isl_printer_print_map: replace variable by its definition in tuple
[isl.git] / isl_tab_pip.c
blobed2e50f91838b0c4f1409441beb72cf876279c44
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_map_private.h"
11 #include "isl_seq.h"
12 #include "isl_tab.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
19 * (and others).
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
54 struct isl_context;
55 struct isl_context_op {
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab *(*detect_nonnegative_parameters)(
58 struct isl_context *context, struct isl_tab *tab);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab *(*peek_tab)(struct isl_context *context);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq)(struct isl_context *context, isl_int *eq,
67 int check, int update);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
72 int check, int update);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
77 isl_int *ineq, int strict);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
82 struct isl_vec *div);
83 /* add div "div" to context and return non-negativity */
84 int (*add_div)(struct isl_context *context, struct isl_vec *div);
85 int (*detect_equalities)(struct isl_context *context,
86 struct isl_tab *tab);
87 /* return row index of "best" split */
88 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
89 /* check if context has already been determined to be empty */
90 int (*is_empty)(struct isl_context *context);
91 /* check if context is still usable */
92 int (*is_ok)(struct isl_context *context);
93 /* save a copy/snapshot of context */
94 void *(*save)(struct isl_context *context);
95 /* restore saved context */
96 void (*restore)(struct isl_context *context, void *);
97 /* invalidate context */
98 void (*invalidate)(struct isl_context *context);
99 /* free context */
100 void (*free)(struct isl_context *context);
103 struct isl_context {
104 struct isl_context_op *op;
107 struct isl_context_lex {
108 struct isl_context context;
109 struct isl_tab *tab;
112 struct isl_partial_sol {
113 int level;
114 struct isl_basic_set *dom;
115 struct isl_mat *M;
117 struct isl_partial_sol *next;
120 struct isl_sol;
121 struct isl_sol_callback {
122 struct isl_tab_callback callback;
123 struct isl_sol *sol;
126 /* isl_sol is an interface for constructing a solution to
127 * a parametric integer linear programming problem.
128 * Every time the algorithm reaches a state where a solution
129 * can be read off from the tableau (including cases where the tableau
130 * is empty), the function "add" is called on the isl_sol passed
131 * to find_solutions_main.
133 * The context tableau is owned by isl_sol and is updated incrementally.
135 * There are currently two implementations of this interface,
136 * isl_sol_map, which simply collects the solutions in an isl_map
137 * and (optionally) the parts of the context where there is no solution
138 * in an isl_set, and
139 * isl_sol_for, which calls a user-defined function for each part of
140 * the solution.
142 struct isl_sol {
143 int error;
144 int rational;
145 int level;
146 int max;
147 int n_out;
148 struct isl_context *context;
149 struct isl_partial_sol *partial;
150 void (*add)(struct isl_sol *sol,
151 struct isl_basic_set *dom, struct isl_mat *M);
152 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
153 void (*free)(struct isl_sol *sol);
154 struct isl_sol_callback dec_level;
157 static void sol_free(struct isl_sol *sol)
159 struct isl_partial_sol *partial, *next;
160 if (!sol)
161 return;
162 for (partial = sol->partial; partial; partial = next) {
163 next = partial->next;
164 isl_basic_set_free(partial->dom);
165 isl_mat_free(partial->M);
166 free(partial);
168 sol->free(sol);
171 /* Push a partial solution represented by a domain and mapping M
172 * onto the stack of partial solutions.
174 static void sol_push_sol(struct isl_sol *sol,
175 struct isl_basic_set *dom, struct isl_mat *M)
177 struct isl_partial_sol *partial;
179 if (sol->error || !dom)
180 goto error;
182 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
183 if (!partial)
184 goto error;
186 partial->level = sol->level;
187 partial->dom = dom;
188 partial->M = M;
189 partial->next = sol->partial;
191 sol->partial = partial;
193 return;
194 error:
195 isl_basic_set_free(dom);
196 sol->error = 1;
199 /* Pop one partial solution from the partial solution stack and
200 * pass it on to sol->add or sol->add_empty.
202 static void sol_pop_one(struct isl_sol *sol)
204 struct isl_partial_sol *partial;
206 partial = sol->partial;
207 sol->partial = partial->next;
209 if (partial->M)
210 sol->add(sol, partial->dom, partial->M);
211 else
212 sol->add_empty(sol, partial->dom);
213 free(partial);
216 /* Return a fresh copy of the domain represented by the context tableau.
218 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
220 struct isl_basic_set *bset;
222 if (sol->error)
223 return NULL;
225 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
226 bset = isl_basic_set_update_from_tab(bset,
227 sol->context->op->peek_tab(sol->context));
229 return bset;
232 /* Check whether two partial solutions have the same mapping, where n_div
233 * is the number of divs that the two partial solutions have in common.
235 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
236 unsigned n_div)
238 int i;
239 unsigned dim;
241 if (!s1->M != !s2->M)
242 return 0;
243 if (!s1->M)
244 return 1;
246 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
248 for (i = 0; i < s1->M->n_row; ++i) {
249 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
250 s1->M->n_col-1-dim-n_div) != -1)
251 return 0;
252 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
253 s2->M->n_col-1-dim-n_div) != -1)
254 return 0;
255 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
256 return 0;
258 return 1;
261 /* Pop all solutions from the partial solution stack that were pushed onto
262 * the stack at levels that are deeper than the current level.
263 * If the two topmost elements on the stack have the same level
264 * and represent the same solution, then their domains are combined.
265 * This combined domain is the same as the current context domain
266 * as sol_pop is called each time we move back to a higher level.
268 static void sol_pop(struct isl_sol *sol)
270 struct isl_partial_sol *partial;
271 unsigned n_div;
273 if (sol->error)
274 return;
276 if (sol->level == 0) {
277 for (partial = sol->partial; partial; partial = sol->partial)
278 sol_pop_one(sol);
279 return;
282 partial = sol->partial;
283 if (!partial)
284 return;
286 if (partial->level <= sol->level)
287 return;
289 if (partial->next && partial->next->level == partial->level) {
290 n_div = isl_basic_set_dim(
291 sol->context->op->peek_basic_set(sol->context),
292 isl_dim_div);
294 if (!same_solution(partial, partial->next, n_div)) {
295 sol_pop_one(sol);
296 sol_pop_one(sol);
297 } else {
298 struct isl_basic_set *bset;
300 bset = sol_domain(sol);
302 isl_basic_set_free(partial->next->dom);
303 partial->next->dom = bset;
304 partial->next->level = sol->level;
306 sol->partial = partial->next;
307 isl_basic_set_free(partial->dom);
308 isl_mat_free(partial->M);
309 free(partial);
311 } else
312 sol_pop_one(sol);
315 static void sol_dec_level(struct isl_sol *sol)
317 if (sol->error)
318 return;
320 sol->level--;
322 sol_pop(sol);
325 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
327 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
329 sol_dec_level(callback->sol);
331 return callback->sol->error ? -1 : 0;
334 /* Move down to next level and push callback onto context tableau
335 * to decrease the level again when it gets rolled back across
336 * the current state. That is, dec_level will be called with
337 * the context tableau in the same state as it is when inc_level
338 * is called.
340 static void sol_inc_level(struct isl_sol *sol)
342 struct isl_tab *tab;
344 if (sol->error)
345 return;
347 sol->level++;
348 tab = sol->context->op->peek_tab(sol->context);
349 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
350 sol->error = 1;
353 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
355 int i;
357 if (isl_int_is_one(m))
358 return;
360 for (i = 0; i < n_row; ++i)
361 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
364 /* Add the solution identified by the tableau and the context tableau.
366 * The layout of the variables is as follows.
367 * tab->n_var is equal to the total number of variables in the input
368 * map (including divs that were copied from the context)
369 * + the number of extra divs constructed
370 * Of these, the first tab->n_param and the last tab->n_div variables
371 * correspond to the variables in the context, i.e.,
372 * tab->n_param + tab->n_div = context_tab->n_var
373 * tab->n_param is equal to the number of parameters and input
374 * dimensions in the input map
375 * tab->n_div is equal to the number of divs in the context
377 * If there is no solution, then call add_empty with a basic set
378 * that corresponds to the context tableau. (If add_empty is NULL,
379 * then do nothing).
381 * If there is a solution, then first construct a matrix that maps
382 * all dimensions of the context to the output variables, i.e.,
383 * the output dimensions in the input map.
384 * The divs in the input map (if any) that do not correspond to any
385 * div in the context do not appear in the solution.
386 * The algorithm will make sure that they have an integer value,
387 * but these values themselves are of no interest.
388 * We have to be careful not to drop or rearrange any divs in the
389 * context because that would change the meaning of the matrix.
391 * To extract the value of the output variables, it should be noted
392 * that we always use a big parameter M in the main tableau and so
393 * the variable stored in this tableau is not an output variable x itself, but
394 * x' = M + x (in case of minimization)
395 * or
396 * x' = M - x (in case of maximization)
397 * If x' appears in a column, then its optimal value is zero,
398 * which means that the optimal value of x is an unbounded number
399 * (-M for minimization and M for maximization).
400 * We currently assume that the output dimensions in the original map
401 * are bounded, so this cannot occur.
402 * Similarly, when x' appears in a row, then the coefficient of M in that
403 * row is necessarily 1.
404 * If the row in the tableau represents
405 * d x' = c + d M + e(y)
406 * then, in case of minimization, the corresponding row in the matrix
407 * will be
408 * a c + a e(y)
409 * with a d = m, the (updated) common denominator of the matrix.
410 * In case of maximization, the row will be
411 * -a c - a e(y)
413 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
415 struct isl_basic_set *bset = NULL;
416 struct isl_mat *mat = NULL;
417 unsigned off;
418 int row, i;
419 isl_int m;
421 if (sol->error || !tab)
422 goto error;
424 if (tab->empty && !sol->add_empty)
425 return;
427 bset = sol_domain(sol);
429 if (tab->empty) {
430 sol_push_sol(sol, bset, NULL);
431 return;
434 off = 2 + tab->M;
436 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
437 1 + tab->n_param + tab->n_div);
438 if (!mat)
439 goto error;
441 isl_int_init(m);
443 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
444 isl_int_set_si(mat->row[0][0], 1);
445 for (row = 0; row < sol->n_out; ++row) {
446 int i = tab->n_param + row;
447 int r, j;
449 isl_seq_clr(mat->row[1 + row], mat->n_col);
450 if (!tab->var[i].is_row) {
451 /* no unbounded */
452 isl_assert(mat->ctx, !tab->M, goto error2);
453 continue;
456 r = tab->var[i].index;
457 /* no unbounded */
458 if (tab->M)
459 isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2],
460 tab->mat->row[r][0]),
461 goto error2);
462 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
463 isl_int_divexact(m, tab->mat->row[r][0], m);
464 scale_rows(mat, m, 1 + row);
465 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
466 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
467 for (j = 0; j < tab->n_param; ++j) {
468 int col;
469 if (tab->var[j].is_row)
470 continue;
471 col = tab->var[j].index;
472 isl_int_mul(mat->row[1 + row][1 + j], m,
473 tab->mat->row[r][off + col]);
475 for (j = 0; j < tab->n_div; ++j) {
476 int col;
477 if (tab->var[tab->n_var - tab->n_div+j].is_row)
478 continue;
479 col = tab->var[tab->n_var - tab->n_div+j].index;
480 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
481 tab->mat->row[r][off + col]);
483 if (sol->max)
484 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
485 mat->n_col);
488 isl_int_clear(m);
490 sol_push_sol(sol, bset, mat);
491 return;
492 error2:
493 isl_int_clear(m);
494 error:
495 isl_basic_set_free(bset);
496 isl_mat_free(mat);
497 sol->error = 1;
500 struct isl_sol_map {
501 struct isl_sol sol;
502 struct isl_map *map;
503 struct isl_set *empty;
506 static void sol_map_free(struct isl_sol_map *sol_map)
508 if (!sol_map)
509 return;
510 if (sol_map->sol.context)
511 sol_map->sol.context->op->free(sol_map->sol.context);
512 isl_map_free(sol_map->map);
513 isl_set_free(sol_map->empty);
514 free(sol_map);
517 static void sol_map_free_wrap(struct isl_sol *sol)
519 sol_map_free((struct isl_sol_map *)sol);
522 /* This function is called for parts of the context where there is
523 * no solution, with "bset" corresponding to the context tableau.
524 * Simply add the basic set to the set "empty".
526 static void sol_map_add_empty(struct isl_sol_map *sol,
527 struct isl_basic_set *bset)
529 if (!bset)
530 goto error;
531 isl_assert(bset->ctx, sol->empty, goto error);
533 sol->empty = isl_set_grow(sol->empty, 1);
534 bset = isl_basic_set_simplify(bset);
535 bset = isl_basic_set_finalize(bset);
536 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
537 if (!sol->empty)
538 goto error;
539 isl_basic_set_free(bset);
540 return;
541 error:
542 isl_basic_set_free(bset);
543 sol->sol.error = 1;
546 static void sol_map_add_empty_wrap(struct isl_sol *sol,
547 struct isl_basic_set *bset)
549 sol_map_add_empty((struct isl_sol_map *)sol, bset);
552 /* Add bset to sol's empty, but only if we are actually collecting
553 * the empty set.
555 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
556 struct isl_basic_set *bset)
558 if (sol->empty)
559 sol_map_add_empty(sol, bset);
560 else
561 isl_basic_set_free(bset);
564 /* Given a basic map "dom" that represents the context and an affine
565 * matrix "M" that maps the dimensions of the context to the
566 * output variables, construct a basic map with the same parameters
567 * and divs as the context, the dimensions of the context as input
568 * dimensions and a number of output dimensions that is equal to
569 * the number of output dimensions in the input map.
571 * The constraints and divs of the context are simply copied
572 * from "dom". For each row
573 * x = c + e(y)
574 * an equality
575 * c + e(y) - d x = 0
576 * is added, with d the common denominator of M.
578 static void sol_map_add(struct isl_sol_map *sol,
579 struct isl_basic_set *dom, struct isl_mat *M)
581 int i;
582 struct isl_basic_map *bmap = NULL;
583 isl_basic_set *context_bset;
584 unsigned n_eq;
585 unsigned n_ineq;
586 unsigned nparam;
587 unsigned total;
588 unsigned n_div;
589 unsigned n_out;
591 if (sol->sol.error || !dom || !M)
592 goto error;
594 n_out = sol->sol.n_out;
595 n_eq = dom->n_eq + n_out;
596 n_ineq = dom->n_ineq;
597 n_div = dom->n_div;
598 nparam = isl_basic_set_total_dim(dom) - n_div;
599 total = isl_map_dim(sol->map, isl_dim_all);
600 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
601 n_div, n_eq, 2 * n_div + n_ineq);
602 if (!bmap)
603 goto error;
604 if (sol->sol.rational)
605 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
606 for (i = 0; i < dom->n_div; ++i) {
607 int k = isl_basic_map_alloc_div(bmap);
608 if (k < 0)
609 goto error;
610 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
611 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
612 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
613 dom->div[i] + 1 + 1 + nparam, i);
615 for (i = 0; i < dom->n_eq; ++i) {
616 int k = isl_basic_map_alloc_equality(bmap);
617 if (k < 0)
618 goto error;
619 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
620 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
621 isl_seq_cpy(bmap->eq[k] + 1 + total,
622 dom->eq[i] + 1 + nparam, n_div);
624 for (i = 0; i < dom->n_ineq; ++i) {
625 int k = isl_basic_map_alloc_inequality(bmap);
626 if (k < 0)
627 goto error;
628 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
629 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
630 isl_seq_cpy(bmap->ineq[k] + 1 + total,
631 dom->ineq[i] + 1 + nparam, n_div);
633 for (i = 0; i < M->n_row - 1; ++i) {
634 int k = isl_basic_map_alloc_equality(bmap);
635 if (k < 0)
636 goto error;
637 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
638 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
639 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
640 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
641 M->row[1 + i] + 1 + nparam, n_div);
643 bmap = isl_basic_map_simplify(bmap);
644 bmap = isl_basic_map_finalize(bmap);
645 sol->map = isl_map_grow(sol->map, 1);
646 sol->map = isl_map_add_basic_map(sol->map, bmap);
647 if (!sol->map)
648 goto error;
649 isl_basic_set_free(dom);
650 isl_mat_free(M);
651 return;
652 error:
653 isl_basic_set_free(dom);
654 isl_mat_free(M);
655 isl_basic_map_free(bmap);
656 sol->sol.error = 1;
659 static void sol_map_add_wrap(struct isl_sol *sol,
660 struct isl_basic_set *dom, struct isl_mat *M)
662 sol_map_add((struct isl_sol_map *)sol, dom, M);
666 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
667 * i.e., the constant term and the coefficients of all variables that
668 * appear in the context tableau.
669 * Note that the coefficient of the big parameter M is NOT copied.
670 * The context tableau may not have a big parameter and even when it
671 * does, it is a different big parameter.
673 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
675 int i;
676 unsigned off = 2 + tab->M;
678 isl_int_set(line[0], tab->mat->row[row][1]);
679 for (i = 0; i < tab->n_param; ++i) {
680 if (tab->var[i].is_row)
681 isl_int_set_si(line[1 + i], 0);
682 else {
683 int col = tab->var[i].index;
684 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
687 for (i = 0; i < tab->n_div; ++i) {
688 if (tab->var[tab->n_var - tab->n_div + i].is_row)
689 isl_int_set_si(line[1 + tab->n_param + i], 0);
690 else {
691 int col = tab->var[tab->n_var - tab->n_div + i].index;
692 isl_int_set(line[1 + tab->n_param + i],
693 tab->mat->row[row][off + col]);
698 /* Check if rows "row1" and "row2" have identical "parametric constants",
699 * as explained above.
700 * In this case, we also insist that the coefficients of the big parameter
701 * be the same as the values of the constants will only be the same
702 * if these coefficients are also the same.
704 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
706 int i;
707 unsigned off = 2 + tab->M;
709 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
710 return 0;
712 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
713 tab->mat->row[row2][2]))
714 return 0;
716 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
717 int pos = i < tab->n_param ? i :
718 tab->n_var - tab->n_div + i - tab->n_param;
719 int col;
721 if (tab->var[pos].is_row)
722 continue;
723 col = tab->var[pos].index;
724 if (isl_int_ne(tab->mat->row[row1][off + col],
725 tab->mat->row[row2][off + col]))
726 return 0;
728 return 1;
731 /* Return an inequality that expresses that the "parametric constant"
732 * should be non-negative.
733 * This function is only called when the coefficient of the big parameter
734 * is equal to zero.
736 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
738 struct isl_vec *ineq;
740 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
741 if (!ineq)
742 return NULL;
744 get_row_parameter_line(tab, row, ineq->el);
745 if (ineq)
746 ineq = isl_vec_normalize(ineq);
748 return ineq;
751 /* Return a integer division for use in a parametric cut based on the given row.
752 * In particular, let the parametric constant of the row be
754 * \sum_i a_i y_i
756 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
757 * The div returned is equal to
759 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
761 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
763 struct isl_vec *div;
765 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
766 if (!div)
767 return NULL;
769 isl_int_set(div->el[0], tab->mat->row[row][0]);
770 get_row_parameter_line(tab, row, div->el + 1);
771 div = isl_vec_normalize(div);
772 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
773 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
775 return div;
778 /* Return a integer division for use in transferring an integrality constraint
779 * to the context.
780 * In particular, let the parametric constant of the row be
782 * \sum_i a_i y_i
784 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
785 * The the returned div is equal to
787 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
789 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
791 struct isl_vec *div;
793 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
794 if (!div)
795 return NULL;
797 isl_int_set(div->el[0], tab->mat->row[row][0]);
798 get_row_parameter_line(tab, row, div->el + 1);
799 div = isl_vec_normalize(div);
800 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
802 return div;
805 /* Construct and return an inequality that expresses an upper bound
806 * on the given div.
807 * In particular, if the div is given by
809 * d = floor(e/m)
811 * then the inequality expresses
813 * m d <= e
815 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
817 unsigned total;
818 unsigned div_pos;
819 struct isl_vec *ineq;
821 if (!bset)
822 return NULL;
824 total = isl_basic_set_total_dim(bset);
825 div_pos = 1 + total - bset->n_div + div;
827 ineq = isl_vec_alloc(bset->ctx, 1 + total);
828 if (!ineq)
829 return NULL;
831 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
832 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
833 return ineq;
836 /* Given a row in the tableau and a div that was created
837 * using get_row_split_div and that been constrained to equality, i.e.,
839 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
841 * replace the expression "\sum_i {a_i} y_i" in the row by d,
842 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
843 * The coefficients of the non-parameters in the tableau have been
844 * verified to be integral. We can therefore simply replace coefficient b
845 * by floor(b). For the coefficients of the parameters we have
846 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
847 * floor(b) = b.
849 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
851 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
852 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
854 isl_int_set_si(tab->mat->row[row][0], 1);
856 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
857 int drow = tab->var[tab->n_var - tab->n_div + div].index;
859 isl_assert(tab->mat->ctx,
860 isl_int_is_one(tab->mat->row[drow][0]), goto error);
861 isl_seq_combine(tab->mat->row[row] + 1,
862 tab->mat->ctx->one, tab->mat->row[row] + 1,
863 tab->mat->ctx->one, tab->mat->row[drow] + 1,
864 1 + tab->M + tab->n_col);
865 } else {
866 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
868 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
871 return tab;
872 error:
873 isl_tab_free(tab);
874 return NULL;
877 /* Check if the (parametric) constant of the given row is obviously
878 * negative, meaning that we don't need to consult the context tableau.
879 * If there is a big parameter and its coefficient is non-zero,
880 * then this coefficient determines the outcome.
881 * Otherwise, we check whether the constant is negative and
882 * all non-zero coefficients of parameters are negative and
883 * belong to non-negative parameters.
885 static int is_obviously_neg(struct isl_tab *tab, int row)
887 int i;
888 int col;
889 unsigned off = 2 + tab->M;
891 if (tab->M) {
892 if (isl_int_is_pos(tab->mat->row[row][2]))
893 return 0;
894 if (isl_int_is_neg(tab->mat->row[row][2]))
895 return 1;
898 if (isl_int_is_nonneg(tab->mat->row[row][1]))
899 return 0;
900 for (i = 0; i < tab->n_param; ++i) {
901 /* Eliminated parameter */
902 if (tab->var[i].is_row)
903 continue;
904 col = tab->var[i].index;
905 if (isl_int_is_zero(tab->mat->row[row][off + col]))
906 continue;
907 if (!tab->var[i].is_nonneg)
908 return 0;
909 if (isl_int_is_pos(tab->mat->row[row][off + col]))
910 return 0;
912 for (i = 0; i < tab->n_div; ++i) {
913 if (tab->var[tab->n_var - tab->n_div + i].is_row)
914 continue;
915 col = tab->var[tab->n_var - tab->n_div + i].index;
916 if (isl_int_is_zero(tab->mat->row[row][off + col]))
917 continue;
918 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
919 return 0;
920 if (isl_int_is_pos(tab->mat->row[row][off + col]))
921 return 0;
923 return 1;
926 /* Check if the (parametric) constant of the given row is obviously
927 * non-negative, meaning that we don't need to consult the context tableau.
928 * If there is a big parameter and its coefficient is non-zero,
929 * then this coefficient determines the outcome.
930 * Otherwise, we check whether the constant is non-negative and
931 * all non-zero coefficients of parameters are positive and
932 * belong to non-negative parameters.
934 static int is_obviously_nonneg(struct isl_tab *tab, int row)
936 int i;
937 int col;
938 unsigned off = 2 + tab->M;
940 if (tab->M) {
941 if (isl_int_is_pos(tab->mat->row[row][2]))
942 return 1;
943 if (isl_int_is_neg(tab->mat->row[row][2]))
944 return 0;
947 if (isl_int_is_neg(tab->mat->row[row][1]))
948 return 0;
949 for (i = 0; i < tab->n_param; ++i) {
950 /* Eliminated parameter */
951 if (tab->var[i].is_row)
952 continue;
953 col = tab->var[i].index;
954 if (isl_int_is_zero(tab->mat->row[row][off + col]))
955 continue;
956 if (!tab->var[i].is_nonneg)
957 return 0;
958 if (isl_int_is_neg(tab->mat->row[row][off + col]))
959 return 0;
961 for (i = 0; i < tab->n_div; ++i) {
962 if (tab->var[tab->n_var - tab->n_div + i].is_row)
963 continue;
964 col = tab->var[tab->n_var - tab->n_div + i].index;
965 if (isl_int_is_zero(tab->mat->row[row][off + col]))
966 continue;
967 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
968 return 0;
969 if (isl_int_is_neg(tab->mat->row[row][off + col]))
970 return 0;
972 return 1;
975 /* Given a row r and two columns, return the column that would
976 * lead to the lexicographically smallest increment in the sample
977 * solution when leaving the basis in favor of the row.
978 * Pivoting with column c will increment the sample value by a non-negative
979 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
980 * corresponding to the non-parametric variables.
981 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
982 * with all other entries in this virtual row equal to zero.
983 * If variable v appears in a row, then a_{v,c} is the element in column c
984 * of that row.
986 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
987 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
988 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
989 * increment. Otherwise, it's c2.
991 static int lexmin_col_pair(struct isl_tab *tab,
992 int row, int col1, int col2, isl_int tmp)
994 int i;
995 isl_int *tr;
997 tr = tab->mat->row[row] + 2 + tab->M;
999 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1000 int s1, s2;
1001 isl_int *r;
1003 if (!tab->var[i].is_row) {
1004 if (tab->var[i].index == col1)
1005 return col2;
1006 if (tab->var[i].index == col2)
1007 return col1;
1008 continue;
1011 if (tab->var[i].index == row)
1012 continue;
1014 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1015 s1 = isl_int_sgn(r[col1]);
1016 s2 = isl_int_sgn(r[col2]);
1017 if (s1 == 0 && s2 == 0)
1018 continue;
1019 if (s1 < s2)
1020 return col1;
1021 if (s2 < s1)
1022 return col2;
1024 isl_int_mul(tmp, r[col2], tr[col1]);
1025 isl_int_submul(tmp, r[col1], tr[col2]);
1026 if (isl_int_is_pos(tmp))
1027 return col1;
1028 if (isl_int_is_neg(tmp))
1029 return col2;
1031 return -1;
1034 /* Given a row in the tableau, find and return the column that would
1035 * result in the lexicographically smallest, but positive, increment
1036 * in the sample point.
1037 * If there is no such column, then return tab->n_col.
1038 * If anything goes wrong, return -1.
1040 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1042 int j;
1043 int col = tab->n_col;
1044 isl_int *tr;
1045 isl_int tmp;
1047 tr = tab->mat->row[row] + 2 + tab->M;
1049 isl_int_init(tmp);
1051 for (j = tab->n_dead; j < tab->n_col; ++j) {
1052 if (tab->col_var[j] >= 0 &&
1053 (tab->col_var[j] < tab->n_param ||
1054 tab->col_var[j] >= tab->n_var - tab->n_div))
1055 continue;
1057 if (!isl_int_is_pos(tr[j]))
1058 continue;
1060 if (col == tab->n_col)
1061 col = j;
1062 else
1063 col = lexmin_col_pair(tab, row, col, j, tmp);
1064 isl_assert(tab->mat->ctx, col >= 0, goto error);
1067 isl_int_clear(tmp);
1068 return col;
1069 error:
1070 isl_int_clear(tmp);
1071 return -1;
1074 /* Return the first known violated constraint, i.e., a non-negative
1075 * contraint that currently has an either obviously negative value
1076 * or a previously determined to be negative value.
1078 * If any constraint has a negative coefficient for the big parameter,
1079 * if any, then we return one of these first.
1081 static int first_neg(struct isl_tab *tab)
1083 int row;
1085 if (tab->M)
1086 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1087 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1088 continue;
1089 if (!isl_int_is_neg(tab->mat->row[row][2]))
1090 continue;
1091 if (tab->row_sign)
1092 tab->row_sign[row] = isl_tab_row_neg;
1093 return row;
1095 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1096 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1097 continue;
1098 if (tab->row_sign) {
1099 if (tab->row_sign[row] == 0 &&
1100 is_obviously_neg(tab, row))
1101 tab->row_sign[row] = isl_tab_row_neg;
1102 if (tab->row_sign[row] != isl_tab_row_neg)
1103 continue;
1104 } else if (!is_obviously_neg(tab, row))
1105 continue;
1106 return row;
1108 return -1;
1111 /* Resolve all known or obviously violated constraints through pivoting.
1112 * In particular, as long as we can find any violated constraint, we
1113 * look for a pivoting column that would result in the lexicographicallly
1114 * smallest increment in the sample point. If there is no such column
1115 * then the tableau is infeasible.
1117 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1118 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1120 int row, col;
1122 if (!tab)
1123 return NULL;
1124 if (tab->empty)
1125 return tab;
1126 while ((row = first_neg(tab)) != -1) {
1127 col = lexmin_pivot_col(tab, row);
1128 if (col >= tab->n_col) {
1129 if (isl_tab_mark_empty(tab) < 0)
1130 goto error;
1131 return tab;
1133 if (col < 0)
1134 goto error;
1135 if (isl_tab_pivot(tab, row, col) < 0)
1136 goto error;
1138 return tab;
1139 error:
1140 isl_tab_free(tab);
1141 return NULL;
1144 /* Given a row that represents an equality, look for an appropriate
1145 * pivoting column.
1146 * In particular, if there are any non-zero coefficients among
1147 * the non-parameter variables, then we take the last of these
1148 * variables. Eliminating this variable in terms of the other
1149 * variables and/or parameters does not influence the property
1150 * that all column in the initial tableau are lexicographically
1151 * positive. The row corresponding to the eliminated variable
1152 * will only have non-zero entries below the diagonal of the
1153 * initial tableau. That is, we transform
1155 * I I
1156 * 1 into a
1157 * I I
1159 * If there is no such non-parameter variable, then we are dealing with
1160 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1161 * for elimination. This will ensure that the eliminated parameter
1162 * always has an integer value whenever all the other parameters are integral.
1163 * If there is no such parameter then we return -1.
1165 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1167 unsigned off = 2 + tab->M;
1168 int i;
1170 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1171 int col;
1172 if (tab->var[i].is_row)
1173 continue;
1174 col = tab->var[i].index;
1175 if (col <= tab->n_dead)
1176 continue;
1177 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1178 return col;
1180 for (i = tab->n_dead; i < tab->n_col; ++i) {
1181 if (isl_int_is_one(tab->mat->row[row][off + i]))
1182 return i;
1183 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1184 return i;
1186 return -1;
1189 /* Add an equality that is known to be valid to the tableau.
1190 * We first check if we can eliminate a variable or a parameter.
1191 * If not, we add the equality as two inequalities.
1192 * In this case, the equality was a pure parameter equality and there
1193 * is no need to resolve any constraint violations.
1195 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1197 int i;
1198 int r;
1200 if (!tab)
1201 return NULL;
1202 r = isl_tab_add_row(tab, eq);
1203 if (r < 0)
1204 goto error;
1206 r = tab->con[r].index;
1207 i = last_var_col_or_int_par_col(tab, r);
1208 if (i < 0) {
1209 tab->con[r].is_nonneg = 1;
1210 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1211 goto error;
1212 isl_seq_neg(eq, eq, 1 + tab->n_var);
1213 r = isl_tab_add_row(tab, eq);
1214 if (r < 0)
1215 goto error;
1216 tab->con[r].is_nonneg = 1;
1217 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1218 goto error;
1219 } else {
1220 if (isl_tab_pivot(tab, r, i) < 0)
1221 goto error;
1222 if (isl_tab_kill_col(tab, i) < 0)
1223 goto error;
1224 tab->n_eq++;
1226 tab = restore_lexmin(tab);
1229 return tab;
1230 error:
1231 isl_tab_free(tab);
1232 return NULL;
1235 /* Check if the given row is a pure constant.
1237 static int is_constant(struct isl_tab *tab, int row)
1239 unsigned off = 2 + tab->M;
1241 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1242 tab->n_col - tab->n_dead) == -1;
1245 /* Add an equality that may or may not be valid to the tableau.
1246 * If the resulting row is a pure constant, then it must be zero.
1247 * Otherwise, the resulting tableau is empty.
1249 * If the row is not a pure constant, then we add two inequalities,
1250 * each time checking that they can be satisfied.
1251 * In the end we try to use one of the two constraints to eliminate
1252 * a column.
1254 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1255 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1257 int r1, r2;
1258 int row;
1259 struct isl_tab_undo *snap;
1261 if (!tab)
1262 return NULL;
1263 snap = isl_tab_snap(tab);
1264 r1 = isl_tab_add_row(tab, eq);
1265 if (r1 < 0)
1266 goto error;
1267 tab->con[r1].is_nonneg = 1;
1268 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1269 goto error;
1271 row = tab->con[r1].index;
1272 if (is_constant(tab, row)) {
1273 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1274 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1275 if (isl_tab_mark_empty(tab) < 0)
1276 goto error;
1277 return tab;
1279 if (isl_tab_rollback(tab, snap) < 0)
1280 goto error;
1281 return tab;
1284 tab = restore_lexmin(tab);
1285 if (!tab || tab->empty)
1286 return tab;
1288 isl_seq_neg(eq, eq, 1 + tab->n_var);
1290 r2 = isl_tab_add_row(tab, eq);
1291 if (r2 < 0)
1292 goto error;
1293 tab->con[r2].is_nonneg = 1;
1294 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1295 goto error;
1297 tab = restore_lexmin(tab);
1298 if (!tab || tab->empty)
1299 return tab;
1301 if (!tab->con[r1].is_row) {
1302 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1303 goto error;
1304 } else if (!tab->con[r2].is_row) {
1305 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1306 goto error;
1307 } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
1308 unsigned off = 2 + tab->M;
1309 int i;
1310 int row = tab->con[r1].index;
1311 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
1312 tab->n_col - tab->n_dead);
1313 if (i != -1) {
1314 if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0)
1315 goto error;
1316 if (isl_tab_kill_col(tab, tab->n_dead + i) < 0)
1317 goto error;
1321 if (tab->bmap) {
1322 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1323 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1324 goto error;
1325 isl_seq_neg(eq, eq, 1 + tab->n_var);
1326 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1327 isl_seq_neg(eq, eq, 1 + tab->n_var);
1328 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1329 goto error;
1330 if (!tab->bmap)
1331 goto error;
1334 return tab;
1335 error:
1336 isl_tab_free(tab);
1337 return NULL;
1340 /* Add an inequality to the tableau, resolving violations using
1341 * restore_lexmin.
1343 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1345 int r;
1347 if (!tab)
1348 return NULL;
1349 if (tab->bmap) {
1350 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1351 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1352 goto error;
1353 if (!tab->bmap)
1354 goto error;
1356 r = isl_tab_add_row(tab, ineq);
1357 if (r < 0)
1358 goto error;
1359 tab->con[r].is_nonneg = 1;
1360 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1361 goto error;
1362 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1363 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1364 goto error;
1365 return tab;
1368 tab = restore_lexmin(tab);
1369 if (tab && !tab->empty && tab->con[r].is_row &&
1370 isl_tab_row_is_redundant(tab, tab->con[r].index))
1371 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1372 goto error;
1373 return tab;
1374 error:
1375 isl_tab_free(tab);
1376 return NULL;
1379 /* Check if the coefficients of the parameters are all integral.
1381 static int integer_parameter(struct isl_tab *tab, int row)
1383 int i;
1384 int col;
1385 unsigned off = 2 + tab->M;
1387 for (i = 0; i < tab->n_param; ++i) {
1388 /* Eliminated parameter */
1389 if (tab->var[i].is_row)
1390 continue;
1391 col = tab->var[i].index;
1392 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1393 tab->mat->row[row][0]))
1394 return 0;
1396 for (i = 0; i < tab->n_div; ++i) {
1397 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1398 continue;
1399 col = tab->var[tab->n_var - tab->n_div + i].index;
1400 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1401 tab->mat->row[row][0]))
1402 return 0;
1404 return 1;
1407 /* Check if the coefficients of the non-parameter variables are all integral.
1409 static int integer_variable(struct isl_tab *tab, int row)
1411 int i;
1412 unsigned off = 2 + tab->M;
1414 for (i = tab->n_dead; i < tab->n_col; ++i) {
1415 if (tab->col_var[i] >= 0 &&
1416 (tab->col_var[i] < tab->n_param ||
1417 tab->col_var[i] >= tab->n_var - tab->n_div))
1418 continue;
1419 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1420 tab->mat->row[row][0]))
1421 return 0;
1423 return 1;
1426 /* Check if the constant term is integral.
1428 static int integer_constant(struct isl_tab *tab, int row)
1430 return isl_int_is_divisible_by(tab->mat->row[row][1],
1431 tab->mat->row[row][0]);
1434 #define I_CST 1 << 0
1435 #define I_PAR 1 << 1
1436 #define I_VAR 1 << 2
1438 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1439 * that is non-integer and therefore requires a cut and return
1440 * the index of the variable.
1441 * For parametric tableaus, there are three parts in a row,
1442 * the constant, the coefficients of the parameters and the rest.
1443 * For each part, we check whether the coefficients in that part
1444 * are all integral and if so, set the corresponding flag in *f.
1445 * If the constant and the parameter part are integral, then the
1446 * current sample value is integral and no cut is required
1447 * (irrespective of whether the variable part is integral).
1449 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1451 var = var < 0 ? tab->n_param : var + 1;
1453 for (; var < tab->n_var - tab->n_div; ++var) {
1454 int flags = 0;
1455 int row;
1456 if (!tab->var[var].is_row)
1457 continue;
1458 row = tab->var[var].index;
1459 if (integer_constant(tab, row))
1460 ISL_FL_SET(flags, I_CST);
1461 if (integer_parameter(tab, row))
1462 ISL_FL_SET(flags, I_PAR);
1463 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1464 continue;
1465 if (integer_variable(tab, row))
1466 ISL_FL_SET(flags, I_VAR);
1467 *f = flags;
1468 return var;
1470 return -1;
1473 /* Check for first (non-parameter) variable that is non-integer and
1474 * therefore requires a cut and return the corresponding row.
1475 * For parametric tableaus, there are three parts in a row,
1476 * the constant, the coefficients of the parameters and the rest.
1477 * For each part, we check whether the coefficients in that part
1478 * are all integral and if so, set the corresponding flag in *f.
1479 * If the constant and the parameter part are integral, then the
1480 * current sample value is integral and no cut is required
1481 * (irrespective of whether the variable part is integral).
1483 static int first_non_integer_row(struct isl_tab *tab, int *f)
1485 int var = next_non_integer_var(tab, -1, f);
1487 return var < 0 ? -1 : tab->var[var].index;
1490 /* Add a (non-parametric) cut to cut away the non-integral sample
1491 * value of the given row.
1493 * If the row is given by
1495 * m r = f + \sum_i a_i y_i
1497 * then the cut is
1499 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1501 * The big parameter, if any, is ignored, since it is assumed to be big
1502 * enough to be divisible by any integer.
1503 * If the tableau is actually a parametric tableau, then this function
1504 * is only called when all coefficients of the parameters are integral.
1505 * The cut therefore has zero coefficients for the parameters.
1507 * The current value is known to be negative, so row_sign, if it
1508 * exists, is set accordingly.
1510 * Return the row of the cut or -1.
1512 static int add_cut(struct isl_tab *tab, int row)
1514 int i;
1515 int r;
1516 isl_int *r_row;
1517 unsigned off = 2 + tab->M;
1519 if (isl_tab_extend_cons(tab, 1) < 0)
1520 return -1;
1521 r = isl_tab_allocate_con(tab);
1522 if (r < 0)
1523 return -1;
1525 r_row = tab->mat->row[tab->con[r].index];
1526 isl_int_set(r_row[0], tab->mat->row[row][0]);
1527 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1528 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1529 isl_int_neg(r_row[1], r_row[1]);
1530 if (tab->M)
1531 isl_int_set_si(r_row[2], 0);
1532 for (i = 0; i < tab->n_col; ++i)
1533 isl_int_fdiv_r(r_row[off + i],
1534 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1536 tab->con[r].is_nonneg = 1;
1537 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1538 return -1;
1539 if (tab->row_sign)
1540 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1542 return tab->con[r].index;
1545 /* Given a non-parametric tableau, add cuts until an integer
1546 * sample point is obtained or until the tableau is determined
1547 * to be integer infeasible.
1548 * As long as there is any non-integer value in the sample point,
1549 * we add appropriate cuts, if possible, for each of these
1550 * non-integer values and then resolve the violated
1551 * cut constraints using restore_lexmin.
1552 * If one of the corresponding rows is equal to an integral
1553 * combination of variables/constraints plus a non-integral constant,
1554 * then there is no way to obtain an integer point and we return
1555 * a tableau that is marked empty.
1557 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1559 int var;
1560 int row;
1561 int flags;
1563 if (!tab)
1564 return NULL;
1565 if (tab->empty)
1566 return tab;
1568 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1569 do {
1570 if (ISL_FL_ISSET(flags, I_VAR)) {
1571 if (isl_tab_mark_empty(tab) < 0)
1572 goto error;
1573 return tab;
1575 row = tab->var[var].index;
1576 row = add_cut(tab, row);
1577 if (row < 0)
1578 goto error;
1579 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1580 tab = restore_lexmin(tab);
1581 if (!tab || tab->empty)
1582 break;
1584 return tab;
1585 error:
1586 isl_tab_free(tab);
1587 return NULL;
1590 /* Check whether all the currently active samples also satisfy the inequality
1591 * "ineq" (treated as an equality if eq is set).
1592 * Remove those samples that do not.
1594 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1596 int i;
1597 isl_int v;
1599 if (!tab)
1600 return NULL;
1602 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1603 isl_assert(tab->mat->ctx, tab->samples, goto error);
1604 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1606 isl_int_init(v);
1607 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1608 int sgn;
1609 isl_seq_inner_product(ineq, tab->samples->row[i],
1610 1 + tab->n_var, &v);
1611 sgn = isl_int_sgn(v);
1612 if (eq ? (sgn == 0) : (sgn >= 0))
1613 continue;
1614 tab = isl_tab_drop_sample(tab, i);
1615 if (!tab)
1616 break;
1618 isl_int_clear(v);
1620 return tab;
1621 error:
1622 isl_tab_free(tab);
1623 return NULL;
1626 /* Check whether the sample value of the tableau is finite,
1627 * i.e., either the tableau does not use a big parameter, or
1628 * all values of the variables are equal to the big parameter plus
1629 * some constant. This constant is the actual sample value.
1631 static int sample_is_finite(struct isl_tab *tab)
1633 int i;
1635 if (!tab->M)
1636 return 1;
1638 for (i = 0; i < tab->n_var; ++i) {
1639 int row;
1640 if (!tab->var[i].is_row)
1641 return 0;
1642 row = tab->var[i].index;
1643 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1644 return 0;
1646 return 1;
1649 /* Check if the context tableau of sol has any integer points.
1650 * Leave tab in empty state if no integer point can be found.
1651 * If an integer point can be found and if moreover it is finite,
1652 * then it is added to the list of sample values.
1654 * This function is only called when none of the currently active sample
1655 * values satisfies the most recently added constraint.
1657 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1659 struct isl_tab_undo *snap;
1660 int feasible;
1662 if (!tab)
1663 return NULL;
1665 snap = isl_tab_snap(tab);
1666 if (isl_tab_push_basis(tab) < 0)
1667 goto error;
1669 tab = cut_to_integer_lexmin(tab);
1670 if (!tab)
1671 goto error;
1673 if (!tab->empty && sample_is_finite(tab)) {
1674 struct isl_vec *sample;
1676 sample = isl_tab_get_sample_value(tab);
1678 tab = isl_tab_add_sample(tab, sample);
1681 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1682 goto error;
1684 return tab;
1685 error:
1686 isl_tab_free(tab);
1687 return NULL;
1690 /* Check if any of the currently active sample values satisfies
1691 * the inequality "ineq" (an equality if eq is set).
1693 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1695 int i;
1696 isl_int v;
1698 if (!tab)
1699 return -1;
1701 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1702 isl_assert(tab->mat->ctx, tab->samples, return -1);
1703 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1705 isl_int_init(v);
1706 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1707 int sgn;
1708 isl_seq_inner_product(ineq, tab->samples->row[i],
1709 1 + tab->n_var, &v);
1710 sgn = isl_int_sgn(v);
1711 if (eq ? (sgn == 0) : (sgn >= 0))
1712 break;
1714 isl_int_clear(v);
1716 return i < tab->n_sample;
1719 /* Add a div specifed by "div" to the tableau "tab" and return
1720 * 1 if the div is obviously non-negative.
1722 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1723 int (*add_ineq)(void *user, isl_int *), void *user)
1725 int i;
1726 int r;
1727 struct isl_mat *samples;
1728 int nonneg;
1730 r = isl_tab_add_div(tab, div, add_ineq, user);
1731 if (r < 0)
1732 return -1;
1733 nonneg = tab->var[r].is_nonneg;
1734 tab->var[r].frozen = 1;
1736 samples = isl_mat_extend(tab->samples,
1737 tab->n_sample, 1 + tab->n_var);
1738 tab->samples = samples;
1739 if (!samples)
1740 return -1;
1741 for (i = tab->n_outside; i < samples->n_row; ++i) {
1742 isl_seq_inner_product(div->el + 1, samples->row[i],
1743 div->size - 1, &samples->row[i][samples->n_col - 1]);
1744 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1745 samples->row[i][samples->n_col - 1], div->el[0]);
1748 return nonneg;
1751 /* Add a div specified by "div" to both the main tableau and
1752 * the context tableau. In case of the main tableau, we only
1753 * need to add an extra div. In the context tableau, we also
1754 * need to express the meaning of the div.
1755 * Return the index of the div or -1 if anything went wrong.
1757 static int add_div(struct isl_tab *tab, struct isl_context *context,
1758 struct isl_vec *div)
1760 int r;
1761 int nonneg;
1763 if ((nonneg = context->op->add_div(context, div)) < 0)
1764 goto error;
1766 if (!context->op->is_ok(context))
1767 goto error;
1769 if (isl_tab_extend_vars(tab, 1) < 0)
1770 goto error;
1771 r = isl_tab_allocate_var(tab);
1772 if (r < 0)
1773 goto error;
1774 if (nonneg)
1775 tab->var[r].is_nonneg = 1;
1776 tab->var[r].frozen = 1;
1777 tab->n_div++;
1779 return tab->n_div - 1;
1780 error:
1781 context->op->invalidate(context);
1782 return -1;
1785 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1787 int i;
1788 unsigned total = isl_basic_map_total_dim(tab->bmap);
1790 for (i = 0; i < tab->bmap->n_div; ++i) {
1791 if (isl_int_ne(tab->bmap->div[i][0], denom))
1792 continue;
1793 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1794 continue;
1795 return i;
1797 return -1;
1800 /* Return the index of a div that corresponds to "div".
1801 * We first check if we already have such a div and if not, we create one.
1803 static int get_div(struct isl_tab *tab, struct isl_context *context,
1804 struct isl_vec *div)
1806 int d;
1807 struct isl_tab *context_tab = context->op->peek_tab(context);
1809 if (!context_tab)
1810 return -1;
1812 d = find_div(context_tab, div->el + 1, div->el[0]);
1813 if (d != -1)
1814 return d;
1816 return add_div(tab, context, div);
1819 /* Add a parametric cut to cut away the non-integral sample value
1820 * of the give row.
1821 * Let a_i be the coefficients of the constant term and the parameters
1822 * and let b_i be the coefficients of the variables or constraints
1823 * in basis of the tableau.
1824 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1826 * The cut is expressed as
1828 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1830 * If q did not already exist in the context tableau, then it is added first.
1831 * If q is in a column of the main tableau then the "+ q" can be accomplished
1832 * by setting the corresponding entry to the denominator of the constraint.
1833 * If q happens to be in a row of the main tableau, then the corresponding
1834 * row needs to be added instead (taking care of the denominators).
1835 * Note that this is very unlikely, but perhaps not entirely impossible.
1837 * The current value of the cut is known to be negative (or at least
1838 * non-positive), so row_sign is set accordingly.
1840 * Return the row of the cut or -1.
1842 static int add_parametric_cut(struct isl_tab *tab, int row,
1843 struct isl_context *context)
1845 struct isl_vec *div;
1846 int d;
1847 int i;
1848 int r;
1849 isl_int *r_row;
1850 int col;
1851 int n;
1852 unsigned off = 2 + tab->M;
1854 if (!context)
1855 return -1;
1857 div = get_row_parameter_div(tab, row);
1858 if (!div)
1859 return -1;
1861 n = tab->n_div;
1862 d = context->op->get_div(context, tab, div);
1863 if (d < 0)
1864 return -1;
1866 if (isl_tab_extend_cons(tab, 1) < 0)
1867 return -1;
1868 r = isl_tab_allocate_con(tab);
1869 if (r < 0)
1870 return -1;
1872 r_row = tab->mat->row[tab->con[r].index];
1873 isl_int_set(r_row[0], tab->mat->row[row][0]);
1874 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1875 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1876 isl_int_neg(r_row[1], r_row[1]);
1877 if (tab->M)
1878 isl_int_set_si(r_row[2], 0);
1879 for (i = 0; i < tab->n_param; ++i) {
1880 if (tab->var[i].is_row)
1881 continue;
1882 col = tab->var[i].index;
1883 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1884 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1885 tab->mat->row[row][0]);
1886 isl_int_neg(r_row[off + col], r_row[off + col]);
1888 for (i = 0; i < tab->n_div; ++i) {
1889 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1890 continue;
1891 col = tab->var[tab->n_var - tab->n_div + i].index;
1892 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1893 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1894 tab->mat->row[row][0]);
1895 isl_int_neg(r_row[off + col], r_row[off + col]);
1897 for (i = 0; i < tab->n_col; ++i) {
1898 if (tab->col_var[i] >= 0 &&
1899 (tab->col_var[i] < tab->n_param ||
1900 tab->col_var[i] >= tab->n_var - tab->n_div))
1901 continue;
1902 isl_int_fdiv_r(r_row[off + i],
1903 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1905 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1906 isl_int gcd;
1907 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1908 isl_int_init(gcd);
1909 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1910 isl_int_divexact(r_row[0], r_row[0], gcd);
1911 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1912 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1913 r_row[0], tab->mat->row[d_row] + 1,
1914 off - 1 + tab->n_col);
1915 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1916 isl_int_clear(gcd);
1917 } else {
1918 col = tab->var[tab->n_var - tab->n_div + d].index;
1919 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1922 tab->con[r].is_nonneg = 1;
1923 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1924 return -1;
1925 if (tab->row_sign)
1926 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1928 isl_vec_free(div);
1930 row = tab->con[r].index;
1932 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1933 return -1;
1935 return row;
1938 /* Construct a tableau for bmap that can be used for computing
1939 * the lexicographic minimum (or maximum) of bmap.
1940 * If not NULL, then dom is the domain where the minimum
1941 * should be computed. In this case, we set up a parametric
1942 * tableau with row signs (initialized to "unknown").
1943 * If M is set, then the tableau will use a big parameter.
1944 * If max is set, then a maximum should be computed instead of a minimum.
1945 * This means that for each variable x, the tableau will contain the variable
1946 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1947 * of the variables in all constraints are negated prior to adding them
1948 * to the tableau.
1950 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1951 struct isl_basic_set *dom, unsigned M, int max)
1953 int i;
1954 struct isl_tab *tab;
1956 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1957 isl_basic_map_total_dim(bmap), M);
1958 if (!tab)
1959 return NULL;
1961 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1962 if (dom) {
1963 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1964 tab->n_div = dom->n_div;
1965 tab->row_sign = isl_calloc_array(bmap->ctx,
1966 enum isl_tab_row_sign, tab->mat->n_row);
1967 if (!tab->row_sign)
1968 goto error;
1970 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
1971 if (isl_tab_mark_empty(tab) < 0)
1972 goto error;
1973 return tab;
1976 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1977 tab->var[i].is_nonneg = 1;
1978 tab->var[i].frozen = 1;
1980 for (i = 0; i < bmap->n_eq; ++i) {
1981 if (max)
1982 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1983 bmap->eq[i] + 1 + tab->n_param,
1984 tab->n_var - tab->n_param - tab->n_div);
1985 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
1986 if (max)
1987 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1988 bmap->eq[i] + 1 + tab->n_param,
1989 tab->n_var - tab->n_param - tab->n_div);
1990 if (!tab || tab->empty)
1991 return tab;
1993 for (i = 0; i < bmap->n_ineq; ++i) {
1994 if (max)
1995 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1996 bmap->ineq[i] + 1 + tab->n_param,
1997 tab->n_var - tab->n_param - tab->n_div);
1998 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
1999 if (max)
2000 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2001 bmap->ineq[i] + 1 + tab->n_param,
2002 tab->n_var - tab->n_param - tab->n_div);
2003 if (!tab || tab->empty)
2004 return tab;
2006 return tab;
2007 error:
2008 isl_tab_free(tab);
2009 return NULL;
2012 /* Given a main tableau where more than one row requires a split,
2013 * determine and return the "best" row to split on.
2015 * Given two rows in the main tableau, if the inequality corresponding
2016 * to the first row is redundant with respect to that of the second row
2017 * in the current tableau, then it is better to split on the second row,
2018 * since in the positive part, both row will be positive.
2019 * (In the negative part a pivot will have to be performed and just about
2020 * anything can happen to the sign of the other row.)
2022 * As a simple heuristic, we therefore select the row that makes the most
2023 * of the other rows redundant.
2025 * Perhaps it would also be useful to look at the number of constraints
2026 * that conflict with any given constraint.
2028 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2030 struct isl_tab_undo *snap;
2031 int split;
2032 int row;
2033 int best = -1;
2034 int best_r;
2036 if (isl_tab_extend_cons(context_tab, 2) < 0)
2037 return -1;
2039 snap = isl_tab_snap(context_tab);
2041 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2042 struct isl_tab_undo *snap2;
2043 struct isl_vec *ineq = NULL;
2044 int r = 0;
2045 int ok;
2047 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2048 continue;
2049 if (tab->row_sign[split] != isl_tab_row_any)
2050 continue;
2052 ineq = get_row_parameter_ineq(tab, split);
2053 if (!ineq)
2054 return -1;
2055 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2056 isl_vec_free(ineq);
2057 if (!ok)
2058 return -1;
2060 snap2 = isl_tab_snap(context_tab);
2062 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2063 struct isl_tab_var *var;
2065 if (row == split)
2066 continue;
2067 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2068 continue;
2069 if (tab->row_sign[row] != isl_tab_row_any)
2070 continue;
2072 ineq = get_row_parameter_ineq(tab, row);
2073 if (!ineq)
2074 return -1;
2075 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2076 isl_vec_free(ineq);
2077 if (!ok)
2078 return -1;
2079 var = &context_tab->con[context_tab->n_con - 1];
2080 if (!context_tab->empty &&
2081 !isl_tab_min_at_most_neg_one(context_tab, var))
2082 r++;
2083 if (isl_tab_rollback(context_tab, snap2) < 0)
2084 return -1;
2086 if (best == -1 || r > best_r) {
2087 best = split;
2088 best_r = r;
2090 if (isl_tab_rollback(context_tab, snap) < 0)
2091 return -1;
2094 return best;
2097 static struct isl_basic_set *context_lex_peek_basic_set(
2098 struct isl_context *context)
2100 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2101 if (!clex->tab)
2102 return NULL;
2103 return isl_tab_peek_bset(clex->tab);
2106 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2108 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2109 return clex->tab;
2112 static void context_lex_extend(struct isl_context *context, int n)
2114 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2115 if (!clex->tab)
2116 return;
2117 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2118 return;
2119 isl_tab_free(clex->tab);
2120 clex->tab = NULL;
2123 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2124 int check, int update)
2126 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2127 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2128 goto error;
2129 clex->tab = add_lexmin_eq(clex->tab, eq);
2130 if (check) {
2131 int v = tab_has_valid_sample(clex->tab, eq, 1);
2132 if (v < 0)
2133 goto error;
2134 if (!v)
2135 clex->tab = check_integer_feasible(clex->tab);
2137 if (update)
2138 clex->tab = check_samples(clex->tab, eq, 1);
2139 return;
2140 error:
2141 isl_tab_free(clex->tab);
2142 clex->tab = NULL;
2145 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2146 int check, int update)
2148 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2149 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2150 goto error;
2151 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2152 if (check) {
2153 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2154 if (v < 0)
2155 goto error;
2156 if (!v)
2157 clex->tab = check_integer_feasible(clex->tab);
2159 if (update)
2160 clex->tab = check_samples(clex->tab, ineq, 0);
2161 return;
2162 error:
2163 isl_tab_free(clex->tab);
2164 clex->tab = NULL;
2167 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2169 struct isl_context *context = (struct isl_context *)user;
2170 context_lex_add_ineq(context, ineq, 0, 0);
2171 return context->op->is_ok(context) ? 0 : -1;
2174 /* Check which signs can be obtained by "ineq" on all the currently
2175 * active sample values. See row_sign for more information.
2177 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2178 int strict)
2180 int i;
2181 int sgn;
2182 isl_int tmp;
2183 enum isl_tab_row_sign res = isl_tab_row_unknown;
2185 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2186 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2187 return isl_tab_row_unknown);
2189 isl_int_init(tmp);
2190 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2191 isl_seq_inner_product(tab->samples->row[i], ineq,
2192 1 + tab->n_var, &tmp);
2193 sgn = isl_int_sgn(tmp);
2194 if (sgn > 0 || (sgn == 0 && strict)) {
2195 if (res == isl_tab_row_unknown)
2196 res = isl_tab_row_pos;
2197 if (res == isl_tab_row_neg)
2198 res = isl_tab_row_any;
2200 if (sgn < 0) {
2201 if (res == isl_tab_row_unknown)
2202 res = isl_tab_row_neg;
2203 if (res == isl_tab_row_pos)
2204 res = isl_tab_row_any;
2206 if (res == isl_tab_row_any)
2207 break;
2209 isl_int_clear(tmp);
2211 return res;
2214 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2215 isl_int *ineq, int strict)
2217 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2218 return tab_ineq_sign(clex->tab, ineq, strict);
2221 /* Check whether "ineq" can be added to the tableau without rendering
2222 * it infeasible.
2224 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2226 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2227 struct isl_tab_undo *snap;
2228 int feasible;
2230 if (!clex->tab)
2231 return -1;
2233 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2234 return -1;
2236 snap = isl_tab_snap(clex->tab);
2237 if (isl_tab_push_basis(clex->tab) < 0)
2238 return -1;
2239 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2240 clex->tab = check_integer_feasible(clex->tab);
2241 if (!clex->tab)
2242 return -1;
2243 feasible = !clex->tab->empty;
2244 if (isl_tab_rollback(clex->tab, snap) < 0)
2245 return -1;
2247 return feasible;
2250 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2251 struct isl_vec *div)
2253 return get_div(tab, context, div);
2256 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2258 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2259 return context_tab_add_div(clex->tab, div,
2260 context_lex_add_ineq_wrap, context);
2263 static int context_lex_detect_equalities(struct isl_context *context,
2264 struct isl_tab *tab)
2266 return 0;
2269 static int context_lex_best_split(struct isl_context *context,
2270 struct isl_tab *tab)
2272 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2273 struct isl_tab_undo *snap;
2274 int r;
2276 snap = isl_tab_snap(clex->tab);
2277 if (isl_tab_push_basis(clex->tab) < 0)
2278 return -1;
2279 r = best_split(tab, clex->tab);
2281 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2282 return -1;
2284 return r;
2287 static int context_lex_is_empty(struct isl_context *context)
2289 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2290 if (!clex->tab)
2291 return -1;
2292 return clex->tab->empty;
2295 static void *context_lex_save(struct isl_context *context)
2297 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2298 struct isl_tab_undo *snap;
2300 snap = isl_tab_snap(clex->tab);
2301 if (isl_tab_push_basis(clex->tab) < 0)
2302 return NULL;
2303 if (isl_tab_save_samples(clex->tab) < 0)
2304 return NULL;
2306 return snap;
2309 static void context_lex_restore(struct isl_context *context, void *save)
2311 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2312 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2313 isl_tab_free(clex->tab);
2314 clex->tab = NULL;
2318 static int context_lex_is_ok(struct isl_context *context)
2320 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2321 return !!clex->tab;
2324 /* For each variable in the context tableau, check if the variable can
2325 * only attain non-negative values. If so, mark the parameter as non-negative
2326 * in the main tableau. This allows for a more direct identification of some
2327 * cases of violated constraints.
2329 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2330 struct isl_tab *context_tab)
2332 int i;
2333 struct isl_tab_undo *snap;
2334 struct isl_vec *ineq = NULL;
2335 struct isl_tab_var *var;
2336 int n;
2338 if (context_tab->n_var == 0)
2339 return tab;
2341 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2342 if (!ineq)
2343 goto error;
2345 if (isl_tab_extend_cons(context_tab, 1) < 0)
2346 goto error;
2348 snap = isl_tab_snap(context_tab);
2350 n = 0;
2351 isl_seq_clr(ineq->el, ineq->size);
2352 for (i = 0; i < context_tab->n_var; ++i) {
2353 isl_int_set_si(ineq->el[1 + i], 1);
2354 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2355 goto error;
2356 var = &context_tab->con[context_tab->n_con - 1];
2357 if (!context_tab->empty &&
2358 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2359 int j = i;
2360 if (i >= tab->n_param)
2361 j = i - tab->n_param + tab->n_var - tab->n_div;
2362 tab->var[j].is_nonneg = 1;
2363 n++;
2365 isl_int_set_si(ineq->el[1 + i], 0);
2366 if (isl_tab_rollback(context_tab, snap) < 0)
2367 goto error;
2370 if (context_tab->M && n == context_tab->n_var) {
2371 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2372 context_tab->M = 0;
2375 isl_vec_free(ineq);
2376 return tab;
2377 error:
2378 isl_vec_free(ineq);
2379 isl_tab_free(tab);
2380 return NULL;
2383 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2384 struct isl_context *context, struct isl_tab *tab)
2386 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2387 struct isl_tab_undo *snap;
2389 if (!tab)
2390 return NULL;
2392 snap = isl_tab_snap(clex->tab);
2393 if (isl_tab_push_basis(clex->tab) < 0)
2394 goto error;
2396 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2398 if (isl_tab_rollback(clex->tab, snap) < 0)
2399 goto error;
2401 return tab;
2402 error:
2403 isl_tab_free(tab);
2404 return NULL;
2407 static void context_lex_invalidate(struct isl_context *context)
2409 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2410 isl_tab_free(clex->tab);
2411 clex->tab = NULL;
2414 static void context_lex_free(struct isl_context *context)
2416 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2417 isl_tab_free(clex->tab);
2418 free(clex);
2421 struct isl_context_op isl_context_lex_op = {
2422 context_lex_detect_nonnegative_parameters,
2423 context_lex_peek_basic_set,
2424 context_lex_peek_tab,
2425 context_lex_add_eq,
2426 context_lex_add_ineq,
2427 context_lex_ineq_sign,
2428 context_lex_test_ineq,
2429 context_lex_get_div,
2430 context_lex_add_div,
2431 context_lex_detect_equalities,
2432 context_lex_best_split,
2433 context_lex_is_empty,
2434 context_lex_is_ok,
2435 context_lex_save,
2436 context_lex_restore,
2437 context_lex_invalidate,
2438 context_lex_free,
2441 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2443 struct isl_tab *tab;
2445 bset = isl_basic_set_cow(bset);
2446 if (!bset)
2447 return NULL;
2448 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2449 if (!tab)
2450 goto error;
2451 if (isl_tab_track_bset(tab, bset) < 0)
2452 goto error;
2453 tab = isl_tab_init_samples(tab);
2454 return tab;
2455 error:
2456 isl_basic_set_free(bset);
2457 return NULL;
2460 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2462 struct isl_context_lex *clex;
2464 if (!dom)
2465 return NULL;
2467 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2468 if (!clex)
2469 return NULL;
2471 clex->context.op = &isl_context_lex_op;
2473 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2474 clex->tab = restore_lexmin(clex->tab);
2475 clex->tab = check_integer_feasible(clex->tab);
2476 if (!clex->tab)
2477 goto error;
2479 return &clex->context;
2480 error:
2481 clex->context.op->free(&clex->context);
2482 return NULL;
2485 struct isl_context_gbr {
2486 struct isl_context context;
2487 struct isl_tab *tab;
2488 struct isl_tab *shifted;
2489 struct isl_tab *cone;
2492 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2493 struct isl_context *context, struct isl_tab *tab)
2495 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2496 if (!tab)
2497 return NULL;
2498 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2501 static struct isl_basic_set *context_gbr_peek_basic_set(
2502 struct isl_context *context)
2504 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2505 if (!cgbr->tab)
2506 return NULL;
2507 return isl_tab_peek_bset(cgbr->tab);
2510 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2512 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2513 return cgbr->tab;
2516 /* Initialize the "shifted" tableau of the context, which
2517 * contains the constraints of the original tableau shifted
2518 * by the sum of all negative coefficients. This ensures
2519 * that any rational point in the shifted tableau can
2520 * be rounded up to yield an integer point in the original tableau.
2522 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2524 int i, j;
2525 struct isl_vec *cst;
2526 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2527 unsigned dim = isl_basic_set_total_dim(bset);
2529 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2530 if (!cst)
2531 return;
2533 for (i = 0; i < bset->n_ineq; ++i) {
2534 isl_int_set(cst->el[i], bset->ineq[i][0]);
2535 for (j = 0; j < dim; ++j) {
2536 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2537 continue;
2538 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2539 bset->ineq[i][1 + j]);
2543 cgbr->shifted = isl_tab_from_basic_set(bset);
2545 for (i = 0; i < bset->n_ineq; ++i)
2546 isl_int_set(bset->ineq[i][0], cst->el[i]);
2548 isl_vec_free(cst);
2551 /* Check if the shifted tableau is non-empty, and if so
2552 * use the sample point to construct an integer point
2553 * of the context tableau.
2555 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2557 struct isl_vec *sample;
2559 if (!cgbr->shifted)
2560 gbr_init_shifted(cgbr);
2561 if (!cgbr->shifted)
2562 return NULL;
2563 if (cgbr->shifted->empty)
2564 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2566 sample = isl_tab_get_sample_value(cgbr->shifted);
2567 sample = isl_vec_ceil(sample);
2569 return sample;
2572 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2574 int i;
2576 if (!bset)
2577 return NULL;
2579 for (i = 0; i < bset->n_eq; ++i)
2580 isl_int_set_si(bset->eq[i][0], 0);
2582 for (i = 0; i < bset->n_ineq; ++i)
2583 isl_int_set_si(bset->ineq[i][0], 0);
2585 return bset;
2588 static int use_shifted(struct isl_context_gbr *cgbr)
2590 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2593 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2595 struct isl_basic_set *bset;
2596 struct isl_basic_set *cone;
2598 if (isl_tab_sample_is_integer(cgbr->tab))
2599 return isl_tab_get_sample_value(cgbr->tab);
2601 if (use_shifted(cgbr)) {
2602 struct isl_vec *sample;
2604 sample = gbr_get_shifted_sample(cgbr);
2605 if (!sample || sample->size > 0)
2606 return sample;
2608 isl_vec_free(sample);
2611 if (!cgbr->cone) {
2612 bset = isl_tab_peek_bset(cgbr->tab);
2613 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2614 if (!cgbr->cone)
2615 return NULL;
2616 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2617 return NULL;
2619 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2620 return NULL;
2622 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2623 struct isl_vec *sample;
2624 struct isl_tab_undo *snap;
2626 if (cgbr->tab->basis) {
2627 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2628 isl_mat_free(cgbr->tab->basis);
2629 cgbr->tab->basis = NULL;
2631 cgbr->tab->n_zero = 0;
2632 cgbr->tab->n_unbounded = 0;
2635 snap = isl_tab_snap(cgbr->tab);
2637 sample = isl_tab_sample(cgbr->tab);
2639 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2640 isl_vec_free(sample);
2641 return NULL;
2644 return sample;
2647 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2648 cone = drop_constant_terms(cone);
2649 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2650 cone = isl_basic_set_underlying_set(cone);
2651 cone = isl_basic_set_gauss(cone, NULL);
2653 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2654 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2655 bset = isl_basic_set_underlying_set(bset);
2656 bset = isl_basic_set_gauss(bset, NULL);
2658 return isl_basic_set_sample_with_cone(bset, cone);
2661 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2663 struct isl_vec *sample;
2665 if (!cgbr->tab)
2666 return;
2668 if (cgbr->tab->empty)
2669 return;
2671 sample = gbr_get_sample(cgbr);
2672 if (!sample)
2673 goto error;
2675 if (sample->size == 0) {
2676 isl_vec_free(sample);
2677 if (isl_tab_mark_empty(cgbr->tab) < 0)
2678 goto error;
2679 return;
2682 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2684 return;
2685 error:
2686 isl_tab_free(cgbr->tab);
2687 cgbr->tab = NULL;
2690 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2692 int r;
2694 if (!tab)
2695 return NULL;
2697 if (isl_tab_extend_cons(tab, 2) < 0)
2698 goto error;
2700 if (isl_tab_add_eq(tab, eq) < 0)
2701 goto error;
2703 return tab;
2704 error:
2705 isl_tab_free(tab);
2706 return NULL;
2709 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2710 int check, int update)
2712 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2714 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2716 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2717 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2718 goto error;
2719 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2720 goto error;
2723 if (check) {
2724 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2725 if (v < 0)
2726 goto error;
2727 if (!v)
2728 check_gbr_integer_feasible(cgbr);
2730 if (update)
2731 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2732 return;
2733 error:
2734 isl_tab_free(cgbr->tab);
2735 cgbr->tab = NULL;
2738 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2740 if (!cgbr->tab)
2741 return;
2743 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2744 goto error;
2746 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2747 goto error;
2749 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2750 int i;
2751 unsigned dim;
2752 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2754 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2755 goto error;
2757 for (i = 0; i < dim; ++i) {
2758 if (!isl_int_is_neg(ineq[1 + i]))
2759 continue;
2760 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2763 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2764 goto error;
2766 for (i = 0; i < dim; ++i) {
2767 if (!isl_int_is_neg(ineq[1 + i]))
2768 continue;
2769 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2773 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2774 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2775 goto error;
2776 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2777 goto error;
2780 return;
2781 error:
2782 isl_tab_free(cgbr->tab);
2783 cgbr->tab = NULL;
2786 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2787 int check, int update)
2789 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2791 add_gbr_ineq(cgbr, ineq);
2792 if (!cgbr->tab)
2793 return;
2795 if (check) {
2796 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2797 if (v < 0)
2798 goto error;
2799 if (!v)
2800 check_gbr_integer_feasible(cgbr);
2802 if (update)
2803 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2804 return;
2805 error:
2806 isl_tab_free(cgbr->tab);
2807 cgbr->tab = NULL;
2810 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2812 struct isl_context *context = (struct isl_context *)user;
2813 context_gbr_add_ineq(context, ineq, 0, 0);
2814 return context->op->is_ok(context) ? 0 : -1;
2817 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2818 isl_int *ineq, int strict)
2820 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2821 return tab_ineq_sign(cgbr->tab, ineq, strict);
2824 /* Check whether "ineq" can be added to the tableau without rendering
2825 * it infeasible.
2827 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2829 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2830 struct isl_tab_undo *snap;
2831 struct isl_tab_undo *shifted_snap = NULL;
2832 struct isl_tab_undo *cone_snap = NULL;
2833 int feasible;
2835 if (!cgbr->tab)
2836 return -1;
2838 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2839 return -1;
2841 snap = isl_tab_snap(cgbr->tab);
2842 if (cgbr->shifted)
2843 shifted_snap = isl_tab_snap(cgbr->shifted);
2844 if (cgbr->cone)
2845 cone_snap = isl_tab_snap(cgbr->cone);
2846 add_gbr_ineq(cgbr, ineq);
2847 check_gbr_integer_feasible(cgbr);
2848 if (!cgbr->tab)
2849 return -1;
2850 feasible = !cgbr->tab->empty;
2851 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2852 return -1;
2853 if (shifted_snap) {
2854 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2855 return -1;
2856 } else if (cgbr->shifted) {
2857 isl_tab_free(cgbr->shifted);
2858 cgbr->shifted = NULL;
2860 if (cone_snap) {
2861 if (isl_tab_rollback(cgbr->cone, cone_snap))
2862 return -1;
2863 } else if (cgbr->cone) {
2864 isl_tab_free(cgbr->cone);
2865 cgbr->cone = NULL;
2868 return feasible;
2871 /* Return the column of the last of the variables associated to
2872 * a column that has a non-zero coefficient.
2873 * This function is called in a context where only coefficients
2874 * of parameters or divs can be non-zero.
2876 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2878 int i;
2879 int col;
2880 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2882 if (tab->n_var == 0)
2883 return -1;
2885 for (i = tab->n_var - 1; i >= 0; --i) {
2886 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2887 continue;
2888 if (tab->var[i].is_row)
2889 continue;
2890 col = tab->var[i].index;
2891 if (!isl_int_is_zero(p[col]))
2892 return col;
2895 return -1;
2898 /* Look through all the recently added equalities in the context
2899 * to see if we can propagate any of them to the main tableau.
2901 * The newly added equalities in the context are encoded as pairs
2902 * of inequalities starting at inequality "first".
2904 * We tentatively add each of these equalities to the main tableau
2905 * and if this happens to result in a row with a final coefficient
2906 * that is one or negative one, we use it to kill a column
2907 * in the main tableau. Otherwise, we discard the tentatively
2908 * added row.
2910 static void propagate_equalities(struct isl_context_gbr *cgbr,
2911 struct isl_tab *tab, unsigned first)
2913 int i;
2914 struct isl_vec *eq = NULL;
2916 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2917 if (!eq)
2918 goto error;
2920 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2921 goto error;
2923 isl_seq_clr(eq->el + 1 + tab->n_param,
2924 tab->n_var - tab->n_param - tab->n_div);
2925 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2926 int j;
2927 int r;
2928 struct isl_tab_undo *snap;
2929 snap = isl_tab_snap(tab);
2931 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2932 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2933 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2934 tab->n_div);
2936 r = isl_tab_add_row(tab, eq->el);
2937 if (r < 0)
2938 goto error;
2939 r = tab->con[r].index;
2940 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2941 if (j < 0 || j < tab->n_dead ||
2942 !isl_int_is_one(tab->mat->row[r][0]) ||
2943 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2944 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2945 if (isl_tab_rollback(tab, snap) < 0)
2946 goto error;
2947 continue;
2949 if (isl_tab_pivot(tab, r, j) < 0)
2950 goto error;
2951 if (isl_tab_kill_col(tab, j) < 0)
2952 goto error;
2954 tab = restore_lexmin(tab);
2957 isl_vec_free(eq);
2959 return;
2960 error:
2961 isl_vec_free(eq);
2962 isl_tab_free(cgbr->tab);
2963 cgbr->tab = NULL;
2966 static int context_gbr_detect_equalities(struct isl_context *context,
2967 struct isl_tab *tab)
2969 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2970 struct isl_ctx *ctx;
2971 int i;
2972 enum isl_lp_result res;
2973 unsigned n_ineq;
2975 ctx = cgbr->tab->mat->ctx;
2977 if (!cgbr->cone) {
2978 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2979 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2980 if (!cgbr->cone)
2981 goto error;
2982 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2983 goto error;
2985 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2986 goto error;
2988 n_ineq = cgbr->tab->bmap->n_ineq;
2989 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
2990 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
2991 propagate_equalities(cgbr, tab, n_ineq);
2993 return 0;
2994 error:
2995 isl_tab_free(cgbr->tab);
2996 cgbr->tab = NULL;
2997 return -1;
3000 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3001 struct isl_vec *div)
3003 return get_div(tab, context, div);
3006 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3008 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3009 if (cgbr->cone) {
3010 int k;
3012 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3013 return -1;
3014 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3015 return -1;
3016 if (isl_tab_allocate_var(cgbr->cone) <0)
3017 return -1;
3019 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3020 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3021 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3022 if (k < 0)
3023 return -1;
3024 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3025 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3026 return -1;
3028 return context_tab_add_div(cgbr->tab, div,
3029 context_gbr_add_ineq_wrap, context);
3032 static int context_gbr_best_split(struct isl_context *context,
3033 struct isl_tab *tab)
3035 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3036 struct isl_tab_undo *snap;
3037 int r;
3039 snap = isl_tab_snap(cgbr->tab);
3040 r = best_split(tab, cgbr->tab);
3042 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3043 return -1;
3045 return r;
3048 static int context_gbr_is_empty(struct isl_context *context)
3050 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3051 if (!cgbr->tab)
3052 return -1;
3053 return cgbr->tab->empty;
3056 struct isl_gbr_tab_undo {
3057 struct isl_tab_undo *tab_snap;
3058 struct isl_tab_undo *shifted_snap;
3059 struct isl_tab_undo *cone_snap;
3062 static void *context_gbr_save(struct isl_context *context)
3064 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3065 struct isl_gbr_tab_undo *snap;
3067 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3068 if (!snap)
3069 return NULL;
3071 snap->tab_snap = isl_tab_snap(cgbr->tab);
3072 if (isl_tab_save_samples(cgbr->tab) < 0)
3073 goto error;
3075 if (cgbr->shifted)
3076 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3077 else
3078 snap->shifted_snap = NULL;
3080 if (cgbr->cone)
3081 snap->cone_snap = isl_tab_snap(cgbr->cone);
3082 else
3083 snap->cone_snap = NULL;
3085 return snap;
3086 error:
3087 free(snap);
3088 return NULL;
3091 static void context_gbr_restore(struct isl_context *context, void *save)
3093 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3094 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3095 if (!snap)
3096 goto error;
3097 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3098 isl_tab_free(cgbr->tab);
3099 cgbr->tab = NULL;
3102 if (snap->shifted_snap) {
3103 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3104 goto error;
3105 } else if (cgbr->shifted) {
3106 isl_tab_free(cgbr->shifted);
3107 cgbr->shifted = NULL;
3110 if (snap->cone_snap) {
3111 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3112 goto error;
3113 } else if (cgbr->cone) {
3114 isl_tab_free(cgbr->cone);
3115 cgbr->cone = NULL;
3118 free(snap);
3120 return;
3121 error:
3122 free(snap);
3123 isl_tab_free(cgbr->tab);
3124 cgbr->tab = NULL;
3127 static int context_gbr_is_ok(struct isl_context *context)
3129 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3130 return !!cgbr->tab;
3133 static void context_gbr_invalidate(struct isl_context *context)
3135 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3136 isl_tab_free(cgbr->tab);
3137 cgbr->tab = NULL;
3140 static void context_gbr_free(struct isl_context *context)
3142 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3143 isl_tab_free(cgbr->tab);
3144 isl_tab_free(cgbr->shifted);
3145 isl_tab_free(cgbr->cone);
3146 free(cgbr);
3149 struct isl_context_op isl_context_gbr_op = {
3150 context_gbr_detect_nonnegative_parameters,
3151 context_gbr_peek_basic_set,
3152 context_gbr_peek_tab,
3153 context_gbr_add_eq,
3154 context_gbr_add_ineq,
3155 context_gbr_ineq_sign,
3156 context_gbr_test_ineq,
3157 context_gbr_get_div,
3158 context_gbr_add_div,
3159 context_gbr_detect_equalities,
3160 context_gbr_best_split,
3161 context_gbr_is_empty,
3162 context_gbr_is_ok,
3163 context_gbr_save,
3164 context_gbr_restore,
3165 context_gbr_invalidate,
3166 context_gbr_free,
3169 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3171 struct isl_context_gbr *cgbr;
3173 if (!dom)
3174 return NULL;
3176 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3177 if (!cgbr)
3178 return NULL;
3180 cgbr->context.op = &isl_context_gbr_op;
3182 cgbr->shifted = NULL;
3183 cgbr->cone = NULL;
3184 cgbr->tab = isl_tab_from_basic_set(dom);
3185 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3186 if (!cgbr->tab)
3187 goto error;
3188 if (isl_tab_track_bset(cgbr->tab,
3189 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3190 goto error;
3191 check_gbr_integer_feasible(cgbr);
3193 return &cgbr->context;
3194 error:
3195 cgbr->context.op->free(&cgbr->context);
3196 return NULL;
3199 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3201 if (!dom)
3202 return NULL;
3204 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3205 return isl_context_lex_alloc(dom);
3206 else
3207 return isl_context_gbr_alloc(dom);
3210 /* Construct an isl_sol_map structure for accumulating the solution.
3211 * If track_empty is set, then we also keep track of the parts
3212 * of the context where there is no solution.
3213 * If max is set, then we are solving a maximization, rather than
3214 * a minimization problem, which means that the variables in the
3215 * tableau have value "M - x" rather than "M + x".
3217 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3218 struct isl_basic_set *dom, int track_empty, int max)
3220 struct isl_sol_map *sol_map = NULL;
3222 if (!bmap)
3223 goto error;
3225 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3226 if (!sol_map)
3227 goto error;
3229 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3230 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3231 sol_map->sol.dec_level.sol = &sol_map->sol;
3232 sol_map->sol.max = max;
3233 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3234 sol_map->sol.add = &sol_map_add_wrap;
3235 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3236 sol_map->sol.free = &sol_map_free_wrap;
3237 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3238 ISL_MAP_DISJOINT);
3239 if (!sol_map->map)
3240 goto error;
3242 sol_map->sol.context = isl_context_alloc(dom);
3243 if (!sol_map->sol.context)
3244 goto error;
3246 if (track_empty) {
3247 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3248 1, ISL_SET_DISJOINT);
3249 if (!sol_map->empty)
3250 goto error;
3253 isl_basic_set_free(dom);
3254 return sol_map;
3255 error:
3256 isl_basic_set_free(dom);
3257 sol_map_free(sol_map);
3258 return NULL;
3261 /* Check whether all coefficients of (non-parameter) variables
3262 * are non-positive, meaning that no pivots can be performed on the row.
3264 static int is_critical(struct isl_tab *tab, int row)
3266 int j;
3267 unsigned off = 2 + tab->M;
3269 for (j = tab->n_dead; j < tab->n_col; ++j) {
3270 if (tab->col_var[j] >= 0 &&
3271 (tab->col_var[j] < tab->n_param ||
3272 tab->col_var[j] >= tab->n_var - tab->n_div))
3273 continue;
3275 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3276 return 0;
3279 return 1;
3282 /* Check whether the inequality represented by vec is strict over the integers,
3283 * i.e., there are no integer values satisfying the constraint with
3284 * equality. This happens if the gcd of the coefficients is not a divisor
3285 * of the constant term. If so, scale the constraint down by the gcd
3286 * of the coefficients.
3288 static int is_strict(struct isl_vec *vec)
3290 isl_int gcd;
3291 int strict = 0;
3293 isl_int_init(gcd);
3294 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3295 if (!isl_int_is_one(gcd)) {
3296 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3297 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3298 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3300 isl_int_clear(gcd);
3302 return strict;
3305 /* Determine the sign of the given row of the main tableau.
3306 * The result is one of
3307 * isl_tab_row_pos: always non-negative; no pivot needed
3308 * isl_tab_row_neg: always non-positive; pivot
3309 * isl_tab_row_any: can be both positive and negative; split
3311 * We first handle some simple cases
3312 * - the row sign may be known already
3313 * - the row may be obviously non-negative
3314 * - the parametric constant may be equal to that of another row
3315 * for which we know the sign. This sign will be either "pos" or
3316 * "any". If it had been "neg" then we would have pivoted before.
3318 * If none of these cases hold, we check the value of the row for each
3319 * of the currently active samples. Based on the signs of these values
3320 * we make an initial determination of the sign of the row.
3322 * all zero -> unk(nown)
3323 * all non-negative -> pos
3324 * all non-positive -> neg
3325 * both negative and positive -> all
3327 * If we end up with "all", we are done.
3328 * Otherwise, we perform a check for positive and/or negative
3329 * values as follows.
3331 * samples neg unk pos
3332 * <0 ? Y N Y N
3333 * pos any pos
3334 * >0 ? Y N Y N
3335 * any neg any neg
3337 * There is no special sign for "zero", because we can usually treat zero
3338 * as either non-negative or non-positive, whatever works out best.
3339 * However, if the row is "critical", meaning that pivoting is impossible
3340 * then we don't want to limp zero with the non-positive case, because
3341 * then we we would lose the solution for those values of the parameters
3342 * where the value of the row is zero. Instead, we treat 0 as non-negative
3343 * ensuring a split if the row can attain both zero and negative values.
3344 * The same happens when the original constraint was one that could not
3345 * be satisfied with equality by any integer values of the parameters.
3346 * In this case, we normalize the constraint, but then a value of zero
3347 * for the normalized constraint is actually a positive value for the
3348 * original constraint, so again we need to treat zero as non-negative.
3349 * In both these cases, we have the following decision tree instead:
3351 * all non-negative -> pos
3352 * all negative -> neg
3353 * both negative and non-negative -> all
3355 * samples neg pos
3356 * <0 ? Y N
3357 * any pos
3358 * >=0 ? Y N
3359 * any neg
3361 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3362 struct isl_sol *sol, int row)
3364 struct isl_vec *ineq = NULL;
3365 enum isl_tab_row_sign res = isl_tab_row_unknown;
3366 int critical;
3367 int strict;
3368 int row2;
3370 if (tab->row_sign[row] != isl_tab_row_unknown)
3371 return tab->row_sign[row];
3372 if (is_obviously_nonneg(tab, row))
3373 return isl_tab_row_pos;
3374 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3375 if (tab->row_sign[row2] == isl_tab_row_unknown)
3376 continue;
3377 if (identical_parameter_line(tab, row, row2))
3378 return tab->row_sign[row2];
3381 critical = is_critical(tab, row);
3383 ineq = get_row_parameter_ineq(tab, row);
3384 if (!ineq)
3385 goto error;
3387 strict = is_strict(ineq);
3389 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3390 critical || strict);
3392 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3393 /* test for negative values */
3394 int feasible;
3395 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3396 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3398 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3399 if (feasible < 0)
3400 goto error;
3401 if (!feasible)
3402 res = isl_tab_row_pos;
3403 else
3404 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3405 : isl_tab_row_any;
3406 if (res == isl_tab_row_neg) {
3407 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3408 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3412 if (res == isl_tab_row_neg) {
3413 /* test for positive values */
3414 int feasible;
3415 if (!critical && !strict)
3416 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3418 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3419 if (feasible < 0)
3420 goto error;
3421 if (feasible)
3422 res = isl_tab_row_any;
3425 isl_vec_free(ineq);
3426 return res;
3427 error:
3428 isl_vec_free(ineq);
3429 return isl_tab_row_unknown;
3432 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3434 /* Find solutions for values of the parameters that satisfy the given
3435 * inequality.
3437 * We currently take a snapshot of the context tableau that is reset
3438 * when we return from this function, while we make a copy of the main
3439 * tableau, leaving the original main tableau untouched.
3440 * These are fairly arbitrary choices. Making a copy also of the context
3441 * tableau would obviate the need to undo any changes made to it later,
3442 * while taking a snapshot of the main tableau could reduce memory usage.
3443 * If we were to switch to taking a snapshot of the main tableau,
3444 * we would have to keep in mind that we need to save the row signs
3445 * and that we need to do this before saving the current basis
3446 * such that the basis has been restore before we restore the row signs.
3448 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3450 void *saved;
3452 if (!sol->context)
3453 goto error;
3454 saved = sol->context->op->save(sol->context);
3456 tab = isl_tab_dup(tab);
3457 if (!tab)
3458 goto error;
3460 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3462 find_solutions(sol, tab);
3464 if (!sol->error)
3465 sol->context->op->restore(sol->context, saved);
3466 return;
3467 error:
3468 sol->error = 1;
3471 /* Record the absence of solutions for those values of the parameters
3472 * that do not satisfy the given inequality with equality.
3474 static void no_sol_in_strict(struct isl_sol *sol,
3475 struct isl_tab *tab, struct isl_vec *ineq)
3477 int empty;
3478 void *saved;
3480 if (!sol->context || sol->error)
3481 goto error;
3482 saved = sol->context->op->save(sol->context);
3484 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3486 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3487 if (!sol->context)
3488 goto error;
3490 empty = tab->empty;
3491 tab->empty = 1;
3492 sol_add(sol, tab);
3493 tab->empty = empty;
3495 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3497 sol->context->op->restore(sol->context, saved);
3498 return;
3499 error:
3500 sol->error = 1;
3503 /* Compute the lexicographic minimum of the set represented by the main
3504 * tableau "tab" within the context "sol->context_tab".
3505 * On entry the sample value of the main tableau is lexicographically
3506 * less than or equal to this lexicographic minimum.
3507 * Pivots are performed until a feasible point is found, which is then
3508 * necessarily equal to the minimum, or until the tableau is found to
3509 * be infeasible. Some pivots may need to be performed for only some
3510 * feasible values of the context tableau. If so, the context tableau
3511 * is split into a part where the pivot is needed and a part where it is not.
3513 * Whenever we enter the main loop, the main tableau is such that no
3514 * "obvious" pivots need to be performed on it, where "obvious" means
3515 * that the given row can be seen to be negative without looking at
3516 * the context tableau. In particular, for non-parametric problems,
3517 * no pivots need to be performed on the main tableau.
3518 * The caller of find_solutions is responsible for making this property
3519 * hold prior to the first iteration of the loop, while restore_lexmin
3520 * is called before every other iteration.
3522 * Inside the main loop, we first examine the signs of the rows of
3523 * the main tableau within the context of the context tableau.
3524 * If we find a row that is always non-positive for all values of
3525 * the parameters satisfying the context tableau and negative for at
3526 * least one value of the parameters, we perform the appropriate pivot
3527 * and start over. An exception is the case where no pivot can be
3528 * performed on the row. In this case, we require that the sign of
3529 * the row is negative for all values of the parameters (rather than just
3530 * non-positive). This special case is handled inside row_sign, which
3531 * will say that the row can have any sign if it determines that it can
3532 * attain both negative and zero values.
3534 * If we can't find a row that always requires a pivot, but we can find
3535 * one or more rows that require a pivot for some values of the parameters
3536 * (i.e., the row can attain both positive and negative signs), then we split
3537 * the context tableau into two parts, one where we force the sign to be
3538 * non-negative and one where we force is to be negative.
3539 * The non-negative part is handled by a recursive call (through find_in_pos).
3540 * Upon returning from this call, we continue with the negative part and
3541 * perform the required pivot.
3543 * If no such rows can be found, all rows are non-negative and we have
3544 * found a (rational) feasible point. If we only wanted a rational point
3545 * then we are done.
3546 * Otherwise, we check if all values of the sample point of the tableau
3547 * are integral for the variables. If so, we have found the minimal
3548 * integral point and we are done.
3549 * If the sample point is not integral, then we need to make a distinction
3550 * based on whether the constant term is non-integral or the coefficients
3551 * of the parameters. Furthermore, in order to decide how to handle
3552 * the non-integrality, we also need to know whether the coefficients
3553 * of the other columns in the tableau are integral. This leads
3554 * to the following table. The first two rows do not correspond
3555 * to a non-integral sample point and are only mentioned for completeness.
3557 * constant parameters other
3559 * int int int |
3560 * int int rat | -> no problem
3562 * rat int int -> fail
3564 * rat int rat -> cut
3566 * int rat rat |
3567 * rat rat rat | -> parametric cut
3569 * int rat int |
3570 * rat rat int | -> split context
3572 * If the parametric constant is completely integral, then there is nothing
3573 * to be done. If the constant term is non-integral, but all the other
3574 * coefficient are integral, then there is nothing that can be done
3575 * and the tableau has no integral solution.
3576 * If, on the other hand, one or more of the other columns have rational
3577 * coeffcients, but the parameter coefficients are all integral, then
3578 * we can perform a regular (non-parametric) cut.
3579 * Finally, if there is any parameter coefficient that is non-integral,
3580 * then we need to involve the context tableau. There are two cases here.
3581 * If at least one other column has a rational coefficient, then we
3582 * can perform a parametric cut in the main tableau by adding a new
3583 * integer division in the context tableau.
3584 * If all other columns have integral coefficients, then we need to
3585 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3586 * is always integral. We do this by introducing an integer division
3587 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3588 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3589 * Since q is expressed in the tableau as
3590 * c + \sum a_i y_i - m q >= 0
3591 * -c - \sum a_i y_i + m q + m - 1 >= 0
3592 * it is sufficient to add the inequality
3593 * -c - \sum a_i y_i + m q >= 0
3594 * In the part of the context where this inequality does not hold, the
3595 * main tableau is marked as being empty.
3597 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3599 struct isl_context *context;
3601 if (!tab || sol->error)
3602 goto error;
3604 context = sol->context;
3606 if (tab->empty)
3607 goto done;
3608 if (context->op->is_empty(context))
3609 goto done;
3611 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3612 int flags;
3613 int row;
3614 enum isl_tab_row_sign sgn;
3615 int split = -1;
3616 int n_split = 0;
3618 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3619 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3620 continue;
3621 sgn = row_sign(tab, sol, row);
3622 if (!sgn)
3623 goto error;
3624 tab->row_sign[row] = sgn;
3625 if (sgn == isl_tab_row_any)
3626 n_split++;
3627 if (sgn == isl_tab_row_any && split == -1)
3628 split = row;
3629 if (sgn == isl_tab_row_neg)
3630 break;
3632 if (row < tab->n_row)
3633 continue;
3634 if (split != -1) {
3635 struct isl_vec *ineq;
3636 if (n_split != 1)
3637 split = context->op->best_split(context, tab);
3638 if (split < 0)
3639 goto error;
3640 ineq = get_row_parameter_ineq(tab, split);
3641 if (!ineq)
3642 goto error;
3643 is_strict(ineq);
3644 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3645 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3646 continue;
3647 if (tab->row_sign[row] == isl_tab_row_any)
3648 tab->row_sign[row] = isl_tab_row_unknown;
3650 tab->row_sign[split] = isl_tab_row_pos;
3651 sol_inc_level(sol);
3652 find_in_pos(sol, tab, ineq->el);
3653 tab->row_sign[split] = isl_tab_row_neg;
3654 row = split;
3655 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3656 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3657 if (!sol->error)
3658 context->op->add_ineq(context, ineq->el, 0, 1);
3659 isl_vec_free(ineq);
3660 if (sol->error)
3661 goto error;
3662 continue;
3664 if (tab->rational)
3665 break;
3666 row = first_non_integer_row(tab, &flags);
3667 if (row < 0)
3668 break;
3669 if (ISL_FL_ISSET(flags, I_PAR)) {
3670 if (ISL_FL_ISSET(flags, I_VAR)) {
3671 if (isl_tab_mark_empty(tab) < 0)
3672 goto error;
3673 break;
3675 row = add_cut(tab, row);
3676 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3677 struct isl_vec *div;
3678 struct isl_vec *ineq;
3679 int d;
3680 div = get_row_split_div(tab, row);
3681 if (!div)
3682 goto error;
3683 d = context->op->get_div(context, tab, div);
3684 isl_vec_free(div);
3685 if (d < 0)
3686 goto error;
3687 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3688 if (!ineq)
3689 goto error;
3690 sol_inc_level(sol);
3691 no_sol_in_strict(sol, tab, ineq);
3692 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3693 context->op->add_ineq(context, ineq->el, 1, 1);
3694 isl_vec_free(ineq);
3695 if (sol->error || !context->op->is_ok(context))
3696 goto error;
3697 tab = set_row_cst_to_div(tab, row, d);
3698 if (context->op->is_empty(context))
3699 break;
3700 } else
3701 row = add_parametric_cut(tab, row, context);
3702 if (row < 0)
3703 goto error;
3705 done:
3706 sol_add(sol, tab);
3707 isl_tab_free(tab);
3708 return;
3709 error:
3710 isl_tab_free(tab);
3711 sol->error = 1;
3714 /* Compute the lexicographic minimum of the set represented by the main
3715 * tableau "tab" within the context "sol->context_tab".
3717 * As a preprocessing step, we first transfer all the purely parametric
3718 * equalities from the main tableau to the context tableau, i.e.,
3719 * parameters that have been pivoted to a row.
3720 * These equalities are ignored by the main algorithm, because the
3721 * corresponding rows may not be marked as being non-negative.
3722 * In parts of the context where the added equality does not hold,
3723 * the main tableau is marked as being empty.
3725 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3727 int row;
3729 if (!tab)
3730 goto error;
3732 sol->level = 0;
3734 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3735 int p;
3736 struct isl_vec *eq;
3738 if (tab->row_var[row] < 0)
3739 continue;
3740 if (tab->row_var[row] >= tab->n_param &&
3741 tab->row_var[row] < tab->n_var - tab->n_div)
3742 continue;
3743 if (tab->row_var[row] < tab->n_param)
3744 p = tab->row_var[row];
3745 else
3746 p = tab->row_var[row]
3747 + tab->n_param - (tab->n_var - tab->n_div);
3749 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3750 if (!eq)
3751 goto error;
3752 get_row_parameter_line(tab, row, eq->el);
3753 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3754 eq = isl_vec_normalize(eq);
3756 sol_inc_level(sol);
3757 no_sol_in_strict(sol, tab, eq);
3759 isl_seq_neg(eq->el, eq->el, eq->size);
3760 sol_inc_level(sol);
3761 no_sol_in_strict(sol, tab, eq);
3762 isl_seq_neg(eq->el, eq->el, eq->size);
3764 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3766 isl_vec_free(eq);
3768 if (isl_tab_mark_redundant(tab, row) < 0)
3769 goto error;
3771 if (sol->context->op->is_empty(sol->context))
3772 break;
3774 row = tab->n_redundant - 1;
3777 find_solutions(sol, tab);
3779 sol->level = 0;
3780 sol_pop(sol);
3782 return;
3783 error:
3784 isl_tab_free(tab);
3785 sol->error = 1;
3788 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3789 struct isl_tab *tab)
3791 find_solutions_main(&sol_map->sol, tab);
3794 /* Check if integer division "div" of "dom" also occurs in "bmap".
3795 * If so, return its position within the divs.
3796 * If not, return -1.
3798 static int find_context_div(struct isl_basic_map *bmap,
3799 struct isl_basic_set *dom, unsigned div)
3801 int i;
3802 unsigned b_dim = isl_dim_total(bmap->dim);
3803 unsigned d_dim = isl_dim_total(dom->dim);
3805 if (isl_int_is_zero(dom->div[div][0]))
3806 return -1;
3807 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3808 return -1;
3810 for (i = 0; i < bmap->n_div; ++i) {
3811 if (isl_int_is_zero(bmap->div[i][0]))
3812 continue;
3813 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3814 (b_dim - d_dim) + bmap->n_div) != -1)
3815 continue;
3816 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3817 return i;
3819 return -1;
3822 /* The correspondence between the variables in the main tableau,
3823 * the context tableau, and the input map and domain is as follows.
3824 * The first n_param and the last n_div variables of the main tableau
3825 * form the variables of the context tableau.
3826 * In the basic map, these n_param variables correspond to the
3827 * parameters and the input dimensions. In the domain, they correspond
3828 * to the parameters and the set dimensions.
3829 * The n_div variables correspond to the integer divisions in the domain.
3830 * To ensure that everything lines up, we may need to copy some of the
3831 * integer divisions of the domain to the map. These have to be placed
3832 * in the same order as those in the context and they have to be placed
3833 * after any other integer divisions that the map may have.
3834 * This function performs the required reordering.
3836 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3837 struct isl_basic_set *dom)
3839 int i;
3840 int common = 0;
3841 int other;
3843 for (i = 0; i < dom->n_div; ++i)
3844 if (find_context_div(bmap, dom, i) != -1)
3845 common++;
3846 other = bmap->n_div - common;
3847 if (dom->n_div - common > 0) {
3848 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3849 dom->n_div - common, 0, 0);
3850 if (!bmap)
3851 return NULL;
3853 for (i = 0; i < dom->n_div; ++i) {
3854 int pos = find_context_div(bmap, dom, i);
3855 if (pos < 0) {
3856 pos = isl_basic_map_alloc_div(bmap);
3857 if (pos < 0)
3858 goto error;
3859 isl_int_set_si(bmap->div[pos][0], 0);
3861 if (pos != other + i)
3862 isl_basic_map_swap_div(bmap, pos, other + i);
3864 return bmap;
3865 error:
3866 isl_basic_map_free(bmap);
3867 return NULL;
3870 /* Compute the lexicographic minimum (or maximum if "max" is set)
3871 * of "bmap" over the domain "dom" and return the result as a map.
3872 * If "empty" is not NULL, then *empty is assigned a set that
3873 * contains those parts of the domain where there is no solution.
3874 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3875 * then we compute the rational optimum. Otherwise, we compute
3876 * the integral optimum.
3878 * We perform some preprocessing. As the PILP solver does not
3879 * handle implicit equalities very well, we first make sure all
3880 * the equalities are explicitly available.
3881 * We also make sure the divs in the domain are properly order,
3882 * because they will be added one by one in the given order
3883 * during the construction of the solution map.
3885 struct isl_map *isl_tab_basic_map_partial_lexopt(
3886 struct isl_basic_map *bmap, struct isl_basic_set *dom,
3887 struct isl_set **empty, int max)
3889 struct isl_tab *tab;
3890 struct isl_map *result = NULL;
3891 struct isl_sol_map *sol_map = NULL;
3892 struct isl_context *context;
3893 struct isl_basic_map *eq;
3895 if (empty)
3896 *empty = NULL;
3897 if (!bmap || !dom)
3898 goto error;
3900 isl_assert(bmap->ctx,
3901 isl_basic_map_compatible_domain(bmap, dom), goto error);
3903 eq = isl_basic_map_copy(bmap);
3904 eq = isl_basic_map_intersect_domain(eq, isl_basic_set_copy(dom));
3905 eq = isl_basic_map_affine_hull(eq);
3906 bmap = isl_basic_map_intersect(bmap, eq);
3908 if (dom->n_div) {
3909 dom = isl_basic_set_order_divs(dom);
3910 bmap = align_context_divs(bmap, dom);
3912 sol_map = sol_map_init(bmap, dom, !!empty, max);
3913 if (!sol_map)
3914 goto error;
3916 context = sol_map->sol.context;
3917 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3918 /* nothing */;
3919 else if (isl_basic_map_fast_is_empty(bmap))
3920 sol_map_add_empty_if_needed(sol_map,
3921 isl_basic_set_copy(context->op->peek_basic_set(context)));
3922 else {
3923 tab = tab_for_lexmin(bmap,
3924 context->op->peek_basic_set(context), 1, max);
3925 tab = context->op->detect_nonnegative_parameters(context, tab);
3926 sol_map_find_solutions(sol_map, tab);
3928 if (sol_map->sol.error)
3929 goto error;
3931 result = isl_map_copy(sol_map->map);
3932 if (empty)
3933 *empty = isl_set_copy(sol_map->empty);
3934 sol_free(&sol_map->sol);
3935 isl_basic_map_free(bmap);
3936 return result;
3937 error:
3938 sol_free(&sol_map->sol);
3939 isl_basic_map_free(bmap);
3940 return NULL;
3943 struct isl_sol_for {
3944 struct isl_sol sol;
3945 int (*fn)(__isl_take isl_basic_set *dom,
3946 __isl_take isl_mat *map, void *user);
3947 void *user;
3950 static void sol_for_free(struct isl_sol_for *sol_for)
3952 if (sol_for->sol.context)
3953 sol_for->sol.context->op->free(sol_for->sol.context);
3954 free(sol_for);
3957 static void sol_for_free_wrap(struct isl_sol *sol)
3959 sol_for_free((struct isl_sol_for *)sol);
3962 /* Add the solution identified by the tableau and the context tableau.
3964 * See documentation of sol_add for more details.
3966 * Instead of constructing a basic map, this function calls a user
3967 * defined function with the current context as a basic set and
3968 * an affine matrix reprenting the relation between the input and output.
3969 * The number of rows in this matrix is equal to one plus the number
3970 * of output variables. The number of columns is equal to one plus
3971 * the total dimension of the context, i.e., the number of parameters,
3972 * input variables and divs. Since some of the columns in the matrix
3973 * may refer to the divs, the basic set is not simplified.
3974 * (Simplification may reorder or remove divs.)
3976 static void sol_for_add(struct isl_sol_for *sol,
3977 struct isl_basic_set *dom, struct isl_mat *M)
3979 if (sol->sol.error || !dom || !M)
3980 goto error;
3982 dom = isl_basic_set_simplify(dom);
3983 dom = isl_basic_set_finalize(dom);
3985 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
3986 goto error;
3988 isl_basic_set_free(dom);
3989 isl_mat_free(M);
3990 return;
3991 error:
3992 isl_basic_set_free(dom);
3993 isl_mat_free(M);
3994 sol->sol.error = 1;
3997 static void sol_for_add_wrap(struct isl_sol *sol,
3998 struct isl_basic_set *dom, struct isl_mat *M)
4000 sol_for_add((struct isl_sol_for *)sol, dom, M);
4003 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4004 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4005 void *user),
4006 void *user)
4008 struct isl_sol_for *sol_for = NULL;
4009 struct isl_dim *dom_dim;
4010 struct isl_basic_set *dom = NULL;
4012 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4013 if (!sol_for)
4014 goto error;
4016 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4017 dom = isl_basic_set_universe(dom_dim);
4019 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4020 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4021 sol_for->sol.dec_level.sol = &sol_for->sol;
4022 sol_for->fn = fn;
4023 sol_for->user = user;
4024 sol_for->sol.max = max;
4025 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4026 sol_for->sol.add = &sol_for_add_wrap;
4027 sol_for->sol.add_empty = NULL;
4028 sol_for->sol.free = &sol_for_free_wrap;
4030 sol_for->sol.context = isl_context_alloc(dom);
4031 if (!sol_for->sol.context)
4032 goto error;
4034 isl_basic_set_free(dom);
4035 return sol_for;
4036 error:
4037 isl_basic_set_free(dom);
4038 sol_for_free(sol_for);
4039 return NULL;
4042 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4043 struct isl_tab *tab)
4045 find_solutions_main(&sol_for->sol, tab);
4048 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4049 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4050 void *user),
4051 void *user)
4053 struct isl_sol_for *sol_for = NULL;
4055 bmap = isl_basic_map_copy(bmap);
4056 if (!bmap)
4057 return -1;
4059 bmap = isl_basic_map_detect_equalities(bmap);
4060 sol_for = sol_for_init(bmap, max, fn, user);
4062 if (isl_basic_map_fast_is_empty(bmap))
4063 /* nothing */;
4064 else {
4065 struct isl_tab *tab;
4066 struct isl_context *context = sol_for->sol.context;
4067 tab = tab_for_lexmin(bmap,
4068 context->op->peek_basic_set(context), 1, max);
4069 tab = context->op->detect_nonnegative_parameters(context, tab);
4070 sol_for_find_solutions(sol_for, tab);
4071 if (sol_for->sol.error)
4072 goto error;
4075 sol_free(&sol_for->sol);
4076 isl_basic_map_free(bmap);
4077 return 0;
4078 error:
4079 sol_free(&sol_for->sol);
4080 isl_basic_map_free(bmap);
4081 return -1;
4084 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4085 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4086 void *user),
4087 void *user)
4089 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4092 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4093 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4094 void *user),
4095 void *user)
4097 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);