bindings: drop "get_" prefix of methods that start this way
[isl.git] / isl_coalesce.c
blob86027f8ad4cd6354c0dd4bdc9f9f4bd99b7b7362
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
6 * Copyright 2016 INRIA Paris
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, K.U.Leuven, Departement
11 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
16 * B.P. 105 - 78153 Le Chesnay, France
17 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
18 * CS 42112, 75589 Paris Cedex 12, France
21 #include <isl_ctx_private.h>
22 #include "isl_map_private.h"
23 #include <isl_seq.h>
24 #include <isl/options.h>
25 #include "isl_tab.h"
26 #include <isl_mat_private.h>
27 #include <isl_local_space_private.h>
28 #include <isl_val_private.h>
29 #include <isl_vec_private.h>
30 #include <isl_aff_private.h>
31 #include <isl_equalities.h>
32 #include <isl_constraint_private.h>
34 #include <set_to_map.c>
35 #include <set_from_map.c>
37 #define STATUS_ERROR -1
38 #define STATUS_REDUNDANT 1
39 #define STATUS_VALID 2
40 #define STATUS_SEPARATE 3
41 #define STATUS_CUT 4
42 #define STATUS_ADJ_EQ 5
43 #define STATUS_ADJ_INEQ 6
45 static int status_in(isl_int *ineq, struct isl_tab *tab)
47 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
48 switch (type) {
49 default:
50 case isl_ineq_error: return STATUS_ERROR;
51 case isl_ineq_redundant: return STATUS_VALID;
52 case isl_ineq_separate: return STATUS_SEPARATE;
53 case isl_ineq_cut: return STATUS_CUT;
54 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
55 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
59 /* Compute the position of the equalities of basic map "bmap_i"
60 * with respect to the basic map represented by "tab_j".
61 * The resulting array has twice as many entries as the number
62 * of equalities corresponding to the two inequalities to which
63 * each equality corresponds.
65 static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
66 struct isl_tab *tab_j)
68 int k, l;
69 int *eq;
70 isl_size dim;
72 dim = isl_basic_map_dim(bmap_i, isl_dim_all);
73 if (dim < 0)
74 return NULL;
76 eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
77 if (!eq)
78 return NULL;
80 for (k = 0; k < bmap_i->n_eq; ++k) {
81 for (l = 0; l < 2; ++l) {
82 isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
83 eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
84 if (eq[2 * k + l] == STATUS_ERROR)
85 goto error;
89 return eq;
90 error:
91 free(eq);
92 return NULL;
95 /* Compute the position of the inequalities of basic map "bmap_i"
96 * (also represented by "tab_i", if not NULL) with respect to the basic map
97 * represented by "tab_j".
99 static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
100 struct isl_tab *tab_i, struct isl_tab *tab_j)
102 int k;
103 unsigned n_eq = bmap_i->n_eq;
104 int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
106 if (!ineq)
107 return NULL;
109 for (k = 0; k < bmap_i->n_ineq; ++k) {
110 if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
111 ineq[k] = STATUS_REDUNDANT;
112 continue;
114 ineq[k] = status_in(bmap_i->ineq[k], tab_j);
115 if (ineq[k] == STATUS_ERROR)
116 goto error;
117 if (ineq[k] == STATUS_SEPARATE)
118 break;
121 return ineq;
122 error:
123 free(ineq);
124 return NULL;
127 static int any(int *con, unsigned len, int status)
129 int i;
131 for (i = 0; i < len ; ++i)
132 if (con[i] == status)
133 return 1;
134 return 0;
137 /* Return the first position of "status" in the list "con" of length "len".
138 * Return -1 if there is no such entry.
140 static int find(int *con, unsigned len, int status)
142 int i;
144 for (i = 0; i < len ; ++i)
145 if (con[i] == status)
146 return i;
147 return -1;
150 static int count(int *con, unsigned len, int status)
152 int i;
153 int c = 0;
155 for (i = 0; i < len ; ++i)
156 if (con[i] == status)
157 c++;
158 return c;
161 static int all(int *con, unsigned len, int status)
163 int i;
165 for (i = 0; i < len ; ++i) {
166 if (con[i] == STATUS_REDUNDANT)
167 continue;
168 if (con[i] != status)
169 return 0;
171 return 1;
174 /* Internal information associated to a basic map in a map
175 * that is to be coalesced by isl_map_coalesce.
177 * "bmap" is the basic map itself (or NULL if "removed" is set)
178 * "tab" is the corresponding tableau (or NULL if "removed" is set)
179 * "hull_hash" identifies the affine space in which "bmap" lives.
180 * "modified" is set if this basic map may not be identical
181 * to any of the basic maps in the input.
182 * "removed" is set if this basic map has been removed from the map
183 * "simplify" is set if this basic map may have some unknown integer
184 * divisions that were not present in the input basic maps. The basic
185 * map should then be simplified such that we may be able to find
186 * a definition among the constraints.
188 * "eq" and "ineq" are only set if we are currently trying to coalesce
189 * this basic map with another basic map, in which case they represent
190 * the position of the inequalities of this basic map with respect to
191 * the other basic map. The number of elements in the "eq" array
192 * is twice the number of equalities in the "bmap", corresponding
193 * to the two inequalities that make up each equality.
195 struct isl_coalesce_info {
196 isl_basic_map *bmap;
197 struct isl_tab *tab;
198 uint32_t hull_hash;
199 int modified;
200 int removed;
201 int simplify;
202 int *eq;
203 int *ineq;
206 /* Is there any (half of an) equality constraint in the description
207 * of the basic map represented by "info" that
208 * has position "status" with respect to the other basic map?
210 static int any_eq(struct isl_coalesce_info *info, int status)
212 unsigned n_eq;
214 n_eq = isl_basic_map_n_equality(info->bmap);
215 return any(info->eq, 2 * n_eq, status);
218 /* Is there any inequality constraint in the description
219 * of the basic map represented by "info" that
220 * has position "status" with respect to the other basic map?
222 static int any_ineq(struct isl_coalesce_info *info, int status)
224 unsigned n_ineq;
226 n_ineq = isl_basic_map_n_inequality(info->bmap);
227 return any(info->ineq, n_ineq, status);
230 /* Return the position of the first half on an equality constraint
231 * in the description of the basic map represented by "info" that
232 * has position "status" with respect to the other basic map.
233 * The returned value is twice the position of the equality constraint
234 * plus zero for the negative half and plus one for the positive half.
235 * Return -1 if there is no such entry.
237 static int find_eq(struct isl_coalesce_info *info, int status)
239 unsigned n_eq;
241 n_eq = isl_basic_map_n_equality(info->bmap);
242 return find(info->eq, 2 * n_eq, status);
245 /* Return the position of the first inequality constraint in the description
246 * of the basic map represented by "info" that
247 * has position "status" with respect to the other basic map.
248 * Return -1 if there is no such entry.
250 static int find_ineq(struct isl_coalesce_info *info, int status)
252 unsigned n_ineq;
254 n_ineq = isl_basic_map_n_inequality(info->bmap);
255 return find(info->ineq, n_ineq, status);
258 /* Return the number of (halves of) equality constraints in the description
259 * of the basic map represented by "info" that
260 * have position "status" with respect to the other basic map.
262 static int count_eq(struct isl_coalesce_info *info, int status)
264 unsigned n_eq;
266 n_eq = isl_basic_map_n_equality(info->bmap);
267 return count(info->eq, 2 * n_eq, status);
270 /* Return the number of inequality constraints in the description
271 * of the basic map represented by "info" that
272 * have position "status" with respect to the other basic map.
274 static int count_ineq(struct isl_coalesce_info *info, int status)
276 unsigned n_ineq;
278 n_ineq = isl_basic_map_n_inequality(info->bmap);
279 return count(info->ineq, n_ineq, status);
282 /* Are all non-redundant constraints of the basic map represented by "info"
283 * either valid or cut constraints with respect to the other basic map?
285 static int all_valid_or_cut(struct isl_coalesce_info *info)
287 int i;
289 for (i = 0; i < 2 * info->bmap->n_eq; ++i) {
290 if (info->eq[i] == STATUS_REDUNDANT)
291 continue;
292 if (info->eq[i] == STATUS_VALID)
293 continue;
294 if (info->eq[i] == STATUS_CUT)
295 continue;
296 return 0;
299 for (i = 0; i < info->bmap->n_ineq; ++i) {
300 if (info->ineq[i] == STATUS_REDUNDANT)
301 continue;
302 if (info->ineq[i] == STATUS_VALID)
303 continue;
304 if (info->ineq[i] == STATUS_CUT)
305 continue;
306 return 0;
309 return 1;
312 /* Compute the hash of the (apparent) affine hull of info->bmap (with
313 * the existentially quantified variables removed) and store it
314 * in info->hash.
316 static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
318 isl_basic_map *hull;
319 isl_size n_div;
321 hull = isl_basic_map_copy(info->bmap);
322 hull = isl_basic_map_plain_affine_hull(hull);
323 n_div = isl_basic_map_dim(hull, isl_dim_div);
324 if (n_div < 0)
325 hull = isl_basic_map_free(hull);
326 hull = isl_basic_map_drop_constraints_involving_dims(hull,
327 isl_dim_div, 0, n_div);
328 info->hull_hash = isl_basic_map_get_hash(hull);
329 isl_basic_map_free(hull);
331 return hull ? 0 : -1;
334 /* Free all the allocated memory in an array
335 * of "n" isl_coalesce_info elements.
337 static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
339 int i;
341 if (!info)
342 return;
344 for (i = 0; i < n; ++i) {
345 isl_basic_map_free(info[i].bmap);
346 isl_tab_free(info[i].tab);
349 free(info);
352 /* Clear the memory associated to "info".
354 static void clear(struct isl_coalesce_info *info)
356 info->bmap = isl_basic_map_free(info->bmap);
357 isl_tab_free(info->tab);
358 info->tab = NULL;
361 /* Drop the basic map represented by "info".
362 * That is, clear the memory associated to the entry and
363 * mark it as having been removed.
365 static void drop(struct isl_coalesce_info *info)
367 clear(info);
368 info->removed = 1;
371 /* Exchange the information in "info1" with that in "info2".
373 static void exchange(struct isl_coalesce_info *info1,
374 struct isl_coalesce_info *info2)
376 struct isl_coalesce_info info;
378 info = *info1;
379 *info1 = *info2;
380 *info2 = info;
383 /* This type represents the kind of change that has been performed
384 * while trying to coalesce two basic maps.
386 * isl_change_none: nothing was changed
387 * isl_change_drop_first: the first basic map was removed
388 * isl_change_drop_second: the second basic map was removed
389 * isl_change_fuse: the two basic maps were replaced by a new basic map.
391 enum isl_change {
392 isl_change_error = -1,
393 isl_change_none = 0,
394 isl_change_drop_first,
395 isl_change_drop_second,
396 isl_change_fuse,
399 /* Update "change" based on an interchange of the first and the second
400 * basic map. That is, interchange isl_change_drop_first and
401 * isl_change_drop_second.
403 static enum isl_change invert_change(enum isl_change change)
405 switch (change) {
406 case isl_change_error:
407 return isl_change_error;
408 case isl_change_none:
409 return isl_change_none;
410 case isl_change_drop_first:
411 return isl_change_drop_second;
412 case isl_change_drop_second:
413 return isl_change_drop_first;
414 case isl_change_fuse:
415 return isl_change_fuse;
418 return isl_change_error;
421 /* Add the valid constraints of the basic map represented by "info"
422 * to "bmap". "len" is the size of the constraints.
423 * If only one of the pair of inequalities that make up an equality
424 * is valid, then add that inequality.
426 static __isl_give isl_basic_map *add_valid_constraints(
427 __isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
428 unsigned len)
430 int k, l;
432 if (!bmap)
433 return NULL;
435 for (k = 0; k < info->bmap->n_eq; ++k) {
436 if (info->eq[2 * k] == STATUS_VALID &&
437 info->eq[2 * k + 1] == STATUS_VALID) {
438 l = isl_basic_map_alloc_equality(bmap);
439 if (l < 0)
440 return isl_basic_map_free(bmap);
441 isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
442 } else if (info->eq[2 * k] == STATUS_VALID) {
443 l = isl_basic_map_alloc_inequality(bmap);
444 if (l < 0)
445 return isl_basic_map_free(bmap);
446 isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
447 } else if (info->eq[2 * k + 1] == STATUS_VALID) {
448 l = isl_basic_map_alloc_inequality(bmap);
449 if (l < 0)
450 return isl_basic_map_free(bmap);
451 isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
455 for (k = 0; k < info->bmap->n_ineq; ++k) {
456 if (info->ineq[k] != STATUS_VALID)
457 continue;
458 l = isl_basic_map_alloc_inequality(bmap);
459 if (l < 0)
460 return isl_basic_map_free(bmap);
461 isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
464 return bmap;
467 /* Is "bmap" defined by a number of (non-redundant) constraints that
468 * is greater than the number of constraints of basic maps i and j combined?
469 * Equalities are counted as two inequalities.
471 static int number_of_constraints_increases(int i, int j,
472 struct isl_coalesce_info *info,
473 __isl_keep isl_basic_map *bmap, struct isl_tab *tab)
475 int k, n_old, n_new;
477 n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
478 n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
480 n_new = 2 * bmap->n_eq;
481 for (k = 0; k < bmap->n_ineq; ++k)
482 if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
483 ++n_new;
485 return n_new > n_old;
488 /* Replace the pair of basic maps i and j by the basic map bounded
489 * by the valid constraints in both basic maps and the constraints
490 * in extra (if not NULL).
491 * Place the fused basic map in the position that is the smallest of i and j.
493 * If "detect_equalities" is set, then look for equalities encoded
494 * as pairs of inequalities.
495 * If "check_number" is set, then the original basic maps are only
496 * replaced if the total number of constraints does not increase.
497 * While the number of integer divisions in the two basic maps
498 * is assumed to be the same, the actual definitions may be different.
499 * We only copy the definition from one of the basic map if it is
500 * the same as that of the other basic map. Otherwise, we mark
501 * the integer division as unknown and simplify the basic map
502 * in an attempt to recover the integer division definition.
504 static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
505 __isl_keep isl_mat *extra, int detect_equalities, int check_number)
507 int k, l;
508 struct isl_basic_map *fused = NULL;
509 struct isl_tab *fused_tab = NULL;
510 isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
511 unsigned extra_rows = extra ? extra->n_row : 0;
512 unsigned n_eq, n_ineq;
513 int simplify = 0;
515 if (total < 0)
516 return isl_change_error;
517 if (j < i)
518 return fuse(j, i, info, extra, detect_equalities, check_number);
520 n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
521 n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
522 fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
523 info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
524 fused = add_valid_constraints(fused, &info[i], 1 + total);
525 fused = add_valid_constraints(fused, &info[j], 1 + total);
526 if (!fused)
527 goto error;
528 if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
529 ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
530 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
532 for (k = 0; k < info[i].bmap->n_div; ++k) {
533 int l = isl_basic_map_alloc_div(fused);
534 if (l < 0)
535 goto error;
536 if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
537 1 + 1 + total)) {
538 isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
539 1 + 1 + total);
540 } else {
541 isl_int_set_si(fused->div[l][0], 0);
542 simplify = 1;
546 for (k = 0; k < extra_rows; ++k) {
547 l = isl_basic_map_alloc_inequality(fused);
548 if (l < 0)
549 goto error;
550 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
553 if (detect_equalities)
554 fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
555 fused = isl_basic_map_gauss(fused, NULL);
556 if (simplify || info[j].simplify) {
557 fused = isl_basic_map_simplify(fused);
558 info[i].simplify = 0;
560 fused = isl_basic_map_finalize(fused);
562 fused_tab = isl_tab_from_basic_map(fused, 0);
563 if (isl_tab_detect_redundant(fused_tab) < 0)
564 goto error;
566 if (check_number &&
567 number_of_constraints_increases(i, j, info, fused, fused_tab)) {
568 isl_tab_free(fused_tab);
569 isl_basic_map_free(fused);
570 return isl_change_none;
573 clear(&info[i]);
574 info[i].bmap = fused;
575 info[i].tab = fused_tab;
576 info[i].modified = 1;
577 drop(&info[j]);
579 return isl_change_fuse;
580 error:
581 isl_tab_free(fused_tab);
582 isl_basic_map_free(fused);
583 return isl_change_error;
586 /* Given a pair of basic maps i and j such that all constraints are either
587 * "valid" or "cut", check if the facets corresponding to the "cut"
588 * constraints of i lie entirely within basic map j.
589 * If so, replace the pair by the basic map consisting of the valid
590 * constraints in both basic maps.
591 * Checking whether the facet lies entirely within basic map j
592 * is performed by checking whether the constraints of basic map j
593 * are valid for the facet. These tests are performed on a rational
594 * tableau to avoid the theoretical possibility that a constraint
595 * that was considered to be a cut constraint for the entire basic map i
596 * happens to be considered to be a valid constraint for the facet,
597 * even though it cuts off the same rational points.
599 * To see that we are not introducing any extra points, call the
600 * two basic maps A and B and the resulting map U and let x
601 * be an element of U \setminus ( A \cup B ).
602 * A line connecting x with an element of A \cup B meets a facet F
603 * of either A or B. Assume it is a facet of B and let c_1 be
604 * the corresponding facet constraint. We have c_1(x) < 0 and
605 * so c_1 is a cut constraint. This implies that there is some
606 * (possibly rational) point x' satisfying the constraints of A
607 * and the opposite of c_1 as otherwise c_1 would have been marked
608 * valid for A. The line connecting x and x' meets a facet of A
609 * in a (possibly rational) point that also violates c_1, but this
610 * is impossible since all cut constraints of B are valid for all
611 * cut facets of A.
612 * In case F is a facet of A rather than B, then we can apply the
613 * above reasoning to find a facet of B separating x from A \cup B first.
615 static enum isl_change check_facets(int i, int j,
616 struct isl_coalesce_info *info)
618 int k, l;
619 struct isl_tab_undo *snap, *snap2;
620 unsigned n_eq = info[i].bmap->n_eq;
622 snap = isl_tab_snap(info[i].tab);
623 if (isl_tab_mark_rational(info[i].tab) < 0)
624 return isl_change_error;
625 snap2 = isl_tab_snap(info[i].tab);
627 for (k = 0; k < info[i].bmap->n_ineq; ++k) {
628 if (info[i].ineq[k] != STATUS_CUT)
629 continue;
630 if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
631 return isl_change_error;
632 for (l = 0; l < info[j].bmap->n_ineq; ++l) {
633 int stat;
634 if (info[j].ineq[l] != STATUS_CUT)
635 continue;
636 stat = status_in(info[j].bmap->ineq[l], info[i].tab);
637 if (stat < 0)
638 return isl_change_error;
639 if (stat != STATUS_VALID)
640 break;
642 if (isl_tab_rollback(info[i].tab, snap2) < 0)
643 return isl_change_error;
644 if (l < info[j].bmap->n_ineq)
645 break;
648 if (k < info[i].bmap->n_ineq) {
649 if (isl_tab_rollback(info[i].tab, snap) < 0)
650 return isl_change_error;
651 return isl_change_none;
653 return fuse(i, j, info, NULL, 0, 0);
656 /* Check if info->bmap contains the basic map represented
657 * by the tableau "tab".
658 * For each equality, we check both the constraint itself
659 * (as an inequality) and its negation. Make sure the
660 * equality is returned to its original state before returning.
662 static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab)
664 int k;
665 isl_size dim;
666 isl_basic_map *bmap = info->bmap;
668 dim = isl_basic_map_dim(bmap, isl_dim_all);
669 if (dim < 0)
670 return isl_bool_error;
671 for (k = 0; k < bmap->n_eq; ++k) {
672 int stat;
673 isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
674 stat = status_in(bmap->eq[k], tab);
675 isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
676 if (stat < 0)
677 return isl_bool_error;
678 if (stat != STATUS_VALID)
679 return isl_bool_false;
680 stat = status_in(bmap->eq[k], tab);
681 if (stat < 0)
682 return isl_bool_error;
683 if (stat != STATUS_VALID)
684 return isl_bool_false;
687 for (k = 0; k < bmap->n_ineq; ++k) {
688 int stat;
689 if (info->ineq[k] == STATUS_REDUNDANT)
690 continue;
691 stat = status_in(bmap->ineq[k], tab);
692 if (stat < 0)
693 return isl_bool_error;
694 if (stat != STATUS_VALID)
695 return isl_bool_false;
697 return isl_bool_true;
700 /* Basic map "i" has an inequality (say "k") that is adjacent
701 * to some inequality of basic map "j". All the other inequalities
702 * are valid for "j".
703 * Check if basic map "j" forms an extension of basic map "i".
705 * Note that this function is only called if some of the equalities or
706 * inequalities of basic map "j" do cut basic map "i". The function is
707 * correct even if there are no such cut constraints, but in that case
708 * the additional checks performed by this function are overkill.
710 * In particular, we replace constraint k, say f >= 0, by constraint
711 * f <= -1, add the inequalities of "j" that are valid for "i"
712 * and check if the result is a subset of basic map "j".
713 * To improve the chances of the subset relation being detected,
714 * any variable that only attains a single integer value
715 * in the tableau of "i" is first fixed to that value.
716 * If the result is a subset, then we know that this result is exactly equal
717 * to basic map "j" since all its constraints are valid for basic map "j".
718 * By combining the valid constraints of "i" (all equalities and all
719 * inequalities except "k") and the valid constraints of "j" we therefore
720 * obtain a basic map that is equal to their union.
721 * In this case, there is no need to perform a rollback of the tableau
722 * since it is going to be destroyed in fuse().
725 * |\__ |\__
726 * | \__ | \__
727 * | \_ => | \__
728 * |_______| _ |_________\
731 * |\ |\
732 * | \ | \
733 * | \ | \
734 * | | | \
735 * | ||\ => | \
736 * | || \ | \
737 * | || | | |
738 * |__||_/ |_____/
740 static enum isl_change is_adj_ineq_extension(int i, int j,
741 struct isl_coalesce_info *info)
743 int k;
744 struct isl_tab_undo *snap;
745 unsigned n_eq = info[i].bmap->n_eq;
746 isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
747 isl_stat r;
748 isl_bool super;
750 if (total < 0)
751 return isl_change_error;
752 if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
753 return isl_change_error;
755 k = find_ineq(&info[i], STATUS_ADJ_INEQ);
756 if (k < 0)
757 isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
758 "info[i].ineq should have exactly one STATUS_ADJ_INEQ",
759 return isl_change_error);
761 snap = isl_tab_snap(info[i].tab);
763 if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
764 return isl_change_error;
766 isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
767 isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
768 r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
769 isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
770 isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
771 if (r < 0)
772 return isl_change_error;
774 for (k = 0; k < info[j].bmap->n_ineq; ++k) {
775 if (info[j].ineq[k] != STATUS_VALID)
776 continue;
777 if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
778 return isl_change_error;
780 if (isl_tab_detect_constants(info[i].tab) < 0)
781 return isl_change_error;
783 super = contains(&info[j], info[i].tab);
784 if (super < 0)
785 return isl_change_error;
786 if (super)
787 return fuse(i, j, info, NULL, 0, 0);
789 if (isl_tab_rollback(info[i].tab, snap) < 0)
790 return isl_change_error;
792 return isl_change_none;
796 /* Both basic maps have at least one inequality with and adjacent
797 * (but opposite) inequality in the other basic map.
798 * Check that there are no cut constraints and that there is only
799 * a single pair of adjacent inequalities.
800 * If so, we can replace the pair by a single basic map described
801 * by all but the pair of adjacent inequalities.
802 * Any additional points introduced lie strictly between the two
803 * adjacent hyperplanes and can therefore be integral.
805 * ____ _____
806 * / ||\ / \
807 * / || \ / \
808 * \ || \ => \ \
809 * \ || / \ /
810 * \___||_/ \_____/
812 * The test for a single pair of adjancent inequalities is important
813 * for avoiding the combination of two basic maps like the following
815 * /|
816 * / |
817 * /__|
818 * _____
819 * | |
820 * | |
821 * |___|
823 * If there are some cut constraints on one side, then we may
824 * still be able to fuse the two basic maps, but we need to perform
825 * some additional checks in is_adj_ineq_extension.
827 static enum isl_change check_adj_ineq(int i, int j,
828 struct isl_coalesce_info *info)
830 int count_i, count_j;
831 int cut_i, cut_j;
833 count_i = count_ineq(&info[i], STATUS_ADJ_INEQ);
834 count_j = count_ineq(&info[j], STATUS_ADJ_INEQ);
836 if (count_i != 1 && count_j != 1)
837 return isl_change_none;
839 cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], STATUS_CUT);
840 cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], STATUS_CUT);
842 if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
843 return fuse(i, j, info, NULL, 0, 0);
845 if (count_i == 1 && !cut_i)
846 return is_adj_ineq_extension(i, j, info);
848 if (count_j == 1 && !cut_j)
849 return is_adj_ineq_extension(j, i, info);
851 return isl_change_none;
854 /* Given an affine transformation matrix "T", does row "row" represent
855 * anything other than a unit vector (possibly shifted by a constant)
856 * that is not involved in any of the other rows?
858 * That is, if a constraint involves the variable corresponding to
859 * the row, then could its preimage by "T" have any coefficients
860 * that are different from those in the original constraint?
862 static int not_unique_unit_row(__isl_keep isl_mat *T, int row)
864 int i, j;
865 int len = T->n_col - 1;
867 i = isl_seq_first_non_zero(T->row[row] + 1, len);
868 if (i < 0)
869 return 1;
870 if (!isl_int_is_one(T->row[row][1 + i]) &&
871 !isl_int_is_negone(T->row[row][1 + i]))
872 return 1;
874 j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1));
875 if (j >= 0)
876 return 1;
878 for (j = 1; j < T->n_row; ++j) {
879 if (j == row)
880 continue;
881 if (!isl_int_is_zero(T->row[j][1 + i]))
882 return 1;
885 return 0;
888 /* Does inequality constraint "ineq" of "bmap" involve any of
889 * the variables marked in "affected"?
890 * "total" is the total number of variables, i.e., the number
891 * of entries in "affected".
893 static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq,
894 int *affected, int total)
896 int i;
898 for (i = 0; i < total; ++i) {
899 if (!affected[i])
900 continue;
901 if (!isl_int_is_zero(bmap->ineq[ineq][1 + i]))
902 return isl_bool_true;
905 return isl_bool_false;
908 /* Given the compressed version of inequality constraint "ineq"
909 * of info->bmap in "v", check if the constraint can be tightened,
910 * where the compression is based on an equality constraint valid
911 * for info->tab.
912 * If so, add the tightened version of the inequality constraint
913 * to info->tab. "v" may be modified by this function.
915 * That is, if the compressed constraint is of the form
917 * m f() + c >= 0
919 * with 0 < c < m, then it is equivalent to
921 * f() >= 0
923 * This means that c can also be subtracted from the original,
924 * uncompressed constraint without affecting the integer points
925 * in info->tab. Add this tightened constraint as an extra row
926 * to info->tab to make this information explicitly available.
928 static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info,
929 int ineq, __isl_take isl_vec *v)
931 isl_ctx *ctx;
932 isl_stat r;
934 if (!v)
935 return NULL;
937 ctx = isl_vec_get_ctx(v);
938 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
939 if (isl_int_is_zero(ctx->normalize_gcd) ||
940 isl_int_is_one(ctx->normalize_gcd)) {
941 return v;
944 v = isl_vec_cow(v);
945 if (!v)
946 return NULL;
948 isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd);
949 if (isl_int_is_zero(v->el[0]))
950 return v;
952 if (isl_tab_extend_cons(info->tab, 1) < 0)
953 return isl_vec_free(v);
955 isl_int_sub(info->bmap->ineq[ineq][0],
956 info->bmap->ineq[ineq][0], v->el[0]);
957 r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]);
958 isl_int_add(info->bmap->ineq[ineq][0],
959 info->bmap->ineq[ineq][0], v->el[0]);
961 if (r < 0)
962 return isl_vec_free(v);
964 return v;
967 /* Tighten the (non-redundant) constraints on the facet represented
968 * by info->tab.
969 * In particular, on input, info->tab represents the result
970 * of relaxing the "n" inequality constraints of info->bmap in "relaxed"
971 * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
972 * replacing the one at index "l" by the corresponding equality,
973 * i.e., f_k + 1 = 0, with k = relaxed[l].
975 * Compute a variable compression from the equality constraint f_k + 1 = 0
976 * and use it to tighten the other constraints of info->bmap
977 * (that is, all constraints that have not been relaxed),
978 * updating info->tab (and leaving info->bmap untouched).
979 * The compression handles essentially two cases, one where a variable
980 * is assigned a fixed value and can therefore be eliminated, and one
981 * where one variable is a shifted multiple of some other variable and
982 * can therefore be replaced by that multiple.
983 * Gaussian elimination would also work for the first case, but for
984 * the second case, the effectiveness would depend on the order
985 * of the variables.
986 * After compression, some of the constraints may have coefficients
987 * with a common divisor. If this divisor does not divide the constant
988 * term, then the constraint can be tightened.
989 * The tightening is performed on the tableau info->tab by introducing
990 * extra (temporary) constraints.
992 * Only constraints that are possibly affected by the compression are
993 * considered. In particular, if the constraint only involves variables
994 * that are directly mapped to a distinct set of other variables, then
995 * no common divisor can be introduced and no tightening can occur.
997 * It is important to only consider the non-redundant constraints
998 * since the facet constraint has been relaxed prior to the call
999 * to this function, meaning that the constraints that were redundant
1000 * prior to the relaxation may no longer be redundant.
1001 * These constraints will be ignored in the fused result, so
1002 * the fusion detection should not exploit them.
1004 static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info,
1005 int n, int *relaxed, int l)
1007 isl_size total;
1008 isl_ctx *ctx;
1009 isl_vec *v = NULL;
1010 isl_mat *T;
1011 int i;
1012 int k;
1013 int *affected;
1015 k = relaxed[l];
1016 ctx = isl_basic_map_get_ctx(info->bmap);
1017 total = isl_basic_map_dim(info->bmap, isl_dim_all);
1018 if (total < 0)
1019 return isl_stat_error;
1020 isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
1021 T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total);
1022 T = isl_mat_variable_compression(T, NULL);
1023 isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
1024 if (!T)
1025 return isl_stat_error;
1026 if (T->n_col == 0) {
1027 isl_mat_free(T);
1028 return isl_stat_ok;
1031 affected = isl_alloc_array(ctx, int, total);
1032 if (!affected)
1033 goto error;
1035 for (i = 0; i < total; ++i)
1036 affected[i] = not_unique_unit_row(T, 1 + i);
1038 for (i = 0; i < info->bmap->n_ineq; ++i) {
1039 isl_bool handle;
1040 if (any(relaxed, n, i))
1041 continue;
1042 if (info->ineq[i] == STATUS_REDUNDANT)
1043 continue;
1044 handle = is_affected(info->bmap, i, affected, total);
1045 if (handle < 0)
1046 goto error;
1047 if (!handle)
1048 continue;
1049 v = isl_vec_alloc(ctx, 1 + total);
1050 if (!v)
1051 goto error;
1052 isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total);
1053 v = isl_vec_mat_product(v, isl_mat_copy(T));
1054 v = try_tightening(info, i, v);
1055 isl_vec_free(v);
1056 if (!v)
1057 goto error;
1060 isl_mat_free(T);
1061 free(affected);
1062 return isl_stat_ok;
1063 error:
1064 isl_mat_free(T);
1065 free(affected);
1066 return isl_stat_error;
1069 /* Replace the basic maps "i" and "j" by an extension of "i"
1070 * along the "n" inequality constraints in "relax" by one.
1071 * The tableau info[i].tab has already been extended.
1072 * Extend info[i].bmap accordingly by relaxing all constraints in "relax"
1073 * by one.
1074 * Each integer division that does not have exactly the same
1075 * definition in "i" and "j" is marked unknown and the basic map
1076 * is scheduled to be simplified in an attempt to recover
1077 * the integer division definition.
1078 * Place the extension in the position that is the smallest of i and j.
1080 static enum isl_change extend(int i, int j, int n, int *relax,
1081 struct isl_coalesce_info *info)
1083 int l;
1084 isl_size total;
1086 info[i].bmap = isl_basic_map_cow(info[i].bmap);
1087 total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1088 if (total < 0)
1089 return isl_change_error;
1090 for (l = 0; l < info[i].bmap->n_div; ++l)
1091 if (!isl_seq_eq(info[i].bmap->div[l],
1092 info[j].bmap->div[l], 1 + 1 + total)) {
1093 isl_int_set_si(info[i].bmap->div[l][0], 0);
1094 info[i].simplify = 1;
1096 for (l = 0; l < n; ++l)
1097 isl_int_add_ui(info[i].bmap->ineq[relax[l]][0],
1098 info[i].bmap->ineq[relax[l]][0], 1);
1099 ISL_F_CLR(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
1100 ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
1101 drop(&info[j]);
1102 info[i].modified = 1;
1103 if (j < i)
1104 exchange(&info[i], &info[j]);
1105 return isl_change_fuse;
1108 /* Basic map "i" has "n" inequality constraints (collected in "relax")
1109 * that are such that they include basic map "j" if they are relaxed
1110 * by one. All the other inequalities are valid for "j".
1111 * Check if basic map "j" forms an extension of basic map "i".
1113 * In particular, relax the constraints in "relax", compute the corresponding
1114 * facets one by one and check whether each of these is included
1115 * in the other basic map.
1116 * Before testing for inclusion, the constraints on each facet
1117 * are tightened to increase the chance of an inclusion being detected.
1118 * (Adding the valid constraints of "j" to the tableau of "i", as is done
1119 * in is_adj_ineq_extension, may further increase those chances, but this
1120 * is not currently done.)
1121 * If each facet is included, we know that relaxing the constraints extends
1122 * the basic map with exactly the other basic map (we already know that this
1123 * other basic map is included in the extension, because all other
1124 * inequality constraints are valid of "j") and we can replace the
1125 * two basic maps by this extension.
1127 * If any of the relaxed constraints turn out to be redundant, then bail out.
1128 * isl_tab_select_facet refuses to handle such constraints. It may be
1129 * possible to handle them anyway by making a distinction between
1130 * redundant constraints with a corresponding facet that still intersects
1131 * the set (allowing isl_tab_select_facet to handle them) and
1132 * those where the facet does not intersect the set (which can be ignored
1133 * because the empty facet is trivially included in the other disjunct).
1134 * However, relaxed constraints that turn out to be redundant should
1135 * be fairly rare and no such instance has been reported where
1136 * coalescing would be successful.
1137 * ____ _____
1138 * / || / |
1139 * / || / |
1140 * \ || => \ |
1141 * \ || \ |
1142 * \___|| \____|
1145 * \ |\
1146 * |\\ | \
1147 * | \\ | \
1148 * | | => | /
1149 * | / | /
1150 * |/ |/
1152 static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax,
1153 struct isl_coalesce_info *info)
1155 int l;
1156 isl_bool super;
1157 struct isl_tab_undo *snap, *snap2;
1158 unsigned n_eq = info[i].bmap->n_eq;
1160 for (l = 0; l < n; ++l)
1161 if (isl_tab_is_equality(info[i].tab, n_eq + relax[l]))
1162 return isl_change_none;
1164 snap = isl_tab_snap(info[i].tab);
1165 for (l = 0; l < n; ++l)
1166 if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0)
1167 return isl_change_error;
1168 for (l = 0; l < n; ++l) {
1169 if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l]))
1170 continue;
1171 if (isl_tab_rollback(info[i].tab, snap) < 0)
1172 return isl_change_error;
1173 return isl_change_none;
1175 snap2 = isl_tab_snap(info[i].tab);
1176 for (l = 0; l < n; ++l) {
1177 if (isl_tab_rollback(info[i].tab, snap2) < 0)
1178 return isl_change_error;
1179 if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0)
1180 return isl_change_error;
1181 if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0)
1182 return isl_change_error;
1183 super = contains(&info[j], info[i].tab);
1184 if (super < 0)
1185 return isl_change_error;
1186 if (super)
1187 continue;
1188 if (isl_tab_rollback(info[i].tab, snap) < 0)
1189 return isl_change_error;
1190 return isl_change_none;
1193 if (isl_tab_rollback(info[i].tab, snap2) < 0)
1194 return isl_change_error;
1195 return extend(i, j, n, relax, info);
1198 /* Data structure that keeps track of the wrapping constraints
1199 * and of information to bound the coefficients of those constraints.
1201 * bound is set if we want to apply a bound on the coefficients
1202 * mat contains the wrapping constraints
1203 * max is the bound on the coefficients (if bound is set)
1205 struct isl_wraps {
1206 int bound;
1207 isl_mat *mat;
1208 isl_int max;
1211 /* Update wraps->max to be greater than or equal to the coefficients
1212 * in the equalities and inequalities of info->bmap that can be removed
1213 * if we end up applying wrapping.
1215 static isl_stat wraps_update_max(struct isl_wraps *wraps,
1216 struct isl_coalesce_info *info)
1218 int k;
1219 isl_int max_k;
1220 isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);
1222 if (total < 0)
1223 return isl_stat_error;
1224 isl_int_init(max_k);
1226 for (k = 0; k < info->bmap->n_eq; ++k) {
1227 if (info->eq[2 * k] == STATUS_VALID &&
1228 info->eq[2 * k + 1] == STATUS_VALID)
1229 continue;
1230 isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
1231 if (isl_int_abs_gt(max_k, wraps->max))
1232 isl_int_set(wraps->max, max_k);
1235 for (k = 0; k < info->bmap->n_ineq; ++k) {
1236 if (info->ineq[k] == STATUS_VALID ||
1237 info->ineq[k] == STATUS_REDUNDANT)
1238 continue;
1239 isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
1240 if (isl_int_abs_gt(max_k, wraps->max))
1241 isl_int_set(wraps->max, max_k);
1244 isl_int_clear(max_k);
1246 return isl_stat_ok;
1249 /* Initialize the isl_wraps data structure.
1250 * If we want to bound the coefficients of the wrapping constraints,
1251 * we set wraps->max to the largest coefficient
1252 * in the equalities and inequalities that can be removed if we end up
1253 * applying wrapping.
1255 static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
1256 struct isl_coalesce_info *info, int i, int j)
1258 isl_ctx *ctx;
1260 wraps->bound = 0;
1261 wraps->mat = mat;
1262 if (!mat)
1263 return isl_stat_error;
1264 ctx = isl_mat_get_ctx(mat);
1265 wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
1266 if (!wraps->bound)
1267 return isl_stat_ok;
1268 isl_int_init(wraps->max);
1269 isl_int_set_si(wraps->max, 0);
1270 if (wraps_update_max(wraps, &info[i]) < 0)
1271 return isl_stat_error;
1272 if (wraps_update_max(wraps, &info[j]) < 0)
1273 return isl_stat_error;
1275 return isl_stat_ok;
1278 /* Free the contents of the isl_wraps data structure.
1280 static void wraps_free(struct isl_wraps *wraps)
1282 isl_mat_free(wraps->mat);
1283 if (wraps->bound)
1284 isl_int_clear(wraps->max);
1287 /* Is the wrapping constraint in row "row" allowed?
1289 * If wraps->bound is set, we check that none of the coefficients
1290 * is greater than wraps->max.
1292 static int allow_wrap(struct isl_wraps *wraps, int row)
1294 int i;
1296 if (!wraps->bound)
1297 return 1;
1299 for (i = 1; i < wraps->mat->n_col; ++i)
1300 if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
1301 return 0;
1303 return 1;
1306 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
1307 * to include "set" and add the result in position "w" of "wraps".
1308 * "len" is the total number of coefficients in "bound" and "ineq".
1309 * Return 1 on success, 0 on failure and -1 on error.
1310 * Wrapping can fail if the result of wrapping is equal to "bound"
1311 * or if we want to bound the sizes of the coefficients and
1312 * the wrapped constraint does not satisfy this bound.
1314 static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
1315 isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
1317 isl_seq_cpy(wraps->mat->row[w], bound, len);
1318 if (negate) {
1319 isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
1320 ineq = wraps->mat->row[w + 1];
1322 if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
1323 return -1;
1324 if (isl_seq_eq(wraps->mat->row[w], bound, len))
1325 return 0;
1326 if (!allow_wrap(wraps, w))
1327 return 0;
1328 return 1;
1331 /* For each constraint in info->bmap that is not redundant (as determined
1332 * by info->tab) and that is not a valid constraint for the other basic map,
1333 * wrap the constraint around "bound" such that it includes the whole
1334 * set "set" and append the resulting constraint to "wraps".
1335 * Note that the constraints that are valid for the other basic map
1336 * will be added to the combined basic map by default, so there is
1337 * no need to wrap them.
1338 * The caller wrap_in_facets even relies on this function not wrapping
1339 * any constraints that are already valid.
1340 * "wraps" is assumed to have been pre-allocated to the appropriate size.
1341 * wraps->n_row is the number of actual wrapped constraints that have
1342 * been added.
1343 * If any of the wrapping problems results in a constraint that is
1344 * identical to "bound", then this means that "set" is unbounded in such
1345 * way that no wrapping is possible. If this happens then wraps->n_row
1346 * is reset to zero.
1347 * Similarly, if we want to bound the coefficients of the wrapping
1348 * constraints and a newly added wrapping constraint does not
1349 * satisfy the bound, then wraps->n_row is also reset to zero.
1351 static isl_stat add_wraps(struct isl_wraps *wraps,
1352 struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set)
1354 int l, m;
1355 int w;
1356 int added;
1357 isl_basic_map *bmap = info->bmap;
1358 isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
1359 unsigned len = 1 + total;
1361 if (total < 0)
1362 return isl_stat_error;
1364 w = wraps->mat->n_row;
1366 for (l = 0; l < bmap->n_ineq; ++l) {
1367 if (info->ineq[l] == STATUS_VALID ||
1368 info->ineq[l] == STATUS_REDUNDANT)
1369 continue;
1370 if (isl_seq_is_neg(bound, bmap->ineq[l], len))
1371 continue;
1372 if (isl_seq_eq(bound, bmap->ineq[l], len))
1373 continue;
1374 if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
1375 continue;
1377 added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
1378 if (added < 0)
1379 return isl_stat_error;
1380 if (!added)
1381 goto unbounded;
1382 ++w;
1384 for (l = 0; l < bmap->n_eq; ++l) {
1385 if (isl_seq_is_neg(bound, bmap->eq[l], len))
1386 continue;
1387 if (isl_seq_eq(bound, bmap->eq[l], len))
1388 continue;
1390 for (m = 0; m < 2; ++m) {
1391 if (info->eq[2 * l + m] == STATUS_VALID)
1392 continue;
1393 added = add_wrap(wraps, w, bound, bmap->eq[l], len,
1394 set, !m);
1395 if (added < 0)
1396 return isl_stat_error;
1397 if (!added)
1398 goto unbounded;
1399 ++w;
1403 wraps->mat->n_row = w;
1404 return isl_stat_ok;
1405 unbounded:
1406 wraps->mat->n_row = 0;
1407 return isl_stat_ok;
1410 /* Check if the constraints in "wraps" from "first" until the last
1411 * are all valid for the basic set represented by "tab".
1412 * If not, wraps->n_row is set to zero.
1414 static int check_wraps(__isl_keep isl_mat *wraps, int first,
1415 struct isl_tab *tab)
1417 int i;
1419 for (i = first; i < wraps->n_row; ++i) {
1420 enum isl_ineq_type type;
1421 type = isl_tab_ineq_type(tab, wraps->row[i]);
1422 if (type == isl_ineq_error)
1423 return -1;
1424 if (type == isl_ineq_redundant)
1425 continue;
1426 wraps->n_row = 0;
1427 return 0;
1430 return 0;
1433 /* Return a set that corresponds to the non-redundant constraints
1434 * (as recorded in tab) of bmap.
1436 * It's important to remove the redundant constraints as some
1437 * of the other constraints may have been modified after the
1438 * constraints were marked redundant.
1439 * In particular, a constraint may have been relaxed.
1440 * Redundant constraints are ignored when a constraint is relaxed
1441 * and should therefore continue to be ignored ever after.
1442 * Otherwise, the relaxation might be thwarted by some of
1443 * these constraints.
1445 * Update the underlying set to ensure that the dimension doesn't change.
1446 * Otherwise the integer divisions could get dropped if the tab
1447 * turns out to be empty.
1449 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
1450 struct isl_tab *tab)
1452 isl_basic_set *bset;
1454 bmap = isl_basic_map_copy(bmap);
1455 bset = isl_basic_map_underlying_set(bmap);
1456 bset = isl_basic_set_cow(bset);
1457 bset = isl_basic_set_update_from_tab(bset, tab);
1458 return isl_set_from_basic_set(bset);
1461 /* Wrap the constraints of info->bmap that bound the facet defined
1462 * by inequality "k" around (the opposite of) this inequality to
1463 * include "set". "bound" may be used to store the negated inequality.
1464 * Since the wrapped constraints are not guaranteed to contain the whole
1465 * of info->bmap, we check them in check_wraps.
1466 * If any of the wrapped constraints turn out to be invalid, then
1467 * check_wraps will reset wrap->n_row to zero.
1469 static isl_stat add_wraps_around_facet(struct isl_wraps *wraps,
1470 struct isl_coalesce_info *info, int k, isl_int *bound,
1471 __isl_keep isl_set *set)
1473 struct isl_tab_undo *snap;
1474 int n;
1475 isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);
1477 if (total < 0)
1478 return isl_stat_error;
1480 snap = isl_tab_snap(info->tab);
1482 if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
1483 return isl_stat_error;
1484 if (isl_tab_detect_redundant(info->tab) < 0)
1485 return isl_stat_error;
1487 isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
1489 n = wraps->mat->n_row;
1490 if (add_wraps(wraps, info, bound, set) < 0)
1491 return isl_stat_error;
1493 if (isl_tab_rollback(info->tab, snap) < 0)
1494 return isl_stat_error;
1495 if (check_wraps(wraps->mat, n, info->tab) < 0)
1496 return isl_stat_error;
1498 return isl_stat_ok;
1501 /* Given a basic set i with a constraint k that is adjacent to
1502 * basic set j, check if we can wrap
1503 * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
1504 * (always) around their ridges to include the other set.
1505 * If so, replace the pair of basic sets by their union.
1507 * All constraints of i (except k) are assumed to be valid or
1508 * cut constraints for j.
1509 * Wrapping the cut constraints to include basic map j may result
1510 * in constraints that are no longer valid of basic map i
1511 * we have to check that the resulting wrapping constraints are valid for i.
1512 * If "wrap_facet" is not set, then all constraints of i (except k)
1513 * are assumed to be valid for j.
1514 * ____ _____
1515 * / | / \
1516 * / || / |
1517 * \ || => \ |
1518 * \ || \ |
1519 * \___|| \____|
1522 static enum isl_change can_wrap_in_facet(int i, int j, int k,
1523 struct isl_coalesce_info *info, int wrap_facet)
1525 enum isl_change change = isl_change_none;
1526 struct isl_wraps wraps;
1527 isl_ctx *ctx;
1528 isl_mat *mat;
1529 struct isl_set *set_i = NULL;
1530 struct isl_set *set_j = NULL;
1531 struct isl_vec *bound = NULL;
1532 isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1534 if (total < 0)
1535 return isl_change_error;
1536 set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
1537 set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
1538 ctx = isl_basic_map_get_ctx(info[i].bmap);
1539 mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
1540 info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1541 1 + total);
1542 if (wraps_init(&wraps, mat, info, i, j) < 0)
1543 goto error;
1544 bound = isl_vec_alloc(ctx, 1 + total);
1545 if (!set_i || !set_j || !bound)
1546 goto error;
1548 isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
1549 isl_int_add_ui(bound->el[0], bound->el[0], 1);
1550 isl_seq_normalize(ctx, bound->el, 1 + total);
1552 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
1553 wraps.mat->n_row = 1;
1555 if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
1556 goto error;
1557 if (!wraps.mat->n_row)
1558 goto unbounded;
1560 if (wrap_facet) {
1561 if (add_wraps_around_facet(&wraps, &info[i], k,
1562 bound->el, set_j) < 0)
1563 goto error;
1564 if (!wraps.mat->n_row)
1565 goto unbounded;
1568 change = fuse(i, j, info, wraps.mat, 0, 0);
1570 unbounded:
1571 wraps_free(&wraps);
1573 isl_set_free(set_i);
1574 isl_set_free(set_j);
1576 isl_vec_free(bound);
1578 return change;
1579 error:
1580 wraps_free(&wraps);
1581 isl_vec_free(bound);
1582 isl_set_free(set_i);
1583 isl_set_free(set_j);
1584 return isl_change_error;
1587 /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
1588 * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
1589 * add wrapping constraints to wrap.mat for all constraints
1590 * of basic map j that bound the part of basic map j that sticks out
1591 * of the cut constraint.
1592 * "set_i" is the underlying set of basic map i.
1593 * If any wrapping fails, then wraps->mat.n_row is reset to zero.
1595 * In particular, we first intersect basic map j with t(x) + 1 = 0.
1596 * If the result is empty, then t(x) >= 0 was actually a valid constraint
1597 * (with respect to the integer points), so we add t(x) >= 0 instead.
1598 * Otherwise, we wrap the constraints of basic map j that are not
1599 * redundant in this intersection and that are not already valid
1600 * for basic map i over basic map i.
1601 * Note that it is sufficient to wrap the constraints to include
1602 * basic map i, because we will only wrap the constraints that do
1603 * not include basic map i already. The wrapped constraint will
1604 * therefore be more relaxed compared to the original constraint.
1605 * Since the original constraint is valid for basic map j, so is
1606 * the wrapped constraint.
1608 static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w,
1609 struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i,
1610 struct isl_tab_undo *snap)
1612 isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
1613 if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0)
1614 return isl_stat_error;
1615 if (isl_tab_detect_redundant(info_j->tab) < 0)
1616 return isl_stat_error;
1618 if (info_j->tab->empty)
1619 isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
1620 else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0)
1621 return isl_stat_error;
1623 if (isl_tab_rollback(info_j->tab, snap) < 0)
1624 return isl_stat_error;
1626 return isl_stat_ok;
1629 /* Given a pair of basic maps i and j such that j sticks out
1630 * of i at n cut constraints, each time by at most one,
1631 * try to compute wrapping constraints and replace the two
1632 * basic maps by a single basic map.
1633 * The other constraints of i are assumed to be valid for j.
1634 * "set_i" is the underlying set of basic map i.
1635 * "wraps" has been initialized to be of the right size.
1637 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1638 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1639 * of basic map j that bound the part of basic map j that sticks out
1640 * of the cut constraint.
1642 * If any wrapping fails, i.e., if we cannot wrap to touch
1643 * the union, then we give up.
1644 * Otherwise, the pair of basic maps is replaced by their union.
1646 static enum isl_change try_wrap_in_facets(int i, int j,
1647 struct isl_coalesce_info *info, struct isl_wraps *wraps,
1648 __isl_keep isl_set *set_i)
1650 int k, l, w;
1651 isl_size total;
1652 struct isl_tab_undo *snap;
1654 total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1655 if (total < 0)
1656 return isl_change_error;
1658 snap = isl_tab_snap(info[j].tab);
1660 wraps->mat->n_row = 0;
1662 for (k = 0; k < info[i].bmap->n_eq; ++k) {
1663 for (l = 0; l < 2; ++l) {
1664 if (info[i].eq[2 * k + l] != STATUS_CUT)
1665 continue;
1666 w = wraps->mat->n_row++;
1667 if (l == 0)
1668 isl_seq_neg(wraps->mat->row[w],
1669 info[i].bmap->eq[k], 1 + total);
1670 else
1671 isl_seq_cpy(wraps->mat->row[w],
1672 info[i].bmap->eq[k], 1 + total);
1673 if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
1674 return isl_change_error;
1676 if (!wraps->mat->n_row)
1677 return isl_change_none;
1681 for (k = 0; k < info[i].bmap->n_ineq; ++k) {
1682 if (info[i].ineq[k] != STATUS_CUT)
1683 continue;
1684 w = wraps->mat->n_row++;
1685 isl_seq_cpy(wraps->mat->row[w],
1686 info[i].bmap->ineq[k], 1 + total);
1687 if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
1688 return isl_change_error;
1690 if (!wraps->mat->n_row)
1691 return isl_change_none;
1694 return fuse(i, j, info, wraps->mat, 0, 1);
1697 /* Given a pair of basic maps i and j such that j sticks out
1698 * of i at n cut constraints, each time by at most one,
1699 * try to compute wrapping constraints and replace the two
1700 * basic maps by a single basic map.
1701 * The other constraints of i are assumed to be valid for j.
1703 * The core computation is performed by try_wrap_in_facets.
1704 * This function simply extracts an underlying set representation
1705 * of basic map i and initializes the data structure for keeping
1706 * track of wrapping constraints.
1708 static enum isl_change wrap_in_facets(int i, int j, int n,
1709 struct isl_coalesce_info *info)
1711 enum isl_change change = isl_change_none;
1712 struct isl_wraps wraps;
1713 isl_ctx *ctx;
1714 isl_mat *mat;
1715 isl_set *set_i = NULL;
1716 isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1717 int max_wrap;
1719 if (total < 0)
1720 return isl_change_error;
1721 if (isl_tab_extend_cons(info[j].tab, 1) < 0)
1722 return isl_change_error;
1724 max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
1725 max_wrap *= n;
1727 set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
1728 ctx = isl_basic_map_get_ctx(info[i].bmap);
1729 mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
1730 if (wraps_init(&wraps, mat, info, i, j) < 0)
1731 goto error;
1732 if (!set_i)
1733 goto error;
1735 change = try_wrap_in_facets(i, j, info, &wraps, set_i);
1737 wraps_free(&wraps);
1738 isl_set_free(set_i);
1740 return change;
1741 error:
1742 wraps_free(&wraps);
1743 isl_set_free(set_i);
1744 return isl_change_error;
1747 /* Return the effect of inequality "ineq" on the tableau "tab",
1748 * after relaxing the constant term of "ineq" by one.
1750 static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq)
1752 enum isl_ineq_type type;
1754 isl_int_add_ui(ineq[0], ineq[0], 1);
1755 type = isl_tab_ineq_type(tab, ineq);
1756 isl_int_sub_ui(ineq[0], ineq[0], 1);
1758 return type;
1761 /* Given two basic sets i and j,
1762 * check if relaxing all the cut constraints of i by one turns
1763 * them into valid constraint for j and check if we can wrap in
1764 * the bits that are sticking out.
1765 * If so, replace the pair by their union.
1767 * We first check if all relaxed cut inequalities of i are valid for j
1768 * and then try to wrap in the intersections of the relaxed cut inequalities
1769 * with j.
1771 * During this wrapping, we consider the points of j that lie at a distance
1772 * of exactly 1 from i. In particular, we ignore the points that lie in
1773 * between this lower-dimensional space and the basic map i.
1774 * We can therefore only apply this to integer maps.
1775 * ____ _____
1776 * / ___|_ / \
1777 * / | | / |
1778 * \ | | => \ |
1779 * \|____| \ |
1780 * \___| \____/
1782 * _____ ______
1783 * | ____|_ | \
1784 * | | | | |
1785 * | | | => | |
1786 * |_| | | |
1787 * |_____| \______|
1789 * _______
1790 * | |
1791 * | |\ |
1792 * | | \ |
1793 * | | \ |
1794 * | | \|
1795 * | | \
1796 * | |_____\
1797 * | |
1798 * |_______|
1800 * Wrapping can fail if the result of wrapping one of the facets
1801 * around its edges does not produce any new facet constraint.
1802 * In particular, this happens when we try to wrap in unbounded sets.
1804 * _______________________________________________________________________
1806 * | ___
1807 * | | |
1808 * |_| |_________________________________________________________________
1809 * |___|
1811 * The following is not an acceptable result of coalescing the above two
1812 * sets as it includes extra integer points.
1813 * _______________________________________________________________________
1815 * |
1816 * |
1818 * \______________________________________________________________________
1820 static enum isl_change can_wrap_in_set(int i, int j,
1821 struct isl_coalesce_info *info)
1823 int k, l;
1824 int n;
1825 isl_size total;
1827 if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
1828 ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
1829 return isl_change_none;
1831 n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT);
1832 if (n == 0)
1833 return isl_change_none;
1835 total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
1836 if (total < 0)
1837 return isl_change_error;
1838 for (k = 0; k < info[i].bmap->n_eq; ++k) {
1839 for (l = 0; l < 2; ++l) {
1840 enum isl_ineq_type type;
1842 if (info[i].eq[2 * k + l] != STATUS_CUT)
1843 continue;
1845 if (l == 0)
1846 isl_seq_neg(info[i].bmap->eq[k],
1847 info[i].bmap->eq[k], 1 + total);
1848 type = type_of_relaxed(info[j].tab,
1849 info[i].bmap->eq[k]);
1850 if (l == 0)
1851 isl_seq_neg(info[i].bmap->eq[k],
1852 info[i].bmap->eq[k], 1 + total);
1853 if (type == isl_ineq_error)
1854 return isl_change_error;
1855 if (type != isl_ineq_redundant)
1856 return isl_change_none;
1860 for (k = 0; k < info[i].bmap->n_ineq; ++k) {
1861 enum isl_ineq_type type;
1863 if (info[i].ineq[k] != STATUS_CUT)
1864 continue;
1866 type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]);
1867 if (type == isl_ineq_error)
1868 return isl_change_error;
1869 if (type != isl_ineq_redundant)
1870 return isl_change_none;
1873 return wrap_in_facets(i, j, n, info);
1876 /* Check if either i or j has only cut constraints that can
1877 * be used to wrap in (a facet of) the other basic set.
1878 * if so, replace the pair by their union.
1880 static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
1882 enum isl_change change = isl_change_none;
1884 change = can_wrap_in_set(i, j, info);
1885 if (change != isl_change_none)
1886 return change;
1888 change = can_wrap_in_set(j, i, info);
1889 return change;
1892 /* Check if all inequality constraints of "i" that cut "j" cease
1893 * to be cut constraints if they are relaxed by one.
1894 * If so, collect the cut constraints in "list".
1895 * The caller is responsible for allocating "list".
1897 static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info,
1898 int *list)
1900 int l, n;
1902 n = 0;
1903 for (l = 0; l < info[i].bmap->n_ineq; ++l) {
1904 enum isl_ineq_type type;
1906 if (info[i].ineq[l] != STATUS_CUT)
1907 continue;
1908 type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]);
1909 if (type == isl_ineq_error)
1910 return isl_bool_error;
1911 if (type != isl_ineq_redundant)
1912 return isl_bool_false;
1913 list[n++] = l;
1916 return isl_bool_true;
1919 /* Given two basic maps such that "j" has at least one equality constraint
1920 * that is adjacent to an inequality constraint of "i" and such that "i" has
1921 * exactly one inequality constraint that is adjacent to an equality
1922 * constraint of "j", check whether "i" can be extended to include "j" or
1923 * whether "j" can be wrapped into "i".
1924 * All remaining constraints of "i" and "j" are assumed to be valid
1925 * or cut constraints of the other basic map.
1926 * However, none of the equality constraints of "i" are cut constraints.
1928 * If "i" has any "cut" inequality constraints, then check if relaxing
1929 * each of them by one is sufficient for them to become valid.
1930 * If so, check if the inequality constraint adjacent to an equality
1931 * constraint of "j" along with all these cut constraints
1932 * can be relaxed by one to contain exactly "j".
1933 * Otherwise, or if this fails, check if "j" can be wrapped into "i".
1935 static enum isl_change check_single_adj_eq(int i, int j,
1936 struct isl_coalesce_info *info)
1938 enum isl_change change = isl_change_none;
1939 int k;
1940 int n_cut;
1941 int *relax;
1942 isl_ctx *ctx;
1943 isl_bool try_relax;
1945 n_cut = count_ineq(&info[i], STATUS_CUT);
1947 k = find_ineq(&info[i], STATUS_ADJ_EQ);
1949 if (n_cut > 0) {
1950 ctx = isl_basic_map_get_ctx(info[i].bmap);
1951 relax = isl_calloc_array(ctx, int, 1 + n_cut);
1952 if (!relax)
1953 return isl_change_error;
1954 relax[0] = k;
1955 try_relax = all_cut_by_one(i, j, info, relax + 1);
1956 if (try_relax < 0)
1957 change = isl_change_error;
1958 } else {
1959 try_relax = isl_bool_true;
1960 relax = &k;
1962 if (try_relax && change == isl_change_none)
1963 change = is_relaxed_extension(i, j, 1 + n_cut, relax, info);
1964 if (n_cut > 0)
1965 free(relax);
1966 if (change != isl_change_none)
1967 return change;
1969 change = can_wrap_in_facet(i, j, k, info, n_cut > 0);
1971 return change;
1974 /* At least one of the basic maps has an equality that is adjacent
1975 * to an inequality. Make sure that only one of the basic maps has
1976 * such an equality and that the other basic map has exactly one
1977 * inequality adjacent to an equality.
1978 * If the other basic map does not have such an inequality, then
1979 * check if all its constraints are either valid or cut constraints
1980 * and, if so, try wrapping in the first map into the second.
1981 * Otherwise, try to extend one basic map with the other or
1982 * wrap one basic map in the other.
1984 static enum isl_change check_adj_eq(int i, int j,
1985 struct isl_coalesce_info *info)
1987 if (any_eq(&info[i], STATUS_ADJ_INEQ) &&
1988 any_eq(&info[j], STATUS_ADJ_INEQ))
1989 /* ADJ EQ TOO MANY */
1990 return isl_change_none;
1992 if (any_eq(&info[i], STATUS_ADJ_INEQ))
1993 return check_adj_eq(j, i, info);
1995 /* j has an equality adjacent to an inequality in i */
1997 if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) {
1998 if (all_valid_or_cut(&info[i]))
1999 return can_wrap_in_set(i, j, info);
2000 return isl_change_none;
2002 if (any_eq(&info[i], STATUS_CUT))
2003 return isl_change_none;
2004 if (any_ineq(&info[j], STATUS_ADJ_EQ) ||
2005 any_ineq(&info[i], STATUS_ADJ_INEQ) ||
2006 any_ineq(&info[j], STATUS_ADJ_INEQ))
2007 /* ADJ EQ TOO MANY */
2008 return isl_change_none;
2010 return check_single_adj_eq(i, j, info);
2013 /* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
2014 * In particular, disjunct "i" has an inequality constraint that is adjacent
2015 * to a (combination of) equality constraint(s) of disjunct "j",
2016 * but disjunct "j" has no explicit equality constraint adjacent
2017 * to an inequality constraint of disjunct "i".
2019 * Disjunct "i" is already known not to have any equality constraints
2020 * that are adjacent to an equality or inequality constraint.
2021 * Check that, other than the inequality constraint mentioned above,
2022 * all other constraints of disjunct "i" are valid for disjunct "j".
2023 * If so, try and wrap in disjunct "j".
2025 static enum isl_change check_ineq_adj_eq(int i, int j,
2026 struct isl_coalesce_info *info)
2028 int k;
2030 if (any_eq(&info[i], STATUS_CUT))
2031 return isl_change_none;
2032 if (any_ineq(&info[i], STATUS_CUT))
2033 return isl_change_none;
2034 if (any_ineq(&info[i], STATUS_ADJ_INEQ))
2035 return isl_change_none;
2036 if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1)
2037 return isl_change_none;
2039 k = find_ineq(&info[i], STATUS_ADJ_EQ);
2041 return can_wrap_in_facet(i, j, k, info, 0);
2044 /* The two basic maps lie on adjacent hyperplanes. In particular,
2045 * basic map "i" has an equality that lies parallel to basic map "j".
2046 * Check if we can wrap the facets around the parallel hyperplanes
2047 * to include the other set.
2049 * We perform basically the same operations as can_wrap_in_facet,
2050 * except that we don't need to select a facet of one of the sets.
2052 * \\ \\
2053 * \\ => \\
2054 * \ \|
2056 * If there is more than one equality of "i" adjacent to an equality of "j",
2057 * then the result will satisfy one or more equalities that are a linear
2058 * combination of these equalities. These will be encoded as pairs
2059 * of inequalities in the wrapping constraints and need to be made
2060 * explicit.
2062 static enum isl_change check_eq_adj_eq(int i, int j,
2063 struct isl_coalesce_info *info)
2065 int k;
2066 enum isl_change change = isl_change_none;
2067 int detect_equalities = 0;
2068 struct isl_wraps wraps;
2069 isl_ctx *ctx;
2070 isl_mat *mat;
2071 struct isl_set *set_i = NULL;
2072 struct isl_set *set_j = NULL;
2073 struct isl_vec *bound = NULL;
2074 isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
2076 if (total < 0)
2077 return isl_change_error;
2078 if (count_eq(&info[i], STATUS_ADJ_EQ) != 1)
2079 detect_equalities = 1;
2081 k = find_eq(&info[i], STATUS_ADJ_EQ);
2083 set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
2084 set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
2085 ctx = isl_basic_map_get_ctx(info[i].bmap);
2086 mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
2087 info[i].bmap->n_ineq + info[j].bmap->n_ineq,
2088 1 + total);
2089 if (wraps_init(&wraps, mat, info, i, j) < 0)
2090 goto error;
2091 bound = isl_vec_alloc(ctx, 1 + total);
2092 if (!set_i || !set_j || !bound)
2093 goto error;
2095 if (k % 2 == 0)
2096 isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
2097 else
2098 isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
2099 isl_int_add_ui(bound->el[0], bound->el[0], 1);
2101 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
2102 wraps.mat->n_row = 1;
2104 if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
2105 goto error;
2106 if (!wraps.mat->n_row)
2107 goto unbounded;
2109 isl_int_sub_ui(bound->el[0], bound->el[0], 1);
2110 isl_seq_neg(bound->el, bound->el, 1 + total);
2112 isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
2113 wraps.mat->n_row++;
2115 if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
2116 goto error;
2117 if (!wraps.mat->n_row)
2118 goto unbounded;
2120 change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
2122 if (0) {
2123 error: change = isl_change_error;
2125 unbounded:
2127 wraps_free(&wraps);
2128 isl_set_free(set_i);
2129 isl_set_free(set_j);
2130 isl_vec_free(bound);
2132 return change;
2135 /* Initialize the "eq" and "ineq" fields of "info".
2137 static void init_status(struct isl_coalesce_info *info)
2139 info->eq = info->ineq = NULL;
2142 /* Set info->eq to the positions of the equalities of info->bmap
2143 * with respect to the basic map represented by "tab".
2144 * If info->eq has already been computed, then do not compute it again.
2146 static void set_eq_status_in(struct isl_coalesce_info *info,
2147 struct isl_tab *tab)
2149 if (info->eq)
2150 return;
2151 info->eq = eq_status_in(info->bmap, tab);
2154 /* Set info->ineq to the positions of the inequalities of info->bmap
2155 * with respect to the basic map represented by "tab".
2156 * If info->ineq has already been computed, then do not compute it again.
2158 static void set_ineq_status_in(struct isl_coalesce_info *info,
2159 struct isl_tab *tab)
2161 if (info->ineq)
2162 return;
2163 info->ineq = ineq_status_in(info->bmap, info->tab, tab);
2166 /* Free the memory allocated by the "eq" and "ineq" fields of "info".
2167 * This function assumes that init_status has been called on "info" first,
2168 * after which the "eq" and "ineq" fields may or may not have been
2169 * assigned a newly allocated array.
2171 static void clear_status(struct isl_coalesce_info *info)
2173 free(info->eq);
2174 free(info->ineq);
2177 /* Are all inequality constraints of the basic map represented by "info"
2178 * valid for the other basic map, except for a single constraint
2179 * that is adjacent to an inequality constraint of the other basic map?
2181 static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info)
2183 int i;
2184 int k = -1;
2186 for (i = 0; i < info->bmap->n_ineq; ++i) {
2187 if (info->ineq[i] == STATUS_REDUNDANT)
2188 continue;
2189 if (info->ineq[i] == STATUS_VALID)
2190 continue;
2191 if (info->ineq[i] != STATUS_ADJ_INEQ)
2192 return 0;
2193 if (k != -1)
2194 return 0;
2195 k = i;
2198 return k != -1;
2201 /* Basic map "i" has one or more equality constraints that separate it
2202 * from basic map "j". Check if it happens to be an extension
2203 * of basic map "j".
2204 * In particular, check that all constraints of "j" are valid for "i",
2205 * except for one inequality constraint that is adjacent
2206 * to an inequality constraints of "i".
2207 * If so, check for "i" being an extension of "j" by calling
2208 * is_adj_ineq_extension.
2210 * Clean up the memory allocated for keeping track of the status
2211 * of the constraints before returning.
2213 static enum isl_change separating_equality(int i, int j,
2214 struct isl_coalesce_info *info)
2216 enum isl_change change = isl_change_none;
2218 if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
2219 all_ineq_valid_or_single_adj_ineq(&info[j]))
2220 change = is_adj_ineq_extension(j, i, info);
2222 clear_status(&info[i]);
2223 clear_status(&info[j]);
2224 return change;
2227 /* Check if the union of the given pair of basic maps
2228 * can be represented by a single basic map.
2229 * If so, replace the pair by the single basic map and return
2230 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2231 * Otherwise, return isl_change_none.
2232 * The two basic maps are assumed to live in the same local space.
2233 * The "eq" and "ineq" fields of info[i] and info[j] are assumed
2234 * to have been initialized by the caller, either to NULL or
2235 * to valid information.
2237 * We first check the effect of each constraint of one basic map
2238 * on the other basic map.
2239 * The constraint may be
2240 * redundant the constraint is redundant in its own
2241 * basic map and should be ignore and removed
2242 * in the end
2243 * valid all (integer) points of the other basic map
2244 * satisfy the constraint
2245 * separate no (integer) point of the other basic map
2246 * satisfies the constraint
2247 * cut some but not all points of the other basic map
2248 * satisfy the constraint
2249 * adj_eq the given constraint is adjacent (on the outside)
2250 * to an equality of the other basic map
2251 * adj_ineq the given constraint is adjacent (on the outside)
2252 * to an inequality of the other basic map
2254 * We consider seven cases in which we can replace the pair by a single
2255 * basic map. We ignore all "redundant" constraints.
2257 * 1. all constraints of one basic map are valid
2258 * => the other basic map is a subset and can be removed
2260 * 2. all constraints of both basic maps are either "valid" or "cut"
2261 * and the facets corresponding to the "cut" constraints
2262 * of one of the basic maps lies entirely inside the other basic map
2263 * => the pair can be replaced by a basic map consisting
2264 * of the valid constraints in both basic maps
2266 * 3. there is a single pair of adjacent inequalities
2267 * (all other constraints are "valid")
2268 * => the pair can be replaced by a basic map consisting
2269 * of the valid constraints in both basic maps
2271 * 4. one basic map has a single adjacent inequality, while the other
2272 * constraints are "valid". The other basic map has some
2273 * "cut" constraints, but replacing the adjacent inequality by
2274 * its opposite and adding the valid constraints of the other
2275 * basic map results in a subset of the other basic map
2276 * => the pair can be replaced by a basic map consisting
2277 * of the valid constraints in both basic maps
2279 * 5. there is a single adjacent pair of an inequality and an equality,
2280 * the other constraints of the basic map containing the inequality are
2281 * "valid". Moreover, if the inequality the basic map is relaxed
2282 * and then turned into an equality, then resulting facet lies
2283 * entirely inside the other basic map
2284 * => the pair can be replaced by the basic map containing
2285 * the inequality, with the inequality relaxed.
2287 * 6. there is a single inequality adjacent to an equality,
2288 * the other constraints of the basic map containing the inequality are
2289 * "valid". Moreover, the facets corresponding to both
2290 * the inequality and the equality can be wrapped around their
2291 * ridges to include the other basic map
2292 * => the pair can be replaced by a basic map consisting
2293 * of the valid constraints in both basic maps together
2294 * with all wrapping constraints
2296 * 7. one of the basic maps extends beyond the other by at most one.
2297 * Moreover, the facets corresponding to the cut constraints and
2298 * the pieces of the other basic map at offset one from these cut
2299 * constraints can be wrapped around their ridges to include
2300 * the union of the two basic maps
2301 * => the pair can be replaced by a basic map consisting
2302 * of the valid constraints in both basic maps together
2303 * with all wrapping constraints
2305 * 8. the two basic maps live in adjacent hyperplanes. In principle
2306 * such sets can always be combined through wrapping, but we impose
2307 * that there is only one such pair, to avoid overeager coalescing.
2309 * Throughout the computation, we maintain a collection of tableaus
2310 * corresponding to the basic maps. When the basic maps are dropped
2311 * or combined, the tableaus are modified accordingly.
2313 static enum isl_change coalesce_local_pair_reuse(int i, int j,
2314 struct isl_coalesce_info *info)
2316 enum isl_change change = isl_change_none;
2318 set_ineq_status_in(&info[i], info[j].tab);
2319 if (info[i].bmap->n_ineq && !info[i].ineq)
2320 goto error;
2321 if (any_ineq(&info[i], STATUS_ERROR))
2322 goto error;
2323 if (any_ineq(&info[i], STATUS_SEPARATE))
2324 goto done;
2326 set_ineq_status_in(&info[j], info[i].tab);
2327 if (info[j].bmap->n_ineq && !info[j].ineq)
2328 goto error;
2329 if (any_ineq(&info[j], STATUS_ERROR))
2330 goto error;
2331 if (any_ineq(&info[j], STATUS_SEPARATE))
2332 goto done;
2334 set_eq_status_in(&info[i], info[j].tab);
2335 if (info[i].bmap->n_eq && !info[i].eq)
2336 goto error;
2337 if (any_eq(&info[i], STATUS_ERROR))
2338 goto error;
2340 set_eq_status_in(&info[j], info[i].tab);
2341 if (info[j].bmap->n_eq && !info[j].eq)
2342 goto error;
2343 if (any_eq(&info[j], STATUS_ERROR))
2344 goto error;
2346 if (any_eq(&info[i], STATUS_SEPARATE))
2347 return separating_equality(i, j, info);
2348 if (any_eq(&info[j], STATUS_SEPARATE))
2349 return separating_equality(j, i, info);
2351 if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
2352 all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
2353 drop(&info[j]);
2354 change = isl_change_drop_second;
2355 } else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
2356 all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
2357 drop(&info[i]);
2358 change = isl_change_drop_first;
2359 } else if (any_eq(&info[i], STATUS_ADJ_EQ)) {
2360 change = check_eq_adj_eq(i, j, info);
2361 } else if (any_eq(&info[j], STATUS_ADJ_EQ)) {
2362 change = check_eq_adj_eq(j, i, info);
2363 } else if (any_eq(&info[i], STATUS_ADJ_INEQ) ||
2364 any_eq(&info[j], STATUS_ADJ_INEQ)) {
2365 change = check_adj_eq(i, j, info);
2366 } else if (any_ineq(&info[i], STATUS_ADJ_EQ)) {
2367 change = check_ineq_adj_eq(i, j, info);
2368 } else if (any_ineq(&info[j], STATUS_ADJ_EQ)) {
2369 change = check_ineq_adj_eq(j, i, info);
2370 } else if (any_ineq(&info[i], STATUS_ADJ_INEQ) ||
2371 any_ineq(&info[j], STATUS_ADJ_INEQ)) {
2372 change = check_adj_ineq(i, j, info);
2373 } else {
2374 if (!any_eq(&info[i], STATUS_CUT) &&
2375 !any_eq(&info[j], STATUS_CUT))
2376 change = check_facets(i, j, info);
2377 if (change == isl_change_none)
2378 change = check_wrap(i, j, info);
2381 done:
2382 clear_status(&info[i]);
2383 clear_status(&info[j]);
2384 return change;
2385 error:
2386 clear_status(&info[i]);
2387 clear_status(&info[j]);
2388 return isl_change_error;
2391 /* Check if the union of the given pair of basic maps
2392 * can be represented by a single basic map.
2393 * If so, replace the pair by the single basic map and return
2394 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2395 * Otherwise, return isl_change_none.
2396 * The two basic maps are assumed to live in the same local space.
2398 static enum isl_change coalesce_local_pair(int i, int j,
2399 struct isl_coalesce_info *info)
2401 init_status(&info[i]);
2402 init_status(&info[j]);
2403 return coalesce_local_pair_reuse(i, j, info);
2406 /* Shift the integer division at position "div" of the basic map
2407 * represented by "info" by "shift".
2409 * That is, if the integer division has the form
2411 * floor(f(x)/d)
2413 * then replace it by
2415 * floor((f(x) + shift * d)/d) - shift
2417 static isl_stat shift_div(struct isl_coalesce_info *info, int div,
2418 isl_int shift)
2420 isl_size total, n_div;
2422 info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
2423 if (!info->bmap)
2424 return isl_stat_error;
2426 total = isl_basic_map_dim(info->bmap, isl_dim_all);
2427 n_div = isl_basic_map_dim(info->bmap, isl_dim_div);
2428 if (total < 0 || n_div < 0)
2429 return isl_stat_error;
2430 total -= n_div;
2431 if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
2432 return isl_stat_error;
2434 return isl_stat_ok;
2437 /* If the integer division at position "div" is defined by an equality,
2438 * i.e., a stride constraint, then change the integer division expression
2439 * to have a constant term equal to zero.
2441 * Let the equality constraint be
2443 * c + f + m a = 0
2445 * The integer division expression is then typically of the form
2447 * a = floor((-f - c')/m)
2449 * The integer division is first shifted by t = floor(c/m),
2450 * turning the equality constraint into
2452 * c - m floor(c/m) + f + m a' = 0
2454 * i.e.,
2456 * (c mod m) + f + m a' = 0
2458 * That is,
2460 * a' = (-f - (c mod m))/m = floor((-f)/m)
2462 * because a' is an integer and 0 <= (c mod m) < m.
2463 * The constant term of a' can therefore be zeroed out,
2464 * but only if the integer division expression is of the expected form.
2466 static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div)
2468 isl_bool defined, valid;
2469 isl_stat r;
2470 isl_constraint *c;
2471 isl_int shift, stride;
2473 defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div,
2474 div, &c);
2475 if (defined < 0)
2476 return isl_stat_error;
2477 if (!defined)
2478 return isl_stat_ok;
2479 if (!c)
2480 return isl_stat_error;
2481 valid = isl_constraint_is_div_equality(c, div);
2482 isl_int_init(shift);
2483 isl_int_init(stride);
2484 isl_constraint_get_constant(c, &shift);
2485 isl_constraint_get_coefficient(c, isl_dim_div, div, &stride);
2486 isl_int_fdiv_q(shift, shift, stride);
2487 r = shift_div(info, div, shift);
2488 isl_int_clear(stride);
2489 isl_int_clear(shift);
2490 isl_constraint_free(c);
2491 if (r < 0 || valid < 0)
2492 return isl_stat_error;
2493 if (!valid)
2494 return isl_stat_ok;
2495 info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace(
2496 info->bmap, div, 0);
2497 if (!info->bmap)
2498 return isl_stat_error;
2499 return isl_stat_ok;
2502 /* The basic maps represented by "info1" and "info2" are known
2503 * to have the same number of integer divisions.
2504 * Check if pairs of integer divisions are equal to each other
2505 * despite the fact that they differ by a rational constant.
2507 * In particular, look for any pair of integer divisions that
2508 * only differ in their constant terms.
2509 * If either of these integer divisions is defined
2510 * by stride constraints, then modify it to have a zero constant term.
2511 * If both are defined by stride constraints then in the end they will have
2512 * the same (zero) constant term.
2514 static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1,
2515 struct isl_coalesce_info *info2)
2517 int i;
2518 isl_size n;
2520 n = isl_basic_map_dim(info1->bmap, isl_dim_div);
2521 if (n < 0)
2522 return isl_stat_error;
2523 for (i = 0; i < n; ++i) {
2524 isl_bool known, harmonize;
2526 known = isl_basic_map_div_is_known(info1->bmap, i);
2527 if (known >= 0 && known)
2528 known = isl_basic_map_div_is_known(info2->bmap, i);
2529 if (known < 0)
2530 return isl_stat_error;
2531 if (!known)
2532 continue;
2533 harmonize = isl_basic_map_equal_div_expr_except_constant(
2534 info1->bmap, i, info2->bmap, i);
2535 if (harmonize < 0)
2536 return isl_stat_error;
2537 if (!harmonize)
2538 continue;
2539 if (normalize_stride_div(info1, i) < 0)
2540 return isl_stat_error;
2541 if (normalize_stride_div(info2, i) < 0)
2542 return isl_stat_error;
2545 return isl_stat_ok;
2548 /* If "shift" is an integer constant, then shift the integer division
2549 * at position "div" of the basic map represented by "info" by "shift".
2550 * If "shift" is not an integer constant, then do nothing.
2551 * If "shift" is equal to zero, then no shift needs to be performed either.
2553 * That is, if the integer division has the form
2555 * floor(f(x)/d)
2557 * then replace it by
2559 * floor((f(x) + shift * d)/d) - shift
2561 static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div,
2562 __isl_keep isl_aff *shift)
2564 isl_bool cst;
2565 isl_stat r;
2566 isl_int d;
2567 isl_val *c;
2569 cst = isl_aff_is_cst(shift);
2570 if (cst < 0 || !cst)
2571 return cst < 0 ? isl_stat_error : isl_stat_ok;
2573 c = isl_aff_get_constant_val(shift);
2574 cst = isl_val_is_int(c);
2575 if (cst >= 0 && cst)
2576 cst = isl_bool_not(isl_val_is_zero(c));
2577 if (cst < 0 || !cst) {
2578 isl_val_free(c);
2579 return cst < 0 ? isl_stat_error : isl_stat_ok;
2582 isl_int_init(d);
2583 r = isl_val_get_num_isl_int(c, &d);
2584 if (r >= 0)
2585 r = shift_div(info, div, d);
2586 isl_int_clear(d);
2588 isl_val_free(c);
2590 return r;
2593 /* Check if some of the divs in the basic map represented by "info1"
2594 * are shifts of the corresponding divs in the basic map represented
2595 * by "info2", taking into account the equality constraints "eq1" of "info1"
2596 * and "eq2" of "info2". If so, align them with those of "info2".
2597 * "info1" and "info2" are assumed to have the same number
2598 * of integer divisions.
2600 * An integer division is considered to be a shift of another integer
2601 * division if, after simplification with respect to the equality
2602 * constraints of the other basic map, one is equal to the other
2603 * plus a constant.
2605 * In particular, for each pair of integer divisions, if both are known,
2606 * have the same denominator and are not already equal to each other,
2607 * simplify each with respect to the equality constraints
2608 * of the other basic map. If the difference is an integer constant,
2609 * then move this difference outside.
2610 * That is, if, after simplification, one integer division is of the form
2612 * floor((f(x) + c_1)/d)
2614 * while the other is of the form
2616 * floor((f(x) + c_2)/d)
2618 * and n = (c_2 - c_1)/d is an integer, then replace the first
2619 * integer division by
2621 * floor((f_1(x) + c_1 + n * d)/d) - n,
2623 * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
2624 * after simplification with respect to the equality constraints.
2626 static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1,
2627 struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1,
2628 __isl_keep isl_basic_set *eq2)
2630 int i;
2631 isl_size total;
2632 isl_local_space *ls1, *ls2;
2634 total = isl_basic_map_dim(info1->bmap, isl_dim_all);
2635 if (total < 0)
2636 return isl_stat_error;
2637 ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap));
2638 ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap));
2639 for (i = 0; i < info1->bmap->n_div; ++i) {
2640 isl_stat r;
2641 isl_aff *div1, *div2;
2643 if (!isl_local_space_div_is_known(ls1, i) ||
2644 !isl_local_space_div_is_known(ls2, i))
2645 continue;
2646 if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
2647 continue;
2648 if (isl_seq_eq(info1->bmap->div[i] + 1,
2649 info2->bmap->div[i] + 1, 1 + total))
2650 continue;
2651 div1 = isl_local_space_get_div(ls1, i);
2652 div2 = isl_local_space_get_div(ls2, i);
2653 div1 = isl_aff_substitute_equalities(div1,
2654 isl_basic_set_copy(eq2));
2655 div2 = isl_aff_substitute_equalities(div2,
2656 isl_basic_set_copy(eq1));
2657 div2 = isl_aff_sub(div2, div1);
2658 r = shift_if_cst_int(info1, i, div2);
2659 isl_aff_free(div2);
2660 if (r < 0)
2661 break;
2663 isl_local_space_free(ls1);
2664 isl_local_space_free(ls2);
2666 if (i < info1->bmap->n_div)
2667 return isl_stat_error;
2668 return isl_stat_ok;
2671 /* Check if some of the divs in the basic map represented by "info1"
2672 * are shifts of the corresponding divs in the basic map represented
2673 * by "info2". If so, align them with those of "info2".
2674 * Only do this if "info1" and "info2" have the same number
2675 * of integer divisions.
2677 * An integer division is considered to be a shift of another integer
2678 * division if, after simplification with respect to the equality
2679 * constraints of the other basic map, one is equal to the other
2680 * plus a constant.
2682 * First check if pairs of integer divisions are equal to each other
2683 * despite the fact that they differ by a rational constant.
2684 * If so, try and arrange for them to have the same constant term.
2686 * Then, extract the equality constraints and continue with
2687 * harmonize_divs_with_hulls.
2689 * If the equality constraints of both basic maps are the same,
2690 * then there is no need to perform any shifting since
2691 * the coefficients of the integer divisions should have been
2692 * reduced in the same way.
2694 static isl_stat harmonize_divs(struct isl_coalesce_info *info1,
2695 struct isl_coalesce_info *info2)
2697 isl_bool equal;
2698 isl_basic_map *bmap1, *bmap2;
2699 isl_basic_set *eq1, *eq2;
2700 isl_stat r;
2702 if (!info1->bmap || !info2->bmap)
2703 return isl_stat_error;
2705 if (info1->bmap->n_div != info2->bmap->n_div)
2706 return isl_stat_ok;
2707 if (info1->bmap->n_div == 0)
2708 return isl_stat_ok;
2710 if (harmonize_stride_divs(info1, info2) < 0)
2711 return isl_stat_error;
2713 bmap1 = isl_basic_map_copy(info1->bmap);
2714 bmap2 = isl_basic_map_copy(info2->bmap);
2715 eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1));
2716 eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2));
2717 equal = isl_basic_set_plain_is_equal(eq1, eq2);
2718 if (equal < 0)
2719 r = isl_stat_error;
2720 else if (equal)
2721 r = isl_stat_ok;
2722 else
2723 r = harmonize_divs_with_hulls(info1, info2, eq1, eq2);
2724 isl_basic_set_free(eq1);
2725 isl_basic_set_free(eq2);
2727 return r;
2730 /* Do the two basic maps live in the same local space, i.e.,
2731 * do they have the same (known) divs?
2732 * If either basic map has any unknown divs, then we can only assume
2733 * that they do not live in the same local space.
2735 static isl_bool same_divs(__isl_keep isl_basic_map *bmap1,
2736 __isl_keep isl_basic_map *bmap2)
2738 int i;
2739 isl_bool known;
2740 isl_size total;
2742 if (!bmap1 || !bmap2)
2743 return isl_bool_error;
2744 if (bmap1->n_div != bmap2->n_div)
2745 return isl_bool_false;
2747 if (bmap1->n_div == 0)
2748 return isl_bool_true;
2750 known = isl_basic_map_divs_known(bmap1);
2751 if (known < 0 || !known)
2752 return known;
2753 known = isl_basic_map_divs_known(bmap2);
2754 if (known < 0 || !known)
2755 return known;
2757 total = isl_basic_map_dim(bmap1, isl_dim_all);
2758 if (total < 0)
2759 return isl_bool_error;
2760 for (i = 0; i < bmap1->n_div; ++i)
2761 if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
2762 return isl_bool_false;
2764 return isl_bool_true;
2767 /* Assuming that "tab" contains the equality constraints and
2768 * the initial inequality constraints of "bmap", copy the remaining
2769 * inequality constraints of "bmap" to "Tab".
2771 static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap)
2773 int i, n_ineq;
2775 if (!bmap)
2776 return isl_stat_error;
2778 n_ineq = tab->n_con - tab->n_eq;
2779 for (i = n_ineq; i < bmap->n_ineq; ++i)
2780 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2781 return isl_stat_error;
2783 return isl_stat_ok;
2786 /* Description of an integer division that is added
2787 * during an expansion.
2788 * "pos" is the position of the corresponding variable.
2789 * "cst" indicates whether this integer division has a fixed value.
2790 * "val" contains the fixed value, if the value is fixed.
2792 struct isl_expanded {
2793 int pos;
2794 isl_bool cst;
2795 isl_int val;
2798 /* For each of the "n" integer division variables "expanded",
2799 * if the variable has a fixed value, then add two inequality
2800 * constraints expressing the fixed value.
2801 * Otherwise, add the corresponding div constraints.
2802 * The caller is responsible for removing the div constraints
2803 * that it added for all these "n" integer divisions.
2805 * The div constraints and the pair of inequality constraints
2806 * forcing the fixed value cannot both be added for a given variable
2807 * as the combination may render some of the original constraints redundant.
2808 * These would then be ignored during the coalescing detection,
2809 * while they could remain in the fused result.
2811 * The two added inequality constraints are
2813 * -a + v >= 0
2814 * a - v >= 0
2816 * with "a" the variable and "v" its fixed value.
2817 * The facet corresponding to one of these two constraints is selected
2818 * in the tableau to ensure that the pair of inequality constraints
2819 * is treated as an equality constraint.
2821 * The information in info->ineq is thrown away because it was
2822 * computed in terms of div constraints, while some of those
2823 * have now been replaced by these pairs of inequality constraints.
2825 static isl_stat fix_constant_divs(struct isl_coalesce_info *info,
2826 int n, struct isl_expanded *expanded)
2828 unsigned o_div;
2829 int i;
2830 isl_vec *ineq;
2832 o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1;
2833 ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var);
2834 if (!ineq)
2835 return isl_stat_error;
2836 isl_seq_clr(ineq->el + 1, info->tab->n_var);
2838 for (i = 0; i < n; ++i) {
2839 if (!expanded[i].cst) {
2840 info->bmap = isl_basic_map_extend_constraints(
2841 info->bmap, 0, 2);
2842 info->bmap = isl_basic_map_add_div_constraints(
2843 info->bmap, expanded[i].pos - o_div);
2844 } else {
2845 isl_int_set_si(ineq->el[1 + expanded[i].pos], -1);
2846 isl_int_set(ineq->el[0], expanded[i].val);
2847 info->bmap = isl_basic_map_add_ineq(info->bmap,
2848 ineq->el);
2849 isl_int_set_si(ineq->el[1 + expanded[i].pos], 1);
2850 isl_int_neg(ineq->el[0], expanded[i].val);
2851 info->bmap = isl_basic_map_add_ineq(info->bmap,
2852 ineq->el);
2853 isl_int_set_si(ineq->el[1 + expanded[i].pos], 0);
2855 if (copy_ineq(info->tab, info->bmap) < 0)
2856 break;
2857 if (expanded[i].cst &&
2858 isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0)
2859 break;
2862 isl_vec_free(ineq);
2864 clear_status(info);
2865 init_status(info);
2867 return i < n ? isl_stat_error : isl_stat_ok;
2870 /* Insert the "n" integer division variables "expanded"
2871 * into info->tab and info->bmap and
2872 * update info->ineq with respect to the redundant constraints
2873 * in the resulting tableau.
2874 * "bmap" contains the result of this insertion in info->bmap,
2875 * while info->bmap is the original version
2876 * of "bmap", i.e., the one that corresponds to the current
2877 * state of info->tab. The number of constraints in info->bmap
2878 * is assumed to be the same as the number of constraints
2879 * in info->tab. This is required to be able to detect
2880 * the extra constraints in "bmap".
2882 * In particular, introduce extra variables corresponding
2883 * to the extra integer divisions and add the div constraints
2884 * that were added to "bmap" after info->tab was created
2885 * from info->bmap.
2886 * Furthermore, check if these extra integer divisions happen
2887 * to attain a fixed integer value in info->tab.
2888 * If so, replace the corresponding div constraints by pairs
2889 * of inequality constraints that fix these
2890 * integer divisions to their single integer values.
2891 * Replace info->bmap by "bmap" to match the changes to info->tab.
2892 * info->ineq was computed without a tableau and therefore
2893 * does not take into account the redundant constraints
2894 * in the tableau. Mark them here.
2895 * There is no need to check the newly added div constraints
2896 * since they cannot be redundant.
2897 * The redundancy check is not performed when constants have been discovered
2898 * since info->ineq is completely thrown away in this case.
2900 static isl_stat tab_insert_divs(struct isl_coalesce_info *info,
2901 int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap)
2903 int i, n_ineq;
2904 unsigned n_eq;
2905 struct isl_tab_undo *snap;
2906 int any;
2908 if (!bmap)
2909 return isl_stat_error;
2910 if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con)
2911 isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
2912 "original tableau does not correspond "
2913 "to original basic map", goto error);
2915 if (isl_tab_extend_vars(info->tab, n) < 0)
2916 goto error;
2917 if (isl_tab_extend_cons(info->tab, 2 * n) < 0)
2918 goto error;
2920 for (i = 0; i < n; ++i) {
2921 if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0)
2922 goto error;
2925 snap = isl_tab_snap(info->tab);
2927 n_ineq = info->tab->n_con - info->tab->n_eq;
2928 if (copy_ineq(info->tab, bmap) < 0)
2929 goto error;
2931 isl_basic_map_free(info->bmap);
2932 info->bmap = bmap;
2934 any = 0;
2935 for (i = 0; i < n; ++i) {
2936 expanded[i].cst = isl_tab_is_constant(info->tab,
2937 expanded[i].pos, &expanded[i].val);
2938 if (expanded[i].cst < 0)
2939 return isl_stat_error;
2940 if (expanded[i].cst)
2941 any = 1;
2944 if (any) {
2945 if (isl_tab_rollback(info->tab, snap) < 0)
2946 return isl_stat_error;
2947 info->bmap = isl_basic_map_cow(info->bmap);
2948 info->bmap = isl_basic_map_free_inequality(info->bmap, 2 * n);
2949 if (info->bmap < 0)
2950 return isl_stat_error;
2952 return fix_constant_divs(info, n, expanded);
2955 n_eq = info->bmap->n_eq;
2956 for (i = 0; i < n_ineq; ++i) {
2957 if (isl_tab_is_redundant(info->tab, n_eq + i))
2958 info->ineq[i] = STATUS_REDUNDANT;
2961 return isl_stat_ok;
2962 error:
2963 isl_basic_map_free(bmap);
2964 return isl_stat_error;
2967 /* Expand info->tab and info->bmap in the same way "bmap" was expanded
2968 * in isl_basic_map_expand_divs using the expansion "exp" and
2969 * update info->ineq with respect to the redundant constraints
2970 * in the resulting tableau. info->bmap is the original version
2971 * of "bmap", i.e., the one that corresponds to the current
2972 * state of info->tab. The number of constraints in info->bmap
2973 * is assumed to be the same as the number of constraints
2974 * in info->tab. This is required to be able to detect
2975 * the extra constraints in "bmap".
2977 * Extract the positions where extra local variables are introduced
2978 * from "exp" and call tab_insert_divs.
2980 static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp,
2981 __isl_take isl_basic_map *bmap)
2983 isl_ctx *ctx;
2984 struct isl_expanded *expanded;
2985 int i, j, k, n;
2986 int extra_var;
2987 isl_size total, n_div;
2988 unsigned pos;
2989 isl_stat r;
2991 total = isl_basic_map_dim(bmap, isl_dim_all);
2992 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2993 if (total < 0 || n_div < 0)
2994 return isl_stat_error;
2995 pos = total - n_div;
2996 extra_var = total - info->tab->n_var;
2997 n = n_div - extra_var;
2999 ctx = isl_basic_map_get_ctx(bmap);
3000 expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var);
3001 if (extra_var && !expanded)
3002 goto error;
3004 i = 0;
3005 k = 0;
3006 for (j = 0; j < n_div; ++j) {
3007 if (i < n && exp[i] == j) {
3008 ++i;
3009 continue;
3011 expanded[k++].pos = pos + j;
3014 for (k = 0; k < extra_var; ++k)
3015 isl_int_init(expanded[k].val);
3017 r = tab_insert_divs(info, extra_var, expanded, bmap);
3019 for (k = 0; k < extra_var; ++k)
3020 isl_int_clear(expanded[k].val);
3021 free(expanded);
3023 return r;
3024 error:
3025 isl_basic_map_free(bmap);
3026 return isl_stat_error;
3029 /* Check if the union of the basic maps represented by info[i] and info[j]
3030 * can be represented by a single basic map,
3031 * after expanding the divs of info[i] to match those of info[j].
3032 * If so, replace the pair by the single basic map and return
3033 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3034 * Otherwise, return isl_change_none.
3036 * The caller has already checked for info[j] being a subset of info[i].
3037 * If some of the divs of info[j] are unknown, then the expanded info[i]
3038 * will not have the corresponding div constraints. The other patterns
3039 * therefore cannot apply. Skip the computation in this case.
3041 * The expansion is performed using the divs "div" and expansion "exp"
3042 * computed by the caller.
3043 * info[i].bmap has already been expanded and the result is passed in
3044 * as "bmap".
3045 * The "eq" and "ineq" fields of info[i] reflect the status of
3046 * the constraints of the expanded "bmap" with respect to info[j].tab.
3047 * However, inequality constraints that are redundant in info[i].tab
3048 * have not yet been marked as such because no tableau was available.
3050 * Replace info[i].bmap by "bmap" and expand info[i].tab as well,
3051 * updating info[i].ineq with respect to the redundant constraints.
3052 * Then try and coalesce the expanded info[i] with info[j],
3053 * reusing the information in info[i].eq and info[i].ineq.
3054 * If this does not result in any coalescing or if it results in info[j]
3055 * getting dropped (which should not happen in practice, since the case
3056 * of info[j] being a subset of info[i] has already been checked by
3057 * the caller), then revert info[i] to its original state.
3059 static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap,
3060 int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div,
3061 int *exp)
3063 isl_bool known;
3064 isl_basic_map *bmap_i;
3065 struct isl_tab_undo *snap;
3066 enum isl_change change = isl_change_none;
3068 known = isl_basic_map_divs_known(info[j].bmap);
3069 if (known < 0 || !known) {
3070 clear_status(&info[i]);
3071 isl_basic_map_free(bmap);
3072 return known < 0 ? isl_change_error : isl_change_none;
3075 bmap_i = isl_basic_map_copy(info[i].bmap);
3076 snap = isl_tab_snap(info[i].tab);
3077 if (expand_tab(&info[i], exp, bmap) < 0)
3078 change = isl_change_error;
3080 init_status(&info[j]);
3081 if (change == isl_change_none)
3082 change = coalesce_local_pair_reuse(i, j, info);
3083 else
3084 clear_status(&info[i]);
3085 if (change != isl_change_none && change != isl_change_drop_second) {
3086 isl_basic_map_free(bmap_i);
3087 } else {
3088 isl_basic_map_free(info[i].bmap);
3089 info[i].bmap = bmap_i;
3091 if (isl_tab_rollback(info[i].tab, snap) < 0)
3092 change = isl_change_error;
3095 return change;
3098 /* Check if the union of "bmap" and the basic map represented by info[j]
3099 * can be represented by a single basic map,
3100 * after expanding the divs of "bmap" to match those of info[j].
3101 * If so, replace the pair by the single basic map and return
3102 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3103 * Otherwise, return isl_change_none.
3105 * In particular, check if the expanded "bmap" contains the basic map
3106 * represented by the tableau info[j].tab.
3107 * The expansion is performed using the divs "div" and expansion "exp"
3108 * computed by the caller.
3109 * Then we check if all constraints of the expanded "bmap" are valid for
3110 * info[j].tab.
3112 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3113 * In this case, the positions of the constraints of info[i].bmap
3114 * with respect to the basic map represented by info[j] are stored
3115 * in info[i].
3117 * If the expanded "bmap" does not contain the basic map
3118 * represented by the tableau info[j].tab and if "i" is not -1,
3119 * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
3120 * as well and check if that results in coalescing.
3122 static enum isl_change coalesce_with_expanded_divs(
3123 __isl_keep isl_basic_map *bmap, int i, int j,
3124 struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp)
3126 enum isl_change change = isl_change_none;
3127 struct isl_coalesce_info info_local, *info_i;
3129 info_i = i >= 0 ? &info[i] : &info_local;
3130 init_status(info_i);
3131 bmap = isl_basic_map_copy(bmap);
3132 bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp);
3133 bmap = isl_basic_map_mark_final(bmap);
3135 if (!bmap)
3136 goto error;
3138 info_local.bmap = bmap;
3139 info_i->eq = eq_status_in(bmap, info[j].tab);
3140 if (bmap->n_eq && !info_i->eq)
3141 goto error;
3142 if (any_eq(info_i, STATUS_ERROR))
3143 goto error;
3144 if (any_eq(info_i, STATUS_SEPARATE))
3145 goto done;
3147 info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab);
3148 if (bmap->n_ineq && !info_i->ineq)
3149 goto error;
3150 if (any_ineq(info_i, STATUS_ERROR))
3151 goto error;
3152 if (any_ineq(info_i, STATUS_SEPARATE))
3153 goto done;
3155 if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) &&
3156 all(info_i->ineq, bmap->n_ineq, STATUS_VALID)) {
3157 drop(&info[j]);
3158 change = isl_change_drop_second;
3161 if (change == isl_change_none && i != -1)
3162 return coalesce_expand_tab_divs(bmap, i, j, info, div, exp);
3164 done:
3165 isl_basic_map_free(bmap);
3166 clear_status(info_i);
3167 return change;
3168 error:
3169 isl_basic_map_free(bmap);
3170 clear_status(info_i);
3171 return isl_change_error;
3174 /* Check if the union of "bmap_i" and the basic map represented by info[j]
3175 * can be represented by a single basic map,
3176 * after aligning the divs of "bmap_i" to match those of info[j].
3177 * If so, replace the pair by the single basic map and return
3178 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3179 * Otherwise, return isl_change_none.
3181 * In particular, check if "bmap_i" contains the basic map represented by
3182 * info[j] after aligning the divs of "bmap_i" to those of info[j].
3183 * Note that this can only succeed if the number of divs of "bmap_i"
3184 * is smaller than (or equal to) the number of divs of info[j].
3186 * We first check if the divs of "bmap_i" are all known and form a subset
3187 * of those of info[j].bmap. If so, we pass control over to
3188 * coalesce_with_expanded_divs.
3190 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3192 static enum isl_change coalesce_after_aligning_divs(
3193 __isl_keep isl_basic_map *bmap_i, int i, int j,
3194 struct isl_coalesce_info *info)
3196 isl_bool known;
3197 isl_mat *div_i, *div_j, *div;
3198 int *exp1 = NULL;
3199 int *exp2 = NULL;
3200 isl_ctx *ctx;
3201 enum isl_change change;
3203 known = isl_basic_map_divs_known(bmap_i);
3204 if (known < 0)
3205 return isl_change_error;
3206 if (!known)
3207 return isl_change_none;
3209 ctx = isl_basic_map_get_ctx(bmap_i);
3211 div_i = isl_basic_map_get_divs(bmap_i);
3212 div_j = isl_basic_map_get_divs(info[j].bmap);
3214 if (!div_i || !div_j)
3215 goto error;
3217 exp1 = isl_alloc_array(ctx, int, div_i->n_row);
3218 exp2 = isl_alloc_array(ctx, int, div_j->n_row);
3219 if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
3220 goto error;
3222 div = isl_merge_divs(div_i, div_j, exp1, exp2);
3223 if (!div)
3224 goto error;
3226 if (div->n_row == div_j->n_row)
3227 change = coalesce_with_expanded_divs(bmap_i,
3228 i, j, info, div, exp1);
3229 else
3230 change = isl_change_none;
3232 isl_mat_free(div);
3234 isl_mat_free(div_i);
3235 isl_mat_free(div_j);
3237 free(exp2);
3238 free(exp1);
3240 return change;
3241 error:
3242 isl_mat_free(div_i);
3243 isl_mat_free(div_j);
3244 free(exp1);
3245 free(exp2);
3246 return isl_change_error;
3249 /* Check if basic map "j" is a subset of basic map "i" after
3250 * exploiting the extra equalities of "j" to simplify the divs of "i".
3251 * If so, remove basic map "j" and return isl_change_drop_second.
3253 * If "j" does not have any equalities or if they are the same
3254 * as those of "i", then we cannot exploit them to simplify the divs.
3255 * Similarly, if there are no divs in "i", then they cannot be simplified.
3256 * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
3257 * then "j" cannot be a subset of "i".
3259 * Otherwise, we intersect "i" with the affine hull of "j" and then
3260 * check if "j" is a subset of the result after aligning the divs.
3261 * If so, then "j" is definitely a subset of "i" and can be removed.
3262 * Note that if after intersection with the affine hull of "j".
3263 * "i" still has more divs than "j", then there is no way we can
3264 * align the divs of "i" to those of "j".
3266 static enum isl_change coalesce_subset_with_equalities(int i, int j,
3267 struct isl_coalesce_info *info)
3269 isl_basic_map *hull_i, *hull_j, *bmap_i;
3270 int equal, empty;
3271 enum isl_change change;
3273 if (info[j].bmap->n_eq == 0)
3274 return isl_change_none;
3275 if (info[i].bmap->n_div == 0)
3276 return isl_change_none;
3278 hull_i = isl_basic_map_copy(info[i].bmap);
3279 hull_i = isl_basic_map_plain_affine_hull(hull_i);
3280 hull_j = isl_basic_map_copy(info[j].bmap);
3281 hull_j = isl_basic_map_plain_affine_hull(hull_j);
3283 hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
3284 equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
3285 empty = isl_basic_map_plain_is_empty(hull_j);
3286 isl_basic_map_free(hull_i);
3288 if (equal < 0 || equal || empty < 0 || empty) {
3289 isl_basic_map_free(hull_j);
3290 if (equal < 0 || empty < 0)
3291 return isl_change_error;
3292 return isl_change_none;
3295 bmap_i = isl_basic_map_copy(info[i].bmap);
3296 bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
3297 if (!bmap_i)
3298 return isl_change_error;
3300 if (bmap_i->n_div > info[j].bmap->n_div) {
3301 isl_basic_map_free(bmap_i);
3302 return isl_change_none;
3305 change = coalesce_after_aligning_divs(bmap_i, -1, j, info);
3307 isl_basic_map_free(bmap_i);
3309 return change;
3312 /* Check if the union of and the basic maps represented by info[i] and info[j]
3313 * can be represented by a single basic map, by aligning or equating
3314 * their integer divisions.
3315 * If so, replace the pair by the single basic map and return
3316 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3317 * Otherwise, return isl_change_none.
3319 * Note that we only perform any test if the number of divs is different
3320 * in the two basic maps. In case the number of divs is the same,
3321 * we have already established that the divs are different
3322 * in the two basic maps.
3323 * In particular, if the number of divs of basic map i is smaller than
3324 * the number of divs of basic map j, then we check if j is a subset of i
3325 * and vice versa.
3327 static enum isl_change coalesce_divs(int i, int j,
3328 struct isl_coalesce_info *info)
3330 enum isl_change change = isl_change_none;
3332 if (info[i].bmap->n_div < info[j].bmap->n_div)
3333 change = coalesce_after_aligning_divs(info[i].bmap, i, j, info);
3334 if (change != isl_change_none)
3335 return change;
3337 if (info[j].bmap->n_div < info[i].bmap->n_div)
3338 change = coalesce_after_aligning_divs(info[j].bmap, j, i, info);
3339 if (change != isl_change_none)
3340 return invert_change(change);
3342 change = coalesce_subset_with_equalities(i, j, info);
3343 if (change != isl_change_none)
3344 return change;
3346 change = coalesce_subset_with_equalities(j, i, info);
3347 if (change != isl_change_none)
3348 return invert_change(change);
3350 return isl_change_none;
3353 /* Does "bmap" involve any divs that themselves refer to divs?
3355 static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap)
3357 int i;
3358 isl_size total;
3359 isl_size n_div;
3361 total = isl_basic_map_dim(bmap, isl_dim_all);
3362 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3363 if (total < 0 || n_div < 0)
3364 return isl_bool_error;
3365 total -= n_div;
3367 for (i = 0; i < n_div; ++i)
3368 if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
3369 n_div) != -1)
3370 return isl_bool_true;
3372 return isl_bool_false;
3375 /* Return a list of affine expressions, one for each integer division
3376 * in "bmap_i". For each integer division that also appears in "bmap_j",
3377 * the affine expression is set to NaN. The number of NaNs in the list
3378 * is equal to the number of integer divisions in "bmap_j".
3379 * For the other integer divisions of "bmap_i", the corresponding
3380 * element in the list is a purely affine expression equal to the integer
3381 * division in "hull".
3382 * If no such list can be constructed, then the number of elements
3383 * in the returned list is smaller than the number of integer divisions
3384 * in "bmap_i".
3386 static __isl_give isl_aff_list *set_up_substitutions(
3387 __isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
3388 __isl_take isl_basic_map *hull)
3390 isl_size n_div_i, n_div_j, total;
3391 isl_ctx *ctx;
3392 isl_local_space *ls;
3393 isl_basic_set *wrap_hull;
3394 isl_aff *aff_nan;
3395 isl_aff_list *list;
3396 int i, j;
3398 n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
3399 n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
3400 total = isl_basic_map_dim(bmap_i, isl_dim_all);
3401 if (!hull || n_div_i < 0 || n_div_j < 0 || total < 0)
3402 return NULL;
3404 ctx = isl_basic_map_get_ctx(hull);
3405 total -= n_div_i;
3407 ls = isl_basic_map_get_local_space(bmap_i);
3408 ls = isl_local_space_wrap(ls);
3409 wrap_hull = isl_basic_map_wrap(hull);
3411 aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
3412 list = isl_aff_list_alloc(ctx, n_div_i);
3414 j = 0;
3415 for (i = 0; i < n_div_i; ++i) {
3416 isl_aff *aff;
3417 isl_size n_div;
3419 if (j < n_div_j &&
3420 isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j,
3421 0, 2 + total)) {
3422 ++j;
3423 list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
3424 continue;
3426 if (n_div_i - i <= n_div_j - j)
3427 break;
3429 aff = isl_local_space_get_div(ls, i);
3430 aff = isl_aff_substitute_equalities(aff,
3431 isl_basic_set_copy(wrap_hull));
3432 aff = isl_aff_floor(aff);
3433 n_div = isl_aff_dim(aff, isl_dim_div);
3434 if (n_div < 0)
3435 goto error;
3436 if (n_div != 0) {
3437 isl_aff_free(aff);
3438 break;
3441 list = isl_aff_list_add(list, aff);
3444 isl_aff_free(aff_nan);
3445 isl_local_space_free(ls);
3446 isl_basic_set_free(wrap_hull);
3448 return list;
3449 error:
3450 isl_aff_free(aff_nan);
3451 isl_local_space_free(ls);
3452 isl_basic_set_free(wrap_hull);
3453 isl_aff_list_free(list);
3454 return NULL;
3457 /* Add variables to info->bmap and info->tab corresponding to the elements
3458 * in "list" that are not set to NaN.
3459 * "extra_var" is the number of these elements.
3460 * "dim" is the offset in the variables of "tab" where we should
3461 * start considering the elements in "list".
3462 * When this function returns, the total number of variables in "tab"
3463 * is equal to "dim" plus the number of elements in "list".
3465 * The newly added existentially quantified variables are not given
3466 * an explicit representation because the corresponding div constraints
3467 * do not appear in info->bmap. These constraints are not added
3468 * to info->bmap because for internal consistency, they would need to
3469 * be added to info->tab as well, where they could combine with the equality
3470 * that is added later to result in constraints that do not hold
3471 * in the original input.
3473 static isl_stat add_sub_vars(struct isl_coalesce_info *info,
3474 __isl_keep isl_aff_list *list, int dim, int extra_var)
3476 int i, j, d;
3477 isl_size n;
3478 isl_space *space;
3480 space = isl_basic_map_get_space(info->bmap);
3481 info->bmap = isl_basic_map_cow(info->bmap);
3482 info->bmap = isl_basic_map_extend_space(info->bmap, space,
3483 extra_var, 0, 0);
3484 n = isl_aff_list_n_aff(list);
3485 if (!info->bmap || n < 0)
3486 return isl_stat_error;
3487 for (i = 0; i < n; ++i) {
3488 int is_nan;
3489 isl_aff *aff;
3491 aff = isl_aff_list_get_aff(list, i);
3492 is_nan = isl_aff_is_nan(aff);
3493 isl_aff_free(aff);
3494 if (is_nan < 0)
3495 return isl_stat_error;
3496 if (is_nan)
3497 continue;
3499 if (isl_tab_insert_var(info->tab, dim + i) < 0)
3500 return isl_stat_error;
3501 d = isl_basic_map_alloc_div(info->bmap);
3502 if (d < 0)
3503 return isl_stat_error;
3504 info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d);
3505 for (j = d; j > i; --j)
3506 info->bmap = isl_basic_map_swap_div(info->bmap,
3507 j - 1, j);
3508 if (!info->bmap)
3509 return isl_stat_error;
3512 return isl_stat_ok;
3515 /* For each element in "list" that is not set to NaN, fix the corresponding
3516 * variable in "tab" to the purely affine expression defined by the element.
3517 * "dim" is the offset in the variables of "tab" where we should
3518 * start considering the elements in "list".
3520 * This function assumes that a sufficient number of rows and
3521 * elements in the constraint array are available in the tableau.
3523 static isl_stat add_sub_equalities(struct isl_tab *tab,
3524 __isl_keep isl_aff_list *list, int dim)
3526 int i;
3527 isl_size n;
3528 isl_ctx *ctx;
3529 isl_vec *sub;
3530 isl_aff *aff;
3532 n = isl_aff_list_n_aff(list);
3533 if (n < 0)
3534 return isl_stat_error;
3536 ctx = isl_tab_get_ctx(tab);
3537 sub = isl_vec_alloc(ctx, 1 + dim + n);
3538 if (!sub)
3539 return isl_stat_error;
3540 isl_seq_clr(sub->el + 1 + dim, n);
3542 for (i = 0; i < n; ++i) {
3543 aff = isl_aff_list_get_aff(list, i);
3544 if (!aff)
3545 goto error;
3546 if (isl_aff_is_nan(aff)) {
3547 isl_aff_free(aff);
3548 continue;
3550 isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
3551 isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
3552 if (isl_tab_add_eq(tab, sub->el) < 0)
3553 goto error;
3554 isl_int_set_si(sub->el[1 + dim + i], 0);
3555 isl_aff_free(aff);
3558 isl_vec_free(sub);
3559 return isl_stat_ok;
3560 error:
3561 isl_aff_free(aff);
3562 isl_vec_free(sub);
3563 return isl_stat_error;
3566 /* Add variables to info->tab and info->bmap corresponding to the elements
3567 * in "list" that are not set to NaN. The value of the added variable
3568 * in info->tab is fixed to the purely affine expression defined by the element.
3569 * "dim" is the offset in the variables of info->tab where we should
3570 * start considering the elements in "list".
3571 * When this function returns, the total number of variables in info->tab
3572 * is equal to "dim" plus the number of elements in "list".
3574 static isl_stat add_subs(struct isl_coalesce_info *info,
3575 __isl_keep isl_aff_list *list, int dim)
3577 int extra_var;
3578 isl_size n;
3580 n = isl_aff_list_n_aff(list);
3581 if (n < 0)
3582 return isl_stat_error;
3584 extra_var = n - (info->tab->n_var - dim);
3586 if (isl_tab_extend_vars(info->tab, extra_var) < 0)
3587 return isl_stat_error;
3588 if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
3589 return isl_stat_error;
3590 if (add_sub_vars(info, list, dim, extra_var) < 0)
3591 return isl_stat_error;
3593 return add_sub_equalities(info->tab, list, dim);
3596 /* Coalesce basic map "j" into basic map "i" after adding the extra integer
3597 * divisions in "i" but not in "j" to basic map "j", with values
3598 * specified by "list". The total number of elements in "list"
3599 * is equal to the number of integer divisions in "i", while the number
3600 * of NaN elements in the list is equal to the number of integer divisions
3601 * in "j".
3603 * If no coalescing can be performed, then we need to revert basic map "j"
3604 * to its original state. We do the same if basic map "i" gets dropped
3605 * during the coalescing, even though this should not happen in practice
3606 * since we have already checked for "j" being a subset of "i"
3607 * before we reach this stage.
3609 static enum isl_change coalesce_with_subs(int i, int j,
3610 struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
3612 isl_basic_map *bmap_j;
3613 struct isl_tab_undo *snap;
3614 isl_size dim, n_div;
3615 enum isl_change change;
3617 bmap_j = isl_basic_map_copy(info[j].bmap);
3618 snap = isl_tab_snap(info[j].tab);
3620 dim = isl_basic_map_dim(bmap_j, isl_dim_all);
3621 n_div = isl_basic_map_dim(bmap_j, isl_dim_div);
3622 if (dim < 0 || n_div < 0)
3623 goto error;
3624 dim -= n_div;
3625 if (add_subs(&info[j], list, dim) < 0)
3626 goto error;
3628 change = coalesce_local_pair(i, j, info);
3629 if (change != isl_change_none && change != isl_change_drop_first) {
3630 isl_basic_map_free(bmap_j);
3631 } else {
3632 isl_basic_map_free(info[j].bmap);
3633 info[j].bmap = bmap_j;
3635 if (isl_tab_rollback(info[j].tab, snap) < 0)
3636 return isl_change_error;
3639 return change;
3640 error:
3641 isl_basic_map_free(bmap_j);
3642 return isl_change_error;
3645 /* Check if we can coalesce basic map "j" into basic map "i" after copying
3646 * those extra integer divisions in "i" that can be simplified away
3647 * using the extra equalities in "j".
3648 * All divs are assumed to be known and not contain any nested divs.
3650 * We first check if there are any extra equalities in "j" that we
3651 * can exploit. Then we check if every integer division in "i"
3652 * either already appears in "j" or can be simplified using the
3653 * extra equalities to a purely affine expression.
3654 * If these tests succeed, then we try to coalesce the two basic maps
3655 * by introducing extra dimensions in "j" corresponding to
3656 * the extra integer divisions "i" fixed to the corresponding
3657 * purely affine expression.
3659 static enum isl_change check_coalesce_into_eq(int i, int j,
3660 struct isl_coalesce_info *info)
3662 isl_size n_div_i, n_div_j, n;
3663 isl_basic_map *hull_i, *hull_j;
3664 isl_bool equal, empty;
3665 isl_aff_list *list;
3666 enum isl_change change;
3668 n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
3669 n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
3670 if (n_div_i < 0 || n_div_j < 0)
3671 return isl_change_error;
3672 if (n_div_i <= n_div_j)
3673 return isl_change_none;
3674 if (info[j].bmap->n_eq == 0)
3675 return isl_change_none;
3677 hull_i = isl_basic_map_copy(info[i].bmap);
3678 hull_i = isl_basic_map_plain_affine_hull(hull_i);
3679 hull_j = isl_basic_map_copy(info[j].bmap);
3680 hull_j = isl_basic_map_plain_affine_hull(hull_j);
3682 hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
3683 equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
3684 empty = isl_basic_map_plain_is_empty(hull_j);
3685 isl_basic_map_free(hull_i);
3687 if (equal < 0 || empty < 0)
3688 goto error;
3689 if (equal || empty) {
3690 isl_basic_map_free(hull_j);
3691 return isl_change_none;
3694 list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
3695 if (!list)
3696 return isl_change_error;
3697 n = isl_aff_list_n_aff(list);
3698 if (n < 0)
3699 change = isl_change_error;
3700 else if (n < n_div_i)
3701 change = isl_change_none;
3702 else
3703 change = coalesce_with_subs(i, j, info, list);
3705 isl_aff_list_free(list);
3707 return change;
3708 error:
3709 isl_basic_map_free(hull_j);
3710 return isl_change_error;
3713 /* Check if we can coalesce basic maps "i" and "j" after copying
3714 * those extra integer divisions in one of the basic maps that can
3715 * be simplified away using the extra equalities in the other basic map.
3716 * We require all divs to be known in both basic maps.
3717 * Furthermore, to simplify the comparison of div expressions,
3718 * we do not allow any nested integer divisions.
3720 static enum isl_change check_coalesce_eq(int i, int j,
3721 struct isl_coalesce_info *info)
3723 isl_bool known, nested;
3724 enum isl_change change;
3726 known = isl_basic_map_divs_known(info[i].bmap);
3727 if (known < 0 || !known)
3728 return known < 0 ? isl_change_error : isl_change_none;
3729 known = isl_basic_map_divs_known(info[j].bmap);
3730 if (known < 0 || !known)
3731 return known < 0 ? isl_change_error : isl_change_none;
3732 nested = has_nested_div(info[i].bmap);
3733 if (nested < 0 || nested)
3734 return nested < 0 ? isl_change_error : isl_change_none;
3735 nested = has_nested_div(info[j].bmap);
3736 if (nested < 0 || nested)
3737 return nested < 0 ? isl_change_error : isl_change_none;
3739 change = check_coalesce_into_eq(i, j, info);
3740 if (change != isl_change_none)
3741 return change;
3742 change = check_coalesce_into_eq(j, i, info);
3743 if (change != isl_change_none)
3744 return invert_change(change);
3746 return isl_change_none;
3749 /* Check if the union of the given pair of basic maps
3750 * can be represented by a single basic map.
3751 * If so, replace the pair by the single basic map and return
3752 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3753 * Otherwise, return isl_change_none.
3755 * We first check if the two basic maps live in the same local space,
3756 * after aligning the divs that differ by only an integer constant.
3757 * If so, we do the complete check. Otherwise, we check if they have
3758 * the same number of integer divisions and can be coalesced, if one is
3759 * an obvious subset of the other or if the extra integer divisions
3760 * of one basic map can be simplified away using the extra equalities
3761 * of the other basic map.
3763 * Note that trying to coalesce pairs of disjuncts with the same
3764 * number, but different local variables may drop the explicit
3765 * representation of some of these local variables.
3766 * This operation is therefore not performed when
3767 * the "coalesce_preserve_locals" option is set.
3769 static enum isl_change coalesce_pair(int i, int j,
3770 struct isl_coalesce_info *info)
3772 int preserve;
3773 isl_bool same;
3774 enum isl_change change;
3775 isl_ctx *ctx;
3777 if (harmonize_divs(&info[i], &info[j]) < 0)
3778 return isl_change_error;
3779 same = same_divs(info[i].bmap, info[j].bmap);
3780 if (same < 0)
3781 return isl_change_error;
3782 if (same)
3783 return coalesce_local_pair(i, j, info);
3785 ctx = isl_basic_map_get_ctx(info[i].bmap);
3786 preserve = isl_options_get_coalesce_preserve_locals(ctx);
3787 if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) {
3788 change = coalesce_local_pair(i, j, info);
3789 if (change != isl_change_none)
3790 return change;
3793 change = coalesce_divs(i, j, info);
3794 if (change != isl_change_none)
3795 return change;
3797 return check_coalesce_eq(i, j, info);
3800 /* Return the maximum of "a" and "b".
3802 static int isl_max(int a, int b)
3804 return a > b ? a : b;
3807 /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
3808 * with those in the range [start2, end2[, skipping basic maps
3809 * that have been removed (either before or within this function).
3811 * For each basic map i in the first range, we check if it can be coalesced
3812 * with respect to any previously considered basic map j in the second range.
3813 * If i gets dropped (because it was a subset of some j), then
3814 * we can move on to the next basic map.
3815 * If j gets dropped, we need to continue checking against the other
3816 * previously considered basic maps.
3817 * If the two basic maps got fused, then we recheck the fused basic map
3818 * against the previously considered basic maps, starting at i + 1
3819 * (even if start2 is greater than i + 1).
3821 static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
3822 int start1, int end1, int start2, int end2)
3824 int i, j;
3826 for (i = end1 - 1; i >= start1; --i) {
3827 if (info[i].removed)
3828 continue;
3829 for (j = isl_max(i + 1, start2); j < end2; ++j) {
3830 enum isl_change changed;
3832 if (info[j].removed)
3833 continue;
3834 if (info[i].removed)
3835 isl_die(ctx, isl_error_internal,
3836 "basic map unexpectedly removed",
3837 return -1);
3838 changed = coalesce_pair(i, j, info);
3839 switch (changed) {
3840 case isl_change_error:
3841 return -1;
3842 case isl_change_none:
3843 case isl_change_drop_second:
3844 continue;
3845 case isl_change_drop_first:
3846 j = end2;
3847 break;
3848 case isl_change_fuse:
3849 j = i;
3850 break;
3855 return 0;
3858 /* Pairwise coalesce the basic maps described by the "n" elements of "info".
3860 * We consider groups of basic maps that live in the same apparent
3861 * affine hull and we first coalesce within such a group before we
3862 * coalesce the elements in the group with elements of previously
3863 * considered groups. If a fuse happens during the second phase,
3864 * then we also reconsider the elements within the group.
3866 static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
3868 int start, end;
3870 for (end = n; end > 0; end = start) {
3871 start = end - 1;
3872 while (start >= 1 &&
3873 info[start - 1].hull_hash == info[start].hull_hash)
3874 start--;
3875 if (coalesce_range(ctx, info, start, end, start, end) < 0)
3876 return -1;
3877 if (coalesce_range(ctx, info, start, end, end, n) < 0)
3878 return -1;
3881 return 0;
3884 /* Update the basic maps in "map" based on the information in "info".
3885 * In particular, remove the basic maps that have been marked removed and
3886 * update the others based on the information in the corresponding tableau.
3887 * Since we detected implicit equalities without calling
3888 * isl_basic_map_gauss, we need to do it now.
3889 * Also call isl_basic_map_simplify if we may have lost the definition
3890 * of one or more integer divisions.
3891 * If a basic map is still equal to the one from which the corresponding "info"
3892 * entry was created, then redundant constraint and
3893 * implicit equality constraint detection have been performed
3894 * on the corresponding tableau and the basic map can be marked as such.
3896 static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
3897 int n, struct isl_coalesce_info *info)
3899 int i;
3901 if (!map)
3902 return NULL;
3904 for (i = n - 1; i >= 0; --i) {
3905 if (info[i].removed) {
3906 isl_basic_map_free(map->p[i]);
3907 if (i != map->n - 1)
3908 map->p[i] = map->p[map->n - 1];
3909 map->n--;
3910 continue;
3913 info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
3914 info[i].tab);
3915 info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
3916 if (info[i].simplify)
3917 info[i].bmap = isl_basic_map_simplify(info[i].bmap);
3918 info[i].bmap = isl_basic_map_finalize(info[i].bmap);
3919 if (!info[i].bmap)
3920 return isl_map_free(map);
3921 if (!info[i].modified) {
3922 ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
3923 ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
3925 isl_basic_map_free(map->p[i]);
3926 map->p[i] = info[i].bmap;
3927 info[i].bmap = NULL;
3930 return map;
3933 /* For each pair of basic maps in the map, check if the union of the two
3934 * can be represented by a single basic map.
3935 * If so, replace the pair by the single basic map and start over.
3937 * We factor out any (hidden) common factor from the constraint
3938 * coefficients to improve the detection of adjacent constraints.
3939 * Note that this function does not call isl_basic_map_gauss,
3940 * but it does make sure that only a single copy of the basic map
3941 * is affected. This means that isl_basic_map_gauss may have
3942 * to be called at the end of the computation (in update_basic_maps)
3943 * on this single copy to ensure that
3944 * the basic maps are not left in an unexpected state.
3946 * Since we are constructing the tableaus of the basic maps anyway,
3947 * we exploit them to detect implicit equalities and redundant constraints.
3948 * This also helps the coalescing as it can ignore the redundant constraints.
3949 * In order to avoid confusion, we make all implicit equalities explicit
3950 * in the basic maps. If the basic map only has a single reference
3951 * (this happens in particular if it was modified by
3952 * isl_basic_map_reduce_coefficients), then isl_basic_map_gauss
3953 * does not get called on the result. The call to
3954 * isl_basic_map_gauss in update_basic_maps resolves this as well.
3955 * For each basic map, we also compute the hash of the apparent affine hull
3956 * for use in coalesce.
3958 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map)
3960 int i;
3961 unsigned n;
3962 isl_ctx *ctx;
3963 struct isl_coalesce_info *info = NULL;
3965 map = isl_map_remove_empty_parts(map);
3966 if (!map)
3967 return NULL;
3969 if (map->n <= 1)
3970 return map;
3972 ctx = isl_map_get_ctx(map);
3973 map = isl_map_sort_divs(map);
3974 map = isl_map_cow(map);
3976 if (!map)
3977 return NULL;
3979 n = map->n;
3981 info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
3982 if (!info)
3983 goto error;
3985 for (i = 0; i < map->n; ++i) {
3986 map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
3987 if (!map->p[i])
3988 goto error;
3989 info[i].bmap = isl_basic_map_copy(map->p[i]);
3990 info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
3991 if (!info[i].tab)
3992 goto error;
3993 if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
3994 if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
3995 goto error;
3996 info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
3997 info[i].bmap);
3998 if (!info[i].bmap)
3999 goto error;
4000 if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
4001 if (isl_tab_detect_redundant(info[i].tab) < 0)
4002 goto error;
4003 if (coalesce_info_set_hull_hash(&info[i]) < 0)
4004 goto error;
4006 for (i = map->n - 1; i >= 0; --i)
4007 if (info[i].tab->empty)
4008 drop(&info[i]);
4010 if (coalesce(ctx, n, info) < 0)
4011 goto error;
4013 map = update_basic_maps(map, n, info);
4015 clear_coalesce_info(n, info);
4017 return map;
4018 error:
4019 clear_coalesce_info(n, info);
4020 isl_map_free(map);
4021 return NULL;
4024 /* For each pair of basic sets in the set, check if the union of the two
4025 * can be represented by a single basic set.
4026 * If so, replace the pair by the single basic set and start over.
4028 struct isl_set *isl_set_coalesce(struct isl_set *set)
4030 return set_from_map(isl_map_coalesce(set_to_map(set)));