2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_equalities.h"
12 #include "isl_map_private.h"
16 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
18 isl_int
*t
= bmap
->eq
[a
];
19 bmap
->eq
[a
] = bmap
->eq
[b
];
23 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
26 isl_int
*t
= bmap
->ineq
[a
];
27 bmap
->ineq
[a
] = bmap
->ineq
[b
];
32 static void set_swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
34 swap_inequality((struct isl_basic_map
*)bset
, a
, b
);
37 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
39 isl_seq_cpy(c
, c
+ n
, rem
);
40 isl_seq_clr(c
+ rem
, n
);
43 /* Drop n dimensions starting at first.
45 * In principle, this frees up some extra variables as the number
46 * of columns remains constant, but we would have to extend
47 * the div array too as the number of rows in this array is assumed
48 * to be equal to extra.
50 struct isl_basic_set
*isl_basic_set_drop_dims(
51 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
58 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
63 bset
= isl_basic_set_cow(bset
);
67 for (i
= 0; i
< bset
->n_eq
; ++i
)
68 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
69 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
71 for (i
= 0; i
< bset
->n_ineq
; ++i
)
72 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
73 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
75 for (i
= 0; i
< bset
->n_div
; ++i
)
76 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
77 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
79 bset
->dim
= isl_dim_drop_outputs(bset
->dim
, first
, n
);
83 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
84 bset
= isl_basic_set_simplify(bset
);
85 return isl_basic_set_finalize(bset
);
87 isl_basic_set_free(bset
);
91 struct isl_set
*isl_set_drop_dims(
92 struct isl_set
*set
, unsigned first
, unsigned n
)
99 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
103 set
= isl_set_cow(set
);
106 set
->dim
= isl_dim_drop_outputs(set
->dim
, first
, n
);
110 for (i
= 0; i
< set
->n
; ++i
) {
111 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
116 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
123 /* Move "n" divs starting at "first" to the end of the list of divs.
125 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
126 unsigned first
, unsigned n
)
131 if (first
+ n
== bmap
->n_div
)
134 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
137 for (i
= 0; i
< n
; ++i
)
138 div
[i
] = bmap
->div
[first
+ i
];
139 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
140 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
141 for (i
= 0; i
< n
; ++i
)
142 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
146 isl_basic_map_free(bmap
);
150 /* Drop "n" dimensions of type "type" starting at "first".
152 * In principle, this frees up some extra variables as the number
153 * of columns remains constant, but we would have to extend
154 * the div array too as the number of rows in this array is assumed
155 * to be equal to extra.
157 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
158 enum isl_dim_type type
, unsigned first
, unsigned n
)
168 dim
= isl_basic_map_dim(bmap
, type
);
169 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
174 bmap
= isl_basic_map_cow(bmap
);
178 offset
= isl_basic_map_offset(bmap
, type
) + first
;
179 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
180 for (i
= 0; i
< bmap
->n_eq
; ++i
)
181 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
183 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
184 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
186 for (i
= 0; i
< bmap
->n_div
; ++i
)
187 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
189 if (type
== isl_dim_div
) {
190 bmap
= move_divs_last(bmap
, first
, n
);
193 isl_basic_map_free_div(bmap
, n
);
195 bmap
->dim
= isl_dim_drop(bmap
->dim
, type
, first
, n
);
199 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
200 bmap
= isl_basic_map_simplify(bmap
);
201 return isl_basic_map_finalize(bmap
);
203 isl_basic_map_free(bmap
);
207 struct isl_basic_map
*isl_basic_map_drop_inputs(
208 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
210 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
213 struct isl_map
*isl_map_drop(struct isl_map
*map
,
214 enum isl_dim_type type
, unsigned first
, unsigned n
)
221 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
225 map
= isl_map_cow(map
);
228 map
->dim
= isl_dim_drop(map
->dim
, type
, first
, n
);
232 for (i
= 0; i
< map
->n
; ++i
) {
233 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
237 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
245 struct isl_map
*isl_map_drop_inputs(
246 struct isl_map
*map
, unsigned first
, unsigned n
)
248 return isl_map_drop(map
, isl_dim_in
, first
, n
);
252 * We don't cow, as the div is assumed to be redundant.
254 static struct isl_basic_map
*isl_basic_map_drop_div(
255 struct isl_basic_map
*bmap
, unsigned div
)
263 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
265 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
267 for (i
= 0; i
< bmap
->n_eq
; ++i
)
268 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
270 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
271 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
272 isl_basic_map_drop_inequality(bmap
, i
);
276 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
279 for (i
= 0; i
< bmap
->n_div
; ++i
)
280 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
282 if (div
!= bmap
->n_div
- 1) {
284 isl_int
*t
= bmap
->div
[div
];
286 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
287 bmap
->div
[j
] = bmap
->div
[j
+1];
289 bmap
->div
[bmap
->n_div
- 1] = t
;
291 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
292 isl_basic_map_free_div(bmap
, 1);
296 isl_basic_map_free(bmap
);
300 struct isl_basic_map
*isl_basic_map_normalize_constraints(
301 struct isl_basic_map
*bmap
)
305 unsigned total
= isl_basic_map_total_dim(bmap
);
308 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
309 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
310 if (isl_int_is_zero(gcd
)) {
311 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
312 bmap
= isl_basic_map_set_to_empty(bmap
);
315 isl_basic_map_drop_equality(bmap
, i
);
318 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
319 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
320 if (isl_int_is_one(gcd
))
322 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
323 bmap
= isl_basic_map_set_to_empty(bmap
);
326 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
329 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
330 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
331 if (isl_int_is_zero(gcd
)) {
332 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
333 bmap
= isl_basic_map_set_to_empty(bmap
);
336 isl_basic_map_drop_inequality(bmap
, i
);
339 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
340 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
341 if (isl_int_is_one(gcd
))
343 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
344 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
351 struct isl_basic_set
*isl_basic_set_normalize_constraints(
352 struct isl_basic_set
*bset
)
354 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
355 (struct isl_basic_map
*)bset
);
358 /* Assumes divs have been ordered if keep_divs is set.
360 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
361 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
367 total
= isl_basic_map_total_dim(bmap
);
368 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
370 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
371 if (bmap
->eq
[k
] == eq
)
373 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
377 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
380 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
381 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
385 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
386 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
389 for (k
= 0; k
< bmap
->n_div
; ++k
) {
390 if (isl_int_is_zero(bmap
->div
[k
][0]))
392 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
396 /* We need to be careful about circular definitions,
397 * so for now we just remove the definition of div k
398 * if the equality contains any divs.
399 * If keep_divs is set, then the divs have been ordered
400 * and we can keep the definition as long as the result
403 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
404 isl_seq_elim(bmap
->div
[k
]+1, eq
,
405 1+pos
, 1+total
, &bmap
->div
[k
][0]);
407 isl_seq_clr(bmap
->div
[k
], 1 + total
);
408 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
412 /* Assumes divs have been ordered if keep_divs is set.
414 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
415 unsigned div
, int keep_divs
)
417 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
419 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
421 isl_basic_map_drop_div(bmap
, div
);
424 /* Elimininate divs based on equalities
426 static struct isl_basic_map
*eliminate_divs_eq(
427 struct isl_basic_map
*bmap
, int *progress
)
434 bmap
= isl_basic_map_order_divs(bmap
);
439 off
= 1 + isl_dim_total(bmap
->dim
);
441 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
442 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
443 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
444 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
448 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
449 isl_basic_map_drop_equality(bmap
, i
);
454 return eliminate_divs_eq(bmap
, progress
);
458 /* Elimininate divs based on inequalities
460 static struct isl_basic_map
*eliminate_divs_ineq(
461 struct isl_basic_map
*bmap
, int *progress
)
472 off
= 1 + isl_dim_total(bmap
->dim
);
474 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
475 for (i
= 0; i
< bmap
->n_eq
; ++i
)
476 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
480 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
481 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
483 if (i
< bmap
->n_ineq
)
486 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
487 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
489 bmap
= isl_basic_map_drop_div(bmap
, d
);
496 struct isl_basic_map
*isl_basic_map_gauss(
497 struct isl_basic_map
*bmap
, int *progress
)
505 bmap
= isl_basic_map_order_divs(bmap
);
510 total
= isl_basic_map_total_dim(bmap
);
511 total_var
= total
- bmap
->n_div
;
513 last_var
= total
- 1;
514 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
515 for (; last_var
>= 0; --last_var
) {
516 for (k
= done
; k
< bmap
->n_eq
; ++k
)
517 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
525 swap_equality(bmap
, k
, done
);
526 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
527 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
529 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
532 if (last_var
>= total_var
&&
533 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
534 unsigned div
= last_var
- total_var
;
535 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
536 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
537 isl_int_set(bmap
->div
[div
][0],
538 bmap
->eq
[done
][1+last_var
]);
539 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
542 if (done
== bmap
->n_eq
)
544 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
545 if (isl_int_is_zero(bmap
->eq
[k
][0]))
547 return isl_basic_map_set_to_empty(bmap
);
549 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
553 struct isl_basic_set
*isl_basic_set_gauss(
554 struct isl_basic_set
*bset
, int *progress
)
556 return (struct isl_basic_set
*)isl_basic_map_gauss(
557 (struct isl_basic_map
*)bset
, progress
);
561 static unsigned int round_up(unsigned int v
)
572 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
573 struct isl_basic_map
*bmap
, int k
)
576 unsigned total
= isl_basic_map_total_dim(bmap
);
577 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
578 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
579 if (&bmap
->ineq
[k
] != index
[h
] &&
580 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
585 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
586 struct isl_basic_set
*bset
, int k
)
588 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
591 /* If we can eliminate more than one div, then we need to make
592 * sure we do it from last div to first div, in order not to
593 * change the position of the other divs that still need to
596 static struct isl_basic_map
*remove_duplicate_divs(
597 struct isl_basic_map
*bmap
, int *progress
)
605 unsigned total_var
= isl_dim_total(bmap
->dim
);
606 unsigned total
= total_var
+ bmap
->n_div
;
609 if (bmap
->n_div
<= 1)
613 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
614 if (!isl_int_is_zero(bmap
->div
[k
][0]))
619 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
620 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
621 bits
= ffs(size
) - 1;
622 index
= isl_calloc_array(ctx
, int, size
);
625 eq
= isl_blk_alloc(ctx
, 1+total
);
626 if (isl_blk_is_error(eq
))
629 isl_seq_clr(eq
.data
, 1+total
);
630 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
631 for (--k
; k
>= 0; --k
) {
634 if (isl_int_is_zero(bmap
->div
[k
][0]))
637 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
638 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
639 if (isl_seq_eq(bmap
->div
[k
],
640 bmap
->div
[index
[h
]-1], 2+total
))
649 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
653 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
654 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
655 eliminate_div(bmap
, eq
.data
, l
, 0);
656 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
657 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
660 isl_blk_free(ctx
, eq
);
667 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
672 total
= isl_dim_total(bmap
->dim
);
673 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
674 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
678 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
684 /* Normalize divs that appear in equalities.
686 * In particular, we assume that bmap contains some equalities
691 * and we want to replace the set of e_i by a minimal set and
692 * such that the new e_i have a canonical representation in terms
694 * If any of the equalities involves more than one divs, then
695 * we currently simply bail out.
697 * Let us first additionally assume that all equalities involve
698 * a div. The equalities then express modulo constraints on the
699 * remaining variables and we can use "parameter compression"
700 * to find a minimal set of constraints. The result is a transformation
702 * x = T(x') = x_0 + G x'
704 * with G a lower-triangular matrix with all elements below the diagonal
705 * non-negative and smaller than the diagonal element on the same row.
706 * We first normalize x_0 by making the same property hold in the affine
708 * The rows i of G with a 1 on the diagonal do not impose any modulo
709 * constraint and simply express x_i = x'_i.
710 * For each of the remaining rows i, we introduce a div and a corresponding
711 * equality. In particular
713 * g_ii e_j = x_i - g_i(x')
715 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
716 * corresponding div (if g_kk != 1).
718 * If there are any equalities not involving any div, then we
719 * first apply a variable compression on the variables x:
721 * x = C x'' x'' = C_2 x
723 * and perform the above parameter compression on A C instead of on A.
724 * The resulting compression is then of the form
726 * x'' = T(x') = x_0 + G x'
728 * and in constructing the new divs and the corresponding equalities,
729 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
730 * by the corresponding row from C_2.
732 static struct isl_basic_map
*normalize_divs(
733 struct isl_basic_map
*bmap
, int *progress
)
740 struct isl_mat
*T
= NULL
;
741 struct isl_mat
*C
= NULL
;
742 struct isl_mat
*C2
= NULL
;
750 if (bmap
->n_div
== 0)
756 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
759 total
= isl_dim_total(bmap
->dim
);
760 div_eq
= n_pure_div_eq(bmap
);
764 if (div_eq
< bmap
->n_eq
) {
765 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, div_eq
,
766 bmap
->n_eq
- div_eq
, 0, 1 + total
);
767 C
= isl_mat_variable_compression(B
, &C2
);
771 bmap
= isl_basic_map_set_to_empty(bmap
);
778 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
781 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
782 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
784 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
786 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
789 B
= isl_mat_product(B
, C
);
793 T
= isl_mat_parameter_compression(B
, d
);
797 bmap
= isl_basic_map_set_to_empty(bmap
);
803 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
804 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
805 if (isl_int_is_zero(v
))
807 isl_mat_col_submul(T
, 0, v
, 1 + i
);
810 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
811 /* We have to be careful because dropping equalities may reorder them */
813 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
814 for (i
= 0; i
< bmap
->n_eq
; ++i
)
815 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
817 if (i
< bmap
->n_eq
) {
818 bmap
= isl_basic_map_drop_div(bmap
, j
);
819 isl_basic_map_drop_equality(bmap
, i
);
825 for (i
= 1; i
< T
->n_row
; ++i
) {
826 if (isl_int_is_one(T
->row
[i
][i
]))
831 if (needed
> dropped
) {
832 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
837 for (i
= 1; i
< T
->n_row
; ++i
) {
838 if (isl_int_is_one(T
->row
[i
][i
]))
840 k
= isl_basic_map_alloc_div(bmap
);
841 pos
[i
] = 1 + total
+ k
;
842 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
843 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
845 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
847 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
848 for (j
= 0; j
< i
; ++j
) {
849 if (isl_int_is_zero(T
->row
[i
][j
]))
851 if (pos
[j
] < T
->n_row
&& C2
)
852 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
853 C2
->row
[pos
[j
]], 1 + total
);
855 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
858 j
= isl_basic_map_alloc_equality(bmap
);
859 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
860 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
869 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
879 static struct isl_basic_map
*set_div_from_lower_bound(
880 struct isl_basic_map
*bmap
, int div
, int ineq
)
882 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
884 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
885 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
886 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
887 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
888 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
893 /* Check whether it is ok to define a div based on an inequality.
894 * To avoid the introduction of circular definitions of divs, we
895 * do not allow such a definition if the resulting expression would refer to
896 * any other undefined divs or if any known div is defined in
897 * terms of the unknown div.
899 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
903 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
905 /* Not defined in terms of unknown divs */
906 for (j
= 0; j
< bmap
->n_div
; ++j
) {
909 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
911 if (isl_int_is_zero(bmap
->div
[j
][0]))
915 /* No other div defined in terms of this one => avoid loops */
916 for (j
= 0; j
< bmap
->n_div
; ++j
) {
919 if (isl_int_is_zero(bmap
->div
[j
][0]))
921 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
928 /* Given two constraints "k" and "l" that are opposite to each other,
929 * except for the constant term, check if we can use them
930 * to obtain an expression for one of the hitherto unknown divs.
931 * "sum" is the sum of the constant terms of the constraints.
932 * If this sum is strictly smaller than the coefficient of one
933 * of the divs, then this pair can be used define the div.
934 * To avoid the introduction of circular definitions of divs, we
935 * do not use the pair if the resulting expression would refer to
936 * any other undefined divs or if any known div is defined in
937 * terms of the unknown div.
939 static struct isl_basic_map
*check_for_div_constraints(
940 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
943 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
945 for (i
= 0; i
< bmap
->n_div
; ++i
) {
946 if (!isl_int_is_zero(bmap
->div
[i
][0]))
948 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
950 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
952 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
954 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
955 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
957 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
965 static struct isl_basic_map
*remove_duplicate_constraints(
966 struct isl_basic_map
*bmap
, int *progress
)
972 unsigned total
= isl_basic_map_total_dim(bmap
);
975 if (bmap
->n_ineq
<= 1)
978 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
979 bits
= ffs(size
) - 1;
980 index
= isl_calloc_array(ctx
, isl_int
**, size
);
984 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
985 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
986 h
= hash_index(index
, size
, bits
, bmap
, k
);
988 index
[h
] = &bmap
->ineq
[k
];
993 l
= index
[h
] - &bmap
->ineq
[0];
994 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
995 swap_inequality(bmap
, k
, l
);
996 isl_basic_map_drop_inequality(bmap
, k
);
1000 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1001 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1002 h
= hash_index(index
, size
, bits
, bmap
, k
);
1003 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1006 l
= index
[h
] - &bmap
->ineq
[0];
1007 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1008 if (isl_int_is_pos(sum
)) {
1009 bmap
= check_for_div_constraints(bmap
, k
, l
, sum
,
1013 if (isl_int_is_zero(sum
)) {
1014 /* We need to break out of the loop after these
1015 * changes since the contents of the hash
1016 * will no longer be valid.
1017 * Plus, we probably we want to regauss first.
1021 isl_basic_map_drop_inequality(bmap
, l
);
1022 isl_basic_map_inequality_to_equality(bmap
, k
);
1024 bmap
= isl_basic_map_set_to_empty(bmap
);
1034 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1041 bmap
= isl_basic_map_normalize_constraints(bmap
);
1042 bmap
= remove_duplicate_divs(bmap
, &progress
);
1043 bmap
= eliminate_divs_eq(bmap
, &progress
);
1044 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1045 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1046 /* requires equalities in normal form */
1047 bmap
= normalize_divs(bmap
, &progress
);
1048 bmap
= remove_duplicate_constraints(bmap
, &progress
);
1053 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1055 return (struct isl_basic_set
*)
1056 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1060 /* If the only constraints a div d=floor(f/m)
1061 * appears in are its two defining constraints
1064 * -(f - (m - 1)) + m d >= 0
1066 * then it can safely be removed.
1068 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1071 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1073 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1074 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1077 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1078 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1080 if (isl_int_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1082 isl_int_sub(bmap
->div
[div
][1],
1083 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1084 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1085 neg
= isl_seq_is_neg(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
);
1086 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1087 isl_int_add(bmap
->div
[div
][1],
1088 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1091 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1092 bmap
->n_div
-div
-1) != -1)
1094 } else if (isl_int_abs_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1095 if (!isl_seq_eq(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
))
1097 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1098 bmap
->n_div
-div
-1) != -1)
1104 for (i
= 0; i
< bmap
->n_div
; ++i
)
1105 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1112 * Remove divs that don't occur in any of the constraints or other divs.
1113 * These can arise when dropping some of the variables in a quast
1114 * returned by piplib.
1116 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1123 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1124 if (!div_is_redundant(bmap
, i
))
1126 bmap
= isl_basic_map_drop_div(bmap
, i
);
1131 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1133 bmap
= remove_redundant_divs(bmap
);
1136 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1140 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1142 return (struct isl_basic_set
*)
1143 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1146 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1152 for (i
= 0; i
< set
->n
; ++i
) {
1153 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1163 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1169 for (i
= 0; i
< map
->n
; ++i
) {
1170 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1174 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1182 /* Remove definition of any div that is defined in terms of the given variable.
1183 * The div itself is not removed. Functions such as
1184 * eliminate_divs_ineq depend on the other divs remaining in place.
1186 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1191 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1192 if (isl_int_is_zero(bmap
->div
[i
][0]))
1194 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1196 isl_int_set_si(bmap
->div
[i
][0], 0);
1201 /* Eliminate the specified variables from the constraints using
1202 * Fourier-Motzkin. The variables themselves are not removed.
1204 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1205 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1215 total
= isl_basic_map_total_dim(bmap
);
1217 bmap
= isl_basic_map_cow(bmap
);
1218 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1219 bmap
= remove_dependent_vars(bmap
, d
);
1221 for (d
= pos
+ n
- 1;
1222 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1223 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1224 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1225 int n_lower
, n_upper
;
1228 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1229 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1231 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1232 isl_basic_map_drop_equality(bmap
, i
);
1239 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1240 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1242 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1245 bmap
= isl_basic_map_extend_constraints(bmap
,
1246 0, n_lower
* n_upper
);
1247 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1249 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1252 for (j
= 0; j
< i
; ++j
) {
1253 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1256 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1257 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1259 k
= isl_basic_map_alloc_inequality(bmap
);
1262 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1264 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1265 1+d
, 1+total
, NULL
);
1267 isl_basic_map_drop_inequality(bmap
, i
);
1270 if (n_lower
> 0 && n_upper
> 0) {
1271 bmap
= isl_basic_map_normalize_constraints(bmap
);
1272 bmap
= remove_duplicate_constraints(bmap
, NULL
);
1273 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1274 bmap
= isl_basic_map_convex_hull(bmap
);
1277 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1281 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1284 isl_basic_map_free(bmap
);
1288 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1289 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1291 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1292 (struct isl_basic_map
*)bset
, pos
, n
);
1295 /* Don't assume equalities are in order, because align_divs
1296 * may have changed the order of the divs.
1298 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1303 total
= isl_dim_total(bmap
->dim
);
1304 for (d
= 0; d
< total
; ++d
)
1306 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1307 for (d
= total
- 1; d
>= 0; --d
) {
1308 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1316 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1318 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1321 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1322 struct isl_basic_map
*bmap
, int *elim
)
1328 total
= isl_dim_total(bmap
->dim
);
1329 for (d
= total
- 1; d
>= 0; --d
) {
1330 if (isl_int_is_zero(src
[1+d
]))
1335 isl_seq_cpy(dst
, src
, 1 + total
);
1338 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1343 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1344 struct isl_basic_set
*bset
, int *elim
)
1346 return reduced_using_equalities(dst
, src
,
1347 (struct isl_basic_map
*)bset
, elim
);
1350 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1351 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1356 if (!bset
|| !context
)
1359 bset
= isl_basic_set_cow(bset
);
1363 elim
= isl_alloc_array(ctx
, int, isl_basic_set_n_dim(bset
));
1366 set_compute_elimination_index(context
, elim
);
1367 for (i
= 0; i
< bset
->n_eq
; ++i
)
1368 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1370 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1371 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1373 isl_basic_set_free(context
);
1375 bset
= isl_basic_set_simplify(bset
);
1376 bset
= isl_basic_set_finalize(bset
);
1379 isl_basic_set_free(bset
);
1380 isl_basic_set_free(context
);
1384 static struct isl_basic_set
*remove_shifted_constraints(
1385 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1395 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1396 bits
= ffs(size
) - 1;
1397 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1401 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1402 h
= set_hash_index(index
, size
, bits
, context
, k
);
1403 index
[h
] = &context
->ineq
[k
];
1405 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1406 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1409 l
= index
[h
] - &context
->ineq
[0];
1410 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1412 bset
= isl_basic_set_cow(bset
);
1415 isl_basic_set_drop_inequality(bset
, k
);
1425 /* Tighten (decrease) the constant terms of the inequalities based
1426 * on the equalities, without removing any integer points.
1427 * For example, if there is an equality
1435 * then we want to replace the inequality by
1439 * We do this by computing a variable compression and translating
1440 * the constraints to the compressed space.
1441 * If any constraint has coefficients (except the contant term)
1442 * with a common factor "f", then we can replace the constant term "c"
1449 * f * floor(c/f) - c = -fract(c/f)
1451 * and we can add the same value to the original constraint.
1453 * In the example, the compressed space only contains "j",
1454 * and the inequality translates to
1458 * We add -fract(-1/3) = -2 to the original constraint to obtain
1462 static struct isl_basic_set
*normalize_constraints_in_compressed_space(
1463 struct isl_basic_set
*bset
)
1467 struct isl_mat
*B
, *C
;
1473 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
))
1479 bset
= isl_basic_set_cow(bset
);
1483 total
= isl_basic_set_total_dim(bset
);
1484 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
, 0, 1 + total
);
1485 C
= isl_mat_variable_compression(B
, NULL
);
1488 if (C
->n_col
== 0) {
1490 return isl_basic_set_set_to_empty(bset
);
1492 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->ineq
,
1493 0, bset
->n_ineq
, 0, 1 + total
);
1494 C
= isl_mat_product(B
, C
);
1499 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1500 isl_seq_gcd(C
->row
[i
] + 1, C
->n_col
- 1, &gcd
);
1501 if (isl_int_is_one(gcd
))
1503 isl_int_fdiv_r(C
->row
[i
][0], C
->row
[i
][0], gcd
);
1504 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], C
->row
[i
][0]);
1513 /* Remove all information from bset that is redundant in the context
1514 * of context. In particular, equalities that are linear combinations
1515 * of those in context are removed. Then the inequalities that are
1516 * redundant in the context of the equalities and inequalities of
1517 * context are removed.
1519 * We first simplify the constraints of "bset" in the context of the
1520 * equalities of "context".
1521 * Then we simplify the inequalities of the context in the context
1522 * of the equalities of bset and remove the inequalities from "bset"
1523 * that are obviously redundant with respect to some inequality in "context".
1525 * If there are any inequalities left, we construct a tableau for
1526 * the context and then add the inequalities of "bset".
1527 * Before adding these equalities, we freeze all constraints such that
1528 * they won't be considered redundant in terms of the constraints of "bset".
1529 * Then we detect all equalities and redundant constraints (among the
1530 * constraints that weren't frozen) and update bset according to the results.
1531 * We have to be careful here because we don't want any of the context
1532 * constraints to remain and because we haven't added the equalities of "bset"
1533 * to the tableau so we temporarily have to pretend that there were no
1536 static struct isl_basic_set
*uset_gist(struct isl_basic_set
*bset
,
1537 struct isl_basic_set
*context
)
1540 struct isl_tab
*tab
;
1541 unsigned context_ineq
;
1542 struct isl_basic_set
*combined
= NULL
;
1544 if (!context
|| !bset
)
1547 if (context
->n_eq
> 0)
1548 bset
= isl_basic_set_reduce_using_equalities(bset
,
1549 isl_basic_set_copy(context
));
1552 if (isl_basic_set_fast_is_empty(bset
))
1557 if (bset
->n_eq
> 0) {
1558 struct isl_basic_set
*affine_hull
;
1559 affine_hull
= isl_basic_set_copy(bset
);
1560 affine_hull
= isl_basic_set_cow(affine_hull
);
1563 isl_basic_set_free_inequality(affine_hull
, affine_hull
->n_ineq
);
1564 context
= isl_basic_set_intersect(context
, affine_hull
);
1565 context
= isl_basic_set_gauss(context
, NULL
);
1566 context
= normalize_constraints_in_compressed_space(context
);
1570 if (ISL_F_ISSET(context
, ISL_BASIC_SET_EMPTY
)) {
1571 isl_basic_set_free(bset
);
1574 if (!context
->n_ineq
)
1576 bset
= remove_shifted_constraints(bset
, context
);
1579 context_ineq
= context
->n_ineq
;
1580 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1581 if (isl_basic_set_free_equality(combined
, context
->n_eq
) < 0)
1583 combined
= isl_basic_set_extend_constraints(combined
,
1584 bset
->n_eq
, bset
->n_ineq
);
1585 tab
= isl_tab_from_basic_set(combined
);
1588 for (i
= 0; i
< context_ineq
; ++i
)
1589 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1591 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1594 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1595 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1597 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1598 tab
= isl_tab_detect_implicit_equalities(tab
);
1599 if (isl_tab_detect_redundant(tab
) < 0) {
1603 for (i
= 0; i
< context_ineq
; ++i
) {
1604 tab
->con
[i
].is_zero
= 0;
1605 tab
->con
[i
].is_redundant
= 1;
1607 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1609 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1610 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1612 bset
= isl_basic_set_simplify(bset
);
1613 bset
= isl_basic_set_finalize(bset
);
1614 isl_basic_set_free(context
);
1617 isl_basic_set_free(combined
);
1619 isl_basic_set_free(bset
);
1620 isl_basic_set_free(context
);
1624 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1625 * We simply add the equalities in context to bmap and then do a regular
1626 * div normalizations. Better results can be obtained by normalizing
1627 * only the divs in bmap than do not also appear in context.
1628 * We need to be careful to reduce the divs using the equalities
1629 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1630 * spurious constraints.
1632 static struct isl_basic_map
*normalize_divs_in_context(
1633 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1636 unsigned total_context
;
1639 div_eq
= n_pure_div_eq(bmap
);
1643 if (context
->n_div
> 0)
1644 bmap
= isl_basic_map_align_divs(bmap
, context
);
1646 total_context
= isl_basic_map_total_dim(context
);
1647 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1648 for (i
= 0; i
< context
->n_eq
; ++i
) {
1650 k
= isl_basic_map_alloc_equality(bmap
);
1651 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1652 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1653 isl_basic_map_total_dim(bmap
) - total_context
);
1655 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1656 bmap
= normalize_divs(bmap
, NULL
);
1657 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1661 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1662 struct isl_basic_map
*context
)
1664 struct isl_basic_set
*bset
;
1666 if (!bmap
|| !context
)
1669 if (isl_basic_map_is_universe(context
)) {
1670 isl_basic_map_free(context
);
1673 if (isl_basic_map_is_universe(bmap
)) {
1674 isl_basic_map_free(context
);
1677 if (isl_basic_map_fast_is_empty(context
)) {
1678 struct isl_dim
*dim
= isl_dim_copy(bmap
->dim
);
1679 isl_basic_map_free(context
);
1680 isl_basic_map_free(bmap
);
1681 return isl_basic_map_universe(dim
);
1683 if (isl_basic_map_fast_is_empty(bmap
)) {
1684 isl_basic_map_free(context
);
1688 bmap
= isl_basic_map_convex_hull(bmap
);
1689 context
= isl_basic_map_convex_hull(context
);
1692 bmap
= normalize_divs_in_context(bmap
, context
);
1694 context
= isl_basic_map_align_divs(context
, bmap
);
1695 bmap
= isl_basic_map_align_divs(bmap
, context
);
1697 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1698 isl_basic_map_underlying_set(context
));
1700 return isl_basic_map_overlying_set(bset
, bmap
);
1702 isl_basic_map_free(bmap
);
1703 isl_basic_map_free(context
);
1708 * Assumes context has no implicit divs.
1710 struct isl_map
*isl_map_gist(struct isl_map
*map
, struct isl_basic_map
*context
)
1714 if (!map
|| !context
)
1717 if (isl_basic_map_is_universe(context
)) {
1718 isl_basic_map_free(context
);
1721 if (isl_basic_map_fast_is_empty(context
)) {
1722 struct isl_dim
*dim
= isl_dim_copy(map
->dim
);
1723 isl_basic_map_free(context
);
1725 return isl_map_universe(dim
);
1728 context
= isl_basic_map_convex_hull(context
);
1729 map
= isl_map_cow(map
);
1730 if (!map
|| !context
)
1732 isl_assert(map
->ctx
, isl_dim_equal(map
->dim
, context
->dim
), goto error
);
1733 map
= isl_map_compute_divs(map
);
1734 for (i
= 0; i
< map
->n
; ++i
)
1735 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1736 for (i
= 0; i
< map
->n
; ++i
) {
1737 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1738 isl_basic_map_copy(context
));
1742 isl_basic_map_free(context
);
1743 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1747 isl_basic_map_free(context
);
1751 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1752 struct isl_basic_set
*context
)
1754 return (struct isl_basic_set
*)isl_basic_map_gist(
1755 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1758 struct isl_set
*isl_set_gist(struct isl_set
*set
, struct isl_basic_set
*context
)
1760 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1761 (struct isl_basic_map
*)context
);
1764 /* Quick check to see if two basic maps are disjoint.
1765 * In particular, we reduce the equalities and inequalities of
1766 * one basic map in the context of the equalities of the other
1767 * basic map and check if we get a contradiction.
1769 int isl_basic_map_fast_is_disjoint(struct isl_basic_map
*bmap1
,
1770 struct isl_basic_map
*bmap2
)
1772 struct isl_vec
*v
= NULL
;
1777 if (!bmap1
|| !bmap2
)
1779 isl_assert(bmap1
->ctx
, isl_dim_equal(bmap1
->dim
, bmap2
->dim
),
1781 if (bmap1
->n_div
|| bmap2
->n_div
)
1783 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1786 total
= isl_dim_total(bmap1
->dim
);
1789 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1792 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1795 compute_elimination_index(bmap1
, elim
);
1796 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1798 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1800 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1801 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1804 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1806 reduced
= reduced_using_equalities(v
->block
.data
,
1807 bmap2
->ineq
[i
], bmap1
, elim
);
1808 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1809 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1812 compute_elimination_index(bmap2
, elim
);
1813 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1815 reduced
= reduced_using_equalities(v
->block
.data
,
1816 bmap1
->ineq
[i
], bmap2
, elim
);
1817 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1818 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1834 int isl_basic_set_fast_is_disjoint(struct isl_basic_set
*bset1
,
1835 struct isl_basic_set
*bset2
)
1837 return isl_basic_map_fast_is_disjoint((struct isl_basic_map
*)bset1
,
1838 (struct isl_basic_map
*)bset2
);
1841 int isl_map_fast_is_disjoint(struct isl_map
*map1
, struct isl_map
*map2
)
1848 if (isl_map_fast_is_equal(map1
, map2
))
1851 for (i
= 0; i
< map1
->n
; ++i
) {
1852 for (j
= 0; j
< map2
->n
; ++j
) {
1853 int d
= isl_basic_map_fast_is_disjoint(map1
->p
[i
],
1862 int isl_set_fast_is_disjoint(struct isl_set
*set1
, struct isl_set
*set2
)
1864 return isl_map_fast_is_disjoint((struct isl_map
*)set1
,
1865 (struct isl_map
*)set2
);
1868 /* Check if we can combine a given div with lower bound l and upper
1869 * bound u with some other div and if so return that other div.
1870 * Otherwise return -1.
1872 * We first check that
1873 * - the bounds are opposites of each other (except for the constant
1875 * - the bounds do not reference any other div
1876 * - no div is defined in terms of this div
1878 * Let m be the size of the range allowed on the div by the bounds.
1879 * That is, the bounds are of the form
1881 * e <= a <= e + m - 1
1883 * with e some expression in the other variables.
1884 * We look for another div b such that no third div is defined in terms
1885 * of this second div b and such that in any constraint that contains
1886 * a (except for the given lower and upper bound), also contains b
1887 * with a coefficient that is m times that of b.
1888 * That is, all constraints (execpt for the lower and upper bound)
1891 * e + f (a + m b) >= 0
1893 * If so, we return b so that "a + m b" can be replaced by
1894 * a single div "c = a + m b".
1896 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
1897 unsigned div
, unsigned l
, unsigned u
)
1903 if (bmap
->n_div
<= 1)
1905 dim
= isl_dim_total(bmap
->dim
);
1906 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
1908 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
1909 bmap
->n_div
- div
- 1) != -1)
1911 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
1915 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1916 if (isl_int_is_zero(bmap
->div
[i
][0]))
1918 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
1922 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
1923 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
1924 isl_int_sub(bmap
->ineq
[l
][0],
1925 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
1926 bmap
= isl_basic_map_copy(bmap
);
1927 bmap
= isl_basic_map_set_to_empty(bmap
);
1928 isl_basic_map_free(bmap
);
1931 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
1932 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1937 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1938 if (isl_int_is_zero(bmap
->div
[j
][0]))
1940 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
1943 if (j
< bmap
->n_div
)
1945 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1947 if (j
== l
|| j
== u
)
1949 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
1951 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
1953 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
1954 bmap
->ineq
[j
][1 + dim
+ div
],
1956 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
1957 bmap
->ineq
[j
][1 + dim
+ i
]);
1958 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
1959 bmap
->ineq
[j
][1 + dim
+ div
],
1964 if (j
< bmap
->n_ineq
)
1969 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
1970 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
1974 /* Given a lower and an upper bound on div i, construct an inequality
1975 * that when nonnegative ensures that this pair of bounds always allows
1976 * for an integer value of the given div.
1977 * The lower bound is inequality l, while the upper bound is inequality u.
1978 * The constructed inequality is stored in ineq.
1979 * g, fl, fu are temporary scalars.
1981 * Let the upper bound be
1985 * and the lower bound
1989 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
1992 * - f_u e_l <= f_u f_l g a <= f_l e_u
1994 * Since all variables are integer valued, this is equivalent to
1996 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
1998 * If this interval is at least f_u f_l g, then it contains at least
1999 * one integer value for a.
2000 * That is, the test constraint is
2002 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2004 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2005 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2008 dim
= isl_dim_total(bmap
->dim
);
2010 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2011 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2012 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2013 isl_int_neg(fu
, fu
);
2014 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2015 1 + dim
+ bmap
->n_div
);
2016 isl_int_add(ineq
[0], ineq
[0], fl
);
2017 isl_int_add(ineq
[0], ineq
[0], fu
);
2018 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2019 isl_int_mul(g
, g
, fl
);
2020 isl_int_mul(g
, g
, fu
);
2021 isl_int_sub(ineq
[0], ineq
[0], g
);
2024 /* Remove more kinds of divs that are not strictly needed.
2025 * In particular, if all pairs of lower and upper bounds on a div
2026 * are such that they allow at least one integer value of the div,
2027 * the we can eliminate the div using Fourier-Motzkin without
2028 * introducing any spurious solutions.
2030 static struct isl_basic_map
*drop_more_redundant_divs(
2031 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2033 struct isl_tab
*tab
= NULL
;
2034 struct isl_vec
*vec
= NULL
;
2046 dim
= isl_dim_total(bmap
->dim
);
2047 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2051 tab
= isl_tab_from_basic_map(bmap
);
2056 enum isl_lp_result res
;
2058 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2061 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2067 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2068 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2070 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2071 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2073 construct_test_ineq(bmap
, i
, l
, u
,
2074 vec
->el
, g
, fl
, fu
);
2075 res
= isl_tab_min(tab
, vec
->el
,
2076 bmap
->ctx
->one
, &g
, NULL
, 0);
2077 if (res
== isl_lp_error
)
2079 if (res
== isl_lp_empty
) {
2080 bmap
= isl_basic_map_set_to_empty(bmap
);
2083 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2086 if (u
< bmap
->n_ineq
)
2089 if (l
== bmap
->n_ineq
) {
2109 bmap
= isl_basic_map_remove(bmap
, isl_dim_div
, remove
, 1);
2110 return isl_basic_map_drop_redundant_divs(bmap
);
2113 isl_basic_map_free(bmap
);
2122 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2123 * and the upper bound u, div1 always occurs together with div2 in the form
2124 * (div1 + m div2), where m is the constant range on the variable div1
2125 * allowed by l and u, replace the pair div1 and div2 by a single
2126 * div that is equal to div1 + m div2.
2128 * The new div will appear in the location that contains div2.
2129 * We need to modify all constraints that contain
2130 * div2 = (div - div1) / m
2131 * (If a constraint does not contain div2, it will also not contain div1.)
2132 * If the constraint also contains div1, then we know they appear
2133 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2134 * i.e., the coefficient of div is f.
2136 * Otherwise, we first need to introduce div1 into the constraint.
2145 * A lower bound on div2
2149 * can be replaced by
2151 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2153 * with g = gcd(m,n).
2158 * can be replaced by
2160 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2162 * These constraint are those that we would obtain from eliminating
2163 * div1 using Fourier-Motzkin.
2165 * After all constraints have been modified, we drop the lower and upper
2166 * bound and then drop div1.
2168 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2169 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2174 unsigned dim
, total
;
2177 dim
= isl_dim_total(bmap
->dim
);
2178 total
= 1 + dim
+ bmap
->n_div
;
2183 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2184 isl_int_add_ui(m
, m
, 1);
2186 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2187 if (i
== l
|| i
== u
)
2189 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2191 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2192 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2193 isl_int_divexact(a
, m
, b
);
2194 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2195 if (isl_int_is_pos(b
)) {
2196 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2197 b
, bmap
->ineq
[l
], total
);
2200 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2201 b
, bmap
->ineq
[u
], total
);
2204 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2205 bmap
->ineq
[i
][1 + dim
+ div1
]);
2206 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2213 isl_basic_map_drop_inequality(bmap
, l
);
2214 isl_basic_map_drop_inequality(bmap
, u
);
2216 isl_basic_map_drop_inequality(bmap
, u
);
2217 isl_basic_map_drop_inequality(bmap
, l
);
2219 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2223 /* First check if we can coalesce any pair of divs and
2224 * then continue with dropping more redundant divs.
2226 * We loop over all pairs of lower and upper bounds on a div
2227 * with coefficient 1 and -1, respectively, check if there
2228 * is any other div "c" with which we can coalesce the div
2229 * and if so, perform the coalescing.
2231 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2232 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2237 dim
= isl_dim_total(bmap
->dim
);
2239 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2242 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2243 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2245 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2248 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2250 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2254 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2255 return isl_basic_map_drop_redundant_divs(bmap
);
2260 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2263 return drop_more_redundant_divs(bmap
, pairs
, n
);
2266 /* Remove divs that are not strictly needed.
2267 * In particular, if a div only occurs positively (or negatively)
2268 * in constraints, then it can simply be dropped.
2269 * Also, if a div occurs only occurs in two constraints and if moreover
2270 * those two constraints are opposite to each other, except for the constant
2271 * term and if the sum of the constant terms is such that for any value
2272 * of the other values, there is always at least one integer value of the
2273 * div, i.e., if one plus this sum is greater than or equal to
2274 * the (absolute value) of the coefficent of the div in the constraints,
2275 * then we can also simply drop the div.
2277 * If any divs are left after these simple checks then we move on
2278 * to more complicated cases in drop_more_redundant_divs.
2280 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2281 struct isl_basic_map
*bmap
)
2291 off
= isl_dim_total(bmap
->dim
);
2292 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2296 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2298 int last_pos
, last_neg
;
2302 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2303 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2304 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2310 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2311 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2315 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2320 pairs
[i
] = pos
* neg
;
2321 if (pairs
[i
] == 0) {
2322 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2323 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2324 isl_basic_map_drop_inequality(bmap
, j
);
2325 bmap
= isl_basic_map_drop_div(bmap
, i
);
2327 return isl_basic_map_drop_redundant_divs(bmap
);
2331 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2332 bmap
->ineq
[last_neg
] + 1,
2336 isl_int_add(bmap
->ineq
[last_pos
][0],
2337 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2338 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2339 bmap
->ineq
[last_pos
][0], 1);
2340 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2341 bmap
->ineq
[last_pos
][1+off
+i
]);
2342 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2343 bmap
->ineq
[last_pos
][0], 1);
2344 isl_int_sub(bmap
->ineq
[last_pos
][0],
2345 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2348 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2353 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2354 bmap
= isl_basic_map_simplify(bmap
);
2356 return isl_basic_map_drop_redundant_divs(bmap
);
2358 if (last_pos
> last_neg
) {
2359 isl_basic_map_drop_inequality(bmap
, last_pos
);
2360 isl_basic_map_drop_inequality(bmap
, last_neg
);
2362 isl_basic_map_drop_inequality(bmap
, last_neg
);
2363 isl_basic_map_drop_inequality(bmap
, last_pos
);
2365 bmap
= isl_basic_map_drop_div(bmap
, i
);
2367 return isl_basic_map_drop_redundant_divs(bmap
);
2371 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2377 isl_basic_map_free(bmap
);
2381 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2382 struct isl_basic_set
*bset
)
2384 return (struct isl_basic_set
*)
2385 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2388 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2394 for (i
= 0; i
< map
->n
; ++i
) {
2395 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2399 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2406 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2408 return (struct isl_set
*)
2409 isl_map_drop_redundant_divs((struct isl_map
*)set
);