3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
8 using C<GMP> or C<imath>.
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
184 =head3 Changes since isl-0.12
188 =item * C<isl_int> has been replaced by C<isl_val>.
189 Some of the old functions are still available in C<isl/deprecated/*.h>
190 but they will be removed in the future.
192 =item * The functions C<isl_pw_qpolynomial_eval>,
193 C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
194 and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
195 an C<isl_val> instead of an C<isl_qpolynomial>.
197 =item * The function C<isl_band_member_is_zero_distance>
198 has been removed. Essentially the same functionality is available
199 through C<isl_band_member_is_coincident>, except that it requires
200 setting up coincidence constraints.
201 The option C<schedule_outer_zero_distance> has accordingly been
202 replaced by the option C<schedule_outer_coincidence>.
204 =item * The function C<isl_vertex_get_expr> has been changed
205 to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
206 The function C<isl_vertex_get_domain> has been changed to return
207 a regular basic set, rather than a rational basic set.
211 =head3 Changes since isl-0.14
215 =item * The function C<isl_union_pw_multi_aff_add> now consistently
216 computes the sum on the shared definition domain.
217 The function C<isl_union_pw_multi_aff_union_add> has been added
218 to compute the sum on the union of definition domains.
219 The original behavior of C<isl_union_pw_multi_aff_add> was
220 confused and is no longer available.
222 =item * Band forests have been replaced by schedule trees.
224 =item * The function C<isl_union_map_compute_flow> has been
225 replaced by the function C<isl_union_access_info_compute_flow>.
226 Note that the may dependence relation returned by
227 C<isl_union_flow_get_may_dependence> is the union of
228 the two dependence relations returned by
229 C<isl_union_map_compute_flow>. Similarly for the no source relations.
230 The function C<isl_union_map_compute_flow> is still available
231 for backward compatibility, but it will be removed in the future.
233 =item * The function C<isl_basic_set_drop_constraint> has been
236 =item * The function C<isl_ast_build_ast_from_schedule> has been
237 renamed to C<isl_ast_build_node_from_schedule_map>.
238 The original name is still available
239 for backward compatibility, but it will be removed in the future.
241 =item * The C<separation_class> AST generation option has been
244 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
245 have been renamed to C<isl_constraint_alloc_equality> and
246 C<isl_constraint_alloc_inequality>. The original names have been
247 kept for backward compatibility, but they will be removed in the future.
249 =item * The C<schedule_fuse> option has been replaced
250 by the C<schedule_serialize_sccs> option. The effect
251 of setting the C<schedule_fuse> option to C<ISL_SCHEDULE_FUSE_MIN>
252 is now obtained by turning on the C<schedule_serialize_sccs> option.
256 =head3 Changes since isl-0.17
260 =item * The function C<isl_printer_print_ast_expr> no longer prints
261 in C format by default. To print in C format, the output format
262 of the printer needs to have been explicitly set to C<ISL_FORMAT_C>.
263 As a result, the function C<isl_ast_expr_to_str> no longer prints
264 the expression in C format. Use C<isl_ast_expr_to_C_str> instead.
266 =item * The functions C<isl_set_align_divs> and C<isl_map_align_divs>
267 have been deprecated. The function C<isl_set_lift> has an effect
268 that is similar to C<isl_set_align_divs> and could in some cases
269 be used as an alternative.
275 C<isl> is released under the MIT license.
279 Permission is hereby granted, free of charge, to any person obtaining a copy of
280 this software and associated documentation files (the "Software"), to deal in
281 the Software without restriction, including without limitation the rights to
282 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
283 of the Software, and to permit persons to whom the Software is furnished to do
284 so, subject to the following conditions:
286 The above copyright notice and this permission notice shall be included in all
287 copies or substantial portions of the Software.
289 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
290 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
291 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
292 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
293 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
294 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
299 Note that by default C<isl> requires C<GMP>, which is released
300 under the GNU Lesser General Public License (LGPL). This means
301 that code linked against C<isl> is also linked against LGPL code.
303 When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C<isl>
304 will link against C<imath>, a library for exact integer arithmetic released
305 under the MIT license.
309 The source of C<isl> can be obtained either as a tarball
310 or from the git repository. Both are available from
311 L<http://isl.gforge.inria.fr/>.
312 The installation process depends on how you obtained
315 =head2 Installation from the git repository
319 =item 1 Clone or update the repository
321 The first time the source is obtained, you need to clone
324 git clone git://repo.or.cz/isl.git
326 To obtain updates, you need to pull in the latest changes
330 =item 2 Optionally get C<imath> submodule
332 To build C<isl> with C<imath>, you need to obtain the C<imath>
333 submodule by running in the git source tree of C<isl>
338 This will fetch the required version of C<imath> in a subdirectory of C<isl>.
340 =item 2 Generate C<configure>
346 After performing the above steps, continue
347 with the L<Common installation instructions>.
349 =head2 Common installation instructions
353 =item 1 Obtain C<GMP>
355 By default, building C<isl> requires C<GMP>, including its headers files.
356 Your distribution may not provide these header files by default
357 and you may need to install a package called C<gmp-devel> or something
358 similar. Alternatively, C<GMP> can be built from
359 source, available from L<http://gmplib.org/>.
360 C<GMP> is not needed if you build C<isl> with C<imath>.
364 C<isl> uses the standard C<autoconf> C<configure> script.
369 optionally followed by some configure options.
370 A complete list of options can be obtained by running
374 Below we discuss some of the more common options.
380 Installation prefix for C<isl>
382 =item C<--with-int=[gmp|imath|imath-32]>
384 Select the integer library to be used by C<isl>, the default is C<gmp>.
385 With C<imath-32>, C<isl> will use 32 bit integers, but fall back to C<imath>
386 for values out of the 32 bit range. In most applications, C<isl> will run
387 fastest with the C<imath-32> option, followed by C<gmp> and C<imath>, the
390 =item C<--with-gmp-prefix>
392 Installation prefix for C<GMP> (architecture-independent files).
394 =item C<--with-gmp-exec-prefix>
396 Installation prefix for C<GMP> (architecture-dependent files).
404 =item 4 Install (optional)
410 =head1 Integer Set Library
412 =head2 Memory Management
414 Since a high-level operation on isl objects usually involves
415 several substeps and since the user is usually not interested in
416 the intermediate results, most functions that return a new object
417 will also release all the objects passed as arguments.
418 If the user still wants to use one or more of these arguments
419 after the function call, she should pass along a copy of the
420 object rather than the object itself.
421 The user is then responsible for making sure that the original
422 object gets used somewhere else or is explicitly freed.
424 The arguments and return values of all documented functions are
425 annotated to make clear which arguments are released and which
426 arguments are preserved. In particular, the following annotations
433 C<__isl_give> means that a new object is returned.
434 The user should make sure that the returned pointer is
435 used exactly once as a value for an C<__isl_take> argument.
436 In between, it can be used as a value for as many
437 C<__isl_keep> arguments as the user likes.
438 There is one exception, and that is the case where the
439 pointer returned is C<NULL>. Is this case, the user
440 is free to use it as an C<__isl_take> argument or not.
441 When applied to a C<char *>, the returned pointer needs to be
446 C<__isl_null> means that a C<NULL> value is returned.
450 C<__isl_take> means that the object the argument points to
451 is taken over by the function and may no longer be used
452 by the user as an argument to any other function.
453 The pointer value must be one returned by a function
454 returning an C<__isl_give> pointer.
455 If the user passes in a C<NULL> value, then this will
456 be treated as an error in the sense that the function will
457 not perform its usual operation. However, it will still
458 make sure that all the other C<__isl_take> arguments
463 C<__isl_keep> means that the function will only use the object
464 temporarily. After the function has finished, the user
465 can still use it as an argument to other functions.
466 A C<NULL> value will be treated in the same way as
467 a C<NULL> value for an C<__isl_take> argument.
468 This annotation may also be used on return values of
469 type C<const char *>, in which case the returned pointer should
470 not be freed by the user and is only valid until the object
471 from which it was derived is updated or freed.
475 =head2 Initialization
477 All manipulations of integer sets and relations occur within
478 the context of an C<isl_ctx>.
479 A given C<isl_ctx> can only be used within a single thread.
480 All arguments of a function are required to have been allocated
481 within the same context.
482 There are currently no functions available for moving an object
483 from one C<isl_ctx> to another C<isl_ctx>. This means that
484 there is currently no way of safely moving an object from one
485 thread to another, unless the whole C<isl_ctx> is moved.
487 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
488 freed using C<isl_ctx_free>.
489 All objects allocated within an C<isl_ctx> should be freed
490 before the C<isl_ctx> itself is freed.
492 isl_ctx *isl_ctx_alloc();
493 void isl_ctx_free(isl_ctx *ctx);
495 The user can impose a bound on the number of low-level I<operations>
496 that can be performed by an C<isl_ctx>. This bound can be set and
497 retrieved using the following functions. A bound of zero means that
498 no bound is imposed. The number of operations performed can be
499 reset using C<isl_ctx_reset_operations>. Note that the number
500 of low-level operations needed to perform a high-level computation
501 may differ significantly across different versions
502 of C<isl>, but it should be the same across different platforms
503 for the same version of C<isl>.
505 Warning: This feature is experimental. C<isl> has good support to abort and
506 bail out during the computation, but this feature may exercise error code paths
507 that are normally not used that much. Consequently, it is not unlikely that
508 hidden bugs will be exposed.
510 void isl_ctx_set_max_operations(isl_ctx *ctx,
511 unsigned long max_operations);
512 unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
513 void isl_ctx_reset_operations(isl_ctx *ctx);
515 In order to be able to create an object in the same context
516 as another object, most object types (described later in
517 this document) provide a function to obtain the context
518 in which the object was created.
521 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
522 isl_ctx *isl_multi_val_get_ctx(
523 __isl_keep isl_multi_val *mv);
526 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
528 #include <isl/local_space.h>
529 isl_ctx *isl_local_space_get_ctx(
530 __isl_keep isl_local_space *ls);
533 isl_ctx *isl_set_list_get_ctx(
534 __isl_keep isl_set_list *list);
537 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
538 isl_ctx *isl_multi_aff_get_ctx(
539 __isl_keep isl_multi_aff *maff);
540 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
541 isl_ctx *isl_pw_multi_aff_get_ctx(
542 __isl_keep isl_pw_multi_aff *pma);
543 isl_ctx *isl_multi_pw_aff_get_ctx(
544 __isl_keep isl_multi_pw_aff *mpa);
545 isl_ctx *isl_union_pw_aff_get_ctx(
546 __isl_keep isl_union_pw_aff *upa);
547 isl_ctx *isl_union_pw_multi_aff_get_ctx(
548 __isl_keep isl_union_pw_multi_aff *upma);
549 isl_ctx *isl_multi_union_pw_aff_get_ctx(
550 __isl_keep isl_multi_union_pw_aff *mupa);
552 #include <isl/id_to_ast_expr.h>
553 isl_ctx *isl_id_to_ast_expr_get_ctx(
554 __isl_keep isl_id_to_ast_expr *id2expr);
556 #include <isl/point.h>
557 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
560 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
563 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
565 #include <isl/vertices.h>
566 isl_ctx *isl_vertices_get_ctx(
567 __isl_keep isl_vertices *vertices);
568 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
569 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
571 #include <isl/flow.h>
572 isl_ctx *isl_restriction_get_ctx(
573 __isl_keep isl_restriction *restr);
574 isl_ctx *isl_union_access_info_get_ctx(
575 __isl_keep isl_union_access_info *access);
576 isl_ctx *isl_union_flow_get_ctx(
577 __isl_keep isl_union_flow *flow);
579 #include <isl/schedule.h>
580 isl_ctx *isl_schedule_get_ctx(
581 __isl_keep isl_schedule *sched);
582 isl_ctx *isl_schedule_constraints_get_ctx(
583 __isl_keep isl_schedule_constraints *sc);
585 #include <isl/schedule_node.h>
586 isl_ctx *isl_schedule_node_get_ctx(
587 __isl_keep isl_schedule_node *node);
589 #include <isl/band.h>
590 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
592 #include <isl/ast_build.h>
593 isl_ctx *isl_ast_build_get_ctx(
594 __isl_keep isl_ast_build *build);
597 isl_ctx *isl_ast_expr_get_ctx(
598 __isl_keep isl_ast_expr *expr);
599 isl_ctx *isl_ast_node_get_ctx(
600 __isl_keep isl_ast_node *node);
604 C<isl> uses two special return types for functions that either return
605 a boolean or that in principle do not return anything.
606 In particular, the C<isl_bool> type has three possible values:
607 C<isl_bool_true> (a positive integer value), indicating I<true> or I<yes>;
608 C<isl_bool_false> (the integer value zero), indicating I<false> or I<no>; and
609 C<isl_bool_error> (a negative integer value), indicating that something
610 went wrong. The following function can be used to negate an C<isl_bool>,
611 where the negation of C<isl_bool_error> is C<isl_bool_error> again.
614 isl_bool isl_bool_not(isl_bool b);
616 The C<isl_stat> type has two possible values:
617 C<isl_stat_ok> (the integer value zero), indicating a successful
619 C<isl_stat_error> (a negative integer value), indicating that something
621 See L</"Error Handling"> for more information on
622 C<isl_bool_error> and C<isl_stat_error>.
626 An C<isl_val> represents an integer value, a rational value
627 or one of three special values, infinity, negative infinity and NaN.
628 Some predefined values can be created using the following functions.
631 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
632 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
633 __isl_give isl_val *isl_val_negone(isl_ctx *ctx);
634 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
635 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
636 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
638 Specific integer values can be created using the following functions.
641 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
643 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
645 __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
646 size_t n, size_t size, const void *chunks);
648 The function C<isl_val_int_from_chunks> constructs an C<isl_val>
649 from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
650 The least significant digit is assumed to be stored first.
652 Value objects can be copied and freed using the following functions.
655 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
656 __isl_null isl_val *isl_val_free(__isl_take isl_val *v);
658 They can be inspected using the following functions.
661 long isl_val_get_num_si(__isl_keep isl_val *v);
662 long isl_val_get_den_si(__isl_keep isl_val *v);
663 __isl_give isl_val *isl_val_get_den_val(
664 __isl_keep isl_val *v);
665 double isl_val_get_d(__isl_keep isl_val *v);
666 size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
668 int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
669 size_t size, void *chunks);
671 C<isl_val_n_abs_num_chunks> returns the number of I<digits>
672 of C<size> bytes needed to store the absolute value of the
674 C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
675 which is assumed to have been preallocated by the caller.
676 The least significant digit is stored first.
677 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
678 C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
679 and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
681 An C<isl_val> can be modified using the following function.
684 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
687 The following unary properties are defined on C<isl_val>s.
690 int isl_val_sgn(__isl_keep isl_val *v);
691 isl_bool isl_val_is_zero(__isl_keep isl_val *v);
692 isl_bool isl_val_is_one(__isl_keep isl_val *v);
693 isl_bool isl_val_is_negone(__isl_keep isl_val *v);
694 isl_bool isl_val_is_nonneg(__isl_keep isl_val *v);
695 isl_bool isl_val_is_nonpos(__isl_keep isl_val *v);
696 isl_bool isl_val_is_pos(__isl_keep isl_val *v);
697 isl_bool isl_val_is_neg(__isl_keep isl_val *v);
698 isl_bool isl_val_is_int(__isl_keep isl_val *v);
699 isl_bool isl_val_is_rat(__isl_keep isl_val *v);
700 isl_bool isl_val_is_nan(__isl_keep isl_val *v);
701 isl_bool isl_val_is_infty(__isl_keep isl_val *v);
702 isl_bool isl_val_is_neginfty(__isl_keep isl_val *v);
704 Note that the sign of NaN is undefined.
706 The following binary properties are defined on pairs of C<isl_val>s.
709 isl_bool isl_val_lt(__isl_keep isl_val *v1,
710 __isl_keep isl_val *v2);
711 isl_bool isl_val_le(__isl_keep isl_val *v1,
712 __isl_keep isl_val *v2);
713 isl_bool isl_val_gt(__isl_keep isl_val *v1,
714 __isl_keep isl_val *v2);
715 isl_bool isl_val_ge(__isl_keep isl_val *v1,
716 __isl_keep isl_val *v2);
717 isl_bool isl_val_eq(__isl_keep isl_val *v1,
718 __isl_keep isl_val *v2);
719 isl_bool isl_val_ne(__isl_keep isl_val *v1,
720 __isl_keep isl_val *v2);
721 isl_bool isl_val_abs_eq(__isl_keep isl_val *v1,
722 __isl_keep isl_val *v2);
724 Comparisons to NaN always return false.
725 That is, a NaN is not considered to hold any relative position
726 with respect to any value. In particular, a NaN
727 is neither considered to be equal to nor to be different from
728 any value (including another NaN).
729 The function C<isl_val_abs_eq> checks whether its two arguments
730 are equal in absolute value.
732 For integer C<isl_val>s we additionally have the following binary property.
735 isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1,
736 __isl_keep isl_val *v2);
738 An C<isl_val> can also be compared to an integer using the following
739 function. The result is undefined for NaN.
742 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
744 The following unary operations are available on C<isl_val>s.
747 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
748 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
749 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
750 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
751 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
752 __isl_give isl_val *isl_val_inv(__isl_take isl_val *v);
753 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
755 The following binary operations are available on C<isl_val>s.
758 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
759 __isl_take isl_val *v2);
760 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
761 __isl_take isl_val *v2);
762 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
763 __isl_take isl_val *v2);
764 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
766 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
767 __isl_take isl_val *v2);
768 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
770 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
771 __isl_take isl_val *v2);
772 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
774 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
775 __isl_take isl_val *v2);
776 __isl_give isl_val *isl_val_div_ui(__isl_take isl_val *v1,
779 On integer values, we additionally have the following operations.
782 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
783 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
784 __isl_take isl_val *v2);
785 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
786 __isl_take isl_val *v2);
787 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
788 __isl_take isl_val *v2, __isl_give isl_val **x,
789 __isl_give isl_val **y);
791 The function C<isl_val_gcdext> returns the greatest common divisor g
792 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
793 that C<*x> * C<v1> + C<*y> * C<v2> = g.
795 =head3 GMP specific functions
797 These functions are only available if C<isl> has been compiled with C<GMP>
800 Specific integer and rational values can be created from C<GMP> values using
801 the following functions.
803 #include <isl/val_gmp.h>
804 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
806 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
807 const mpz_t n, const mpz_t d);
809 The numerator and denominator of a rational value can be extracted as
810 C<GMP> values using the following functions.
812 #include <isl/val_gmp.h>
813 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
814 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
816 =head2 Sets and Relations
818 C<isl> uses six types of objects for representing sets and relations,
819 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
820 C<isl_union_set> and C<isl_union_map>.
821 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
822 can be described as a conjunction of affine constraints, while
823 C<isl_set> and C<isl_map> represent unions of
824 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
825 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
826 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
827 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
828 where spaces are considered different if they have a different number
829 of dimensions and/or different names (see L<"Spaces">).
830 The difference between sets and relations (maps) is that sets have
831 one set of variables, while relations have two sets of variables,
832 input variables and output variables.
834 =head2 Error Handling
836 C<isl> supports different ways to react in case a runtime error is triggered.
837 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
838 with two maps that have incompatible spaces. There are three possible ways
839 to react on error: to warn, to continue or to abort.
841 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
842 the last error in the corresponding C<isl_ctx> and the function in which the
843 error was triggered returns a value indicating that some error has
844 occurred. In case of functions returning a pointer, this value is
845 C<NULL>. In case of functions returning an C<isl_bool> or an
846 C<isl_stat>, this valus is C<isl_bool_error> or C<isl_stat_error>.
847 An error does not corrupt internal state,
848 such that isl can continue to be used. C<isl> also provides functions to
849 read the last error and to reset the memory that stores the last error. The
850 last error is only stored for information purposes. Its presence does not
851 change the behavior of C<isl>. Hence, resetting an error is not required to
852 continue to use isl, but only to observe new errors.
855 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
856 void isl_ctx_reset_error(isl_ctx *ctx);
858 Another option is to continue on error. This is similar to warn on error mode,
859 except that C<isl> does not print any warning. This allows a program to
860 implement its own error reporting.
862 The last option is to directly abort the execution of the program from within
863 the isl library. This makes it obviously impossible to recover from an error,
864 but it allows to directly spot the error location. By aborting on error,
865 debuggers break at the location the error occurred and can provide a stack
866 trace. Other tools that automatically provide stack traces on abort or that do
867 not want to continue execution after an error was triggered may also prefer to
870 The on error behavior of isl can be specified by calling
871 C<isl_options_set_on_error> or by setting the command line option
872 C<--isl-on-error>. Valid arguments for the function call are
873 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
874 choices for the command line option are C<warn>, C<continue> and C<abort>.
875 It is also possible to query the current error mode.
877 #include <isl/options.h>
878 isl_stat isl_options_set_on_error(isl_ctx *ctx, int val);
879 int isl_options_get_on_error(isl_ctx *ctx);
883 Identifiers are used to identify both individual dimensions
884 and tuples of dimensions. They consist of an optional name and an optional
885 user pointer. The name and the user pointer cannot both be C<NULL>, however.
886 Identifiers with the same name but different pointer values
887 are considered to be distinct.
888 Similarly, identifiers with different names but the same pointer value
889 are also considered to be distinct.
890 Equal identifiers are represented using the same object.
891 Pairs of identifiers can therefore be tested for equality using the
893 Identifiers can be constructed, copied, freed, inspected and printed
894 using the following functions.
897 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
898 __isl_keep const char *name, void *user);
899 __isl_give isl_id *isl_id_set_free_user(
900 __isl_take isl_id *id,
901 void (*free_user)(void *user));
902 __isl_give isl_id *isl_id_copy(isl_id *id);
903 __isl_null isl_id *isl_id_free(__isl_take isl_id *id);
905 void *isl_id_get_user(__isl_keep isl_id *id);
906 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
908 __isl_give isl_printer *isl_printer_print_id(
909 __isl_take isl_printer *p, __isl_keep isl_id *id);
911 The callback set by C<isl_id_set_free_user> is called on the user
912 pointer when the last reference to the C<isl_id> is freed.
913 Note that C<isl_id_get_name> returns a pointer to some internal
914 data structure, so the result can only be used while the
915 corresponding C<isl_id> is alive.
919 Whenever a new set, relation or similar object is created from scratch,
920 the space in which it lives needs to be specified using an C<isl_space>.
921 Each space involves zero or more parameters and zero, one or two
922 tuples of set or input/output dimensions. The parameters and dimensions
923 are identified by an C<isl_dim_type> and a position.
924 The type C<isl_dim_param> refers to parameters,
925 the type C<isl_dim_set> refers to set dimensions (for spaces
926 with a single tuple of dimensions) and the types C<isl_dim_in>
927 and C<isl_dim_out> refer to input and output dimensions
928 (for spaces with two tuples of dimensions).
929 Local spaces (see L</"Local Spaces">) also contain dimensions
930 of type C<isl_dim_div>.
931 Note that parameters are only identified by their position within
932 a given object. Across different objects, parameters are (usually)
933 identified by their names or identifiers. Only unnamed parameters
934 are identified by their positions across objects. The use of unnamed
935 parameters is discouraged.
937 #include <isl/space.h>
938 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
939 unsigned nparam, unsigned n_in, unsigned n_out);
940 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
942 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
943 unsigned nparam, unsigned dim);
944 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
945 __isl_null isl_space *isl_space_free(__isl_take isl_space *space);
947 The space used for creating a parameter domain
948 needs to be created using C<isl_space_params_alloc>.
949 For other sets, the space
950 needs to be created using C<isl_space_set_alloc>, while
951 for a relation, the space
952 needs to be created using C<isl_space_alloc>.
954 To check whether a given space is that of a set or a map
955 or whether it is a parameter space, use these functions:
957 #include <isl/space.h>
958 isl_bool isl_space_is_params(__isl_keep isl_space *space);
959 isl_bool isl_space_is_set(__isl_keep isl_space *space);
960 isl_bool isl_space_is_map(__isl_keep isl_space *space);
962 Spaces can be compared using the following functions:
964 #include <isl/space.h>
965 isl_bool isl_space_is_equal(__isl_keep isl_space *space1,
966 __isl_keep isl_space *space2);
967 isl_bool isl_space_has_equal_params(
968 __isl_keep isl_space *space1,
969 __isl_keep isl_space *space2);
970 isl_bool isl_space_has_equal_tuples(
971 __isl_keep isl_space *space1,
972 __isl_keep isl_space *space2);
973 isl_bool isl_space_is_domain(__isl_keep isl_space *space1,
974 __isl_keep isl_space *space2);
975 isl_bool isl_space_is_range(__isl_keep isl_space *space1,
976 __isl_keep isl_space *space2);
977 isl_bool isl_space_tuple_is_equal(
978 __isl_keep isl_space *space1,
979 enum isl_dim_type type1,
980 __isl_keep isl_space *space2,
981 enum isl_dim_type type2);
983 C<isl_space_is_domain> checks whether the first argument is equal
984 to the domain of the second argument. This requires in particular that
985 the first argument is a set space and that the second argument
986 is a map space. C<isl_space_tuple_is_equal> checks whether the given
987 tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
988 spaces are the same. That is, it checks if they have the same
989 identifier (if any), the same dimension and the same internal structure
992 C<isl_space_has_equal_params> checks whether two spaces
993 have the same parameters in the same order.
994 C<isl_space_has_equal_tuples> check whether two spaces have
995 the same tuples. In contrast to C<isl_space_is_equal> below,
996 it does not check the
997 parameters. This is useful because many C<isl> functions align the
998 parameters before they perform their operations, such that equivalence
1000 C<isl_space_is_equal> checks whether two spaces are identical,
1001 meaning that they have the same parameters and the same tuples.
1002 That is, it checks whether both C<isl_space_has_equal_params> and
1003 C<isl_space_has_equal_tuples> hold.
1005 It is often useful to create objects that live in the
1006 same space as some other object. This can be accomplished
1007 by creating the new objects
1008 (see L</"Creating New Sets and Relations"> or
1009 L</"Functions">) based on the space
1010 of the original object.
1012 #include <isl/set.h>
1013 __isl_give isl_space *isl_basic_set_get_space(
1014 __isl_keep isl_basic_set *bset);
1015 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
1017 #include <isl/union_set.h>
1018 __isl_give isl_space *isl_union_set_get_space(
1019 __isl_keep isl_union_set *uset);
1021 #include <isl/map.h>
1022 __isl_give isl_space *isl_basic_map_get_space(
1023 __isl_keep isl_basic_map *bmap);
1024 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
1026 #include <isl/union_map.h>
1027 __isl_give isl_space *isl_union_map_get_space(
1028 __isl_keep isl_union_map *umap);
1030 #include <isl/constraint.h>
1031 __isl_give isl_space *isl_constraint_get_space(
1032 __isl_keep isl_constraint *constraint);
1034 #include <isl/polynomial.h>
1035 __isl_give isl_space *isl_qpolynomial_get_domain_space(
1036 __isl_keep isl_qpolynomial *qp);
1037 __isl_give isl_space *isl_qpolynomial_get_space(
1038 __isl_keep isl_qpolynomial *qp);
1039 __isl_give isl_space *
1040 isl_qpolynomial_fold_get_domain_space(
1041 __isl_keep isl_qpolynomial_fold *fold);
1042 __isl_give isl_space *isl_qpolynomial_fold_get_space(
1043 __isl_keep isl_qpolynomial_fold *fold);
1044 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
1045 __isl_keep isl_pw_qpolynomial *pwqp);
1046 __isl_give isl_space *isl_pw_qpolynomial_get_space(
1047 __isl_keep isl_pw_qpolynomial *pwqp);
1048 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
1049 __isl_keep isl_pw_qpolynomial_fold *pwf);
1050 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
1051 __isl_keep isl_pw_qpolynomial_fold *pwf);
1052 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
1053 __isl_keep isl_union_pw_qpolynomial *upwqp);
1054 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
1055 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
1057 #include <isl/val.h>
1058 __isl_give isl_space *isl_multi_val_get_space(
1059 __isl_keep isl_multi_val *mv);
1061 #include <isl/aff.h>
1062 __isl_give isl_space *isl_aff_get_domain_space(
1063 __isl_keep isl_aff *aff);
1064 __isl_give isl_space *isl_aff_get_space(
1065 __isl_keep isl_aff *aff);
1066 __isl_give isl_space *isl_pw_aff_get_domain_space(
1067 __isl_keep isl_pw_aff *pwaff);
1068 __isl_give isl_space *isl_pw_aff_get_space(
1069 __isl_keep isl_pw_aff *pwaff);
1070 __isl_give isl_space *isl_multi_aff_get_domain_space(
1071 __isl_keep isl_multi_aff *maff);
1072 __isl_give isl_space *isl_multi_aff_get_space(
1073 __isl_keep isl_multi_aff *maff);
1074 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
1075 __isl_keep isl_pw_multi_aff *pma);
1076 __isl_give isl_space *isl_pw_multi_aff_get_space(
1077 __isl_keep isl_pw_multi_aff *pma);
1078 __isl_give isl_space *isl_union_pw_aff_get_space(
1079 __isl_keep isl_union_pw_aff *upa);
1080 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
1081 __isl_keep isl_union_pw_multi_aff *upma);
1082 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
1083 __isl_keep isl_multi_pw_aff *mpa);
1084 __isl_give isl_space *isl_multi_pw_aff_get_space(
1085 __isl_keep isl_multi_pw_aff *mpa);
1086 __isl_give isl_space *
1087 isl_multi_union_pw_aff_get_domain_space(
1088 __isl_keep isl_multi_union_pw_aff *mupa);
1089 __isl_give isl_space *
1090 isl_multi_union_pw_aff_get_space(
1091 __isl_keep isl_multi_union_pw_aff *mupa);
1093 #include <isl/point.h>
1094 __isl_give isl_space *isl_point_get_space(
1095 __isl_keep isl_point *pnt);
1097 The number of dimensions of a given type of space
1098 may be read off from a space or an object that lives
1099 in a space using the following functions.
1100 In case of C<isl_space_dim>, type may be
1101 C<isl_dim_param>, C<isl_dim_in> (only for relations),
1102 C<isl_dim_out> (only for relations), C<isl_dim_set>
1103 (only for sets) or C<isl_dim_all>.
1105 #include <isl/space.h>
1106 unsigned isl_space_dim(__isl_keep isl_space *space,
1107 enum isl_dim_type type);
1109 #include <isl/local_space.h>
1110 int isl_local_space_dim(__isl_keep isl_local_space *ls,
1111 enum isl_dim_type type);
1113 #include <isl/set.h>
1114 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1115 enum isl_dim_type type);
1116 unsigned isl_set_dim(__isl_keep isl_set *set,
1117 enum isl_dim_type type);
1119 #include <isl/union_set.h>
1120 unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
1121 enum isl_dim_type type);
1123 #include <isl/map.h>
1124 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1125 enum isl_dim_type type);
1126 unsigned isl_map_dim(__isl_keep isl_map *map,
1127 enum isl_dim_type type);
1129 #include <isl/union_map.h>
1130 unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
1131 enum isl_dim_type type);
1133 #include <isl/val.h>
1134 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
1135 enum isl_dim_type type);
1137 #include <isl/aff.h>
1138 int isl_aff_dim(__isl_keep isl_aff *aff,
1139 enum isl_dim_type type);
1140 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
1141 enum isl_dim_type type);
1142 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
1143 enum isl_dim_type type);
1144 unsigned isl_pw_multi_aff_dim(
1145 __isl_keep isl_pw_multi_aff *pma,
1146 enum isl_dim_type type);
1147 unsigned isl_multi_pw_aff_dim(
1148 __isl_keep isl_multi_pw_aff *mpa,
1149 enum isl_dim_type type);
1150 unsigned isl_union_pw_aff_dim(
1151 __isl_keep isl_union_pw_aff *upa,
1152 enum isl_dim_type type);
1153 unsigned isl_union_pw_multi_aff_dim(
1154 __isl_keep isl_union_pw_multi_aff *upma,
1155 enum isl_dim_type type);
1156 unsigned isl_multi_union_pw_aff_dim(
1157 __isl_keep isl_multi_union_pw_aff *mupa,
1158 enum isl_dim_type type);
1160 #include <isl/polynomial.h>
1161 unsigned isl_union_pw_qpolynomial_dim(
1162 __isl_keep isl_union_pw_qpolynomial *upwqp,
1163 enum isl_dim_type type);
1164 unsigned isl_union_pw_qpolynomial_fold_dim(
1165 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1166 enum isl_dim_type type);
1168 Note that an C<isl_union_set>, an C<isl_union_map>,
1169 an C<isl_union_pw_multi_aff>,
1170 an C<isl_union_pw_qpolynomial> and
1171 an C<isl_union_pw_qpolynomial_fold>
1172 only have parameters.
1174 The identifiers or names of the individual dimensions of spaces
1175 may be set or read off using the following functions on spaces
1176 or objects that live in spaces.
1177 These functions are mostly useful to obtain the identifiers, positions
1178 or names of the parameters. Identifiers of individual dimensions are
1179 essentially only useful for printing. They are ignored by all other
1180 operations and may not be preserved across those operations.
1182 #include <isl/space.h>
1183 __isl_give isl_space *isl_space_set_dim_id(
1184 __isl_take isl_space *space,
1185 enum isl_dim_type type, unsigned pos,
1186 __isl_take isl_id *id);
1187 isl_bool isl_space_has_dim_id(__isl_keep isl_space *space,
1188 enum isl_dim_type type, unsigned pos);
1189 __isl_give isl_id *isl_space_get_dim_id(
1190 __isl_keep isl_space *space,
1191 enum isl_dim_type type, unsigned pos);
1192 __isl_give isl_space *isl_space_set_dim_name(
1193 __isl_take isl_space *space,
1194 enum isl_dim_type type, unsigned pos,
1195 __isl_keep const char *name);
1196 isl_bool isl_space_has_dim_name(__isl_keep isl_space *space,
1197 enum isl_dim_type type, unsigned pos);
1198 __isl_keep const char *isl_space_get_dim_name(
1199 __isl_keep isl_space *space,
1200 enum isl_dim_type type, unsigned pos);
1202 #include <isl/local_space.h>
1203 __isl_give isl_local_space *isl_local_space_set_dim_id(
1204 __isl_take isl_local_space *ls,
1205 enum isl_dim_type type, unsigned pos,
1206 __isl_take isl_id *id);
1207 isl_bool isl_local_space_has_dim_id(
1208 __isl_keep isl_local_space *ls,
1209 enum isl_dim_type type, unsigned pos);
1210 __isl_give isl_id *isl_local_space_get_dim_id(
1211 __isl_keep isl_local_space *ls,
1212 enum isl_dim_type type, unsigned pos);
1213 __isl_give isl_local_space *isl_local_space_set_dim_name(
1214 __isl_take isl_local_space *ls,
1215 enum isl_dim_type type, unsigned pos, const char *s);
1216 isl_bool isl_local_space_has_dim_name(
1217 __isl_keep isl_local_space *ls,
1218 enum isl_dim_type type, unsigned pos)
1219 const char *isl_local_space_get_dim_name(
1220 __isl_keep isl_local_space *ls,
1221 enum isl_dim_type type, unsigned pos);
1223 #include <isl/constraint.h>
1224 const char *isl_constraint_get_dim_name(
1225 __isl_keep isl_constraint *constraint,
1226 enum isl_dim_type type, unsigned pos);
1228 #include <isl/set.h>
1229 __isl_give isl_id *isl_basic_set_get_dim_id(
1230 __isl_keep isl_basic_set *bset,
1231 enum isl_dim_type type, unsigned pos);
1232 __isl_give isl_set *isl_set_set_dim_id(
1233 __isl_take isl_set *set, enum isl_dim_type type,
1234 unsigned pos, __isl_take isl_id *id);
1235 isl_bool isl_set_has_dim_id(__isl_keep isl_set *set,
1236 enum isl_dim_type type, unsigned pos);
1237 __isl_give isl_id *isl_set_get_dim_id(
1238 __isl_keep isl_set *set, enum isl_dim_type type,
1240 const char *isl_basic_set_get_dim_name(
1241 __isl_keep isl_basic_set *bset,
1242 enum isl_dim_type type, unsigned pos);
1243 isl_bool isl_set_has_dim_name(__isl_keep isl_set *set,
1244 enum isl_dim_type type, unsigned pos);
1245 const char *isl_set_get_dim_name(
1246 __isl_keep isl_set *set,
1247 enum isl_dim_type type, unsigned pos);
1249 #include <isl/map.h>
1250 __isl_give isl_map *isl_map_set_dim_id(
1251 __isl_take isl_map *map, enum isl_dim_type type,
1252 unsigned pos, __isl_take isl_id *id);
1253 isl_bool isl_basic_map_has_dim_id(
1254 __isl_keep isl_basic_map *bmap,
1255 enum isl_dim_type type, unsigned pos);
1256 isl_bool isl_map_has_dim_id(__isl_keep isl_map *map,
1257 enum isl_dim_type type, unsigned pos);
1258 __isl_give isl_id *isl_map_get_dim_id(
1259 __isl_keep isl_map *map, enum isl_dim_type type,
1261 __isl_give isl_id *isl_union_map_get_dim_id(
1262 __isl_keep isl_union_map *umap,
1263 enum isl_dim_type type, unsigned pos);
1264 const char *isl_basic_map_get_dim_name(
1265 __isl_keep isl_basic_map *bmap,
1266 enum isl_dim_type type, unsigned pos);
1267 isl_bool isl_map_has_dim_name(__isl_keep isl_map *map,
1268 enum isl_dim_type type, unsigned pos);
1269 const char *isl_map_get_dim_name(
1270 __isl_keep isl_map *map,
1271 enum isl_dim_type type, unsigned pos);
1273 #include <isl/val.h>
1274 __isl_give isl_multi_val *isl_multi_val_set_dim_id(
1275 __isl_take isl_multi_val *mv,
1276 enum isl_dim_type type, unsigned pos,
1277 __isl_take isl_id *id);
1278 __isl_give isl_id *isl_multi_val_get_dim_id(
1279 __isl_keep isl_multi_val *mv,
1280 enum isl_dim_type type, unsigned pos);
1281 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
1282 __isl_take isl_multi_val *mv,
1283 enum isl_dim_type type, unsigned pos, const char *s);
1285 #include <isl/aff.h>
1286 __isl_give isl_aff *isl_aff_set_dim_id(
1287 __isl_take isl_aff *aff, enum isl_dim_type type,
1288 unsigned pos, __isl_take isl_id *id);
1289 __isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
1290 __isl_take isl_multi_aff *maff,
1291 enum isl_dim_type type, unsigned pos,
1292 __isl_take isl_id *id);
1293 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
1294 __isl_take isl_pw_aff *pma,
1295 enum isl_dim_type type, unsigned pos,
1296 __isl_take isl_id *id);
1297 __isl_give isl_multi_pw_aff *
1298 isl_multi_pw_aff_set_dim_id(
1299 __isl_take isl_multi_pw_aff *mpa,
1300 enum isl_dim_type type, unsigned pos,
1301 __isl_take isl_id *id);
1302 __isl_give isl_multi_union_pw_aff *
1303 isl_multi_union_pw_aff_set_dim_id(
1304 __isl_take isl_multi_union_pw_aff *mupa,
1305 enum isl_dim_type type, unsigned pos,
1306 __isl_take isl_id *id);
1307 __isl_give isl_id *isl_multi_aff_get_dim_id(
1308 __isl_keep isl_multi_aff *ma,
1309 enum isl_dim_type type, unsigned pos);
1310 isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
1311 enum isl_dim_type type, unsigned pos);
1312 __isl_give isl_id *isl_pw_aff_get_dim_id(
1313 __isl_keep isl_pw_aff *pa,
1314 enum isl_dim_type type, unsigned pos);
1315 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
1316 __isl_keep isl_pw_multi_aff *pma,
1317 enum isl_dim_type type, unsigned pos);
1318 __isl_give isl_id *isl_multi_pw_aff_get_dim_id(
1319 __isl_keep isl_multi_pw_aff *mpa,
1320 enum isl_dim_type type, unsigned pos);
1321 __isl_give isl_id *isl_multi_union_pw_aff_get_dim_id(
1322 __isl_keep isl_multi_union_pw_aff *mupa,
1323 enum isl_dim_type type, unsigned pos);
1324 __isl_give isl_aff *isl_aff_set_dim_name(
1325 __isl_take isl_aff *aff, enum isl_dim_type type,
1326 unsigned pos, const char *s);
1327 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
1328 __isl_take isl_multi_aff *maff,
1329 enum isl_dim_type type, unsigned pos, const char *s);
1330 __isl_give isl_multi_pw_aff *
1331 isl_multi_pw_aff_set_dim_name(
1332 __isl_take isl_multi_pw_aff *mpa,
1333 enum isl_dim_type type, unsigned pos, const char *s);
1334 __isl_give isl_union_pw_aff *
1335 isl_union_pw_aff_set_dim_name(
1336 __isl_take isl_union_pw_aff *upa,
1337 enum isl_dim_type type, unsigned pos,
1339 __isl_give isl_union_pw_multi_aff *
1340 isl_union_pw_multi_aff_set_dim_name(
1341 __isl_take isl_union_pw_multi_aff *upma,
1342 enum isl_dim_type type, unsigned pos,
1344 __isl_give isl_multi_union_pw_aff *
1345 isl_multi_union_pw_aff_set_dim_name(
1346 __isl_take isl_multi_union_pw_aff *mupa,
1347 enum isl_dim_type type, unsigned pos,
1348 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
1349 enum isl_dim_type type, unsigned pos);
1350 const char *isl_pw_aff_get_dim_name(
1351 __isl_keep isl_pw_aff *pa,
1352 enum isl_dim_type type, unsigned pos);
1353 const char *isl_pw_multi_aff_get_dim_name(
1354 __isl_keep isl_pw_multi_aff *pma,
1355 enum isl_dim_type type, unsigned pos);
1357 #include <isl/polynomial.h>
1358 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1359 __isl_take isl_qpolynomial *qp,
1360 enum isl_dim_type type, unsigned pos,
1362 __isl_give isl_pw_qpolynomial *
1363 isl_pw_qpolynomial_set_dim_name(
1364 __isl_take isl_pw_qpolynomial *pwqp,
1365 enum isl_dim_type type, unsigned pos,
1367 __isl_give isl_pw_qpolynomial_fold *
1368 isl_pw_qpolynomial_fold_set_dim_name(
1369 __isl_take isl_pw_qpolynomial_fold *pwf,
1370 enum isl_dim_type type, unsigned pos,
1372 __isl_give isl_union_pw_qpolynomial *
1373 isl_union_pw_qpolynomial_set_dim_name(
1374 __isl_take isl_union_pw_qpolynomial *upwqp,
1375 enum isl_dim_type type, unsigned pos,
1377 __isl_give isl_union_pw_qpolynomial_fold *
1378 isl_union_pw_qpolynomial_fold_set_dim_name(
1379 __isl_take isl_union_pw_qpolynomial_fold *upwf,
1380 enum isl_dim_type type, unsigned pos,
1383 Note that C<isl_space_get_name> returns a pointer to some internal
1384 data structure, so the result can only be used while the
1385 corresponding C<isl_space> is alive.
1386 Also note that every function that operates on two sets or relations
1387 requires that both arguments have the same parameters. This also
1388 means that if one of the arguments has named parameters, then the
1389 other needs to have named parameters too and the names need to match.
1390 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
1391 arguments may have different parameters (as long as they are named),
1392 in which case the result will have as parameters the union of the parameters of
1395 Given the identifier or name of a dimension (typically a parameter),
1396 its position can be obtained from the following functions.
1398 #include <isl/space.h>
1399 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
1400 enum isl_dim_type type, __isl_keep isl_id *id);
1401 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
1402 enum isl_dim_type type, const char *name);
1404 #include <isl/local_space.h>
1405 int isl_local_space_find_dim_by_name(
1406 __isl_keep isl_local_space *ls,
1407 enum isl_dim_type type, const char *name);
1409 #include <isl/val.h>
1410 int isl_multi_val_find_dim_by_id(
1411 __isl_keep isl_multi_val *mv,
1412 enum isl_dim_type type, __isl_keep isl_id *id);
1413 int isl_multi_val_find_dim_by_name(
1414 __isl_keep isl_multi_val *mv,
1415 enum isl_dim_type type, const char *name);
1417 #include <isl/set.h>
1418 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1419 enum isl_dim_type type, __isl_keep isl_id *id);
1420 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1421 enum isl_dim_type type, const char *name);
1423 #include <isl/map.h>
1424 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1425 enum isl_dim_type type, __isl_keep isl_id *id);
1426 int isl_basic_map_find_dim_by_name(
1427 __isl_keep isl_basic_map *bmap,
1428 enum isl_dim_type type, const char *name);
1429 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1430 enum isl_dim_type type, const char *name);
1431 int isl_union_map_find_dim_by_name(
1432 __isl_keep isl_union_map *umap,
1433 enum isl_dim_type type, const char *name);
1435 #include <isl/aff.h>
1436 int isl_multi_aff_find_dim_by_id(
1437 __isl_keep isl_multi_aff *ma,
1438 enum isl_dim_type type, __isl_keep isl_id *id);
1439 int isl_multi_pw_aff_find_dim_by_id(
1440 __isl_keep isl_multi_pw_aff *mpa,
1441 enum isl_dim_type type, __isl_keep isl_id *id);
1442 int isl_multi_union_pw_aff_find_dim_by_id(
1443 __isl_keep isl_union_multi_pw_aff *mupa,
1444 enum isl_dim_type type, __isl_keep isl_id *id);
1445 int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
1446 enum isl_dim_type type, const char *name);
1447 int isl_multi_aff_find_dim_by_name(
1448 __isl_keep isl_multi_aff *ma,
1449 enum isl_dim_type type, const char *name);
1450 int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
1451 enum isl_dim_type type, const char *name);
1452 int isl_multi_pw_aff_find_dim_by_name(
1453 __isl_keep isl_multi_pw_aff *mpa,
1454 enum isl_dim_type type, const char *name);
1455 int isl_pw_multi_aff_find_dim_by_name(
1456 __isl_keep isl_pw_multi_aff *pma,
1457 enum isl_dim_type type, const char *name);
1458 int isl_union_pw_aff_find_dim_by_name(
1459 __isl_keep isl_union_pw_aff *upa,
1460 enum isl_dim_type type, const char *name);
1461 int isl_union_pw_multi_aff_find_dim_by_name(
1462 __isl_keep isl_union_pw_multi_aff *upma,
1463 enum isl_dim_type type, const char *name);
1464 int isl_multi_union_pw_aff_find_dim_by_name(
1465 __isl_keep isl_multi_union_pw_aff *mupa,
1466 enum isl_dim_type type, const char *name);
1468 #include <isl/polynomial.h>
1469 int isl_pw_qpolynomial_find_dim_by_name(
1470 __isl_keep isl_pw_qpolynomial *pwqp,
1471 enum isl_dim_type type, const char *name);
1472 int isl_pw_qpolynomial_fold_find_dim_by_name(
1473 __isl_keep isl_pw_qpolynomial_fold *pwf,
1474 enum isl_dim_type type, const char *name);
1475 int isl_union_pw_qpolynomial_find_dim_by_name(
1476 __isl_keep isl_union_pw_qpolynomial *upwqp,
1477 enum isl_dim_type type, const char *name);
1478 int isl_union_pw_qpolynomial_fold_find_dim_by_name(
1479 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1480 enum isl_dim_type type, const char *name);
1482 The identifiers or names of entire spaces may be set or read off
1483 using the following functions.
1485 #include <isl/space.h>
1486 __isl_give isl_space *isl_space_set_tuple_id(
1487 __isl_take isl_space *space,
1488 enum isl_dim_type type, __isl_take isl_id *id);
1489 __isl_give isl_space *isl_space_reset_tuple_id(
1490 __isl_take isl_space *space, enum isl_dim_type type);
1491 isl_bool isl_space_has_tuple_id(
1492 __isl_keep isl_space *space,
1493 enum isl_dim_type type);
1494 __isl_give isl_id *isl_space_get_tuple_id(
1495 __isl_keep isl_space *space, enum isl_dim_type type);
1496 __isl_give isl_space *isl_space_set_tuple_name(
1497 __isl_take isl_space *space,
1498 enum isl_dim_type type, const char *s);
1499 isl_bool isl_space_has_tuple_name(
1500 __isl_keep isl_space *space,
1501 enum isl_dim_type type);
1502 __isl_keep const char *isl_space_get_tuple_name(
1503 __isl_keep isl_space *space,
1504 enum isl_dim_type type);
1506 #include <isl/local_space.h>
1507 __isl_give isl_local_space *isl_local_space_set_tuple_id(
1508 __isl_take isl_local_space *ls,
1509 enum isl_dim_type type, __isl_take isl_id *id);
1511 #include <isl/set.h>
1512 __isl_give isl_basic_set *isl_basic_set_set_tuple_id(
1513 __isl_take isl_basic_set *bset,
1514 __isl_take isl_id *id);
1515 __isl_give isl_set *isl_set_set_tuple_id(
1516 __isl_take isl_set *set, __isl_take isl_id *id);
1517 __isl_give isl_set *isl_set_reset_tuple_id(
1518 __isl_take isl_set *set);
1519 isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set);
1520 __isl_give isl_id *isl_set_get_tuple_id(
1521 __isl_keep isl_set *set);
1522 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1523 __isl_take isl_basic_set *set, const char *s);
1524 __isl_give isl_set *isl_set_set_tuple_name(
1525 __isl_take isl_set *set, const char *s);
1526 const char *isl_basic_set_get_tuple_name(
1527 __isl_keep isl_basic_set *bset);
1528 isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set);
1529 const char *isl_set_get_tuple_name(
1530 __isl_keep isl_set *set);
1532 #include <isl/map.h>
1533 __isl_give isl_basic_map *isl_basic_map_set_tuple_id(
1534 __isl_take isl_basic_map *bmap,
1535 enum isl_dim_type type, __isl_take isl_id *id);
1536 __isl_give isl_map *isl_map_set_tuple_id(
1537 __isl_take isl_map *map, enum isl_dim_type type,
1538 __isl_take isl_id *id);
1539 __isl_give isl_map *isl_map_reset_tuple_id(
1540 __isl_take isl_map *map, enum isl_dim_type type);
1541 isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map,
1542 enum isl_dim_type type);
1543 __isl_give isl_id *isl_map_get_tuple_id(
1544 __isl_keep isl_map *map, enum isl_dim_type type);
1545 __isl_give isl_map *isl_map_set_tuple_name(
1546 __isl_take isl_map *map,
1547 enum isl_dim_type type, const char *s);
1548 const char *isl_basic_map_get_tuple_name(
1549 __isl_keep isl_basic_map *bmap,
1550 enum isl_dim_type type);
1551 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1552 __isl_take isl_basic_map *bmap,
1553 enum isl_dim_type type, const char *s);
1554 isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map,
1555 enum isl_dim_type type);
1556 const char *isl_map_get_tuple_name(
1557 __isl_keep isl_map *map,
1558 enum isl_dim_type type);
1560 #include <isl/val.h>
1561 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
1562 __isl_take isl_multi_val *mv,
1563 enum isl_dim_type type, __isl_take isl_id *id);
1564 __isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
1565 __isl_take isl_multi_val *mv,
1566 enum isl_dim_type type);
1567 isl_bool isl_multi_val_has_tuple_id(
1568 __isl_keep isl_multi_val *mv,
1569 enum isl_dim_type type);
1570 __isl_give isl_id *isl_multi_val_get_tuple_id(
1571 __isl_keep isl_multi_val *mv,
1572 enum isl_dim_type type);
1573 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
1574 __isl_take isl_multi_val *mv,
1575 enum isl_dim_type type, const char *s);
1576 const char *isl_multi_val_get_tuple_name(
1577 __isl_keep isl_multi_val *mv,
1578 enum isl_dim_type type);
1580 #include <isl/aff.h>
1581 __isl_give isl_aff *isl_aff_set_tuple_id(
1582 __isl_take isl_aff *aff,
1583 enum isl_dim_type type, __isl_take isl_id *id);
1584 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
1585 __isl_take isl_multi_aff *maff,
1586 enum isl_dim_type type, __isl_take isl_id *id);
1587 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
1588 __isl_take isl_pw_aff *pwaff,
1589 enum isl_dim_type type, __isl_take isl_id *id);
1590 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
1591 __isl_take isl_pw_multi_aff *pma,
1592 enum isl_dim_type type, __isl_take isl_id *id);
1593 __isl_give isl_multi_union_pw_aff *
1594 isl_multi_union_pw_aff_set_tuple_id(
1595 __isl_take isl_multi_union_pw_aff *mupa,
1596 enum isl_dim_type type, __isl_take isl_id *id);
1597 __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
1598 __isl_take isl_multi_aff *ma,
1599 enum isl_dim_type type);
1600 __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
1601 __isl_take isl_pw_aff *pa,
1602 enum isl_dim_type type);
1603 __isl_give isl_multi_pw_aff *
1604 isl_multi_pw_aff_reset_tuple_id(
1605 __isl_take isl_multi_pw_aff *mpa,
1606 enum isl_dim_type type);
1607 __isl_give isl_pw_multi_aff *
1608 isl_pw_multi_aff_reset_tuple_id(
1609 __isl_take isl_pw_multi_aff *pma,
1610 enum isl_dim_type type);
1611 __isl_give isl_multi_union_pw_aff *
1612 isl_multi_union_pw_aff_reset_tuple_id(
1613 __isl_take isl_multi_union_pw_aff *mupa,
1614 enum isl_dim_type type);
1615 isl_bool isl_multi_aff_has_tuple_id(
1616 __isl_keep isl_multi_aff *ma,
1617 enum isl_dim_type type);
1618 __isl_give isl_id *isl_multi_aff_get_tuple_id(
1619 __isl_keep isl_multi_aff *ma,
1620 enum isl_dim_type type);
1621 isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
1622 enum isl_dim_type type);
1623 __isl_give isl_id *isl_pw_aff_get_tuple_id(
1624 __isl_keep isl_pw_aff *pa,
1625 enum isl_dim_type type);
1626 isl_bool isl_pw_multi_aff_has_tuple_id(
1627 __isl_keep isl_pw_multi_aff *pma,
1628 enum isl_dim_type type);
1629 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
1630 __isl_keep isl_pw_multi_aff *pma,
1631 enum isl_dim_type type);
1632 isl_bool isl_multi_pw_aff_has_tuple_id(
1633 __isl_keep isl_multi_pw_aff *mpa,
1634 enum isl_dim_type type);
1635 __isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
1636 __isl_keep isl_multi_pw_aff *mpa,
1637 enum isl_dim_type type);
1638 isl_bool isl_multi_union_pw_aff_has_tuple_id(
1639 __isl_keep isl_multi_union_pw_aff *mupa,
1640 enum isl_dim_type type);
1641 __isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id(
1642 __isl_keep isl_multi_union_pw_aff *mupa,
1643 enum isl_dim_type type);
1644 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
1645 __isl_take isl_multi_aff *maff,
1646 enum isl_dim_type type, const char *s);
1647 __isl_give isl_multi_pw_aff *
1648 isl_multi_pw_aff_set_tuple_name(
1649 __isl_take isl_multi_pw_aff *mpa,
1650 enum isl_dim_type type, const char *s);
1651 __isl_give isl_multi_union_pw_aff *
1652 isl_multi_union_pw_aff_set_tuple_name(
1653 __isl_take isl_multi_union_pw_aff *mupa,
1654 enum isl_dim_type type, const char *s);
1655 const char *isl_multi_aff_get_tuple_name(
1656 __isl_keep isl_multi_aff *multi,
1657 enum isl_dim_type type);
1658 isl_bool isl_pw_multi_aff_has_tuple_name(
1659 __isl_keep isl_pw_multi_aff *pma,
1660 enum isl_dim_type type);
1661 const char *isl_pw_multi_aff_get_tuple_name(
1662 __isl_keep isl_pw_multi_aff *pma,
1663 enum isl_dim_type type);
1664 const char *isl_multi_union_pw_aff_get_tuple_name(
1665 __isl_keep isl_multi_union_pw_aff *mupa,
1666 enum isl_dim_type type);
1668 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
1669 or C<isl_dim_set>. As with C<isl_space_get_name>,
1670 the C<isl_space_get_tuple_name> function returns a pointer to some internal
1672 Binary operations require the corresponding spaces of their arguments
1673 to have the same name.
1675 To keep the names of all parameters and tuples, but reset the user pointers
1676 of all the corresponding identifiers, use the following function.
1678 #include <isl/space.h>
1679 __isl_give isl_space *isl_space_reset_user(
1680 __isl_take isl_space *space);
1682 #include <isl/set.h>
1683 __isl_give isl_set *isl_set_reset_user(
1684 __isl_take isl_set *set);
1686 #include <isl/map.h>
1687 __isl_give isl_map *isl_map_reset_user(
1688 __isl_take isl_map *map);
1690 #include <isl/union_set.h>
1691 __isl_give isl_union_set *isl_union_set_reset_user(
1692 __isl_take isl_union_set *uset);
1694 #include <isl/union_map.h>
1695 __isl_give isl_union_map *isl_union_map_reset_user(
1696 __isl_take isl_union_map *umap);
1698 #include <isl/val.h>
1699 __isl_give isl_multi_val *isl_multi_val_reset_user(
1700 __isl_take isl_multi_val *mv);
1702 #include <isl/aff.h>
1703 __isl_give isl_multi_aff *isl_multi_aff_reset_user(
1704 __isl_take isl_multi_aff *ma);
1705 __isl_give isl_pw_aff *isl_pw_aff_reset_user(
1706 __isl_take isl_pw_aff *pa);
1707 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
1708 __isl_take isl_multi_pw_aff *mpa);
1709 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user(
1710 __isl_take isl_pw_multi_aff *pma);
1711 __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user(
1712 __isl_take isl_union_pw_aff *upa);
1713 __isl_give isl_multi_union_pw_aff *
1714 isl_multi_union_pw_aff_reset_user(
1715 __isl_take isl_multi_union_pw_aff *mupa);
1716 __isl_give isl_union_pw_multi_aff *
1717 isl_union_pw_multi_aff_reset_user(
1718 __isl_take isl_union_pw_multi_aff *upma);
1720 #include <isl/polynomial.h>
1721 __isl_give isl_pw_qpolynomial *
1722 isl_pw_qpolynomial_reset_user(
1723 __isl_take isl_pw_qpolynomial *pwqp);
1724 __isl_give isl_union_pw_qpolynomial *
1725 isl_union_pw_qpolynomial_reset_user(
1726 __isl_take isl_union_pw_qpolynomial *upwqp);
1727 __isl_give isl_pw_qpolynomial_fold *
1728 isl_pw_qpolynomial_fold_reset_user(
1729 __isl_take isl_pw_qpolynomial_fold *pwf);
1730 __isl_give isl_union_pw_qpolynomial_fold *
1731 isl_union_pw_qpolynomial_fold_reset_user(
1732 __isl_take isl_union_pw_qpolynomial_fold *upwf);
1734 Spaces can be nested. In particular, the domain of a set or
1735 the domain or range of a relation can be a nested relation.
1736 This process is also called I<wrapping>.
1737 The functions for detecting, constructing and deconstructing
1738 such nested spaces can be found in the wrapping properties
1739 of L</"Unary Properties">, the wrapping operations
1740 of L</"Unary Operations"> and the Cartesian product operations
1741 of L</"Basic Operations">.
1743 Spaces can be created from other spaces
1744 using the functions described in L</"Unary Operations">
1745 and L</"Binary Operations">.
1749 A local space is essentially a space with
1750 zero or more existentially quantified variables.
1751 The local space of various objects can be obtained
1752 using the following functions.
1754 #include <isl/constraint.h>
1755 __isl_give isl_local_space *isl_constraint_get_local_space(
1756 __isl_keep isl_constraint *constraint);
1758 #include <isl/set.h>
1759 __isl_give isl_local_space *isl_basic_set_get_local_space(
1760 __isl_keep isl_basic_set *bset);
1762 #include <isl/map.h>
1763 __isl_give isl_local_space *isl_basic_map_get_local_space(
1764 __isl_keep isl_basic_map *bmap);
1766 #include <isl/aff.h>
1767 __isl_give isl_local_space *isl_aff_get_domain_local_space(
1768 __isl_keep isl_aff *aff);
1769 __isl_give isl_local_space *isl_aff_get_local_space(
1770 __isl_keep isl_aff *aff);
1772 A new local space can be created from a space using
1774 #include <isl/local_space.h>
1775 __isl_give isl_local_space *isl_local_space_from_space(
1776 __isl_take isl_space *space);
1778 They can be inspected, modified, copied and freed using the following functions.
1780 #include <isl/local_space.h>
1781 isl_bool isl_local_space_is_params(
1782 __isl_keep isl_local_space *ls);
1783 isl_bool isl_local_space_is_set(
1784 __isl_keep isl_local_space *ls);
1785 __isl_give isl_space *isl_local_space_get_space(
1786 __isl_keep isl_local_space *ls);
1787 __isl_give isl_aff *isl_local_space_get_div(
1788 __isl_keep isl_local_space *ls, int pos);
1789 __isl_give isl_local_space *isl_local_space_copy(
1790 __isl_keep isl_local_space *ls);
1791 __isl_null isl_local_space *isl_local_space_free(
1792 __isl_take isl_local_space *ls);
1794 Note that C<isl_local_space_get_div> can only be used on local spaces
1797 Two local spaces can be compared using
1799 isl_bool isl_local_space_is_equal(
1800 __isl_keep isl_local_space *ls1,
1801 __isl_keep isl_local_space *ls2);
1803 Local spaces can be created from other local spaces
1804 using the functions described in L</"Unary Operations">
1805 and L</"Binary Operations">.
1807 =head2 Creating New Sets and Relations
1809 C<isl> has functions for creating some standard sets and relations.
1813 =item * Empty sets and relations
1815 __isl_give isl_basic_set *isl_basic_set_empty(
1816 __isl_take isl_space *space);
1817 __isl_give isl_basic_map *isl_basic_map_empty(
1818 __isl_take isl_space *space);
1819 __isl_give isl_set *isl_set_empty(
1820 __isl_take isl_space *space);
1821 __isl_give isl_map *isl_map_empty(
1822 __isl_take isl_space *space);
1823 __isl_give isl_union_set *isl_union_set_empty(
1824 __isl_take isl_space *space);
1825 __isl_give isl_union_map *isl_union_map_empty(
1826 __isl_take isl_space *space);
1828 For C<isl_union_set>s and C<isl_union_map>s, the space
1829 is only used to specify the parameters.
1831 =item * Universe sets and relations
1833 __isl_give isl_basic_set *isl_basic_set_universe(
1834 __isl_take isl_space *space);
1835 __isl_give isl_basic_map *isl_basic_map_universe(
1836 __isl_take isl_space *space);
1837 __isl_give isl_set *isl_set_universe(
1838 __isl_take isl_space *space);
1839 __isl_give isl_map *isl_map_universe(
1840 __isl_take isl_space *space);
1841 __isl_give isl_union_set *isl_union_set_universe(
1842 __isl_take isl_union_set *uset);
1843 __isl_give isl_union_map *isl_union_map_universe(
1844 __isl_take isl_union_map *umap);
1846 The sets and relations constructed by the functions above
1847 contain all integer values, while those constructed by the
1848 functions below only contain non-negative values.
1850 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1851 __isl_take isl_space *space);
1852 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1853 __isl_take isl_space *space);
1854 __isl_give isl_set *isl_set_nat_universe(
1855 __isl_take isl_space *space);
1856 __isl_give isl_map *isl_map_nat_universe(
1857 __isl_take isl_space *space);
1859 =item * Identity relations
1861 __isl_give isl_basic_map *isl_basic_map_identity(
1862 __isl_take isl_space *space);
1863 __isl_give isl_map *isl_map_identity(
1864 __isl_take isl_space *space);
1866 The number of input and output dimensions in C<space> needs
1869 =item * Lexicographic order
1871 __isl_give isl_map *isl_map_lex_lt(
1872 __isl_take isl_space *set_space);
1873 __isl_give isl_map *isl_map_lex_le(
1874 __isl_take isl_space *set_space);
1875 __isl_give isl_map *isl_map_lex_gt(
1876 __isl_take isl_space *set_space);
1877 __isl_give isl_map *isl_map_lex_ge(
1878 __isl_take isl_space *set_space);
1879 __isl_give isl_map *isl_map_lex_lt_first(
1880 __isl_take isl_space *space, unsigned n);
1881 __isl_give isl_map *isl_map_lex_le_first(
1882 __isl_take isl_space *space, unsigned n);
1883 __isl_give isl_map *isl_map_lex_gt_first(
1884 __isl_take isl_space *space, unsigned n);
1885 __isl_give isl_map *isl_map_lex_ge_first(
1886 __isl_take isl_space *space, unsigned n);
1888 The first four functions take a space for a B<set>
1889 and return relations that express that the elements in the domain
1890 are lexicographically less
1891 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1892 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1893 than the elements in the range.
1894 The last four functions take a space for a map
1895 and return relations that express that the first C<n> dimensions
1896 in the domain are lexicographically less
1897 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1898 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1899 than the first C<n> dimensions in the range.
1903 A basic set or relation can be converted to a set or relation
1904 using the following functions.
1906 __isl_give isl_set *isl_set_from_basic_set(
1907 __isl_take isl_basic_set *bset);
1908 __isl_give isl_map *isl_map_from_basic_map(
1909 __isl_take isl_basic_map *bmap);
1911 Sets and relations can be converted to union sets and relations
1912 using the following functions.
1914 __isl_give isl_union_set *isl_union_set_from_basic_set(
1915 __isl_take isl_basic_set *bset);
1916 __isl_give isl_union_map *isl_union_map_from_basic_map(
1917 __isl_take isl_basic_map *bmap);
1918 __isl_give isl_union_set *isl_union_set_from_set(
1919 __isl_take isl_set *set);
1920 __isl_give isl_union_map *isl_union_map_from_map(
1921 __isl_take isl_map *map);
1923 The inverse conversions below can only be used if the input
1924 union set or relation is known to contain elements in exactly one
1927 __isl_give isl_set *isl_set_from_union_set(
1928 __isl_take isl_union_set *uset);
1929 __isl_give isl_map *isl_map_from_union_map(
1930 __isl_take isl_union_map *umap);
1932 Sets and relations can be copied and freed again using the following
1935 __isl_give isl_basic_set *isl_basic_set_copy(
1936 __isl_keep isl_basic_set *bset);
1937 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1938 __isl_give isl_union_set *isl_union_set_copy(
1939 __isl_keep isl_union_set *uset);
1940 __isl_give isl_basic_map *isl_basic_map_copy(
1941 __isl_keep isl_basic_map *bmap);
1942 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1943 __isl_give isl_union_map *isl_union_map_copy(
1944 __isl_keep isl_union_map *umap);
1945 __isl_null isl_basic_set *isl_basic_set_free(
1946 __isl_take isl_basic_set *bset);
1947 __isl_null isl_set *isl_set_free(__isl_take isl_set *set);
1948 __isl_null isl_union_set *isl_union_set_free(
1949 __isl_take isl_union_set *uset);
1950 __isl_null isl_basic_map *isl_basic_map_free(
1951 __isl_take isl_basic_map *bmap);
1952 __isl_null isl_map *isl_map_free(__isl_take isl_map *map);
1953 __isl_null isl_union_map *isl_union_map_free(
1954 __isl_take isl_union_map *umap);
1956 Other sets and relations can be constructed by starting
1957 from a universe set or relation, adding equality and/or
1958 inequality constraints and then projecting out the
1959 existentially quantified variables, if any.
1960 Constraints can be constructed, manipulated and
1961 added to (or removed from) (basic) sets and relations
1962 using the following functions.
1964 #include <isl/constraint.h>
1965 __isl_give isl_constraint *isl_constraint_alloc_equality(
1966 __isl_take isl_local_space *ls);
1967 __isl_give isl_constraint *isl_constraint_alloc_inequality(
1968 __isl_take isl_local_space *ls);
1969 __isl_give isl_constraint *isl_constraint_set_constant_si(
1970 __isl_take isl_constraint *constraint, int v);
1971 __isl_give isl_constraint *isl_constraint_set_constant_val(
1972 __isl_take isl_constraint *constraint,
1973 __isl_take isl_val *v);
1974 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1975 __isl_take isl_constraint *constraint,
1976 enum isl_dim_type type, int pos, int v);
1977 __isl_give isl_constraint *
1978 isl_constraint_set_coefficient_val(
1979 __isl_take isl_constraint *constraint,
1980 enum isl_dim_type type, int pos,
1981 __isl_take isl_val *v);
1982 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1983 __isl_take isl_basic_map *bmap,
1984 __isl_take isl_constraint *constraint);
1985 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1986 __isl_take isl_basic_set *bset,
1987 __isl_take isl_constraint *constraint);
1988 __isl_give isl_map *isl_map_add_constraint(
1989 __isl_take isl_map *map,
1990 __isl_take isl_constraint *constraint);
1991 __isl_give isl_set *isl_set_add_constraint(
1992 __isl_take isl_set *set,
1993 __isl_take isl_constraint *constraint);
1995 For example, to create a set containing the even integers
1996 between 10 and 42, you would use the following code.
1999 isl_local_space *ls;
2001 isl_basic_set *bset;
2003 space = isl_space_set_alloc(ctx, 0, 2);
2004 bset = isl_basic_set_universe(isl_space_copy(space));
2005 ls = isl_local_space_from_space(space);
2007 c = isl_constraint_alloc_equality(isl_local_space_copy(ls));
2008 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2009 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
2010 bset = isl_basic_set_add_constraint(bset, c);
2012 c = isl_constraint_alloc_inequality(isl_local_space_copy(ls));
2013 c = isl_constraint_set_constant_si(c, -10);
2014 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
2015 bset = isl_basic_set_add_constraint(bset, c);
2017 c = isl_constraint_alloc_inequality(ls);
2018 c = isl_constraint_set_constant_si(c, 42);
2019 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2020 bset = isl_basic_set_add_constraint(bset, c);
2022 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
2026 isl_basic_set *bset;
2027 bset = isl_basic_set_read_from_str(ctx,
2028 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
2030 A basic set or relation can also be constructed from two matrices
2031 describing the equalities and the inequalities.
2033 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
2034 __isl_take isl_space *space,
2035 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2036 enum isl_dim_type c1,
2037 enum isl_dim_type c2, enum isl_dim_type c3,
2038 enum isl_dim_type c4);
2039 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
2040 __isl_take isl_space *space,
2041 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2042 enum isl_dim_type c1,
2043 enum isl_dim_type c2, enum isl_dim_type c3,
2044 enum isl_dim_type c4, enum isl_dim_type c5);
2046 The C<isl_dim_type> arguments indicate the order in which
2047 different kinds of variables appear in the input matrices
2048 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
2049 C<isl_dim_set> and C<isl_dim_div> for sets and
2050 of C<isl_dim_cst>, C<isl_dim_param>,
2051 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
2053 A (basic or union) set or relation can also be constructed from a
2054 (union) (piecewise) (multiple) affine expression
2055 or a list of affine expressions
2056 (See L</"Functions">), provided these affine expressions do not
2059 __isl_give isl_basic_map *isl_basic_map_from_aff(
2060 __isl_take isl_aff *aff);
2061 __isl_give isl_map *isl_map_from_aff(
2062 __isl_take isl_aff *aff);
2063 __isl_give isl_set *isl_set_from_pw_aff(
2064 __isl_take isl_pw_aff *pwaff);
2065 __isl_give isl_map *isl_map_from_pw_aff(
2066 __isl_take isl_pw_aff *pwaff);
2067 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
2068 __isl_take isl_space *domain_space,
2069 __isl_take isl_aff_list *list);
2070 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
2071 __isl_take isl_multi_aff *maff)
2072 __isl_give isl_map *isl_map_from_multi_aff(
2073 __isl_take isl_multi_aff *maff)
2074 __isl_give isl_set *isl_set_from_pw_multi_aff(
2075 __isl_take isl_pw_multi_aff *pma);
2076 __isl_give isl_map *isl_map_from_pw_multi_aff(
2077 __isl_take isl_pw_multi_aff *pma);
2078 __isl_give isl_set *isl_set_from_multi_pw_aff(
2079 __isl_take isl_multi_pw_aff *mpa);
2080 __isl_give isl_map *isl_map_from_multi_pw_aff(
2081 __isl_take isl_multi_pw_aff *mpa);
2082 __isl_give isl_union_map *isl_union_map_from_union_pw_aff(
2083 __isl_take isl_union_pw_aff *upa);
2084 __isl_give isl_union_map *
2085 isl_union_map_from_union_pw_multi_aff(
2086 __isl_take isl_union_pw_multi_aff *upma);
2087 __isl_give isl_union_map *
2088 isl_union_map_from_multi_union_pw_aff(
2089 __isl_take isl_multi_union_pw_aff *mupa);
2091 The C<domain_space> argument describes the domain of the resulting
2092 basic relation. It is required because the C<list> may consist
2093 of zero affine expressions.
2094 The C<mupa> passed to C<isl_union_map_from_multi_union_pw_aff>
2095 is not allowed to be zero-dimensional. The domain of the result
2096 is the shared domain of the union piecewise affine elements.
2098 =head2 Inspecting Sets and Relations
2100 Usually, the user should not have to care about the actual constraints
2101 of the sets and maps, but should instead apply the abstract operations
2102 explained in the following sections.
2103 Occasionally, however, it may be required to inspect the individual
2104 coefficients of the constraints. This section explains how to do so.
2105 In these cases, it may also be useful to have C<isl> compute
2106 an explicit representation of the existentially quantified variables.
2108 __isl_give isl_set *isl_set_compute_divs(
2109 __isl_take isl_set *set);
2110 __isl_give isl_map *isl_map_compute_divs(
2111 __isl_take isl_map *map);
2112 __isl_give isl_union_set *isl_union_set_compute_divs(
2113 __isl_take isl_union_set *uset);
2114 __isl_give isl_union_map *isl_union_map_compute_divs(
2115 __isl_take isl_union_map *umap);
2117 This explicit representation defines the existentially quantified
2118 variables as integer divisions of the other variables, possibly
2119 including earlier existentially quantified variables.
2120 An explicitly represented existentially quantified variable therefore
2121 has a unique value when the values of the other variables are known.
2123 Alternatively, the existentially quantified variables can be removed
2124 using the following functions, which compute an overapproximation.
2126 #include <isl/set.h>
2127 __isl_give isl_basic_set *isl_basic_set_remove_divs(
2128 __isl_take isl_basic_set *bset);
2129 __isl_give isl_set *isl_set_remove_divs(
2130 __isl_take isl_set *set);
2132 #include <isl/map.h>
2133 __isl_give isl_basic_map *isl_basic_map_remove_divs(
2134 __isl_take isl_basic_map *bmap);
2135 __isl_give isl_map *isl_map_remove_divs(
2136 __isl_take isl_map *map);
2138 #include <isl/union_set.h>
2139 __isl_give isl_union_set *isl_union_set_remove_divs(
2140 __isl_take isl_union_set *bset);
2142 #include <isl/union_map.h>
2143 __isl_give isl_union_map *isl_union_map_remove_divs(
2144 __isl_take isl_union_map *bmap);
2146 It is also possible to only remove those divs that are defined
2147 in terms of a given range of dimensions or only those for which
2148 no explicit representation is known.
2150 __isl_give isl_basic_set *
2151 isl_basic_set_remove_divs_involving_dims(
2152 __isl_take isl_basic_set *bset,
2153 enum isl_dim_type type,
2154 unsigned first, unsigned n);
2155 __isl_give isl_basic_map *
2156 isl_basic_map_remove_divs_involving_dims(
2157 __isl_take isl_basic_map *bmap,
2158 enum isl_dim_type type,
2159 unsigned first, unsigned n);
2160 __isl_give isl_set *isl_set_remove_divs_involving_dims(
2161 __isl_take isl_set *set, enum isl_dim_type type,
2162 unsigned first, unsigned n);
2163 __isl_give isl_map *isl_map_remove_divs_involving_dims(
2164 __isl_take isl_map *map, enum isl_dim_type type,
2165 unsigned first, unsigned n);
2167 __isl_give isl_basic_set *
2168 isl_basic_set_remove_unknown_divs(
2169 __isl_take isl_basic_set *bset);
2170 __isl_give isl_set *isl_set_remove_unknown_divs(
2171 __isl_take isl_set *set);
2172 __isl_give isl_map *isl_map_remove_unknown_divs(
2173 __isl_take isl_map *map);
2175 To iterate over all the sets or maps in a union set or map, use
2177 isl_stat isl_union_set_foreach_set(
2178 __isl_keep isl_union_set *uset,
2179 isl_stat (*fn)(__isl_take isl_set *set, void *user),
2181 isl_stat isl_union_map_foreach_map(
2182 __isl_keep isl_union_map *umap,
2183 isl_stat (*fn)(__isl_take isl_map *map, void *user),
2186 These functions call the callback function once for each
2187 (pair of) space(s) for which there are elements in the input.
2188 The argument to the callback contains all elements in the input
2189 with that (pair of) space(s).
2191 The number of sets or maps in a union set or map can be obtained
2194 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
2195 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
2197 To extract the set or map in a given space from a union, use
2199 __isl_give isl_set *isl_union_set_extract_set(
2200 __isl_keep isl_union_set *uset,
2201 __isl_take isl_space *space);
2202 __isl_give isl_map *isl_union_map_extract_map(
2203 __isl_keep isl_union_map *umap,
2204 __isl_take isl_space *space);
2206 To iterate over all the basic sets or maps in a set or map, use
2208 isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set,
2209 isl_stat (*fn)(__isl_take isl_basic_set *bset,
2212 isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map,
2213 isl_stat (*fn)(__isl_take isl_basic_map *bmap,
2217 The callback function C<fn> should return 0 if successful and
2218 -1 if an error occurs. In the latter case, or if any other error
2219 occurs, the above functions will return -1.
2221 It should be noted that C<isl> does not guarantee that
2222 the basic sets or maps passed to C<fn> are disjoint.
2223 If this is required, then the user should call one of
2224 the following functions first.
2226 __isl_give isl_set *isl_set_make_disjoint(
2227 __isl_take isl_set *set);
2228 __isl_give isl_map *isl_map_make_disjoint(
2229 __isl_take isl_map *map);
2231 The number of basic sets in a set can be obtained
2232 or the number of basic maps in a map can be obtained
2235 #include <isl/set.h>
2236 int isl_set_n_basic_set(__isl_keep isl_set *set);
2238 #include <isl/map.h>
2239 int isl_map_n_basic_map(__isl_keep isl_map *map);
2241 It is also possible to obtain a list of basic sets from a set
2244 #include <isl/set.h>
2245 __isl_give isl_basic_set_list *isl_set_get_basic_set_list(
2246 __isl_keep isl_set *set);
2248 #include <isl/union_set.h>
2249 __isl_give isl_basic_set_list *
2250 isl_union_set_get_basic_set_list(
2251 __isl_keep isl_union_set *uset);
2253 The returned list can be manipulated using the functions in L<"Lists">.
2255 To iterate over the constraints of a basic set or map, use
2257 #include <isl/constraint.h>
2259 int isl_basic_set_n_constraint(
2260 __isl_keep isl_basic_set *bset);
2261 isl_stat isl_basic_set_foreach_constraint(
2262 __isl_keep isl_basic_set *bset,
2263 isl_stat (*fn)(__isl_take isl_constraint *c,
2266 int isl_basic_map_n_constraint(
2267 __isl_keep isl_basic_map *bmap);
2268 isl_stat isl_basic_map_foreach_constraint(
2269 __isl_keep isl_basic_map *bmap,
2270 isl_stat (*fn)(__isl_take isl_constraint *c,
2273 __isl_null isl_constraint *isl_constraint_free(
2274 __isl_take isl_constraint *c);
2276 Again, the callback function C<fn> should return 0 if successful and
2277 -1 if an error occurs. In the latter case, or if any other error
2278 occurs, the above functions will return -1.
2279 The constraint C<c> represents either an equality or an inequality.
2280 Use the following function to find out whether a constraint
2281 represents an equality. If not, it represents an inequality.
2283 isl_bool isl_constraint_is_equality(
2284 __isl_keep isl_constraint *constraint);
2286 It is also possible to obtain a list of constraints from a basic
2289 #include <isl/constraint.h>
2290 __isl_give isl_constraint_list *
2291 isl_basic_map_get_constraint_list(
2292 __isl_keep isl_basic_map *bmap);
2293 __isl_give isl_constraint_list *
2294 isl_basic_set_get_constraint_list(
2295 __isl_keep isl_basic_set *bset);
2297 These functions require that all existentially quantified variables
2298 have an explicit representation.
2299 The returned list can be manipulated using the functions in L<"Lists">.
2301 The coefficients of the constraints can be inspected using
2302 the following functions.
2304 isl_bool isl_constraint_is_lower_bound(
2305 __isl_keep isl_constraint *constraint,
2306 enum isl_dim_type type, unsigned pos);
2307 isl_bool isl_constraint_is_upper_bound(
2308 __isl_keep isl_constraint *constraint,
2309 enum isl_dim_type type, unsigned pos);
2310 __isl_give isl_val *isl_constraint_get_constant_val(
2311 __isl_keep isl_constraint *constraint);
2312 __isl_give isl_val *isl_constraint_get_coefficient_val(
2313 __isl_keep isl_constraint *constraint,
2314 enum isl_dim_type type, int pos);
2316 The explicit representations of the existentially quantified
2317 variables can be inspected using the following function.
2318 Note that the user is only allowed to use this function
2319 if the inspected set or map is the result of a call
2320 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
2321 The existentially quantified variable is equal to the floor
2322 of the returned affine expression. The affine expression
2323 itself can be inspected using the functions in
2326 __isl_give isl_aff *isl_constraint_get_div(
2327 __isl_keep isl_constraint *constraint, int pos);
2329 To obtain the constraints of a basic set or map in matrix
2330 form, use the following functions.
2332 __isl_give isl_mat *isl_basic_set_equalities_matrix(
2333 __isl_keep isl_basic_set *bset,
2334 enum isl_dim_type c1, enum isl_dim_type c2,
2335 enum isl_dim_type c3, enum isl_dim_type c4);
2336 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
2337 __isl_keep isl_basic_set *bset,
2338 enum isl_dim_type c1, enum isl_dim_type c2,
2339 enum isl_dim_type c3, enum isl_dim_type c4);
2340 __isl_give isl_mat *isl_basic_map_equalities_matrix(
2341 __isl_keep isl_basic_map *bmap,
2342 enum isl_dim_type c1,
2343 enum isl_dim_type c2, enum isl_dim_type c3,
2344 enum isl_dim_type c4, enum isl_dim_type c5);
2345 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
2346 __isl_keep isl_basic_map *bmap,
2347 enum isl_dim_type c1,
2348 enum isl_dim_type c2, enum isl_dim_type c3,
2349 enum isl_dim_type c4, enum isl_dim_type c5);
2351 The C<isl_dim_type> arguments dictate the order in which
2352 different kinds of variables appear in the resulting matrix.
2353 For set inputs, they should be a permutation of
2354 C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
2355 For map inputs, they should be a permutation of
2356 C<isl_dim_cst>, C<isl_dim_param>,
2357 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
2361 Points are elements of a set. They can be used to construct
2362 simple sets (boxes) or they can be used to represent the
2363 individual elements of a set.
2364 The zero point (the origin) can be created using
2366 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2368 The coordinates of a point can be inspected, set and changed
2371 __isl_give isl_val *isl_point_get_coordinate_val(
2372 __isl_keep isl_point *pnt,
2373 enum isl_dim_type type, int pos);
2374 __isl_give isl_point *isl_point_set_coordinate_val(
2375 __isl_take isl_point *pnt,
2376 enum isl_dim_type type, int pos,
2377 __isl_take isl_val *v);
2379 __isl_give isl_point *isl_point_add_ui(
2380 __isl_take isl_point *pnt,
2381 enum isl_dim_type type, int pos, unsigned val);
2382 __isl_give isl_point *isl_point_sub_ui(
2383 __isl_take isl_point *pnt,
2384 enum isl_dim_type type, int pos, unsigned val);
2386 Points can be copied or freed using
2388 __isl_give isl_point *isl_point_copy(
2389 __isl_keep isl_point *pnt);
2390 __isl_null isl_point *isl_point_free(
2391 __isl_take isl_point *pnt);
2393 A singleton set can be created from a point using
2395 __isl_give isl_basic_set *isl_basic_set_from_point(
2396 __isl_take isl_point *pnt);
2397 __isl_give isl_set *isl_set_from_point(
2398 __isl_take isl_point *pnt);
2399 __isl_give isl_union_set *isl_union_set_from_point(
2400 __isl_take isl_point *pnt);
2402 and a box can be created from two opposite extremal points using
2404 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2405 __isl_take isl_point *pnt1,
2406 __isl_take isl_point *pnt2);
2407 __isl_give isl_set *isl_set_box_from_points(
2408 __isl_take isl_point *pnt1,
2409 __isl_take isl_point *pnt2);
2411 All elements of a B<bounded> (union) set can be enumerated using
2412 the following functions.
2414 isl_stat isl_set_foreach_point(__isl_keep isl_set *set,
2415 isl_stat (*fn)(__isl_take isl_point *pnt,
2418 isl_stat isl_union_set_foreach_point(
2419 __isl_keep isl_union_set *uset,
2420 isl_stat (*fn)(__isl_take isl_point *pnt,
2424 The function C<fn> is called for each integer point in
2425 C<set> with as second argument the last argument of
2426 the C<isl_set_foreach_point> call. The function C<fn>
2427 should return C<0> on success and C<-1> on failure.
2428 In the latter case, C<isl_set_foreach_point> will stop
2429 enumerating and return C<-1> as well.
2430 If the enumeration is performed successfully and to completion,
2431 then C<isl_set_foreach_point> returns C<0>.
2433 To obtain a single point of a (basic or union) set, use
2435 __isl_give isl_point *isl_basic_set_sample_point(
2436 __isl_take isl_basic_set *bset);
2437 __isl_give isl_point *isl_set_sample_point(
2438 __isl_take isl_set *set);
2439 __isl_give isl_point *isl_union_set_sample_point(
2440 __isl_take isl_union_set *uset);
2442 If C<set> does not contain any (integer) points, then the
2443 resulting point will be ``void'', a property that can be
2446 isl_bool isl_point_is_void(__isl_keep isl_point *pnt);
2450 Besides sets and relation, C<isl> also supports various types of functions.
2451 Each of these types is derived from the value type (see L</"Values">)
2452 or from one of two primitive function types
2453 through the application of zero or more type constructors.
2454 We first describe the primitive type and then we describe
2455 the types derived from these primitive types.
2457 =head3 Primitive Functions
2459 C<isl> support two primitive function types, quasi-affine
2460 expressions and quasipolynomials.
2461 A quasi-affine expression is defined either over a parameter
2462 space or over a set and is composed of integer constants,
2463 parameters and set variables, addition, subtraction and
2464 integer division by an integer constant.
2465 For example, the quasi-affine expression
2467 [n] -> { [x] -> [2*floor((4 n + x)/9] }
2469 maps C<x> to C<2*floor((4 n + x)/9>.
2470 A quasipolynomial is a polynomial expression in quasi-affine
2471 expression. That is, it additionally allows for multiplication.
2472 Note, though, that it is not allowed to construct an integer
2473 division of an expression involving multiplications.
2474 Here is an example of a quasipolynomial that is not
2475 quasi-affine expression
2477 [n] -> { [x] -> (n*floor((4 n + x)/9) }
2479 Note that the external representations of quasi-affine expressions
2480 and quasipolynomials are different. Quasi-affine expressions
2481 use a notation with square brackets just like binary relations,
2482 while quasipolynomials do not. This might change at some point.
2484 If a primitive function is defined over a parameter space,
2485 then the space of the function itself is that of a set.
2486 If it is defined over a set, then the space of the function
2487 is that of a relation. In both cases, the set space (or
2488 the output space) is single-dimensional, anonymous and unstructured.
2489 To create functions with multiple dimensions or with other kinds
2490 of set or output spaces, use multiple expressions
2491 (see L</"Multiple Expressions">).
2495 =item * Quasi-affine Expressions
2497 Besides the expressions described above, a quasi-affine
2498 expression can also be set to NaN. Such expressions
2499 typically represent a failure to represent a result
2500 as a quasi-affine expression.
2502 The zero quasi affine expression or the quasi affine expression
2503 that is equal to a given value or
2504 a specified dimension on a given domain can be created using
2506 #include <isl/aff.h>
2507 __isl_give isl_aff *isl_aff_zero_on_domain(
2508 __isl_take isl_local_space *ls);
2509 __isl_give isl_aff *isl_aff_val_on_domain(
2510 __isl_take isl_local_space *ls,
2511 __isl_take isl_val *val);
2512 __isl_give isl_aff *isl_aff_var_on_domain(
2513 __isl_take isl_local_space *ls,
2514 enum isl_dim_type type, unsigned pos);
2515 __isl_give isl_aff *isl_aff_nan_on_domain(
2516 __isl_take isl_local_space *ls);
2518 Quasi affine expressions can be copied and freed using
2520 #include <isl/aff.h>
2521 __isl_give isl_aff *isl_aff_copy(
2522 __isl_keep isl_aff *aff);
2523 __isl_null isl_aff *isl_aff_free(
2524 __isl_take isl_aff *aff);
2526 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2527 using the following function. The constraint is required to have
2528 a non-zero coefficient for the specified dimension.
2530 #include <isl/constraint.h>
2531 __isl_give isl_aff *isl_constraint_get_bound(
2532 __isl_keep isl_constraint *constraint,
2533 enum isl_dim_type type, int pos);
2535 The entire affine expression of the constraint can also be extracted
2536 using the following function.
2538 #include <isl/constraint.h>
2539 __isl_give isl_aff *isl_constraint_get_aff(
2540 __isl_keep isl_constraint *constraint);
2542 Conversely, an equality constraint equating
2543 the affine expression to zero or an inequality constraint enforcing
2544 the affine expression to be non-negative, can be constructed using
2546 __isl_give isl_constraint *isl_equality_from_aff(
2547 __isl_take isl_aff *aff);
2548 __isl_give isl_constraint *isl_inequality_from_aff(
2549 __isl_take isl_aff *aff);
2551 The coefficients and the integer divisions of an affine expression
2552 can be inspected using the following functions.
2554 #include <isl/aff.h>
2555 __isl_give isl_val *isl_aff_get_constant_val(
2556 __isl_keep isl_aff *aff);
2557 __isl_give isl_val *isl_aff_get_coefficient_val(
2558 __isl_keep isl_aff *aff,
2559 enum isl_dim_type type, int pos);
2560 int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
2561 enum isl_dim_type type, int pos);
2562 __isl_give isl_val *isl_aff_get_denominator_val(
2563 __isl_keep isl_aff *aff);
2564 __isl_give isl_aff *isl_aff_get_div(
2565 __isl_keep isl_aff *aff, int pos);
2567 They can be modified using the following functions.
2569 #include <isl/aff.h>
2570 __isl_give isl_aff *isl_aff_set_constant_si(
2571 __isl_take isl_aff *aff, int v);
2572 __isl_give isl_aff *isl_aff_set_constant_val(
2573 __isl_take isl_aff *aff, __isl_take isl_val *v);
2574 __isl_give isl_aff *isl_aff_set_coefficient_si(
2575 __isl_take isl_aff *aff,
2576 enum isl_dim_type type, int pos, int v);
2577 __isl_give isl_aff *isl_aff_set_coefficient_val(
2578 __isl_take isl_aff *aff,
2579 enum isl_dim_type type, int pos,
2580 __isl_take isl_val *v);
2582 __isl_give isl_aff *isl_aff_add_constant_si(
2583 __isl_take isl_aff *aff, int v);
2584 __isl_give isl_aff *isl_aff_add_constant_val(
2585 __isl_take isl_aff *aff, __isl_take isl_val *v);
2586 __isl_give isl_aff *isl_aff_add_constant_num_si(
2587 __isl_take isl_aff *aff, int v);
2588 __isl_give isl_aff *isl_aff_add_coefficient_si(
2589 __isl_take isl_aff *aff,
2590 enum isl_dim_type type, int pos, int v);
2591 __isl_give isl_aff *isl_aff_add_coefficient_val(
2592 __isl_take isl_aff *aff,
2593 enum isl_dim_type type, int pos,
2594 __isl_take isl_val *v);
2596 Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
2597 set the I<numerator> of the constant or coefficient, while
2598 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
2599 the constant or coefficient as a whole.
2600 The C<add_constant> and C<add_coefficient> functions add an integer
2601 or rational value to
2602 the possibly rational constant or coefficient.
2603 The C<add_constant_num> functions add an integer value to
2606 =item * Quasipolynomials
2608 Some simple quasipolynomials can be created using the following functions.
2610 #include <isl/polynomial.h>
2611 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
2612 __isl_take isl_space *domain);
2613 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
2614 __isl_take isl_space *domain);
2615 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
2616 __isl_take isl_space *domain);
2617 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
2618 __isl_take isl_space *domain);
2619 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
2620 __isl_take isl_space *domain);
2621 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2622 __isl_take isl_space *domain,
2623 __isl_take isl_val *val);
2624 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2625 __isl_take isl_space *domain,
2626 enum isl_dim_type type, unsigned pos);
2627 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2628 __isl_take isl_aff *aff);
2630 Recall that the space in which a quasipolynomial lives is a map space
2631 with a one-dimensional range. The C<domain> argument in some of
2632 the functions above corresponds to the domain of this map space.
2634 Quasipolynomials can be copied and freed again using the following
2637 #include <isl/polynomial.h>
2638 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2639 __isl_keep isl_qpolynomial *qp);
2640 __isl_null isl_qpolynomial *isl_qpolynomial_free(
2641 __isl_take isl_qpolynomial *qp);
2643 The constant term of a quasipolynomial can be extracted using
2645 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2646 __isl_keep isl_qpolynomial *qp);
2648 To iterate over all terms in a quasipolynomial,
2651 isl_stat isl_qpolynomial_foreach_term(
2652 __isl_keep isl_qpolynomial *qp,
2653 isl_stat (*fn)(__isl_take isl_term *term,
2654 void *user), void *user);
2656 The terms themselves can be inspected and freed using
2659 unsigned isl_term_dim(__isl_keep isl_term *term,
2660 enum isl_dim_type type);
2661 __isl_give isl_val *isl_term_get_coefficient_val(
2662 __isl_keep isl_term *term);
2663 int isl_term_get_exp(__isl_keep isl_term *term,
2664 enum isl_dim_type type, unsigned pos);
2665 __isl_give isl_aff *isl_term_get_div(
2666 __isl_keep isl_term *term, unsigned pos);
2667 void isl_term_free(__isl_take isl_term *term);
2669 Each term is a product of parameters, set variables and
2670 integer divisions. The function C<isl_term_get_exp>
2671 returns the exponent of a given dimensions in the given term.
2677 A reduction represents a maximum or a minimum of its
2679 The only reduction type defined by C<isl> is
2680 C<isl_qpolynomial_fold>.
2682 There are currently no functions to directly create such
2683 objects, but they do appear in the piecewise quasipolynomial
2684 reductions returned by the C<isl_pw_qpolynomial_bound> function.
2686 L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.
2688 Reductions can be copied and freed using
2689 the following functions.
2691 #include <isl/polynomial.h>
2692 __isl_give isl_qpolynomial_fold *
2693 isl_qpolynomial_fold_copy(
2694 __isl_keep isl_qpolynomial_fold *fold);
2695 void isl_qpolynomial_fold_free(
2696 __isl_take isl_qpolynomial_fold *fold);
2698 To iterate over all quasipolynomials in a reduction, use
2700 isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
2701 __isl_keep isl_qpolynomial_fold *fold,
2702 isl_stat (*fn)(__isl_take isl_qpolynomial *qp,
2703 void *user), void *user);
2705 =head3 Multiple Expressions
2707 A multiple expression represents a sequence of zero or
2708 more base expressions, all defined on the same domain space.
2709 The domain space of the multiple expression is the same
2710 as that of the base expressions, but the range space
2711 can be any space. In case the base expressions have
2712 a set space, the corresponding multiple expression
2713 also has a set space.
2714 Objects of the value type do not have an associated space.
2715 The space of a multiple value is therefore always a set space.
2716 Similarly, the space of a multiple union piecewise
2717 affine expression is always a set space.
2719 The multiple expression types defined by C<isl>
2720 are C<isl_multi_val>, C<isl_multi_aff>, C<isl_multi_pw_aff>,
2721 C<isl_multi_union_pw_aff>.
2723 A multiple expression with the value zero for
2724 each output (or set) dimension can be created
2725 using the following functions.
2727 #include <isl/val.h>
2728 __isl_give isl_multi_val *isl_multi_val_zero(
2729 __isl_take isl_space *space);
2731 #include <isl/aff.h>
2732 __isl_give isl_multi_aff *isl_multi_aff_zero(
2733 __isl_take isl_space *space);
2734 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
2735 __isl_take isl_space *space);
2736 __isl_give isl_multi_union_pw_aff *
2737 isl_multi_union_pw_aff_zero(
2738 __isl_take isl_space *space);
2740 Since there is no canonical way of representing a zero
2741 value of type C<isl_union_pw_aff>, the space passed
2742 to C<isl_multi_union_pw_aff_zero> needs to be zero-dimensional.
2744 An identity function can be created using the following
2745 functions. The space needs to be that of a relation
2746 with the same number of input and output dimensions.
2748 #include <isl/aff.h>
2749 __isl_give isl_multi_aff *isl_multi_aff_identity(
2750 __isl_take isl_space *space);
2751 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
2752 __isl_take isl_space *space);
2754 A function that performs a projection on a universe
2755 relation or set can be created using the following functions.
2756 See also the corresponding
2757 projection operations in L</"Unary Operations">.
2759 #include <isl/aff.h>
2760 __isl_give isl_multi_aff *isl_multi_aff_domain_map(
2761 __isl_take isl_space *space);
2762 __isl_give isl_multi_aff *isl_multi_aff_range_map(
2763 __isl_take isl_space *space);
2764 __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
2765 __isl_take isl_space *space,
2766 enum isl_dim_type type,
2767 unsigned first, unsigned n);
2769 A multiple expression can be created from a single
2770 base expression using the following functions.
2771 The space of the created multiple expression is the same
2772 as that of the base expression, except for
2773 C<isl_multi_union_pw_aff_from_union_pw_aff> where the input
2774 lives in a parameter space and the output lives
2775 in a single-dimensional set space.
2777 #include <isl/aff.h>
2778 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
2779 __isl_take isl_aff *aff);
2780 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
2781 __isl_take isl_pw_aff *pa);
2782 __isl_give isl_multi_union_pw_aff *
2783 isl_multi_union_pw_aff_from_union_pw_aff(
2784 __isl_take isl_union_pw_aff *upa);
2786 A multiple expression can be created from a list
2787 of base expression in a specified space.
2788 The domain of this space needs to be the same
2789 as the domains of the base expressions in the list.
2790 If the base expressions have a set space (or no associated space),
2791 then this space also needs to be a set space.
2793 #include <isl/val.h>
2794 __isl_give isl_multi_val *isl_multi_val_from_val_list(
2795 __isl_take isl_space *space,
2796 __isl_take isl_val_list *list);
2798 #include <isl/aff.h>
2799 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
2800 __isl_take isl_space *space,
2801 __isl_take isl_aff_list *list);
2802 __isl_give isl_multi_pw_aff *
2803 isl_multi_pw_aff_from_pw_aff_list(
2804 __isl_take isl_space *space,
2805 __isl_take isl_pw_aff_list *list);
2806 __isl_give isl_multi_union_pw_aff *
2807 isl_multi_union_pw_aff_from_union_pw_aff_list(
2808 __isl_take isl_space *space,
2809 __isl_take isl_union_pw_aff_list *list);
2811 As a convenience, a multiple piecewise expression can
2812 also be created from a multiple expression.
2813 Each piecewise expression in the result has a single
2816 #include <isl/aff.h>
2817 __isl_give isl_multi_pw_aff *
2818 isl_multi_pw_aff_from_multi_aff(
2819 __isl_take isl_multi_aff *ma);
2821 Similarly, a multiple union expression can be
2822 created from a multiple expression.
2824 #include <isl/aff.h>
2825 __isl_give isl_multi_union_pw_aff *
2826 isl_multi_union_pw_aff_from_multi_aff(
2827 __isl_take isl_multi_aff *ma);
2828 __isl_give isl_multi_union_pw_aff *
2829 isl_multi_union_pw_aff_from_multi_pw_aff(
2830 __isl_take isl_multi_pw_aff *mpa);
2832 A multiple quasi-affine expression can be created from
2833 a multiple value with a given domain space using the following
2836 #include <isl/aff.h>
2837 __isl_give isl_multi_aff *
2838 isl_multi_aff_multi_val_on_space(
2839 __isl_take isl_space *space,
2840 __isl_take isl_multi_val *mv);
2843 a multiple union piecewise affine expression can be created from
2844 a multiple value with a given domain or
2845 a multiple affine expression with a given domain
2846 using the following functions.
2848 #include <isl/aff.h>
2849 __isl_give isl_multi_union_pw_aff *
2850 isl_multi_union_pw_aff_multi_val_on_domain(
2851 __isl_take isl_union_set *domain,
2852 __isl_take isl_multi_val *mv);
2853 __isl_give isl_multi_union_pw_aff *
2854 isl_multi_union_pw_aff_multi_aff_on_domain(
2855 __isl_take isl_union_set *domain,
2856 __isl_take isl_multi_aff *ma);
2858 Multiple expressions can be copied and freed using
2859 the following functions.
2861 #include <isl/val.h>
2862 __isl_give isl_multi_val *isl_multi_val_copy(
2863 __isl_keep isl_multi_val *mv);
2864 __isl_null isl_multi_val *isl_multi_val_free(
2865 __isl_take isl_multi_val *mv);
2867 #include <isl/aff.h>
2868 __isl_give isl_multi_aff *isl_multi_aff_copy(
2869 __isl_keep isl_multi_aff *maff);
2870 __isl_null isl_multi_aff *isl_multi_aff_free(
2871 __isl_take isl_multi_aff *maff);
2872 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
2873 __isl_keep isl_multi_pw_aff *mpa);
2874 __isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
2875 __isl_take isl_multi_pw_aff *mpa);
2876 __isl_give isl_multi_union_pw_aff *
2877 isl_multi_union_pw_aff_copy(
2878 __isl_keep isl_multi_union_pw_aff *mupa);
2879 __isl_null isl_multi_union_pw_aff *
2880 isl_multi_union_pw_aff_free(
2881 __isl_take isl_multi_union_pw_aff *mupa);
2883 The base expression at a given position of a multiple
2884 expression can be extracted using the following functions.
2886 #include <isl/val.h>
2887 __isl_give isl_val *isl_multi_val_get_val(
2888 __isl_keep isl_multi_val *mv, int pos);
2890 #include <isl/aff.h>
2891 __isl_give isl_aff *isl_multi_aff_get_aff(
2892 __isl_keep isl_multi_aff *multi, int pos);
2893 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
2894 __isl_keep isl_multi_pw_aff *mpa, int pos);
2895 __isl_give isl_union_pw_aff *
2896 isl_multi_union_pw_aff_get_union_pw_aff(
2897 __isl_keep isl_multi_union_pw_aff *mupa, int pos);
2899 It can be replaced using the following functions.
2901 #include <isl/val.h>
2902 __isl_give isl_multi_val *isl_multi_val_set_val(
2903 __isl_take isl_multi_val *mv, int pos,
2904 __isl_take isl_val *val);
2906 #include <isl/aff.h>
2907 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
2908 __isl_take isl_multi_aff *multi, int pos,
2909 __isl_take isl_aff *aff);
2910 __isl_give isl_multi_union_pw_aff *
2911 isl_multi_union_pw_aff_set_union_pw_aff(
2912 __isl_take isl_multi_union_pw_aff *mupa, int pos,
2913 __isl_take isl_union_pw_aff *upa);
2915 As a convenience, a sequence of base expressions that have
2916 their domains in a given space can be extracted from a sequence
2917 of union expressions using the following function.
2919 #include <isl/aff.h>
2920 __isl_give isl_multi_pw_aff *
2921 isl_multi_union_pw_aff_extract_multi_pw_aff(
2922 __isl_keep isl_multi_union_pw_aff *mupa,
2923 __isl_take isl_space *space);
2925 Note that there is a difference between C<isl_multi_union_pw_aff>
2926 and C<isl_union_pw_multi_aff> objects. The first is a sequence
2927 of unions of piecewise expressions, while the second is a union
2928 of piecewise sequences. In particular, multiple affine expressions
2929 in an C<isl_union_pw_multi_aff> may live in different spaces,
2930 while there is only a single multiple expression in
2931 an C<isl_multi_union_pw_aff>, which can therefore only live
2932 in a single space. This means that not every
2933 C<isl_union_pw_multi_aff> can be converted to
2934 an C<isl_multi_union_pw_aff>. Conversely, a zero-dimensional
2935 C<isl_multi_union_pw_aff> carries no information
2936 about any possible domain and therefore cannot be converted
2937 to an C<isl_union_pw_multi_aff>. Moreover, the elements
2938 of an C<isl_multi_union_pw_aff> may be defined over different domains,
2939 while each multiple expression inside an C<isl_union_pw_multi_aff>
2940 has a single domain. The conversion of an C<isl_union_pw_multi_aff>
2941 of dimension greater than one may therefore not be exact.
2942 The following functions can
2943 be used to perform these conversions when they are possible.
2945 #include <isl/aff.h>
2946 __isl_give isl_multi_union_pw_aff *
2947 isl_multi_union_pw_aff_from_union_pw_multi_aff(
2948 __isl_take isl_union_pw_multi_aff *upma);
2949 __isl_give isl_union_pw_multi_aff *
2950 isl_union_pw_multi_aff_from_multi_union_pw_aff(
2951 __isl_take isl_multi_union_pw_aff *mupa);
2953 =head3 Piecewise Expressions
2955 A piecewise expression is an expression that is described
2956 using zero or more base expression defined over the same
2957 number of cells in the domain space of the base expressions.
2958 All base expressions are defined over the same
2959 domain space and the cells are disjoint.
2960 The space of a piecewise expression is the same as
2961 that of the base expressions.
2962 If the union of the cells is a strict subset of the domain
2963 space, then the value of the piecewise expression outside
2964 this union is different for types derived from quasi-affine
2965 expressions and those derived from quasipolynomials.
2966 Piecewise expressions derived from quasi-affine expressions
2967 are considered to be undefined outside the union of their cells.
2968 Piecewise expressions derived from quasipolynomials
2969 are considered to be zero outside the union of their cells.
2971 Piecewise quasipolynomials are mainly used by the C<barvinok>
2972 library for representing the number of elements in a parametric set or map.
2973 For example, the piecewise quasipolynomial
2975 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2977 represents the number of points in the map
2979 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2981 The piecewise expression types defined by C<isl>
2982 are C<isl_pw_aff>, C<isl_pw_multi_aff>,
2983 C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.
2985 A piecewise expression with no cells can be created using
2986 the following functions.
2988 #include <isl/aff.h>
2989 __isl_give isl_pw_aff *isl_pw_aff_empty(
2990 __isl_take isl_space *space);
2991 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
2992 __isl_take isl_space *space);
2994 A piecewise expression with a single universe cell can be
2995 created using the following functions.
2997 #include <isl/aff.h>
2998 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2999 __isl_take isl_aff *aff);
3000 __isl_give isl_pw_multi_aff *
3001 isl_pw_multi_aff_from_multi_aff(
3002 __isl_take isl_multi_aff *ma);
3004 #include <isl/polynomial.h>
3005 __isl_give isl_pw_qpolynomial *
3006 isl_pw_qpolynomial_from_qpolynomial(
3007 __isl_take isl_qpolynomial *qp);
3009 A piecewise expression with a single specified cell can be
3010 created using the following functions.
3012 #include <isl/aff.h>
3013 __isl_give isl_pw_aff *isl_pw_aff_alloc(
3014 __isl_take isl_set *set, __isl_take isl_aff *aff);
3015 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3016 __isl_take isl_set *set,
3017 __isl_take isl_multi_aff *maff);
3019 #include <isl/polynomial.h>
3020 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3021 __isl_take isl_set *set,
3022 __isl_take isl_qpolynomial *qp);
3024 The following convenience functions first create a base expression and
3025 then create a piecewise expression over a universe domain.
3027 #include <isl/aff.h>
3028 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
3029 __isl_take isl_local_space *ls);
3030 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3031 __isl_take isl_local_space *ls,
3032 enum isl_dim_type type, unsigned pos);
3033 __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
3034 __isl_take isl_local_space *ls);
3035 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
3036 __isl_take isl_space *space);
3037 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
3038 __isl_take isl_space *space);
3039 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
3040 __isl_take isl_space *space);
3041 __isl_give isl_pw_multi_aff *
3042 isl_pw_multi_aff_project_out_map(
3043 __isl_take isl_space *space,
3044 enum isl_dim_type type,
3045 unsigned first, unsigned n);
3047 #include <isl/polynomial.h>
3048 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3049 __isl_take isl_space *space);
3051 The following convenience functions first create a base expression and
3052 then create a piecewise expression over a given domain.
3054 #include <isl/aff.h>
3055 __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
3056 __isl_take isl_set *domain,
3057 __isl_take isl_val *v);
3058 __isl_give isl_pw_multi_aff *
3059 isl_pw_multi_aff_multi_val_on_domain(
3060 __isl_take isl_set *domain,
3061 __isl_take isl_multi_val *mv);
3063 As a convenience, a piecewise multiple expression can
3064 also be created from a piecewise expression.
3065 Each multiple expression in the result is derived
3066 from the corresponding base expression.
3068 #include <isl/aff.h>
3069 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
3070 __isl_take isl_pw_aff *pa);
3072 Similarly, a piecewise quasipolynomial can be
3073 created from a piecewise quasi-affine expression using
3074 the following function.
3076 #include <isl/polynomial.h>
3077 __isl_give isl_pw_qpolynomial *
3078 isl_pw_qpolynomial_from_pw_aff(
3079 __isl_take isl_pw_aff *pwaff);
3081 Piecewise expressions can be copied and freed using the following functions.
3083 #include <isl/aff.h>
3084 __isl_give isl_pw_aff *isl_pw_aff_copy(
3085 __isl_keep isl_pw_aff *pwaff);
3086 __isl_null isl_pw_aff *isl_pw_aff_free(
3087 __isl_take isl_pw_aff *pwaff);
3088 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3089 __isl_keep isl_pw_multi_aff *pma);
3090 __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
3091 __isl_take isl_pw_multi_aff *pma);
3093 #include <isl/polynomial.h>
3094 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3095 __isl_keep isl_pw_qpolynomial *pwqp);
3096 __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
3097 __isl_take isl_pw_qpolynomial *pwqp);
3098 __isl_give isl_pw_qpolynomial_fold *
3099 isl_pw_qpolynomial_fold_copy(
3100 __isl_keep isl_pw_qpolynomial_fold *pwf);
3101 __isl_null isl_pw_qpolynomial_fold *
3102 isl_pw_qpolynomial_fold_free(
3103 __isl_take isl_pw_qpolynomial_fold *pwf);
3105 To iterate over the different cells of a piecewise expression,
3106 use the following functions.
3108 #include <isl/aff.h>
3109 isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3110 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3111 isl_stat isl_pw_aff_foreach_piece(
3112 __isl_keep isl_pw_aff *pwaff,
3113 isl_stat (*fn)(__isl_take isl_set *set,
3114 __isl_take isl_aff *aff,
3115 void *user), void *user);
3116 int isl_pw_multi_aff_n_piece(
3117 __isl_keep isl_pw_multi_aff *pma);
3118 isl_stat isl_pw_multi_aff_foreach_piece(
3119 __isl_keep isl_pw_multi_aff *pma,
3120 isl_stat (*fn)(__isl_take isl_set *set,
3121 __isl_take isl_multi_aff *maff,
3122 void *user), void *user);
3124 #include <isl/polynomial.h>
3125 int isl_pw_qpolynomial_n_piece(
3126 __isl_keep isl_pw_qpolynomial *pwqp);
3127 isl_stat isl_pw_qpolynomial_foreach_piece(
3128 __isl_keep isl_pw_qpolynomial *pwqp,
3129 isl_stat (*fn)(__isl_take isl_set *set,
3130 __isl_take isl_qpolynomial *qp,
3131 void *user), void *user);
3132 isl_stat isl_pw_qpolynomial_foreach_lifted_piece(
3133 __isl_keep isl_pw_qpolynomial *pwqp,
3134 isl_stat (*fn)(__isl_take isl_set *set,
3135 __isl_take isl_qpolynomial *qp,
3136 void *user), void *user);
3137 int isl_pw_qpolynomial_fold_n_piece(
3138 __isl_keep isl_pw_qpolynomial_fold *pwf);
3139 isl_stat isl_pw_qpolynomial_fold_foreach_piece(
3140 __isl_keep isl_pw_qpolynomial_fold *pwf,
3141 isl_stat (*fn)(__isl_take isl_set *set,
3142 __isl_take isl_qpolynomial_fold *fold,
3143 void *user), void *user);
3144 isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece(
3145 __isl_keep isl_pw_qpolynomial_fold *pwf,
3146 isl_stat (*fn)(__isl_take isl_set *set,
3147 __isl_take isl_qpolynomial_fold *fold,
3148 void *user), void *user);
3150 As usual, the function C<fn> should return C<0> on success
3151 and C<-1> on failure. The difference between
3152 C<isl_pw_qpolynomial_foreach_piece> and
3153 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3154 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3155 compute unique representations for all existentially quantified
3156 variables and then turn these existentially quantified variables
3157 into extra set variables, adapting the associated quasipolynomial
3158 accordingly. This means that the C<set> passed to C<fn>
3159 will not have any existentially quantified variables, but that
3160 the dimensions of the sets may be different for different
3161 invocations of C<fn>.
3162 Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
3163 and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.
3165 A piecewise expression consisting of the expressions at a given
3166 position of a piecewise multiple expression can be extracted
3167 using the following function.
3169 #include <isl/aff.h>
3170 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3171 __isl_keep isl_pw_multi_aff *pma, int pos);
3173 These expressions can be replaced using the following function.
3175 #include <isl/aff.h>
3176 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
3177 __isl_take isl_pw_multi_aff *pma, unsigned pos,
3178 __isl_take isl_pw_aff *pa);
3180 Note that there is a difference between C<isl_multi_pw_aff> and
3181 C<isl_pw_multi_aff> objects. The first is a sequence of piecewise
3182 affine expressions, while the second is a piecewise sequence
3183 of affine expressions. In particular, each of the piecewise
3184 affine expressions in an C<isl_multi_pw_aff> may have a different
3185 domain, while all multiple expressions associated to a cell
3186 in an C<isl_pw_multi_aff> have the same domain.
3187 It is possible to convert between the two, but when converting
3188 an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
3189 of the result is the intersection of the domains of the input.
3190 The reverse conversion is exact.
3192 #include <isl/aff.h>
3193 __isl_give isl_pw_multi_aff *
3194 isl_pw_multi_aff_from_multi_pw_aff(
3195 __isl_take isl_multi_pw_aff *mpa);
3196 __isl_give isl_multi_pw_aff *
3197 isl_multi_pw_aff_from_pw_multi_aff(
3198 __isl_take isl_pw_multi_aff *pma);
3200 =head3 Union Expressions
3202 A union expression collects base expressions defined
3203 over different domains. The space of a union expression
3204 is that of the shared parameter space.
3206 The union expression types defined by C<isl>
3207 are C<isl_union_pw_aff>, C<isl_union_pw_multi_aff>,
3208 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>.
3210 C<isl_union_pw_aff>,
3211 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>,
3212 there can be at most one base expression for a given domain space.
3214 C<isl_union_pw_multi_aff>,
3215 there can be multiple such expressions for a given domain space,
3216 but the domains of these expressions need to be disjoint.
3218 An empty union expression can be created using the following functions.
3220 #include <isl/aff.h>
3221 __isl_give isl_union_pw_aff *isl_union_pw_aff_empty(
3222 __isl_take isl_space *space);
3223 __isl_give isl_union_pw_multi_aff *
3224 isl_union_pw_multi_aff_empty(
3225 __isl_take isl_space *space);
3227 #include <isl/polynomial.h>
3228 __isl_give isl_union_pw_qpolynomial *
3229 isl_union_pw_qpolynomial_zero(
3230 __isl_take isl_space *space);
3232 A union expression containing a single base expression
3233 can be created using the following functions.
3235 #include <isl/aff.h>
3236 __isl_give isl_union_pw_aff *
3237 isl_union_pw_aff_from_pw_aff(
3238 __isl_take isl_pw_aff *pa);
3239 __isl_give isl_union_pw_multi_aff *
3240 isl_union_pw_multi_aff_from_aff(
3241 __isl_take isl_aff *aff);
3242 __isl_give isl_union_pw_multi_aff *
3243 isl_union_pw_multi_aff_from_pw_multi_aff(
3244 __isl_take isl_pw_multi_aff *pma);
3246 #include <isl/polynomial.h>
3247 __isl_give isl_union_pw_qpolynomial *
3248 isl_union_pw_qpolynomial_from_pw_qpolynomial(
3249 __isl_take isl_pw_qpolynomial *pwqp);
3251 The following functions create a base expression on each
3252 of the sets in the union set and collect the results.
3254 #include <isl/aff.h>
3255 __isl_give isl_union_pw_multi_aff *
3256 isl_union_pw_multi_aff_from_union_pw_aff(
3257 __isl_take isl_union_pw_aff *upa);
3258 __isl_give isl_union_pw_aff *
3259 isl_union_pw_multi_aff_get_union_pw_aff(
3260 __isl_keep isl_union_pw_multi_aff *upma, int pos);
3261 __isl_give isl_union_pw_aff *
3262 isl_union_pw_aff_val_on_domain(
3263 __isl_take isl_union_set *domain,
3264 __isl_take isl_val *v);
3265 __isl_give isl_union_pw_multi_aff *
3266 isl_union_pw_multi_aff_multi_val_on_domain(
3267 __isl_take isl_union_set *domain,
3268 __isl_take isl_multi_val *mv);
3270 An C<isl_union_pw_aff> that is equal to a (parametric) affine
3271 expression on a given domain can be created using the following
3274 #include <isl/aff.h>
3275 __isl_give isl_union_pw_aff *
3276 isl_union_pw_aff_aff_on_domain(
3277 __isl_take isl_union_set *domain,
3278 __isl_take isl_aff *aff);
3280 A base expression can be added to a union expression using
3281 the following functions.
3283 #include <isl/aff.h>
3284 __isl_give isl_union_pw_aff *
3285 isl_union_pw_aff_add_pw_aff(
3286 __isl_take isl_union_pw_aff *upa,
3287 __isl_take isl_pw_aff *pa);
3288 __isl_give isl_union_pw_multi_aff *
3289 isl_union_pw_multi_aff_add_pw_multi_aff(
3290 __isl_take isl_union_pw_multi_aff *upma,
3291 __isl_take isl_pw_multi_aff *pma);
3293 #include <isl/polynomial.h>
3294 __isl_give isl_union_pw_qpolynomial *
3295 isl_union_pw_qpolynomial_add_pw_qpolynomial(
3296 __isl_take isl_union_pw_qpolynomial *upwqp,
3297 __isl_take isl_pw_qpolynomial *pwqp);
3299 Union expressions can be copied and freed using
3300 the following functions.
3302 #include <isl/aff.h>
3303 __isl_give isl_union_pw_aff *isl_union_pw_aff_copy(
3304 __isl_keep isl_union_pw_aff *upa);
3305 __isl_null isl_union_pw_aff *isl_union_pw_aff_free(
3306 __isl_take isl_union_pw_aff *upa);
3307 __isl_give isl_union_pw_multi_aff *
3308 isl_union_pw_multi_aff_copy(
3309 __isl_keep isl_union_pw_multi_aff *upma);
3310 __isl_null isl_union_pw_multi_aff *
3311 isl_union_pw_multi_aff_free(
3312 __isl_take isl_union_pw_multi_aff *upma);
3314 #include <isl/polynomial.h>
3315 __isl_give isl_union_pw_qpolynomial *
3316 isl_union_pw_qpolynomial_copy(
3317 __isl_keep isl_union_pw_qpolynomial *upwqp);
3318 __isl_null isl_union_pw_qpolynomial *
3319 isl_union_pw_qpolynomial_free(
3320 __isl_take isl_union_pw_qpolynomial *upwqp);
3321 __isl_give isl_union_pw_qpolynomial_fold *
3322 isl_union_pw_qpolynomial_fold_copy(
3323 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3324 __isl_null isl_union_pw_qpolynomial_fold *
3325 isl_union_pw_qpolynomial_fold_free(
3326 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3328 To iterate over the base expressions in a union expression,
3329 use the following functions.
3331 #include <isl/aff.h>
3332 int isl_union_pw_aff_n_pw_aff(
3333 __isl_keep isl_union_pw_aff *upa);
3334 isl_stat isl_union_pw_aff_foreach_pw_aff(
3335 __isl_keep isl_union_pw_aff *upa,
3336 isl_stat (*fn)(__isl_take isl_pw_aff *pa,
3337 void *user), void *user);
3338 int isl_union_pw_multi_aff_n_pw_multi_aff(
3339 __isl_keep isl_union_pw_multi_aff *upma);
3340 isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff(
3341 __isl_keep isl_union_pw_multi_aff *upma,
3342 isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma,
3343 void *user), void *user);
3345 #include <isl/polynomial.h>
3346 int isl_union_pw_qpolynomial_n_pw_qpolynomial(
3347 __isl_keep isl_union_pw_qpolynomial *upwqp);
3348 isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3349 __isl_keep isl_union_pw_qpolynomial *upwqp,
3350 isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
3351 void *user), void *user);
3352 int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold(
3353 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3354 isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3355 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3356 isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3357 void *user), void *user);
3359 To extract the base expression in a given space from a union, use
3360 the following functions.
3362 #include <isl/aff.h>
3363 __isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff(
3364 __isl_keep isl_union_pw_aff *upa,
3365 __isl_take isl_space *space);
3366 __isl_give isl_pw_multi_aff *
3367 isl_union_pw_multi_aff_extract_pw_multi_aff(
3368 __isl_keep isl_union_pw_multi_aff *upma,
3369 __isl_take isl_space *space);
3371 #include <isl/polynomial.h>
3372 __isl_give isl_pw_qpolynomial *
3373 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3374 __isl_keep isl_union_pw_qpolynomial *upwqp,
3375 __isl_take isl_space *space);
3377 =head2 Input and Output
3379 For set and relation,
3380 C<isl> supports its own input/output format, which is similar
3381 to the C<Omega> format, but also supports the C<PolyLib> format
3383 For other object types, typically only an C<isl> format is supported.
3385 =head3 C<isl> format
3387 The C<isl> format is similar to that of C<Omega>, but has a different
3388 syntax for describing the parameters and allows for the definition
3389 of an existentially quantified variable as the integer division
3390 of an affine expression.
3391 For example, the set of integers C<i> between C<0> and C<n>
3392 such that C<i % 10 <= 6> can be described as
3394 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
3397 A set or relation can have several disjuncts, separated
3398 by the keyword C<or>. Each disjunct is either a conjunction
3399 of constraints or a projection (C<exists>) of a conjunction
3400 of constraints. The constraints are separated by the keyword
3403 =head3 C<PolyLib> format
3405 If the represented set is a union, then the first line
3406 contains a single number representing the number of disjuncts.
3407 Otherwise, a line containing the number C<1> is optional.
3409 Each disjunct is represented by a matrix of constraints.
3410 The first line contains two numbers representing
3411 the number of rows and columns,
3412 where the number of rows is equal to the number of constraints
3413 and the number of columns is equal to two plus the number of variables.
3414 The following lines contain the actual rows of the constraint matrix.
3415 In each row, the first column indicates whether the constraint
3416 is an equality (C<0>) or inequality (C<1>). The final column
3417 corresponds to the constant term.
3419 If the set is parametric, then the coefficients of the parameters
3420 appear in the last columns before the constant column.
3421 The coefficients of any existentially quantified variables appear
3422 between those of the set variables and those of the parameters.
3424 =head3 Extended C<PolyLib> format
3426 The extended C<PolyLib> format is nearly identical to the
3427 C<PolyLib> format. The only difference is that the line
3428 containing the number of rows and columns of a constraint matrix
3429 also contains four additional numbers:
3430 the number of output dimensions, the number of input dimensions,
3431 the number of local dimensions (i.e., the number of existentially
3432 quantified variables) and the number of parameters.
3433 For sets, the number of ``output'' dimensions is equal
3434 to the number of set dimensions, while the number of ``input''
3439 Objects can be read from input using the following functions.
3441 #include <isl/val.h>
3442 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
3444 __isl_give isl_multi_val *isl_multi_val_read_from_str(
3445 isl_ctx *ctx, const char *str);
3447 #include <isl/set.h>
3448 __isl_give isl_basic_set *isl_basic_set_read_from_file(
3449 isl_ctx *ctx, FILE *input);
3450 __isl_give isl_basic_set *isl_basic_set_read_from_str(
3451 isl_ctx *ctx, const char *str);
3452 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
3454 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
3457 #include <isl/map.h>
3458 __isl_give isl_basic_map *isl_basic_map_read_from_file(
3459 isl_ctx *ctx, FILE *input);
3460 __isl_give isl_basic_map *isl_basic_map_read_from_str(
3461 isl_ctx *ctx, const char *str);
3462 __isl_give isl_map *isl_map_read_from_file(
3463 isl_ctx *ctx, FILE *input);
3464 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
3467 #include <isl/union_set.h>
3468 __isl_give isl_union_set *isl_union_set_read_from_file(
3469 isl_ctx *ctx, FILE *input);
3470 __isl_give isl_union_set *isl_union_set_read_from_str(
3471 isl_ctx *ctx, const char *str);
3473 #include <isl/union_map.h>
3474 __isl_give isl_union_map *isl_union_map_read_from_file(
3475 isl_ctx *ctx, FILE *input);
3476 __isl_give isl_union_map *isl_union_map_read_from_str(
3477 isl_ctx *ctx, const char *str);
3479 #include <isl/aff.h>
3480 __isl_give isl_aff *isl_aff_read_from_str(
3481 isl_ctx *ctx, const char *str);
3482 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3483 isl_ctx *ctx, const char *str);
3484 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3485 isl_ctx *ctx, const char *str);
3486 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3487 isl_ctx *ctx, const char *str);
3488 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
3489 isl_ctx *ctx, const char *str);
3490 __isl_give isl_union_pw_aff *
3491 isl_union_pw_aff_read_from_str(
3492 isl_ctx *ctx, const char *str);
3493 __isl_give isl_union_pw_multi_aff *
3494 isl_union_pw_multi_aff_read_from_str(
3495 isl_ctx *ctx, const char *str);
3496 __isl_give isl_multi_union_pw_aff *
3497 isl_multi_union_pw_aff_read_from_str(
3498 isl_ctx *ctx, const char *str);
3500 #include <isl/polynomial.h>
3501 __isl_give isl_union_pw_qpolynomial *
3502 isl_union_pw_qpolynomial_read_from_str(
3503 isl_ctx *ctx, const char *str);
3505 For sets and relations,
3506 the input format is autodetected and may be either the C<PolyLib> format
3507 or the C<isl> format.
3511 Before anything can be printed, an C<isl_printer> needs to
3514 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
3516 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
3517 __isl_null isl_printer *isl_printer_free(
3518 __isl_take isl_printer *printer);
3520 C<isl_printer_to_file> prints to the given file, while
3521 C<isl_printer_to_str> prints to a string that can be extracted
3522 using the following function.
3524 #include <isl/printer.h>
3525 __isl_give char *isl_printer_get_str(
3526 __isl_keep isl_printer *printer);
3528 The printer can be inspected using the following functions.
3530 FILE *isl_printer_get_file(
3531 __isl_keep isl_printer *printer);
3532 int isl_printer_get_output_format(
3533 __isl_keep isl_printer *p);
3534 int isl_printer_get_yaml_style(__isl_keep isl_printer *p);
3536 The behavior of the printer can be modified in various ways
3538 __isl_give isl_printer *isl_printer_set_output_format(
3539 __isl_take isl_printer *p, int output_format);
3540 __isl_give isl_printer *isl_printer_set_indent(
3541 __isl_take isl_printer *p, int indent);
3542 __isl_give isl_printer *isl_printer_set_indent_prefix(
3543 __isl_take isl_printer *p, const char *prefix);
3544 __isl_give isl_printer *isl_printer_indent(
3545 __isl_take isl_printer *p, int indent);
3546 __isl_give isl_printer *isl_printer_set_prefix(
3547 __isl_take isl_printer *p, const char *prefix);
3548 __isl_give isl_printer *isl_printer_set_suffix(
3549 __isl_take isl_printer *p, const char *suffix);
3550 __isl_give isl_printer *isl_printer_set_yaml_style(
3551 __isl_take isl_printer *p, int yaml_style);
3553 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
3554 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
3555 and defaults to C<ISL_FORMAT_ISL>.
3556 Each line in the output is prefixed by C<indent_prefix>,
3557 indented by C<indent> (set by C<isl_printer_set_indent>) spaces
3558 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
3559 In the C<PolyLib> format output,
3560 the coefficients of the existentially quantified variables
3561 appear between those of the set variables and those
3563 The function C<isl_printer_indent> increases the indentation
3564 by the specified amount (which may be negative).
3565 The YAML style may be either C<ISL_YAML_STYLE_BLOCK> or
3566 C<ISL_YAML_STYLE_FLOW> and when we are printing something
3569 To actually print something, use
3571 #include <isl/printer.h>
3572 __isl_give isl_printer *isl_printer_print_double(
3573 __isl_take isl_printer *p, double d);
3575 #include <isl/val.h>
3576 __isl_give isl_printer *isl_printer_print_val(
3577 __isl_take isl_printer *p, __isl_keep isl_val *v);
3579 #include <isl/set.h>
3580 __isl_give isl_printer *isl_printer_print_basic_set(
3581 __isl_take isl_printer *printer,
3582 __isl_keep isl_basic_set *bset);
3583 __isl_give isl_printer *isl_printer_print_set(
3584 __isl_take isl_printer *printer,
3585 __isl_keep isl_set *set);
3587 #include <isl/map.h>
3588 __isl_give isl_printer *isl_printer_print_basic_map(
3589 __isl_take isl_printer *printer,
3590 __isl_keep isl_basic_map *bmap);
3591 __isl_give isl_printer *isl_printer_print_map(
3592 __isl_take isl_printer *printer,
3593 __isl_keep isl_map *map);
3595 #include <isl/union_set.h>
3596 __isl_give isl_printer *isl_printer_print_union_set(
3597 __isl_take isl_printer *p,
3598 __isl_keep isl_union_set *uset);
3600 #include <isl/union_map.h>
3601 __isl_give isl_printer *isl_printer_print_union_map(
3602 __isl_take isl_printer *p,
3603 __isl_keep isl_union_map *umap);
3605 #include <isl/val.h>
3606 __isl_give isl_printer *isl_printer_print_multi_val(
3607 __isl_take isl_printer *p,
3608 __isl_keep isl_multi_val *mv);
3610 #include <isl/aff.h>
3611 __isl_give isl_printer *isl_printer_print_aff(
3612 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3613 __isl_give isl_printer *isl_printer_print_multi_aff(
3614 __isl_take isl_printer *p,
3615 __isl_keep isl_multi_aff *maff);
3616 __isl_give isl_printer *isl_printer_print_pw_aff(
3617 __isl_take isl_printer *p,
3618 __isl_keep isl_pw_aff *pwaff);
3619 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3620 __isl_take isl_printer *p,
3621 __isl_keep isl_pw_multi_aff *pma);
3622 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
3623 __isl_take isl_printer *p,
3624 __isl_keep isl_multi_pw_aff *mpa);
3625 __isl_give isl_printer *isl_printer_print_union_pw_aff(
3626 __isl_take isl_printer *p,
3627 __isl_keep isl_union_pw_aff *upa);
3628 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3629 __isl_take isl_printer *p,
3630 __isl_keep isl_union_pw_multi_aff *upma);
3631 __isl_give isl_printer *
3632 isl_printer_print_multi_union_pw_aff(
3633 __isl_take isl_printer *p,
3634 __isl_keep isl_multi_union_pw_aff *mupa);
3636 #include <isl/polynomial.h>
3637 __isl_give isl_printer *isl_printer_print_qpolynomial(
3638 __isl_take isl_printer *p,
3639 __isl_keep isl_qpolynomial *qp);
3640 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3641 __isl_take isl_printer *p,
3642 __isl_keep isl_pw_qpolynomial *pwqp);
3643 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3644 __isl_take isl_printer *p,
3645 __isl_keep isl_union_pw_qpolynomial *upwqp);
3647 __isl_give isl_printer *
3648 isl_printer_print_pw_qpolynomial_fold(
3649 __isl_take isl_printer *p,
3650 __isl_keep isl_pw_qpolynomial_fold *pwf);
3651 __isl_give isl_printer *
3652 isl_printer_print_union_pw_qpolynomial_fold(
3653 __isl_take isl_printer *p,
3654 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3656 For C<isl_printer_print_qpolynomial>,
3657 C<isl_printer_print_pw_qpolynomial> and
3658 C<isl_printer_print_pw_qpolynomial_fold>,
3659 the output format of the printer
3660 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3661 For C<isl_printer_print_union_pw_qpolynomial> and
3662 C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
3664 In case of printing in C<ISL_FORMAT_C>, the user may want
3665 to set the names of all dimensions first.
3667 C<isl> also provides limited support for printing YAML documents,
3668 just enough for the internal use for printing such documents.
3670 #include <isl/printer.h>
3671 __isl_give isl_printer *isl_printer_yaml_start_mapping(
3672 __isl_take isl_printer *p);
3673 __isl_give isl_printer *isl_printer_yaml_end_mapping(
3674 __isl_take isl_printer *p);
3675 __isl_give isl_printer *isl_printer_yaml_start_sequence(
3676 __isl_take isl_printer *p);
3677 __isl_give isl_printer *isl_printer_yaml_end_sequence(
3678 __isl_take isl_printer *p);
3679 __isl_give isl_printer *isl_printer_yaml_next(
3680 __isl_take isl_printer *p);
3682 A document is started by a call to either
3683 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3684 Anything printed to the printer after such a call belong to the
3685 first key of the mapping or the first element in the sequence.
3686 The function C<isl_printer_yaml_next> moves to the value if
3687 we are currently printing a mapping key, the next key if we
3688 are printing a value or the next element if we are printing
3689 an element in a sequence.
3690 Nested mappings and sequences are initiated by the same
3691 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3692 Each call to these functions needs to have a corresponding call to
3693 C<isl_printer_yaml_end_mapping> or C<isl_printer_yaml_end_sequence>.
3695 When called on a file printer, the following function flushes
3696 the file. When called on a string printer, the buffer is cleared.
3698 __isl_give isl_printer *isl_printer_flush(
3699 __isl_take isl_printer *p);
3701 The following functions allow the user to attach
3702 notes to a printer in order to keep track of additional state.
3704 #include <isl/printer.h>
3705 isl_bool isl_printer_has_note(__isl_keep isl_printer *p,
3706 __isl_keep isl_id *id);
3707 __isl_give isl_id *isl_printer_get_note(
3708 __isl_keep isl_printer *p, __isl_take isl_id *id);
3709 __isl_give isl_printer *isl_printer_set_note(
3710 __isl_take isl_printer *p,
3711 __isl_take isl_id *id, __isl_take isl_id *note);
3713 C<isl_printer_set_note> associates the given note to the given
3714 identifier in the printer.
3715 C<isl_printer_get_note> retrieves a note associated to an
3717 C<isl_printer_has_note> checks if there is such a note.
3718 C<isl_printer_get_note> fails if the requested note does not exist.
3720 Alternatively, a string representation can be obtained
3721 directly using the following functions, which always print
3725 __isl_give char *isl_id_to_str(
3726 __isl_keep isl_id *id);
3728 #include <isl/space.h>
3729 __isl_give char *isl_space_to_str(
3730 __isl_keep isl_space *space);
3732 #include <isl/val.h>
3733 __isl_give char *isl_val_to_str(__isl_keep isl_val *v);
3734 __isl_give char *isl_multi_val_to_str(
3735 __isl_keep isl_multi_val *mv);
3737 #include <isl/set.h>
3738 __isl_give char *isl_basic_set_to_str(
3739 __isl_keep isl_basic_set *bset);
3740 __isl_give char *isl_set_to_str(
3741 __isl_keep isl_set *set);
3743 #include <isl/union_set.h>
3744 __isl_give char *isl_union_set_to_str(
3745 __isl_keep isl_union_set *uset);
3747 #include <isl/map.h>
3748 __isl_give char *isl_basic_map_to_str(
3749 __isl_keep isl_basic_map *bmap);
3750 __isl_give char *isl_map_to_str(
3751 __isl_keep isl_map *map);
3753 #include <isl/union_map.h>
3754 __isl_give char *isl_union_map_to_str(
3755 __isl_keep isl_union_map *umap);
3757 #include <isl/aff.h>
3758 __isl_give char *isl_aff_to_str(__isl_keep isl_aff *aff);
3759 __isl_give char *isl_pw_aff_to_str(
3760 __isl_keep isl_pw_aff *pa);
3761 __isl_give char *isl_multi_aff_to_str(
3762 __isl_keep isl_multi_aff *ma);
3763 __isl_give char *isl_pw_multi_aff_to_str(
3764 __isl_keep isl_pw_multi_aff *pma);
3765 __isl_give char *isl_multi_pw_aff_to_str(
3766 __isl_keep isl_multi_pw_aff *mpa);
3767 __isl_give char *isl_union_pw_aff_to_str(
3768 __isl_keep isl_union_pw_aff *upa);
3769 __isl_give char *isl_union_pw_multi_aff_to_str(
3770 __isl_keep isl_union_pw_multi_aff *upma);
3771 __isl_give char *isl_multi_union_pw_aff_to_str(
3772 __isl_keep isl_multi_union_pw_aff *mupa);
3774 #include <isl/point.h>
3775 __isl_give char *isl_point_to_str(
3776 __isl_keep isl_point *pnt);
3778 #include <isl/polynomial.h>
3779 __isl_give char *isl_pw_qpolynomial_to_str(
3780 __isl_keep isl_pw_qpolynomial *pwqp);
3781 __isl_give char *isl_union_pw_qpolynomial_to_str(
3782 __isl_keep isl_union_pw_qpolynomial *upwqp);
3786 =head3 Unary Properties
3792 The following functions test whether the given set or relation
3793 contains any integer points. The ``plain'' variants do not perform
3794 any computations, but simply check if the given set or relation
3795 is already known to be empty.
3797 isl_bool isl_basic_set_plain_is_empty(
3798 __isl_keep isl_basic_set *bset);
3799 isl_bool isl_basic_set_is_empty(
3800 __isl_keep isl_basic_set *bset);
3801 isl_bool isl_set_plain_is_empty(
3802 __isl_keep isl_set *set);
3803 isl_bool isl_set_is_empty(__isl_keep isl_set *set);
3804 isl_bool isl_union_set_is_empty(
3805 __isl_keep isl_union_set *uset);
3806 isl_bool isl_basic_map_plain_is_empty(
3807 __isl_keep isl_basic_map *bmap);
3808 isl_bool isl_basic_map_is_empty(
3809 __isl_keep isl_basic_map *bmap);
3810 isl_bool isl_map_plain_is_empty(
3811 __isl_keep isl_map *map);
3812 isl_bool isl_map_is_empty(__isl_keep isl_map *map);
3813 isl_bool isl_union_map_is_empty(
3814 __isl_keep isl_union_map *umap);
3816 =item * Universality
3818 isl_bool isl_basic_set_plain_is_universe(
3819 __isl_keep isl_basic_set *bset);
3820 isl_bool isl_basic_set_is_universe(
3821 __isl_keep isl_basic_set *bset);
3822 isl_bool isl_basic_map_plain_is_universe(
3823 __isl_keep isl_basic_map *bmap);
3824 isl_bool isl_basic_map_is_universe(
3825 __isl_keep isl_basic_map *bmap);
3826 isl_bool isl_set_plain_is_universe(
3827 __isl_keep isl_set *set);
3828 isl_bool isl_map_plain_is_universe(
3829 __isl_keep isl_map *map);
3831 =item * Single-valuedness
3833 #include <isl/set.h>
3834 isl_bool isl_set_is_singleton(__isl_keep isl_set *set);
3836 #include <isl/map.h>
3837 isl_bool isl_basic_map_is_single_valued(
3838 __isl_keep isl_basic_map *bmap);
3839 isl_bool isl_map_plain_is_single_valued(
3840 __isl_keep isl_map *map);
3841 isl_bool isl_map_is_single_valued(__isl_keep isl_map *map);
3843 #include <isl/union_map.h>
3844 isl_bool isl_union_map_is_single_valued(
3845 __isl_keep isl_union_map *umap);
3849 isl_bool isl_map_plain_is_injective(
3850 __isl_keep isl_map *map);
3851 isl_bool isl_map_is_injective(
3852 __isl_keep isl_map *map);
3853 isl_bool isl_union_map_plain_is_injective(
3854 __isl_keep isl_union_map *umap);
3855 isl_bool isl_union_map_is_injective(
3856 __isl_keep isl_union_map *umap);
3860 isl_bool isl_map_is_bijective(
3861 __isl_keep isl_map *map);
3862 isl_bool isl_union_map_is_bijective(
3863 __isl_keep isl_union_map *umap);
3867 The following functions test whether the given relation
3868 only maps elements to themselves.
3870 #include <isl/map.h>
3871 isl_bool isl_map_is_identity(
3872 __isl_keep isl_map *map);
3874 #include <isl/union_map.h>
3875 isl_bool isl_union_map_is_identity(
3876 __isl_keep isl_union_map *umap);
3880 __isl_give isl_val *
3881 isl_basic_map_plain_get_val_if_fixed(
3882 __isl_keep isl_basic_map *bmap,
3883 enum isl_dim_type type, unsigned pos);
3884 __isl_give isl_val *isl_set_plain_get_val_if_fixed(
3885 __isl_keep isl_set *set,
3886 enum isl_dim_type type, unsigned pos);
3887 __isl_give isl_val *isl_map_plain_get_val_if_fixed(
3888 __isl_keep isl_map *map,
3889 enum isl_dim_type type, unsigned pos);
3891 If the set or relation obviously lies on a hyperplane where the given dimension
3892 has a fixed value, then return that value.
3893 Otherwise return NaN.
3897 isl_stat isl_set_dim_residue_class_val(
3898 __isl_keep isl_set *set,
3899 int pos, __isl_give isl_val **modulo,
3900 __isl_give isl_val **residue);
3902 Check if the values of the given set dimension are equal to a fixed
3903 value modulo some integer value. If so, assign the modulo to C<*modulo>
3904 and the fixed value to C<*residue>. If the given dimension attains only
3905 a single value, then assign C<0> to C<*modulo> and the fixed value to
3907 If the dimension does not attain only a single value and if no modulo
3908 can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
3912 To check whether the description of a set, relation or function depends
3913 on one or more given dimensions,
3914 the following functions can be used.
3916 #include <isl/constraint.h>
3917 isl_bool isl_constraint_involves_dims(
3918 __isl_keep isl_constraint *constraint,
3919 enum isl_dim_type type, unsigned first, unsigned n);
3921 #include <isl/set.h>
3922 isl_bool isl_basic_set_involves_dims(
3923 __isl_keep isl_basic_set *bset,
3924 enum isl_dim_type type, unsigned first, unsigned n);
3925 isl_bool isl_set_involves_dims(__isl_keep isl_set *set,
3926 enum isl_dim_type type, unsigned first, unsigned n);
3928 #include <isl/map.h>
3929 isl_bool isl_basic_map_involves_dims(
3930 __isl_keep isl_basic_map *bmap,
3931 enum isl_dim_type type, unsigned first, unsigned n);
3932 isl_bool isl_map_involves_dims(__isl_keep isl_map *map,
3933 enum isl_dim_type type, unsigned first, unsigned n);
3935 #include <isl/union_map.h>
3936 isl_bool isl_union_map_involves_dims(
3937 __isl_keep isl_union_map *umap,
3938 enum isl_dim_type type, unsigned first, unsigned n);
3940 #include <isl/aff.h>
3941 isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
3942 enum isl_dim_type type, unsigned first, unsigned n);
3943 isl_bool isl_pw_aff_involves_dims(
3944 __isl_keep isl_pw_aff *pwaff,
3945 enum isl_dim_type type, unsigned first, unsigned n);
3946 isl_bool isl_multi_aff_involves_dims(
3947 __isl_keep isl_multi_aff *ma,
3948 enum isl_dim_type type, unsigned first, unsigned n);
3949 isl_bool isl_multi_pw_aff_involves_dims(
3950 __isl_keep isl_multi_pw_aff *mpa,
3951 enum isl_dim_type type, unsigned first, unsigned n);
3953 #include <isl/polynomial.h>
3954 isl_bool isl_qpolynomial_involves_dims(
3955 __isl_keep isl_qpolynomial *qp,
3956 enum isl_dim_type type, unsigned first, unsigned n);
3958 Similarly, the following functions can be used to check whether
3959 a given dimension is involved in any lower or upper bound.
3961 #include <isl/set.h>
3962 isl_bool isl_set_dim_has_any_lower_bound(
3963 __isl_keep isl_set *set,
3964 enum isl_dim_type type, unsigned pos);
3965 isl_bool isl_set_dim_has_any_upper_bound(
3966 __isl_keep isl_set *set,
3967 enum isl_dim_type type, unsigned pos);
3969 Note that these functions return true even if there is a bound on
3970 the dimension on only some of the basic sets of C<set>.
3971 To check if they have a bound for all of the basic sets in C<set>,
3972 use the following functions instead.
3974 #include <isl/set.h>
3975 isl_bool isl_set_dim_has_lower_bound(
3976 __isl_keep isl_set *set,
3977 enum isl_dim_type type, unsigned pos);
3978 isl_bool isl_set_dim_has_upper_bound(
3979 __isl_keep isl_set *set,
3980 enum isl_dim_type type, unsigned pos);
3984 To check whether a set is a parameter domain, use this function:
3986 isl_bool isl_set_is_params(__isl_keep isl_set *set);
3987 isl_bool isl_union_set_is_params(
3988 __isl_keep isl_union_set *uset);
3992 The following functions check whether the space of the given
3993 (basic) set or relation domain and/or range is a wrapped relation.
3995 #include <isl/space.h>
3996 isl_bool isl_space_is_wrapping(
3997 __isl_keep isl_space *space);
3998 isl_bool isl_space_domain_is_wrapping(
3999 __isl_keep isl_space *space);
4000 isl_bool isl_space_range_is_wrapping(
4001 __isl_keep isl_space *space);
4002 isl_bool isl_space_is_product(
4003 __isl_keep isl_space *space);
4005 #include <isl/set.h>
4006 isl_bool isl_basic_set_is_wrapping(
4007 __isl_keep isl_basic_set *bset);
4008 isl_bool isl_set_is_wrapping(__isl_keep isl_set *set);
4010 #include <isl/map.h>
4011 isl_bool isl_map_domain_is_wrapping(
4012 __isl_keep isl_map *map);
4013 isl_bool isl_map_range_is_wrapping(
4014 __isl_keep isl_map *map);
4015 isl_bool isl_map_is_product(__isl_keep isl_map *map);
4017 #include <isl/val.h>
4018 isl_bool isl_multi_val_range_is_wrapping(
4019 __isl_keep isl_multi_val *mv);
4021 #include <isl/aff.h>
4022 isl_bool isl_multi_aff_range_is_wrapping(
4023 __isl_keep isl_multi_aff *ma);
4024 isl_bool isl_multi_pw_aff_range_is_wrapping(
4025 __isl_keep isl_multi_pw_aff *mpa);
4026 isl_bool isl_multi_union_pw_aff_range_is_wrapping(
4027 __isl_keep isl_multi_union_pw_aff *mupa);
4029 The input to C<isl_space_is_wrapping> should
4030 be the space of a set, while that of
4031 C<isl_space_domain_is_wrapping> and
4032 C<isl_space_range_is_wrapping> should be the space of a relation.
4033 The input to C<isl_space_is_product> can be either the space
4034 of a set or that of a binary relation.
4035 In case the input is the space of a binary relation, it checks
4036 whether both domain and range are wrapping.
4038 =item * Internal Product
4040 isl_bool isl_basic_map_can_zip(
4041 __isl_keep isl_basic_map *bmap);
4042 isl_bool isl_map_can_zip(__isl_keep isl_map *map);
4044 Check whether the product of domain and range of the given relation
4046 i.e., whether both domain and range are nested relations.
4050 #include <isl/space.h>
4051 isl_bool isl_space_can_curry(
4052 __isl_keep isl_space *space);
4054 #include <isl/map.h>
4055 isl_bool isl_basic_map_can_curry(
4056 __isl_keep isl_basic_map *bmap);
4057 isl_bool isl_map_can_curry(__isl_keep isl_map *map);
4059 Check whether the domain of the (basic) relation is a wrapped relation.
4061 #include <isl/space.h>
4062 __isl_give isl_space *isl_space_uncurry(
4063 __isl_take isl_space *space);
4065 #include <isl/map.h>
4066 isl_bool isl_basic_map_can_uncurry(
4067 __isl_keep isl_basic_map *bmap);
4068 isl_bool isl_map_can_uncurry(__isl_keep isl_map *map);
4070 Check whether the range of the (basic) relation is a wrapped relation.
4072 #include <isl/space.h>
4073 isl_bool isl_space_can_range_curry(
4074 __isl_keep isl_space *space);
4076 #include <isl/map.h>
4077 isl_bool isl_map_can_range_curry(
4078 __isl_keep isl_map *map);
4080 Check whether the domain of the relation wrapped in the range of
4081 the input is itself a wrapped relation.
4083 =item * Special Values
4085 #include <isl/aff.h>
4086 isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff);
4087 isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
4088 isl_bool isl_multi_pw_aff_is_cst(
4089 __isl_keep isl_multi_pw_aff *mpa);
4091 Check whether the given expression is a constant.
4093 #include <isl/val.h>
4094 isl_bool isl_multi_val_involves_nan(
4095 __isl_keep isl_multi_val *mv);
4097 #include <isl/aff.h>
4098 isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff);
4099 isl_bool isl_multi_aff_involves_nan(
4100 __isl_keep isl_multi_aff *ma);
4101 isl_bool isl_pw_aff_involves_nan(
4102 __isl_keep isl_pw_aff *pa);
4103 isl_bool isl_pw_multi_aff_involves_nan(
4104 __isl_keep isl_pw_multi_aff *pma);
4105 isl_bool isl_multi_pw_aff_involves_nan(
4106 __isl_keep isl_multi_pw_aff *mpa);
4107 isl_bool isl_union_pw_aff_involves_nan(
4108 __isl_keep isl_union_pw_aff *upa);
4109 isl_bool isl_union_pw_multi_aff_involves_nan(
4110 __isl_keep isl_union_pw_multi_aff *upma);
4111 isl_bool isl_multi_union_pw_aff_involves_nan(
4112 __isl_keep isl_multi_union_pw_aff *mupa);
4114 #include <isl/polynomial.h>
4115 isl_bool isl_qpolynomial_is_nan(
4116 __isl_keep isl_qpolynomial *qp);
4117 isl_bool isl_qpolynomial_fold_is_nan(
4118 __isl_keep isl_qpolynomial_fold *fold);
4119 isl_bool isl_pw_qpolynomial_involves_nan(
4120 __isl_keep isl_pw_qpolynomial *pwqp);
4121 isl_bool isl_pw_qpolynomial_fold_involves_nan(
4122 __isl_keep isl_pw_qpolynomial_fold *pwf);
4123 isl_bool isl_union_pw_qpolynomial_involves_nan(
4124 __isl_keep isl_union_pw_qpolynomial *upwqp);
4125 isl_bool isl_union_pw_qpolynomial_fold_involves_nan(
4126 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4128 Check whether the given expression is equal to or involves NaN.
4130 #include <isl/aff.h>
4131 isl_bool isl_aff_plain_is_zero(
4132 __isl_keep isl_aff *aff);
4134 Check whether the affine expression is obviously zero.
4138 =head3 Binary Properties
4144 The following functions check whether two objects
4145 represent the same set, relation or function.
4146 The C<plain> variants only return true if the objects
4147 are obviously the same. That is, they may return false
4148 even if the objects are the same, but they will never
4149 return true if the objects are not the same.
4151 #include <isl/set.h>
4152 isl_bool isl_basic_set_plain_is_equal(
4153 __isl_keep isl_basic_set *bset1,
4154 __isl_keep isl_basic_set *bset2);
4155 isl_bool isl_basic_set_is_equal(
4156 __isl_keep isl_basic_set *bset1,
4157 __isl_keep isl_basic_set *bset2);
4158 isl_bool isl_set_plain_is_equal(
4159 __isl_keep isl_set *set1,
4160 __isl_keep isl_set *set2);
4161 isl_bool isl_set_is_equal(__isl_keep isl_set *set1,
4162 __isl_keep isl_set *set2);
4164 #include <isl/map.h>
4165 isl_bool isl_basic_map_is_equal(
4166 __isl_keep isl_basic_map *bmap1,
4167 __isl_keep isl_basic_map *bmap2);
4168 isl_bool isl_map_is_equal(__isl_keep isl_map *map1,
4169 __isl_keep isl_map *map2);
4170 isl_bool isl_map_plain_is_equal(
4171 __isl_keep isl_map *map1,
4172 __isl_keep isl_map *map2);
4174 #include <isl/union_set.h>
4175 isl_bool isl_union_set_is_equal(
4176 __isl_keep isl_union_set *uset1,
4177 __isl_keep isl_union_set *uset2);
4179 #include <isl/union_map.h>
4180 isl_bool isl_union_map_is_equal(
4181 __isl_keep isl_union_map *umap1,
4182 __isl_keep isl_union_map *umap2);
4184 #include <isl/aff.h>
4185 isl_bool isl_aff_plain_is_equal(
4186 __isl_keep isl_aff *aff1,
4187 __isl_keep isl_aff *aff2);
4188 isl_bool isl_multi_aff_plain_is_equal(
4189 __isl_keep isl_multi_aff *maff1,
4190 __isl_keep isl_multi_aff *maff2);
4191 isl_bool isl_pw_aff_plain_is_equal(
4192 __isl_keep isl_pw_aff *pwaff1,
4193 __isl_keep isl_pw_aff *pwaff2);
4194 isl_bool isl_pw_aff_is_equal(
4195 __isl_keep isl_pw_aff *pa1,
4196 __isl_keep isl_pw_aff *pa2);
4197 isl_bool isl_pw_multi_aff_plain_is_equal(
4198 __isl_keep isl_pw_multi_aff *pma1,
4199 __isl_keep isl_pw_multi_aff *pma2);
4200 isl_bool isl_pw_multi_aff_is_equal(
4201 __isl_keep isl_pw_multi_aff *pma1,
4202 __isl_keep isl_pw_multi_aff *pma2);
4203 isl_bool isl_multi_pw_aff_plain_is_equal(
4204 __isl_keep isl_multi_pw_aff *mpa1,
4205 __isl_keep isl_multi_pw_aff *mpa2);
4206 isl_bool isl_multi_pw_aff_is_equal(
4207 __isl_keep isl_multi_pw_aff *mpa1,
4208 __isl_keep isl_multi_pw_aff *mpa2);
4209 isl_bool isl_union_pw_aff_plain_is_equal(
4210 __isl_keep isl_union_pw_aff *upa1,
4211 __isl_keep isl_union_pw_aff *upa2);
4212 isl_bool isl_union_pw_multi_aff_plain_is_equal(
4213 __isl_keep isl_union_pw_multi_aff *upma1,
4214 __isl_keep isl_union_pw_multi_aff *upma2);
4215 isl_bool isl_multi_union_pw_aff_plain_is_equal(
4216 __isl_keep isl_multi_union_pw_aff *mupa1,
4217 __isl_keep isl_multi_union_pw_aff *mupa2);
4219 #include <isl/polynomial.h>
4220 isl_bool isl_union_pw_qpolynomial_plain_is_equal(
4221 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4222 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4223 isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal(
4224 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4225 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4227 =item * Disjointness
4229 #include <isl/set.h>
4230 isl_bool isl_basic_set_is_disjoint(
4231 __isl_keep isl_basic_set *bset1,
4232 __isl_keep isl_basic_set *bset2);
4233 isl_bool isl_set_plain_is_disjoint(
4234 __isl_keep isl_set *set1,
4235 __isl_keep isl_set *set2);
4236 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1,
4237 __isl_keep isl_set *set2);
4239 #include <isl/map.h>
4240 isl_bool isl_basic_map_is_disjoint(
4241 __isl_keep isl_basic_map *bmap1,
4242 __isl_keep isl_basic_map *bmap2);
4243 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1,
4244 __isl_keep isl_map *map2);
4246 #include <isl/union_set.h>
4247 isl_bool isl_union_set_is_disjoint(
4248 __isl_keep isl_union_set *uset1,
4249 __isl_keep isl_union_set *uset2);
4251 #include <isl/union_map.h>
4252 isl_bool isl_union_map_is_disjoint(
4253 __isl_keep isl_union_map *umap1,
4254 __isl_keep isl_union_map *umap2);
4258 isl_bool isl_basic_set_is_subset(
4259 __isl_keep isl_basic_set *bset1,
4260 __isl_keep isl_basic_set *bset2);
4261 isl_bool isl_set_is_subset(__isl_keep isl_set *set1,
4262 __isl_keep isl_set *set2);
4263 isl_bool isl_set_is_strict_subset(
4264 __isl_keep isl_set *set1,
4265 __isl_keep isl_set *set2);
4266 isl_bool isl_union_set_is_subset(
4267 __isl_keep isl_union_set *uset1,
4268 __isl_keep isl_union_set *uset2);
4269 isl_bool isl_union_set_is_strict_subset(
4270 __isl_keep isl_union_set *uset1,
4271 __isl_keep isl_union_set *uset2);
4272 isl_bool isl_basic_map_is_subset(
4273 __isl_keep isl_basic_map *bmap1,
4274 __isl_keep isl_basic_map *bmap2);
4275 isl_bool isl_basic_map_is_strict_subset(
4276 __isl_keep isl_basic_map *bmap1,
4277 __isl_keep isl_basic_map *bmap2);
4278 isl_bool isl_map_is_subset(
4279 __isl_keep isl_map *map1,
4280 __isl_keep isl_map *map2);
4281 isl_bool isl_map_is_strict_subset(
4282 __isl_keep isl_map *map1,
4283 __isl_keep isl_map *map2);
4284 isl_bool isl_union_map_is_subset(
4285 __isl_keep isl_union_map *umap1,
4286 __isl_keep isl_union_map *umap2);
4287 isl_bool isl_union_map_is_strict_subset(
4288 __isl_keep isl_union_map *umap1,
4289 __isl_keep isl_union_map *umap2);
4291 Check whether the first argument is a (strict) subset of the
4296 Every comparison function returns a negative value if the first
4297 argument is considered smaller than the second, a positive value
4298 if the first argument is considered greater and zero if the two
4299 constraints are considered the same by the comparison criterion.
4301 #include <isl/constraint.h>
4302 int isl_constraint_plain_cmp(
4303 __isl_keep isl_constraint *c1,
4304 __isl_keep isl_constraint *c2);
4306 This function is useful for sorting C<isl_constraint>s.
4307 The order depends on the internal representation of the inputs.
4308 The order is fixed over different calls to the function (assuming
4309 the internal representation of the inputs has not changed), but may
4310 change over different versions of C<isl>.
4312 #include <isl/constraint.h>
4313 int isl_constraint_cmp_last_non_zero(
4314 __isl_keep isl_constraint *c1,
4315 __isl_keep isl_constraint *c2);
4317 This function can be used to sort constraints that live in the same
4318 local space. Constraints that involve ``earlier'' dimensions or
4319 that have a smaller coefficient for the shared latest dimension
4320 are considered smaller than other constraints.
4321 This function only defines a B<partial> order.
4323 #include <isl/set.h>
4324 int isl_set_plain_cmp(__isl_keep isl_set *set1,
4325 __isl_keep isl_set *set2);
4327 This function is useful for sorting C<isl_set>s.
4328 The order depends on the internal representation of the inputs.
4329 The order is fixed over different calls to the function (assuming
4330 the internal representation of the inputs has not changed), but may
4331 change over different versions of C<isl>.
4333 #include <isl/aff.h>
4334 int isl_multi_aff_plain_cmp(
4335 __isl_keep isl_multi_aff *ma1,
4336 __isl_keep isl_multi_aff *ma2);
4337 int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
4338 __isl_keep isl_pw_aff *pa2);
4340 The functions C<isl_multi_aff_plain_cmp> and
4341 C<isl_pw_aff_plain_cmp> can be used to sort C<isl_multi_aff>s and
4342 C<isl_pw_aff>s. The order is not strictly defined.
4343 The current order sorts expressions that only involve
4344 earlier dimensions before those that involve later dimensions.
4348 =head2 Unary Operations
4354 __isl_give isl_set *isl_set_complement(
4355 __isl_take isl_set *set);
4356 __isl_give isl_map *isl_map_complement(
4357 __isl_take isl_map *map);
4361 #include <isl/space.h>
4362 __isl_give isl_space *isl_space_reverse(
4363 __isl_take isl_space *space);
4365 #include <isl/map.h>
4366 __isl_give isl_basic_map *isl_basic_map_reverse(
4367 __isl_take isl_basic_map *bmap);
4368 __isl_give isl_map *isl_map_reverse(
4369 __isl_take isl_map *map);
4371 #include <isl/union_map.h>
4372 __isl_give isl_union_map *isl_union_map_reverse(
4373 __isl_take isl_union_map *umap);
4377 #include <isl/space.h>
4378 __isl_give isl_space *isl_space_domain(
4379 __isl_take isl_space *space);
4380 __isl_give isl_space *isl_space_range(
4381 __isl_take isl_space *space);
4382 __isl_give isl_space *isl_space_params(
4383 __isl_take isl_space *space);
4385 #include <isl/local_space.h>
4386 __isl_give isl_local_space *isl_local_space_domain(
4387 __isl_take isl_local_space *ls);
4388 __isl_give isl_local_space *isl_local_space_range(
4389 __isl_take isl_local_space *ls);
4391 #include <isl/set.h>
4392 __isl_give isl_basic_set *isl_basic_set_project_out(
4393 __isl_take isl_basic_set *bset,
4394 enum isl_dim_type type, unsigned first, unsigned n);
4395 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
4396 enum isl_dim_type type, unsigned first, unsigned n);
4397 __isl_give isl_map *isl_set_project_onto_map(
4398 __isl_take isl_set *set,
4399 enum isl_dim_type type, unsigned first,
4401 __isl_give isl_basic_set *isl_basic_set_params(
4402 __isl_take isl_basic_set *bset);
4403 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
4405 The function C<isl_set_project_onto_map> returns a relation
4406 that projects the input set onto the given set dimensions.
4408 #include <isl/map.h>
4409 __isl_give isl_basic_map *isl_basic_map_project_out(
4410 __isl_take isl_basic_map *bmap,
4411 enum isl_dim_type type, unsigned first, unsigned n);
4412 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
4413 enum isl_dim_type type, unsigned first, unsigned n);
4414 __isl_give isl_basic_set *isl_basic_map_domain(
4415 __isl_take isl_basic_map *bmap);
4416 __isl_give isl_basic_set *isl_basic_map_range(
4417 __isl_take isl_basic_map *bmap);
4418 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
4419 __isl_give isl_set *isl_map_domain(
4420 __isl_take isl_map *bmap);
4421 __isl_give isl_set *isl_map_range(
4422 __isl_take isl_map *map);
4424 #include <isl/union_set.h>
4425 __isl_give isl_union_set *isl_union_set_project_out(
4426 __isl_take isl_union_set *uset,
4427 enum isl_dim_type type,
4428 unsigned first, unsigned n);
4429 __isl_give isl_set *isl_union_set_params(
4430 __isl_take isl_union_set *uset);
4432 The function C<isl_union_set_project_out> can only project out
4435 #include <isl/union_map.h>
4436 __isl_give isl_union_map *isl_union_map_project_out(
4437 __isl_take isl_union_map *umap,
4438 enum isl_dim_type type, unsigned first, unsigned n);
4439 __isl_give isl_set *isl_union_map_params(
4440 __isl_take isl_union_map *umap);
4441 __isl_give isl_union_set *isl_union_map_domain(
4442 __isl_take isl_union_map *umap);
4443 __isl_give isl_union_set *isl_union_map_range(
4444 __isl_take isl_union_map *umap);
4446 The function C<isl_union_map_project_out> can only project out
4449 #include <isl/aff.h>
4450 __isl_give isl_aff *isl_aff_project_domain_on_params(
4451 __isl_take isl_aff *aff);
4452 __isl_give isl_pw_aff *
4453 isl_pw_aff_project_domain_on_params(
4454 __isl_take isl_pw_aff *pa);
4455 __isl_give isl_pw_multi_aff *
4456 isl_pw_multi_aff_project_domain_on_params(
4457 __isl_take isl_pw_multi_aff *pma);
4458 __isl_give isl_set *isl_pw_aff_domain(
4459 __isl_take isl_pw_aff *pwaff);
4460 __isl_give isl_set *isl_pw_multi_aff_domain(
4461 __isl_take isl_pw_multi_aff *pma);
4462 __isl_give isl_set *isl_multi_pw_aff_domain(
4463 __isl_take isl_multi_pw_aff *mpa);
4464 __isl_give isl_union_set *isl_union_pw_aff_domain(
4465 __isl_take isl_union_pw_aff *upa);
4466 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
4467 __isl_take isl_union_pw_multi_aff *upma);
4468 __isl_give isl_union_set *
4469 isl_multi_union_pw_aff_domain(
4470 __isl_take isl_multi_union_pw_aff *mupa);
4471 __isl_give isl_set *isl_pw_aff_params(
4472 __isl_take isl_pw_aff *pwa);
4474 The function C<isl_multi_union_pw_aff_domain> requires its
4475 input to have at least one set dimension.
4477 #include <isl/polynomial.h>
4478 __isl_give isl_qpolynomial *
4479 isl_qpolynomial_project_domain_on_params(
4480 __isl_take isl_qpolynomial *qp);
4481 __isl_give isl_pw_qpolynomial *
4482 isl_pw_qpolynomial_project_domain_on_params(
4483 __isl_take isl_pw_qpolynomial *pwqp);
4484 __isl_give isl_pw_qpolynomial_fold *
4485 isl_pw_qpolynomial_fold_project_domain_on_params(
4486 __isl_take isl_pw_qpolynomial_fold *pwf);
4487 __isl_give isl_set *isl_pw_qpolynomial_domain(
4488 __isl_take isl_pw_qpolynomial *pwqp);
4489 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4490 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4491 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4492 __isl_take isl_union_pw_qpolynomial *upwqp);
4494 #include <isl/space.h>
4495 __isl_give isl_space *isl_space_domain_map(
4496 __isl_take isl_space *space);
4497 __isl_give isl_space *isl_space_range_map(
4498 __isl_take isl_space *space);
4500 #include <isl/map.h>
4501 __isl_give isl_map *isl_set_wrapped_domain_map(
4502 __isl_take isl_set *set);
4503 __isl_give isl_basic_map *isl_basic_map_domain_map(
4504 __isl_take isl_basic_map *bmap);
4505 __isl_give isl_basic_map *isl_basic_map_range_map(
4506 __isl_take isl_basic_map *bmap);
4507 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
4508 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
4510 #include <isl/union_map.h>
4511 __isl_give isl_union_map *isl_union_map_domain_map(
4512 __isl_take isl_union_map *umap);
4513 __isl_give isl_union_pw_multi_aff *
4514 isl_union_map_domain_map_union_pw_multi_aff(
4515 __isl_take isl_union_map *umap);
4516 __isl_give isl_union_map *isl_union_map_range_map(
4517 __isl_take isl_union_map *umap);
4518 __isl_give isl_union_map *
4519 isl_union_set_wrapped_domain_map(
4520 __isl_take isl_union_set *uset);
4522 The functions above construct a (basic, regular or union) relation
4523 that maps (a wrapped version of) the input relation to its domain or range.
4524 C<isl_set_wrapped_domain_map> maps the input set to the domain
4525 of its wrapped relation.
4529 __isl_give isl_basic_set *isl_basic_set_eliminate(
4530 __isl_take isl_basic_set *bset,
4531 enum isl_dim_type type,
4532 unsigned first, unsigned n);
4533 __isl_give isl_set *isl_set_eliminate(
4534 __isl_take isl_set *set, enum isl_dim_type type,
4535 unsigned first, unsigned n);
4536 __isl_give isl_basic_map *isl_basic_map_eliminate(
4537 __isl_take isl_basic_map *bmap,
4538 enum isl_dim_type type,
4539 unsigned first, unsigned n);
4540 __isl_give isl_map *isl_map_eliminate(
4541 __isl_take isl_map *map, enum isl_dim_type type,
4542 unsigned first, unsigned n);
4544 Eliminate the coefficients for the given dimensions from the constraints,
4545 without removing the dimensions.
4547 =item * Constructing a set from a parameter domain
4549 A zero-dimensional space or (basic) set can be constructed
4550 on a given parameter domain using the following functions.
4552 #include <isl/space.h>
4553 __isl_give isl_space *isl_space_set_from_params(
4554 __isl_take isl_space *space);
4556 #include <isl/set.h>
4557 __isl_give isl_basic_set *isl_basic_set_from_params(
4558 __isl_take isl_basic_set *bset);
4559 __isl_give isl_set *isl_set_from_params(
4560 __isl_take isl_set *set);
4562 =item * Constructing a relation from one or two sets
4564 Create a relation with the given set(s) as domain and/or range.
4565 If only the domain or the range is specified, then
4566 the range or domain of the created relation is a zero-dimensional
4567 flat anonymous space.
4569 #include <isl/space.h>
4570 __isl_give isl_space *isl_space_from_domain(
4571 __isl_take isl_space *space);
4572 __isl_give isl_space *isl_space_from_range(
4573 __isl_take isl_space *space);
4574 __isl_give isl_space *isl_space_map_from_set(
4575 __isl_take isl_space *space);
4576 __isl_give isl_space *isl_space_map_from_domain_and_range(
4577 __isl_take isl_space *domain,
4578 __isl_take isl_space *range);
4580 #include <isl/local_space.h>
4581 __isl_give isl_local_space *isl_local_space_from_domain(
4582 __isl_take isl_local_space *ls);
4584 #include <isl/map.h>
4585 __isl_give isl_map *isl_map_from_domain(
4586 __isl_take isl_set *set);
4587 __isl_give isl_map *isl_map_from_range(
4588 __isl_take isl_set *set);
4590 #include <isl/union_map.h>
4591 __isl_give isl_union_map *
4592 isl_union_map_from_domain_and_range(
4593 __isl_take isl_union_set *domain,
4594 __isl_take isl_union_set *range);
4596 #include <isl/val.h>
4597 __isl_give isl_multi_val *isl_multi_val_from_range(
4598 __isl_take isl_multi_val *mv);
4600 #include <isl/aff.h>
4601 __isl_give isl_multi_aff *isl_multi_aff_from_range(
4602 __isl_take isl_multi_aff *ma);
4603 __isl_give isl_pw_aff *isl_pw_aff_from_range(
4604 __isl_take isl_pw_aff *pwa);
4605 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
4606 __isl_take isl_multi_pw_aff *mpa);
4607 __isl_give isl_multi_union_pw_aff *
4608 isl_multi_union_pw_aff_from_range(
4609 __isl_take isl_multi_union_pw_aff *mupa);
4610 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4611 __isl_take isl_set *set);
4612 __isl_give isl_union_pw_multi_aff *
4613 isl_union_pw_multi_aff_from_domain(
4614 __isl_take isl_union_set *uset);
4616 #include <isl/polynomial.h>
4617 __isl_give isl_pw_qpolynomial *
4618 isl_pw_qpolynomial_from_range(
4619 __isl_take isl_pw_qpolynomial *pwqp);
4620 __isl_give isl_pw_qpolynomial_fold *
4621 isl_pw_qpolynomial_fold_from_range(
4622 __isl_take isl_pw_qpolynomial_fold *pwf);
4626 #include <isl/set.h>
4627 __isl_give isl_basic_set *isl_basic_set_fix_si(
4628 __isl_take isl_basic_set *bset,
4629 enum isl_dim_type type, unsigned pos, int value);
4630 __isl_give isl_basic_set *isl_basic_set_fix_val(
4631 __isl_take isl_basic_set *bset,
4632 enum isl_dim_type type, unsigned pos,
4633 __isl_take isl_val *v);
4634 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
4635 enum isl_dim_type type, unsigned pos, int value);
4636 __isl_give isl_set *isl_set_fix_val(
4637 __isl_take isl_set *set,
4638 enum isl_dim_type type, unsigned pos,
4639 __isl_take isl_val *v);
4641 #include <isl/map.h>
4642 __isl_give isl_basic_map *isl_basic_map_fix_si(
4643 __isl_take isl_basic_map *bmap,
4644 enum isl_dim_type type, unsigned pos, int value);
4645 __isl_give isl_basic_map *isl_basic_map_fix_val(
4646 __isl_take isl_basic_map *bmap,
4647 enum isl_dim_type type, unsigned pos,
4648 __isl_take isl_val *v);
4649 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
4650 enum isl_dim_type type, unsigned pos, int value);
4651 __isl_give isl_map *isl_map_fix_val(
4652 __isl_take isl_map *map,
4653 enum isl_dim_type type, unsigned pos,
4654 __isl_take isl_val *v);
4656 #include <isl/aff.h>
4657 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
4658 __isl_take isl_pw_multi_aff *pma,
4659 enum isl_dim_type type, unsigned pos, int value);
4661 #include <isl/polynomial.h>
4662 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
4663 __isl_take isl_pw_qpolynomial *pwqp,
4664 enum isl_dim_type type, unsigned n,
4665 __isl_take isl_val *v);
4667 Intersect the set, relation or function domain
4668 with the hyperplane where the given
4669 dimension has the fixed given value.
4671 #include <isl/set.h>
4672 __isl_give isl_basic_set *
4673 isl_basic_set_lower_bound_val(
4674 __isl_take isl_basic_set *bset,
4675 enum isl_dim_type type, unsigned pos,
4676 __isl_take isl_val *value);
4677 __isl_give isl_basic_set *
4678 isl_basic_set_upper_bound_val(
4679 __isl_take isl_basic_set *bset,
4680 enum isl_dim_type type, unsigned pos,
4681 __isl_take isl_val *value);
4682 __isl_give isl_set *isl_set_lower_bound_si(
4683 __isl_take isl_set *set,
4684 enum isl_dim_type type, unsigned pos, int value);
4685 __isl_give isl_set *isl_set_lower_bound_val(
4686 __isl_take isl_set *set,
4687 enum isl_dim_type type, unsigned pos,
4688 __isl_take isl_val *value);
4689 __isl_give isl_set *isl_set_upper_bound_si(
4690 __isl_take isl_set *set,
4691 enum isl_dim_type type, unsigned pos, int value);
4692 __isl_give isl_set *isl_set_upper_bound_val(
4693 __isl_take isl_set *set,
4694 enum isl_dim_type type, unsigned pos,
4695 __isl_take isl_val *value);
4697 #include <isl/map.h>
4698 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
4699 __isl_take isl_basic_map *bmap,
4700 enum isl_dim_type type, unsigned pos, int value);
4701 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
4702 __isl_take isl_basic_map *bmap,
4703 enum isl_dim_type type, unsigned pos, int value);
4704 __isl_give isl_map *isl_map_lower_bound_si(
4705 __isl_take isl_map *map,
4706 enum isl_dim_type type, unsigned pos, int value);
4707 __isl_give isl_map *isl_map_upper_bound_si(
4708 __isl_take isl_map *map,
4709 enum isl_dim_type type, unsigned pos, int value);
4711 Intersect the set or relation with the half-space where the given
4712 dimension has a value bounded by the fixed given integer value.
4714 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
4715 enum isl_dim_type type1, int pos1,
4716 enum isl_dim_type type2, int pos2);
4717 __isl_give isl_basic_map *isl_basic_map_equate(
4718 __isl_take isl_basic_map *bmap,
4719 enum isl_dim_type type1, int pos1,
4720 enum isl_dim_type type2, int pos2);
4721 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
4722 enum isl_dim_type type1, int pos1,
4723 enum isl_dim_type type2, int pos2);
4725 Intersect the set or relation with the hyperplane where the given
4726 dimensions are equal to each other.
4728 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
4729 enum isl_dim_type type1, int pos1,
4730 enum isl_dim_type type2, int pos2);
4732 Intersect the relation with the hyperplane where the given
4733 dimensions have opposite values.
4735 __isl_give isl_map *isl_map_order_le(
4736 __isl_take isl_map *map,
4737 enum isl_dim_type type1, int pos1,
4738 enum isl_dim_type type2, int pos2);
4739 __isl_give isl_basic_map *isl_basic_map_order_ge(
4740 __isl_take isl_basic_map *bmap,
4741 enum isl_dim_type type1, int pos1,
4742 enum isl_dim_type type2, int pos2);
4743 __isl_give isl_map *isl_map_order_ge(
4744 __isl_take isl_map *map,
4745 enum isl_dim_type type1, int pos1,
4746 enum isl_dim_type type2, int pos2);
4747 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
4748 enum isl_dim_type type1, int pos1,
4749 enum isl_dim_type type2, int pos2);
4750 __isl_give isl_basic_map *isl_basic_map_order_gt(
4751 __isl_take isl_basic_map *bmap,
4752 enum isl_dim_type type1, int pos1,
4753 enum isl_dim_type type2, int pos2);
4754 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
4755 enum isl_dim_type type1, int pos1,
4756 enum isl_dim_type type2, int pos2);
4758 Intersect the relation with the half-space where the given
4759 dimensions satisfy the given ordering.
4763 #include <isl/aff.h>
4764 __isl_give isl_basic_set *isl_aff_zero_basic_set(
4765 __isl_take isl_aff *aff);
4766 __isl_give isl_basic_set *isl_aff_neg_basic_set(
4767 __isl_take isl_aff *aff);
4768 __isl_give isl_set *isl_pw_aff_pos_set(
4769 __isl_take isl_pw_aff *pa);
4770 __isl_give isl_set *isl_pw_aff_nonneg_set(
4771 __isl_take isl_pw_aff *pwaff);
4772 __isl_give isl_set *isl_pw_aff_zero_set(
4773 __isl_take isl_pw_aff *pwaff);
4774 __isl_give isl_set *isl_pw_aff_non_zero_set(
4775 __isl_take isl_pw_aff *pwaff);
4776 __isl_give isl_union_set *
4777 isl_union_pw_aff_zero_union_set(
4778 __isl_take isl_union_pw_aff *upa);
4779 __isl_give isl_union_set *
4780 isl_multi_union_pw_aff_zero_union_set(
4781 __isl_take isl_multi_union_pw_aff *mupa);
4783 The function C<isl_aff_neg_basic_set> returns a basic set
4784 containing those elements in the domain space
4785 of C<aff> where C<aff> is negative.
4786 The function C<isl_pw_aff_nonneg_set> returns a set
4787 containing those elements in the domain
4788 of C<pwaff> where C<pwaff> is non-negative.
4789 The function C<isl_multi_union_pw_aff_zero_union_set>
4790 returns a union set containing those elements
4791 in the domains of its elements where they are all zero.
4795 __isl_give isl_map *isl_set_identity(
4796 __isl_take isl_set *set);
4797 __isl_give isl_union_map *isl_union_set_identity(
4798 __isl_take isl_union_set *uset);
4799 __isl_give isl_union_pw_multi_aff *
4800 isl_union_set_identity_union_pw_multi_aff(
4801 __isl_take isl_union_set *uset);
4803 Construct an identity relation on the given (union) set.
4805 =item * Function Extraction
4807 A piecewise quasi affine expression that is equal to 1 on a set
4808 and 0 outside the set can be created using the following function.
4810 #include <isl/aff.h>
4811 __isl_give isl_pw_aff *isl_set_indicator_function(
4812 __isl_take isl_set *set);
4814 A piecewise multiple quasi affine expression can be extracted
4815 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4816 and the C<isl_map> is single-valued.
4817 In case of a conversion from an C<isl_union_map>
4818 to an C<isl_union_pw_multi_aff>, these properties need to hold
4819 in each domain space.
4820 A conversion to a C<isl_multi_union_pw_aff> additionally
4821 requires that the input is non-empty and involves only a single
4824 #include <isl/aff.h>
4825 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4826 __isl_take isl_set *set);
4827 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4828 __isl_take isl_map *map);
4830 __isl_give isl_union_pw_multi_aff *
4831 isl_union_pw_multi_aff_from_union_set(
4832 __isl_take isl_union_set *uset);
4833 __isl_give isl_union_pw_multi_aff *
4834 isl_union_pw_multi_aff_from_union_map(
4835 __isl_take isl_union_map *umap);
4837 __isl_give isl_multi_union_pw_aff *
4838 isl_multi_union_pw_aff_from_union_map(
4839 __isl_take isl_union_map *umap);
4843 __isl_give isl_basic_set *isl_basic_map_deltas(
4844 __isl_take isl_basic_map *bmap);
4845 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
4846 __isl_give isl_union_set *isl_union_map_deltas(
4847 __isl_take isl_union_map *umap);
4849 These functions return a (basic) set containing the differences
4850 between image elements and corresponding domain elements in the input.
4852 __isl_give isl_basic_map *isl_basic_map_deltas_map(
4853 __isl_take isl_basic_map *bmap);
4854 __isl_give isl_map *isl_map_deltas_map(
4855 __isl_take isl_map *map);
4856 __isl_give isl_union_map *isl_union_map_deltas_map(
4857 __isl_take isl_union_map *umap);
4859 The functions above construct a (basic, regular or union) relation
4860 that maps (a wrapped version of) the input relation to its delta set.
4864 Simplify the representation of a set, relation or functions by trying
4865 to combine pairs of basic sets or relations into a single
4866 basic set or relation.
4868 #include <isl/set.h>
4869 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
4871 #include <isl/map.h>
4872 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
4874 #include <isl/union_set.h>
4875 __isl_give isl_union_set *isl_union_set_coalesce(
4876 __isl_take isl_union_set *uset);
4878 #include <isl/union_map.h>
4879 __isl_give isl_union_map *isl_union_map_coalesce(
4880 __isl_take isl_union_map *umap);
4882 #include <isl/aff.h>
4883 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
4884 __isl_take isl_pw_aff *pwqp);
4885 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
4886 __isl_take isl_pw_multi_aff *pma);
4887 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
4888 __isl_take isl_multi_pw_aff *mpa);
4889 __isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce(
4890 __isl_take isl_union_pw_aff *upa);
4891 __isl_give isl_union_pw_multi_aff *
4892 isl_union_pw_multi_aff_coalesce(
4893 __isl_take isl_union_pw_multi_aff *upma);
4894 __isl_give isl_multi_union_pw_aff *
4895 isl_multi_union_pw_aff_coalesce(
4896 __isl_take isl_multi_union_pw_aff *aff);
4898 #include <isl/polynomial.h>
4899 __isl_give isl_pw_qpolynomial_fold *
4900 isl_pw_qpolynomial_fold_coalesce(
4901 __isl_take isl_pw_qpolynomial_fold *pwf);
4902 __isl_give isl_union_pw_qpolynomial *
4903 isl_union_pw_qpolynomial_coalesce(
4904 __isl_take isl_union_pw_qpolynomial *upwqp);
4905 __isl_give isl_union_pw_qpolynomial_fold *
4906 isl_union_pw_qpolynomial_fold_coalesce(
4907 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4909 One of the methods for combining pairs of basic sets or relations
4910 can result in coefficients that are much larger than those that appear
4911 in the constraints of the input. By default, the coefficients are
4912 not allowed to grow larger, but this can be changed by unsetting
4913 the following option.
4915 isl_stat isl_options_set_coalesce_bounded_wrapping(
4916 isl_ctx *ctx, int val);
4917 int isl_options_get_coalesce_bounded_wrapping(
4920 =item * Detecting equalities
4922 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
4923 __isl_take isl_basic_set *bset);
4924 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
4925 __isl_take isl_basic_map *bmap);
4926 __isl_give isl_set *isl_set_detect_equalities(
4927 __isl_take isl_set *set);
4928 __isl_give isl_map *isl_map_detect_equalities(
4929 __isl_take isl_map *map);
4930 __isl_give isl_union_set *isl_union_set_detect_equalities(
4931 __isl_take isl_union_set *uset);
4932 __isl_give isl_union_map *isl_union_map_detect_equalities(
4933 __isl_take isl_union_map *umap);
4935 Simplify the representation of a set or relation by detecting implicit
4938 =item * Removing redundant constraints
4940 #include <isl/set.h>
4941 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
4942 __isl_take isl_basic_set *bset);
4943 __isl_give isl_set *isl_set_remove_redundancies(
4944 __isl_take isl_set *set);
4946 #include <isl/union_set.h>
4947 __isl_give isl_union_set *
4948 isl_union_set_remove_redundancies(
4949 __isl_take isl_union_set *uset);
4951 #include <isl/map.h>
4952 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
4953 __isl_take isl_basic_map *bmap);
4954 __isl_give isl_map *isl_map_remove_redundancies(
4955 __isl_take isl_map *map);
4957 #include <isl/union_map.h>
4958 __isl_give isl_union_map *
4959 isl_union_map_remove_redundancies(
4960 __isl_take isl_union_map *umap);
4964 __isl_give isl_basic_set *isl_set_convex_hull(
4965 __isl_take isl_set *set);
4966 __isl_give isl_basic_map *isl_map_convex_hull(
4967 __isl_take isl_map *map);
4969 If the input set or relation has any existentially quantified
4970 variables, then the result of these operations is currently undefined.
4974 #include <isl/set.h>
4975 __isl_give isl_basic_set *
4976 isl_set_unshifted_simple_hull(
4977 __isl_take isl_set *set);
4978 __isl_give isl_basic_set *isl_set_simple_hull(
4979 __isl_take isl_set *set);
4980 __isl_give isl_basic_set *
4981 isl_set_plain_unshifted_simple_hull(
4982 __isl_take isl_set *set);
4983 __isl_give isl_basic_set *
4984 isl_set_unshifted_simple_hull_from_set_list(
4985 __isl_take isl_set *set,
4986 __isl_take isl_set_list *list);
4988 #include <isl/map.h>
4989 __isl_give isl_basic_map *
4990 isl_map_unshifted_simple_hull(
4991 __isl_take isl_map *map);
4992 __isl_give isl_basic_map *isl_map_simple_hull(
4993 __isl_take isl_map *map);
4994 __isl_give isl_basic_map *
4995 isl_map_plain_unshifted_simple_hull(
4996 __isl_take isl_map *map);
4997 __isl_give isl_basic_map *
4998 isl_map_unshifted_simple_hull_from_map_list(
4999 __isl_take isl_map *map,
5000 __isl_take isl_map_list *list);
5002 #include <isl/union_map.h>
5003 __isl_give isl_union_map *isl_union_map_simple_hull(
5004 __isl_take isl_union_map *umap);
5006 These functions compute a single basic set or relation
5007 that contains the whole input set or relation.
5008 In particular, the output is described by translates
5009 of the constraints describing the basic sets or relations in the input.
5010 In case of C<isl_set_unshifted_simple_hull>, only the original
5011 constraints are used, without any translation.
5012 In case of C<isl_set_plain_unshifted_simple_hull> and
5013 C<isl_map_plain_unshifted_simple_hull>, the result is described
5014 by original constraints that are obviously satisfied
5015 by the entire input set or relation.
5016 In case of C<isl_set_unshifted_simple_hull_from_set_list> and
5017 C<isl_map_unshifted_simple_hull_from_map_list>, the
5018 constraints are taken from the elements of the second argument.
5022 (See \autoref{s:simple hull}.)
5028 __isl_give isl_basic_set *isl_basic_set_affine_hull(
5029 __isl_take isl_basic_set *bset);
5030 __isl_give isl_basic_set *isl_set_affine_hull(
5031 __isl_take isl_set *set);
5032 __isl_give isl_union_set *isl_union_set_affine_hull(
5033 __isl_take isl_union_set *uset);
5034 __isl_give isl_basic_map *isl_basic_map_affine_hull(
5035 __isl_take isl_basic_map *bmap);
5036 __isl_give isl_basic_map *isl_map_affine_hull(
5037 __isl_take isl_map *map);
5038 __isl_give isl_union_map *isl_union_map_affine_hull(
5039 __isl_take isl_union_map *umap);
5041 In case of union sets and relations, the affine hull is computed
5044 =item * Polyhedral hull
5046 __isl_give isl_basic_set *isl_set_polyhedral_hull(
5047 __isl_take isl_set *set);
5048 __isl_give isl_basic_map *isl_map_polyhedral_hull(
5049 __isl_take isl_map *map);
5050 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
5051 __isl_take isl_union_set *uset);
5052 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
5053 __isl_take isl_union_map *umap);
5055 These functions compute a single basic set or relation
5056 not involving any existentially quantified variables
5057 that contains the whole input set or relation.
5058 In case of union sets and relations, the polyhedral hull is computed
5061 =item * Other approximations
5063 #include <isl/set.h>
5064 __isl_give isl_basic_set *
5065 isl_basic_set_drop_constraints_involving_dims(
5066 __isl_take isl_basic_set *bset,
5067 enum isl_dim_type type,
5068 unsigned first, unsigned n);
5069 __isl_give isl_basic_set *
5070 isl_basic_set_drop_constraints_not_involving_dims(
5071 __isl_take isl_basic_set *bset,
5072 enum isl_dim_type type,
5073 unsigned first, unsigned n);
5074 __isl_give isl_set *
5075 isl_set_drop_constraints_involving_dims(
5076 __isl_take isl_set *set,
5077 enum isl_dim_type type,
5078 unsigned first, unsigned n);
5079 __isl_give isl_set *
5080 isl_set_drop_constraints_not_involving_dims(
5081 __isl_take isl_set *set,
5082 enum isl_dim_type type,
5083 unsigned first, unsigned n);
5085 #include <isl/map.h>
5086 __isl_give isl_basic_map *
5087 isl_basic_map_drop_constraints_involving_dims(
5088 __isl_take isl_basic_map *bmap,
5089 enum isl_dim_type type,
5090 unsigned first, unsigned n);
5091 __isl_give isl_basic_map *
5092 isl_basic_map_drop_constraints_not_involving_dims(
5093 __isl_take isl_basic_map *bmap,
5094 enum isl_dim_type type,
5095 unsigned first, unsigned n);
5096 __isl_give isl_map *
5097 isl_map_drop_constraints_involving_dims(
5098 __isl_take isl_map *map,
5099 enum isl_dim_type type,
5100 unsigned first, unsigned n);
5101 __isl_give isl_map *
5102 isl_map_drop_constraints_not_involving_dims(
5103 __isl_take isl_map *map,
5104 enum isl_dim_type type,
5105 unsigned first, unsigned n);
5107 These functions drop any constraints (not) involving the specified dimensions.
5108 Note that the result depends on the representation of the input.
5110 #include <isl/polynomial.h>
5111 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5112 __isl_take isl_pw_qpolynomial *pwqp, int sign);
5113 __isl_give isl_union_pw_qpolynomial *
5114 isl_union_pw_qpolynomial_to_polynomial(
5115 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
5117 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
5118 the polynomial will be an overapproximation. If C<sign> is negative,
5119 it will be an underapproximation. If C<sign> is zero, the approximation
5120 will lie somewhere in between.
5124 __isl_give isl_basic_set *isl_basic_set_sample(
5125 __isl_take isl_basic_set *bset);
5126 __isl_give isl_basic_set *isl_set_sample(
5127 __isl_take isl_set *set);
5128 __isl_give isl_basic_map *isl_basic_map_sample(
5129 __isl_take isl_basic_map *bmap);
5130 __isl_give isl_basic_map *isl_map_sample(
5131 __isl_take isl_map *map);
5133 If the input (basic) set or relation is non-empty, then return
5134 a singleton subset of the input. Otherwise, return an empty set.
5136 =item * Optimization
5138 #include <isl/ilp.h>
5139 __isl_give isl_val *isl_basic_set_max_val(
5140 __isl_keep isl_basic_set *bset,
5141 __isl_keep isl_aff *obj);
5142 __isl_give isl_val *isl_set_min_val(
5143 __isl_keep isl_set *set,
5144 __isl_keep isl_aff *obj);
5145 __isl_give isl_val *isl_set_max_val(
5146 __isl_keep isl_set *set,
5147 __isl_keep isl_aff *obj);
5148 __isl_give isl_multi_val *
5149 isl_union_set_min_multi_union_pw_aff(
5150 __isl_keep isl_union_set *set,
5151 __isl_keep isl_multi_union_pw_aff *obj);
5153 Compute the minimum or maximum of the integer affine expression C<obj>
5154 over the points in C<set>, returning the result in C<opt>.
5155 The result is C<NULL> in case of an error, the optimal value in case
5156 there is one, negative infinity or infinity if the problem is unbounded and
5157 NaN if the problem is empty.
5159 =item * Parametric optimization
5161 __isl_give isl_pw_aff *isl_set_dim_min(
5162 __isl_take isl_set *set, int pos);
5163 __isl_give isl_pw_aff *isl_set_dim_max(
5164 __isl_take isl_set *set, int pos);
5165 __isl_give isl_pw_aff *isl_map_dim_min(
5166 __isl_take isl_map *map, int pos);
5167 __isl_give isl_pw_aff *isl_map_dim_max(
5168 __isl_take isl_map *map, int pos);
5170 Compute the minimum or maximum of the given set or output dimension
5171 as a function of the parameters (and input dimensions), but independently
5172 of the other set or output dimensions.
5173 For lexicographic optimization, see L<"Lexicographic Optimization">.
5177 The following functions compute either the set of (rational) coefficient
5178 values of valid constraints for the given set or the set of (rational)
5179 values satisfying the constraints with coefficients from the given set.
5180 Internally, these two sets of functions perform essentially the
5181 same operations, except that the set of coefficients is assumed to
5182 be a cone, while the set of values may be any polyhedron.
5183 The current implementation is based on the Farkas lemma and
5184 Fourier-Motzkin elimination, but this may change or be made optional
5185 in future. In particular, future implementations may use different
5186 dualization algorithms or skip the elimination step.
5188 #include <isl/set.h>
5189 __isl_give isl_basic_set *isl_basic_set_coefficients(
5190 __isl_take isl_basic_set *bset);
5191 __isl_give isl_basic_set_list *
5192 isl_basic_set_list_coefficients(
5193 __isl_take isl_basic_set_list *list);
5194 __isl_give isl_basic_set *isl_set_coefficients(
5195 __isl_take isl_set *set);
5196 __isl_give isl_union_set *isl_union_set_coefficients(
5197 __isl_take isl_union_set *bset);
5198 __isl_give isl_basic_set *isl_basic_set_solutions(
5199 __isl_take isl_basic_set *bset);
5200 __isl_give isl_basic_set *isl_set_solutions(
5201 __isl_take isl_set *set);
5202 __isl_give isl_union_set *isl_union_set_solutions(
5203 __isl_take isl_union_set *bset);
5207 __isl_give isl_map *isl_map_fixed_power_val(
5208 __isl_take isl_map *map,
5209 __isl_take isl_val *exp);
5210 __isl_give isl_union_map *
5211 isl_union_map_fixed_power_val(
5212 __isl_take isl_union_map *umap,
5213 __isl_take isl_val *exp);
5215 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
5216 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
5217 of C<map> is computed.
5219 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
5221 __isl_give isl_union_map *isl_union_map_power(
5222 __isl_take isl_union_map *umap, int *exact);
5224 Compute a parametric representation for all positive powers I<k> of C<map>.
5225 The result maps I<k> to a nested relation corresponding to the
5226 I<k>th power of C<map>.
5227 The result may be an overapproximation. If the result is known to be exact,
5228 then C<*exact> is set to C<1>.
5230 =item * Transitive closure
5232 __isl_give isl_map *isl_map_transitive_closure(
5233 __isl_take isl_map *map, int *exact);
5234 __isl_give isl_union_map *isl_union_map_transitive_closure(
5235 __isl_take isl_union_map *umap, int *exact);
5237 Compute the transitive closure of C<map>.
5238 The result may be an overapproximation. If the result is known to be exact,
5239 then C<*exact> is set to C<1>.
5241 =item * Reaching path lengths
5243 __isl_give isl_map *isl_map_reaching_path_lengths(
5244 __isl_take isl_map *map, int *exact);
5246 Compute a relation that maps each element in the range of C<map>
5247 to the lengths of all paths composed of edges in C<map> that
5248 end up in the given element.
5249 The result may be an overapproximation. If the result is known to be exact,
5250 then C<*exact> is set to C<1>.
5251 To compute the I<maximal> path length, the resulting relation
5252 should be postprocessed by C<isl_map_lexmax>.
5253 In particular, if the input relation is a dependence relation
5254 (mapping sources to sinks), then the maximal path length corresponds
5255 to the free schedule.
5256 Note, however, that C<isl_map_lexmax> expects the maximum to be
5257 finite, so if the path lengths are unbounded (possibly due to
5258 the overapproximation), then you will get an error message.
5262 #include <isl/space.h>
5263 __isl_give isl_space *isl_space_wrap(
5264 __isl_take isl_space *space);
5265 __isl_give isl_space *isl_space_unwrap(
5266 __isl_take isl_space *space);
5268 #include <isl/local_space.h>
5269 __isl_give isl_local_space *isl_local_space_wrap(
5270 __isl_take isl_local_space *ls);
5272 #include <isl/set.h>
5273 __isl_give isl_basic_map *isl_basic_set_unwrap(
5274 __isl_take isl_basic_set *bset);
5275 __isl_give isl_map *isl_set_unwrap(
5276 __isl_take isl_set *set);
5278 #include <isl/map.h>
5279 __isl_give isl_basic_set *isl_basic_map_wrap(
5280 __isl_take isl_basic_map *bmap);
5281 __isl_give isl_set *isl_map_wrap(
5282 __isl_take isl_map *map);
5284 #include <isl/union_set.h>
5285 __isl_give isl_union_map *isl_union_set_unwrap(
5286 __isl_take isl_union_set *uset);
5288 #include <isl/union_map.h>
5289 __isl_give isl_union_set *isl_union_map_wrap(
5290 __isl_take isl_union_map *umap);
5292 The input to C<isl_space_unwrap> should
5293 be the space of a set, while that of
5294 C<isl_space_wrap> should be the space of a relation.
5295 Conversely, the output of C<isl_space_unwrap> is the space
5296 of a relation, while that of C<isl_space_wrap> is the space of a set.
5300 Remove any internal structure of domain (and range) of the given
5301 set or relation. If there is any such internal structure in the input,
5302 then the name of the space is also removed.
5304 #include <isl/local_space.h>
5305 __isl_give isl_local_space *
5306 isl_local_space_flatten_domain(
5307 __isl_take isl_local_space *ls);
5308 __isl_give isl_local_space *
5309 isl_local_space_flatten_range(
5310 __isl_take isl_local_space *ls);
5312 #include <isl/set.h>
5313 __isl_give isl_basic_set *isl_basic_set_flatten(
5314 __isl_take isl_basic_set *bset);
5315 __isl_give isl_set *isl_set_flatten(
5316 __isl_take isl_set *set);
5318 #include <isl/map.h>
5319 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
5320 __isl_take isl_basic_map *bmap);
5321 __isl_give isl_basic_map *isl_basic_map_flatten_range(
5322 __isl_take isl_basic_map *bmap);
5323 __isl_give isl_map *isl_map_flatten_range(
5324 __isl_take isl_map *map);
5325 __isl_give isl_map *isl_map_flatten_domain(
5326 __isl_take isl_map *map);
5327 __isl_give isl_basic_map *isl_basic_map_flatten(
5328 __isl_take isl_basic_map *bmap);
5329 __isl_give isl_map *isl_map_flatten(
5330 __isl_take isl_map *map);
5332 #include <isl/val.h>
5333 __isl_give isl_multi_val *isl_multi_val_flatten_range(
5334 __isl_take isl_multi_val *mv);
5336 #include <isl/aff.h>
5337 __isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
5338 __isl_take isl_multi_aff *ma);
5339 __isl_give isl_multi_aff *isl_multi_aff_flatten_range(
5340 __isl_take isl_multi_aff *ma);
5341 __isl_give isl_multi_pw_aff *
5342 isl_multi_pw_aff_flatten_range(
5343 __isl_take isl_multi_pw_aff *mpa);
5344 __isl_give isl_multi_union_pw_aff *
5345 isl_multi_union_pw_aff_flatten_range(
5346 __isl_take isl_multi_union_pw_aff *mupa);
5348 #include <isl/map.h>
5349 __isl_give isl_map *isl_set_flatten_map(
5350 __isl_take isl_set *set);
5352 The function above constructs a relation
5353 that maps the input set to a flattened version of the set.
5357 Lift the input set to a space with extra dimensions corresponding
5358 to the existentially quantified variables in the input.
5359 In particular, the result lives in a wrapped map where the domain
5360 is the original space and the range corresponds to the original
5361 existentially quantified variables.
5363 #include <isl/set.h>
5364 __isl_give isl_basic_set *isl_basic_set_lift(
5365 __isl_take isl_basic_set *bset);
5366 __isl_give isl_set *isl_set_lift(
5367 __isl_take isl_set *set);
5368 __isl_give isl_union_set *isl_union_set_lift(
5369 __isl_take isl_union_set *uset);
5371 Given a local space that contains the existentially quantified
5372 variables of a set, a basic relation that, when applied to
5373 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
5374 can be constructed using the following function.
5376 #include <isl/local_space.h>
5377 __isl_give isl_basic_map *isl_local_space_lifting(
5378 __isl_take isl_local_space *ls);
5380 #include <isl/aff.h>
5381 __isl_give isl_multi_aff *isl_multi_aff_lift(
5382 __isl_take isl_multi_aff *maff,
5383 __isl_give isl_local_space **ls);
5385 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
5386 then it is assigned the local space that lies at the basis of
5387 the lifting applied.
5389 =item * Internal Product
5391 #include <isl/space.h>
5392 __isl_give isl_space *isl_space_zip(
5393 __isl_take isl_space *space);
5395 #include <isl/map.h>
5396 __isl_give isl_basic_map *isl_basic_map_zip(
5397 __isl_take isl_basic_map *bmap);
5398 __isl_give isl_map *isl_map_zip(
5399 __isl_take isl_map *map);
5401 #include <isl/union_map.h>
5402 __isl_give isl_union_map *isl_union_map_zip(
5403 __isl_take isl_union_map *umap);
5405 Given a relation with nested relations for domain and range,
5406 interchange the range of the domain with the domain of the range.
5410 #include <isl/space.h>
5411 __isl_give isl_space *isl_space_curry(
5412 __isl_take isl_space *space);
5413 __isl_give isl_space *isl_space_uncurry(
5414 __isl_take isl_space *space);
5416 #include <isl/map.h>
5417 __isl_give isl_basic_map *isl_basic_map_curry(
5418 __isl_take isl_basic_map *bmap);
5419 __isl_give isl_basic_map *isl_basic_map_uncurry(
5420 __isl_take isl_basic_map *bmap);
5421 __isl_give isl_map *isl_map_curry(
5422 __isl_take isl_map *map);
5423 __isl_give isl_map *isl_map_uncurry(
5424 __isl_take isl_map *map);
5426 #include <isl/union_map.h>
5427 __isl_give isl_union_map *isl_union_map_curry(
5428 __isl_take isl_union_map *umap);
5429 __isl_give isl_union_map *isl_union_map_uncurry(
5430 __isl_take isl_union_map *umap);
5432 Given a relation with a nested relation for domain,
5433 the C<curry> functions
5434 move the range of the nested relation out of the domain
5435 and use it as the domain of a nested relation in the range,
5436 with the original range as range of this nested relation.
5437 The C<uncurry> functions perform the inverse operation.
5439 #include <isl/space.h>
5440 __isl_give isl_space *isl_space_range_curry(
5441 __isl_take isl_space *space);
5443 #include <isl/map.h>
5444 __isl_give isl_map *isl_map_range_curry(
5445 __isl_take isl_map *map);
5447 #include <isl/union_map.h>
5448 __isl_give isl_union_map *isl_union_map_range_curry(
5449 __isl_take isl_union_map *umap);
5451 These functions apply the currying to the relation that
5452 is nested inside the range of the input.
5454 =item * Aligning parameters
5456 Change the order of the parameters of the given set, relation
5458 such that the first parameters match those of C<model>.
5459 This may involve the introduction of extra parameters.
5460 All parameters need to be named.
5462 #include <isl/space.h>
5463 __isl_give isl_space *isl_space_align_params(
5464 __isl_take isl_space *space1,
5465 __isl_take isl_space *space2)
5467 #include <isl/set.h>
5468 __isl_give isl_basic_set *isl_basic_set_align_params(
5469 __isl_take isl_basic_set *bset,
5470 __isl_take isl_space *model);
5471 __isl_give isl_set *isl_set_align_params(
5472 __isl_take isl_set *set,
5473 __isl_take isl_space *model);
5475 #include <isl/map.h>
5476 __isl_give isl_basic_map *isl_basic_map_align_params(
5477 __isl_take isl_basic_map *bmap,
5478 __isl_take isl_space *model);
5479 __isl_give isl_map *isl_map_align_params(
5480 __isl_take isl_map *map,
5481 __isl_take isl_space *model);
5483 #include <isl/val.h>
5484 __isl_give isl_multi_val *isl_multi_val_align_params(
5485 __isl_take isl_multi_val *mv,
5486 __isl_take isl_space *model);
5488 #include <isl/aff.h>
5489 __isl_give isl_aff *isl_aff_align_params(
5490 __isl_take isl_aff *aff,
5491 __isl_take isl_space *model);
5492 __isl_give isl_multi_aff *isl_multi_aff_align_params(
5493 __isl_take isl_multi_aff *multi,
5494 __isl_take isl_space *model);
5495 __isl_give isl_pw_aff *isl_pw_aff_align_params(
5496 __isl_take isl_pw_aff *pwaff,
5497 __isl_take isl_space *model);
5498 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
5499 __isl_take isl_pw_multi_aff *pma,
5500 __isl_take isl_space *model);
5501 __isl_give isl_union_pw_aff *
5502 isl_union_pw_aff_align_params(
5503 __isl_take isl_union_pw_aff *upa,
5504 __isl_take isl_space *model);
5505 __isl_give isl_union_pw_multi_aff *
5506 isl_union_pw_multi_aff_align_params(
5507 __isl_take isl_union_pw_multi_aff *upma,
5508 __isl_take isl_space *model);
5509 __isl_give isl_multi_union_pw_aff *
5510 isl_multi_union_pw_aff_align_params(
5511 __isl_take isl_multi_union_pw_aff *mupa,
5512 __isl_take isl_space *model);
5514 #include <isl/polynomial.h>
5515 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
5516 __isl_take isl_qpolynomial *qp,
5517 __isl_take isl_space *model);
5519 =item * Unary Arithmetic Operations
5521 #include <isl/set.h>
5522 __isl_give isl_set *isl_set_neg(
5523 __isl_take isl_set *set);
5524 #include <isl/map.h>
5525 __isl_give isl_map *isl_map_neg(
5526 __isl_take isl_map *map);
5528 C<isl_set_neg> constructs a set containing the opposites of
5529 the elements in its argument.
5530 The domain of the result of C<isl_map_neg> is the same
5531 as the domain of its argument. The corresponding range
5532 elements are the opposites of the corresponding range
5533 elements in the argument.
5535 #include <isl/val.h>
5536 __isl_give isl_multi_val *isl_multi_val_neg(
5537 __isl_take isl_multi_val *mv);
5539 #include <isl/aff.h>
5540 __isl_give isl_aff *isl_aff_neg(
5541 __isl_take isl_aff *aff);
5542 __isl_give isl_multi_aff *isl_multi_aff_neg(
5543 __isl_take isl_multi_aff *ma);
5544 __isl_give isl_pw_aff *isl_pw_aff_neg(
5545 __isl_take isl_pw_aff *pwaff);
5546 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg(
5547 __isl_take isl_pw_multi_aff *pma);
5548 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg(
5549 __isl_take isl_multi_pw_aff *mpa);
5550 __isl_give isl_union_pw_aff *isl_union_pw_aff_neg(
5551 __isl_take isl_union_pw_aff *upa);
5552 __isl_give isl_union_pw_multi_aff *
5553 isl_union_pw_multi_aff_neg(
5554 __isl_take isl_union_pw_multi_aff *upma);
5555 __isl_give isl_multi_union_pw_aff *
5556 isl_multi_union_pw_aff_neg(
5557 __isl_take isl_multi_union_pw_aff *mupa);
5558 __isl_give isl_aff *isl_aff_ceil(
5559 __isl_take isl_aff *aff);
5560 __isl_give isl_pw_aff *isl_pw_aff_ceil(
5561 __isl_take isl_pw_aff *pwaff);
5562 __isl_give isl_aff *isl_aff_floor(
5563 __isl_take isl_aff *aff);
5564 __isl_give isl_multi_aff *isl_multi_aff_floor(
5565 __isl_take isl_multi_aff *ma);
5566 __isl_give isl_pw_aff *isl_pw_aff_floor(
5567 __isl_take isl_pw_aff *pwaff);
5568 __isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
5569 __isl_take isl_union_pw_aff *upa);
5570 __isl_give isl_multi_union_pw_aff *
5571 isl_multi_union_pw_aff_floor(
5572 __isl_take isl_multi_union_pw_aff *mupa);
5574 #include <isl/aff.h>
5575 __isl_give isl_pw_aff *isl_pw_aff_list_min(
5576 __isl_take isl_pw_aff_list *list);
5577 __isl_give isl_pw_aff *isl_pw_aff_list_max(
5578 __isl_take isl_pw_aff_list *list);
5580 #include <isl/polynomial.h>
5581 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
5582 __isl_take isl_qpolynomial *qp);
5583 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
5584 __isl_take isl_pw_qpolynomial *pwqp);
5585 __isl_give isl_union_pw_qpolynomial *
5586 isl_union_pw_qpolynomial_neg(
5587 __isl_take isl_union_pw_qpolynomial *upwqp);
5588 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
5589 __isl_take isl_qpolynomial *qp,
5591 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
5592 __isl_take isl_pw_qpolynomial *pwqp,
5597 The following functions evaluate a function in a point.
5599 #include <isl/polynomial.h>
5600 __isl_give isl_val *isl_pw_qpolynomial_eval(
5601 __isl_take isl_pw_qpolynomial *pwqp,
5602 __isl_take isl_point *pnt);
5603 __isl_give isl_val *isl_pw_qpolynomial_fold_eval(
5604 __isl_take isl_pw_qpolynomial_fold *pwf,
5605 __isl_take isl_point *pnt);
5606 __isl_give isl_val *isl_union_pw_qpolynomial_eval(
5607 __isl_take isl_union_pw_qpolynomial *upwqp,
5608 __isl_take isl_point *pnt);
5609 __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
5610 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5611 __isl_take isl_point *pnt);
5613 =item * Dimension manipulation
5615 It is usually not advisable to directly change the (input or output)
5616 space of a set or a relation as this removes the name and the internal
5617 structure of the space. However, the functions below can be useful
5618 to add new parameters, assuming
5619 C<isl_set_align_params> and C<isl_map_align_params>
5622 #include <isl/space.h>
5623 __isl_give isl_space *isl_space_add_dims(
5624 __isl_take isl_space *space,
5625 enum isl_dim_type type, unsigned n);
5626 __isl_give isl_space *isl_space_insert_dims(
5627 __isl_take isl_space *space,
5628 enum isl_dim_type type, unsigned pos, unsigned n);
5629 __isl_give isl_space *isl_space_drop_dims(
5630 __isl_take isl_space *space,
5631 enum isl_dim_type type, unsigned first, unsigned n);
5632 __isl_give isl_space *isl_space_move_dims(
5633 __isl_take isl_space *space,
5634 enum isl_dim_type dst_type, unsigned dst_pos,
5635 enum isl_dim_type src_type, unsigned src_pos,
5638 #include <isl/local_space.h>
5639 __isl_give isl_local_space *isl_local_space_add_dims(
5640 __isl_take isl_local_space *ls,
5641 enum isl_dim_type type, unsigned n);
5642 __isl_give isl_local_space *isl_local_space_insert_dims(
5643 __isl_take isl_local_space *ls,
5644 enum isl_dim_type type, unsigned first, unsigned n);
5645 __isl_give isl_local_space *isl_local_space_drop_dims(
5646 __isl_take isl_local_space *ls,
5647 enum isl_dim_type type, unsigned first, unsigned n);
5649 #include <isl/set.h>
5650 __isl_give isl_basic_set *isl_basic_set_add_dims(
5651 __isl_take isl_basic_set *bset,
5652 enum isl_dim_type type, unsigned n);
5653 __isl_give isl_set *isl_set_add_dims(
5654 __isl_take isl_set *set,
5655 enum isl_dim_type type, unsigned n);
5656 __isl_give isl_basic_set *isl_basic_set_insert_dims(
5657 __isl_take isl_basic_set *bset,
5658 enum isl_dim_type type, unsigned pos,
5660 __isl_give isl_set *isl_set_insert_dims(
5661 __isl_take isl_set *set,
5662 enum isl_dim_type type, unsigned pos, unsigned n);
5663 __isl_give isl_basic_set *isl_basic_set_move_dims(
5664 __isl_take isl_basic_set *bset,
5665 enum isl_dim_type dst_type, unsigned dst_pos,
5666 enum isl_dim_type src_type, unsigned src_pos,
5668 __isl_give isl_set *isl_set_move_dims(
5669 __isl_take isl_set *set,
5670 enum isl_dim_type dst_type, unsigned dst_pos,
5671 enum isl_dim_type src_type, unsigned src_pos,
5674 #include <isl/map.h>
5675 __isl_give isl_basic_map *isl_basic_map_add_dims(
5676 __isl_take isl_basic_map *bmap,
5677 enum isl_dim_type type, unsigned n);
5678 __isl_give isl_map *isl_map_add_dims(
5679 __isl_take isl_map *map,
5680 enum isl_dim_type type, unsigned n);
5681 __isl_give isl_basic_map *isl_basic_map_insert_dims(
5682 __isl_take isl_basic_map *bmap,
5683 enum isl_dim_type type, unsigned pos,
5685 __isl_give isl_map *isl_map_insert_dims(
5686 __isl_take isl_map *map,
5687 enum isl_dim_type type, unsigned pos, unsigned n);
5688 __isl_give isl_basic_map *isl_basic_map_move_dims(
5689 __isl_take isl_basic_map *bmap,
5690 enum isl_dim_type dst_type, unsigned dst_pos,
5691 enum isl_dim_type src_type, unsigned src_pos,
5693 __isl_give isl_map *isl_map_move_dims(
5694 __isl_take isl_map *map,
5695 enum isl_dim_type dst_type, unsigned dst_pos,
5696 enum isl_dim_type src_type, unsigned src_pos,
5699 #include <isl/val.h>
5700 __isl_give isl_multi_val *isl_multi_val_insert_dims(
5701 __isl_take isl_multi_val *mv,
5702 enum isl_dim_type type, unsigned first, unsigned n);
5703 __isl_give isl_multi_val *isl_multi_val_add_dims(
5704 __isl_take isl_multi_val *mv,
5705 enum isl_dim_type type, unsigned n);
5706 __isl_give isl_multi_val *isl_multi_val_drop_dims(
5707 __isl_take isl_multi_val *mv,
5708 enum isl_dim_type type, unsigned first, unsigned n);
5710 #include <isl/aff.h>
5711 __isl_give isl_aff *isl_aff_insert_dims(
5712 __isl_take isl_aff *aff,
5713 enum isl_dim_type type, unsigned first, unsigned n);
5714 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
5715 __isl_take isl_multi_aff *ma,
5716 enum isl_dim_type type, unsigned first, unsigned n);
5717 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
5718 __isl_take isl_pw_aff *pwaff,
5719 enum isl_dim_type type, unsigned first, unsigned n);
5720 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
5721 __isl_take isl_multi_pw_aff *mpa,
5722 enum isl_dim_type type, unsigned first, unsigned n);
5723 __isl_give isl_aff *isl_aff_add_dims(
5724 __isl_take isl_aff *aff,
5725 enum isl_dim_type type, unsigned n);
5726 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
5727 __isl_take isl_multi_aff *ma,
5728 enum isl_dim_type type, unsigned n);
5729 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
5730 __isl_take isl_pw_aff *pwaff,
5731 enum isl_dim_type type, unsigned n);
5732 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
5733 __isl_take isl_multi_pw_aff *mpa,
5734 enum isl_dim_type type, unsigned n);
5735 __isl_give isl_aff *isl_aff_drop_dims(
5736 __isl_take isl_aff *aff,
5737 enum isl_dim_type type, unsigned first, unsigned n);
5738 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
5739 __isl_take isl_multi_aff *maff,
5740 enum isl_dim_type type, unsigned first, unsigned n);
5741 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
5742 __isl_take isl_pw_aff *pwaff,
5743 enum isl_dim_type type, unsigned first, unsigned n);
5744 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
5745 __isl_take isl_pw_multi_aff *pma,
5746 enum isl_dim_type type, unsigned first, unsigned n);
5747 __isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims(
5748 __isl_take isl_union_pw_aff *upa,
5749 enum isl_dim_type type, unsigned first, unsigned n);
5750 __isl_give isl_union_pw_multi_aff *
5751 isl_union_pw_multi_aff_drop_dims(
5752 __isl_take isl_union_pw_multi_aff *upma,
5753 enum isl_dim_type type,
5754 unsigned first, unsigned n);
5755 __isl_give isl_multi_union_pw_aff *
5756 isl_multi_union_pw_aff_drop_dims(
5757 __isl_take isl_multi_union_pw_aff *mupa,
5758 enum isl_dim_type type, unsigned first,
5760 __isl_give isl_aff *isl_aff_move_dims(
5761 __isl_take isl_aff *aff,
5762 enum isl_dim_type dst_type, unsigned dst_pos,
5763 enum isl_dim_type src_type, unsigned src_pos,
5765 __isl_give isl_multi_aff *isl_multi_aff_move_dims(
5766 __isl_take isl_multi_aff *ma,
5767 enum isl_dim_type dst_type, unsigned dst_pos,
5768 enum isl_dim_type src_type, unsigned src_pos,
5770 __isl_give isl_pw_aff *isl_pw_aff_move_dims(
5771 __isl_take isl_pw_aff *pa,
5772 enum isl_dim_type dst_type, unsigned dst_pos,
5773 enum isl_dim_type src_type, unsigned src_pos,
5775 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
5776 __isl_take isl_multi_pw_aff *pma,
5777 enum isl_dim_type dst_type, unsigned dst_pos,
5778 enum isl_dim_type src_type, unsigned src_pos,
5781 #include <isl/polynomial.h>
5782 __isl_give isl_union_pw_qpolynomial *
5783 isl_union_pw_qpolynomial_drop_dims(
5784 __isl_take isl_union_pw_qpolynomial *upwqp,
5785 enum isl_dim_type type,
5786 unsigned first, unsigned n);
5787 __isl_give isl_union_pw_qpolynomial_fold *
5788 isl_union_pw_qpolynomial_fold_drop_dims(
5789 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5790 enum isl_dim_type type,
5791 unsigned first, unsigned n);
5793 The operations on union expressions can only manipulate parameters.
5797 =head2 Binary Operations
5799 The two arguments of a binary operation not only need to live
5800 in the same C<isl_ctx>, they currently also need to have
5801 the same (number of) parameters.
5803 =head3 Basic Operations
5807 =item * Intersection
5809 #include <isl/local_space.h>
5810 __isl_give isl_local_space *isl_local_space_intersect(
5811 __isl_take isl_local_space *ls1,
5812 __isl_take isl_local_space *ls2);
5814 #include <isl/set.h>
5815 __isl_give isl_basic_set *isl_basic_set_intersect_params(
5816 __isl_take isl_basic_set *bset1,
5817 __isl_take isl_basic_set *bset2);
5818 __isl_give isl_basic_set *isl_basic_set_intersect(
5819 __isl_take isl_basic_set *bset1,
5820 __isl_take isl_basic_set *bset2);
5821 __isl_give isl_basic_set *isl_basic_set_list_intersect(
5822 __isl_take struct isl_basic_set_list *list);
5823 __isl_give isl_set *isl_set_intersect_params(
5824 __isl_take isl_set *set,
5825 __isl_take isl_set *params);
5826 __isl_give isl_set *isl_set_intersect(
5827 __isl_take isl_set *set1,
5828 __isl_take isl_set *set2);
5830 #include <isl/map.h>
5831 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
5832 __isl_take isl_basic_map *bmap,
5833 __isl_take isl_basic_set *bset);
5834 __isl_give isl_basic_map *isl_basic_map_intersect_range(
5835 __isl_take isl_basic_map *bmap,
5836 __isl_take isl_basic_set *bset);
5837 __isl_give isl_basic_map *isl_basic_map_intersect(
5838 __isl_take isl_basic_map *bmap1,
5839 __isl_take isl_basic_map *bmap2);
5840 __isl_give isl_basic_map *isl_basic_map_list_intersect(
5841 __isl_take isl_basic_map_list *list);
5842 __isl_give isl_map *isl_map_intersect_params(
5843 __isl_take isl_map *map,
5844 __isl_take isl_set *params);
5845 __isl_give isl_map *isl_map_intersect_domain(
5846 __isl_take isl_map *map,
5847 __isl_take isl_set *set);
5848 __isl_give isl_map *isl_map_intersect_range(
5849 __isl_take isl_map *map,
5850 __isl_take isl_set *set);
5851 __isl_give isl_map *isl_map_intersect(
5852 __isl_take isl_map *map1,
5853 __isl_take isl_map *map2);
5854 __isl_give isl_map *
5855 isl_map_intersect_domain_factor_range(
5856 __isl_take isl_map *map,
5857 __isl_take isl_map *factor);
5858 __isl_give isl_map *
5859 isl_map_intersect_range_factor_range(
5860 __isl_take isl_map *map,
5861 __isl_take isl_map *factor);
5863 #include <isl/union_set.h>
5864 __isl_give isl_union_set *isl_union_set_intersect_params(
5865 __isl_take isl_union_set *uset,
5866 __isl_take isl_set *set);
5867 __isl_give isl_union_set *isl_union_set_intersect(
5868 __isl_take isl_union_set *uset1,
5869 __isl_take isl_union_set *uset2);
5871 #include <isl/union_map.h>
5872 __isl_give isl_union_map *isl_union_map_intersect_params(
5873 __isl_take isl_union_map *umap,
5874 __isl_take isl_set *set);
5875 __isl_give isl_union_map *isl_union_map_intersect_domain(
5876 __isl_take isl_union_map *umap,
5877 __isl_take isl_union_set *uset);
5878 __isl_give isl_union_map *isl_union_map_intersect_range(
5879 __isl_take isl_union_map *umap,
5880 __isl_take isl_union_set *uset);
5881 __isl_give isl_union_map *isl_union_map_intersect(
5882 __isl_take isl_union_map *umap1,
5883 __isl_take isl_union_map *umap2);
5884 __isl_give isl_union_map *
5885 isl_union_map_intersect_range_factor_range(
5886 __isl_take isl_union_map *umap,
5887 __isl_take isl_union_map *factor);
5889 #include <isl/aff.h>
5890 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
5891 __isl_take isl_pw_aff *pa,
5892 __isl_take isl_set *set);
5893 __isl_give isl_multi_pw_aff *
5894 isl_multi_pw_aff_intersect_domain(
5895 __isl_take isl_multi_pw_aff *mpa,
5896 __isl_take isl_set *domain);
5897 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
5898 __isl_take isl_pw_multi_aff *pma,
5899 __isl_take isl_set *set);
5900 __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain(
5901 __isl_take isl_union_pw_aff *upa,
5902 __isl_take isl_union_set *uset);
5903 __isl_give isl_union_pw_multi_aff *
5904 isl_union_pw_multi_aff_intersect_domain(
5905 __isl_take isl_union_pw_multi_aff *upma,
5906 __isl_take isl_union_set *uset);
5907 __isl_give isl_multi_union_pw_aff *
5908 isl_multi_union_pw_aff_intersect_domain(
5909 __isl_take isl_multi_union_pw_aff *mupa,
5910 __isl_take isl_union_set *uset);
5911 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
5912 __isl_take isl_pw_aff *pa,
5913 __isl_take isl_set *set);
5914 __isl_give isl_multi_pw_aff *
5915 isl_multi_pw_aff_intersect_params(
5916 __isl_take isl_multi_pw_aff *mpa,
5917 __isl_take isl_set *set);
5918 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
5919 __isl_take isl_pw_multi_aff *pma,
5920 __isl_take isl_set *set);
5921 __isl_give isl_union_pw_aff *
5922 isl_union_pw_aff_intersect_params(
5923 __isl_take isl_union_pw_aff *upa,
5924 __isl_give isl_union_pw_multi_aff *
5925 isl_union_pw_multi_aff_intersect_params(
5926 __isl_take isl_union_pw_multi_aff *upma,
5927 __isl_take isl_set *set);
5928 __isl_give isl_multi_union_pw_aff *
5929 isl_multi_union_pw_aff_intersect_params(
5930 __isl_take isl_multi_union_pw_aff *mupa,
5931 __isl_take isl_set *params);
5932 isl_multi_union_pw_aff_intersect_range(
5933 __isl_take isl_multi_union_pw_aff *mupa,
5934 __isl_take isl_set *set);
5936 #include <isl/polynomial.h>
5937 __isl_give isl_pw_qpolynomial *
5938 isl_pw_qpolynomial_intersect_domain(
5939 __isl_take isl_pw_qpolynomial *pwpq,
5940 __isl_take isl_set *set);
5941 __isl_give isl_union_pw_qpolynomial *
5942 isl_union_pw_qpolynomial_intersect_domain(
5943 __isl_take isl_union_pw_qpolynomial *upwpq,
5944 __isl_take isl_union_set *uset);
5945 __isl_give isl_union_pw_qpolynomial_fold *
5946 isl_union_pw_qpolynomial_fold_intersect_domain(
5947 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5948 __isl_take isl_union_set *uset);
5949 __isl_give isl_pw_qpolynomial *
5950 isl_pw_qpolynomial_intersect_params(
5951 __isl_take isl_pw_qpolynomial *pwpq,
5952 __isl_take isl_set *set);
5953 __isl_give isl_pw_qpolynomial_fold *
5954 isl_pw_qpolynomial_fold_intersect_params(
5955 __isl_take isl_pw_qpolynomial_fold *pwf,
5956 __isl_take isl_set *set);
5957 __isl_give isl_union_pw_qpolynomial *
5958 isl_union_pw_qpolynomial_intersect_params(
5959 __isl_take isl_union_pw_qpolynomial *upwpq,
5960 __isl_take isl_set *set);
5961 __isl_give isl_union_pw_qpolynomial_fold *
5962 isl_union_pw_qpolynomial_fold_intersect_params(
5963 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5964 __isl_take isl_set *set);
5966 The second argument to the C<_params> functions needs to be
5967 a parametric (basic) set. For the other functions, a parametric set
5968 for either argument is only allowed if the other argument is
5969 a parametric set as well.
5970 The list passed to C<isl_basic_set_list_intersect> needs to have
5971 at least one element and all elements need to live in the same space.
5972 The function C<isl_multi_union_pw_aff_intersect_range>
5973 restricts the input function to those shared domain elements
5974 that map to the specified range.
5978 #include <isl/set.h>
5979 __isl_give isl_set *isl_basic_set_union(
5980 __isl_take isl_basic_set *bset1,
5981 __isl_take isl_basic_set *bset2);
5982 __isl_give isl_set *isl_set_union(
5983 __isl_take isl_set *set1,
5984 __isl_take isl_set *set2);
5985 __isl_give isl_set *isl_set_list_union(
5986 __isl_take isl_set_list *list);
5988 #include <isl/map.h>
5989 __isl_give isl_map *isl_basic_map_union(
5990 __isl_take isl_basic_map *bmap1,
5991 __isl_take isl_basic_map *bmap2);
5992 __isl_give isl_map *isl_map_union(
5993 __isl_take isl_map *map1,
5994 __isl_take isl_map *map2);
5996 #include <isl/union_set.h>
5997 __isl_give isl_union_set *isl_union_set_union(
5998 __isl_take isl_union_set *uset1,
5999 __isl_take isl_union_set *uset2);
6000 __isl_give isl_union_set *isl_union_set_list_union(
6001 __isl_take isl_union_set_list *list);
6003 #include <isl/union_map.h>
6004 __isl_give isl_union_map *isl_union_map_union(
6005 __isl_take isl_union_map *umap1,
6006 __isl_take isl_union_map *umap2);
6008 The list passed to C<isl_set_list_union> needs to have
6009 at least one element and all elements need to live in the same space.
6011 =item * Set difference
6013 #include <isl/set.h>
6014 __isl_give isl_set *isl_set_subtract(
6015 __isl_take isl_set *set1,
6016 __isl_take isl_set *set2);
6018 #include <isl/map.h>
6019 __isl_give isl_map *isl_map_subtract(
6020 __isl_take isl_map *map1,
6021 __isl_take isl_map *map2);
6022 __isl_give isl_map *isl_map_subtract_domain(
6023 __isl_take isl_map *map,
6024 __isl_take isl_set *dom);
6025 __isl_give isl_map *isl_map_subtract_range(
6026 __isl_take isl_map *map,
6027 __isl_take isl_set *dom);
6029 #include <isl/union_set.h>
6030 __isl_give isl_union_set *isl_union_set_subtract(
6031 __isl_take isl_union_set *uset1,
6032 __isl_take isl_union_set *uset2);
6034 #include <isl/union_map.h>
6035 __isl_give isl_union_map *isl_union_map_subtract(
6036 __isl_take isl_union_map *umap1,
6037 __isl_take isl_union_map *umap2);
6038 __isl_give isl_union_map *isl_union_map_subtract_domain(
6039 __isl_take isl_union_map *umap,
6040 __isl_take isl_union_set *dom);
6041 __isl_give isl_union_map *isl_union_map_subtract_range(
6042 __isl_take isl_union_map *umap,
6043 __isl_take isl_union_set *dom);
6045 #include <isl/aff.h>
6046 __isl_give isl_pw_aff *isl_pw_aff_subtract_domain(
6047 __isl_take isl_pw_aff *pa,
6048 __isl_take isl_set *set);
6049 __isl_give isl_pw_multi_aff *
6050 isl_pw_multi_aff_subtract_domain(
6051 __isl_take isl_pw_multi_aff *pma,
6052 __isl_take isl_set *set);
6053 __isl_give isl_union_pw_aff *
6054 isl_union_pw_aff_subtract_domain(
6055 __isl_take isl_union_pw_aff *upa,
6056 __isl_take isl_union_set *uset);
6057 __isl_give isl_union_pw_multi_aff *
6058 isl_union_pw_multi_aff_subtract_domain(
6059 __isl_take isl_union_pw_multi_aff *upma,
6060 __isl_take isl_set *set);
6062 #include <isl/polynomial.h>
6063 __isl_give isl_pw_qpolynomial *
6064 isl_pw_qpolynomial_subtract_domain(
6065 __isl_take isl_pw_qpolynomial *pwpq,
6066 __isl_take isl_set *set);
6067 __isl_give isl_pw_qpolynomial_fold *
6068 isl_pw_qpolynomial_fold_subtract_domain(
6069 __isl_take isl_pw_qpolynomial_fold *pwf,
6070 __isl_take isl_set *set);
6071 __isl_give isl_union_pw_qpolynomial *
6072 isl_union_pw_qpolynomial_subtract_domain(
6073 __isl_take isl_union_pw_qpolynomial *upwpq,
6074 __isl_take isl_union_set *uset);
6075 __isl_give isl_union_pw_qpolynomial_fold *
6076 isl_union_pw_qpolynomial_fold_subtract_domain(
6077 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6078 __isl_take isl_union_set *uset);
6082 #include <isl/space.h>
6083 __isl_give isl_space *isl_space_join(
6084 __isl_take isl_space *left,
6085 __isl_take isl_space *right);
6087 #include <isl/map.h>
6088 __isl_give isl_basic_set *isl_basic_set_apply(
6089 __isl_take isl_basic_set *bset,
6090 __isl_take isl_basic_map *bmap);
6091 __isl_give isl_set *isl_set_apply(
6092 __isl_take isl_set *set,
6093 __isl_take isl_map *map);
6094 __isl_give isl_union_set *isl_union_set_apply(
6095 __isl_take isl_union_set *uset,
6096 __isl_take isl_union_map *umap);
6097 __isl_give isl_basic_map *isl_basic_map_apply_domain(
6098 __isl_take isl_basic_map *bmap1,
6099 __isl_take isl_basic_map *bmap2);
6100 __isl_give isl_basic_map *isl_basic_map_apply_range(
6101 __isl_take isl_basic_map *bmap1,
6102 __isl_take isl_basic_map *bmap2);
6103 __isl_give isl_map *isl_map_apply_domain(
6104 __isl_take isl_map *map1,
6105 __isl_take isl_map *map2);
6106 __isl_give isl_map *isl_map_apply_range(
6107 __isl_take isl_map *map1,
6108 __isl_take isl_map *map2);
6110 #include <isl/union_map.h>
6111 __isl_give isl_union_map *isl_union_map_apply_domain(
6112 __isl_take isl_union_map *umap1,
6113 __isl_take isl_union_map *umap2);
6114 __isl_give isl_union_map *isl_union_map_apply_range(
6115 __isl_take isl_union_map *umap1,
6116 __isl_take isl_union_map *umap2);
6118 #include <isl/aff.h>
6119 __isl_give isl_union_pw_aff *
6120 isl_multi_union_pw_aff_apply_aff(
6121 __isl_take isl_multi_union_pw_aff *mupa,
6122 __isl_take isl_aff *aff);
6123 __isl_give isl_union_pw_aff *
6124 isl_multi_union_pw_aff_apply_pw_aff(
6125 __isl_take isl_multi_union_pw_aff *mupa,
6126 __isl_take isl_pw_aff *pa);
6127 __isl_give isl_multi_union_pw_aff *
6128 isl_multi_union_pw_aff_apply_multi_aff(
6129 __isl_take isl_multi_union_pw_aff *mupa,
6130 __isl_take isl_multi_aff *ma);
6131 __isl_give isl_multi_union_pw_aff *
6132 isl_multi_union_pw_aff_apply_pw_multi_aff(
6133 __isl_take isl_multi_union_pw_aff *mupa,
6134 __isl_take isl_pw_multi_aff *pma);
6136 The result of C<isl_multi_union_pw_aff_apply_aff> is defined
6137 over the shared domain of the elements of the input. The dimension is
6138 required to be greater than zero.
6139 The C<isl_multi_union_pw_aff> argument of
6140 C<isl_multi_union_pw_aff_apply_multi_aff> is allowed to be zero-dimensional,
6141 but only if the range of the C<isl_multi_aff> argument
6142 is also zero-dimensional.
6143 Similarly for C<isl_multi_union_pw_aff_apply_pw_multi_aff>.
6145 #include <isl/polynomial.h>
6146 __isl_give isl_pw_qpolynomial_fold *
6147 isl_set_apply_pw_qpolynomial_fold(
6148 __isl_take isl_set *set,
6149 __isl_take isl_pw_qpolynomial_fold *pwf,
6151 __isl_give isl_pw_qpolynomial_fold *
6152 isl_map_apply_pw_qpolynomial_fold(
6153 __isl_take isl_map *map,
6154 __isl_take isl_pw_qpolynomial_fold *pwf,
6156 __isl_give isl_union_pw_qpolynomial_fold *
6157 isl_union_set_apply_union_pw_qpolynomial_fold(
6158 __isl_take isl_union_set *uset,
6159 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6161 __isl_give isl_union_pw_qpolynomial_fold *
6162 isl_union_map_apply_union_pw_qpolynomial_fold(
6163 __isl_take isl_union_map *umap,
6164 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6167 The functions taking a map
6168 compose the given map with the given piecewise quasipolynomial reduction.
6169 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
6170 over all elements in the intersection of the range of the map
6171 and the domain of the piecewise quasipolynomial reduction
6172 as a function of an element in the domain of the map.
6173 The functions taking a set compute a bound over all elements in the
6174 intersection of the set and the domain of the
6175 piecewise quasipolynomial reduction.
6179 #include <isl/set.h>
6180 __isl_give isl_basic_set *
6181 isl_basic_set_preimage_multi_aff(
6182 __isl_take isl_basic_set *bset,
6183 __isl_take isl_multi_aff *ma);
6184 __isl_give isl_set *isl_set_preimage_multi_aff(
6185 __isl_take isl_set *set,
6186 __isl_take isl_multi_aff *ma);
6187 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
6188 __isl_take isl_set *set,
6189 __isl_take isl_pw_multi_aff *pma);
6190 __isl_give isl_set *isl_set_preimage_multi_pw_aff(
6191 __isl_take isl_set *set,
6192 __isl_take isl_multi_pw_aff *mpa);
6194 #include <isl/union_set.h>
6195 __isl_give isl_union_set *
6196 isl_union_set_preimage_multi_aff(
6197 __isl_take isl_union_set *uset,
6198 __isl_take isl_multi_aff *ma);
6199 __isl_give isl_union_set *
6200 isl_union_set_preimage_pw_multi_aff(
6201 __isl_take isl_union_set *uset,
6202 __isl_take isl_pw_multi_aff *pma);
6203 __isl_give isl_union_set *
6204 isl_union_set_preimage_union_pw_multi_aff(
6205 __isl_take isl_union_set *uset,
6206 __isl_take isl_union_pw_multi_aff *upma);
6208 #include <isl/map.h>
6209 __isl_give isl_basic_map *
6210 isl_basic_map_preimage_domain_multi_aff(
6211 __isl_take isl_basic_map *bmap,
6212 __isl_take isl_multi_aff *ma);
6213 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
6214 __isl_take isl_map *map,
6215 __isl_take isl_multi_aff *ma);
6216 __isl_give isl_map *isl_map_preimage_range_multi_aff(
6217 __isl_take isl_map *map,
6218 __isl_take isl_multi_aff *ma);
6219 __isl_give isl_map *
6220 isl_map_preimage_domain_pw_multi_aff(
6221 __isl_take isl_map *map,
6222 __isl_take isl_pw_multi_aff *pma);
6223 __isl_give isl_map *
6224 isl_map_preimage_range_pw_multi_aff(
6225 __isl_take isl_map *map,
6226 __isl_take isl_pw_multi_aff *pma);
6227 __isl_give isl_map *
6228 isl_map_preimage_domain_multi_pw_aff(
6229 __isl_take isl_map *map,
6230 __isl_take isl_multi_pw_aff *mpa);
6231 __isl_give isl_basic_map *
6232 isl_basic_map_preimage_range_multi_aff(
6233 __isl_take isl_basic_map *bmap,
6234 __isl_take isl_multi_aff *ma);
6236 #include <isl/union_map.h>
6237 __isl_give isl_union_map *
6238 isl_union_map_preimage_domain_multi_aff(
6239 __isl_take isl_union_map *umap,
6240 __isl_take isl_multi_aff *ma);
6241 __isl_give isl_union_map *
6242 isl_union_map_preimage_range_multi_aff(
6243 __isl_take isl_union_map *umap,
6244 __isl_take isl_multi_aff *ma);
6245 __isl_give isl_union_map *
6246 isl_union_map_preimage_domain_pw_multi_aff(
6247 __isl_take isl_union_map *umap,
6248 __isl_take isl_pw_multi_aff *pma);
6249 __isl_give isl_union_map *
6250 isl_union_map_preimage_range_pw_multi_aff(
6251 __isl_take isl_union_map *umap,
6252 __isl_take isl_pw_multi_aff *pma);
6253 __isl_give isl_union_map *
6254 isl_union_map_preimage_domain_union_pw_multi_aff(
6255 __isl_take isl_union_map *umap,
6256 __isl_take isl_union_pw_multi_aff *upma);
6257 __isl_give isl_union_map *
6258 isl_union_map_preimage_range_union_pw_multi_aff(
6259 __isl_take isl_union_map *umap,
6260 __isl_take isl_union_pw_multi_aff *upma);
6262 These functions compute the preimage of the given set or map domain/range under
6263 the given function. In other words, the expression is plugged
6264 into the set description or into the domain/range of the map.
6268 #include <isl/aff.h>
6269 __isl_give isl_aff *isl_aff_pullback_aff(
6270 __isl_take isl_aff *aff1,
6271 __isl_take isl_aff *aff2);
6272 __isl_give isl_aff *isl_aff_pullback_multi_aff(
6273 __isl_take isl_aff *aff,
6274 __isl_take isl_multi_aff *ma);
6275 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
6276 __isl_take isl_pw_aff *pa,
6277 __isl_take isl_multi_aff *ma);
6278 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
6279 __isl_take isl_pw_aff *pa,
6280 __isl_take isl_pw_multi_aff *pma);
6281 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
6282 __isl_take isl_pw_aff *pa,
6283 __isl_take isl_multi_pw_aff *mpa);
6284 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
6285 __isl_take isl_multi_aff *ma1,
6286 __isl_take isl_multi_aff *ma2);
6287 __isl_give isl_pw_multi_aff *
6288 isl_pw_multi_aff_pullback_multi_aff(
6289 __isl_take isl_pw_multi_aff *pma,
6290 __isl_take isl_multi_aff *ma);
6291 __isl_give isl_multi_pw_aff *
6292 isl_multi_pw_aff_pullback_multi_aff(
6293 __isl_take isl_multi_pw_aff *mpa,
6294 __isl_take isl_multi_aff *ma);
6295 __isl_give isl_pw_multi_aff *
6296 isl_pw_multi_aff_pullback_pw_multi_aff(
6297 __isl_take isl_pw_multi_aff *pma1,
6298 __isl_take isl_pw_multi_aff *pma2);
6299 __isl_give isl_multi_pw_aff *
6300 isl_multi_pw_aff_pullback_pw_multi_aff(
6301 __isl_take isl_multi_pw_aff *mpa,
6302 __isl_take isl_pw_multi_aff *pma);
6303 __isl_give isl_multi_pw_aff *
6304 isl_multi_pw_aff_pullback_multi_pw_aff(
6305 __isl_take isl_multi_pw_aff *mpa1,
6306 __isl_take isl_multi_pw_aff *mpa2);
6307 __isl_give isl_union_pw_aff *
6308 isl_union_pw_aff_pullback_union_pw_multi_aff(
6309 __isl_take isl_union_pw_aff *upa,
6310 __isl_take isl_union_pw_multi_aff *upma);
6311 __isl_give isl_union_pw_multi_aff *
6312 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
6313 __isl_take isl_union_pw_multi_aff *upma1,
6314 __isl_take isl_union_pw_multi_aff *upma2);
6315 __isl_give isl_multi_union_pw_aff *
6316 isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
6317 __isl_take isl_multi_union_pw_aff *mupa,
6318 __isl_take isl_union_pw_multi_aff *upma);
6320 These functions precompose the first expression by the second function.
6321 In other words, the second function is plugged
6322 into the first expression.
6326 #include <isl/aff.h>
6327 __isl_give isl_basic_set *isl_aff_eq_basic_set(
6328 __isl_take isl_aff *aff1,
6329 __isl_take isl_aff *aff2);
6330 __isl_give isl_set *isl_aff_eq_set(
6331 __isl_take isl_aff *aff1,
6332 __isl_take isl_aff *aff2);
6333 __isl_give isl_set *isl_aff_ne_set(
6334 __isl_take isl_aff *aff1,
6335 __isl_take isl_aff *aff2);
6336 __isl_give isl_basic_set *isl_aff_le_basic_set(
6337 __isl_take isl_aff *aff1,
6338 __isl_take isl_aff *aff2);
6339 __isl_give isl_set *isl_aff_le_set(
6340 __isl_take isl_aff *aff1,
6341 __isl_take isl_aff *aff2);
6342 __isl_give isl_basic_set *isl_aff_lt_basic_set(
6343 __isl_take isl_aff *aff1,
6344 __isl_take isl_aff *aff2);
6345 __isl_give isl_set *isl_aff_lt_set(
6346 __isl_take isl_aff *aff1,
6347 __isl_take isl_aff *aff2);
6348 __isl_give isl_basic_set *isl_aff_ge_basic_set(
6349 __isl_take isl_aff *aff1,
6350 __isl_take isl_aff *aff2);
6351 __isl_give isl_set *isl_aff_ge_set(
6352 __isl_take isl_aff *aff1,
6353 __isl_take isl_aff *aff2);
6354 __isl_give isl_basic_set *isl_aff_gt_basic_set(
6355 __isl_take isl_aff *aff1,
6356 __isl_take isl_aff *aff2);
6357 __isl_give isl_set *isl_aff_gt_set(
6358 __isl_take isl_aff *aff1,
6359 __isl_take isl_aff *aff2);
6360 __isl_give isl_set *isl_pw_aff_eq_set(
6361 __isl_take isl_pw_aff *pwaff1,
6362 __isl_take isl_pw_aff *pwaff2);
6363 __isl_give isl_set *isl_pw_aff_ne_set(
6364 __isl_take isl_pw_aff *pwaff1,
6365 __isl_take isl_pw_aff *pwaff2);
6366 __isl_give isl_set *isl_pw_aff_le_set(
6367 __isl_take isl_pw_aff *pwaff1,
6368 __isl_take isl_pw_aff *pwaff2);
6369 __isl_give isl_set *isl_pw_aff_lt_set(
6370 __isl_take isl_pw_aff *pwaff1,
6371 __isl_take isl_pw_aff *pwaff2);
6372 __isl_give isl_set *isl_pw_aff_ge_set(
6373 __isl_take isl_pw_aff *pwaff1,
6374 __isl_take isl_pw_aff *pwaff2);
6375 __isl_give isl_set *isl_pw_aff_gt_set(
6376 __isl_take isl_pw_aff *pwaff1,
6377 __isl_take isl_pw_aff *pwaff2);
6379 __isl_give isl_set *isl_multi_aff_lex_le_set(
6380 __isl_take isl_multi_aff *ma1,
6381 __isl_take isl_multi_aff *ma2);
6382 __isl_give isl_set *isl_multi_aff_lex_lt_set(
6383 __isl_take isl_multi_aff *ma1,
6384 __isl_take isl_multi_aff *ma2);
6385 __isl_give isl_set *isl_multi_aff_lex_ge_set(
6386 __isl_take isl_multi_aff *ma1,
6387 __isl_take isl_multi_aff *ma2);
6388 __isl_give isl_set *isl_multi_aff_lex_gt_set(
6389 __isl_take isl_multi_aff *ma1,
6390 __isl_take isl_multi_aff *ma2);
6392 __isl_give isl_set *isl_pw_aff_list_eq_set(
6393 __isl_take isl_pw_aff_list *list1,
6394 __isl_take isl_pw_aff_list *list2);
6395 __isl_give isl_set *isl_pw_aff_list_ne_set(
6396 __isl_take isl_pw_aff_list *list1,
6397 __isl_take isl_pw_aff_list *list2);
6398 __isl_give isl_set *isl_pw_aff_list_le_set(
6399 __isl_take isl_pw_aff_list *list1,
6400 __isl_take isl_pw_aff_list *list2);
6401 __isl_give isl_set *isl_pw_aff_list_lt_set(
6402 __isl_take isl_pw_aff_list *list1,
6403 __isl_take isl_pw_aff_list *list2);
6404 __isl_give isl_set *isl_pw_aff_list_ge_set(
6405 __isl_take isl_pw_aff_list *list1,
6406 __isl_take isl_pw_aff_list *list2);
6407 __isl_give isl_set *isl_pw_aff_list_gt_set(
6408 __isl_take isl_pw_aff_list *list1,
6409 __isl_take isl_pw_aff_list *list2);
6411 The function C<isl_aff_ge_basic_set> returns a basic set
6412 containing those elements in the shared space
6413 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
6414 The function C<isl_pw_aff_ge_set> returns a set
6415 containing those elements in the shared domain
6416 of C<pwaff1> and C<pwaff2> where C<pwaff1> is
6417 greater than or equal to C<pwaff2>.
6418 The function C<isl_multi_aff_lex_le_set> returns a set
6419 containing those elements in the shared domain space
6420 where C<ma1> is lexicographically smaller than or
6422 The functions operating on C<isl_pw_aff_list> apply the corresponding
6423 C<isl_pw_aff> function to each pair of elements in the two lists.
6425 #include <isl/aff.h>
6426 __isl_give isl_map *isl_pw_aff_eq_map(
6427 __isl_take isl_pw_aff *pa1,
6428 __isl_take isl_pw_aff *pa2);
6429 __isl_give isl_map *isl_pw_aff_lt_map(
6430 __isl_take isl_pw_aff *pa1,
6431 __isl_take isl_pw_aff *pa2);
6432 __isl_give isl_map *isl_pw_aff_gt_map(
6433 __isl_take isl_pw_aff *pa1,
6434 __isl_take isl_pw_aff *pa2);
6436 __isl_give isl_map *isl_multi_pw_aff_eq_map(
6437 __isl_take isl_multi_pw_aff *mpa1,
6438 __isl_take isl_multi_pw_aff *mpa2);
6439 __isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
6440 __isl_take isl_multi_pw_aff *mpa1,
6441 __isl_take isl_multi_pw_aff *mpa2);
6442 __isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
6443 __isl_take isl_multi_pw_aff *mpa1,
6444 __isl_take isl_multi_pw_aff *mpa2);
6446 These functions return a map between domain elements of the arguments
6447 where the function values satisfy the given relation.
6449 #include <isl/union_map.h>
6450 __isl_give isl_union_map *
6451 isl_union_map_eq_at_multi_union_pw_aff(
6452 __isl_take isl_union_map *umap,
6453 __isl_take isl_multi_union_pw_aff *mupa);
6454 __isl_give isl_union_map *
6455 isl_union_map_lex_lt_at_multi_union_pw_aff(
6456 __isl_take isl_union_map *umap,
6457 __isl_take isl_multi_union_pw_aff *mupa);
6458 __isl_give isl_union_map *
6459 isl_union_map_lex_gt_at_multi_union_pw_aff(
6460 __isl_take isl_union_map *umap,
6461 __isl_take isl_multi_union_pw_aff *mupa);
6463 These functions select the subset of elements in the union map
6464 that have an equal or lexicographically smaller function value.
6466 =item * Cartesian Product
6468 #include <isl/space.h>
6469 __isl_give isl_space *isl_space_product(
6470 __isl_take isl_space *space1,
6471 __isl_take isl_space *space2);
6472 __isl_give isl_space *isl_space_domain_product(
6473 __isl_take isl_space *space1,
6474 __isl_take isl_space *space2);
6475 __isl_give isl_space *isl_space_range_product(
6476 __isl_take isl_space *space1,
6477 __isl_take isl_space *space2);
6480 C<isl_space_product>, C<isl_space_domain_product>
6481 and C<isl_space_range_product> take pairs or relation spaces and
6482 produce a single relations space, where either the domain, the range
6483 or both domain and range are wrapped spaces of relations between
6484 the domains and/or ranges of the input spaces.
6485 If the product is only constructed over the domain or the range
6486 then the ranges or the domains of the inputs should be the same.
6487 The function C<isl_space_product> also accepts a pair of set spaces,
6488 in which case it returns a wrapped space of a relation between the
6491 #include <isl/set.h>
6492 __isl_give isl_set *isl_set_product(
6493 __isl_take isl_set *set1,
6494 __isl_take isl_set *set2);
6496 #include <isl/map.h>
6497 __isl_give isl_basic_map *isl_basic_map_domain_product(
6498 __isl_take isl_basic_map *bmap1,
6499 __isl_take isl_basic_map *bmap2);
6500 __isl_give isl_basic_map *isl_basic_map_range_product(
6501 __isl_take isl_basic_map *bmap1,
6502 __isl_take isl_basic_map *bmap2);
6503 __isl_give isl_basic_map *isl_basic_map_product(
6504 __isl_take isl_basic_map *bmap1,
6505 __isl_take isl_basic_map *bmap2);
6506 __isl_give isl_map *isl_map_domain_product(
6507 __isl_take isl_map *map1,
6508 __isl_take isl_map *map2);
6509 __isl_give isl_map *isl_map_range_product(
6510 __isl_take isl_map *map1,
6511 __isl_take isl_map *map2);
6512 __isl_give isl_map *isl_map_product(
6513 __isl_take isl_map *map1,
6514 __isl_take isl_map *map2);
6516 #include <isl/union_set.h>
6517 __isl_give isl_union_set *isl_union_set_product(
6518 __isl_take isl_union_set *uset1,
6519 __isl_take isl_union_set *uset2);
6521 #include <isl/union_map.h>
6522 __isl_give isl_union_map *isl_union_map_domain_product(
6523 __isl_take isl_union_map *umap1,
6524 __isl_take isl_union_map *umap2);
6525 __isl_give isl_union_map *isl_union_map_range_product(
6526 __isl_take isl_union_map *umap1,
6527 __isl_take isl_union_map *umap2);
6528 __isl_give isl_union_map *isl_union_map_product(
6529 __isl_take isl_union_map *umap1,
6530 __isl_take isl_union_map *umap2);
6532 #include <isl/val.h>
6533 __isl_give isl_multi_val *isl_multi_val_range_product(
6534 __isl_take isl_multi_val *mv1,
6535 __isl_take isl_multi_val *mv2);
6536 __isl_give isl_multi_val *isl_multi_val_product(
6537 __isl_take isl_multi_val *mv1,
6538 __isl_take isl_multi_val *mv2);
6540 #include <isl/aff.h>
6541 __isl_give isl_multi_aff *isl_multi_aff_range_product(
6542 __isl_take isl_multi_aff *ma1,
6543 __isl_take isl_multi_aff *ma2);
6544 __isl_give isl_multi_aff *isl_multi_aff_product(
6545 __isl_take isl_multi_aff *ma1,
6546 __isl_take isl_multi_aff *ma2);
6547 __isl_give isl_multi_pw_aff *
6548 isl_multi_pw_aff_range_product(
6549 __isl_take isl_multi_pw_aff *mpa1,
6550 __isl_take isl_multi_pw_aff *mpa2);
6551 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
6552 __isl_take isl_multi_pw_aff *mpa1,
6553 __isl_take isl_multi_pw_aff *mpa2);
6554 __isl_give isl_pw_multi_aff *
6555 isl_pw_multi_aff_range_product(
6556 __isl_take isl_pw_multi_aff *pma1,
6557 __isl_take isl_pw_multi_aff *pma2);
6558 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
6559 __isl_take isl_pw_multi_aff *pma1,
6560 __isl_take isl_pw_multi_aff *pma2);
6561 __isl_give isl_multi_union_pw_aff *
6562 isl_multi_union_pw_aff_range_product(
6563 __isl_take isl_multi_union_pw_aff *mupa1,
6564 __isl_take isl_multi_union_pw_aff *mupa2);
6566 The above functions compute the cross product of the given
6567 sets, relations or functions. The domains and ranges of the results
6568 are wrapped maps between domains and ranges of the inputs.
6569 To obtain a ``flat'' product, use the following functions
6572 #include <isl/set.h>
6573 __isl_give isl_basic_set *isl_basic_set_flat_product(
6574 __isl_take isl_basic_set *bset1,
6575 __isl_take isl_basic_set *bset2);
6576 __isl_give isl_set *isl_set_flat_product(
6577 __isl_take isl_set *set1,
6578 __isl_take isl_set *set2);
6580 #include <isl/map.h>
6581 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
6582 __isl_take isl_basic_map *bmap1,
6583 __isl_take isl_basic_map *bmap2);
6584 __isl_give isl_map *isl_map_flat_domain_product(
6585 __isl_take isl_map *map1,
6586 __isl_take isl_map *map2);
6587 __isl_give isl_map *isl_map_flat_range_product(
6588 __isl_take isl_map *map1,
6589 __isl_take isl_map *map2);
6590 __isl_give isl_basic_map *isl_basic_map_flat_product(
6591 __isl_take isl_basic_map *bmap1,
6592 __isl_take isl_basic_map *bmap2);
6593 __isl_give isl_map *isl_map_flat_product(
6594 __isl_take isl_map *map1,
6595 __isl_take isl_map *map2);
6597 #include <isl/union_map.h>
6598 __isl_give isl_union_map *
6599 isl_union_map_flat_domain_product(
6600 __isl_take isl_union_map *umap1,
6601 __isl_take isl_union_map *umap2);
6602 __isl_give isl_union_map *
6603 isl_union_map_flat_range_product(
6604 __isl_take isl_union_map *umap1,
6605 __isl_take isl_union_map *umap2);
6607 #include <isl/val.h>
6608 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
6609 __isl_take isl_multi_val *mv1,
6610 __isl_take isl_multi_aff *mv2);
6612 #include <isl/aff.h>
6613 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
6614 __isl_take isl_multi_aff *ma1,
6615 __isl_take isl_multi_aff *ma2);
6616 __isl_give isl_pw_multi_aff *
6617 isl_pw_multi_aff_flat_range_product(
6618 __isl_take isl_pw_multi_aff *pma1,
6619 __isl_take isl_pw_multi_aff *pma2);
6620 __isl_give isl_multi_pw_aff *
6621 isl_multi_pw_aff_flat_range_product(
6622 __isl_take isl_multi_pw_aff *mpa1,
6623 __isl_take isl_multi_pw_aff *mpa2);
6624 __isl_give isl_union_pw_multi_aff *
6625 isl_union_pw_multi_aff_flat_range_product(
6626 __isl_take isl_union_pw_multi_aff *upma1,
6627 __isl_take isl_union_pw_multi_aff *upma2);
6628 __isl_give isl_multi_union_pw_aff *
6629 isl_multi_union_pw_aff_flat_range_product(
6630 __isl_take isl_multi_union_pw_aff *mupa1,
6631 __isl_take isl_multi_union_pw_aff *mupa2);
6633 #include <isl/space.h>
6634 __isl_give isl_space *isl_space_factor_domain(
6635 __isl_take isl_space *space);
6636 __isl_give isl_space *isl_space_factor_range(
6637 __isl_take isl_space *space);
6638 __isl_give isl_space *isl_space_domain_factor_domain(
6639 __isl_take isl_space *space);
6640 __isl_give isl_space *isl_space_domain_factor_range(
6641 __isl_take isl_space *space);
6642 __isl_give isl_space *isl_space_range_factor_domain(
6643 __isl_take isl_space *space);
6644 __isl_give isl_space *isl_space_range_factor_range(
6645 __isl_take isl_space *space);
6647 The functions C<isl_space_range_factor_domain> and
6648 C<isl_space_range_factor_range> extract the two arguments from
6649 the result of a call to C<isl_space_range_product>.
6651 The arguments of a call to a product can be extracted
6652 from the result using the following functions.
6654 #include <isl/map.h>
6655 __isl_give isl_map *isl_map_factor_domain(
6656 __isl_take isl_map *map);
6657 __isl_give isl_map *isl_map_factor_range(
6658 __isl_take isl_map *map);
6659 __isl_give isl_map *isl_map_domain_factor_domain(
6660 __isl_take isl_map *map);
6661 __isl_give isl_map *isl_map_domain_factor_range(
6662 __isl_take isl_map *map);
6663 __isl_give isl_map *isl_map_range_factor_domain(
6664 __isl_take isl_map *map);
6665 __isl_give isl_map *isl_map_range_factor_range(
6666 __isl_take isl_map *map);
6668 #include <isl/union_map.h>
6669 __isl_give isl_union_map *isl_union_map_factor_domain(
6670 __isl_take isl_union_map *umap);
6671 __isl_give isl_union_map *isl_union_map_factor_range(
6672 __isl_take isl_union_map *umap);
6673 __isl_give isl_union_map *
6674 isl_union_map_domain_factor_domain(
6675 __isl_take isl_union_map *umap);
6676 __isl_give isl_union_map *
6677 isl_union_map_domain_factor_range(
6678 __isl_take isl_union_map *umap);
6679 __isl_give isl_union_map *
6680 isl_union_map_range_factor_domain(
6681 __isl_take isl_union_map *umap);
6682 __isl_give isl_union_map *
6683 isl_union_map_range_factor_range(
6684 __isl_take isl_union_map *umap);
6686 #include <isl/val.h>
6687 __isl_give isl_multi_val *isl_multi_val_factor_range(
6688 __isl_take isl_multi_val *mv);
6689 __isl_give isl_multi_val *
6690 isl_multi_val_range_factor_domain(
6691 __isl_take isl_multi_val *mv);
6692 __isl_give isl_multi_val *
6693 isl_multi_val_range_factor_range(
6694 __isl_take isl_multi_val *mv);
6696 #include <isl/aff.h>
6697 __isl_give isl_multi_aff *isl_multi_aff_factor_range(
6698 __isl_take isl_multi_aff *ma);
6699 __isl_give isl_multi_aff *
6700 isl_multi_aff_range_factor_domain(
6701 __isl_take isl_multi_aff *ma);
6702 __isl_give isl_multi_aff *
6703 isl_multi_aff_range_factor_range(
6704 __isl_take isl_multi_aff *ma);
6705 __isl_give isl_multi_pw_aff *
6706 isl_multi_pw_aff_factor_range(
6707 __isl_take isl_multi_pw_aff *mpa);
6708 __isl_give isl_multi_pw_aff *
6709 isl_multi_pw_aff_range_factor_domain(
6710 __isl_take isl_multi_pw_aff *mpa);
6711 __isl_give isl_multi_pw_aff *
6712 isl_multi_pw_aff_range_factor_range(
6713 __isl_take isl_multi_pw_aff *mpa);
6714 __isl_give isl_multi_union_pw_aff *
6715 isl_multi_union_pw_aff_factor_range(
6716 __isl_take isl_multi_union_pw_aff *mupa);
6717 __isl_give isl_multi_union_pw_aff *
6718 isl_multi_union_pw_aff_range_factor_domain(
6719 __isl_take isl_multi_union_pw_aff *mupa);
6720 __isl_give isl_multi_union_pw_aff *
6721 isl_multi_union_pw_aff_range_factor_range(
6722 __isl_take isl_multi_union_pw_aff *mupa);
6724 The splice functions are a generalization of the flat product functions,
6725 where the second argument may be inserted at any position inside
6726 the first argument rather than being placed at the end.
6727 The functions C<isl_multi_val_factor_range>,
6728 C<isl_multi_aff_factor_range>,
6729 C<isl_multi_pw_aff_factor_range> and
6730 C<isl_multi_union_pw_aff_factor_range>
6731 take functions that live in a set space.
6733 #include <isl/val.h>
6734 __isl_give isl_multi_val *isl_multi_val_range_splice(
6735 __isl_take isl_multi_val *mv1, unsigned pos,
6736 __isl_take isl_multi_val *mv2);
6738 #include <isl/aff.h>
6739 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
6740 __isl_take isl_multi_aff *ma1, unsigned pos,
6741 __isl_take isl_multi_aff *ma2);
6742 __isl_give isl_multi_aff *isl_multi_aff_splice(
6743 __isl_take isl_multi_aff *ma1,
6744 unsigned in_pos, unsigned out_pos,
6745 __isl_take isl_multi_aff *ma2);
6746 __isl_give isl_multi_pw_aff *
6747 isl_multi_pw_aff_range_splice(
6748 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
6749 __isl_take isl_multi_pw_aff *mpa2);
6750 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
6751 __isl_take isl_multi_pw_aff *mpa1,
6752 unsigned in_pos, unsigned out_pos,
6753 __isl_take isl_multi_pw_aff *mpa2);
6754 __isl_give isl_multi_union_pw_aff *
6755 isl_multi_union_pw_aff_range_splice(
6756 __isl_take isl_multi_union_pw_aff *mupa1,
6758 __isl_take isl_multi_union_pw_aff *mupa2);
6760 =item * Simplification
6762 When applied to a set or relation,
6763 the gist operation returns a set or relation that has the
6764 same intersection with the context as the input set or relation.
6765 Any implicit equality in the intersection is made explicit in the result,
6766 while all inequalities that are redundant with respect to the intersection
6768 In case of union sets and relations, the gist operation is performed
6771 When applied to a function,
6772 the gist operation applies the set gist operation to each of
6773 the cells in the domain of the input piecewise expression.
6774 The context is also exploited
6775 to simplify the expression associated to each cell.
6777 #include <isl/set.h>
6778 __isl_give isl_basic_set *isl_basic_set_gist(
6779 __isl_take isl_basic_set *bset,
6780 __isl_take isl_basic_set *context);
6781 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
6782 __isl_take isl_set *context);
6783 __isl_give isl_set *isl_set_gist_params(
6784 __isl_take isl_set *set,
6785 __isl_take isl_set *context);
6787 #include <isl/map.h>
6788 __isl_give isl_basic_map *isl_basic_map_gist(
6789 __isl_take isl_basic_map *bmap,
6790 __isl_take isl_basic_map *context);
6791 __isl_give isl_basic_map *isl_basic_map_gist_domain(
6792 __isl_take isl_basic_map *bmap,
6793 __isl_take isl_basic_set *context);
6794 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
6795 __isl_take isl_map *context);
6796 __isl_give isl_map *isl_map_gist_params(
6797 __isl_take isl_map *map,
6798 __isl_take isl_set *context);
6799 __isl_give isl_map *isl_map_gist_domain(
6800 __isl_take isl_map *map,
6801 __isl_take isl_set *context);
6802 __isl_give isl_map *isl_map_gist_range(
6803 __isl_take isl_map *map,
6804 __isl_take isl_set *context);
6806 #include <isl/union_set.h>
6807 __isl_give isl_union_set *isl_union_set_gist(
6808 __isl_take isl_union_set *uset,
6809 __isl_take isl_union_set *context);
6810 __isl_give isl_union_set *isl_union_set_gist_params(
6811 __isl_take isl_union_set *uset,
6812 __isl_take isl_set *set);
6814 #include <isl/union_map.h>
6815 __isl_give isl_union_map *isl_union_map_gist(
6816 __isl_take isl_union_map *umap,
6817 __isl_take isl_union_map *context);
6818 __isl_give isl_union_map *isl_union_map_gist_params(
6819 __isl_take isl_union_map *umap,
6820 __isl_take isl_set *set);
6821 __isl_give isl_union_map *isl_union_map_gist_domain(
6822 __isl_take isl_union_map *umap,
6823 __isl_take isl_union_set *uset);
6824 __isl_give isl_union_map *isl_union_map_gist_range(
6825 __isl_take isl_union_map *umap,
6826 __isl_take isl_union_set *uset);
6828 #include <isl/aff.h>
6829 __isl_give isl_aff *isl_aff_gist_params(
6830 __isl_take isl_aff *aff,
6831 __isl_take isl_set *context);
6832 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
6833 __isl_take isl_set *context);
6834 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
6835 __isl_take isl_multi_aff *maff,
6836 __isl_take isl_set *context);
6837 __isl_give isl_multi_aff *isl_multi_aff_gist(
6838 __isl_take isl_multi_aff *maff,
6839 __isl_take isl_set *context);
6840 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
6841 __isl_take isl_pw_aff *pwaff,
6842 __isl_take isl_set *context);
6843 __isl_give isl_pw_aff *isl_pw_aff_gist(
6844 __isl_take isl_pw_aff *pwaff,
6845 __isl_take isl_set *context);
6846 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
6847 __isl_take isl_pw_multi_aff *pma,
6848 __isl_take isl_set *set);
6849 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
6850 __isl_take isl_pw_multi_aff *pma,
6851 __isl_take isl_set *set);
6852 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
6853 __isl_take isl_multi_pw_aff *mpa,
6854 __isl_take isl_set *set);
6855 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
6856 __isl_take isl_multi_pw_aff *mpa,
6857 __isl_take isl_set *set);
6858 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist(
6859 __isl_take isl_union_pw_aff *upa,
6860 __isl_take isl_union_set *context);
6861 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params(
6862 __isl_take isl_union_pw_aff *upa,
6863 __isl_take isl_set *context);
6864 __isl_give isl_union_pw_multi_aff *
6865 isl_union_pw_multi_aff_gist_params(
6866 __isl_take isl_union_pw_multi_aff *upma,
6867 __isl_take isl_set *context);
6868 __isl_give isl_union_pw_multi_aff *
6869 isl_union_pw_multi_aff_gist(
6870 __isl_take isl_union_pw_multi_aff *upma,
6871 __isl_take isl_union_set *context);
6872 __isl_give isl_multi_union_pw_aff *
6873 isl_multi_union_pw_aff_gist_params(
6874 __isl_take isl_multi_union_pw_aff *aff,
6875 __isl_take isl_set *context);
6876 __isl_give isl_multi_union_pw_aff *
6877 isl_multi_union_pw_aff_gist(
6878 __isl_take isl_multi_union_pw_aff *aff,
6879 __isl_take isl_union_set *context);
6881 #include <isl/polynomial.h>
6882 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
6883 __isl_take isl_qpolynomial *qp,
6884 __isl_take isl_set *context);
6885 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
6886 __isl_take isl_qpolynomial *qp,
6887 __isl_take isl_set *context);
6888 __isl_give isl_qpolynomial_fold *
6889 isl_qpolynomial_fold_gist_params(
6890 __isl_take isl_qpolynomial_fold *fold,
6891 __isl_take isl_set *context);
6892 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
6893 __isl_take isl_qpolynomial_fold *fold,
6894 __isl_take isl_set *context);
6895 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
6896 __isl_take isl_pw_qpolynomial *pwqp,
6897 __isl_take isl_set *context);
6898 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
6899 __isl_take isl_pw_qpolynomial *pwqp,
6900 __isl_take isl_set *context);
6901 __isl_give isl_pw_qpolynomial_fold *
6902 isl_pw_qpolynomial_fold_gist(
6903 __isl_take isl_pw_qpolynomial_fold *pwf,
6904 __isl_take isl_set *context);
6905 __isl_give isl_pw_qpolynomial_fold *
6906 isl_pw_qpolynomial_fold_gist_params(
6907 __isl_take isl_pw_qpolynomial_fold *pwf,
6908 __isl_take isl_set *context);
6909 __isl_give isl_union_pw_qpolynomial *
6910 isl_union_pw_qpolynomial_gist_params(
6911 __isl_take isl_union_pw_qpolynomial *upwqp,
6912 __isl_take isl_set *context);
6913 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
6914 __isl_take isl_union_pw_qpolynomial *upwqp,
6915 __isl_take isl_union_set *context);
6916 __isl_give isl_union_pw_qpolynomial_fold *
6917 isl_union_pw_qpolynomial_fold_gist(
6918 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6919 __isl_take isl_union_set *context);
6920 __isl_give isl_union_pw_qpolynomial_fold *
6921 isl_union_pw_qpolynomial_fold_gist_params(
6922 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6923 __isl_take isl_set *context);
6925 =item * Binary Arithmetic Operations
6927 #include <isl/set.h>
6928 __isl_give isl_set *isl_set_sum(
6929 __isl_take isl_set *set1,
6930 __isl_take isl_set *set2);
6931 #include <isl/map.h>
6932 __isl_give isl_map *isl_map_sum(
6933 __isl_take isl_map *map1,
6934 __isl_take isl_map *map2);
6936 C<isl_set_sum> computes the Minkowski sum of its two arguments,
6937 i.e., the set containing the sums of pairs of elements from
6938 C<set1> and C<set2>.
6939 The domain of the result of C<isl_map_sum> is the intersection
6940 of the domains of its two arguments. The corresponding range
6941 elements are the sums of the corresponding range elements
6942 in the two arguments.
6944 #include <isl/val.h>
6945 __isl_give isl_multi_val *isl_multi_val_add(
6946 __isl_take isl_multi_val *mv1,
6947 __isl_take isl_multi_val *mv2);
6948 __isl_give isl_multi_val *isl_multi_val_sub(
6949 __isl_take isl_multi_val *mv1,
6950 __isl_take isl_multi_val *mv2);
6952 #include <isl/aff.h>
6953 __isl_give isl_aff *isl_aff_add(
6954 __isl_take isl_aff *aff1,
6955 __isl_take isl_aff *aff2);
6956 __isl_give isl_multi_aff *isl_multi_aff_add(
6957 __isl_take isl_multi_aff *maff1,
6958 __isl_take isl_multi_aff *maff2);
6959 __isl_give isl_pw_aff *isl_pw_aff_add(
6960 __isl_take isl_pw_aff *pwaff1,
6961 __isl_take isl_pw_aff *pwaff2);
6962 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add(
6963 __isl_take isl_multi_pw_aff *mpa1,
6964 __isl_take isl_multi_pw_aff *mpa2);
6965 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
6966 __isl_take isl_pw_multi_aff *pma1,
6967 __isl_take isl_pw_multi_aff *pma2);
6968 __isl_give isl_union_pw_aff *isl_union_pw_aff_add(
6969 __isl_take isl_union_pw_aff *upa1,
6970 __isl_take isl_union_pw_aff *upa2);
6971 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
6972 __isl_take isl_union_pw_multi_aff *upma1,
6973 __isl_take isl_union_pw_multi_aff *upma2);
6974 __isl_give isl_multi_union_pw_aff *
6975 isl_multi_union_pw_aff_add(
6976 __isl_take isl_multi_union_pw_aff *mupa1,
6977 __isl_take isl_multi_union_pw_aff *mupa2);
6978 __isl_give isl_pw_aff *isl_pw_aff_min(
6979 __isl_take isl_pw_aff *pwaff1,
6980 __isl_take isl_pw_aff *pwaff2);
6981 __isl_give isl_pw_aff *isl_pw_aff_max(
6982 __isl_take isl_pw_aff *pwaff1,
6983 __isl_take isl_pw_aff *pwaff2);
6984 __isl_give isl_aff *isl_aff_sub(
6985 __isl_take isl_aff *aff1,
6986 __isl_take isl_aff *aff2);
6987 __isl_give isl_multi_aff *isl_multi_aff_sub(
6988 __isl_take isl_multi_aff *ma1,
6989 __isl_take isl_multi_aff *ma2);
6990 __isl_give isl_pw_aff *isl_pw_aff_sub(
6991 __isl_take isl_pw_aff *pwaff1,
6992 __isl_take isl_pw_aff *pwaff2);
6993 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub(
6994 __isl_take isl_multi_pw_aff *mpa1,
6995 __isl_take isl_multi_pw_aff *mpa2);
6996 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
6997 __isl_take isl_pw_multi_aff *pma1,
6998 __isl_take isl_pw_multi_aff *pma2);
6999 __isl_give isl_union_pw_aff *isl_union_pw_aff_sub(
7000 __isl_take isl_union_pw_aff *upa1,
7001 __isl_take isl_union_pw_aff *upa2);
7002 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
7003 __isl_take isl_union_pw_multi_aff *upma1,
7004 __isl_take isl_union_pw_multi_aff *upma2);
7005 __isl_give isl_multi_union_pw_aff *
7006 isl_multi_union_pw_aff_sub(
7007 __isl_take isl_multi_union_pw_aff *mupa1,
7008 __isl_take isl_multi_union_pw_aff *mupa2);
7010 C<isl_aff_sub> subtracts the second argument from the first.
7012 #include <isl/polynomial.h>
7013 __isl_give isl_qpolynomial *isl_qpolynomial_add(
7014 __isl_take isl_qpolynomial *qp1,
7015 __isl_take isl_qpolynomial *qp2);
7016 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
7017 __isl_take isl_pw_qpolynomial *pwqp1,
7018 __isl_take isl_pw_qpolynomial *pwqp2);
7019 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
7020 __isl_take isl_pw_qpolynomial *pwqp1,
7021 __isl_take isl_pw_qpolynomial *pwqp2);
7022 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
7023 __isl_take isl_pw_qpolynomial_fold *pwf1,
7024 __isl_take isl_pw_qpolynomial_fold *pwf2);
7025 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
7026 __isl_take isl_union_pw_qpolynomial *upwqp1,
7027 __isl_take isl_union_pw_qpolynomial *upwqp2);
7028 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
7029 __isl_take isl_qpolynomial *qp1,
7030 __isl_take isl_qpolynomial *qp2);
7031 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
7032 __isl_take isl_pw_qpolynomial *pwqp1,
7033 __isl_take isl_pw_qpolynomial *pwqp2);
7034 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
7035 __isl_take isl_union_pw_qpolynomial *upwqp1,
7036 __isl_take isl_union_pw_qpolynomial *upwqp2);
7037 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
7038 __isl_take isl_pw_qpolynomial_fold *pwf1,
7039 __isl_take isl_pw_qpolynomial_fold *pwf2);
7040 __isl_give isl_union_pw_qpolynomial_fold *
7041 isl_union_pw_qpolynomial_fold_fold(
7042 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
7043 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
7045 #include <isl/aff.h>
7046 __isl_give isl_pw_aff *isl_pw_aff_union_add(
7047 __isl_take isl_pw_aff *pwaff1,
7048 __isl_take isl_pw_aff *pwaff2);
7049 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
7050 __isl_take isl_pw_multi_aff *pma1,
7051 __isl_take isl_pw_multi_aff *pma2);
7052 __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
7053 __isl_take isl_union_pw_aff *upa1,
7054 __isl_take isl_union_pw_aff *upa2);
7055 __isl_give isl_union_pw_multi_aff *
7056 isl_union_pw_multi_aff_union_add(
7057 __isl_take isl_union_pw_multi_aff *upma1,
7058 __isl_take isl_union_pw_multi_aff *upma2);
7059 __isl_give isl_multi_union_pw_aff *
7060 isl_multi_union_pw_aff_union_add(
7061 __isl_take isl_multi_union_pw_aff *mupa1,
7062 __isl_take isl_multi_union_pw_aff *mupa2);
7063 __isl_give isl_pw_aff *isl_pw_aff_union_min(
7064 __isl_take isl_pw_aff *pwaff1,
7065 __isl_take isl_pw_aff *pwaff2);
7066 __isl_give isl_pw_aff *isl_pw_aff_union_max(
7067 __isl_take isl_pw_aff *pwaff1,
7068 __isl_take isl_pw_aff *pwaff2);
7070 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
7071 expression with a domain that is the union of those of C<pwaff1> and
7072 C<pwaff2> and such that on each cell, the quasi-affine expression is
7073 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
7074 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
7075 associated expression is the defined one.
7076 This in contrast to the C<isl_pw_aff_max> function, which is
7077 only defined on the shared definition domain of the arguments.
7079 #include <isl/val.h>
7080 __isl_give isl_multi_val *isl_multi_val_add_val(
7081 __isl_take isl_multi_val *mv,
7082 __isl_take isl_val *v);
7083 __isl_give isl_multi_val *isl_multi_val_mod_val(
7084 __isl_take isl_multi_val *mv,
7085 __isl_take isl_val *v);
7086 __isl_give isl_multi_val *isl_multi_val_scale_val(
7087 __isl_take isl_multi_val *mv,
7088 __isl_take isl_val *v);
7089 __isl_give isl_multi_val *isl_multi_val_scale_down_val(
7090 __isl_take isl_multi_val *mv,
7091 __isl_take isl_val *v);
7093 #include <isl/aff.h>
7094 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
7095 __isl_take isl_val *mod);
7096 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
7097 __isl_take isl_pw_aff *pa,
7098 __isl_take isl_val *mod);
7099 __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
7100 __isl_take isl_union_pw_aff *upa,
7101 __isl_take isl_val *f);
7102 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
7103 __isl_take isl_val *v);
7104 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
7105 __isl_take isl_multi_aff *ma,
7106 __isl_take isl_val *v);
7107 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
7108 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
7109 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
7110 __isl_take isl_multi_pw_aff *mpa,
7111 __isl_take isl_val *v);
7112 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
7113 __isl_take isl_pw_multi_aff *pma,
7114 __isl_take isl_val *v);
7115 __isl_give isl_union_pw_multi_aff *
7116 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val(
7117 __isl_take isl_union_pw_aff *upa,
7118 __isl_take isl_val *f);
7119 isl_union_pw_multi_aff_scale_val(
7120 __isl_take isl_union_pw_multi_aff *upma,
7121 __isl_take isl_val *val);
7122 __isl_give isl_multi_union_pw_aff *
7123 isl_multi_union_pw_aff_scale_val(
7124 __isl_take isl_multi_union_pw_aff *mupa,
7125 __isl_take isl_val *v);
7126 __isl_give isl_aff *isl_aff_scale_down_ui(
7127 __isl_take isl_aff *aff, unsigned f);
7128 __isl_give isl_aff *isl_aff_scale_down_val(
7129 __isl_take isl_aff *aff, __isl_take isl_val *v);
7130 __isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
7131 __isl_take isl_multi_aff *ma,
7132 __isl_take isl_val *v);
7133 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
7134 __isl_take isl_pw_aff *pa,
7135 __isl_take isl_val *f);
7136 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
7137 __isl_take isl_multi_pw_aff *mpa,
7138 __isl_take isl_val *v);
7139 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
7140 __isl_take isl_pw_multi_aff *pma,
7141 __isl_take isl_val *v);
7142 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val(
7143 __isl_take isl_union_pw_aff *upa,
7144 __isl_take isl_val *v);
7145 __isl_give isl_union_pw_multi_aff *
7146 isl_union_pw_multi_aff_scale_down_val(
7147 __isl_take isl_union_pw_multi_aff *upma,
7148 __isl_take isl_val *val);
7149 __isl_give isl_multi_union_pw_aff *
7150 isl_multi_union_pw_aff_scale_down_val(
7151 __isl_take isl_multi_union_pw_aff *mupa,
7152 __isl_take isl_val *v);
7154 #include <isl/polynomial.h>
7155 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
7156 __isl_take isl_qpolynomial *qp,
7157 __isl_take isl_val *v);
7158 __isl_give isl_qpolynomial_fold *
7159 isl_qpolynomial_fold_scale_val(
7160 __isl_take isl_qpolynomial_fold *fold,
7161 __isl_take isl_val *v);
7162 __isl_give isl_pw_qpolynomial *
7163 isl_pw_qpolynomial_scale_val(
7164 __isl_take isl_pw_qpolynomial *pwqp,
7165 __isl_take isl_val *v);
7166 __isl_give isl_pw_qpolynomial_fold *
7167 isl_pw_qpolynomial_fold_scale_val(
7168 __isl_take isl_pw_qpolynomial_fold *pwf,
7169 __isl_take isl_val *v);
7170 __isl_give isl_union_pw_qpolynomial *
7171 isl_union_pw_qpolynomial_scale_val(
7172 __isl_take isl_union_pw_qpolynomial *upwqp,
7173 __isl_take isl_val *v);
7174 __isl_give isl_union_pw_qpolynomial_fold *
7175 isl_union_pw_qpolynomial_fold_scale_val(
7176 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7177 __isl_take isl_val *v);
7178 __isl_give isl_qpolynomial *
7179 isl_qpolynomial_scale_down_val(
7180 __isl_take isl_qpolynomial *qp,
7181 __isl_take isl_val *v);
7182 __isl_give isl_qpolynomial_fold *
7183 isl_qpolynomial_fold_scale_down_val(
7184 __isl_take isl_qpolynomial_fold *fold,
7185 __isl_take isl_val *v);
7186 __isl_give isl_pw_qpolynomial *
7187 isl_pw_qpolynomial_scale_down_val(
7188 __isl_take isl_pw_qpolynomial *pwqp,
7189 __isl_take isl_val *v);
7190 __isl_give isl_pw_qpolynomial_fold *
7191 isl_pw_qpolynomial_fold_scale_down_val(
7192 __isl_take isl_pw_qpolynomial_fold *pwf,
7193 __isl_take isl_val *v);
7194 __isl_give isl_union_pw_qpolynomial *
7195 isl_union_pw_qpolynomial_scale_down_val(
7196 __isl_take isl_union_pw_qpolynomial *upwqp,
7197 __isl_take isl_val *v);
7198 __isl_give isl_union_pw_qpolynomial_fold *
7199 isl_union_pw_qpolynomial_fold_scale_down_val(
7200 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7201 __isl_take isl_val *v);
7203 #include <isl/val.h>
7204 __isl_give isl_multi_val *isl_multi_val_mod_multi_val(
7205 __isl_take isl_multi_val *mv1,
7206 __isl_take isl_multi_val *mv2);
7207 __isl_give isl_multi_val *isl_multi_val_scale_multi_val(
7208 __isl_take isl_multi_val *mv1,
7209 __isl_take isl_multi_val *mv2);
7210 __isl_give isl_multi_val *
7211 isl_multi_val_scale_down_multi_val(
7212 __isl_take isl_multi_val *mv1,
7213 __isl_take isl_multi_val *mv2);
7215 #include <isl/aff.h>
7216 __isl_give isl_multi_aff *isl_multi_aff_mod_multi_val(
7217 __isl_take isl_multi_aff *ma,
7218 __isl_take isl_multi_val *mv);
7219 __isl_give isl_multi_union_pw_aff *
7220 isl_multi_union_pw_aff_mod_multi_val(
7221 __isl_take isl_multi_union_pw_aff *upma,
7222 __isl_take isl_multi_val *mv);
7223 __isl_give isl_multi_pw_aff *
7224 isl_multi_pw_aff_mod_multi_val(
7225 __isl_take isl_multi_pw_aff *mpa,
7226 __isl_take isl_multi_val *mv);
7227 __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
7228 __isl_take isl_multi_aff *ma,
7229 __isl_take isl_multi_val *mv);
7230 __isl_give isl_pw_multi_aff *
7231 isl_pw_multi_aff_scale_multi_val(
7232 __isl_take isl_pw_multi_aff *pma,
7233 __isl_take isl_multi_val *mv);
7234 __isl_give isl_multi_pw_aff *
7235 isl_multi_pw_aff_scale_multi_val(
7236 __isl_take isl_multi_pw_aff *mpa,
7237 __isl_take isl_multi_val *mv);
7238 __isl_give isl_multi_union_pw_aff *
7239 isl_multi_union_pw_aff_scale_multi_val(
7240 __isl_take isl_multi_union_pw_aff *mupa,
7241 __isl_take isl_multi_val *mv);
7242 __isl_give isl_union_pw_multi_aff *
7243 isl_union_pw_multi_aff_scale_multi_val(
7244 __isl_take isl_union_pw_multi_aff *upma,
7245 __isl_take isl_multi_val *mv);
7246 __isl_give isl_multi_aff *
7247 isl_multi_aff_scale_down_multi_val(
7248 __isl_take isl_multi_aff *ma,
7249 __isl_take isl_multi_val *mv);
7250 __isl_give isl_multi_pw_aff *
7251 isl_multi_pw_aff_scale_down_multi_val(
7252 __isl_take isl_multi_pw_aff *mpa,
7253 __isl_take isl_multi_val *mv);
7254 __isl_give isl_multi_union_pw_aff *
7255 isl_multi_union_pw_aff_scale_down_multi_val(
7256 __isl_take isl_multi_union_pw_aff *mupa,
7257 __isl_take isl_multi_val *mv);
7259 C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
7260 by the corresponding elements of C<mv>.
7262 #include <isl/aff.h>
7263 __isl_give isl_aff *isl_aff_mul(
7264 __isl_take isl_aff *aff1,
7265 __isl_take isl_aff *aff2);
7266 __isl_give isl_aff *isl_aff_div(
7267 __isl_take isl_aff *aff1,
7268 __isl_take isl_aff *aff2);
7269 __isl_give isl_pw_aff *isl_pw_aff_mul(
7270 __isl_take isl_pw_aff *pwaff1,
7271 __isl_take isl_pw_aff *pwaff2);
7272 __isl_give isl_pw_aff *isl_pw_aff_div(
7273 __isl_take isl_pw_aff *pa1,
7274 __isl_take isl_pw_aff *pa2);
7275 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
7276 __isl_take isl_pw_aff *pa1,
7277 __isl_take isl_pw_aff *pa2);
7278 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
7279 __isl_take isl_pw_aff *pa1,
7280 __isl_take isl_pw_aff *pa2);
7282 When multiplying two affine expressions, at least one of the two needs
7283 to be a constant. Similarly, when dividing an affine expression by another,
7284 the second expression needs to be a constant.
7285 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
7286 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
7289 #include <isl/polynomial.h>
7290 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
7291 __isl_take isl_qpolynomial *qp1,
7292 __isl_take isl_qpolynomial *qp2);
7293 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
7294 __isl_take isl_pw_qpolynomial *pwqp1,
7295 __isl_take isl_pw_qpolynomial *pwqp2);
7296 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
7297 __isl_take isl_union_pw_qpolynomial *upwqp1,
7298 __isl_take isl_union_pw_qpolynomial *upwqp2);
7302 =head3 Lexicographic Optimization
7304 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
7305 the following functions
7306 compute a set that contains the lexicographic minimum or maximum
7307 of the elements in C<set> (or C<bset>) for those values of the parameters
7308 that satisfy C<dom>.
7309 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7310 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
7312 In other words, the union of the parameter values
7313 for which the result is non-empty and of C<*empty>
7316 #include <isl/set.h>
7317 __isl_give isl_set *isl_basic_set_partial_lexmin(
7318 __isl_take isl_basic_set *bset,
7319 __isl_take isl_basic_set *dom,
7320 __isl_give isl_set **empty);
7321 __isl_give isl_set *isl_basic_set_partial_lexmax(
7322 __isl_take isl_basic_set *bset,
7323 __isl_take isl_basic_set *dom,
7324 __isl_give isl_set **empty);
7325 __isl_give isl_set *isl_set_partial_lexmin(
7326 __isl_take isl_set *set, __isl_take isl_set *dom,
7327 __isl_give isl_set **empty);
7328 __isl_give isl_set *isl_set_partial_lexmax(
7329 __isl_take isl_set *set, __isl_take isl_set *dom,
7330 __isl_give isl_set **empty);
7332 Given a (basic) set C<set> (or C<bset>), the following functions simply
7333 return a set containing the lexicographic minimum or maximum
7334 of the elements in C<set> (or C<bset>).
7335 In case of union sets, the optimum is computed per space.
7337 #include <isl/set.h>
7338 __isl_give isl_set *isl_basic_set_lexmin(
7339 __isl_take isl_basic_set *bset);
7340 __isl_give isl_set *isl_basic_set_lexmax(
7341 __isl_take isl_basic_set *bset);
7342 __isl_give isl_set *isl_set_lexmin(
7343 __isl_take isl_set *set);
7344 __isl_give isl_set *isl_set_lexmax(
7345 __isl_take isl_set *set);
7346 __isl_give isl_union_set *isl_union_set_lexmin(
7347 __isl_take isl_union_set *uset);
7348 __isl_give isl_union_set *isl_union_set_lexmax(
7349 __isl_take isl_union_set *uset);
7351 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
7352 the following functions
7353 compute a relation that maps each element of C<dom>
7354 to the single lexicographic minimum or maximum
7355 of the elements that are associated to that same
7356 element in C<map> (or C<bmap>).
7357 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7358 that contains the elements in C<dom> that do not map
7359 to any elements in C<map> (or C<bmap>).
7360 In other words, the union of the domain of the result and of C<*empty>
7363 #include <isl/map.h>
7364 __isl_give isl_map *isl_basic_map_partial_lexmax(
7365 __isl_take isl_basic_map *bmap,
7366 __isl_take isl_basic_set *dom,
7367 __isl_give isl_set **empty);
7368 __isl_give isl_map *isl_basic_map_partial_lexmin(
7369 __isl_take isl_basic_map *bmap,
7370 __isl_take isl_basic_set *dom,
7371 __isl_give isl_set **empty);
7372 __isl_give isl_map *isl_map_partial_lexmax(
7373 __isl_take isl_map *map, __isl_take isl_set *dom,
7374 __isl_give isl_set **empty);
7375 __isl_give isl_map *isl_map_partial_lexmin(
7376 __isl_take isl_map *map, __isl_take isl_set *dom,
7377 __isl_give isl_set **empty);
7379 Given a (basic) map C<map> (or C<bmap>), the following functions simply
7380 return a map mapping each element in the domain of
7381 C<map> (or C<bmap>) to the lexicographic minimum or maximum
7382 of all elements associated to that element.
7383 In case of union relations, the optimum is computed per space.
7385 #include <isl/map.h>
7386 __isl_give isl_map *isl_basic_map_lexmin(
7387 __isl_take isl_basic_map *bmap);
7388 __isl_give isl_map *isl_basic_map_lexmax(
7389 __isl_take isl_basic_map *bmap);
7390 __isl_give isl_map *isl_map_lexmin(
7391 __isl_take isl_map *map);
7392 __isl_give isl_map *isl_map_lexmax(
7393 __isl_take isl_map *map);
7394 __isl_give isl_union_map *isl_union_map_lexmin(
7395 __isl_take isl_union_map *umap);
7396 __isl_give isl_union_map *isl_union_map_lexmax(
7397 __isl_take isl_union_map *umap);
7399 The following functions return their result in the form of
7400 a piecewise multi-affine expression,
7401 but are otherwise equivalent to the corresponding functions
7402 returning a basic set or relation.
7404 #include <isl/set.h>
7405 __isl_give isl_pw_multi_aff *
7406 isl_basic_set_partial_lexmin_pw_multi_aff(
7407 __isl_take isl_basic_set *bset,
7408 __isl_take isl_basic_set *dom,
7409 __isl_give isl_set **empty);
7410 __isl_give isl_pw_multi_aff *
7411 isl_basic_set_partial_lexmax_pw_multi_aff(
7412 __isl_take isl_basic_set *bset,
7413 __isl_take isl_basic_set *dom,
7414 __isl_give isl_set **empty);
7415 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
7416 __isl_take isl_set *set);
7417 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
7418 __isl_take isl_set *set);
7420 #include <isl/map.h>
7421 __isl_give isl_pw_multi_aff *
7422 isl_basic_map_lexmin_pw_multi_aff(
7423 __isl_take isl_basic_map *bmap);
7424 __isl_give isl_pw_multi_aff *
7425 isl_basic_map_partial_lexmin_pw_multi_aff(
7426 __isl_take isl_basic_map *bmap,
7427 __isl_take isl_basic_set *dom,
7428 __isl_give isl_set **empty);
7429 __isl_give isl_pw_multi_aff *
7430 isl_basic_map_partial_lexmax_pw_multi_aff(
7431 __isl_take isl_basic_map *bmap,
7432 __isl_take isl_basic_set *dom,
7433 __isl_give isl_set **empty);
7434 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
7435 __isl_take isl_map *map);
7436 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
7437 __isl_take isl_map *map);
7439 The following functions return the lexicographic minimum or maximum
7440 on the shared domain of the inputs and the single defined function
7441 on those parts of the domain where only a single function is defined.
7443 #include <isl/aff.h>
7444 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
7445 __isl_take isl_pw_multi_aff *pma1,
7446 __isl_take isl_pw_multi_aff *pma2);
7447 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
7448 __isl_take isl_pw_multi_aff *pma1,
7449 __isl_take isl_pw_multi_aff *pma2);
7451 If the input to a lexicographic optimization problem has
7452 multiple constraints with the same coefficients for the optimized
7453 variables, then, by default, this symmetry is exploited by
7454 replacing those constraints by a single constraint with
7455 an abstract bound, which is in turn bounded by the corresponding terms
7456 in the original constraints.
7457 Without this optimization, the solver would typically consider
7458 all possible orderings of those original bounds, resulting in a needless
7459 decomposition of the domain.
7460 However, the optimization can also result in slowdowns since
7461 an extra parameter is introduced that may get used in additional
7463 The following option determines whether symmetry detection is applied
7464 during lexicographic optimization.
7466 #include <isl/options.h>
7467 isl_stat isl_options_set_pip_symmetry(isl_ctx *ctx,
7469 int isl_options_get_pip_symmetry(isl_ctx *ctx);
7473 See also \autoref{s:offline}.
7477 =head2 Ternary Operations
7479 #include <isl/aff.h>
7480 __isl_give isl_pw_aff *isl_pw_aff_cond(
7481 __isl_take isl_pw_aff *cond,
7482 __isl_take isl_pw_aff *pwaff_true,
7483 __isl_take isl_pw_aff *pwaff_false);
7485 The function C<isl_pw_aff_cond> performs a conditional operator
7486 and returns an expression that is equal to C<pwaff_true>
7487 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
7488 where C<cond> is zero.
7492 Lists are defined over several element types, including
7493 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_union_pw_aff>,
7494 C<isl_union_pw_multi_aff>, C<isl_constraint>,
7495 C<isl_basic_set>, C<isl_set>, C<isl_basic_map>, C<isl_map>, C<isl_union_set>,
7496 C<isl_union_map>, C<isl_ast_expr> and C<isl_ast_node>.
7497 Here we take lists of C<isl_set>s as an example.
7498 Lists can be created, copied, modified and freed using the following functions.
7500 #include <isl/set.h>
7501 __isl_give isl_set_list *isl_set_list_from_set(
7502 __isl_take isl_set *el);
7503 __isl_give isl_set_list *isl_set_list_alloc(
7504 isl_ctx *ctx, int n);
7505 __isl_give isl_set_list *isl_set_list_copy(
7506 __isl_keep isl_set_list *list);
7507 __isl_give isl_set_list *isl_set_list_insert(
7508 __isl_take isl_set_list *list, unsigned pos,
7509 __isl_take isl_set *el);
7510 __isl_give isl_set_list *isl_set_list_add(
7511 __isl_take isl_set_list *list,
7512 __isl_take isl_set *el);
7513 __isl_give isl_set_list *isl_set_list_drop(
7514 __isl_take isl_set_list *list,
7515 unsigned first, unsigned n);
7516 __isl_give isl_set_list *isl_set_list_set_set(
7517 __isl_take isl_set_list *list, int index,
7518 __isl_take isl_set *set);
7519 __isl_give isl_set_list *isl_set_list_concat(
7520 __isl_take isl_set_list *list1,
7521 __isl_take isl_set_list *list2);
7522 __isl_give isl_set_list *isl_set_list_map(
7523 __isl_take isl_set_list *list,
7524 __isl_give isl_set *(*fn)(__isl_take isl_set *el,
7527 __isl_give isl_set_list *isl_set_list_sort(
7528 __isl_take isl_set_list *list,
7529 int (*cmp)(__isl_keep isl_set *a,
7530 __isl_keep isl_set *b, void *user),
7532 __isl_null isl_set_list *isl_set_list_free(
7533 __isl_take isl_set_list *list);
7535 C<isl_set_list_alloc> creates an empty list with an initial capacity
7536 for C<n> elements. C<isl_set_list_insert> and C<isl_set_list_add>
7537 add elements to a list, increasing its capacity as needed.
7538 C<isl_set_list_from_set> creates a list with a single element.
7540 Lists can be inspected using the following functions.
7542 #include <isl/set.h>
7543 int isl_set_list_n_set(__isl_keep isl_set_list *list);
7544 __isl_give isl_set *isl_set_list_get_set(
7545 __isl_keep isl_set_list *list, int index);
7546 isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list,
7547 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7549 isl_stat isl_set_list_foreach_scc(
7550 __isl_keep isl_set_list *list,
7551 isl_bool (*follows)(__isl_keep isl_set *a,
7552 __isl_keep isl_set *b, void *user),
7554 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7557 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
7558 strongly connected components of the graph with as vertices the elements
7559 of C<list> and a directed edge from vertex C<b> to vertex C<a>
7560 iff C<follows(a, b)> returns C<isl_bool_true>. The callbacks C<follows> and
7561 C<fn> should return C<isl_bool_error> or C<isl_stat_error> on error.
7563 Lists can be printed using
7565 #include <isl/set.h>
7566 __isl_give isl_printer *isl_printer_print_set_list(
7567 __isl_take isl_printer *p,
7568 __isl_keep isl_set_list *list);
7570 =head2 Associative arrays
7572 Associative arrays map isl objects of a specific type to isl objects
7573 of some (other) specific type. They are defined for several pairs
7574 of types, including (C<isl_map>, C<isl_basic_set>),
7575 (C<isl_id>, C<isl_ast_expr>),
7576 (C<isl_id>, C<isl_id>) and
7577 (C<isl_id>, C<isl_pw_aff>).
7578 Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
7581 Associative arrays can be created, copied and freed using
7582 the following functions.
7584 #include <isl/id_to_ast_expr.h>
7585 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc(
7586 isl_ctx *ctx, int min_size);
7587 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy(
7588 __isl_keep isl_id_to_ast_expr *id2expr);
7589 __isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free(
7590 __isl_take isl_id_to_ast_expr *id2expr);
7592 The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
7593 to specify the expected size of the associative array.
7594 The associative array will be grown automatically as needed.
7596 Associative arrays can be inspected using the following functions.
7598 #include <isl/id_to_ast_expr.h>
7599 __isl_give isl_maybe_isl_ast_expr
7600 isl_id_to_ast_expr_try_get(
7601 __isl_keep isl_id_to_ast_expr *id2expr,
7602 __isl_keep isl_id *key);
7603 isl_bool isl_id_to_ast_expr_has(
7604 __isl_keep isl_id_to_ast_expr *id2expr,
7605 __isl_keep isl_id *key);
7606 __isl_give isl_ast_expr *isl_id_to_ast_expr_get(
7607 __isl_keep isl_id_to_ast_expr *id2expr,
7608 __isl_take isl_id *key);
7609 isl_stat isl_id_to_ast_expr_foreach(
7610 __isl_keep isl_id_to_ast_expr *id2expr,
7611 isl_stat (*fn)(__isl_take isl_id *key,
7612 __isl_take isl_ast_expr *val, void *user),
7615 The function C<isl_id_to_ast_expr_try_get> returns a structure
7616 containing two elements, C<valid> and C<value>.
7617 If there is a value associated to the key, then C<valid>
7618 is set to C<isl_bool_true> and C<value> contains a copy of
7619 the associated value. Otherwise C<value> is C<NULL> and
7620 C<valid> may be C<isl_bool_error> or C<isl_bool_false> depending
7621 on whether some error has occurred or there simply is no associated value.
7622 The function C<isl_id_to_ast_expr_has> returns the C<valid> field
7623 in the structure and
7624 the function C<isl_id_to_ast_expr_get> returns the C<value> field.
7626 Associative arrays can be modified using the following functions.
7628 #include <isl/id_to_ast_expr.h>
7629 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set(
7630 __isl_take isl_id_to_ast_expr *id2expr,
7631 __isl_take isl_id *key,
7632 __isl_take isl_ast_expr *val);
7633 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop(
7634 __isl_take isl_id_to_ast_expr *id2expr,
7635 __isl_take isl_id *key);
7637 Associative arrays can be printed using the following function.
7639 #include <isl/id_to_ast_expr.h>
7640 __isl_give isl_printer *isl_printer_print_id_to_ast_expr(
7641 __isl_take isl_printer *p,
7642 __isl_keep isl_id_to_ast_expr *id2expr);
7646 Vectors can be created, copied and freed using the following functions.
7648 #include <isl/vec.h>
7649 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
7651 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
7652 __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);
7654 Note that the elements of a newly created vector may have arbitrary values.
7655 The elements can be changed and inspected using the following functions.
7657 int isl_vec_size(__isl_keep isl_vec *vec);
7658 __isl_give isl_val *isl_vec_get_element_val(
7659 __isl_keep isl_vec *vec, int pos);
7660 __isl_give isl_vec *isl_vec_set_element_si(
7661 __isl_take isl_vec *vec, int pos, int v);
7662 __isl_give isl_vec *isl_vec_set_element_val(
7663 __isl_take isl_vec *vec, int pos,
7664 __isl_take isl_val *v);
7665 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
7667 __isl_give isl_vec *isl_vec_set_val(
7668 __isl_take isl_vec *vec, __isl_take isl_val *v);
7669 int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
7670 __isl_keep isl_vec *vec2, int pos);
7672 C<isl_vec_get_element> will return a negative value if anything went wrong.
7673 In that case, the value of C<*v> is undefined.
7675 The following function can be used to concatenate two vectors.
7677 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
7678 __isl_take isl_vec *vec2);
7682 Matrices can be created, copied and freed using the following functions.
7684 #include <isl/mat.h>
7685 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
7686 unsigned n_row, unsigned n_col);
7687 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
7688 __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);
7690 Note that the elements of a newly created matrix may have arbitrary values.
7691 The elements can be changed and inspected using the following functions.
7693 int isl_mat_rows(__isl_keep isl_mat *mat);
7694 int isl_mat_cols(__isl_keep isl_mat *mat);
7695 __isl_give isl_val *isl_mat_get_element_val(
7696 __isl_keep isl_mat *mat, int row, int col);
7697 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
7698 int row, int col, int v);
7699 __isl_give isl_mat *isl_mat_set_element_val(
7700 __isl_take isl_mat *mat, int row, int col,
7701 __isl_take isl_val *v);
7703 C<isl_mat_get_element> will return a negative value if anything went wrong.
7704 In that case, the value of C<*v> is undefined.
7706 The following function can be used to compute the (right) inverse
7707 of a matrix, i.e., a matrix such that the product of the original
7708 and the inverse (in that order) is a multiple of the identity matrix.
7709 The input matrix is assumed to be of full row-rank.
7711 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
7713 The following function can be used to compute the (right) kernel
7714 (or null space) of a matrix, i.e., a matrix such that the product of
7715 the original and the kernel (in that order) is the zero matrix.
7717 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
7719 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
7721 The following functions determine
7722 an upper or lower bound on a quasipolynomial over its domain.
7724 __isl_give isl_pw_qpolynomial_fold *
7725 isl_pw_qpolynomial_bound(
7726 __isl_take isl_pw_qpolynomial *pwqp,
7727 enum isl_fold type, int *tight);
7729 __isl_give isl_union_pw_qpolynomial_fold *
7730 isl_union_pw_qpolynomial_bound(
7731 __isl_take isl_union_pw_qpolynomial *upwqp,
7732 enum isl_fold type, int *tight);
7734 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
7735 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
7736 is the returned bound is known be tight, i.e., for each value
7737 of the parameters there is at least
7738 one element in the domain that reaches the bound.
7739 If the domain of C<pwqp> is not wrapping, then the bound is computed
7740 over all elements in that domain and the result has a purely parametric
7741 domain. If the domain of C<pwqp> is wrapping, then the bound is
7742 computed over the range of the wrapped relation. The domain of the
7743 wrapped relation becomes the domain of the result.
7745 =head2 Parametric Vertex Enumeration
7747 The parametric vertex enumeration described in this section
7748 is mainly intended to be used internally and by the C<barvinok>
7751 #include <isl/vertices.h>
7752 __isl_give isl_vertices *isl_basic_set_compute_vertices(
7753 __isl_keep isl_basic_set *bset);
7755 The function C<isl_basic_set_compute_vertices> performs the
7756 actual computation of the parametric vertices and the chamber
7757 decomposition and stores the result in an C<isl_vertices> object.
7758 This information can be queried by either iterating over all
7759 the vertices or iterating over all the chambers or cells
7760 and then iterating over all vertices that are active on the chamber.
7762 isl_stat isl_vertices_foreach_vertex(
7763 __isl_keep isl_vertices *vertices,
7764 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7765 void *user), void *user);
7767 isl_stat isl_vertices_foreach_cell(
7768 __isl_keep isl_vertices *vertices,
7769 isl_stat (*fn)(__isl_take isl_cell *cell,
7770 void *user), void *user);
7771 isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
7772 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7773 void *user), void *user);
7775 Other operations that can be performed on an C<isl_vertices> object are
7778 int isl_vertices_get_n_vertices(
7779 __isl_keep isl_vertices *vertices);
7780 __isl_null isl_vertices *isl_vertices_free(
7781 __isl_take isl_vertices *vertices);
7783 Vertices can be inspected and destroyed using the following functions.
7785 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
7786 __isl_give isl_basic_set *isl_vertex_get_domain(
7787 __isl_keep isl_vertex *vertex);
7788 __isl_give isl_multi_aff *isl_vertex_get_expr(
7789 __isl_keep isl_vertex *vertex);
7790 void isl_vertex_free(__isl_take isl_vertex *vertex);
7792 C<isl_vertex_get_expr> returns a multiple quasi-affine expression
7793 describing the vertex in terms of the parameters,
7794 while C<isl_vertex_get_domain> returns the activity domain
7797 Chambers can be inspected and destroyed using the following functions.
7799 __isl_give isl_basic_set *isl_cell_get_domain(
7800 __isl_keep isl_cell *cell);
7801 void isl_cell_free(__isl_take isl_cell *cell);
7803 =head1 Polyhedral Compilation Library
7805 This section collects functionality in C<isl> that has been specifically
7806 designed for use during polyhedral compilation.
7808 =head2 Schedule Trees
7810 A schedule tree is a structured representation of a schedule,
7811 assigning a relative order to a set of domain elements.
7812 The relative order expressed by the schedule tree is
7813 defined recursively. In particular, the order between
7814 two domain elements is determined by the node that is closest
7815 to the root that refers to both elements and that orders them apart.
7816 Each node in the tree is of one of several types.
7817 The root node is always of type C<isl_schedule_node_domain>
7818 (or C<isl_schedule_node_extension>)
7819 and it describes the (extra) domain elements to which the schedule applies.
7820 The other types of nodes are as follows.
7824 =item C<isl_schedule_node_band>
7826 A band of schedule dimensions. Each schedule dimension is represented
7827 by a union piecewise quasi-affine expression. If this expression
7828 assigns a different value to two domain elements, while all previous
7829 schedule dimensions in the same band assign them the same value,
7830 then the two domain elements are ordered according to these two
7832 Each expression is required to be total in the domain elements
7833 that reach the band node.
7835 =item C<isl_schedule_node_expansion>
7837 An expansion node maps each of the domain elements that reach the node
7838 to one or more domain elements. The image of this mapping forms
7839 the set of domain elements that reach the child of the expansion node.
7840 The function that maps each of the expanded domain elements
7841 to the original domain element from which it was expanded
7842 is called the contraction.
7844 =item C<isl_schedule_node_filter>
7846 A filter node does not impose any ordering, but rather intersects
7847 the set of domain elements that the current subtree refers to
7848 with a given union set. The subtree of the filter node only
7849 refers to domain elements in the intersection.
7850 A filter node is typically only used as a child of a sequence or
7853 =item C<isl_schedule_node_leaf>
7855 A leaf of the schedule tree. Leaf nodes do not impose any ordering.
7857 =item C<isl_schedule_node_mark>
7859 A mark node can be used to attach any kind of information to a subtree
7860 of the schedule tree.
7862 =item C<isl_schedule_node_sequence>
7864 A sequence node has one or more children, each of which is a filter node.
7865 The filters on these filter nodes form a partition of
7866 the domain elements that the current subtree refers to.
7867 If two domain elements appear in distinct filters then the sequence
7868 node orders them according to the child positions of the corresponding
7871 =item C<isl_schedule_node_set>
7873 A set node is similar to a sequence node, except that
7874 it expresses that domain elements appearing in distinct filters
7875 may have any order. The order of the children of a set node
7876 is therefore also immaterial.
7880 The following node types are only supported by the AST generator.
7884 =item C<isl_schedule_node_context>
7886 The context describes constraints on the parameters and
7887 the schedule dimensions of outer
7888 bands that the AST generator may assume to hold. It is also the only
7889 kind of node that may introduce additional parameters.
7890 The space of the context is that of the flat product of the outer
7891 band nodes. In particular, if there are no outer band nodes, then
7892 this space is the unnamed zero-dimensional space.
7893 Since a context node references the outer band nodes, any tree
7894 containing a context node is considered to be anchored.
7896 =item C<isl_schedule_node_extension>
7898 An extension node instructs the AST generator to add additional
7899 domain elements that need to be scheduled.
7900 The additional domain elements are described by the range of
7901 the extension map in terms of the outer schedule dimensions,
7902 i.e., the flat product of the outer band nodes.
7903 Note that domain elements are added whenever the AST generator
7904 reaches the extension node, meaning that there are still some
7905 active domain elements for which an AST needs to be generated.
7906 The conditions under which some domain elements are still active
7907 may however not be completely described by the outer AST nodes
7908 generated at that point.
7910 An extension node may also appear as the root of a schedule tree,
7911 when it is intended to be inserted into another tree
7912 using C<isl_schedule_node_graft_before> or C<isl_schedule_node_graft_after>.
7913 In this case, the domain of the extension node should
7914 correspond to the flat product of the outer band nodes
7915 in this other schedule tree at the point where the extension tree
7918 =item C<isl_schedule_node_guard>
7920 The guard describes constraints on the parameters and
7921 the schedule dimensions of outer
7922 bands that need to be enforced by the outer nodes
7923 in the generated AST.
7924 The space of the guard is that of the flat product of the outer
7925 band nodes. In particular, if there are no outer band nodes, then
7926 this space is the unnamed zero-dimensional space.
7927 Since a guard node references the outer band nodes, any tree
7928 containing a guard node is considered to be anchored.
7932 Except for the C<isl_schedule_node_context> nodes,
7933 none of the nodes may introduce any parameters that were not
7934 already present in the root domain node.
7936 A schedule tree is encapsulated in an C<isl_schedule> object.
7937 The simplest such objects, those with a tree consisting of single domain node,
7938 can be created using the following functions with either an empty
7939 domain or a given domain.
7941 #include <isl/schedule.h>
7942 __isl_give isl_schedule *isl_schedule_empty(
7943 __isl_take isl_space *space);
7944 __isl_give isl_schedule *isl_schedule_from_domain(
7945 __isl_take isl_union_set *domain);
7947 The function C<isl_schedule_constraints_compute_schedule> described
7948 in L</"Scheduling"> can also be used to construct schedules.
7950 C<isl_schedule> objects may be copied and freed using the following functions.
7952 #include <isl/schedule.h>
7953 __isl_give isl_schedule *isl_schedule_copy(
7954 __isl_keep isl_schedule *sched);
7955 __isl_null isl_schedule *isl_schedule_free(
7956 __isl_take isl_schedule *sched);
7958 The following functions checks whether two C<isl_schedule> objects
7959 are obviously the same.
7961 #include <isl/schedule.h>
7962 isl_bool isl_schedule_plain_is_equal(
7963 __isl_keep isl_schedule *schedule1,
7964 __isl_keep isl_schedule *schedule2);
7966 The domain of the schedule, i.e., the domain described by the root node,
7967 can be obtained using the following function.
7969 #include <isl/schedule.h>
7970 __isl_give isl_union_set *isl_schedule_get_domain(
7971 __isl_keep isl_schedule *schedule);
7973 An extra top-level band node (right underneath the domain node) can
7974 be introduced into the schedule using the following function.
7975 The schedule tree is assumed not to have any anchored nodes.
7977 #include <isl/schedule.h>
7978 __isl_give isl_schedule *
7979 isl_schedule_insert_partial_schedule(
7980 __isl_take isl_schedule *schedule,
7981 __isl_take isl_multi_union_pw_aff *partial);
7983 A top-level context node (right underneath the domain node) can
7984 be introduced into the schedule using the following function.
7986 #include <isl/schedule.h>
7987 __isl_give isl_schedule *isl_schedule_insert_context(
7988 __isl_take isl_schedule *schedule,
7989 __isl_take isl_set *context)
7991 A top-level guard node (right underneath the domain node) can
7992 be introduced into the schedule using the following function.
7994 #include <isl/schedule.h>
7995 __isl_give isl_schedule *isl_schedule_insert_guard(
7996 __isl_take isl_schedule *schedule,
7997 __isl_take isl_set *guard)
7999 A schedule that combines two schedules either in the given
8000 order or in an arbitrary order, i.e., with an C<isl_schedule_node_sequence>
8001 or an C<isl_schedule_node_set> node,
8002 can be created using the following functions.
8004 #include <isl/schedule.h>
8005 __isl_give isl_schedule *isl_schedule_sequence(
8006 __isl_take isl_schedule *schedule1,
8007 __isl_take isl_schedule *schedule2);
8008 __isl_give isl_schedule *isl_schedule_set(
8009 __isl_take isl_schedule *schedule1,
8010 __isl_take isl_schedule *schedule2);
8012 The domains of the two input schedules need to be disjoint.
8014 The following function can be used to restrict the domain
8015 of a schedule with a domain node as root to be a subset of the given union set.
8016 This operation may remove nodes in the tree that have become
8019 #include <isl/schedule.h>
8020 __isl_give isl_schedule *isl_schedule_intersect_domain(
8021 __isl_take isl_schedule *schedule,
8022 __isl_take isl_union_set *domain);
8024 The following function can be used to simplify the domain
8025 of a schedule with a domain node as root with respect to the given
8028 #include <isl/schedule.h>
8029 __isl_give isl_schedule *isl_schedule_gist_domain_params(
8030 __isl_take isl_schedule *schedule,
8031 __isl_take isl_set *context);
8033 The following function resets the user pointers on all parameter
8034 and tuple identifiers referenced by the nodes of the given schedule.
8036 #include <isl/schedule.h>
8037 __isl_give isl_schedule *isl_schedule_reset_user(
8038 __isl_take isl_schedule *schedule);
8040 The following function aligns the parameters of all nodes
8041 in the given schedule to the given space.
8043 #include <isl/schedule.h>
8044 __isl_give isl_schedule *isl_schedule_align_params(
8045 __isl_take isl_schedule *schedule,
8046 __isl_take isl_space *space);
8048 The following function allows the user to plug in a given function
8049 in the iteration domains. The input schedule is not allowed to contain
8050 any expansion nodes.
8052 #include <isl/schedule.h>
8053 __isl_give isl_schedule *
8054 isl_schedule_pullback_union_pw_multi_aff(
8055 __isl_take isl_schedule *schedule,
8056 __isl_take isl_union_pw_multi_aff *upma);
8058 The following function can be used to plug in the schedule C<expansion>
8059 in the leaves of C<schedule>, where C<contraction> describes how
8060 the domain elements of C<expansion> map to the domain elements
8061 at the original leaves of C<schedule>.
8062 The resulting schedule will contain expansion nodes, unless
8063 C<contraction> is an identity function.
8065 #include <isl/schedule.h>
8066 __isl_give isl_schedule *isl_schedule_expand(
8067 __isl_take isl_schedule *schedule,
8068 __isl_take isl_union_pw_multi_aff *contraction,
8069 __isl_take isl_schedule *expansion);
8071 An C<isl_union_map> representation of the schedule can be obtained
8072 from an C<isl_schedule> using the following function.
8074 #include <isl/schedule.h>
8075 __isl_give isl_union_map *isl_schedule_get_map(
8076 __isl_keep isl_schedule *sched);
8078 The resulting relation encodes the same relative ordering as
8079 the schedule by mapping the domain elements to a common schedule space.
8080 If the schedule_separate_components option is set, then the order
8081 of the children of a set node is explicitly encoded in the result.
8082 If the tree contains any expansion nodes, then the relation
8083 is formulated in terms of the expanded domain elements.
8085 Schedules can be read from input using the following functions.
8087 #include <isl/schedule.h>
8088 __isl_give isl_schedule *isl_schedule_read_from_file(
8089 isl_ctx *ctx, FILE *input);
8090 __isl_give isl_schedule *isl_schedule_read_from_str(
8091 isl_ctx *ctx, const char *str);
8093 A representation of the schedule can be printed using
8095 #include <isl/schedule.h>
8096 __isl_give isl_printer *isl_printer_print_schedule(
8097 __isl_take isl_printer *p,
8098 __isl_keep isl_schedule *schedule);
8099 __isl_give char *isl_schedule_to_str(
8100 __isl_keep isl_schedule *schedule);
8102 C<isl_schedule_to_str> prints the schedule in flow format.
8104 The schedule tree can be traversed through the use of
8105 C<isl_schedule_node> objects that point to a particular
8106 position in the schedule tree. Whenever a C<isl_schedule_node>
8107 is use to modify a node in the schedule tree, the original schedule
8108 tree is left untouched and the modifications are performed to a copy
8109 of the tree. The returned C<isl_schedule_node> then points to
8110 this modified copy of the tree.
8112 The root of the schedule tree can be obtained using the following function.
8114 #include <isl/schedule.h>
8115 __isl_give isl_schedule_node *isl_schedule_get_root(
8116 __isl_keep isl_schedule *schedule);
8118 A pointer to a newly created schedule tree with a single domain
8119 node can be created using the following functions.
8121 #include <isl/schedule_node.h>
8122 __isl_give isl_schedule_node *
8123 isl_schedule_node_from_domain(
8124 __isl_take isl_union_set *domain);
8125 __isl_give isl_schedule_node *
8126 isl_schedule_node_from_extension(
8127 __isl_take isl_union_map *extension);
8129 C<isl_schedule_node_from_extension> creates a tree with an extension
8132 Schedule nodes can be copied and freed using the following functions.
8134 #include <isl/schedule_node.h>
8135 __isl_give isl_schedule_node *isl_schedule_node_copy(
8136 __isl_keep isl_schedule_node *node);
8137 __isl_null isl_schedule_node *isl_schedule_node_free(
8138 __isl_take isl_schedule_node *node);
8140 The following functions can be used to check if two schedule
8141 nodes point to the same position in the same schedule.
8143 #include <isl/schedule_node.h>
8144 isl_bool isl_schedule_node_is_equal(
8145 __isl_keep isl_schedule_node *node1,
8146 __isl_keep isl_schedule_node *node2);
8148 The following properties can be obtained from a schedule node.
8150 #include <isl/schedule_node.h>
8151 enum isl_schedule_node_type isl_schedule_node_get_type(
8152 __isl_keep isl_schedule_node *node);
8153 enum isl_schedule_node_type
8154 isl_schedule_node_get_parent_type(
8155 __isl_keep isl_schedule_node *node);
8156 __isl_give isl_schedule *isl_schedule_node_get_schedule(
8157 __isl_keep isl_schedule_node *node);
8159 The function C<isl_schedule_node_get_type> returns the type of
8160 the node, while C<isl_schedule_node_get_parent_type> returns
8161 type of the parent of the node, which is required to exist.
8162 The function C<isl_schedule_node_get_schedule> returns a copy
8163 to the schedule to which the node belongs.
8165 The following functions can be used to move the schedule node
8166 to a different position in the tree or to check if such a position
8169 #include <isl/schedule_node.h>
8170 isl_bool isl_schedule_node_has_parent(
8171 __isl_keep isl_schedule_node *node);
8172 __isl_give isl_schedule_node *isl_schedule_node_parent(
8173 __isl_take isl_schedule_node *node);
8174 __isl_give isl_schedule_node *isl_schedule_node_root(
8175 __isl_take isl_schedule_node *node);
8176 __isl_give isl_schedule_node *isl_schedule_node_ancestor(
8177 __isl_take isl_schedule_node *node,
8179 int isl_schedule_node_n_children(
8180 __isl_keep isl_schedule_node *node);
8181 __isl_give isl_schedule_node *isl_schedule_node_child(
8182 __isl_take isl_schedule_node *node, int pos);
8183 isl_bool isl_schedule_node_has_children(
8184 __isl_keep isl_schedule_node *node);
8185 __isl_give isl_schedule_node *isl_schedule_node_first_child(
8186 __isl_take isl_schedule_node *node);
8187 isl_bool isl_schedule_node_has_previous_sibling(
8188 __isl_keep isl_schedule_node *node);
8189 __isl_give isl_schedule_node *
8190 isl_schedule_node_previous_sibling(
8191 __isl_take isl_schedule_node *node);
8192 isl_bool isl_schedule_node_has_next_sibling(
8193 __isl_keep isl_schedule_node *node);
8194 __isl_give isl_schedule_node *
8195 isl_schedule_node_next_sibling(
8196 __isl_take isl_schedule_node *node);
8198 For C<isl_schedule_node_ancestor>, the ancestor of generation 0
8199 is the node itself, the ancestor of generation 1 is its parent and so on.
8201 It is also possible to query the number of ancestors of a node,
8202 the position of the current node
8203 within the children of its parent, the position of the subtree
8204 containing a node within the children of an ancestor
8205 or to obtain a copy of a given
8206 child without destroying the current node.
8207 Given two nodes that point to the same schedule, their closest
8208 shared ancestor can be obtained using
8209 C<isl_schedule_node_get_shared_ancestor>.
8211 #include <isl/schedule_node.h>
8212 int isl_schedule_node_get_tree_depth(
8213 __isl_keep isl_schedule_node *node);
8214 int isl_schedule_node_get_child_position(
8215 __isl_keep isl_schedule_node *node);
8216 int isl_schedule_node_get_ancestor_child_position(
8217 __isl_keep isl_schedule_node *node,
8218 __isl_keep isl_schedule_node *ancestor);
8219 __isl_give isl_schedule_node *isl_schedule_node_get_child(
8220 __isl_keep isl_schedule_node *node, int pos);
8221 __isl_give isl_schedule_node *
8222 isl_schedule_node_get_shared_ancestor(
8223 __isl_keep isl_schedule_node *node1,
8224 __isl_keep isl_schedule_node *node2);
8226 All nodes in a schedule tree or
8227 all descendants of a specific node (including the node) can be visited
8228 in depth-first pre-order using the following functions.
8230 #include <isl/schedule.h>
8231 isl_stat isl_schedule_foreach_schedule_node_top_down(
8232 __isl_keep isl_schedule *sched,
8233 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8234 void *user), void *user);
8236 #include <isl/schedule_node.h>
8237 isl_stat isl_schedule_node_foreach_descendant_top_down(
8238 __isl_keep isl_schedule_node *node,
8239 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8240 void *user), void *user);
8242 The callback function is slightly different from the usual
8243 callbacks in that it not only indicates success (non-negative result)
8244 or failure (negative result), but also indicates whether the children
8245 of the given node should be visited. In particular, if the callback
8246 returns a positive value, then the children are visited, but if
8247 the callback returns zero, then the children are not visited.
8249 The ancestors of a node in a schedule tree can be visited from
8250 the root down to and including the parent of the node using
8251 the following function.
8253 #include <isl/schedule_node.h>
8254 isl_stat isl_schedule_node_foreach_ancestor_top_down(
8255 __isl_keep isl_schedule_node *node,
8256 isl_stat (*fn)(__isl_keep isl_schedule_node *node,
8257 void *user), void *user);
8259 The following functions allows for a depth-first post-order
8260 traversal of the nodes in a schedule tree or
8261 of the descendants of a specific node (including the node
8262 itself), where the user callback is allowed to modify the
8265 #include <isl/schedule.h>
8266 __isl_give isl_schedule *
8267 isl_schedule_map_schedule_node_bottom_up(
8268 __isl_take isl_schedule *schedule,
8269 __isl_give isl_schedule_node *(*fn)(
8270 __isl_take isl_schedule_node *node,
8271 void *user), void *user);
8273 #include <isl/schedule_node.h>
8274 __isl_give isl_schedule_node *
8275 isl_schedule_node_map_descendant_bottom_up(
8276 __isl_take isl_schedule_node *node,
8277 __isl_give isl_schedule_node *(*fn)(
8278 __isl_take isl_schedule_node *node,
8279 void *user), void *user);
8281 The traversal continues from the node returned by the callback function.
8282 It is the responsibility of the user to ensure that this does not
8283 lead to an infinite loop. It is safest to always return a pointer
8284 to the same position (same ancestors and child positions) as the input node.
8286 The following function removes a node (along with its descendants)
8287 from a schedule tree and returns a pointer to the leaf at the
8288 same position in the updated tree.
8289 It is not allowed to remove the root of a schedule tree or
8290 a child of a set or sequence node.
8292 #include <isl/schedule_node.h>
8293 __isl_give isl_schedule_node *isl_schedule_node_cut(
8294 __isl_take isl_schedule_node *node);
8296 The following function removes a single node
8297 from a schedule tree and returns a pointer to the child
8298 of the node, now located at the position of the original node
8299 or to a leaf node at that position if there was no child.
8300 It is not allowed to remove the root of a schedule tree,
8301 a set or sequence node, a child of a set or sequence node or
8302 a band node with an anchored subtree.
8304 #include <isl/schedule_node.h>
8305 __isl_give isl_schedule_node *isl_schedule_node_delete(
8306 __isl_take isl_schedule_node *node);
8308 Most nodes in a schedule tree only contain local information.
8309 In some cases, however, a node may also refer to the schedule dimensions
8310 of its outer band nodes.
8311 This means that the position of the node within the tree should
8312 not be changed, or at least that no changes are performed to the
8313 outer band nodes. The following function can be used to test
8314 whether the subtree rooted at a given node contains any such nodes.
8316 #include <isl/schedule_node.h>
8317 isl_bool isl_schedule_node_is_subtree_anchored(
8318 __isl_keep isl_schedule_node *node);
8320 The following function resets the user pointers on all parameter
8321 and tuple identifiers referenced by the given schedule node.
8323 #include <isl/schedule_node.h>
8324 __isl_give isl_schedule_node *isl_schedule_node_reset_user(
8325 __isl_take isl_schedule_node *node);
8327 The following function aligns the parameters of the given schedule
8328 node to the given space.
8330 #include <isl/schedule_node.h>
8331 __isl_give isl_schedule_node *
8332 isl_schedule_node_align_params(
8333 __isl_take isl_schedule_node *node,
8334 __isl_take isl_space *space);
8336 Several node types have their own functions for querying
8337 (and in some cases setting) some node type specific properties.
8339 #include <isl/schedule_node.h>
8340 __isl_give isl_space *isl_schedule_node_band_get_space(
8341 __isl_keep isl_schedule_node *node);
8342 __isl_give isl_multi_union_pw_aff *
8343 isl_schedule_node_band_get_partial_schedule(
8344 __isl_keep isl_schedule_node *node);
8345 __isl_give isl_union_map *
8346 isl_schedule_node_band_get_partial_schedule_union_map(
8347 __isl_keep isl_schedule_node *node);
8348 unsigned isl_schedule_node_band_n_member(
8349 __isl_keep isl_schedule_node *node);
8350 isl_bool isl_schedule_node_band_member_get_coincident(
8351 __isl_keep isl_schedule_node *node, int pos);
8352 __isl_give isl_schedule_node *
8353 isl_schedule_node_band_member_set_coincident(
8354 __isl_take isl_schedule_node *node, int pos,
8356 isl_bool isl_schedule_node_band_get_permutable(
8357 __isl_keep isl_schedule_node *node);
8358 __isl_give isl_schedule_node *
8359 isl_schedule_node_band_set_permutable(
8360 __isl_take isl_schedule_node *node, int permutable);
8361 enum isl_ast_loop_type
8362 isl_schedule_node_band_member_get_ast_loop_type(
8363 __isl_keep isl_schedule_node *node, int pos);
8364 __isl_give isl_schedule_node *
8365 isl_schedule_node_band_member_set_ast_loop_type(
8366 __isl_take isl_schedule_node *node, int pos,
8367 enum isl_ast_loop_type type);
8368 __isl_give isl_union_set *
8369 enum isl_ast_loop_type
8370 isl_schedule_node_band_member_get_isolate_ast_loop_type(
8371 __isl_keep isl_schedule_node *node, int pos);
8372 __isl_give isl_schedule_node *
8373 isl_schedule_node_band_member_set_isolate_ast_loop_type(
8374 __isl_take isl_schedule_node *node, int pos,
8375 enum isl_ast_loop_type type);
8376 isl_schedule_node_band_get_ast_build_options(
8377 __isl_keep isl_schedule_node *node);
8378 __isl_give isl_schedule_node *
8379 isl_schedule_node_band_set_ast_build_options(
8380 __isl_take isl_schedule_node *node,
8381 __isl_take isl_union_set *options);
8382 __isl_give isl_set *
8383 isl_schedule_node_band_get_ast_isolate_option(
8384 __isl_keep isl_schedule_node *node);
8386 The function C<isl_schedule_node_band_get_space> returns the space
8387 of the partial schedule of the band.
8388 The function C<isl_schedule_node_band_get_partial_schedule_union_map>
8389 returns a representation of the partial schedule of the band node
8390 in the form of an C<isl_union_map>.
8391 The coincident and permutable properties are set by
8392 C<isl_schedule_constraints_compute_schedule> on the schedule tree
8394 A scheduling dimension is considered to be ``coincident''
8395 if it satisfies the coincidence constraints within its band.
8396 That is, if the dependence distances of the coincidence
8397 constraints are all zero in that direction (for fixed
8398 iterations of outer bands).
8399 A band is marked permutable if it was produced using the Pluto-like scheduler.
8400 Note that the scheduler may have to resort to a Feautrier style scheduling
8401 step even if the default scheduler is used.
8402 An C<isl_ast_loop_type> is one of C<isl_ast_loop_default>,
8403 C<isl_ast_loop_atomic>, C<isl_ast_loop_unroll> or C<isl_ast_loop_separate>.
8404 For the meaning of these loop AST generation types and the difference
8405 between the regular loop AST generation type and the isolate
8406 loop AST generation type, see L</"AST Generation Options (Schedule Tree)">.
8407 The functions C<isl_schedule_node_band_member_get_ast_loop_type>
8408 and C<isl_schedule_node_band_member_get_isolate_ast_loop_type>
8409 may return C<isl_ast_loop_error> if an error occurs.
8410 The AST build options govern how an AST is generated for
8411 the individual schedule dimensions during AST generation.
8412 See L</"AST Generation Options (Schedule Tree)">.
8413 The isolate option for the given node can be extracted from these
8414 AST build options using the function
8415 C<isl_schedule_node_band_get_ast_isolate_option>.
8417 #include <isl/schedule_node.h>
8418 __isl_give isl_set *
8419 isl_schedule_node_context_get_context(
8420 __isl_keep isl_schedule_node *node);
8422 #include <isl/schedule_node.h>
8423 __isl_give isl_union_set *
8424 isl_schedule_node_domain_get_domain(
8425 __isl_keep isl_schedule_node *node);
8427 #include <isl/schedule_node.h>
8428 __isl_give isl_union_map *
8429 isl_schedule_node_expansion_get_expansion(
8430 __isl_keep isl_schedule_node *node);
8431 __isl_give isl_union_pw_multi_aff *
8432 isl_schedule_node_expansion_get_contraction(
8433 __isl_keep isl_schedule_node *node);
8435 #include <isl/schedule_node.h>
8436 __isl_give isl_union_map *
8437 isl_schedule_node_extension_get_extension(
8438 __isl_keep isl_schedule_node *node);
8440 #include <isl/schedule_node.h>
8441 __isl_give isl_union_set *
8442 isl_schedule_node_filter_get_filter(
8443 __isl_keep isl_schedule_node *node);
8445 #include <isl/schedule_node.h>
8446 __isl_give isl_set *isl_schedule_node_guard_get_guard(
8447 __isl_keep isl_schedule_node *node);
8449 #include <isl/schedule_node.h>
8450 __isl_give isl_id *isl_schedule_node_mark_get_id(
8451 __isl_keep isl_schedule_node *node);
8453 The following functions can be used to obtain an C<isl_multi_union_pw_aff>,
8454 an C<isl_union_pw_multi_aff> or C<isl_union_map> representation of
8455 partial schedules related to the node.
8457 #include <isl/schedule_node.h>
8458 __isl_give isl_multi_union_pw_aff *
8459 isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
8460 __isl_keep isl_schedule_node *node);
8461 __isl_give isl_union_pw_multi_aff *
8462 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
8463 __isl_keep isl_schedule_node *node);
8464 __isl_give isl_union_map *
8465 isl_schedule_node_get_prefix_schedule_union_map(
8466 __isl_keep isl_schedule_node *node);
8467 __isl_give isl_union_map *
8468 isl_schedule_node_get_prefix_schedule_relation(
8469 __isl_keep isl_schedule_node *node);
8470 __isl_give isl_union_map *
8471 isl_schedule_node_get_subtree_schedule_union_map(
8472 __isl_keep isl_schedule_node *node);
8474 In particular, the functions
8475 C<isl_schedule_node_get_prefix_schedule_multi_union_pw_aff>,
8476 C<isl_schedule_node_get_prefix_schedule_union_pw_multi_aff>
8477 and C<isl_schedule_node_get_prefix_schedule_union_map>
8478 return a relative ordering on the domain elements that reach the given
8479 node determined by its ancestors.
8480 The function C<isl_schedule_node_get_prefix_schedule_relation>
8481 additionally includes the domain constraints in the result.
8482 The function C<isl_schedule_node_get_subtree_schedule_union_map>
8483 returns a representation of the partial schedule defined by the
8484 subtree rooted at the given node.
8485 If the tree contains any expansion nodes, then the subtree schedule
8486 is formulated in terms of the expanded domain elements.
8487 The tree passed to functions returning a prefix schedule
8488 may only contain extension nodes if these would not affect
8489 the result of these functions. That is, if one of the ancestors
8490 is an extension node, then all of the domain elements that were
8491 added by the extension node need to have been filtered out
8492 by filter nodes between the extension node and the input node.
8493 The tree passed to C<isl_schedule_node_get_subtree_schedule_union_map>
8494 may not contain in extension nodes in the selected subtree.
8496 The expansion/contraction defined by an entire subtree, combining
8497 the expansions/contractions
8498 on the expansion nodes in the subtree, can be obtained using
8499 the following functions.
8501 #include <isl/schedule_node.h>
8502 __isl_give isl_union_map *
8503 isl_schedule_node_get_subtree_expansion(
8504 __isl_keep isl_schedule_node *node);
8505 __isl_give isl_union_pw_multi_aff *
8506 isl_schedule_node_get_subtree_contraction(
8507 __isl_keep isl_schedule_node *node);
8509 The total number of outer band members of given node, i.e.,
8510 the shared output dimension of the maps in the result
8511 of C<isl_schedule_node_get_prefix_schedule_union_map> can be obtained
8512 using the following function.
8514 #include <isl/schedule_node.h>
8515 int isl_schedule_node_get_schedule_depth(
8516 __isl_keep isl_schedule_node *node);
8518 The following functions return the elements that reach the given node
8519 or the union of universes in the spaces that contain these elements.
8521 #include <isl/schedule_node.h>
8522 __isl_give isl_union_set *
8523 isl_schedule_node_get_domain(
8524 __isl_keep isl_schedule_node *node);
8525 __isl_give isl_union_set *
8526 isl_schedule_node_get_universe_domain(
8527 __isl_keep isl_schedule_node *node);
8529 The input tree of C<isl_schedule_node_get_domain>
8530 may only contain extension nodes if these would not affect
8531 the result of this function. That is, if one of the ancestors
8532 is an extension node, then all of the domain elements that were
8533 added by the extension node need to have been filtered out
8534 by filter nodes between the extension node and the input node.
8536 The following functions can be used to introduce additional nodes
8537 in the schedule tree. The new node is introduced at the point
8538 in the tree where the C<isl_schedule_node> points to and
8539 the results points to the new node.
8541 #include <isl/schedule_node.h>
8542 __isl_give isl_schedule_node *
8543 isl_schedule_node_insert_partial_schedule(
8544 __isl_take isl_schedule_node *node,
8545 __isl_take isl_multi_union_pw_aff *schedule);
8547 This function inserts a new band node with (the greatest integer
8548 part of) the given partial schedule.
8549 The subtree rooted at the given node is assumed not to have
8552 #include <isl/schedule_node.h>
8553 __isl_give isl_schedule_node *
8554 isl_schedule_node_insert_context(
8555 __isl_take isl_schedule_node *node,
8556 __isl_take isl_set *context);
8558 This function inserts a new context node with the given context constraints.
8560 #include <isl/schedule_node.h>
8561 __isl_give isl_schedule_node *
8562 isl_schedule_node_insert_filter(
8563 __isl_take isl_schedule_node *node,
8564 __isl_take isl_union_set *filter);
8566 This function inserts a new filter node with the given filter.
8567 If the original node already pointed to a filter node, then the
8568 two filter nodes are merged into one.
8570 #include <isl/schedule_node.h>
8571 __isl_give isl_schedule_node *
8572 isl_schedule_node_insert_guard(
8573 __isl_take isl_schedule_node *node,
8574 __isl_take isl_set *guard);
8576 This function inserts a new guard node with the given guard constraints.
8578 #include <isl/schedule_node.h>
8579 __isl_give isl_schedule_node *
8580 isl_schedule_node_insert_mark(
8581 __isl_take isl_schedule_node *node,
8582 __isl_take isl_id *mark);
8584 This function inserts a new mark node with the give mark identifier.
8586 #include <isl/schedule_node.h>
8587 __isl_give isl_schedule_node *
8588 isl_schedule_node_insert_sequence(
8589 __isl_take isl_schedule_node *node,
8590 __isl_take isl_union_set_list *filters);
8591 __isl_give isl_schedule_node *
8592 isl_schedule_node_insert_set(
8593 __isl_take isl_schedule_node *node,
8594 __isl_take isl_union_set_list *filters);
8596 These functions insert a new sequence or set node with the given
8597 filters as children.
8599 #include <isl/schedule_node.h>
8600 __isl_give isl_schedule_node *isl_schedule_node_group(
8601 __isl_take isl_schedule_node *node,
8602 __isl_take isl_id *group_id);
8604 This function introduces an expansion node in between the current
8605 node and its parent that expands instances of a space with tuple
8606 identifier C<group_id> to the original domain elements that reach
8607 the node. The group instances are identified by the prefix schedule
8608 of those domain elements. The ancestors of the node are adjusted
8609 to refer to the group instances instead of the original domain
8610 elements. The return value points to the same node in the updated
8611 schedule tree as the input node, i.e., to the child of the newly
8612 introduced expansion node. Grouping instances of different statements
8613 ensures that they will be treated as a single statement by the
8614 AST generator up to the point of the expansion node.
8616 The following function can be used to flatten a nested
8619 #include <isl/schedule_node.h>
8620 __isl_give isl_schedule_node *
8621 isl_schedule_node_sequence_splice_child(
8622 __isl_take isl_schedule_node *node, int pos);
8624 That is, given a sequence node C<node> that has another sequence node
8625 in its child at position C<pos> (in particular, the child of that filter
8626 node is a sequence node), attach the children of that other sequence
8627 node as children of C<node>, replacing the original child at position
8630 The partial schedule of a band node can be scaled (down) or reduced using
8631 the following functions.
8633 #include <isl/schedule_node.h>
8634 __isl_give isl_schedule_node *
8635 isl_schedule_node_band_scale(
8636 __isl_take isl_schedule_node *node,
8637 __isl_take isl_multi_val *mv);
8638 __isl_give isl_schedule_node *
8639 isl_schedule_node_band_scale_down(
8640 __isl_take isl_schedule_node *node,
8641 __isl_take isl_multi_val *mv);
8642 __isl_give isl_schedule_node *
8643 isl_schedule_node_band_mod(
8644 __isl_take isl_schedule_node *node,
8645 __isl_take isl_multi_val *mv);
8647 The spaces of the two arguments need to match.
8648 After scaling, the partial schedule is replaced by its greatest
8649 integer part to ensure that the schedule remains integral.
8651 The partial schedule of a band node can be shifted by an
8652 C<isl_multi_union_pw_aff> with a domain that is a superset
8653 of the domain of the partial schedule using
8654 the following function.
8656 #include <isl/schedule_node.h>
8657 __isl_give isl_schedule_node *
8658 isl_schedule_node_band_shift(
8659 __isl_take isl_schedule_node *node,
8660 __isl_take isl_multi_union_pw_aff *shift);
8662 A band node can be tiled using the following function.
8664 #include <isl/schedule_node.h>
8665 __isl_give isl_schedule_node *isl_schedule_node_band_tile(
8666 __isl_take isl_schedule_node *node,
8667 __isl_take isl_multi_val *sizes);
8669 isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
8671 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
8672 isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
8674 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
8676 The C<isl_schedule_node_band_tile> function tiles
8677 the band using the given tile sizes inside its schedule.
8678 A new child band node is created to represent the point loops and it is
8679 inserted between the modified band and its children.
8680 The subtree rooted at the given node is assumed not to have
8682 The C<tile_scale_tile_loops> option specifies whether the tile
8683 loops iterators should be scaled by the tile sizes.
8684 If the C<tile_shift_point_loops> option is set, then the point loops
8685 are shifted to start at zero.
8687 A band node can be split into two nested band nodes
8688 using the following function.
8690 #include <isl/schedule_node.h>
8691 __isl_give isl_schedule_node *isl_schedule_node_band_split(
8692 __isl_take isl_schedule_node *node, int pos);
8694 The resulting outer band node contains the first C<pos> dimensions of
8695 the schedule of C<node> while the inner band contains the remaining dimensions.
8696 The schedules of the two band nodes live in anonymous spaces.
8697 The loop AST generation type options and the isolate option
8698 are split over the the two band nodes.
8700 A band node can be moved down to the leaves of the subtree rooted
8701 at the band node using the following function.
8703 #include <isl/schedule_node.h>
8704 __isl_give isl_schedule_node *isl_schedule_node_band_sink(
8705 __isl_take isl_schedule_node *node);
8707 The subtree rooted at the given node is assumed not to have
8709 The result points to the node in the resulting tree that is in the same
8710 position as the node pointed to by C<node> in the original tree.
8712 #include <isl/schedule_node.h>
8713 __isl_give isl_schedule_node *
8714 isl_schedule_node_order_before(
8715 __isl_take isl_schedule_node *node,
8716 __isl_take isl_union_set *filter);
8717 __isl_give isl_schedule_node *
8718 isl_schedule_node_order_after(
8719 __isl_take isl_schedule_node *node,
8720 __isl_take isl_union_set *filter);
8722 These functions split the domain elements that reach C<node>
8723 into those that satisfy C<filter> and those that do not and
8724 arranges for the elements that do satisfy the filter to be
8725 executed before (in case of C<isl_schedule_node_order_before>)
8726 or after (in case of C<isl_schedule_node_order_after>)
8727 those that do not. The order is imposed by
8728 a sequence node, possibly reusing the grandparent of C<node>
8729 on two copies of the subtree attached to the original C<node>.
8730 Both copies are simplified with respect to their filter.
8732 Return a pointer to the copy of the subtree that does not
8733 satisfy C<filter>. If there is no such copy (because all
8734 reaching domain elements satisfy the filter), then return
8735 the original pointer.
8737 #include <isl/schedule_node.h>
8738 __isl_give isl_schedule_node *
8739 isl_schedule_node_graft_before(
8740 __isl_take isl_schedule_node *node,
8741 __isl_take isl_schedule_node *graft);
8742 __isl_give isl_schedule_node *
8743 isl_schedule_node_graft_after(
8744 __isl_take isl_schedule_node *node,
8745 __isl_take isl_schedule_node *graft);
8747 This function inserts the C<graft> tree into the tree containing C<node>
8748 such that it is executed before (in case of C<isl_schedule_node_graft_before>)
8749 or after (in case of C<isl_schedule_node_graft_after>) C<node>.
8750 The root node of C<graft>
8751 should be an extension node where the domain of the extension
8752 is the flat product of all outer band nodes of C<node>.
8753 The root node may also be a domain node.
8754 The elements of the domain or the range of the extension may not
8755 intersect with the domain elements that reach "node".
8756 The schedule tree of C<graft> may not be anchored.
8758 The schedule tree of C<node> is modified to include an extension node
8759 corresponding to the root node of C<graft> as a child of the original
8760 parent of C<node>. The original node that C<node> points to and the
8761 child of the root node of C<graft> are attached to this extension node
8762 through a sequence, with appropriate filters and with the child
8763 of C<graft> appearing before or after the original C<node>.
8765 If C<node> already appears inside a sequence that is the child of
8766 an extension node and if the spaces of the new domain elements
8767 do not overlap with those of the original domain elements,
8768 then that extension node is extended with the new extension
8769 rather than introducing a new segment of extension and sequence nodes.
8771 Return a pointer to the same node in the modified tree that
8772 C<node> pointed to in the original tree.
8774 A representation of the schedule node can be printed using
8776 #include <isl/schedule_node.h>
8777 __isl_give isl_printer *isl_printer_print_schedule_node(
8778 __isl_take isl_printer *p,
8779 __isl_keep isl_schedule_node *node);
8780 __isl_give char *isl_schedule_node_to_str(
8781 __isl_keep isl_schedule_node *node);
8783 C<isl_schedule_node_to_str> prints the schedule node in block format.
8785 =head2 Dependence Analysis
8787 C<isl> contains specialized functionality for performing
8788 array dataflow analysis. That is, given a I<sink> access relation,
8789 a collection of possible I<source> accesses and
8790 a collection of I<kill> accesses,
8791 C<isl> can compute relations that describe
8792 for each iteration of the sink access, which iterations
8793 of which of the source access relations may have
8794 accessed the same data element before the given iteration
8795 of the sink access without any intermediate kill of that data element.
8796 The resulting dependence relations map source iterations
8797 to either the corresponding sink iterations or
8798 pairs of corresponding sink iterations and accessed data elements.
8799 To compute standard flow dependences, the sink should be
8800 a read, while the sources should be writes.
8801 If no kills are specified,
8802 then memory based dependence analysis is performed.
8803 If, on the other hand, all sources are also kills,
8804 then value based dependence analysis is performed.
8805 If any of the source accesses are marked as being I<must>
8806 accesses, then they are also treated as kills.
8807 Furthermore, the specification of must-sources results
8808 in the computation of must-dependences.
8809 Only dependences originating in a must access not coscheduled
8810 with any other access to the same element and without
8811 any may accesses between the must access and the sink access
8812 are considered to be must dependences.
8814 =head3 High-level Interface
8816 A high-level interface to dependence analysis is provided
8817 by the following function.
8819 #include <isl/flow.h>
8820 __isl_give isl_union_flow *
8821 isl_union_access_info_compute_flow(
8822 __isl_take isl_union_access_info *access);
8824 The input C<isl_union_access_info> object describes the sink
8825 access relations, the source access relations and a schedule,
8826 while the output C<isl_union_flow> object describes
8827 the resulting dependence relations and the subsets of the
8828 sink relations for which no source was found.
8830 An C<isl_union_access_info> is created, modified, copied and freed using
8831 the following functions.
8833 #include <isl/flow.h>
8834 __isl_give isl_union_access_info *
8835 isl_union_access_info_from_sink(
8836 __isl_take isl_union_map *sink);
8837 __isl_give isl_union_access_info *
8838 isl_union_access_info_set_kill(
8839 __isl_take isl_union_access_info *access,
8840 __isl_take isl_union_map *kill);
8841 __isl_give isl_union_access_info *
8842 isl_union_access_info_set_may_source(
8843 __isl_take isl_union_access_info *access,
8844 __isl_take isl_union_map *may_source);
8845 __isl_give isl_union_access_info *
8846 isl_union_access_info_set_must_source(
8847 __isl_take isl_union_access_info *access,
8848 __isl_take isl_union_map *must_source);
8849 __isl_give isl_union_access_info *
8850 isl_union_access_info_set_schedule(
8851 __isl_take isl_union_access_info *access,
8852 __isl_take isl_schedule *schedule);
8853 __isl_give isl_union_access_info *
8854 isl_union_access_info_set_schedule_map(
8855 __isl_take isl_union_access_info *access,
8856 __isl_take isl_union_map *schedule_map);
8857 __isl_give isl_union_access_info *
8858 isl_union_access_info_copy(
8859 __isl_keep isl_union_access_info *access);
8860 __isl_null isl_union_access_info *
8861 isl_union_access_info_free(
8862 __isl_take isl_union_access_info *access);
8864 The may sources set by C<isl_union_access_info_set_may_source>
8865 do not need to include the must sources set by
8866 C<isl_union_access_info_set_must_source> as a subset.
8867 The kills set by C<isl_union_access_info_set_kill> may overlap
8868 with the may-sources and/or must-sources.
8869 The user is free not to call one (or more) of these functions,
8870 in which case the corresponding set is kept to its empty default.
8871 Similarly, the default schedule initialized by
8872 C<isl_union_access_info_from_sink> is empty.
8873 The current schedule is determined by the last call to either
8874 C<isl_union_access_info_set_schedule> or
8875 C<isl_union_access_info_set_schedule_map>.
8876 The domain of the schedule corresponds to the domains of
8877 the access relations. In particular, the domains of the access
8878 relations are effectively intersected with the domain of the schedule
8879 and only the resulting accesses are considered by the dependence analysis.
8881 An C<isl_union_access_info> object can be read from input
8882 using the following function.
8884 #include <isl/flow.h>
8885 __isl_give isl_union_access_info *
8886 isl_union_access_info_read_from_file(isl_ctx *ctx,
8889 A representation of the information contained in an object
8890 of type C<isl_union_access_info> can be obtained using
8892 #include <isl/flow.h>
8893 __isl_give isl_printer *
8894 isl_printer_print_union_access_info(
8895 __isl_take isl_printer *p,
8896 __isl_keep isl_union_access_info *access);
8897 __isl_give char *isl_union_access_info_to_str(
8898 __isl_keep isl_union_access_info *access);
8900 C<isl_union_access_info_to_str> prints the information in flow format.
8902 The output of C<isl_union_access_info_compute_flow> can be examined,
8903 copied, and freed using the following functions.
8905 #include <isl/flow.h>
8906 __isl_give isl_union_map *isl_union_flow_get_must_dependence(
8907 __isl_keep isl_union_flow *flow);
8908 __isl_give isl_union_map *isl_union_flow_get_may_dependence(
8909 __isl_keep isl_union_flow *flow);
8910 __isl_give isl_union_map *
8911 isl_union_flow_get_full_must_dependence(
8912 __isl_keep isl_union_flow *flow);
8913 __isl_give isl_union_map *
8914 isl_union_flow_get_full_may_dependence(
8915 __isl_keep isl_union_flow *flow);
8916 __isl_give isl_union_map *isl_union_flow_get_must_no_source(
8917 __isl_keep isl_union_flow *flow);
8918 __isl_give isl_union_map *isl_union_flow_get_may_no_source(
8919 __isl_keep isl_union_flow *flow);
8920 __isl_give isl_union_flow *isl_union_flow_copy(
8921 __isl_keep isl_union_flow *flow);
8922 __isl_null isl_union_flow *isl_union_flow_free(
8923 __isl_take isl_union_flow *flow);
8925 The relation returned by C<isl_union_flow_get_must_dependence>
8926 relates domain elements of must sources to domain elements of the sink.
8927 The relation returned by C<isl_union_flow_get_may_dependence>
8928 relates domain elements of must or may sources to domain elements of the sink
8929 and includes the previous relation as a subset.
8930 The relation returned by C<isl_union_flow_get_full_must_dependence>
8931 relates domain elements of must sources to pairs of domain elements of the sink
8932 and accessed data elements.
8933 The relation returned by C<isl_union_flow_get_full_may_dependence>
8934 relates domain elements of must or may sources to pairs of
8935 domain elements of the sink and accessed data elements.
8936 This relation includes the previous relation as a subset.
8937 The relation returned by C<isl_union_flow_get_must_no_source> is the subset
8938 of the sink relation for which no dependences have been found.
8939 The relation returned by C<isl_union_flow_get_may_no_source> is the subset
8940 of the sink relation for which no definite dependences have been found.
8941 That is, it contains those sink access that do not contribute to any
8942 of the elements in the relation returned
8943 by C<isl_union_flow_get_must_dependence>.
8945 A representation of the information contained in an object
8946 of type C<isl_union_flow> can be obtained using
8948 #include <isl/flow.h>
8949 __isl_give isl_printer *isl_printer_print_union_flow(
8950 __isl_take isl_printer *p,
8951 __isl_keep isl_union_flow *flow);
8952 __isl_give char *isl_union_flow_to_str(
8953 __isl_keep isl_union_flow *flow);
8955 C<isl_union_flow_to_str> prints the information in flow format.
8957 =head3 Low-level Interface
8959 A lower-level interface is provided by the following functions.
8961 #include <isl/flow.h>
8963 typedef int (*isl_access_level_before)(void *first, void *second);
8965 __isl_give isl_access_info *isl_access_info_alloc(
8966 __isl_take isl_map *sink,
8967 void *sink_user, isl_access_level_before fn,
8969 __isl_give isl_access_info *isl_access_info_add_source(
8970 __isl_take isl_access_info *acc,
8971 __isl_take isl_map *source, int must,
8973 __isl_null isl_access_info *isl_access_info_free(
8974 __isl_take isl_access_info *acc);
8976 __isl_give isl_flow *isl_access_info_compute_flow(
8977 __isl_take isl_access_info *acc);
8979 isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
8980 isl_stat (*fn)(__isl_take isl_map *dep, int must,
8981 void *dep_user, void *user),
8983 __isl_give isl_map *isl_flow_get_no_source(
8984 __isl_keep isl_flow *deps, int must);
8985 void isl_flow_free(__isl_take isl_flow *deps);
8987 The function C<isl_access_info_compute_flow> performs the actual
8988 dependence analysis. The other functions are used to construct
8989 the input for this function or to read off the output.
8991 The input is collected in an C<isl_access_info>, which can
8992 be created through a call to C<isl_access_info_alloc>.
8993 The arguments to this functions are the sink access relation
8994 C<sink>, a token C<sink_user> used to identify the sink
8995 access to the user, a callback function for specifying the
8996 relative order of source and sink accesses, and the number
8997 of source access relations that will be added.
8999 The callback function has type C<int (*)(void *first, void *second)>.
9000 The function is called with two user supplied tokens identifying
9001 either a source or the sink and it should return the shared nesting
9002 level and the relative order of the two accesses.
9003 In particular, let I<n> be the number of loops shared by
9004 the two accesses. If C<first> precedes C<second> textually,
9005 then the function should return I<2 * n + 1>; otherwise,
9006 it should return I<2 * n>.
9007 The low-level interface assumes that no sources are coscheduled.
9008 If the information returned by the callback does not allow
9009 the relative order to be determined, then one of the sources
9010 is arbitrarily taken to be executed after the other(s).
9012 The sources can be added to the C<isl_access_info> object by performing
9013 (at most) C<max_source> calls to C<isl_access_info_add_source>.
9014 C<must> indicates whether the source is a I<must> access
9015 or a I<may> access. Note that a multi-valued access relation
9016 should only be marked I<must> if every iteration in the domain
9017 of the relation accesses I<all> elements in its image.
9018 The C<source_user> token is again used to identify
9019 the source access. The range of the source access relation
9020 C<source> should have the same dimension as the range
9021 of the sink access relation.
9022 The C<isl_access_info_free> function should usually not be
9023 called explicitly, because it is already called implicitly by
9024 C<isl_access_info_compute_flow>.
9026 The result of the dependence analysis is collected in an
9027 C<isl_flow>. There may be elements of
9028 the sink access for which no preceding source access could be
9029 found or for which all preceding sources are I<may> accesses.
9030 The relations containing these elements can be obtained through
9031 calls to C<isl_flow_get_no_source>, the first with C<must> set
9032 and the second with C<must> unset.
9033 In the case of standard flow dependence analysis,
9034 with the sink a read and the sources I<must> writes,
9035 the first relation corresponds to the reads from uninitialized
9036 array elements and the second relation is empty.
9037 The actual flow dependences can be extracted using
9038 C<isl_flow_foreach>. This function will call the user-specified
9039 callback function C<fn> for each B<non-empty> dependence between
9040 a source and the sink. The callback function is called
9041 with four arguments, the actual flow dependence relation
9042 mapping source iterations to sink iterations, a boolean that
9043 indicates whether it is a I<must> or I<may> dependence, a token
9044 identifying the source and an additional C<void *> with value
9045 equal to the third argument of the C<isl_flow_foreach> call.
9046 A dependence is marked I<must> if it originates from a I<must>
9047 source and if it is not followed by any I<may> sources.
9049 After finishing with an C<isl_flow>, the user should call
9050 C<isl_flow_free> to free all associated memory.
9052 =head3 Interaction with the Low-level Interface
9054 During the dependence analysis, we frequently need to perform
9055 the following operation. Given a relation between sink iterations
9056 and potential source iterations from a particular source domain,
9057 what is the last potential source iteration corresponding to each
9058 sink iteration. It can sometimes be convenient to adjust
9059 the set of potential source iterations before or after each such operation.
9060 The prototypical example is fuzzy array dataflow analysis,
9061 where we need to analyze if, based on data-dependent constraints,
9062 the sink iteration can ever be executed without one or more of
9063 the corresponding potential source iterations being executed.
9064 If so, we can introduce extra parameters and select an unknown
9065 but fixed source iteration from the potential source iterations.
9066 To be able to perform such manipulations, C<isl> provides the following
9069 #include <isl/flow.h>
9071 typedef __isl_give isl_restriction *(*isl_access_restrict)(
9072 __isl_keep isl_map *source_map,
9073 __isl_keep isl_set *sink, void *source_user,
9075 __isl_give isl_access_info *isl_access_info_set_restrict(
9076 __isl_take isl_access_info *acc,
9077 isl_access_restrict fn, void *user);
9079 The function C<isl_access_info_set_restrict> should be called
9080 before calling C<isl_access_info_compute_flow> and registers a callback function
9081 that will be called any time C<isl> is about to compute the last
9082 potential source. The first argument is the (reverse) proto-dependence,
9083 mapping sink iterations to potential source iterations.
9084 The second argument represents the sink iterations for which
9085 we want to compute the last source iteration.
9086 The third argument is the token corresponding to the source
9087 and the final argument is the token passed to C<isl_access_info_set_restrict>.
9088 The callback is expected to return a restriction on either the input or
9089 the output of the operation computing the last potential source.
9090 If the input needs to be restricted then restrictions are needed
9091 for both the source and the sink iterations. The sink iterations
9092 and the potential source iterations will be intersected with these sets.
9093 If the output needs to be restricted then only a restriction on the source
9094 iterations is required.
9095 If any error occurs, the callback should return C<NULL>.
9096 An C<isl_restriction> object can be created, freed and inspected
9097 using the following functions.
9099 #include <isl/flow.h>
9101 __isl_give isl_restriction *isl_restriction_input(
9102 __isl_take isl_set *source_restr,
9103 __isl_take isl_set *sink_restr);
9104 __isl_give isl_restriction *isl_restriction_output(
9105 __isl_take isl_set *source_restr);
9106 __isl_give isl_restriction *isl_restriction_none(
9107 __isl_take isl_map *source_map);
9108 __isl_give isl_restriction *isl_restriction_empty(
9109 __isl_take isl_map *source_map);
9110 __isl_null isl_restriction *isl_restriction_free(
9111 __isl_take isl_restriction *restr);
9113 C<isl_restriction_none> and C<isl_restriction_empty> are special
9114 cases of C<isl_restriction_input>. C<isl_restriction_none>
9115 is essentially equivalent to
9117 isl_restriction_input(isl_set_universe(
9118 isl_space_range(isl_map_get_space(source_map))),
9120 isl_space_domain(isl_map_get_space(source_map))));
9122 whereas C<isl_restriction_empty> is essentially equivalent to
9124 isl_restriction_input(isl_set_empty(
9125 isl_space_range(isl_map_get_space(source_map))),
9127 isl_space_domain(isl_map_get_space(source_map))));
9131 #include <isl/schedule.h>
9132 __isl_give isl_schedule *
9133 isl_schedule_constraints_compute_schedule(
9134 __isl_take isl_schedule_constraints *sc);
9136 The function C<isl_schedule_constraints_compute_schedule> can be
9137 used to compute a schedule that satisfies the given schedule constraints.
9138 These schedule constraints include the iteration domain for which
9139 a schedule should be computed and dependences between pairs of
9140 iterations. In particular, these dependences include
9141 I<validity> dependences and I<proximity> dependences.
9142 By default, the algorithm used to construct the schedule is similar
9143 to that of C<Pluto>.
9144 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
9146 The generated schedule respects all validity dependences.
9147 That is, all dependence distances over these dependences in the
9148 scheduled space are lexicographically positive.
9150 The default algorithm tries to ensure that the dependence distances
9151 over coincidence constraints are zero and to minimize the
9152 dependence distances over proximity dependences.
9153 Moreover, it tries to obtain sequences (bands) of schedule dimensions
9154 for groups of domains where the dependence distances over validity
9155 dependences have only non-negative values.
9156 Note that when minimizing the maximal dependence distance
9157 over proximity dependences, a single affine expression in the parameters
9158 is constructed that bounds all dependence distances. If no such expression
9159 exists, then the algorithm will fail and resort to an alternative
9160 scheduling algorithm. In particular, this means that adding proximity
9161 dependences may eliminate valid solutions. A typical example where this
9162 phenomenon may occur is when some subset of the proximity dependences
9163 has no restriction on some parameter, forcing the coefficient of that
9164 parameter to be zero, while some other subset forces the dependence
9165 distance to depend on that parameter, requiring the same coefficient
9167 When using Feautrier's algorithm, the coincidence and proximity constraints
9168 are only taken into account during the extension to a
9169 full-dimensional schedule.
9171 An C<isl_schedule_constraints> object can be constructed
9172 and manipulated using the following functions.
9174 #include <isl/schedule.h>
9175 __isl_give isl_schedule_constraints *
9176 isl_schedule_constraints_copy(
9177 __isl_keep isl_schedule_constraints *sc);
9178 __isl_give isl_schedule_constraints *
9179 isl_schedule_constraints_on_domain(
9180 __isl_take isl_union_set *domain);
9181 __isl_give isl_schedule_constraints *
9182 isl_schedule_constraints_set_context(
9183 __isl_take isl_schedule_constraints *sc,
9184 __isl_take isl_set *context);
9185 __isl_give isl_schedule_constraints *
9186 isl_schedule_constraints_set_validity(
9187 __isl_take isl_schedule_constraints *sc,
9188 __isl_take isl_union_map *validity);
9189 __isl_give isl_schedule_constraints *
9190 isl_schedule_constraints_set_coincidence(
9191 __isl_take isl_schedule_constraints *sc,
9192 __isl_take isl_union_map *coincidence);
9193 __isl_give isl_schedule_constraints *
9194 isl_schedule_constraints_set_proximity(
9195 __isl_take isl_schedule_constraints *sc,
9196 __isl_take isl_union_map *proximity);
9197 __isl_give isl_schedule_constraints *
9198 isl_schedule_constraints_set_conditional_validity(
9199 __isl_take isl_schedule_constraints *sc,
9200 __isl_take isl_union_map *condition,
9201 __isl_take isl_union_map *validity);
9202 __isl_give isl_schedule_constraints *
9203 isl_schedule_constraints_apply(
9204 __isl_take isl_schedule_constraints *sc,
9205 __isl_take isl_union_map *umap);
9206 __isl_null isl_schedule_constraints *
9207 isl_schedule_constraints_free(
9208 __isl_take isl_schedule_constraints *sc);
9210 The initial C<isl_schedule_constraints> object created by
9211 C<isl_schedule_constraints_on_domain> does not impose any constraints.
9212 That is, it has an empty set of dependences.
9213 The function C<isl_schedule_constraints_set_context> allows the user
9214 to specify additional constraints on the parameters that may
9215 be assumed to hold during the construction of the schedule.
9216 The function C<isl_schedule_constraints_set_validity> replaces the
9217 validity dependences, mapping domain elements I<i> to domain
9218 elements that should be scheduled after I<i>.
9219 The function C<isl_schedule_constraints_set_coincidence> replaces the
9220 coincidence dependences, mapping domain elements I<i> to domain
9221 elements that should be scheduled together with I<I>, if possible.
9222 The function C<isl_schedule_constraints_set_proximity> replaces the
9223 proximity dependences, mapping domain elements I<i> to domain
9224 elements that should be scheduled either before I<I>
9225 or as early as possible after I<i>.
9227 The function C<isl_schedule_constraints_set_conditional_validity>
9228 replaces the conditional validity constraints.
9229 A conditional validity constraint is only imposed when any of the corresponding
9230 conditions is satisfied, i.e., when any of them is non-zero.
9231 That is, the scheduler ensures that within each band if the dependence
9232 distances over the condition constraints are not all zero
9233 then all corresponding conditional validity constraints are respected.
9234 A conditional validity constraint corresponds to a condition
9235 if the two are adjacent, i.e., if the domain of one relation intersect
9236 the range of the other relation.
9237 The typical use case of conditional validity constraints is
9238 to allow order constraints between live ranges to be violated
9239 as long as the live ranges themselves are local to the band.
9240 To allow more fine-grained control over which conditions correspond
9241 to which conditional validity constraints, the domains and ranges
9242 of these relations may include I<tags>. That is, the domains and
9243 ranges of those relation may themselves be wrapped relations
9244 where the iteration domain appears in the domain of those wrapped relations
9245 and the range of the wrapped relations can be arbitrarily chosen
9246 by the user. Conditions and conditional validity constraints are only
9247 considered adjacent to each other if the entire wrapped relation matches.
9248 In particular, a relation with a tag will never be considered adjacent
9249 to a relation without a tag.
9251 The function C<isl_schedule_constraints_compute_schedule> takes
9252 schedule constraints that are defined on some set of domain elements
9253 and transforms them to schedule constraints on the elements
9254 to which these domain elements are mapped by the given transformation.
9256 An C<isl_schedule_constraints> object can be inspected
9257 using the following functions.
9259 #include <isl/schedule.h>
9260 __isl_give isl_union_set *
9261 isl_schedule_constraints_get_domain(
9262 __isl_keep isl_schedule_constraints *sc);
9263 __isl_give isl_set *isl_schedule_constraints_get_context(
9264 __isl_keep isl_schedule_constraints *sc);
9265 __isl_give isl_union_map *
9266 isl_schedule_constraints_get_validity(
9267 __isl_keep isl_schedule_constraints *sc);
9268 __isl_give isl_union_map *
9269 isl_schedule_constraints_get_coincidence(
9270 __isl_keep isl_schedule_constraints *sc);
9271 __isl_give isl_union_map *
9272 isl_schedule_constraints_get_proximity(
9273 __isl_keep isl_schedule_constraints *sc);
9274 __isl_give isl_union_map *
9275 isl_schedule_constraints_get_conditional_validity(
9276 __isl_keep isl_schedule_constraints *sc);
9277 __isl_give isl_union_map *
9278 isl_schedule_constraints_get_conditional_validity_condition(
9279 __isl_keep isl_schedule_constraints *sc);
9281 An C<isl_schedule_constraints> object can be read from input
9282 using the following functions.
9284 #include <isl/schedule.h>
9285 __isl_give isl_schedule_constraints *
9286 isl_schedule_constraints_read_from_str(isl_ctx *ctx,
9288 __isl_give isl_schedule_constraints *
9289 isl_schedule_constraints_read_from_file(isl_ctx *ctx,
9292 The contents of an C<isl_schedule_constraints> object can be printed
9293 using the following functions.
9295 #include <isl/schedule.h>
9296 __isl_give isl_printer *
9297 isl_printer_print_schedule_constraints(
9298 __isl_take isl_printer *p,
9299 __isl_keep isl_schedule_constraints *sc);
9300 __isl_give char *isl_schedule_constraints_to_str(
9301 __isl_keep isl_schedule_constraints *sc);
9303 The following function computes a schedule directly from
9304 an iteration domain and validity and proximity dependences
9305 and is implemented in terms of the functions described above.
9306 The use of C<isl_union_set_compute_schedule> is discouraged.
9308 #include <isl/schedule.h>
9309 __isl_give isl_schedule *isl_union_set_compute_schedule(
9310 __isl_take isl_union_set *domain,
9311 __isl_take isl_union_map *validity,
9312 __isl_take isl_union_map *proximity);
9314 The generated schedule represents a schedule tree.
9315 For more information on schedule trees, see
9316 L</"Schedule Trees">.
9320 #include <isl/schedule.h>
9321 isl_stat isl_options_set_schedule_max_coefficient(
9322 isl_ctx *ctx, int val);
9323 int isl_options_get_schedule_max_coefficient(
9325 isl_stat isl_options_set_schedule_max_constant_term(
9326 isl_ctx *ctx, int val);
9327 int isl_options_get_schedule_max_constant_term(
9329 isl_stat isl_options_set_schedule_serialize_sccs(
9330 isl_ctx *ctx, int val);
9331 int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx);
9332 isl_stat isl_options_set_schedule_whole_component(
9333 isl_ctx *ctx, int val);
9334 int isl_options_get_schedule_whole_component(
9336 isl_stat isl_options_set_schedule_maximize_band_depth(
9337 isl_ctx *ctx, int val);
9338 int isl_options_get_schedule_maximize_band_depth(
9340 isl_stat isl_options_set_schedule_maximize_coincidence(
9341 isl_ctx *ctx, int val);
9342 int isl_options_get_schedule_maximize_coincidence(
9344 isl_stat isl_options_set_schedule_outer_coincidence(
9345 isl_ctx *ctx, int val);
9346 int isl_options_get_schedule_outer_coincidence(
9348 isl_stat isl_options_set_schedule_split_scaled(
9349 isl_ctx *ctx, int val);
9350 int isl_options_get_schedule_split_scaled(
9352 isl_stat isl_options_set_schedule_treat_coalescing(
9353 isl_ctx *ctx, int val);
9354 int isl_options_get_schedule_treat_coalescing(
9356 isl_stat isl_options_set_schedule_algorithm(
9357 isl_ctx *ctx, int val);
9358 int isl_options_get_schedule_algorithm(
9360 isl_stat isl_options_set_schedule_carry_self_first(
9361 isl_ctx *ctx, int val);
9362 int isl_options_get_schedule_carry_self_first(
9364 isl_stat isl_options_set_schedule_separate_components(
9365 isl_ctx *ctx, int val);
9366 int isl_options_get_schedule_separate_components(
9371 =item * schedule_max_coefficient
9373 This option enforces that the coefficients for variable and parameter
9374 dimensions in the calculated schedule are not larger than the specified value.
9375 This option can significantly increase the speed of the scheduling calculation
9376 and may also prevent fusing of unrelated dimensions. A value of -1 means that
9377 this option does not introduce bounds on the variable or parameter
9380 =item * schedule_max_constant_term
9382 This option enforces that the constant coefficients in the calculated schedule
9383 are not larger than the maximal constant term. This option can significantly
9384 increase the speed of the scheduling calculation and may also prevent fusing of
9385 unrelated dimensions. A value of -1 means that this option does not introduce
9386 bounds on the constant coefficients.
9388 =item * schedule_serialize_sccs
9390 If this option is set, then all strongly connected components
9391 in the dependence graph are serialized as soon as they are detected.
9392 This means in particular that instances of statements will only
9393 appear in the same band node if these statements belong
9394 to the same strongly connected component at the point where
9395 the band node is constructed.
9397 =item * schedule_whole_component
9399 If this option is set, then entire (weakly) connected
9400 components in the dependence graph are scheduled together
9402 Otherwise, each strongly connected component within
9403 such a weakly connected component is first scheduled separately
9404 and then combined with other strongly connected components.
9405 This option has no effect if C<schedule_serialize_sccs> is set.
9407 =item * schedule_maximize_band_depth
9409 If this option is set, then the scheduler tries to maximize
9410 the width of the bands. Wider bands give more possibilities for tiling.
9411 In particular, if the C<schedule_whole_component> option is set,
9412 then bands are split if this might result in wider bands.
9413 Otherwise, the effect of this option is to only allow
9414 strongly connected components to be combined if this does
9415 not reduce the width of the bands.
9416 Note that if the C<schedule_serialize_sccs> options is set, then
9417 the C<schedule_maximize_band_depth> option therefore has no effect.
9419 =item * schedule_maximize_coincidence
9421 This option is only effective if the C<schedule_whole_component>
9422 option is turned off.
9423 If the C<schedule_maximize_coincidence> option is set, then (clusters of)
9424 strongly connected components are only combined with each other
9425 if this does not reduce the number of coincident band members.
9427 =item * schedule_outer_coincidence
9429 If this option is set, then we try to construct schedules
9430 where the outermost scheduling dimension in each band
9431 satisfies the coincidence constraints.
9433 =item * schedule_algorithm
9435 Selects the scheduling algorithm to be used.
9436 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
9437 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
9439 =item * schedule_split_scaled
9441 If this option is set, then we try to construct schedules in which the
9442 constant term is split off from the linear part if the linear parts of
9443 the scheduling rows for all nodes in the graph have a common non-trivial
9445 The constant term is then dropped and the linear
9447 This option is only effective when the Feautrier style scheduler is
9448 being used, either as the main scheduler or as a fallback for the
9449 Pluto-like scheduler.
9451 =item * schedule_treat_coalescing
9453 If this option is set, then the scheduler will try and avoid
9454 producing schedules that perform loop coalescing.
9455 In particular, for the Pluto-like scheduler, this option places
9456 bounds on the schedule coefficients based on the sizes of the instance sets.
9457 For the Feautrier style scheduler, this option detects potentially
9458 coalescing schedules and then tries to adjust the schedule to avoid
9461 =item * schedule_carry_self_first
9463 If this option is set, then the Feautrier style scheduler
9464 (when used as a fallback for the Pluto-like scheduler) will
9465 first try to only carry self-dependences.
9467 =item * schedule_separate_components
9469 If this option is set then the function C<isl_schedule_get_map>
9470 will treat set nodes in the same way as sequence nodes.
9474 =head2 AST Generation
9476 This section describes the C<isl> functionality for generating
9477 ASTs that visit all the elements
9478 in a domain in an order specified by a schedule tree or
9480 In case the schedule given as a C<isl_union_map>, an AST is generated
9481 that visits all the elements in the domain of the C<isl_union_map>
9482 according to the lexicographic order of the corresponding image
9483 element(s). If the range of the C<isl_union_map> consists of
9484 elements in more than one space, then each of these spaces is handled
9485 separately in an arbitrary order.
9486 It should be noted that the schedule tree or the image elements
9487 in a schedule map only specify the I<order>
9488 in which the corresponding domain elements should be visited.
9489 No direct relation between the partial schedule values
9490 or the image elements on the one hand and the loop iterators
9491 in the generated AST on the other hand should be assumed.
9493 Each AST is generated within a build. The initial build
9494 simply specifies the constraints on the parameters (if any)
9495 and can be created, inspected, copied and freed using the following functions.
9497 #include <isl/ast_build.h>
9498 __isl_give isl_ast_build *isl_ast_build_alloc(
9500 __isl_give isl_ast_build *isl_ast_build_from_context(
9501 __isl_take isl_set *set);
9502 __isl_give isl_ast_build *isl_ast_build_copy(
9503 __isl_keep isl_ast_build *build);
9504 __isl_null isl_ast_build *isl_ast_build_free(
9505 __isl_take isl_ast_build *build);
9507 The C<set> argument is usually a parameter set with zero or more parameters.
9508 In fact, when creating an AST using C<isl_ast_build_node_from_schedule>,
9509 this set is required to be a parameter set.
9510 An C<isl_ast_build> created using C<isl_ast_build_alloc> does not
9511 specify any parameter constraints.
9512 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
9513 and L</"Fine-grained Control over AST Generation">.
9514 Finally, the AST itself can be constructed using one of the following
9517 #include <isl/ast_build.h>
9518 __isl_give isl_ast_node *isl_ast_build_node_from_schedule(
9519 __isl_keep isl_ast_build *build,
9520 __isl_take isl_schedule *schedule);
9521 __isl_give isl_ast_node *
9522 isl_ast_build_node_from_schedule_map(
9523 __isl_keep isl_ast_build *build,
9524 __isl_take isl_union_map *schedule);
9526 =head3 Inspecting the AST
9528 The basic properties of an AST node can be obtained as follows.
9530 #include <isl/ast.h>
9531 enum isl_ast_node_type isl_ast_node_get_type(
9532 __isl_keep isl_ast_node *node);
9534 The type of an AST node is one of
9535 C<isl_ast_node_for>,
9537 C<isl_ast_node_block>,
9538 C<isl_ast_node_mark> or
9539 C<isl_ast_node_user>.
9540 An C<isl_ast_node_for> represents a for node.
9541 An C<isl_ast_node_if> represents an if node.
9542 An C<isl_ast_node_block> represents a compound node.
9543 An C<isl_ast_node_mark> introduces a mark in the AST.
9544 An C<isl_ast_node_user> represents an expression statement.
9545 An expression statement typically corresponds to a domain element, i.e.,
9546 one of the elements that is visited by the AST.
9548 Each type of node has its own additional properties.
9550 #include <isl/ast.h>
9551 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
9552 __isl_keep isl_ast_node *node);
9553 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
9554 __isl_keep isl_ast_node *node);
9555 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
9556 __isl_keep isl_ast_node *node);
9557 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
9558 __isl_keep isl_ast_node *node);
9559 __isl_give isl_ast_node *isl_ast_node_for_get_body(
9560 __isl_keep isl_ast_node *node);
9561 isl_bool isl_ast_node_for_is_degenerate(
9562 __isl_keep isl_ast_node *node);
9564 An C<isl_ast_for> is considered degenerate if it is known to execute
9567 #include <isl/ast.h>
9568 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
9569 __isl_keep isl_ast_node *node);
9570 __isl_give isl_ast_node *isl_ast_node_if_get_then(
9571 __isl_keep isl_ast_node *node);
9572 isl_bool isl_ast_node_if_has_else(
9573 __isl_keep isl_ast_node *node);
9574 __isl_give isl_ast_node *isl_ast_node_if_get_else(
9575 __isl_keep isl_ast_node *node);
9577 __isl_give isl_ast_node_list *
9578 isl_ast_node_block_get_children(
9579 __isl_keep isl_ast_node *node);
9581 __isl_give isl_id *isl_ast_node_mark_get_id(
9582 __isl_keep isl_ast_node *node);
9583 __isl_give isl_ast_node *isl_ast_node_mark_get_node(
9584 __isl_keep isl_ast_node *node);
9586 C<isl_ast_node_mark_get_id> returns the identifier of the mark.
9587 C<isl_ast_node_mark_get_node> returns the child node that is being marked.
9589 #include <isl/ast.h>
9590 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
9591 __isl_keep isl_ast_node *node);
9593 All descendants of a specific node in the AST (including the node itself)
9595 in depth-first pre-order using the following function.
9597 #include <isl/ast.h>
9598 isl_stat isl_ast_node_foreach_descendant_top_down(
9599 __isl_keep isl_ast_node *node,
9600 isl_bool (*fn)(__isl_keep isl_ast_node *node,
9601 void *user), void *user);
9603 The callback function should return C<isl_bool_true> if the children
9604 of the given node should be visited and C<isl_bool_false> if they should not.
9605 It should return C<isl_bool_error> in case of failure, in which case
9606 the entire traversal is aborted.
9608 Each of the returned C<isl_ast_expr>s can in turn be inspected using
9609 the following functions.
9611 #include <isl/ast.h>
9612 enum isl_ast_expr_type isl_ast_expr_get_type(
9613 __isl_keep isl_ast_expr *expr);
9615 The type of an AST expression is one of
9617 C<isl_ast_expr_id> or
9618 C<isl_ast_expr_int>.
9619 An C<isl_ast_expr_op> represents the result of an operation.
9620 An C<isl_ast_expr_id> represents an identifier.
9621 An C<isl_ast_expr_int> represents an integer value.
9623 Each type of expression has its own additional properties.
9625 #include <isl/ast.h>
9626 enum isl_ast_op_type isl_ast_expr_get_op_type(
9627 __isl_keep isl_ast_expr *expr);
9628 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
9629 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
9630 __isl_keep isl_ast_expr *expr, int pos);
9631 isl_stat isl_ast_expr_foreach_ast_op_type(
9632 __isl_keep isl_ast_expr *expr,
9633 isl_stat (*fn)(enum isl_ast_op_type type,
9634 void *user), void *user);
9635 isl_stat isl_ast_node_foreach_ast_op_type(
9636 __isl_keep isl_ast_node *node,
9637 isl_stat (*fn)(enum isl_ast_op_type type,
9638 void *user), void *user);
9640 C<isl_ast_expr_get_op_type> returns the type of the operation
9641 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
9642 arguments. C<isl_ast_expr_get_op_arg> returns the specified
9644 C<isl_ast_expr_foreach_ast_op_type> calls C<fn> for each distinct
9645 C<isl_ast_op_type> that appears in C<expr>.
9646 C<isl_ast_node_foreach_ast_op_type> does the same for each distinct
9647 C<isl_ast_op_type> that appears in C<node>.
9648 The operation type is one of the following.
9652 =item C<isl_ast_op_and>
9654 Logical I<and> of two arguments.
9655 Both arguments can be evaluated.
9657 =item C<isl_ast_op_and_then>
9659 Logical I<and> of two arguments.
9660 The second argument can only be evaluated if the first evaluates to true.
9662 =item C<isl_ast_op_or>
9664 Logical I<or> of two arguments.
9665 Both arguments can be evaluated.
9667 =item C<isl_ast_op_or_else>
9669 Logical I<or> of two arguments.
9670 The second argument can only be evaluated if the first evaluates to false.
9672 =item C<isl_ast_op_max>
9674 Maximum of two or more arguments.
9676 =item C<isl_ast_op_min>
9678 Minimum of two or more arguments.
9680 =item C<isl_ast_op_minus>
9684 =item C<isl_ast_op_add>
9686 Sum of two arguments.
9688 =item C<isl_ast_op_sub>
9690 Difference of two arguments.
9692 =item C<isl_ast_op_mul>
9694 Product of two arguments.
9696 =item C<isl_ast_op_div>
9698 Exact division. That is, the result is known to be an integer.
9700 =item C<isl_ast_op_fdiv_q>
9702 Result of integer division, rounded towards negative
9705 =item C<isl_ast_op_pdiv_q>
9707 Result of integer division, where dividend is known to be non-negative.
9709 =item C<isl_ast_op_pdiv_r>
9711 Remainder of integer division, where dividend is known to be non-negative.
9713 =item C<isl_ast_op_zdiv_r>
9715 Equal to zero iff the remainder on integer division is zero.
9717 =item C<isl_ast_op_cond>
9719 Conditional operator defined on three arguments.
9720 If the first argument evaluates to true, then the result
9721 is equal to the second argument. Otherwise, the result
9722 is equal to the third argument.
9723 The second and third argument may only be evaluated if
9724 the first argument evaluates to true and false, respectively.
9725 Corresponds to C<a ? b : c> in C.
9727 =item C<isl_ast_op_select>
9729 Conditional operator defined on three arguments.
9730 If the first argument evaluates to true, then the result
9731 is equal to the second argument. Otherwise, the result
9732 is equal to the third argument.
9733 The second and third argument may be evaluated independently
9734 of the value of the first argument.
9735 Corresponds to C<a * b + (1 - a) * c> in C.
9737 =item C<isl_ast_op_eq>
9741 =item C<isl_ast_op_le>
9743 Less than or equal relation.
9745 =item C<isl_ast_op_lt>
9749 =item C<isl_ast_op_ge>
9751 Greater than or equal relation.
9753 =item C<isl_ast_op_gt>
9755 Greater than relation.
9757 =item C<isl_ast_op_call>
9760 The number of arguments of the C<isl_ast_expr> is one more than
9761 the number of arguments in the function call, the first argument
9762 representing the function being called.
9764 =item C<isl_ast_op_access>
9767 The number of arguments of the C<isl_ast_expr> is one more than
9768 the number of index expressions in the array access, the first argument
9769 representing the array being accessed.
9771 =item C<isl_ast_op_member>
9774 This operation has two arguments, a structure and the name of
9775 the member of the structure being accessed.
9779 #include <isl/ast.h>
9780 __isl_give isl_id *isl_ast_expr_get_id(
9781 __isl_keep isl_ast_expr *expr);
9783 Return the identifier represented by the AST expression.
9785 #include <isl/ast.h>
9786 __isl_give isl_val *isl_ast_expr_get_val(
9787 __isl_keep isl_ast_expr *expr);
9789 Return the integer represented by the AST expression.
9791 =head3 Properties of ASTs
9793 #include <isl/ast.h>
9794 isl_bool isl_ast_expr_is_equal(
9795 __isl_keep isl_ast_expr *expr1,
9796 __isl_keep isl_ast_expr *expr2);
9798 Check if two C<isl_ast_expr>s are equal to each other.
9800 =head3 Manipulating and printing the AST
9802 AST nodes can be copied and freed using the following functions.
9804 #include <isl/ast.h>
9805 __isl_give isl_ast_node *isl_ast_node_copy(
9806 __isl_keep isl_ast_node *node);
9807 __isl_null isl_ast_node *isl_ast_node_free(
9808 __isl_take isl_ast_node *node);
9810 AST expressions can be copied and freed using the following functions.
9812 #include <isl/ast.h>
9813 __isl_give isl_ast_expr *isl_ast_expr_copy(
9814 __isl_keep isl_ast_expr *expr);
9815 __isl_null isl_ast_expr *isl_ast_expr_free(
9816 __isl_take isl_ast_expr *expr);
9818 New AST expressions can be created either directly or within
9819 the context of an C<isl_ast_build>.
9821 #include <isl/ast.h>
9822 __isl_give isl_ast_expr *isl_ast_expr_from_val(
9823 __isl_take isl_val *v);
9824 __isl_give isl_ast_expr *isl_ast_expr_from_id(
9825 __isl_take isl_id *id);
9826 __isl_give isl_ast_expr *isl_ast_expr_neg(
9827 __isl_take isl_ast_expr *expr);
9828 __isl_give isl_ast_expr *isl_ast_expr_address_of(
9829 __isl_take isl_ast_expr *expr);
9830 __isl_give isl_ast_expr *isl_ast_expr_add(
9831 __isl_take isl_ast_expr *expr1,
9832 __isl_take isl_ast_expr *expr2);
9833 __isl_give isl_ast_expr *isl_ast_expr_sub(
9834 __isl_take isl_ast_expr *expr1,
9835 __isl_take isl_ast_expr *expr2);
9836 __isl_give isl_ast_expr *isl_ast_expr_mul(
9837 __isl_take isl_ast_expr *expr1,
9838 __isl_take isl_ast_expr *expr2);
9839 __isl_give isl_ast_expr *isl_ast_expr_div(
9840 __isl_take isl_ast_expr *expr1,
9841 __isl_take isl_ast_expr *expr2);
9842 __isl_give isl_ast_expr *isl_ast_expr_pdiv_q(
9843 __isl_take isl_ast_expr *expr1,
9844 __isl_take isl_ast_expr *expr2);
9845 __isl_give isl_ast_expr *isl_ast_expr_pdiv_r(
9846 __isl_take isl_ast_expr *expr1,
9847 __isl_take isl_ast_expr *expr2);
9848 __isl_give isl_ast_expr *isl_ast_expr_and(
9849 __isl_take isl_ast_expr *expr1,
9850 __isl_take isl_ast_expr *expr2)
9851 __isl_give isl_ast_expr *isl_ast_expr_and_then(
9852 __isl_take isl_ast_expr *expr1,
9853 __isl_take isl_ast_expr *expr2)
9854 __isl_give isl_ast_expr *isl_ast_expr_or(
9855 __isl_take isl_ast_expr *expr1,
9856 __isl_take isl_ast_expr *expr2)
9857 __isl_give isl_ast_expr *isl_ast_expr_or_else(
9858 __isl_take isl_ast_expr *expr1,
9859 __isl_take isl_ast_expr *expr2)
9860 __isl_give isl_ast_expr *isl_ast_expr_eq(
9861 __isl_take isl_ast_expr *expr1,
9862 __isl_take isl_ast_expr *expr2);
9863 __isl_give isl_ast_expr *isl_ast_expr_le(
9864 __isl_take isl_ast_expr *expr1,
9865 __isl_take isl_ast_expr *expr2);
9866 __isl_give isl_ast_expr *isl_ast_expr_lt(
9867 __isl_take isl_ast_expr *expr1,
9868 __isl_take isl_ast_expr *expr2);
9869 __isl_give isl_ast_expr *isl_ast_expr_ge(
9870 __isl_take isl_ast_expr *expr1,
9871 __isl_take isl_ast_expr *expr2);
9872 __isl_give isl_ast_expr *isl_ast_expr_gt(
9873 __isl_take isl_ast_expr *expr1,
9874 __isl_take isl_ast_expr *expr2);
9875 __isl_give isl_ast_expr *isl_ast_expr_access(
9876 __isl_take isl_ast_expr *array,
9877 __isl_take isl_ast_expr_list *indices);
9878 __isl_give isl_ast_expr *isl_ast_expr_call(
9879 __isl_take isl_ast_expr *function,
9880 __isl_take isl_ast_expr_list *arguments);
9882 The function C<isl_ast_expr_address_of> can be applied to an
9883 C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
9884 to represent the address of the C<isl_ast_expr_access>. The function
9885 C<isl_ast_expr_and_then> as well as C<isl_ast_expr_or_else> are short-circuit
9886 versions of C<isl_ast_expr_and> and C<isl_ast_expr_or>, respectively.
9888 #include <isl/ast_build.h>
9889 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
9890 __isl_keep isl_ast_build *build,
9891 __isl_take isl_set *set);
9892 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
9893 __isl_keep isl_ast_build *build,
9894 __isl_take isl_pw_aff *pa);
9895 __isl_give isl_ast_expr *
9896 isl_ast_build_access_from_pw_multi_aff(
9897 __isl_keep isl_ast_build *build,
9898 __isl_take isl_pw_multi_aff *pma);
9899 __isl_give isl_ast_expr *
9900 isl_ast_build_access_from_multi_pw_aff(
9901 __isl_keep isl_ast_build *build,
9902 __isl_take isl_multi_pw_aff *mpa);
9903 __isl_give isl_ast_expr *
9904 isl_ast_build_call_from_pw_multi_aff(
9905 __isl_keep isl_ast_build *build,
9906 __isl_take isl_pw_multi_aff *pma);
9907 __isl_give isl_ast_expr *
9908 isl_ast_build_call_from_multi_pw_aff(
9909 __isl_keep isl_ast_build *build,
9910 __isl_take isl_multi_pw_aff *mpa);
9913 the domains of C<pa>, C<mpa> and C<pma> should correspond
9914 to the schedule space of C<build>.
9915 The tuple id of C<mpa> or C<pma> is used as the array being accessed or
9916 the function being called.
9917 If the accessed space is a nested relation, then it is taken
9918 to represent an access of the member specified by the range
9919 of this nested relation of the structure specified by the domain
9920 of the nested relation.
9922 The following functions can be used to modify an C<isl_ast_expr>.
9924 #include <isl/ast.h>
9925 __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
9926 __isl_take isl_ast_expr *expr, int pos,
9927 __isl_take isl_ast_expr *arg);
9929 Replace the argument of C<expr> at position C<pos> by C<arg>.
9931 #include <isl/ast.h>
9932 __isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
9933 __isl_take isl_ast_expr *expr,
9934 __isl_take isl_id_to_ast_expr *id2expr);
9936 The function C<isl_ast_expr_substitute_ids> replaces the
9937 subexpressions of C<expr> of type C<isl_ast_expr_id>
9938 by the corresponding expression in C<id2expr>, if there is any.
9941 User specified data can be attached to an C<isl_ast_node> and obtained
9942 from the same C<isl_ast_node> using the following functions.
9944 #include <isl/ast.h>
9945 __isl_give isl_ast_node *isl_ast_node_set_annotation(
9946 __isl_take isl_ast_node *node,
9947 __isl_take isl_id *annotation);
9948 __isl_give isl_id *isl_ast_node_get_annotation(
9949 __isl_keep isl_ast_node *node);
9951 Basic printing can be performed using the following functions.
9953 #include <isl/ast.h>
9954 __isl_give isl_printer *isl_printer_print_ast_expr(
9955 __isl_take isl_printer *p,
9956 __isl_keep isl_ast_expr *expr);
9957 __isl_give isl_printer *isl_printer_print_ast_node(
9958 __isl_take isl_printer *p,
9959 __isl_keep isl_ast_node *node);
9960 __isl_give char *isl_ast_expr_to_str(
9961 __isl_keep isl_ast_expr *expr);
9962 __isl_give char *isl_ast_node_to_str(
9963 __isl_keep isl_ast_node *node);
9964 __isl_give char *isl_ast_expr_to_C_str(
9965 __isl_keep isl_ast_expr *expr);
9966 __isl_give char *isl_ast_node_to_C_str(
9967 __isl_keep isl_ast_node *node);
9969 The functions C<isl_ast_expr_to_C_str> and
9970 C<isl_ast_node_to_C_str> are convenience functions
9971 that return a string representation of the input in C format.
9973 More advanced printing can be performed using the following functions.
9975 #include <isl/ast.h>
9976 __isl_give isl_printer *isl_ast_op_type_set_print_name(
9977 __isl_take isl_printer *p,
9978 enum isl_ast_op_type type,
9979 __isl_keep const char *name);
9980 isl_stat isl_options_set_ast_print_macro_once(
9981 isl_ctx *ctx, int val);
9982 int isl_options_get_ast_print_macro_once(isl_ctx *ctx);
9983 __isl_give isl_printer *isl_ast_op_type_print_macro(
9984 enum isl_ast_op_type type,
9985 __isl_take isl_printer *p);
9986 __isl_give isl_printer *isl_ast_expr_print_macros(
9987 __isl_keep isl_ast_expr *expr,
9988 __isl_take isl_printer *p);
9989 __isl_give isl_printer *isl_ast_node_print_macros(
9990 __isl_keep isl_ast_node *node,
9991 __isl_take isl_printer *p);
9992 __isl_give isl_printer *isl_ast_node_print(
9993 __isl_keep isl_ast_node *node,
9994 __isl_take isl_printer *p,
9995 __isl_take isl_ast_print_options *options);
9996 __isl_give isl_printer *isl_ast_node_for_print(
9997 __isl_keep isl_ast_node *node,
9998 __isl_take isl_printer *p,
9999 __isl_take isl_ast_print_options *options);
10000 __isl_give isl_printer *isl_ast_node_if_print(
10001 __isl_keep isl_ast_node *node,
10002 __isl_take isl_printer *p,
10003 __isl_take isl_ast_print_options *options);
10005 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
10006 C<isl> may print out an AST that makes use of macros such
10007 as C<floord>, C<min> and C<max>.
10008 The names of these macros may be modified by a call
10009 to C<isl_ast_op_type_set_print_name>. The user-specified
10010 names are associated to the printer object.
10011 C<isl_ast_op_type_print_macro> prints out the macro
10012 corresponding to a specific C<isl_ast_op_type>.
10013 If the print-macro-once option is set, then a given macro definition
10014 is only printed once to any given printer object.
10015 C<isl_ast_expr_print_macros> scans the C<isl_ast_expr>
10016 for subexpressions where these macros would be used and prints
10017 out the required macro definitions.
10018 Essentially, C<isl_ast_expr_print_macros> calls
10019 C<isl_ast_expr_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
10020 as function argument.
10021 C<isl_ast_node_print_macros> does the same
10022 for expressions in its C<isl_ast_node> argument.
10023 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
10024 C<isl_ast_node_if_print> print an C<isl_ast_node>
10025 in C<ISL_FORMAT_C>, but allow for some extra control
10026 through an C<isl_ast_print_options> object.
10027 This object can be created using the following functions.
10029 #include <isl/ast.h>
10030 __isl_give isl_ast_print_options *
10031 isl_ast_print_options_alloc(isl_ctx *ctx);
10032 __isl_give isl_ast_print_options *
10033 isl_ast_print_options_copy(
10034 __isl_keep isl_ast_print_options *options);
10035 __isl_null isl_ast_print_options *
10036 isl_ast_print_options_free(
10037 __isl_take isl_ast_print_options *options);
10039 __isl_give isl_ast_print_options *
10040 isl_ast_print_options_set_print_user(
10041 __isl_take isl_ast_print_options *options,
10042 __isl_give isl_printer *(*print_user)(
10043 __isl_take isl_printer *p,
10044 __isl_take isl_ast_print_options *options,
10045 __isl_keep isl_ast_node *node, void *user),
10047 __isl_give isl_ast_print_options *
10048 isl_ast_print_options_set_print_for(
10049 __isl_take isl_ast_print_options *options,
10050 __isl_give isl_printer *(*print_for)(
10051 __isl_take isl_printer *p,
10052 __isl_take isl_ast_print_options *options,
10053 __isl_keep isl_ast_node *node, void *user),
10056 The callback set by C<isl_ast_print_options_set_print_user>
10057 is called whenever a node of type C<isl_ast_node_user> needs to
10059 The callback set by C<isl_ast_print_options_set_print_for>
10060 is called whenever a node of type C<isl_ast_node_for> needs to
10062 Note that C<isl_ast_node_for_print> will I<not> call the
10063 callback set by C<isl_ast_print_options_set_print_for> on the node
10064 on which C<isl_ast_node_for_print> is called, but only on nested
10065 nodes of type C<isl_ast_node_for>. It is therefore safe to
10066 call C<isl_ast_node_for_print> from within the callback set by
10067 C<isl_ast_print_options_set_print_for>.
10069 The following option determines the type to be used for iterators
10070 while printing the AST.
10072 isl_stat isl_options_set_ast_iterator_type(
10073 isl_ctx *ctx, const char *val);
10074 const char *isl_options_get_ast_iterator_type(
10077 The AST printer only prints body nodes as blocks if these
10078 blocks cannot be safely omitted.
10079 For example, a C<for> node with one body node will not be
10080 surrounded with braces in C<ISL_FORMAT_C>.
10081 A block will always be printed by setting the following option.
10083 isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx,
10085 int isl_options_get_ast_always_print_block(isl_ctx *ctx);
10089 #include <isl/ast_build.h>
10090 isl_stat isl_options_set_ast_build_atomic_upper_bound(
10091 isl_ctx *ctx, int val);
10092 int isl_options_get_ast_build_atomic_upper_bound(
10094 isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
10096 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
10097 isl_stat isl_options_set_ast_build_detect_min_max(
10098 isl_ctx *ctx, int val);
10099 int isl_options_get_ast_build_detect_min_max(
10101 isl_stat isl_options_set_ast_build_exploit_nested_bounds(
10102 isl_ctx *ctx, int val);
10103 int isl_options_get_ast_build_exploit_nested_bounds(
10105 isl_stat isl_options_set_ast_build_group_coscheduled(
10106 isl_ctx *ctx, int val);
10107 int isl_options_get_ast_build_group_coscheduled(
10109 isl_stat isl_options_set_ast_build_scale_strides(
10110 isl_ctx *ctx, int val);
10111 int isl_options_get_ast_build_scale_strides(
10113 isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx,
10115 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
10116 isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx,
10118 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
10122 =item * ast_build_atomic_upper_bound
10124 Generate loop upper bounds that consist of the current loop iterator,
10125 an operator and an expression not involving the iterator.
10126 If this option is not set, then the current loop iterator may appear
10127 several times in the upper bound.
10128 For example, when this option is turned off, AST generation
10131 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
10135 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
10138 When the option is turned on, the following AST is generated
10140 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
10143 =item * ast_build_prefer_pdiv
10145 If this option is turned off, then the AST generation will
10146 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
10147 operators, but no C<isl_ast_op_pdiv_q> or
10148 C<isl_ast_op_pdiv_r> operators.
10149 If this option is turned on, then C<isl> will try to convert
10150 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
10151 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
10153 =item * ast_build_detect_min_max
10155 If this option is turned on, then C<isl> will try and detect
10156 min or max-expressions when building AST expressions from
10157 piecewise affine expressions.
10159 =item * ast_build_exploit_nested_bounds
10161 Simplify conditions based on bounds of nested for loops.
10162 In particular, remove conditions that are implied by the fact
10163 that one or more nested loops have at least one iteration,
10164 meaning that the upper bound is at least as large as the lower bound.
10165 For example, when this option is turned off, AST generation
10168 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
10174 for (int c0 = 0; c0 <= N; c0 += 1)
10175 for (int c1 = 0; c1 <= M; c1 += 1)
10178 When the option is turned on, the following AST is generated
10180 for (int c0 = 0; c0 <= N; c0 += 1)
10181 for (int c1 = 0; c1 <= M; c1 += 1)
10184 =item * ast_build_group_coscheduled
10186 If two domain elements are assigned the same schedule point, then
10187 they may be executed in any order and they may even appear in different
10188 loops. If this options is set, then the AST generator will make
10189 sure that coscheduled domain elements do not appear in separate parts
10190 of the AST. This is useful in case of nested AST generation
10191 if the outer AST generation is given only part of a schedule
10192 and the inner AST generation should handle the domains that are
10193 coscheduled by this initial part of the schedule together.
10194 For example if an AST is generated for a schedule
10196 { A[i] -> [0]; B[i] -> [0] }
10198 then the C<isl_ast_build_set_create_leaf> callback described
10199 below may get called twice, once for each domain.
10200 Setting this option ensures that the callback is only called once
10201 on both domains together.
10203 =item * ast_build_separation_bounds
10205 This option specifies which bounds to use during separation.
10206 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
10207 then all (possibly implicit) bounds on the current dimension will
10208 be used during separation.
10209 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
10210 then only those bounds that are explicitly available will
10211 be used during separation.
10213 =item * ast_build_scale_strides
10215 This option specifies whether the AST generator is allowed
10216 to scale down iterators of strided loops.
10218 =item * ast_build_allow_else
10220 This option specifies whether the AST generator is allowed
10221 to construct if statements with else branches.
10223 =item * ast_build_allow_or
10225 This option specifies whether the AST generator is allowed
10226 to construct if conditions with disjunctions.
10230 =head3 AST Generation Options (Schedule Tree)
10232 In case of AST construction from a schedule tree, the options
10233 that control how an AST is created from the individual schedule
10234 dimensions are stored in the band nodes of the tree
10235 (see L</"Schedule Trees">).
10237 In particular, a schedule dimension can be handled in four
10238 different ways, atomic, separate, unroll or the default.
10239 This loop AST generation type can be set using
10240 C<isl_schedule_node_band_member_set_ast_loop_type>.
10242 the first three can be selected by including a one-dimensional
10243 element with as value the position of the schedule dimension
10244 within the band and as name one of C<atomic>, C<separate>
10245 or C<unroll> in the options
10246 set by C<isl_schedule_node_band_set_ast_build_options>.
10247 Only one of these three may be specified for
10248 any given schedule dimension within a band node.
10249 If none of these is specified, then the default
10250 is used. The meaning of the options is as follows.
10256 When this option is specified, the AST generator will make
10257 sure that a given domains space only appears in a single
10258 loop at the specified level.
10260 For example, for the schedule tree
10262 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10264 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10265 options: "{ atomic[x] }"
10267 the following AST will be generated
10269 for (int c0 = 0; c0 <= 10; c0 += 1) {
10276 On the other hand, for the schedule tree
10278 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10280 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10281 options: "{ separate[x] }"
10283 the following AST will be generated
10287 for (int c0 = 1; c0 <= 9; c0 += 1) {
10294 If neither C<atomic> nor C<separate> is specified, then the AST generator
10295 may produce either of these two results or some intermediate form.
10299 When this option is specified, the AST generator will
10300 split the domain of the specified schedule dimension
10301 into pieces with a fixed set of statements for which
10302 instances need to be executed by the iterations in
10303 the schedule domain part. This option tends to avoid
10304 the generation of guards inside the corresponding loops.
10305 See also the C<atomic> option.
10309 When this option is specified, the AST generator will
10310 I<completely> unroll the corresponding schedule dimension.
10311 It is the responsibility of the user to ensure that such
10312 unrolling is possible.
10313 To obtain a partial unrolling, the user should apply an additional
10314 strip-mining to the schedule and fully unroll the inner schedule
10319 The C<isolate> option is a bit more involved. It allows the user
10320 to isolate a range of schedule dimension values from smaller and
10321 greater values. Additionally, the user may specify a different
10322 atomic/separate/unroll choice for the isolated part and the remaining
10323 parts. The typical use case of the C<isolate> option is to isolate
10324 full tiles from partial tiles.
10325 The part that needs to be isolated may depend on outer schedule dimensions.
10326 The option therefore needs to be able to reference those outer schedule
10327 dimensions. In particular, the space of the C<isolate> option is that
10328 of a wrapped map with as domain the flat product of all outer band nodes
10329 and as range the space of the current band node.
10330 The atomic/separate/unroll choice for the isolated part is determined
10331 by an option that lives in an unnamed wrapped space with as domain
10332 a zero-dimensional C<isolate> space and as range the regular
10333 C<atomic>, C<separate> or C<unroll> space.
10334 This option may also be set directly using
10335 C<isl_schedule_node_band_member_set_isolate_ast_loop_type>.
10336 The atomic/separate/unroll choice for the remaining part is determined
10337 by the regular C<atomic>, C<separate> or C<unroll> option.
10338 Since the C<isolate> option references outer schedule dimensions,
10339 its use in a band node causes any tree containing the node
10340 to be considered anchored.
10342 As an example, consider the isolation of full tiles from partial tiles
10343 in a tiling of a triangular domain. The original schedule is as follows.
10345 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10347 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10348 { A[i,j] -> [floor(j/10)] }, \
10349 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10353 for (int c0 = 0; c0 <= 10; c0 += 1)
10354 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10355 for (int c2 = 10 * c0;
10356 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10357 for (int c3 = 10 * c1;
10358 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10361 Isolating the full tiles, we have the following input
10363 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10365 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10366 { A[i,j] -> [floor(j/10)] }, \
10367 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10368 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10369 10a+9+10b+9 <= 100 }"
10374 for (int c0 = 0; c0 <= 8; c0 += 1) {
10375 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10376 for (int c2 = 10 * c0;
10377 c2 <= 10 * c0 + 9; c2 += 1)
10378 for (int c3 = 10 * c1;
10379 c3 <= 10 * c1 + 9; c3 += 1)
10381 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10382 for (int c2 = 10 * c0;
10383 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10384 for (int c3 = 10 * c1;
10385 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10388 for (int c0 = 9; c0 <= 10; c0 += 1)
10389 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10390 for (int c2 = 10 * c0;
10391 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10392 for (int c3 = 10 * c1;
10393 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10397 We may then additionally unroll the innermost loop of the isolated part
10399 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10401 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10402 { A[i,j] -> [floor(j/10)] }, \
10403 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10404 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10405 10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }"
10410 for (int c0 = 0; c0 <= 8; c0 += 1) {
10411 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10412 for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) {
10414 A(c2, 10 * c1 + 1);
10415 A(c2, 10 * c1 + 2);
10416 A(c2, 10 * c1 + 3);
10417 A(c2, 10 * c1 + 4);
10418 A(c2, 10 * c1 + 5);
10419 A(c2, 10 * c1 + 6);
10420 A(c2, 10 * c1 + 7);
10421 A(c2, 10 * c1 + 8);
10422 A(c2, 10 * c1 + 9);
10424 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10425 for (int c2 = 10 * c0;
10426 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10427 for (int c3 = 10 * c1;
10428 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10431 for (int c0 = 9; c0 <= 10; c0 += 1)
10432 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10433 for (int c2 = 10 * c0;
10434 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10435 for (int c3 = 10 * c1;
10436 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10441 =head3 AST Generation Options (Schedule Map)
10443 In case of AST construction using
10444 C<isl_ast_build_node_from_schedule_map>, the options
10445 that control how an AST is created from the individual schedule
10446 dimensions are stored in the C<isl_ast_build>.
10447 They can be set using the following function.
10449 #include <isl/ast_build.h>
10450 __isl_give isl_ast_build *
10451 isl_ast_build_set_options(
10452 __isl_take isl_ast_build *control,
10453 __isl_take isl_union_map *options);
10455 The options are encoded in an C<isl_union_map>.
10456 The domain of this union relation refers to the schedule domain,
10457 i.e., the range of the schedule passed
10458 to C<isl_ast_build_node_from_schedule_map>.
10459 In the case of nested AST generation (see L</"Nested AST Generation">),
10460 the domain of C<options> should refer to the extra piece of the schedule.
10461 That is, it should be equal to the range of the wrapped relation in the
10462 range of the schedule.
10463 The range of the options can consist of elements in one or more spaces,
10464 the names of which determine the effect of the option.
10465 The values of the range typically also refer to the schedule dimension
10466 to which the option applies. In case of nested AST generation
10467 (see L</"Nested AST Generation">), these values refer to the position
10468 of the schedule dimension within the innermost AST generation.
10469 The constraints on the domain elements of
10470 the option should only refer to this dimension and earlier dimensions.
10471 We consider the following spaces.
10475 =item C<separation_class>
10477 B<This option has been deprecated. Use the isolate option on
10478 schedule trees instead.>
10480 This space is a wrapped relation between two one dimensional spaces.
10481 The input space represents the schedule dimension to which the option
10482 applies and the output space represents the separation class.
10483 While constructing a loop corresponding to the specified schedule
10484 dimension(s), the AST generator will try to generate separate loops
10485 for domain elements that are assigned different classes.
10486 If only some of the elements are assigned a class, then those elements
10487 that are not assigned any class will be treated as belonging to a class
10488 that is separate from the explicitly assigned classes.
10489 The typical use case for this option is to separate full tiles from
10491 The other options, described below, are applied after the separation
10494 As an example, consider the separation into full and partial tiles
10495 of a tiling of a triangular domain.
10496 Take, for example, the domain
10498 { A[i,j] : 0 <= i,j and i + j <= 100 }
10500 and a tiling into tiles of 10 by 10. The input to the AST generator
10501 is then the schedule
10503 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
10506 Without any options, the following AST is generated
10508 for (int c0 = 0; c0 <= 10; c0 += 1)
10509 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10510 for (int c2 = 10 * c0;
10511 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10513 for (int c3 = 10 * c1;
10514 c3 <= min(10 * c1 + 9, -c2 + 100);
10518 Separation into full and partial tiles can be obtained by assigning
10519 a class, say C<0>, to the full tiles. The full tiles are represented by those
10520 values of the first and second schedule dimensions for which there are
10521 values of the third and fourth dimensions to cover an entire tile.
10522 That is, we need to specify the following option
10524 { [a,b,c,d] -> separation_class[[0]->[0]] :
10525 exists b': 0 <= 10a,10b' and
10526 10a+9+10b'+9 <= 100;
10527 [a,b,c,d] -> separation_class[[1]->[0]] :
10528 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
10530 which simplifies to
10532 { [a, b, c, d] -> separation_class[[1] -> [0]] :
10533 a >= 0 and b >= 0 and b <= 8 - a;
10534 [a, b, c, d] -> separation_class[[0] -> [0]] :
10535 a >= 0 and a <= 8 }
10537 With this option, the generated AST is as follows
10540 for (int c0 = 0; c0 <= 8; c0 += 1) {
10541 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10542 for (int c2 = 10 * c0;
10543 c2 <= 10 * c0 + 9; c2 += 1)
10544 for (int c3 = 10 * c1;
10545 c3 <= 10 * c1 + 9; c3 += 1)
10547 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10548 for (int c2 = 10 * c0;
10549 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10551 for (int c3 = 10 * c1;
10552 c3 <= min(-c2 + 100, 10 * c1 + 9);
10556 for (int c0 = 9; c0 <= 10; c0 += 1)
10557 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10558 for (int c2 = 10 * c0;
10559 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10561 for (int c3 = 10 * c1;
10562 c3 <= min(10 * c1 + 9, -c2 + 100);
10569 This is a single-dimensional space representing the schedule dimension(s)
10570 to which ``separation'' should be applied. Separation tries to split
10571 a loop into several pieces if this can avoid the generation of guards
10573 See also the C<atomic> option.
10577 This is a single-dimensional space representing the schedule dimension(s)
10578 for which the domains should be considered ``atomic''. That is, the
10579 AST generator will make sure that any given domain space will only appear
10580 in a single loop at the specified level.
10582 Consider the following schedule
10584 { a[i] -> [i] : 0 <= i < 10;
10585 b[i] -> [i+1] : 0 <= i < 10 }
10587 If the following option is specified
10589 { [i] -> separate[x] }
10591 then the following AST will be generated
10595 for (int c0 = 1; c0 <= 9; c0 += 1) {
10602 If, on the other hand, the following option is specified
10604 { [i] -> atomic[x] }
10606 then the following AST will be generated
10608 for (int c0 = 0; c0 <= 10; c0 += 1) {
10615 If neither C<atomic> nor C<separate> is specified, then the AST generator
10616 may produce either of these two results or some intermediate form.
10620 This is a single-dimensional space representing the schedule dimension(s)
10621 that should be I<completely> unrolled.
10622 To obtain a partial unrolling, the user should apply an additional
10623 strip-mining to the schedule and fully unroll the inner loop.
10627 =head3 Fine-grained Control over AST Generation
10629 Besides specifying the constraints on the parameters,
10630 an C<isl_ast_build> object can be used to control
10631 various aspects of the AST generation process.
10632 In case of AST construction using
10633 C<isl_ast_build_node_from_schedule_map>,
10634 the most prominent way of control is through ``options'',
10635 as explained above.
10637 Additional control is available through the following functions.
10639 #include <isl/ast_build.h>
10640 __isl_give isl_ast_build *
10641 isl_ast_build_set_iterators(
10642 __isl_take isl_ast_build *control,
10643 __isl_take isl_id_list *iterators);
10645 The function C<isl_ast_build_set_iterators> allows the user to
10646 specify a list of iterator C<isl_id>s to be used as iterators.
10647 If the input schedule is injective, then
10648 the number of elements in this list should be as large as the dimension
10649 of the schedule space, but no direct correspondence should be assumed
10650 between dimensions and elements.
10651 If the input schedule is not injective, then an additional number
10652 of C<isl_id>s equal to the largest dimension of the input domains
10654 If the number of provided C<isl_id>s is insufficient, then additional
10655 names are automatically generated.
10657 #include <isl/ast_build.h>
10658 __isl_give isl_ast_build *
10659 isl_ast_build_set_create_leaf(
10660 __isl_take isl_ast_build *control,
10661 __isl_give isl_ast_node *(*fn)(
10662 __isl_take isl_ast_build *build,
10663 void *user), void *user);
10666 C<isl_ast_build_set_create_leaf> function allows for the
10667 specification of a callback that should be called whenever the AST
10668 generator arrives at an element of the schedule domain.
10669 The callback should return an AST node that should be inserted
10670 at the corresponding position of the AST. The default action (when
10671 the callback is not set) is to continue generating parts of the AST to scan
10672 all the domain elements associated to the schedule domain element
10673 and to insert user nodes, ``calling'' the domain element, for each of them.
10674 The C<build> argument contains the current state of the C<isl_ast_build>.
10675 To ease nested AST generation (see L</"Nested AST Generation">),
10676 all control information that is
10677 specific to the current AST generation such as the options and
10678 the callbacks has been removed from this C<isl_ast_build>.
10679 The callback would typically return the result of a nested
10680 AST generation or a
10681 user defined node created using the following function.
10683 #include <isl/ast.h>
10684 __isl_give isl_ast_node *isl_ast_node_alloc_user(
10685 __isl_take isl_ast_expr *expr);
10687 #include <isl/ast_build.h>
10688 __isl_give isl_ast_build *
10689 isl_ast_build_set_at_each_domain(
10690 __isl_take isl_ast_build *build,
10691 __isl_give isl_ast_node *(*fn)(
10692 __isl_take isl_ast_node *node,
10693 __isl_keep isl_ast_build *build,
10694 void *user), void *user);
10695 __isl_give isl_ast_build *
10696 isl_ast_build_set_before_each_for(
10697 __isl_take isl_ast_build *build,
10698 __isl_give isl_id *(*fn)(
10699 __isl_keep isl_ast_build *build,
10700 void *user), void *user);
10701 __isl_give isl_ast_build *
10702 isl_ast_build_set_after_each_for(
10703 __isl_take isl_ast_build *build,
10704 __isl_give isl_ast_node *(*fn)(
10705 __isl_take isl_ast_node *node,
10706 __isl_keep isl_ast_build *build,
10707 void *user), void *user);
10708 __isl_give isl_ast_build *
10709 isl_ast_build_set_before_each_mark(
10710 __isl_take isl_ast_build *build,
10711 isl_stat (*fn)(__isl_keep isl_id *mark,
10712 __isl_keep isl_ast_build *build,
10713 void *user), void *user);
10714 __isl_give isl_ast_build *
10715 isl_ast_build_set_after_each_mark(
10716 __isl_take isl_ast_build *build,
10717 __isl_give isl_ast_node *(*fn)(
10718 __isl_take isl_ast_node *node,
10719 __isl_keep isl_ast_build *build,
10720 void *user), void *user);
10722 The callback set by C<isl_ast_build_set_at_each_domain> will
10723 be called for each domain AST node.
10724 The callbacks set by C<isl_ast_build_set_before_each_for>
10725 and C<isl_ast_build_set_after_each_for> will be called
10726 for each for AST node. The first will be called in depth-first
10727 pre-order, while the second will be called in depth-first post-order.
10728 Since C<isl_ast_build_set_before_each_for> is called before the for
10729 node is actually constructed, it is only passed an C<isl_ast_build>.
10730 The returned C<isl_id> will be added as an annotation (using
10731 C<isl_ast_node_set_annotation>) to the constructed for node.
10732 In particular, if the user has also specified an C<after_each_for>
10733 callback, then the annotation can be retrieved from the node passed to
10734 that callback using C<isl_ast_node_get_annotation>.
10735 The callbacks set by C<isl_ast_build_set_before_each_mark>
10736 and C<isl_ast_build_set_after_each_mark> will be called for each
10737 mark AST node that is created, i.e., for each mark schedule node
10738 in the input schedule tree. The first will be called in depth-first
10739 pre-order, while the second will be called in depth-first post-order.
10740 Since the callback set by C<isl_ast_build_set_before_each_mark>
10741 is called before the mark AST node is actually constructed, it is passed
10742 the identifier of the mark node.
10743 All callbacks should C<NULL> (or -1) on failure.
10744 The given C<isl_ast_build> can be used to create new
10745 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
10746 or C<isl_ast_build_call_from_pw_multi_aff>.
10748 =head3 Nested AST Generation
10750 C<isl> allows the user to create an AST within the context
10751 of another AST. These nested ASTs are created using the
10752 same C<isl_ast_build_node_from_schedule_map> function that is used to create
10753 the outer AST. The C<build> argument should be an C<isl_ast_build>
10754 passed to a callback set by
10755 C<isl_ast_build_set_create_leaf>.
10756 The space of the range of the C<schedule> argument should refer
10757 to this build. In particular, the space should be a wrapped
10758 relation and the domain of this wrapped relation should be the
10759 same as that of the range of the schedule returned by
10760 C<isl_ast_build_get_schedule> below.
10761 In practice, the new schedule is typically
10762 created by calling C<isl_union_map_range_product> on the old schedule
10763 and some extra piece of the schedule.
10764 The space of the schedule domain is also available from
10765 the C<isl_ast_build>.
10767 #include <isl/ast_build.h>
10768 __isl_give isl_union_map *isl_ast_build_get_schedule(
10769 __isl_keep isl_ast_build *build);
10770 __isl_give isl_space *isl_ast_build_get_schedule_space(
10771 __isl_keep isl_ast_build *build);
10772 __isl_give isl_ast_build *isl_ast_build_restrict(
10773 __isl_take isl_ast_build *build,
10774 __isl_take isl_set *set);
10776 The C<isl_ast_build_get_schedule> function returns a (partial)
10777 schedule for the domains elements for which part of the AST still needs to
10778 be generated in the current build.
10779 In particular, the domain elements are mapped to those iterations of the loops
10780 enclosing the current point of the AST generation inside which
10781 the domain elements are executed.
10782 No direct correspondence between
10783 the input schedule and this schedule should be assumed.
10784 The space obtained from C<isl_ast_build_get_schedule_space> can be used
10785 to create a set for C<isl_ast_build_restrict> to intersect
10786 with the current build. In particular, the set passed to
10787 C<isl_ast_build_restrict> can have additional parameters.
10788 The ids of the set dimensions in the space returned by
10789 C<isl_ast_build_get_schedule_space> correspond to the
10790 iterators of the already generated loops.
10791 The user should not rely on the ids of the output dimensions
10792 of the relations in the union relation returned by
10793 C<isl_ast_build_get_schedule> having any particular value.
10795 =head1 Applications
10797 Although C<isl> is mainly meant to be used as a library,
10798 it also contains some basic applications that use some
10799 of the functionality of C<isl>.
10800 For applications that take one or more polytopes or polyhedra
10801 as input, this input may be specified in either the L<isl format>
10802 or the L<PolyLib format>.
10804 =head2 C<isl_polyhedron_sample>
10806 C<isl_polyhedron_sample> takes a polyhedron as input and prints
10807 an integer element of the polyhedron, if there is any.
10808 The first column in the output is the denominator and is always
10809 equal to 1. If the polyhedron contains no integer points,
10810 then a vector of length zero is printed.
10814 C<isl_pip> takes the same input as the C<example> program
10815 from the C<piplib> distribution, i.e., a set of constraints
10816 on the parameters, a line containing only -1 and finally a set
10817 of constraints on a parametric polyhedron.
10818 The coefficients of the parameters appear in the last columns
10819 (but before the final constant column).
10820 The output is the lexicographic minimum of the parametric polyhedron.
10821 As C<isl> currently does not have its own output format, the output
10822 is just a dump of the internal state.
10824 =head2 C<isl_polyhedron_minimize>
10826 C<isl_polyhedron_minimize> computes the minimum of some linear
10827 or affine objective function over the integer points in a polyhedron.
10828 If an affine objective function
10829 is given, then the constant should appear in the last column.
10831 =head2 C<isl_polytope_scan>
10833 Given a polytope, C<isl_polytope_scan> prints
10834 all integer points in the polytope.
10838 Given an C<isl_union_access_info> object as input,
10839 C<isl_flow> prints out the corresponding dependences,
10840 as computed by C<isl_union_access_info_compute_flow>.
10842 =head2 C<isl_codegen>
10844 Given either a schedule tree or a sequence consisting of
10845 a schedule map, a context set and an options relation,
10846 C<isl_codegen> prints out an AST that scans the domain elements
10847 of the schedule in the order of their image(s) taking into account
10848 the constraints in the context set.
10850 =head2 C<isl_schedule>
10852 Given an C<isl_schedule_constraints> object as input,
10853 C<isl_schedule> prints out a schedule that satisfies the given