2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include "isl_map_private.h"
15 /* Given a map that represents a path with the length of the path
16 * encoded as the difference between the last output coordindate
17 * and the last input coordinate, set this length to either
18 * exactly "length" (if "exactly" is set) or at least "length"
19 * (if "exactly" is not set).
21 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
22 int exactly
, int length
)
25 struct isl_basic_map
*bmap
;
34 dim
= isl_map_get_dim(map
);
35 d
= isl_dim_size(dim
, isl_dim_in
);
36 nparam
= isl_dim_size(dim
, isl_dim_param
);
37 bmap
= isl_basic_map_alloc_dim(dim
, 0, 1, 1);
39 k
= isl_basic_map_alloc_equality(bmap
);
42 k
= isl_basic_map_alloc_inequality(bmap
);
47 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
48 isl_int_set_si(c
[0], -length
);
49 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
50 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
52 bmap
= isl_basic_map_finalize(bmap
);
53 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
57 isl_basic_map_free(bmap
);
62 /* Check whether the overapproximation of the power of "map" is exactly
63 * the power of "map". Let R be "map" and A_k the overapproximation.
64 * The approximation is exact if
67 * A_k = A_{k-1} \circ R k >= 2
69 * Since A_k is known to be an overapproximation, we only need to check
72 * A_k \subset A_{k-1} \circ R k >= 2
74 * In practice, "app" has an extra input and output coordinate
75 * to encode the length of the path. So, we first need to add
76 * this coordinate to "map" and set the length of the path to
79 static int check_power_exactness(__isl_take isl_map
*map
,
80 __isl_take isl_map
*app
)
86 map
= isl_map_add(map
, isl_dim_in
, 1);
87 map
= isl_map_add(map
, isl_dim_out
, 1);
88 map
= set_path_length(map
, 1, 1);
90 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
92 exact
= isl_map_is_subset(app_1
, map
);
95 if (!exact
|| exact
< 0) {
101 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
102 app_2
= set_path_length(app
, 0, 2);
103 app_1
= isl_map_apply_range(map
, app_1
);
105 exact
= isl_map_is_subset(app_2
, app_1
);
113 /* Check whether the overapproximation of the power of "map" is exactly
114 * the power of "map", possibly after projecting out the power (if "project"
117 * If "project" is set and if "steps" can only result in acyclic paths,
120 * A = R \cup (A \circ R)
122 * where A is the overapproximation with the power projected out, i.e.,
123 * an overapproximation of the transitive closure.
124 * More specifically, since A is known to be an overapproximation, we check
126 * A \subset R \cup (A \circ R)
128 * Otherwise, we check if the power is exact.
130 * Note that "app" has an extra input and output coordinate to encode
131 * the length of the part. If we are only interested in the transitive
132 * closure, then we can simply project out these coordinates first.
134 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
142 return check_power_exactness(map
, app
);
144 d
= isl_map_dim(map
, isl_dim_in
);
145 app
= set_path_length(app
, 0, 1);
146 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
147 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
149 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
150 test
= isl_map_union(test
, isl_map_copy(map
));
152 exact
= isl_map_is_subset(app
, test
);
167 * The transitive closure implementation is based on the paper
168 * "Computing the Transitive Closure of a Union of Affine Integer
169 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
173 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
174 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
175 * that maps an element x to any element that can be reached
176 * by taking a non-negative number of steps along any of
177 * the extended offsets v'_i = [v_i 1].
180 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
182 * For any element in this relation, the number of steps taken
183 * is equal to the difference in the final coordinates.
185 static __isl_give isl_map
*path_along_steps(__isl_take isl_dim
*dim
,
186 __isl_keep isl_mat
*steps
)
189 struct isl_basic_map
*path
= NULL
;
197 d
= isl_dim_size(dim
, isl_dim_in
);
199 nparam
= isl_dim_size(dim
, isl_dim_param
);
201 path
= isl_basic_map_alloc_dim(isl_dim_copy(dim
), n
, d
, n
);
203 for (i
= 0; i
< n
; ++i
) {
204 k
= isl_basic_map_alloc_div(path
);
207 isl_assert(steps
->ctx
, i
== k
, goto error
);
208 isl_int_set_si(path
->div
[k
][0], 0);
211 for (i
= 0; i
< d
; ++i
) {
212 k
= isl_basic_map_alloc_equality(path
);
215 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
216 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
217 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
219 for (j
= 0; j
< n
; ++j
)
220 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
222 for (j
= 0; j
< n
; ++j
)
223 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
227 for (i
= 0; i
< n
; ++i
) {
228 k
= isl_basic_map_alloc_inequality(path
);
231 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
232 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
237 path
= isl_basic_map_simplify(path
);
238 path
= isl_basic_map_finalize(path
);
239 return isl_map_from_basic_map(path
);
242 isl_basic_map_free(path
);
251 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
252 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
253 * Return MIXED if only the coefficients of the parameters and the set
254 * variables are non-zero and if moreover the parametric constant
255 * can never attain positive values.
256 * Return IMPURE otherwise.
258 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int eq
)
266 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
267 d
= isl_basic_set_dim(bset
, isl_dim_set
);
268 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
270 if (isl_seq_first_non_zero(c
+ 1 + nparam
+ d
, n_div
) != -1)
272 if (isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
274 if (isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
279 bset
= isl_basic_set_copy(bset
);
280 bset
= isl_basic_set_cow(bset
);
281 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
282 k
= isl_basic_set_alloc_inequality(bset
);
285 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
286 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
287 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
288 empty
= isl_basic_set_is_empty(bset
);
289 isl_basic_set_free(bset
);
291 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
293 isl_basic_set_free(bset
);
297 /* Given a set of offsets "delta", construct a relation of the
298 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
299 * is an overapproximation of the relations that
300 * maps an element x to any element that can be reached
301 * by taking a non-negative number of steps along any of
302 * the elements in "delta".
303 * That is, construct an approximation of
305 * { [x] -> [y] : exists f \in \delta, k \in Z :
306 * y = x + k [f, 1] and k >= 0 }
308 * For any element in this relation, the number of steps taken
309 * is equal to the difference in the final coordinates.
311 * In particular, let delta be defined as
313 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
314 * C x + C'p + c >= 0 and
315 * D x + D'p + d >= 0 }
317 * where the constraints C x + C'p + c >= 0 are such that the parametric
318 * constant term of each constraint j, "C_j x + C'_j p + c_j",
319 * can never attain positive values, then the relation is constructed as
321 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
322 * A f + k a >= 0 and B p + b >= 0 and
323 * C f + C'p + c >= 0 and k >= 1 }
324 * union { [x] -> [x] }
326 * Existentially quantified variables in \delta are currently ignored.
327 * This is safe, but leads to an additional overapproximation.
329 static __isl_give isl_map
*path_along_delta(__isl_take isl_dim
*dim
,
330 __isl_take isl_basic_set
*delta
)
332 isl_basic_map
*path
= NULL
;
341 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
342 d
= isl_basic_set_dim(delta
, isl_dim_set
);
343 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
344 path
= isl_basic_map_alloc_dim(isl_dim_copy(dim
), n_div
+ d
+ 1,
345 d
+ 1 + delta
->n_eq
, delta
->n_ineq
+ 1);
346 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
348 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
349 k
= isl_basic_map_alloc_div(path
);
352 isl_int_set_si(path
->div
[k
][0], 0);
355 for (i
= 0; i
< d
+ 1; ++i
) {
356 k
= isl_basic_map_alloc_equality(path
);
359 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
360 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
361 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
362 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
365 for (i
= 0; i
< delta
->n_eq
; ++i
) {
366 int p
= purity(delta
, delta
->eq
[i
], 1);
371 k
= isl_basic_map_alloc_equality(path
);
374 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
376 isl_seq_cpy(path
->eq
[k
] + off
,
377 delta
->eq
[i
] + 1 + nparam
, d
);
378 isl_int_set(path
->eq
[k
][off
+ d
], delta
->eq
[i
][0]);
380 isl_seq_cpy(path
->eq
[k
], delta
->eq
[i
], 1 + nparam
);
383 for (i
= 0; i
< delta
->n_ineq
; ++i
) {
384 int p
= purity(delta
, delta
->ineq
[i
], 0);
389 k
= isl_basic_map_alloc_inequality(path
);
392 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
394 isl_seq_cpy(path
->ineq
[k
] + off
,
395 delta
->ineq
[i
] + 1 + nparam
, d
);
396 isl_int_set(path
->ineq
[k
][off
+ d
], delta
->ineq
[i
][0]);
397 } else if (p
== PURE_PARAM
) {
398 isl_seq_cpy(path
->ineq
[k
], delta
->ineq
[i
], 1 + nparam
);
400 isl_seq_cpy(path
->ineq
[k
] + off
,
401 delta
->ineq
[i
] + 1 + nparam
, d
);
402 isl_seq_cpy(path
->ineq
[k
], delta
->ineq
[i
], 1 + nparam
);
406 k
= isl_basic_map_alloc_inequality(path
);
409 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
410 isl_int_set_si(path
->ineq
[k
][0], -1);
411 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
413 isl_basic_set_free(delta
);
414 path
= isl_basic_map_finalize(path
);
415 return isl_basic_map_union(path
,
416 isl_basic_map_identity(isl_dim_domain(dim
)));
419 isl_basic_set_free(delta
);
420 isl_basic_map_free(path
);
424 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
425 * construct a map that equates the parameter to the difference
426 * in the final coordinates and imposes that this difference is positive.
429 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
431 static __isl_give isl_map
*equate_parameter_to_length(__isl_take isl_dim
*dim
,
434 struct isl_basic_map
*bmap
;
439 d
= isl_dim_size(dim
, isl_dim_in
);
440 nparam
= isl_dim_size(dim
, isl_dim_param
);
441 bmap
= isl_basic_map_alloc_dim(dim
, 0, 1, 1);
442 k
= isl_basic_map_alloc_equality(bmap
);
445 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
446 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
447 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
448 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
450 k
= isl_basic_map_alloc_inequality(bmap
);
453 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
454 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
455 isl_int_set_si(bmap
->ineq
[k
][0], -1);
457 bmap
= isl_basic_map_finalize(bmap
);
458 return isl_map_from_basic_map(bmap
);
460 isl_basic_map_free(bmap
);
464 /* Check whether "path" is acyclic, where the last coordinates of domain
465 * and range of path encode the number of steps taken.
466 * That is, check whether
468 * { d | d = y - x and (x,y) in path }
470 * does not contain any element with positive last coordinate (positive length)
471 * and zero remaining coordinates (cycle).
473 static int is_acyclic(__isl_take isl_map
*path
)
478 struct isl_set
*delta
;
480 delta
= isl_map_deltas(path
);
481 dim
= isl_set_dim(delta
, isl_dim_set
);
482 for (i
= 0; i
< dim
; ++i
) {
484 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
486 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
489 acyclic
= isl_set_is_empty(delta
);
495 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
496 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
497 * construct a map that is an overapproximation of the map
498 * that takes an element from the space D \times Z to another
499 * element from the same space, such that the first n coordinates of the
500 * difference between them is a sum of differences between images
501 * and pre-images in one of the R_i and such that the last coordinate
502 * is equal to the number of steps taken.
505 * \Delta_i = { y - x | (x, y) in R_i }
507 * then the constructed map is an overapproximation of
509 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
510 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
512 * The elements of the singleton \Delta_i's are collected as the
513 * rows of the steps matrix. For all these \Delta_i's together,
514 * a single path is constructed.
515 * For each of the other \Delta_i's, we compute an overapproximation
516 * of the paths along elements of \Delta_i.
517 * Since each of these paths performs an addition, composition is
518 * symmetric and we can simply compose all resulting paths in any order.
520 static __isl_give isl_map
*construct_extended_path(__isl_take isl_dim
*dim
,
521 __isl_keep isl_map
*map
, int *project
)
523 struct isl_mat
*steps
= NULL
;
524 struct isl_map
*path
= NULL
;
528 d
= isl_map_dim(map
, isl_dim_in
);
530 path
= isl_map_identity(isl_dim_domain(isl_dim_copy(dim
)));
532 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
537 for (i
= 0; i
< map
->n
; ++i
) {
538 struct isl_basic_set
*delta
;
540 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
542 for (j
= 0; j
< d
; ++j
) {
545 fixed
= isl_basic_set_fast_dim_is_fixed(delta
, j
,
548 isl_basic_set_free(delta
);
557 path
= isl_map_apply_range(path
,
558 path_along_delta(isl_dim_copy(dim
), delta
));
560 isl_basic_set_free(delta
);
567 path
= isl_map_apply_range(path
,
568 path_along_steps(isl_dim_copy(dim
), steps
));
571 if (project
&& *project
) {
572 *project
= is_acyclic(isl_map_copy(path
));
587 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
588 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
589 * construct a map that is the union of the identity map and
590 * an overapproximation of the map
591 * that takes an element from the dom R \times Z to an
592 * element from ran R \times Z, such that the first n coordinates of the
593 * difference between them is a sum of differences between images
594 * and pre-images in one of the R_i and such that the last coordinate
595 * is equal to the number of steps taken.
598 * \Delta_i = { y - x | (x, y) in R_i }
600 * then the constructed map is an overapproximation of
602 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
603 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
604 * x in dom R and x + d in ran R } union
607 static __isl_give isl_map
*construct_component(__isl_take isl_dim
*dim
,
608 __isl_keep isl_map
*map
, int *exact
, int project
)
610 struct isl_set
*domain
= NULL
;
611 struct isl_set
*range
= NULL
;
612 struct isl_map
*app
= NULL
;
613 struct isl_map
*path
= NULL
;
615 domain
= isl_map_domain(isl_map_copy(map
));
616 domain
= isl_set_coalesce(domain
);
617 range
= isl_map_range(isl_map_copy(map
));
618 range
= isl_set_coalesce(range
);
619 app
= isl_map_from_domain_and_range(domain
, range
);
620 app
= isl_map_add(app
, isl_dim_in
, 1);
621 app
= isl_map_add(app
, isl_dim_out
, 1);
623 path
= construct_extended_path(isl_dim_copy(dim
), map
,
624 exact
&& *exact
? &project
: NULL
);
625 app
= isl_map_intersect(app
, path
);
627 if (exact
&& *exact
&&
628 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
632 return isl_map_union(app
, isl_map_identity(isl_dim_domain(dim
)));
639 /* Structure for representing the nodes in the graph being traversed
640 * using Tarjan's algorithm.
641 * index represents the order in which nodes are visited.
642 * min_index is the index of the root of a (sub)component.
643 * on_stack indicates whether the node is currently on the stack.
645 struct basic_map_sort_node
{
650 /* Structure for representing the graph being traversed
651 * using Tarjan's algorithm.
652 * len is the number of nodes
653 * node is an array of nodes
654 * stack contains the nodes on the path from the root to the current node
655 * sp is the stack pointer
656 * index is the index of the last node visited
657 * order contains the elements of the components separated by -1
658 * op represents the current position in order
660 struct basic_map_sort
{
662 struct basic_map_sort_node
*node
;
670 static void basic_map_sort_free(struct basic_map_sort
*s
)
680 static struct basic_map_sort
*basic_map_sort_alloc(struct isl_ctx
*ctx
, int len
)
682 struct basic_map_sort
*s
;
685 s
= isl_calloc_type(ctx
, struct basic_map_sort
);
689 s
->node
= isl_alloc_array(ctx
, struct basic_map_sort_node
, len
);
692 for (i
= 0; i
< len
; ++i
)
693 s
->node
[i
].index
= -1;
694 s
->stack
= isl_alloc_array(ctx
, int, len
);
697 s
->order
= isl_alloc_array(ctx
, int, 2 * len
);
707 basic_map_sort_free(s
);
711 /* Check whether in the computation of the transitive closure
712 * "bmap1" (R_1) should follow (or be part of the same component as)
715 * That is check whether
723 * If so, then there is no reason for R_1 to immediately follow R_2
726 static int basic_map_follows(__isl_keep isl_basic_map
*bmap1
,
727 __isl_keep isl_basic_map
*bmap2
)
729 struct isl_map
*map12
= NULL
;
730 struct isl_map
*map21
= NULL
;
733 map21
= isl_map_from_basic_map(
734 isl_basic_map_apply_range(
735 isl_basic_map_copy(bmap2
),
736 isl_basic_map_copy(bmap1
)));
737 subset
= isl_map_is_empty(map21
);
745 map12
= isl_map_from_basic_map(
746 isl_basic_map_apply_range(
747 isl_basic_map_copy(bmap1
),
748 isl_basic_map_copy(bmap2
)));
750 subset
= isl_map_is_subset(map21
, map12
);
755 return subset
< 0 ? -1 : !subset
;
761 /* Perform Tarjan's algorithm for computing the strongly connected components
762 * in the graph with the disjuncts of "map" as vertices and with an
763 * edge between any pair of disjuncts such that the first has
764 * to be applied after the second.
766 static int power_components_tarjan(struct basic_map_sort
*s
,
767 __isl_keep isl_map
*map
, int i
)
771 s
->node
[i
].index
= s
->index
;
772 s
->node
[i
].min_index
= s
->index
;
773 s
->node
[i
].on_stack
= 1;
775 s
->stack
[s
->sp
++] = i
;
777 for (j
= s
->len
- 1; j
>= 0; --j
) {
782 if (s
->node
[j
].index
>= 0 &&
783 (!s
->node
[j
].on_stack
||
784 s
->node
[j
].index
> s
->node
[i
].min_index
))
787 f
= basic_map_follows(map
->p
[i
], map
->p
[j
]);
793 if (s
->node
[j
].index
< 0) {
794 power_components_tarjan(s
, map
, j
);
795 if (s
->node
[j
].min_index
< s
->node
[i
].min_index
)
796 s
->node
[i
].min_index
= s
->node
[j
].min_index
;
797 } else if (s
->node
[j
].index
< s
->node
[i
].min_index
)
798 s
->node
[i
].min_index
= s
->node
[j
].index
;
801 if (s
->node
[i
].index
!= s
->node
[i
].min_index
)
805 j
= s
->stack
[--s
->sp
];
806 s
->node
[j
].on_stack
= 0;
807 s
->order
[s
->op
++] = j
;
809 s
->order
[s
->op
++] = -1;
814 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
815 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
816 * construct a map that is the union of the identity map and
817 * an overapproximation of the map
818 * that takes an element from the dom R \times Z to an
819 * element from ran R \times Z, such that the first n coordinates of the
820 * difference between them is a sum of differences between images
821 * and pre-images in one of the R_i and such that the last coordinate
822 * is equal to the number of steps taken.
825 * \Delta_i = { y - x | (x, y) in R_i }
827 * then the constructed map is an overapproximation of
829 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
830 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
831 * x in dom R and x + d in ran R } union
834 * We first split the map into strongly connected components, perform
835 * the above on each component and the join the results in the correct
836 * order. The power of each of the components needs to be extended
837 * with the identity map because a path in the global result need
838 * not go through every component.
839 * The final result will then also contain the identity map, but
840 * this part will be removed when the length of the path is forced
841 * to be strictly positive.
843 static __isl_give isl_map
*construct_power_components(__isl_take isl_dim
*dim
,
844 __isl_keep isl_map
*map
, int *exact
, int project
)
847 struct isl_map
*path
= NULL
;
848 struct basic_map_sort
*s
= NULL
;
853 return construct_component(dim
, map
, exact
, project
);
855 s
= basic_map_sort_alloc(map
->ctx
, map
->n
);
858 for (i
= map
->n
- 1; i
>= 0; --i
) {
859 if (s
->node
[i
].index
>= 0)
861 if (power_components_tarjan(s
, map
, i
) < 0)
867 path
= isl_map_identity(isl_dim_domain(isl_dim_copy(dim
)));
869 struct isl_map
*comp
;
870 comp
= isl_map_alloc_dim(isl_map_get_dim(map
), n
, 0);
871 while (s
->order
[i
] != -1) {
872 comp
= isl_map_add_basic_map(comp
,
873 isl_basic_map_copy(map
->p
[s
->order
[i
]]));
877 path
= isl_map_apply_range(path
,
878 construct_component(isl_dim_copy(dim
), comp
,
884 basic_map_sort_free(s
);
889 basic_map_sort_free(s
);
894 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
895 * construct a map that is an overapproximation of the map
896 * that takes an element from the space D to another
897 * element from the same space, such that the difference between
898 * them is a strictly positive sum of differences between images
899 * and pre-images in one of the R_i.
900 * The number of differences in the sum is equated to parameter "param".
903 * \Delta_i = { y - x | (x, y) in R_i }
905 * then the constructed map is an overapproximation of
907 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
908 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
910 * We first construct an extended mapping with an extra coordinate
911 * that indicates the number of steps taken. In particular,
912 * the difference in the last coordinate is equal to the number
913 * of steps taken to move from a domain element to the corresponding
915 * In the final step, this difference is equated to the parameter "param"
916 * and made positive. The extra coordinates are subsequently projected out.
918 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
919 unsigned param
, int *exact
, int project
)
921 struct isl_map
*app
= NULL
;
922 struct isl_map
*diff
;
923 struct isl_dim
*dim
= NULL
;
929 dim
= isl_map_get_dim(map
);
931 d
= isl_dim_size(dim
, isl_dim_in
);
932 dim
= isl_dim_add(dim
, isl_dim_in
, 1);
933 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
935 app
= construct_power_components(isl_dim_copy(dim
), map
,
938 diff
= equate_parameter_to_length(dim
, param
);
939 app
= isl_map_intersect(app
, diff
);
940 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
941 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
946 /* Compute the positive powers of "map", or an overapproximation.
947 * The power is given by parameter "param". If the result is exact,
948 * then *exact is set to 1.
949 * If project is set, then we are actually interested in the transitive
950 * closure, so we can use a more relaxed exactness check.
952 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
, unsigned param
,
953 int *exact
, int project
)
955 struct isl_map
*app
= NULL
;
960 map
= isl_map_remove_empty_parts(map
);
964 if (isl_map_fast_is_empty(map
))
967 isl_assert(map
->ctx
, param
< isl_map_dim(map
, isl_dim_param
), goto error
);
969 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
972 app
= construct_power(map
, param
, exact
, project
);
982 /* Compute the positive powers of "map", or an overapproximation.
983 * The power is given by parameter "param". If the result is exact,
984 * then *exact is set to 1.
986 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, unsigned param
,
989 return map_power(map
, param
, exact
, 0);
992 /* Compute the transitive closure of "map", or an overapproximation.
993 * If the result is exact, then *exact is set to 1.
994 * Simply compute the powers of map and then project out the parameter
995 * describing the power.
997 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
1005 param
= isl_map_dim(map
, isl_dim_param
);
1006 map
= isl_map_add(map
, isl_dim_param
, 1);
1007 map
= map_power(map
, param
, exact
, 1);
1008 map
= isl_map_project_out(map
, isl_dim_param
, param
, 1);