors.
4640 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
4641 struct isl_sched_graph *graph, int fallback, int coincidence)
4643 int trivial;
4644 isl_ctx *ctx;
4645 isl_vec *sol;
4647 if (!node)
4648 return NULL;
4650 ctx = isl_schedule_node_get_ctx(node);
4651 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
4652 if (!sol)
4653 return isl_schedule_node_free(node);
4654 if (sol->size == 0) {
4655 isl_vec_free(sol);
4656 if (graph->scc > 1)
4657 return compute_component_schedule(node, graph, 1);
4658 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
4659 return isl_schedule_node_free(node));
4662 trivial = is_any_trivial(graph, sol);
4663 if (trivial < 0) {
4664 sol = isl_vec_free(sol);
4665 } else if (trivial && graph->scc > 1) {
4666 isl_vec_free(sol);
4667 return compute_component_schedule(node, graph, 1);
4670 if (update_schedule(graph, sol, 0) < 0)
4671 return isl_schedule_node_free(node);
4672 if (trivial)
4673 graph->n_row--;
4675 return split_scaled(node, graph);
4678 /* Construct a schedule row for each node such that as many validity dependences
4679 * as possible are carried and then continue with the next band.
4680 * Do so as a fallback for the Pluto-like scheduler.
4681 * If "coincidence" is set, then try and carry coincidence edges as well.
4683 static __isl_give isl_schedule_node *carry_fallback(
4684 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4685 int coincidence)
4687 return carry(node, graph, 1, coincidence);
4690 /* Construct a schedule row for each node such that as many validity dependences
4691 * as possible are carried and then continue with the next band.
4692 * Do so for the case where the Feautrier scheduler was selected
4693 * by the user.
4695 static __isl_give isl_schedule_node *carry_feautrier(
4696 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4698 return carry(node, graph, 0, 0);
4701 /* Construct a schedule row for each node such that as many validity dependences
4702 * as possible are carried and then continue with the next band.
4703 * Do so as a fallback for the Pluto-like scheduler.
4705 static __isl_give isl_schedule_node *carry_dependences(
4706 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4708 return carry_fallback(node, graph, 0);
4711 /* Construct a schedule row for each node such that as many validity or
4712 * coincidence dependences as possible are carried and
4713 * then continue with the next band.
4714 * Do so as a fallback for the Pluto-like scheduler.
4716 static __isl_give isl_schedule_node *carry_coincidence(
4717 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4719 return carry_fallback(node, graph, 1);
4722 /* Topologically sort statements mapped to the same schedule iteration
4723 * and add insert a sequence node in front of "node"
4724 * corresponding to this order.
4725 * If "initialized" is set, then it may be assumed that compute_maxvar
4726 * has been called on the current band. Otherwise, call
4727 * compute_maxvar if and before carry_dependences gets called.
4729 * If it turns out to be impossible to sort the statements apart,
4730 * because different dependences impose different orderings
4731 * on the statements, then we extend the schedule such that
4732 * it carries at least one more dependence.
4734 static __isl_give isl_schedule_node *sort_statements(
4735 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4736 int initialized)
4738 isl_ctx *ctx;
4739 isl_union_set_list *filters;
4741 if (!node)
4742 return NULL;
4744 ctx = isl_schedule_node_get_ctx(node);
4745 if (graph->n < 1)
4746 isl_die(ctx, isl_error_internal,
4747 "graph should have at least one node",
4748 return isl_schedule_node_free(node));
4750 if (graph->n == 1)
4751 return node;
4753 if (update_edges(ctx, graph) < 0)
4754 return isl_schedule_node_free(node);
4756 if (graph->n_edge == 0)
4757 return node;
4759 if (detect_sccs(ctx, graph) < 0)
4760 return isl_schedule_node_free(node);
4762 next_band(graph);
4763 if (graph->scc < graph->n) {
4764 if (!initialized && compute_maxvar(graph) < 0)
4765 return isl_schedule_node_free(node);
4766 return carry_dependences(node, graph);
4769 filters = extract_sccs(ctx, graph);
4770 node = isl_schedule_node_insert_sequence(node, filters);
4772 return node;
4775 /* Are there any (non-empty) (conditional) validity edges in the graph?
4777 static int has_validity_edges(struct isl_sched_graph *graph)
4779 int i;
4781 for (i = 0; i < graph->n_edge; ++i) {
4782 int empty;
4784 empty = isl_map_plain_is_empty(graph->edge[i].map);
4785 if (empty < 0)
4786 return -1;
4787 if (empty)
4788 continue;
4789 if (is_any_validity(&graph->edge[i]))
4790 return 1;
4793 return 0;
4796 /* Should we apply a Feautrier step?
4797 * That is, did the user request the Feautrier algorithm and are
4798 * there any validity dependences (left)?
4800 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4802 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4803 return 0;
4805 return has_validity_edges(graph);
4808 /* Compute a schedule for a connected dependence graph using Feautrier's
4809 * multi-dimensional scheduling algorithm and return the updated schedule node.
4811 * The original algorithm is described in [1].
4812 * The main idea is to minimize the number of scheduling dimensions, by
4813 * trying to satisfy as many dependences as possible per scheduling dimension.
4815 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4816 * Problem, Part II: Multi-Dimensional Time.
4817 * In Intl. Journal of Parallel Programming, 1992.
4819 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4820 isl_schedule_node *node, struct isl_sched_graph *graph)
4822 return carry_feautrier(node, graph);
4825 /* Turn off the "local" bit on all (condition) edges.
4827 static void clear_local_edges(struct isl_sched_graph *graph)
4829 int i;
4831 for (i = 0; i < graph->n_edge; ++i)
4832 if (is_condition(&graph->edge[i]))
4833 clear_local(&graph->edge[i]);
4836 /* Does "graph" have both condition and conditional validity edges?
4838 static int need_condition_check(struct isl_sched_graph *graph)
4840 int i;
4841 int any_condition = 0;
4842 int any_conditional_validity = 0;
4844 for (i = 0; i < graph->n_edge; ++i) {
4845 if (is_condition(&graph->edge[i]))
4846 any_condition = 1;
4847 if (is_conditional_validity(&graph->edge[i]))
4848 any_conditional_validity = 1;
4851 return any_condition && any_conditional_validity;
4854 /* Does "graph" contain any coincidence edge?
4856 static int has_any_coincidence(struct isl_sched_graph *graph)
4858 int i;
4860 for (i = 0; i < graph->n_edge; ++i)
4861 if (is_coincidence(&graph->edge[i]))
4862 return 1;
4864 return 0;
4867 /* Extract the final schedule row as a map with the iteration domain
4868 * of "node" as domain.
4870 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4872 isl_multi_aff *ma;
4873 int row;
4875 row = isl_mat_rows(node->sched) - 1;
4876 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4877 return isl_map_from_multi_aff(ma);
4880 /* Is the conditional validity dependence in the edge with index "edge_index"
4881 * violated by the latest (i.e., final) row of the schedule?
4882 * That is, is i scheduled after j
4883 * for any conditional validity dependence i -> j?
4885 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4887 isl_map *src_sched, *dst_sched, *map;
4888 struct isl_sched_edge *edge = &graph->edge[edge_index];
4889 int empty;
4891 src_sched = final_row(edge->src);
4892 dst_sched = final_row(edge->dst);
4893 map = isl_map_copy(edge->map);
4894 map = isl_map_apply_domain(map, src_sched);
4895 map = isl_map_apply_range(map, dst_sched);
4896 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4897 empty = isl_map_is_empty(map);
4898 isl_map_free(map);
4900 if (empty < 0)
4901 return -1;
4903 return !empty;
4906 /* Does "graph" have any satisfied condition edges that
4907 * are adjacent to the conditional validity constraint with
4908 * domain "conditional_source" and range "conditional_sink"?
4910 * A satisfied condition is one that is not local.
4911 * If a condition was forced to be local already (i.e., marked as local)
4912 * then there is no need to check if it is in fact local.
4914 * Additionally, mark all adjacent condition edges found as local.
4916 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4917 __isl_keep isl_union_set *conditional_source,
4918 __isl_keep isl_union_set *conditional_sink)
4920 int i;
4921 int any = 0;
4923 for (i = 0; i < graph->n_edge; ++i) {
4924 int adjacent, local;
4925 isl_union_map *condition;
4927 if (!is_condition(&graph->edge[i]))
4928 continue;
4929 if (is_local(&graph->edge[i]))
4930 continue;
4932 condition = graph->edge[i].tagged_condition;
4933 adjacent = domain_intersects(condition, conditional_sink);
4934 if (adjacent >= 0 && !adjacent)
4935 adjacent = range_intersects(condition,
4936 conditional_source);
4937 if (adjacent < 0)
4938 return -1;
4939 if (!adjacent)
4940 continue;
4942 set_local(&graph->edge[i]);
4944 local = is_condition_false(&graph->edge[i]);
4945 if (local < 0)
4946 return -1;
4947 if (!local)
4948 any = 1;
4951 return any;
4954 /* Are there any violated conditional validity dependences with
4955 * adjacent condition dependences that are not local with respect
4956 * to the current schedule?
4957 * That is, is the conditional validity constraint violated?
4959 * Additionally, mark all those adjacent condition dependences as local.
4960 * We also mark those adjacent condition dependences that were not marked
4961 * as local before, but just happened to be local already. This ensures
4962 * that they remain local if the schedule is recomputed.
4964 * We first collect domain and range of all violated conditional validity
4965 * dependences and then check if there are any adjacent non-local
4966 * condition dependences.
4968 static int has_violated_conditional_constraint(isl_ctx *ctx,
4969 struct isl_sched_graph *graph)
4971 int i;
4972 int any = 0;
4973 isl_union_set *source, *sink;
4975 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4976 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4977 for (i = 0; i < graph->n_edge; ++i) {
4978 isl_union_set *uset;
4979 isl_union_map *umap;
4980 int violated;
4982 if (!is_conditional_validity(&graph->edge[i]))
4983 continue;
4985 violated = is_violated(graph, i);
4986 if (violated < 0)
4987 goto error;
4988 if (!violated)
4989 continue;
4991 any = 1;
4993 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4994 uset = isl_union_map_domain(umap);
4995 source = isl_union_set_union(source, uset);
4996 source = isl_union_set_coalesce(source);
4998 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4999 uset = isl_union_map_range(umap);
5000 sink = isl_union_set_union(sink, uset);
5001 sink = isl_union_set_coalesce(sink);
5004 if (any)
5005 any = has_adjacent_true_conditions(graph, source, sink);
5007 isl_union_set_free(source);
5008 isl_union_set_free(sink);
5009 return any;
5010 error:
5011 isl_union_set_free(source);
5012 isl_union_set_free(sink);
5013 return -1;
5016 /* Examine the current band (the rows between graph->band_start and
5017 * graph->n_total_row), deciding whether to drop it or add it to "node"
5018 * and then continue with the computation of the next band, if any.
5019 * If "initialized" is set, then it may be assumed that compute_maxvar
5020 * has been called on the current band. Otherwise, call
5021 * compute_maxvar if and before carry_dependences gets called.
5023 * The caller keeps looking for a new row as long as
5024 * graph->n_row < graph->maxvar. If the latest attempt to find
5025 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5026 * then we either
5027 * - split between SCCs and start over (assuming we found an interesting
5028 * pair of SCCs between which to split)
5029 * - continue with the next band (assuming the current band has at least
5030 * one row)
5031 * - if there is more than one SCC left, then split along all SCCs
5032 * - if outer coincidence needs to be enforced, then try to carry as many
5033 * validity or coincidence dependences as possible and
5034 * continue with the next band
5035 * - try to carry as many validity dependences as possible and
5036 * continue with the next band
5037 * In each case, we first insert a band node in the schedule tree
5038 * if any rows have been computed.
5040 * If the caller managed to complete the schedule, we insert a band node
5041 * (if any schedule rows were computed) and we finish off by topologically
5042 * sorting the statements based on the remaining dependences.
5044 static __isl_give isl_schedule_node *compute_schedule_finish_band(
5045 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5046 int initialized)
5048 int insert;
5050 if (!node)
5051 return NULL;
5053 if (graph->n_row < graph->maxvar) {
5054 isl_ctx *ctx;
5055 int empty = graph->n_total_row == graph->band_start;
5057 ctx = isl_schedule_node_get_ctx(node);
5058 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5059 return compute_next_band(node, graph, 1);
5060 if (graph->src_scc >= 0)
5061 return compute_split_schedule(node, graph);
5062 if (!empty)
5063 return compute_next_band(node, graph, 1);
5064 if (graph->scc > 1)
5065 return compute_component_schedule(node, graph, 1);
5066 if (!initialized && compute_maxvar(graph) < 0)
5067 return isl_schedule_node_free(node);
5068 if (isl_options_get_schedule_outer_coincidence(ctx))
5069 return carry_coincidence(node, graph);
5070 return carry_dependences(node, graph);
5073 insert = graph->n_total_row > graph->band_start;
5074 if (insert) {
5075 node = insert_current_band(node, graph, 1);
5076 node = isl_schedule_node_child(node, 0);
5078 node = sort_statements(node, graph, initialized);
5079 if (insert)
5080 node = isl_schedule_node_parent(node);
5082 return node;
5085 /* Construct a band of schedule rows for a connected dependence graph.
5086 * The caller is responsible for determining the strongly connected
5087 * components and calling compute_maxvar first.
5089 * We try to find a sequence of as many schedule rows as possible that result
5090 * in non-negative dependence distances (independent of the previous rows
5091 * in the sequence, i.e., such that the sequence is tilable), with as
5092 * many of the initial rows as possible satisfying the coincidence constraints.
5093 * The computation stops if we can't find any more rows or if we have found
5094 * all the rows we wanted to find.
5096 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5097 * outermost dimension to satisfy the coincidence constraints. If this
5098 * turns out to be impossible, we fall back on the general scheme above
5099 * and try to carry as many dependences as possible.
5101 * If "graph" contains both condition and conditional validity dependences,
5102 * then we need to check that that the conditional schedule constraint
5103 * is satisfied, i.e., there are no violated conditional validity dependences
5104 * that are adjacent to any non-local condition dependences.
5105 * If there are, then we mark all those adjacent condition dependences
5106 * as local and recompute the current band. Those dependences that
5107 * are marked local will then be forced to be local.
5108 * The initial computation is performed with no dependences marked as local.
5109 * If we are lucky, then there will be no violated conditional validity
5110 * dependences adjacent to any non-local condition dependences.
5111 * Otherwise, we mark some additional condition dependences as local and
5112 * recompute. We continue this process until there are no violations left or
5113 * until we are no longer able to compute a schedule.
5114 * Since there are only a finite number of dependences,
5115 * there will only be a finite number of iterations.
5117 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
5118 struct isl_sched_graph *graph)
5120 int has_coincidence;
5121 int use_coincidence;
5122 int force_coincidence = 0;
5123 int check_conditional;
5125 if (sort_sccs(graph) < 0)
5126 return isl_stat_error;
5128 clear_local_edges(graph);
5129 check_conditional = need_condition_check(graph);
5130 has_coincidence = has_any_coincidence(graph);
5132 if (ctx->opt->schedule_outer_coincidence)
5133 force_coincidence = 1;
5135 use_coincidence = has_coincidence;
5136 while (graph->n_row < graph->maxvar) {
5137 isl_vec *sol;
5138 int violated;
5139 int coincident;
5141 graph->src_scc = -1;
5142 graph->dst_scc = -1;
5144 if (setup_lp(ctx, graph, use_coincidence) < 0)
5145 return isl_stat_error;
5146 sol = solve_lp(ctx, graph);
5147 if (!sol)
5148 return isl_stat_error;
5149 if (sol->size == 0) {
5150 int empty = graph->n_total_row == graph->band_start;
5152 isl_vec_free(sol);
5153 if (use_coincidence && (!force_coincidence || !empty)) {
5154 use_coincidence = 0;
5155 continue;
5157 return isl_stat_ok;
5159 coincident = !has_coincidence || use_coincidence;
5160 if (update_schedule(graph, sol, coincident) < 0)
5161 return isl_stat_error;
5163 if (!check_conditional)
5164 continue;
5165 violated = has_violated_conditional_constraint(ctx, graph);
5166 if (violated < 0)
5167 return isl_stat_error;
5168 if (!violated)
5169 continue;
5170 if (reset_band(graph) < 0)
5171 return isl_stat_error;
5172 use_coincidence = has_coincidence;
5175 return isl_stat_ok;
5178 /* Compute a schedule for a connected dependence graph by considering
5179 * the graph as a whole and return the updated schedule node.
5181 * The actual schedule rows of the current band are computed by
5182 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5183 * care of integrating the band into "node" and continuing
5184 * the computation.
5186 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5187 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5189 isl_ctx *ctx;
5191 if (!node)
5192 return NULL;
5194 ctx = isl_schedule_node_get_ctx(node);
5195 if (compute_schedule_wcc_band(ctx, graph) < 0)
5196 return isl_schedule_node_free(node);
5198 return compute_schedule_finish_band(node, graph, 1);
5201 /* Clustering information used by compute_schedule_wcc_clustering.
5203 * "n" is the number of SCCs in the original dependence graph
5204 * "scc" is an array of "n" elements, each representing an SCC
5205 * of the original dependence graph. All entries in the same cluster
5206 * have the same number of schedule rows.
5207 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5208 * where each cluster is represented by the index of the first SCC
5209 * in the cluster. Initially, each SCC belongs to a cluster containing
5210 * only that SCC.
5212 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5213 * track of which SCCs need to be merged.
5215 * "cluster" contains the merged clusters of SCCs after the clustering
5216 * has completed.
5218 * "scc_node" is a temporary data structure used inside copy_partial.
5219 * For each SCC, it keeps track of the number of nodes in the SCC
5220 * that have already been copied.
5222 struct isl_clustering {
5223 int n;
5224 struct isl_sched_graph *scc;
5225 struct isl_sched_graph *cluster;
5226 int *scc_cluster;
5227 int *scc_node;
5228 int *scc_in_merge;
5231 /* Initialize the clustering data structure "c" from "graph".
5233 * In particular, allocate memory, extract the SCCs from "graph"
5234 * into c->scc, initialize scc_cluster and construct
5235 * a band of schedule rows for each SCC.
5236 * Within each SCC, there is only one SCC by definition.
5237 * Each SCC initially belongs to a cluster containing only that SCC.
5239 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
5240 struct isl_sched_graph *graph)
5242 int i;
5244 c->n = graph->scc;
5245 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5246 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
5247 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
5248 c->scc_node = isl_calloc_array(ctx, int, c->n);
5249 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
5250 if (!c->scc || !c->cluster ||
5251 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
5252 return isl_stat_error;
5254 for (i = 0; i < c->n; ++i) {
5255 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
5256 &edge_scc_exactly, i, &c->scc[i]) < 0)
5257 return isl_stat_error;
5258 c->scc[i].scc = 1;
5259 if (compute_maxvar(&c->scc[i]) < 0)
5260 return isl_stat_error;
5261 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
5262 return isl_stat_error;
5263 c->scc_cluster[i] = i;
5266 return isl_stat_ok;
5269 /* Free all memory allocated for "c".
5271 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
5273 int i;
5275 if (c->scc)
5276 for (i = 0; i < c->n; ++i)
5277 graph_free(ctx, &c->scc[i]);
5278 free(c->scc);
5279 if (c->cluster)
5280 for (i = 0; i < c->n; ++i)
5281 graph_free(ctx, &c->cluster[i]);
5282 free(c->cluster);
5283 free(c->scc_cluster);
5284 free(c->scc_node);
5285 free(c->scc_in_merge);
5288 /* Should we refrain from merging the cluster in "graph" with
5289 * any other cluster?
5290 * In particular, is its current schedule band empty and incomplete.
5292 static int bad_cluster(struct isl_sched_graph *graph)
5294 return graph->n_row < graph->maxvar &&
5295 graph->n_total_row == graph->band_start;
5298 /* Is "edge" a proximity edge with a non-empty dependence relation?
5300 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
5302 if (!is_proximity(edge))
5303 return isl_bool_false;
5304 return isl_bool_not(isl_map_plain_is_empty(edge->map));
5307 /* Return the index of an edge in "graph" that can be used to merge
5308 * two clusters in "c".
5309 * Return graph->n_edge if no such edge can be found.
5310 * Return -1 on error.
5312 * In particular, return a proximity edge between two clusters
5313 * that is not marked "no_merge" and such that neither of the
5314 * two clusters has an incomplete, empty band.
5316 * If there are multiple such edges, then try and find the most
5317 * appropriate edge to use for merging. In particular, pick the edge
5318 * with the greatest weight. If there are multiple of those,
5319 * then pick one with the shortest distance between
5320 * the two cluster representatives.
5322 static int find_proximity(struct isl_sched_graph *graph,
5323 struct isl_clustering *c)
5325 int i, best = graph->n_edge, best_dist, best_weight;
5327 for (i = 0; i < graph->n_edge; ++i) {
5328 struct isl_sched_edge *edge = &graph->edge[i];
5329 int dist, weight;
5330 isl_bool prox;
5332 prox = is_non_empty_proximity(edge);
5333 if (prox < 0)
5334 return -1;
5335 if (!prox)
5336 continue;
5337 if (edge->no_merge)
5338 continue;
5339 if (bad_cluster(&c->scc[edge->src->scc]) ||
5340 bad_cluster(&c->scc[edge->dst->scc]))
5341 continue;
5342 dist = c->scc_cluster[edge->dst->scc] -
5343 c->scc_cluster[edge->src->scc];
5344 if (dist == 0)
5345 continue;
5346 weight = edge->weight;
5347 if (best < graph->n_edge) {
5348 if (best_weight > weight)
5349 continue;
5350 if (best_weight == weight && best_dist <= dist)
5351 continue;
5353 best = i;
5354 best_dist = dist;
5355 best_weight = weight;
5358 return best;
5361 /* Internal data structure used in mark_merge_sccs.
5363 * "graph" is the dependence graph in which a strongly connected
5364 * component is constructed.
5365 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5366 * "src" and "dst" are the indices of the nodes that are being merged.
5368 struct isl_mark_merge_sccs_data {
5369 struct isl_sched_graph *graph;
5370 int *scc_cluster;
5371 int src;
5372 int dst;
5375 /* Check whether the cluster containing node "i" depends on the cluster
5376 * containing node "j". If "i" and "j" belong to the same cluster,
5377 * then they are taken to depend on each other to ensure that
5378 * the resulting strongly connected component consists of complete
5379 * clusters. Furthermore, if "i" and "j" are the two nodes that
5380 * are being merged, then they are taken to depend on each other as well.
5381 * Otherwise, check if there is a (conditional) validity dependence
5382 * from node[j] to node[i], forcing node[i] to follow node[j].
5384 static isl_bool cluster_follows(int i, int j, void *user)
5386 struct isl_mark_merge_sccs_data *data = user;
5387 struct isl_sched_graph *graph = data->graph;
5388 int *scc_cluster = data->scc_cluster;
5390 if (data->src == i && data->dst == j)
5391 return isl_bool_true;
5392 if (data->src == j && data->dst == i)
5393 return isl_bool_true;
5394 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
5395 return isl_bool_true;
5397 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5400 /* Mark all SCCs that belong to either of the two clusters in "c"
5401 * connected by the edge in "graph" with index "edge", or to any
5402 * of the intermediate clusters.
5403 * The marking is recorded in c->scc_in_merge.
5405 * The given edge has been selected for merging two clusters,
5406 * meaning that there is at least a proximity edge between the two nodes.
5407 * However, there may also be (indirect) validity dependences
5408 * between the two nodes. When merging the two clusters, all clusters
5409 * containing one or more of the intermediate nodes along the
5410 * indirect validity dependences need to be merged in as well.
5412 * First collect all such nodes by computing the strongly connected
5413 * component (SCC) containing the two nodes connected by the edge, where
5414 * the two nodes are considered to depend on each other to make
5415 * sure they end up in the same SCC. Similarly, each node is considered
5416 * to depend on every other node in the same cluster to ensure
5417 * that the SCC consists of complete clusters.
5419 * Then the original SCCs that contain any of these nodes are marked
5420 * in c->scc_in_merge.
5422 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
5423 int edge, struct isl_clustering *c)
5425 struct isl_mark_merge_sccs_data data;
5426 struct isl_tarjan_graph *g;
5427 int i;
5429 for (i = 0; i < c->n; ++i)
5430 c->scc_in_merge[i] = 0;
5432 data.graph = graph;
5433 data.scc_cluster = c->scc_cluster;
5434 data.src = graph->edge[edge].src - graph->node;
5435 data.dst = graph->edge[edge].dst - graph->node;
5437 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
5438 &cluster_follows, &data);
5439 if (!g)
5440 goto error;
5442 i = g->op;
5443 if (i < 3)
5444 isl_die(ctx, isl_error_internal,
5445 "expecting at least two nodes in component",
5446 goto error);
5447 if (g->order[--i] != -1)
5448 isl_die(ctx, isl_error_internal,
5449 "expecting end of component marker", goto error);
5451 for (--i; i >= 0 && g->order[i] != -1; --i) {
5452 int scc = graph->node[g->order[i]].scc;
5453 c->scc_in_merge[scc] = 1;
5456 isl_tarjan_graph_free(g);
5457 return isl_stat_ok;
5458 error:
5459 isl_tarjan_graph_free(g);
5460 return isl_stat_error;
5463 /* Construct the identifier "cluster_i".
5465 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
5467 char name[40];
5469 snprintf(name, sizeof(name), "cluster_%d", i);
5470 return isl_id_alloc(ctx, name, NULL);
5473 /* Construct the space of the cluster with index "i" containing
5474 * the strongly connected component "scc".
5476 * In particular, construct a space called cluster_i with dimension equal
5477 * to the number of schedule rows in the current band of "scc".
5479 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
5481 int nvar;
5482 isl_space *space;
5483 isl_id *id;
5485 nvar = scc->n_total_row - scc->band_start;
5486 space = isl_space_copy(scc->node[0].space);
5487 space = isl_space_params(space);
5488 space = isl_space_set_from_params(space);
5489 space = isl_space_add_dims(space, isl_dim_set, nvar);
5490 id = cluster_id(isl_space_get_ctx(space), i);
5491 space = isl_space_set_tuple_id(space, isl_dim_set, id);
5493 return space;
5496 /* Collect the domain of the graph for merging clusters.
5498 * In particular, for each cluster with first SCC "i", construct
5499 * a set in the space called cluster_i with dimension equal
5500 * to the number of schedule rows in the current band of the cluster.
5502 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
5503 struct isl_sched_graph *graph, struct isl_clustering *c)
5505 int i;
5506 isl_space *space;
5507 isl_union_set *domain;
5509 space = isl_space_params_alloc(ctx, 0);
5510 domain = isl_union_set_empty(space);
5512 for (i = 0; i < graph->scc; ++i) {
5513 isl_space *space;
5515 if (!c->scc_in_merge[i])
5516 continue;
5517 if (c->scc_cluster[i] != i)
5518 continue;
5519 space = cluster_space(&c->scc[i], i);
5520 domain = isl_union_set_add_set(domain, isl_set_universe(space));
5523 return domain;
5526 /* Construct a map from the original instances to the corresponding
5527 * cluster instance in the current bands of the clusters in "c".
5529 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
5530 struct isl_sched_graph *graph, struct isl_clustering *c)
5532 int i, j;
5533 isl_space *space;
5534 isl_union_map *cluster_map;
5536 space = isl_space_params_alloc(ctx, 0);
5537 cluster_map = isl_union_map_empty(space);
5538 for (i = 0; i < graph->scc; ++i) {
5539 int start, n;
5540 isl_id *id;
5542 if (!c->scc_in_merge[i])
5543 continue;
5545 id = cluster_id(ctx, c->scc_cluster[i]);
5546 start = c->scc[i].band_start;
5547 n = c->scc[i].n_total_row - start;
5548 for (j = 0; j < c->scc[i].n; ++j) {
5549 isl_multi_aff *ma;
5550 isl_map *map;
5551 struct isl_sched_node *node = &c->scc[i].node[j];
5553 ma = node_extract_partial_schedule_multi_aff(node,
5554 start, n);
5555 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5556 isl_id_copy(id));
5557 map = isl_map_from_multi_aff(ma);
5558 cluster_map = isl_union_map_add_map(cluster_map, map);
5560 isl_id_free(id);
5563 return cluster_map;
5566 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5567 * that are not isl_edge_condition or isl_edge_conditional_validity.
5569 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5570 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5571 __isl_take isl_schedule_constraints *sc)
5573 enum isl_edge_type t;
5575 if (!sc)
5576 return NULL;
5578 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5579 if (t == isl_edge_condition ||
5580 t == isl_edge_conditional_validity)
5581 continue;
5582 if (!is_type(edge, t))
5583 continue;
5584 sc = isl_schedule_constraints_add(sc, t,
5585 isl_union_map_copy(umap));
5588 return sc;
5591 /* Add schedule constraints of types isl_edge_condition and
5592 * isl_edge_conditional_validity to "sc" by applying "umap" to
5593 * the domains of the wrapped relations in domain and range
5594 * of the corresponding tagged constraints of "edge".
5596 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5597 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5598 __isl_take isl_schedule_constraints *sc)
5600 enum isl_edge_type t;
5601 isl_union_map *tagged;
5603 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5604 if (!is_type(edge, t))
5605 continue;
5606 if (t == isl_edge_condition)
5607 tagged = isl_union_map_copy(edge->tagged_condition);
5608 else
5609 tagged = isl_union_map_copy(edge->tagged_validity);
5610 tagged = isl_union_map_zip(tagged);
5611 tagged = isl_union_map_apply_domain(tagged,
5612 isl_union_map_copy(umap));
5613 tagged = isl_union_map_zip(tagged);
5614 sc = isl_schedule_constraints_add(sc, t, tagged);
5615 if (!sc)
5616 return NULL;
5619 return sc;
5622 /* Given a mapping "cluster_map" from the original instances to
5623 * the cluster instances, add schedule constraints on the clusters
5624 * to "sc" corresponding to the original constraints represented by "edge".
5626 * For non-tagged dependence constraints, the cluster constraints
5627 * are obtained by applying "cluster_map" to the edge->map.
5629 * For tagged dependence constraints, "cluster_map" needs to be applied
5630 * to the domains of the wrapped relations in domain and range
5631 * of the tagged dependence constraints. Pick out the mappings
5632 * from these domains from "cluster_map" and construct their product.
5633 * This mapping can then be applied to the pair of domains.
5635 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5636 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5637 __isl_take isl_schedule_constraints *sc)
5639 isl_union_map *umap;
5640 isl_space *space;
5641 isl_union_set *uset;
5642 isl_union_map *umap1, *umap2;
5644 if (!sc)
5645 return NULL;
5647 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5648 umap = isl_union_map_apply_domain(umap,
5649 isl_union_map_copy(cluster_map));
5650 umap = isl_union_map_apply_range(umap,
5651 isl_union_map_copy(cluster_map));
5652 sc = add_non_conditional_constraints(edge, umap, sc);
5653 isl_union_map_free(umap);
5655 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5656 return sc;
5658 space = isl_space_domain(isl_map_get_space(edge->map));
5659 uset = isl_union_set_from_set(isl_set_universe(space));
5660 umap1 = isl_union_map_copy(cluster_map);
5661 umap1 = isl_union_map_intersect_domain(umap1, uset);
5662 space = isl_space_range(isl_map_get_space(edge->map));
5663 uset = isl_union_set_from_set(isl_set_universe(space));
5664 umap2 = isl_union_map_copy(cluster_map);
5665 umap2 = isl_union_map_intersect_domain(umap2, uset);
5666 umap = isl_union_map_product(umap1, umap2);
5668 sc = add_conditional_constraints(edge, umap, sc);
5670 isl_union_map_free(umap);
5671 return sc;
5674 /* Given a mapping "cluster_map" from the original instances to
5675 * the cluster instances, add schedule constraints on the clusters
5676 * to "sc" corresponding to all edges in "graph" between nodes that
5677 * belong to SCCs that are marked for merging in "scc_in_merge".
5679 static __isl_give isl_schedule_constraints *collect_constraints(
5680 struct isl_sched_graph *graph, int *scc_in_merge,
5681 __isl_keep isl_union_map *cluster_map,
5682 __isl_take isl_schedule_constraints *sc)
5684 int i;
5686 for (i = 0; i < graph->n_edge; ++i) {
5687 struct isl_sched_edge *edge = &graph->edge[i];
5689 if (!scc_in_merge[edge->src->scc])
5690 continue;
5691 if (!scc_in_merge[edge->dst->scc])
5692 continue;
5693 sc = collect_edge_constraints(edge, cluster_map, sc);
5696 return sc;
5699 /* Construct a dependence graph for scheduling clusters with respect
5700 * to each other and store the result in "merge_graph".
5701 * In particular, the nodes of the graph correspond to the schedule
5702 * dimensions of the current bands of those clusters that have been
5703 * marked for merging in "c".
5705 * First construct an isl_schedule_constraints object for this domain
5706 * by transforming the edges in "graph" to the domain.
5707 * Then initialize a dependence graph for scheduling from these
5708 * constraints.
5710 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5711 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5713 isl_union_set *domain;
5714 isl_union_map *cluster_map;
5715 isl_schedule_constraints *sc;
5716 isl_stat r;
5718 domain = collect_domain(ctx, graph, c);
5719 sc = isl_schedule_constraints_on_domain(domain);
5720 if (!sc)
5721 return isl_stat_error;
5722 cluster_map = collect_cluster_map(ctx, graph, c);
5723 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5724 isl_union_map_free(cluster_map);
5726 r = graph_init(merge_graph, sc);
5728 isl_schedule_constraints_free(sc);
5730 return r;
5733 /* Compute the maximal number of remaining schedule rows that still need
5734 * to be computed for the nodes that belong to clusters with the maximal
5735 * dimension for the current band (i.e., the band that is to be merged).
5736 * Only clusters that are about to be merged are considered.
5737 * "maxvar" is the maximal dimension for the current band.
5738 * "c" contains information about the clusters.
5740 * Return the maximal number of remaining schedule rows or -1 on error.
5742 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5744 int i, j;
5745 int max_slack;
5747 max_slack = 0;
5748 for (i = 0; i < c->n; ++i) {
5749 int nvar;
5750 struct isl_sched_graph *scc;
5752 if (!c->scc_in_merge[i])
5753 continue;
5754 scc = &c->scc[i];
5755 nvar = scc->n_total_row - scc->band_start;
5756 if (nvar != maxvar)
5757 continue;
5758 for (j = 0; j < scc->n; ++j) {
5759 struct isl_sched_node *node = &scc->node[j];
5760 int slack;
5762 if (node_update_vmap(node) < 0)
5763 return -1;
5764 slack = node->nvar - node->rank;
5765 if (slack > max_slack)
5766 max_slack = slack;
5770 return max_slack;
5773 /* If there are any clusters where the dimension of the current band
5774 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5775 * if there are any nodes in such a cluster where the number
5776 * of remaining schedule rows that still need to be computed
5777 * is greater than "max_slack", then return the smallest current band
5778 * dimension of all these clusters. Otherwise return the original value
5779 * of "maxvar". Return -1 in case of any error.
5780 * Only clusters that are about to be merged are considered.
5781 * "c" contains information about the clusters.
5783 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5784 struct isl_clustering *c)
5786 int i, j;
5788 for (i = 0; i < c->n; ++i) {
5789 int nvar;
5790 struct isl_sched_graph *scc;
5792 if (!c->scc_in_merge[i])
5793 continue;
5794 scc = &c->scc[i];
5795 nvar = scc->n_total_row - scc->band_start;
5796 if (nvar >= maxvar)
5797 continue;
5798 for (j = 0; j < scc->n; ++j) {
5799 struct isl_sched_node *node = &scc->node[j];
5800 int slack;
5802 if (node_update_vmap(node) < 0)
5803 return -1;
5804 slack = node->nvar - node->rank;
5805 if (slack > max_slack) {
5806 maxvar = nvar;
5807 break;
5812 return maxvar;
5815 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5816 * that still need to be computed. In particular, if there is a node
5817 * in a cluster where the dimension of the current band is smaller
5818 * than merge_graph->maxvar, but the number of remaining schedule rows
5819 * is greater than that of any node in a cluster with the maximal
5820 * dimension for the current band (i.e., merge_graph->maxvar),
5821 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5822 * of those clusters. Without this adjustment, the total number of
5823 * schedule dimensions would be increased, resulting in a skewed view
5824 * of the number of coincident dimensions.
5825 * "c" contains information about the clusters.
5827 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5828 * then there is no point in attempting any merge since it will be rejected
5829 * anyway. Set merge_graph->maxvar to zero in such cases.
5831 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5832 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5834 int max_slack, maxvar;
5836 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5837 if (max_slack < 0)
5838 return isl_stat_error;
5839 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5840 if (maxvar < 0)
5841 return isl_stat_error;
5843 if (maxvar < merge_graph->maxvar) {
5844 if (isl_options_get_schedule_maximize_band_depth(ctx))
5845 merge_graph->maxvar = 0;
5846 else
5847 merge_graph->maxvar = maxvar;
5850 return isl_stat_ok;
5853 /* Return the number of coincident dimensions in the current band of "graph",
5854 * where the nodes of "graph" are assumed to be scheduled by a single band.
5856 static int get_n_coincident(struct isl_sched_graph *graph)
5858 int i;
5860 for (i = graph->band_start; i < graph->n_total_row; ++i)
5861 if (!graph->node[0].coincident[i])
5862 break;
5864 return i - graph->band_start;
5867 /* Should the clusters be merged based on the cluster schedule
5868 * in the current (and only) band of "merge_graph", given that
5869 * coincidence should be maximized?
5871 * If the number of coincident schedule dimensions in the merged band
5872 * would be less than the maximal number of coincident schedule dimensions
5873 * in any of the merged clusters, then the clusters should not be merged.
5875 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5876 struct isl_sched_graph *merge_graph)
5878 int i;
5879 int n_coincident;
5880 int max_coincident;
5882 max_coincident = 0;
5883 for (i = 0; i < c->n; ++i) {
5884 if (!c->scc_in_merge[i])
5885 continue;
5886 n_coincident = get_n_coincident(&c->scc[i]);
5887 if (n_coincident > max_coincident)
5888 max_coincident = n_coincident;
5891 n_coincident = get_n_coincident(merge_graph);
5893 return n_coincident >= max_coincident;
5896 /* Return the transformation on "node" expressed by the current (and only)
5897 * band of "merge_graph" applied to the clusters in "c".
5899 * First find the representation of "node" in its SCC in "c" and
5900 * extract the transformation expressed by the current band.
5901 * Then extract the transformation applied by "merge_graph"
5902 * to the cluster to which this SCC belongs.
5903 * Combine the two to obtain the complete transformation on the node.
5905 * Note that the range of the first transformation is an anonymous space,
5906 * while the domain of the second is named "cluster_X". The range
5907 * of the former therefore needs to be adjusted before the two
5908 * can be combined.
5910 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5911 struct isl_sched_node *node, struct isl_clustering *c,
5912 struct isl_sched_graph *merge_graph)
5914 struct isl_sched_node *scc_node, *cluster_node;
5915 int start, n;
5916 isl_id *id;
5917 isl_space *space;
5918 isl_multi_aff *ma, *ma2;
5920 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5921 start = c->scc[node->scc].band_start;
5922 n = c->scc[node->scc].n_total_row - start;
5923 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5924 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5925 cluster_node = graph_find_node(ctx, merge_graph, space);
5926 if (space && !cluster_node)
5927 isl_die(ctx, isl_error_internal, "unable to find cluster",
5928 space = isl_space_free(space));
5929 id = isl_space_get_tuple_id(space, isl_dim_set);
5930 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5931 isl_space_free(space);
5932 n = merge_graph->n_total_row;
5933 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5934 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5936 return isl_map_from_multi_aff(ma);
5939 /* Give a set of distances "set", are they bounded by a small constant
5940 * in direction "pos"?
5941 * In practice, check if they are bounded by 2 by checking that there
5942 * are no elements with a value greater than or equal to 3 or
5943 * smaller than or equal to -3.
5945 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5947 isl_bool bounded;
5948 isl_set *test;
5950 if (!set)
5951 return isl_bool_error;
5953 test = isl_set_copy(set);
5954 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5955 bounded = isl_set_is_empty(test);
5956 isl_set_free(test);
5958 if (bounded < 0 || !bounded)
5959 return bounded;
5961 test = isl_set_copy(set);
5962 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5963 bounded = isl_set_is_empty(test);
5964 isl_set_free(test);
5966 return bounded;
5969 /* Does the set "set" have a fixed (but possible parametric) value
5970 * at dimension "pos"?
5972 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5974 int n;
5975 isl_bool single;
5977 if (!set)
5978 return isl_bool_error;
5979 set = isl_set_copy(set);
5980 n = isl_set_dim(set, isl_dim_set);
5981 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5982 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5983 single = isl_set_is_singleton(set);
5984 isl_set_free(set);
5986 return single;
5989 /* Does "map" have a fixed (but possible parametric) value
5990 * at dimension "pos" of either its domain or its range?
5992 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5994 isl_set *set;
5995 isl_bool single;
5997 set = isl_map_domain(isl_map_copy(map));
5998 single = has_single_value(set, pos);
5999 isl_set_free(set);
6001 if (single < 0 || single)
6002 return single;
6004 set = isl_map_range(isl_map_copy(map));
6005 single = has_single_value(set, pos);
6006 isl_set_free(set);
6008 return single;
6011 /* Does the edge "edge" from "graph" have bounded dependence distances
6012 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6014 * Extract the complete transformations of the source and destination
6015 * nodes of the edge, apply them to the edge constraints and
6016 * compute the differences. Finally, check if these differences are bounded
6017 * in each direction.
6019 * If the dimension of the band is greater than the number of
6020 * dimensions that can be expected to be optimized by the edge
6021 * (based on its weight), then also allow the differences to be unbounded
6022 * in the remaining dimensions, but only if either the source or
6023 * the destination has a fixed value in that direction.
6024 * This allows a statement that produces values that are used by
6025 * several instances of another statement to be merged with that
6026 * other statement.
6027 * However, merging such clusters will introduce an inherently
6028 * large proximity distance inside the merged cluster, meaning
6029 * that proximity distances will no longer be optimized in
6030 * subsequent merges. These merges are therefore only allowed
6031 * after all other possible merges have been tried.
6032 * The first time such a merge is encountered, the weight of the edge
6033 * is replaced by a negative weight. The second time (i.e., after
6034 * all merges over edges with a non-negative weight have been tried),
6035 * the merge is allowed.
6037 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
6038 struct isl_sched_graph *graph, struct isl_clustering *c,
6039 struct isl_sched_graph *merge_graph)
6041 int i, n, n_slack;
6042 isl_bool bounded;
6043 isl_map *map, *t;
6044 isl_set *dist;
6046 map = isl_map_copy(edge->map);
6047 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
6048 map = isl_map_apply_domain(map, t);
6049 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
6050 map = isl_map_apply_range(map, t);
6051 dist = isl_map_deltas(isl_map_copy(map));
6053 bounded = isl_bool_true;
6054 n = isl_set_dim(dist, isl_dim_set);
6055 n_slack = n - edge->weight;
6056 if (edge->weight < 0)
6057 n_slack -= graph->max_weight + 1;
6058 for (i = 0; i < n; ++i) {
6059 isl_bool bounded_i, singular_i;
6061 bounded_i = distance_is_bounded(dist, i);
6062 if (bounded_i < 0)
6063 goto error;
6064 if (bounded_i)
6065 continue;
6066 if (edge->weight >= 0)
6067 bounded = isl_bool_false;
6068 n_slack--;
6069 if (n_slack < 0)
6070 break;
6071 singular_i = has_singular_src_or_dst(map, i);
6072 if (singular_i < 0)
6073 goto error;
6074 if (singular_i)
6075 continue;
6076 bounded = isl_bool_false;
6077 break;
6079 if (!bounded && i >= n && edge->weight >= 0)
6080 edge->weight -= graph->max_weight + 1;
6081 isl_map_free(map);
6082 isl_set_free(dist);
6084 return bounded;
6085 error:
6086 isl_map_free(map);
6087 isl_set_free(dist);
6088 return isl_bool_error;
6091 /* Should the clusters be merged based on the cluster schedule
6092 * in the current (and only) band of "merge_graph"?
6093 * "graph" is the original dependence graph, while "c" records
6094 * which SCCs are involved in the latest merge.
6096 * In particular, is there at least one proximity constraint
6097 * that is optimized by the merge?
6099 * A proximity constraint is considered to be optimized
6100 * if the dependence distances are small.
6102 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
6103 struct isl_sched_graph *graph, struct isl_clustering *c,
6104 struct isl_sched_graph *merge_graph)
6106 int i;
6108 for (i = 0; i < graph->n_edge; ++i) {
6109 struct isl_sched_edge *edge = &graph->edge[i];
6110 isl_bool bounded;
6112 if (!is_proximity(edge))
6113 continue;
6114 if (!c->scc_in_merge[edge->src->scc])
6115 continue;
6116 if (!c->scc_in_merge[edge->dst->scc])
6117 continue;
6118 if (c->scc_cluster[edge->dst->scc] ==
6119 c->scc_cluster[edge->src->scc])
6120 continue;
6121 bounded = has_bounded_distances(ctx, edge, graph, c,
6122 merge_graph);
6123 if (bounded < 0 || bounded)
6124 return bounded;
6127 return isl_bool_false;
6130 /* Should the clusters be merged based on the cluster schedule
6131 * in the current (and only) band of "merge_graph"?
6132 * "graph" is the original dependence graph, while "c" records
6133 * which SCCs are involved in the latest merge.
6135 * If the current band is empty, then the clusters should not be merged.
6137 * If the band depth should be maximized and the merge schedule
6138 * is incomplete (meaning that the dimension of some of the schedule
6139 * bands in the original schedule will be reduced), then the clusters
6140 * should not be merged.
6142 * If the schedule_maximize_coincidence option is set, then check that
6143 * the number of coincident schedule dimensions is not reduced.
6145 * Finally, only allow the merge if at least one proximity
6146 * constraint is optimized.
6148 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6149 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
6151 if (merge_graph->n_total_row == merge_graph->band_start)
6152 return isl_bool_false;
6154 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
6155 merge_graph->n_total_row < merge_graph->maxvar)
6156 return isl_bool_false;
6158 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
6159 isl_bool ok;
6161 ok = ok_to_merge_coincident(c, merge_graph);
6162 if (ok < 0 || !ok)
6163 return ok;
6166 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
6169 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6170 * of the schedule in "node" and return the result.
6172 * That is, essentially compute
6174 * T * N(first:first+n-1)
6176 * taking into account the constant term and the parameter coefficients
6177 * in "t_node".
6179 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
6180 struct isl_sched_node *t_node, struct isl_sched_node *node,
6181 int first, int n)
6183 int i, j;
6184 isl_mat *t;
6185 int n_row, n_col, n_param, n_var;
6187 n_param = node->nparam;
6188 n_var = node->nvar;
6189 n_row = isl_mat_rows(t_node->sched);
6190 n_col = isl_mat_cols(node->sched);
6191 t = isl_mat_alloc(ctx, n_row, n_col);
6192 if (!t)
6193 return NULL;
6194 for (i = 0; i < n_row; ++i) {
6195 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
6196 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
6197 for (j = 0; j < n; ++j)
6198 isl_seq_addmul(t->row[i],
6199 t_node->sched->row[i][1 + n_param + j],
6200 node->sched->row[first + j],
6201 1 + n_param + n_var);
6203 return t;
6206 /* Apply the cluster schedule in "t_node" to the current band
6207 * schedule of the nodes in "graph".
6209 * In particular, replace the rows starting at band_start
6210 * by the result of applying the cluster schedule in "t_node"
6211 * to the original rows.
6213 * The coincidence of the schedule is determined by the coincidence
6214 * of the cluster schedule.
6216 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
6217 struct isl_sched_node *t_node)
6219 int i, j;
6220 int n_new;
6221 int start, n;
6223 start = graph->band_start;
6224 n = graph->n_total_row - start;
6226 n_new = isl_mat_rows(t_node->sched);
6227 for (i = 0; i < graph->n; ++i) {
6228 struct isl_sched_node *node = &graph->node[i];
6229 isl_mat *t;
6231 t = node_transformation(ctx, t_node, node, start, n);
6232 node->sched = isl_mat_drop_rows(node->sched, start, n);
6233 node->sched = isl_mat_concat(node->sched, t);
6234 node->sched_map = isl_map_free(node->sched_map);
6235 if (!node->sched)
6236 return isl_stat_error;
6237 for (j = 0; j < n_new; ++j)
6238 node->coincident[start + j] = t_node->coincident[j];
6240 graph->n_total_row -= n;
6241 graph->n_row -= n;
6242 graph->n_total_row += n_new;
6243 graph->n_row += n_new;
6245 return isl_stat_ok;
6248 /* Merge the clusters marked for merging in "c" into a single
6249 * cluster using the cluster schedule in the current band of "merge_graph".
6250 * The representative SCC for the new cluster is the SCC with
6251 * the smallest index.
6253 * The current band schedule of each SCC in the new cluster is obtained
6254 * by applying the schedule of the corresponding original cluster
6255 * to the original band schedule.
6256 * All SCCs in the new cluster have the same number of schedule rows.
6258 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
6259 struct isl_sched_graph *merge_graph)
6261 int i;
6262 int cluster = -1;
6263 isl_space *space;
6265 for (i = 0; i < c->n; ++i) {
6266 struct isl_sched_node *node;
6268 if (!c->scc_in_merge[i])
6269 continue;
6270 if (cluster < 0)
6271 cluster = i;
6272 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
6273 if (!space)
6274 return isl_stat_error;
6275 node = graph_find_node(ctx, merge_graph, space);
6276 isl_space_free(space);
6277 if (!node)
6278 isl_die(ctx, isl_error_internal,
6279 "unable to find cluster",
6280 return isl_stat_error);
6281 if (transform(ctx, &c->scc[i], node) < 0)
6282 return isl_stat_error;
6283 c->scc_cluster[i] = cluster;
6286 return isl_stat_ok;
6289 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6290 * by scheduling the current cluster bands with respect to each other.
6292 * Construct a dependence graph with a space for each cluster and
6293 * with the coordinates of each space corresponding to the schedule
6294 * dimensions of the current band of that cluster.
6295 * Construct a cluster schedule in this cluster dependence graph and
6296 * apply it to the current cluster bands if it is applicable
6297 * according to ok_to_merge.
6299 * If the number of remaining schedule dimensions in a cluster
6300 * with a non-maximal current schedule dimension is greater than
6301 * the number of remaining schedule dimensions in clusters
6302 * with a maximal current schedule dimension, then restrict
6303 * the number of rows to be computed in the cluster schedule
6304 * to the minimal such non-maximal current schedule dimension.
6305 * Do this by adjusting merge_graph.maxvar.
6307 * Return isl_bool_true if the clusters have effectively been merged
6308 * into a single cluster.
6310 * Note that since the standard scheduling algorithm minimizes the maximal
6311 * distance over proximity constraints, the proximity constraints between
6312 * the merged clusters may not be optimized any further than what is
6313 * sufficient to bring the distances within the limits of the internal
6314 * proximity constraints inside the individual clusters.
6315 * It may therefore make sense to perform an additional translation step
6316 * to bring the clusters closer to each other, while maintaining
6317 * the linear part of the merging schedule found using the standard
6318 * scheduling algorithm.
6320 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
6321 struct isl_clustering *c)
6323 struct isl_sched_graph merge_graph = { 0 };
6324 isl_bool merged;
6326 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
6327 goto error;
6329 if (compute_maxvar(&merge_graph) < 0)
6330 goto error;
6331 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
6332 goto error;
6333 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
6334 goto error;
6335 merged = ok_to_merge(ctx, graph, c, &merge_graph);
6336 if (merged && merge(ctx, c, &merge_graph) < 0)
6337 goto error;
6339 graph_free(ctx, &merge_graph);
6340 return merged;
6341 error:
6342 graph_free(ctx, &merge_graph);
6343 return isl_bool_error;
6346 /* Is there any edge marked "no_merge" between two SCCs that are
6347 * about to be merged (i.e., that are set in "scc_in_merge")?
6348 * "merge_edge" is the proximity edge along which the clusters of SCCs
6349 * are going to be merged.
6351 * If there is any edge between two SCCs with a negative weight,
6352 * while the weight of "merge_edge" is non-negative, then this
6353 * means that the edge was postponed. "merge_edge" should then
6354 * also be postponed since merging along the edge with negative weight should
6355 * be postponed until all edges with non-negative weight have been tried.
6356 * Replace the weight of "merge_edge" by a negative weight as well and
6357 * tell the caller not to attempt a merge.
6359 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
6360 struct isl_sched_edge *merge_edge)
6362 int i;
6364 for (i = 0; i < graph->n_edge; ++i) {
6365 struct isl_sched_edge *edge = &graph->edge[i];
6367 if (!scc_in_merge[edge->src->scc])
6368 continue;
6369 if (!scc_in_merge[edge->dst->scc])
6370 continue;
6371 if (edge->no_merge)
6372 return 1;
6373 if (merge_edge->weight >= 0 && edge->weight < 0) {
6374 merge_edge->weight -= graph->max_weight + 1;
6375 return 1;
6379 return 0;
6382 /* Merge the two clusters in "c" connected by the edge in "graph"
6383 * with index "edge" into a single cluster.
6384 * If it turns out to be impossible to merge these two clusters,
6385 * then mark the edge as "no_merge" such that it will not be
6386 * considered again.
6388 * First mark all SCCs that need to be merged. This includes the SCCs
6389 * in the two clusters, but it may also include the SCCs
6390 * of intermediate clusters.
6391 * If there is already a no_merge edge between any pair of such SCCs,
6392 * then simply mark the current edge as no_merge as well.
6393 * Likewise, if any of those edges was postponed by has_bounded_distances,
6394 * then postpone the current edge as well.
6395 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6396 * if the clusters did not end up getting merged, unless the non-merge
6397 * is due to the fact that the edge was postponed. This postponement
6398 * can be recognized by a change in weight (from non-negative to negative).
6400 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
6401 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
6403 isl_bool merged;
6404 int edge_weight = graph->edge[edge].weight;
6406 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
6407 return isl_stat_error;
6409 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
6410 merged = isl_bool_false;
6411 else
6412 merged = try_merge(ctx, graph, c);
6413 if (merged < 0)
6414 return isl_stat_error;
6415 if (!merged && edge_weight == graph->edge[edge].weight)
6416 graph->edge[edge].no_merge = 1;
6418 return isl_stat_ok;
6421 /* Does "node" belong to the cluster identified by "cluster"?
6423 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
6425 return node->cluster == cluster;
6428 /* Does "edge" connect two nodes belonging to the cluster
6429 * identified by "cluster"?
6431 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
6433 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
6436 /* Swap the schedule of "node1" and "node2".
6437 * Both nodes have been derived from the same node in a common parent graph.
6438 * Since the "coincident" field is shared with that node
6439 * in the parent graph, there is no need to also swap this field.
6441 static void swap_sched(struct isl_sched_node *node1,
6442 struct isl_sched_node *node2)
6444 isl_mat *sched;
6445 isl_map *sched_map;
6447 sched = node1->sched;
6448 node1->sched = node2->sched;
6449 node2->sched = sched;
6451 sched_map = node1->sched_map;
6452 node1->sched_map = node2->sched_map;
6453 node2->sched_map = sched_map;
6456 /* Copy the current band schedule from the SCCs that form the cluster
6457 * with index "pos" to the actual cluster at position "pos".
6458 * By construction, the index of the first SCC that belongs to the cluster
6459 * is also "pos".
6461 * The order of the nodes inside both the SCCs and the cluster
6462 * is assumed to be same as the order in the original "graph".
6464 * Since the SCC graphs will no longer be used after this function,
6465 * the schedules are actually swapped rather than copied.
6467 static isl_stat copy_partial(struct isl_sched_graph *graph,
6468 struct isl_clustering *c, int pos)
6470 int i, j;
6472 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
6473 c->cluster[pos].n_row = c->scc[pos].n_row;
6474 c->cluster[pos].maxvar = c->scc[pos].maxvar;
6475 j = 0;
6476 for (i = 0; i < graph->n; ++i) {
6477 int k;
6478 int s;
6480 if (graph->node[i].cluster != pos)
6481 continue;
6482 s = graph->node[i].scc;
6483 k = c->scc_node[s]++;
6484 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
6485 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
6486 c->cluster[pos].maxvar = c->scc[s].maxvar;
6487 ++j;
6490 return isl_stat_ok;
6493 /* Is there a (conditional) validity dependence from node[j] to node[i],
6494 * forcing node[i] to follow node[j] or do the nodes belong to the same
6495 * cluster?
6497 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
6499 struct isl_sched_graph *graph = user;
6501 if (graph->node[i].cluster == graph->node[j].cluster)
6502 return isl_bool_true;
6503 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
6506 /* Extract the merged clusters of SCCs in "graph", sort them, and
6507 * store them in c->clusters. Update c->scc_cluster accordingly.
6509 * First keep track of the cluster containing the SCC to which a node
6510 * belongs in the node itself.
6511 * Then extract the clusters into c->clusters, copying the current
6512 * band schedule from the SCCs that belong to the cluster.
6513 * Do this only once per cluster.
6515 * Finally, topologically sort the clusters and update c->scc_cluster
6516 * to match the new scc numbering. While the SCCs were originally
6517 * sorted already, some SCCs that depend on some other SCCs may
6518 * have been merged with SCCs that appear before these other SCCs.
6519 * A reordering may therefore be required.
6521 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
6522 struct isl_clustering *c)
6524 int i;
6526 for (i = 0; i < graph->n; ++i)
6527 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
6529 for (i = 0; i < graph->scc; ++i) {
6530 if (c->scc_cluster[i] != i)
6531 continue;
6532 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
6533 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
6534 return isl_stat_error;
6535 c->cluster[i].src_scc = -1;
6536 c->cluster[i].dst_scc = -1;
6537 if (copy_partial(graph, c, i) < 0)
6538 return isl_stat_error;
6541 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6542 return isl_stat_error;
6543 for (i = 0; i < graph->n; ++i)
6544 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6546 return isl_stat_ok;
6549 /* Compute weights on the proximity edges of "graph" that can
6550 * be used by find_proximity to find the most appropriate
6551 * proximity edge to use to merge two clusters in "c".
6552 * The weights are also used by has_bounded_distances to determine
6553 * whether the merge should be allowed.
6554 * Store the maximum of the computed weights in graph->max_weight.
6556 * The computed weight is a measure for the number of remaining schedule
6557 * dimensions that can still be completely aligned.
6558 * In particular, compute the number of equalities between
6559 * input dimensions and output dimensions in the proximity constraints.
6560 * The directions that are already handled by outer schedule bands
6561 * are projected out prior to determining this number.
6563 * Edges that will never be considered by find_proximity are ignored.
6565 static isl_stat compute_weights(struct isl_sched_graph *graph,
6566 struct isl_clustering *c)
6568 int i;
6570 graph->max_weight = 0;
6572 for (i = 0; i < graph->n_edge; ++i) {
6573 struct isl_sched_edge *edge = &graph->edge[i];
6574 struct isl_sched_node *src = edge->src;
6575 struct isl_sched_node *dst = edge->dst;
6576 isl_basic_map *hull;
6577 isl_bool prox;
6578 int n_in, n_out;
6580 prox = is_non_empty_proximity(edge);
6581 if (prox < 0)
6582 return isl_stat_error;
6583 if (!prox)
6584 continue;
6585 if (bad_cluster(&c->scc[edge->src->scc]) ||
6586 bad_cluster(&c->scc[edge->dst->scc]))
6587 continue;
6588 if (c->scc_cluster[edge->dst->scc] ==
6589 c->scc_cluster[edge->src->scc])
6590 continue;
6592 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6593 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6594 isl_mat_copy(src->vmap));
6595 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6596 isl_mat_copy(dst->vmap));
6597 hull = isl_basic_map_project_out(hull,
6598 isl_dim_in, 0, src->rank);
6599 hull = isl_basic_map_project_out(hull,
6600 isl_dim_out, 0, dst->rank);
6601 hull = isl_basic_map_remove_divs(hull);
6602 n_in = isl_basic_map_dim(hull, isl_dim_in);
6603 n_out = isl_basic_map_dim(hull, isl_dim_out);
6604 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6605 isl_dim_in, 0, n_in);
6606 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6607 isl_dim_out, 0, n_out);
6608 if (!hull)
6609 return isl_stat_error;
6610 edge->weight = isl_basic_map_n_equality(hull);
6611 isl_basic_map_free(hull);
6613 if (edge->weight > graph->max_weight)
6614 graph->max_weight = edge->weight;
6617 return isl_stat_ok;
6620 /* Call compute_schedule_finish_band on each of the clusters in "c"
6621 * in their topological order. This order is determined by the scc
6622 * fields of the nodes in "graph".
6623 * Combine the results in a sequence expressing the topological order.
6625 * If there is only one cluster left, then there is no need to introduce
6626 * a sequence node. Also, in this case, the cluster necessarily contains
6627 * the SCC at position 0 in the original graph and is therefore also
6628 * stored in the first cluster of "c".
6630 static __isl_give isl_schedule_node *finish_bands_clustering(
6631 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6632 struct isl_clustering *c)
6634 int i;
6635 isl_ctx *ctx;
6636 isl_union_set_list *filters;
6638 if (graph->scc == 1)
6639 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6641 ctx = isl_schedule_node_get_ctx(node);
6643 filters = extract_sccs(ctx, graph);
6644 node = isl_schedule_node_insert_sequence(node, filters);
6646 for (i = 0; i < graph->scc; ++i) {
6647 int j = c->scc_cluster[i];
6648 node = isl_schedule_node_child(node, i);
6649 node = isl_schedule_node_child(node, 0);
6650 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6651 node = isl_schedule_node_parent(node);
6652 node = isl_schedule_node_parent(node);
6655 return node;
6658 /* Compute a schedule for a connected dependence graph by first considering
6659 * each strongly connected component (SCC) in the graph separately and then
6660 * incrementally combining them into clusters.
6661 * Return the updated schedule node.
6663 * Initially, each cluster consists of a single SCC, each with its
6664 * own band schedule. The algorithm then tries to merge pairs
6665 * of clusters along a proximity edge until no more suitable
6666 * proximity edges can be found. During this merging, the schedule
6667 * is maintained in the individual SCCs.
6668 * After the merging is completed, the full resulting clusters
6669 * are extracted and in finish_bands_clustering,
6670 * compute_schedule_finish_band is called on each of them to integrate
6671 * the band into "node" and to continue the computation.
6673 * compute_weights initializes the weights that are used by find_proximity.
6675 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6676 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6678 isl_ctx *ctx;
6679 struct isl_clustering c;
6680 int i;
6682 ctx = isl_schedule_node_get_ctx(node);
6684 if (clustering_init(ctx, &c, graph) < 0)
6685 goto error;
6687 if (compute_weights(graph, &c) < 0)
6688 goto error;
6690 for (;;) {
6691 i = find_proximity(graph, &c);
6692 if (i < 0)
6693 goto error;
6694 if (i >= graph->n_edge)
6695 break;
6696 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6697 goto error;
6700 if (extract_clusters(ctx, graph, &c) < 0)
6701 goto error;
6703 node = finish_bands_clustering(node, graph, &c);
6705 clustering_free(ctx, &c);
6706 return node;
6707 error:
6708 clustering_free(ctx, &c);
6709 return isl_schedule_node_free(node);
6712 /* Compute a schedule for a connected dependence graph and return
6713 * the updated schedule node.
6715 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6716 * as many validity dependences as possible. When all validity dependences
6717 * are satisfied we extend the schedule to a full-dimensional schedule.
6719 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6720 * depending on whether the user has selected the option to try and
6721 * compute a schedule for the entire (weakly connected) component first.
6722 * If there is only a single strongly connected component (SCC), then
6723 * there is no point in trying to combine SCCs
6724 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6725 * is called instead.
6727 static __isl_give isl_schedule_node *compute_schedule_wcc(
6728 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6730 isl_ctx *ctx;
6732 if (!node)
6733 return NULL;
6735 ctx = isl_schedule_node_get_ctx(node);
6736 if (detect_sccs(ctx, graph) < 0)
6737 return isl_schedule_node_free(node);
6739 if (compute_maxvar(graph) < 0)
6740 return isl_schedule_node_free(node);
6742 if (need_feautrier_step(ctx, graph))
6743 return compute_schedule_wcc_feautrier(node, graph);
6745 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6746 return compute_schedule_wcc_whole(node, graph);
6747 else
6748 return compute_schedule_wcc_clustering(node, graph);
6751 /* Compute a schedule for each group of nodes identified by node->scc
6752 * separately and then combine them in a sequence node (or as set node
6753 * if graph->weak is set) inserted at position "node" of the schedule tree.
6754 * Return the updated schedule node.
6756 * If "wcc" is set then each of the groups belongs to a single
6757 * weakly connected component in the dependence graph so that
6758 * there is no need for compute_sub_schedule to look for weakly
6759 * connected components.
6761 static __isl_give isl_schedule_node *compute_component_schedule(
6762 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6763 int wcc)
6765 int component;
6766 isl_ctx *ctx;
6767 isl_union_set_list *filters;
6769 if (!node)
6770 return NULL;
6771 ctx = isl_schedule_node_get_ctx(node);
6773 filters = extract_sccs(ctx, graph);
6774 if (graph->weak)
6775 node = isl_schedule_node_insert_set(node, filters);
6776 else
6777 node = isl_schedule_node_insert_sequence(node, filters);
6779 for (component = 0; component < graph->scc; ++component) {
6780 node = isl_schedule_node_child(node, component);
6781 node = isl_schedule_node_child(node, 0);
6782 node = compute_sub_schedule(node, ctx, graph,
6783 &node_scc_exactly,
6784 &edge_scc_exactly, component, wcc);
6785 node = isl_schedule_node_parent(node);
6786 node = isl_schedule_node_parent(node);
6789 return node;
6792 /* Compute a schedule for the given dependence graph and insert it at "node".
6793 * Return the updated schedule node.
6795 * We first check if the graph is connected (through validity and conditional
6796 * validity dependences) and, if not, compute a schedule
6797 * for each component separately.
6798 * If the schedule_serialize_sccs option is set, then we check for strongly
6799 * connected components instead and compute a separate schedule for
6800 * each such strongly connected component.
6802 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6803 struct isl_sched_graph *graph)
6805 isl_ctx *ctx;
6807 if (!node)
6808 return NULL;
6810 ctx = isl_schedule_node_get_ctx(node);
6811 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6812 if (detect_sccs(ctx, graph) < 0)
6813 return isl_schedule_node_free(node);
6814 } else {
6815 if (detect_wccs(ctx, graph) < 0)
6816 return isl_schedule_node_free(node);
6819 if (graph->scc > 1)
6820 return compute_component_schedule(node, graph, 1);
6822 return compute_schedule_wcc(node, graph);
6825 /* Compute a schedule on sc->domain that respects the given schedule
6826 * constraints.
6828 * In particular, the schedule respects all the validity dependences.
6829 * If the default isl scheduling algorithm is used, it tries to minimize
6830 * the dependence distances over the proximity dependences.
6831 * If Feautrier's scheduling algorithm is used, the proximity dependence
6832 * distances are only minimized during the extension to a full-dimensional
6833 * schedule.
6835 * If there are any condition and conditional validity dependences,
6836 * then the conditional validity dependences may be violated inside
6837 * a tilable band, provided they have no adjacent non-local
6838 * condition dependences.
6840 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6841 __isl_take isl_schedule_constraints *sc)
6843 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6844 struct isl_sched_graph graph = { 0 };
6845 isl_schedule *sched;
6846 isl_schedule_node *node;
6847 isl_union_set *domain;
6849 sc = isl_schedule_constraints_align_params(sc);
6851 domain = isl_schedule_constraints_get_domain(sc);
6852 if (isl_union_set_n_set(domain) == 0) {
6853 isl_schedule_constraints_free(sc);
6854 return isl_schedule_from_domain(domain);
6857 if (graph_init(&graph, sc) < 0)
6858 domain = isl_union_set_free(domain);
6860 node = isl_schedule_node_from_domain(domain);
6861 node = isl_schedule_node_child(node, 0);
6862 if (graph.n > 0)
6863 node = compute_schedule(node, &graph);
6864 sched = isl_schedule_node_get_schedule(node);
6865 isl_schedule_node_free(node);
6867 graph_free(ctx, &graph);
6868 isl_schedule_constraints_free(sc);
6870 return sched;
6873 /* Compute a schedule for the given union of domains that respects
6874 * all the validity dependences and minimizes
6875 * the dependence distances over the proximity dependences.
6877 * This function is kept for backward compatibility.
6879 __isl_give isl_schedule *isl_union_set_compute_schedule(
6880 __isl_take isl_union_set *domain,
6881 __isl_take isl_union_map *validity,
6882 __isl_take isl_union_map *proximity)
6884 isl_schedule_constraints *sc;
6886 sc = isl_schedule_constraints_on_domain(domain);
6887 sc = isl_schedule_constraints_set_validity(sc, validity);
6888 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6890 return isl_schedule_constraints_compute_schedule(sc);