2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(__isl_keep isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->eq
[a
];
34 bmap
->eq
[a
] = bmap
->eq
[b
];
38 static void swap_inequality(__isl_keep isl_basic_map
*bmap
, int a
, int b
)
41 isl_int
*t
= bmap
->ineq
[a
];
42 bmap
->ineq
[a
] = bmap
->ineq
[b
];
47 __isl_give isl_basic_map
*isl_basic_map_normalize_constraints(
48 __isl_take isl_basic_map
*bmap
)
52 isl_size total
= isl_basic_map_dim(bmap
, isl_dim_all
);
55 return isl_basic_map_free(bmap
);
58 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
59 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
60 if (isl_int_is_zero(gcd
)) {
61 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
62 bmap
= isl_basic_map_set_to_empty(bmap
);
65 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
69 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
70 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
71 if (isl_int_is_one(gcd
))
73 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
74 bmap
= isl_basic_map_set_to_empty(bmap
);
77 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
80 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
81 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
82 if (isl_int_is_zero(gcd
)) {
83 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
84 bmap
= isl_basic_map_set_to_empty(bmap
);
87 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
91 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
92 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
93 if (isl_int_is_one(gcd
))
95 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
96 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
103 isl_basic_map_free(bmap
);
107 __isl_give isl_basic_set
*isl_basic_set_normalize_constraints(
108 __isl_take isl_basic_set
*bset
)
110 isl_basic_map
*bmap
= bset_to_bmap(bset
);
111 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap
));
114 /* Reduce the coefficient of the variable at position "pos"
115 * in integer division "div", such that it lies in the half-open
116 * interval (1/2,1/2], extracting any excess value from this integer division.
117 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
118 * corresponds to the constant term.
120 * That is, the integer division is of the form
122 * floor((... + (c * d + r) * x_pos + ...)/d)
124 * with -d < 2 * r <= d.
127 * floor((... + r * x_pos + ...)/d) + c * x_pos
129 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
130 * Otherwise, c = floor((c * d + r)/d) + 1.
132 * This is the same normalization that is performed by isl_aff_floor.
134 static __isl_give isl_basic_map
*reduce_coefficient_in_div(
135 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
141 isl_int_fdiv_r(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
142 isl_int_mul_ui(shift
, shift
, 2);
143 add_one
= isl_int_gt(shift
, bmap
->div
[div
][0]);
144 isl_int_fdiv_q(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
146 isl_int_add_ui(shift
, shift
, 1);
147 isl_int_neg(shift
, shift
);
148 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
149 isl_int_clear(shift
);
154 /* Does the coefficient of the variable at position "pos"
155 * in integer division "div" need to be reduced?
156 * That is, does it lie outside the half-open interval (1/2,1/2]?
157 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
160 static isl_bool
needs_reduction(__isl_keep isl_basic_map
*bmap
, int div
,
165 if (isl_int_is_zero(bmap
->div
[div
][1 + pos
]))
166 return isl_bool_false
;
168 isl_int_mul_ui(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][1 + pos
], 2);
169 r
= isl_int_abs_ge(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]) &&
170 !isl_int_eq(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
171 isl_int_divexact_ui(bmap
->div
[div
][1 + pos
],
172 bmap
->div
[div
][1 + pos
], 2);
177 /* Reduce the coefficients (including the constant term) of
178 * integer division "div", if needed.
179 * In particular, make sure all coefficients lie in
180 * the half-open interval (1/2,1/2].
182 static __isl_give isl_basic_map
*reduce_div_coefficients_of_div(
183 __isl_take isl_basic_map
*bmap
, int div
)
188 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
190 return isl_basic_map_free(bmap
);
191 for (i
= 0; i
< 1 + total
; ++i
) {
194 reduce
= needs_reduction(bmap
, div
, i
);
196 return isl_basic_map_free(bmap
);
199 bmap
= reduce_coefficient_in_div(bmap
, div
, i
);
207 /* Reduce the coefficients (including the constant term) of
208 * the known integer divisions, if needed
209 * In particular, make sure all coefficients lie in
210 * the half-open interval (1/2,1/2].
212 static __isl_give isl_basic_map
*reduce_div_coefficients(
213 __isl_take isl_basic_map
*bmap
)
219 if (bmap
->n_div
== 0)
222 for (i
= 0; i
< bmap
->n_div
; ++i
) {
223 if (isl_int_is_zero(bmap
->div
[i
][0]))
225 bmap
= reduce_div_coefficients_of_div(bmap
, i
);
233 /* Remove any common factor in numerator and denominator of the div expression,
234 * not taking into account the constant term.
235 * That is, if the div is of the form
237 * floor((a + m f(x))/(m d))
241 * floor((floor(a/m) + f(x))/d)
243 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
244 * and can therefore not influence the result of the floor.
246 static __isl_give isl_basic_map
*normalize_div_expression(
247 __isl_take isl_basic_map
*bmap
, int div
)
249 isl_size total
= isl_basic_map_dim(bmap
, isl_dim_all
);
250 isl_ctx
*ctx
= bmap
->ctx
;
253 return isl_basic_map_free(bmap
);
254 if (isl_int_is_zero(bmap
->div
[div
][0]))
256 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
257 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
258 if (isl_int_is_one(ctx
->normalize_gcd
))
260 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
262 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
264 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
265 ctx
->normalize_gcd
, total
);
270 /* Remove any common factor in numerator and denominator of a div expression,
271 * not taking into account the constant term.
272 * That is, look for any div of the form
274 * floor((a + m f(x))/(m d))
278 * floor((floor(a/m) + f(x))/d)
280 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
281 * and can therefore not influence the result of the floor.
283 static __isl_give isl_basic_map
*normalize_div_expressions(
284 __isl_take isl_basic_map
*bmap
)
290 if (bmap
->n_div
== 0)
293 for (i
= 0; i
< bmap
->n_div
; ++i
)
294 bmap
= normalize_div_expression(bmap
, i
);
299 /* Assumes divs have been ordered if keep_divs is set.
301 static __isl_give isl_basic_map
*eliminate_var_using_equality(
302 __isl_take isl_basic_map
*bmap
,
303 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
310 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
311 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
312 if (total
< 0 || v_div
< 0)
313 return isl_basic_map_free(bmap
);
314 last_div
= isl_seq_last_non_zero(eq
+ 1 + v_div
, bmap
->n_div
);
315 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
316 if (bmap
->eq
[k
] == eq
)
318 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
322 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
323 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
326 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
327 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
331 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
332 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
333 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
334 ISL_F_CLR(bmap
, ISL_BASIC_MAP_SORTED
);
337 for (k
= 0; k
< bmap
->n_div
; ++k
) {
338 if (isl_int_is_zero(bmap
->div
[k
][0]))
340 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
344 /* We need to be careful about circular definitions,
345 * so for now we just remove the definition of div k
346 * if the equality contains any divs.
347 * If keep_divs is set, then the divs have been ordered
348 * and we can keep the definition as long as the result
351 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
352 isl_seq_elim(bmap
->div
[k
]+1, eq
,
353 1+pos
, 1+total
, &bmap
->div
[k
][0]);
354 bmap
= normalize_div_expression(bmap
, k
);
358 isl_seq_clr(bmap
->div
[k
], 1 + total
);
364 /* Assumes divs have been ordered if keep_divs is set.
366 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
367 isl_int
*eq
, unsigned div
, int keep_divs
)
372 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
374 return isl_basic_map_free(bmap
);
376 bmap
= eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
378 bmap
= isl_basic_map_drop_div(bmap
, div
);
383 /* Check if elimination of div "div" using equality "eq" would not
384 * result in a div depending on a later div.
386 static isl_bool
ok_to_eliminate_div(__isl_keep isl_basic_map
*bmap
, isl_int
*eq
,
394 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
396 return isl_bool_error
;
399 last_div
= isl_seq_last_non_zero(eq
+ 1 + v_div
, bmap
->n_div
);
400 if (last_div
< 0 || last_div
<= div
)
401 return isl_bool_true
;
403 for (k
= 0; k
<= last_div
; ++k
) {
404 if (isl_int_is_zero(bmap
->div
[k
][0]))
406 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
407 return isl_bool_false
;
410 return isl_bool_true
;
413 /* Eliminate divs based on equalities
415 static __isl_give isl_basic_map
*eliminate_divs_eq(
416 __isl_take isl_basic_map
*bmap
, int *progress
)
423 bmap
= isl_basic_map_order_divs(bmap
);
428 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
430 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
431 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
434 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
435 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
437 ok
= ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
);
439 return isl_basic_map_free(bmap
);
444 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
445 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
446 return isl_basic_map_free(bmap
);
451 return eliminate_divs_eq(bmap
, progress
);
455 /* Eliminate divs based on inequalities
457 static __isl_give isl_basic_map
*eliminate_divs_ineq(
458 __isl_take isl_basic_map
*bmap
, int *progress
)
469 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
471 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
472 for (i
= 0; i
< bmap
->n_eq
; ++i
)
473 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
477 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
478 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
480 if (i
< bmap
->n_ineq
)
483 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
484 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
486 bmap
= isl_basic_map_drop_div(bmap
, d
);
493 /* Does the equality constraint at position "eq" in "bmap" involve
494 * any local variables in the range [first, first + n)
495 * that are not marked as having an explicit representation?
497 static isl_bool
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map
*bmap
,
498 int eq
, unsigned first
, unsigned n
)
504 return isl_bool_error
;
506 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
507 for (i
= 0; i
< n
; ++i
) {
510 if (isl_int_is_zero(bmap
->eq
[eq
][o_div
+ first
+ i
]))
512 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, first
+ i
);
514 return isl_bool_error
;
516 return isl_bool_true
;
519 return isl_bool_false
;
522 /* The last local variable involved in the equality constraint
523 * at position "eq" in "bmap" is the local variable at position "div".
524 * It can therefore be used to extract an explicit representation
526 * Do so unless the local variable already has an explicit representation or
527 * the explicit representation would involve any other local variables
528 * that in turn do not have an explicit representation.
529 * An equality constraint involving local variables without an explicit
530 * representation can be used in isl_basic_map_drop_redundant_divs
531 * to separate out an independent local variable. Introducing
532 * an explicit representation here would block this transformation,
533 * while the partial explicit representation in itself is not very useful.
534 * Set *progress if anything is changed.
536 * The equality constraint is of the form
540 * with n a positive number. The explicit representation derived from
545 static __isl_give isl_basic_map
*set_div_from_eq(__isl_take isl_basic_map
*bmap
,
546 int div
, int eq
, int *progress
)
555 if (!isl_int_is_zero(bmap
->div
[div
][0]))
558 involves
= bmap_eq_involves_unknown_divs(bmap
, eq
, 0, div
);
560 return isl_basic_map_free(bmap
);
564 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
566 return isl_basic_map_free(bmap
);
567 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
568 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->eq
[eq
], 1 + total
);
569 isl_int_set_si(bmap
->div
[div
][1 + o_div
+ div
], 0);
570 isl_int_set(bmap
->div
[div
][0], bmap
->eq
[eq
][o_div
+ div
]);
577 /* Perform fangcheng (Gaussian elimination) on the equality
578 * constraints of "bmap".
579 * That is, put them into row-echelon form, starting from the last column
580 * backward and use them to eliminate the corresponding coefficients
581 * from all constraints.
583 * If "progress" is not NULL, then it gets set if the elimination
584 * results in any changes.
585 * The elimination process may result in some equality constraints
586 * getting interchanged or removed.
587 * If "swap" or "drop" are not NULL, then they get called when
588 * two equality constraints get interchanged or
589 * when a number of final equality constraints get removed.
590 * As a special case, if the input turns out to be empty,
591 * then drop gets called with the number of removed equality
592 * constraints set to the total number of equality constraints.
593 * If "swap" or "drop" are not NULL, then the local variables (if any)
594 * are assumed to be in a valid order.
596 __isl_give isl_basic_map
*isl_basic_map_gauss5(__isl_take isl_basic_map
*bmap
,
598 isl_stat (*swap
)(unsigned a
, unsigned b
, void *user
),
599 isl_stat (*drop
)(unsigned n
, void *user
), void *user
)
609 bmap
= isl_basic_map_order_divs(bmap
);
611 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
613 return isl_basic_map_free(bmap
);
615 total_var
= total
- bmap
->n_div
;
617 last_var
= total
- 1;
618 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
619 for (; last_var
>= 0; --last_var
) {
620 for (k
= done
; k
< bmap
->n_eq
; ++k
)
621 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
629 swap_equality(bmap
, k
, done
);
630 if (swap
&& swap(k
, done
, user
) < 0)
631 return isl_basic_map_free(bmap
);
633 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
634 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
636 bmap
= eliminate_var_using_equality(bmap
, last_var
,
637 bmap
->eq
[done
], 1, progress
);
639 if (last_var
>= total_var
)
640 bmap
= set_div_from_eq(bmap
, last_var
- total_var
,
645 if (done
== bmap
->n_eq
)
647 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
648 if (isl_int_is_zero(bmap
->eq
[k
][0]))
650 if (drop
&& drop(bmap
->n_eq
, user
) < 0)
651 return isl_basic_map_free(bmap
);
652 return isl_basic_map_set_to_empty(bmap
);
654 n_drop
= bmap
->n_eq
- done
;
655 bmap
= isl_basic_map_free_equality(bmap
, n_drop
);
656 if (drop
&& drop(n_drop
, user
) < 0)
657 return isl_basic_map_free(bmap
);
661 __isl_give isl_basic_map
*isl_basic_map_gauss(__isl_take isl_basic_map
*bmap
,
664 return isl_basic_map_gauss5(bmap
, progress
, NULL
, NULL
, NULL
);
667 __isl_give isl_basic_set
*isl_basic_set_gauss(
668 __isl_take isl_basic_set
*bset
, int *progress
)
670 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset
),
675 static unsigned int round_up(unsigned int v
)
686 /* Hash table of inequalities in a basic map.
687 * "index" is an array of addresses of inequalities in the basic map, some
688 * of which are NULL. The inequalities are hashed on the coefficients
689 * except the constant term.
690 * "size" is the number of elements in the array and is always a power of two
691 * "bits" is the number of bits need to represent an index into the array.
692 * "total" is the total dimension of the basic map.
694 struct isl_constraint_index
{
701 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
703 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
704 __isl_keep isl_basic_map
*bmap
)
710 return isl_stat_error
;
711 ci
->total
= isl_basic_map_dim(bmap
, isl_dim_all
);
713 return isl_stat_error
;
714 if (bmap
->n_ineq
== 0)
716 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
717 ci
->bits
= ffs(ci
->size
) - 1;
718 ctx
= isl_basic_map_get_ctx(bmap
);
719 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
721 return isl_stat_error
;
726 /* Free the memory allocated by create_constraint_index.
728 static void constraint_index_free(struct isl_constraint_index
*ci
)
733 /* Return the position in ci->index that contains the address of
734 * an inequality that is equal to *ineq up to the constant term,
735 * provided this address is not identical to "ineq".
736 * If there is no such inequality, then return the position where
737 * such an inequality should be inserted.
739 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
742 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
743 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
744 if (ineq
!= ci
->index
[h
] &&
745 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
750 /* Return the position in ci->index that contains the address of
751 * an inequality that is equal to the k'th inequality of "bmap"
752 * up to the constant term, provided it does not point to the very
754 * If there is no such inequality, then return the position where
755 * such an inequality should be inserted.
757 static int hash_index(struct isl_constraint_index
*ci
,
758 __isl_keep isl_basic_map
*bmap
, int k
)
760 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
763 static int set_hash_index(struct isl_constraint_index
*ci
,
764 __isl_keep isl_basic_set
*bset
, int k
)
766 return hash_index(ci
, bset
, k
);
769 /* Fill in the "ci" data structure with the inequalities of "bset".
771 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
772 __isl_keep isl_basic_set
*bset
)
776 if (create_constraint_index(ci
, bset
) < 0)
777 return isl_stat_error
;
779 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
780 h
= set_hash_index(ci
, bset
, k
);
781 ci
->index
[h
] = &bset
->ineq
[k
];
787 /* Is the inequality ineq (obviously) redundant with respect
788 * to the constraints in "ci"?
790 * Look for an inequality in "ci" with the same coefficients and then
791 * check if the contant term of "ineq" is greater than or equal
792 * to the constant term of that inequality. If so, "ineq" is clearly
795 * Note that hash_index_ineq ignores a stored constraint if it has
796 * the same address as the passed inequality. It is ok to pass
797 * the address of a local variable here since it will never be
798 * the same as the address of a constraint in "ci".
800 static isl_bool
constraint_index_is_redundant(struct isl_constraint_index
*ci
,
805 h
= hash_index_ineq(ci
, &ineq
);
807 return isl_bool_false
;
808 return isl_int_ge(ineq
[0], (*ci
->index
[h
])[0]);
811 /* If we can eliminate more than one div, then we need to make
812 * sure we do it from last div to first div, in order not to
813 * change the position of the other divs that still need to
816 static __isl_give isl_basic_map
*remove_duplicate_divs(
817 __isl_take isl_basic_map
*bmap
, int *progress
)
829 bmap
= isl_basic_map_order_divs(bmap
);
830 if (!bmap
|| bmap
->n_div
<= 1)
833 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
835 return isl_basic_map_free(bmap
);
836 total
= v_div
+ bmap
->n_div
;
839 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
840 if (!isl_int_is_zero(bmap
->div
[k
][0]))
845 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
848 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
849 bits
= ffs(size
) - 1;
850 index
= isl_calloc_array(ctx
, int, size
);
851 if (!elim_for
|| !index
)
853 eq
= isl_blk_alloc(ctx
, 1+total
);
854 if (isl_blk_is_error(eq
))
857 isl_seq_clr(eq
.data
, 1+total
);
858 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
859 for (--k
; k
>= 0; --k
) {
862 if (isl_int_is_zero(bmap
->div
[k
][0]))
865 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
866 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
867 if (isl_seq_eq(bmap
->div
[k
],
868 bmap
->div
[index
[h
]-1], 2+total
))
877 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
881 isl_int_set_si(eq
.data
[1 + v_div
+ k
], -1);
882 isl_int_set_si(eq
.data
[1 + v_div
+ l
], 1);
883 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
886 isl_int_set_si(eq
.data
[1 + v_div
+ k
], 0);
887 isl_int_set_si(eq
.data
[1 + v_div
+ l
], 0);
890 isl_blk_free(ctx
, eq
);
897 static int n_pure_div_eq(__isl_keep isl_basic_map
*bmap
)
902 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
905 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
906 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + v_div
+ j
]))
910 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + v_div
, j
) != -1)
916 /* Normalize divs that appear in equalities.
918 * In particular, we assume that bmap contains some equalities
923 * and we want to replace the set of e_i by a minimal set and
924 * such that the new e_i have a canonical representation in terms
926 * If any of the equalities involves more than one divs, then
927 * we currently simply bail out.
929 * Let us first additionally assume that all equalities involve
930 * a div. The equalities then express modulo constraints on the
931 * remaining variables and we can use "parameter compression"
932 * to find a minimal set of constraints. The result is a transformation
934 * x = T(x') = x_0 + G x'
936 * with G a lower-triangular matrix with all elements below the diagonal
937 * non-negative and smaller than the diagonal element on the same row.
938 * We first normalize x_0 by making the same property hold in the affine
940 * The rows i of G with a 1 on the diagonal do not impose any modulo
941 * constraint and simply express x_i = x'_i.
942 * For each of the remaining rows i, we introduce a div and a corresponding
943 * equality. In particular
945 * g_ii e_j = x_i - g_i(x')
947 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
948 * corresponding div (if g_kk != 1).
950 * If there are any equalities not involving any div, then we
951 * first apply a variable compression on the variables x:
953 * x = C x'' x'' = C_2 x
955 * and perform the above parameter compression on A C instead of on A.
956 * The resulting compression is then of the form
958 * x'' = T(x') = x_0 + G x'
960 * and in constructing the new divs and the corresponding equalities,
961 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
962 * by the corresponding row from C_2.
964 static __isl_give isl_basic_map
*normalize_divs(__isl_take isl_basic_map
*bmap
,
972 struct isl_mat
*T
= NULL
;
973 struct isl_mat
*C
= NULL
;
974 struct isl_mat
*C2
= NULL
;
982 if (bmap
->n_div
== 0)
988 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
991 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
992 div_eq
= n_pure_div_eq(bmap
);
993 if (v_div
< 0 || div_eq
< 0)
994 return isl_basic_map_free(bmap
);
998 if (div_eq
< bmap
->n_eq
) {
999 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
1000 bmap
->n_eq
- div_eq
, 0, 1 + v_div
);
1001 C
= isl_mat_variable_compression(B
, &C2
);
1004 if (C
->n_col
== 0) {
1005 bmap
= isl_basic_map_set_to_empty(bmap
);
1012 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
1015 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
1016 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + v_div
+ j
]))
1018 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + v_div
+ j
]);
1020 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + v_div
);
1023 B
= isl_mat_product(B
, C
);
1027 T
= isl_mat_parameter_compression(B
, d
);
1030 if (T
->n_col
== 0) {
1031 bmap
= isl_basic_map_set_to_empty(bmap
);
1037 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
1038 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
1039 if (isl_int_is_zero(v
))
1041 isl_mat_col_submul(T
, 0, v
, 1 + i
);
1044 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
1047 /* We have to be careful because dropping equalities may reorder them */
1049 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
1050 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1051 if (!isl_int_is_zero(bmap
->eq
[i
][1 + v_div
+ j
]))
1053 if (i
< bmap
->n_eq
) {
1054 bmap
= isl_basic_map_drop_div(bmap
, j
);
1055 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
1062 for (i
= 1; i
< T
->n_row
; ++i
) {
1063 if (isl_int_is_one(T
->row
[i
][i
]))
1068 if (needed
> dropped
) {
1069 bmap
= isl_basic_map_extend(bmap
, needed
, needed
, 0);
1073 for (i
= 1; i
< T
->n_row
; ++i
) {
1074 if (isl_int_is_one(T
->row
[i
][i
]))
1076 k
= isl_basic_map_alloc_div(bmap
);
1077 pos
[i
] = 1 + v_div
+ k
;
1078 isl_seq_clr(bmap
->div
[k
] + 1, 1 + v_div
+ bmap
->n_div
);
1079 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1081 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + v_div
);
1083 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1084 for (j
= 0; j
< i
; ++j
) {
1085 if (isl_int_is_zero(T
->row
[i
][j
]))
1087 if (pos
[j
] < T
->n_row
&& C2
)
1088 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1089 C2
->row
[pos
[j
]], 1 + v_div
);
1091 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1094 j
= isl_basic_map_alloc_equality(bmap
);
1095 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+v_div
+bmap
->n_div
);
1096 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1105 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1113 isl_basic_map_free(bmap
);
1117 static __isl_give isl_basic_map
*set_div_from_lower_bound(
1118 __isl_take isl_basic_map
*bmap
, int div
, int ineq
)
1120 unsigned total
= isl_basic_map_offset(bmap
, isl_dim_div
);
1122 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1123 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1124 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1125 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1126 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1131 /* Check whether it is ok to define a div based on an inequality.
1132 * To avoid the introduction of circular definitions of divs, we
1133 * do not allow such a definition if the resulting expression would refer to
1134 * any other undefined divs or if any known div is defined in
1135 * terms of the unknown div.
1137 static isl_bool
ok_to_set_div_from_bound(__isl_keep isl_basic_map
*bmap
,
1141 unsigned total
= isl_basic_map_offset(bmap
, isl_dim_div
);
1143 /* Not defined in terms of unknown divs */
1144 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1147 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1149 if (isl_int_is_zero(bmap
->div
[j
][0]))
1150 return isl_bool_false
;
1153 /* No other div defined in terms of this one => avoid loops */
1154 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1157 if (isl_int_is_zero(bmap
->div
[j
][0]))
1159 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1160 return isl_bool_false
;
1163 return isl_bool_true
;
1166 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1167 * be a better expression than the current one?
1169 * If we do not have any expression yet, then any expression would be better.
1170 * Otherwise we check if the last variable involved in the inequality
1171 * (disregarding the div that it would define) is in an earlier position
1172 * than the last variable involved in the current div expression.
1174 static isl_bool
better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1177 unsigned total
= isl_basic_map_offset(bmap
, isl_dim_div
);
1181 if (isl_int_is_zero(bmap
->div
[div
][0]))
1182 return isl_bool_true
;
1184 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1185 bmap
->n_div
- (div
+ 1)) >= 0)
1186 return isl_bool_false
;
1188 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1189 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1190 total
+ bmap
->n_div
);
1192 return last_ineq
< last_div
;
1195 /* Given two constraints "k" and "l" that are opposite to each other,
1196 * except for the constant term, check if we can use them
1197 * to obtain an expression for one of the hitherto unknown divs or
1198 * a "better" expression for a div for which we already have an expression.
1199 * "sum" is the sum of the constant terms of the constraints.
1200 * If this sum is strictly smaller than the coefficient of one
1201 * of the divs, then this pair can be used to define the div.
1202 * To avoid the introduction of circular definitions of divs, we
1203 * do not use the pair if the resulting expression would refer to
1204 * any other undefined divs or if any known div is defined in
1205 * terms of the unknown div.
1207 static __isl_give isl_basic_map
*check_for_div_constraints(
1208 __isl_take isl_basic_map
*bmap
, int k
, int l
, isl_int sum
,
1212 unsigned total
= isl_basic_map_offset(bmap
, isl_dim_div
);
1214 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1217 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1219 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1221 set_div
= better_div_constraint(bmap
, i
, k
);
1222 if (set_div
>= 0 && set_div
)
1223 set_div
= ok_to_set_div_from_bound(bmap
, i
, k
);
1225 return isl_basic_map_free(bmap
);
1228 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1229 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1231 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1239 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1240 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1242 struct isl_constraint_index ci
;
1244 isl_size total
= isl_basic_map_dim(bmap
, isl_dim_all
);
1247 if (total
< 0 || bmap
->n_ineq
<= 1)
1250 if (create_constraint_index(&ci
, bmap
) < 0)
1253 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1254 ci
.index
[h
] = &bmap
->ineq
[0];
1255 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1256 h
= hash_index(&ci
, bmap
, k
);
1258 ci
.index
[h
] = &bmap
->ineq
[k
];
1263 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1264 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1265 swap_inequality(bmap
, k
, l
);
1266 isl_basic_map_drop_inequality(bmap
, k
);
1270 for (k
= 0; bmap
&& k
< bmap
->n_ineq
-1; ++k
) {
1271 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1272 h
= hash_index(&ci
, bmap
, k
);
1273 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1276 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1277 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1278 if (isl_int_is_pos(sum
)) {
1280 bmap
= check_for_div_constraints(bmap
, k
, l
,
1284 if (isl_int_is_zero(sum
)) {
1285 /* We need to break out of the loop after these
1286 * changes since the contents of the hash
1287 * will no longer be valid.
1288 * Plus, we probably we want to regauss first.
1292 isl_basic_map_drop_inequality(bmap
, l
);
1293 isl_basic_map_inequality_to_equality(bmap
, k
);
1295 bmap
= isl_basic_map_set_to_empty(bmap
);
1300 constraint_index_free(&ci
);
1304 /* Detect all pairs of inequalities that form an equality.
1306 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1307 * Call it repeatedly while it is making progress.
1309 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1310 __isl_take isl_basic_map
*bmap
, int *progress
)
1316 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1318 if (progress
&& duplicate
)
1320 } while (duplicate
);
1325 /* Given a known integer division "div" that is not integral
1326 * (with denominator 1), eliminate it from the constraints in "bmap"
1327 * where it appears with a (positive or negative) unit coefficient.
1328 * If "progress" is not NULL, then it gets set if the elimination
1329 * results in any changes.
1333 * floor(e/m) + f >= 0
1341 * -floor(e/m) + f >= 0
1345 * -e + m f + m - 1 >= 0
1347 * The first conversion is valid because floor(e/m) >= -f is equivalent
1348 * to e/m >= -f because -f is an integral expression.
1349 * The second conversion follows from the fact that
1351 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1354 * Note that one of the div constraints may have been eliminated
1355 * due to being redundant with respect to the constraint that is
1356 * being modified by this function. The modified constraint may
1357 * no longer imply this div constraint, so we add it back to make
1358 * sure we do not lose any information.
1360 static __isl_give isl_basic_map
*eliminate_unit_div(
1361 __isl_take isl_basic_map
*bmap
, int div
, int *progress
)
1364 isl_size v_div
, dim
;
1367 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
1368 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
1369 if (v_div
< 0 || dim
< 0)
1370 return isl_basic_map_free(bmap
);
1372 ctx
= isl_basic_map_get_ctx(bmap
);
1374 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1377 if (!isl_int_is_one(bmap
->ineq
[j
][1 + v_div
+ div
]) &&
1378 !isl_int_is_negone(bmap
->ineq
[j
][1 + v_div
+ div
]))
1384 s
= isl_int_sgn(bmap
->ineq
[j
][1 + v_div
+ div
]);
1385 isl_int_set_si(bmap
->ineq
[j
][1 + v_div
+ div
], 0);
1387 isl_seq_combine(bmap
->ineq
[j
],
1388 ctx
->negone
, bmap
->div
[div
] + 1,
1389 bmap
->div
[div
][0], bmap
->ineq
[j
], 1 + dim
);
1391 isl_seq_combine(bmap
->ineq
[j
],
1392 ctx
->one
, bmap
->div
[div
] + 1,
1393 bmap
->div
[div
][0], bmap
->ineq
[j
], 1 + dim
);
1395 isl_int_add(bmap
->ineq
[j
][0],
1396 bmap
->ineq
[j
][0], bmap
->div
[div
][0]);
1397 isl_int_sub_ui(bmap
->ineq
[j
][0],
1398 bmap
->ineq
[j
][0], 1);
1401 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1402 bmap
= isl_basic_map_add_div_constraint(bmap
, div
, s
);
1410 /* Eliminate selected known divs from constraints where they appear with
1411 * a (positive or negative) unit coefficient.
1412 * In particular, only handle those for which "select" returns isl_bool_true.
1413 * If "progress" is not NULL, then it gets set if the elimination
1414 * results in any changes.
1416 * We skip integral divs, i.e., those with denominator 1, as we would
1417 * risk eliminating the div from the div constraints. We do not need
1418 * to handle those divs here anyway since the div constraints will turn
1419 * out to form an equality and this equality can then be used to eliminate
1420 * the div from all constraints.
1422 static __isl_give isl_basic_map
*eliminate_selected_unit_divs(
1423 __isl_take isl_basic_map
*bmap
,
1424 isl_bool (*select
)(__isl_keep isl_basic_map
*bmap
, int div
),
1432 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1435 if (isl_int_is_zero(bmap
->div
[i
][0]))
1437 if (isl_int_is_one(bmap
->div
[i
][0]))
1439 selected
= select(bmap
, i
);
1441 return isl_basic_map_free(bmap
);
1444 bmap
= eliminate_unit_div(bmap
, i
, progress
);
1452 /* eliminate_selected_unit_divs callback that selects every
1455 static isl_bool
is_any_div(__isl_keep isl_basic_map
*bmap
, int div
)
1457 return isl_bool_true
;
1460 /* Eliminate known divs from constraints where they appear with
1461 * a (positive or negative) unit coefficient.
1462 * If "progress" is not NULL, then it gets set if the elimination
1463 * results in any changes.
1465 static __isl_give isl_basic_map
*eliminate_unit_divs(
1466 __isl_take isl_basic_map
*bmap
, int *progress
)
1468 return eliminate_selected_unit_divs(bmap
, &is_any_div
, progress
);
1471 /* eliminate_selected_unit_divs callback that selects
1472 * integer divisions that only appear with
1473 * a (positive or negative) unit coefficient
1474 * (outside their div constraints).
1476 static isl_bool
is_pure_unit_div(__isl_keep isl_basic_map
*bmap
, int div
)
1479 isl_size v_div
, n_ineq
;
1481 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
1482 n_ineq
= isl_basic_map_n_inequality(bmap
);
1483 if (v_div
< 0 || n_ineq
< 0)
1484 return isl_bool_error
;
1486 for (i
= 0; i
< n_ineq
; ++i
) {
1489 if (isl_int_is_zero(bmap
->ineq
[i
][1 + v_div
+ div
]))
1491 skip
= isl_basic_map_is_div_constraint(bmap
,
1492 bmap
->ineq
[i
], div
);
1494 return isl_bool_error
;
1497 if (!isl_int_is_one(bmap
->ineq
[i
][1 + v_div
+ div
]) &&
1498 !isl_int_is_negone(bmap
->ineq
[i
][1 + v_div
+ div
]))
1499 return isl_bool_false
;
1502 return isl_bool_true
;
1505 /* Eliminate known divs from constraints where they appear with
1506 * a (positive or negative) unit coefficient,
1507 * but only if they do not appear in any other constraints
1508 * (other than the div constraints).
1510 __isl_give isl_basic_map
*isl_basic_map_eliminate_pure_unit_divs(
1511 __isl_take isl_basic_map
*bmap
)
1513 return eliminate_selected_unit_divs(bmap
, &is_pure_unit_div
, NULL
);
1516 __isl_give isl_basic_map
*isl_basic_map_simplify(__isl_take isl_basic_map
*bmap
)
1525 empty
= isl_basic_map_plain_is_empty(bmap
);
1527 return isl_basic_map_free(bmap
);
1530 bmap
= isl_basic_map_normalize_constraints(bmap
);
1531 bmap
= reduce_div_coefficients(bmap
);
1532 bmap
= normalize_div_expressions(bmap
);
1533 bmap
= remove_duplicate_divs(bmap
, &progress
);
1534 bmap
= eliminate_unit_divs(bmap
, &progress
);
1535 bmap
= eliminate_divs_eq(bmap
, &progress
);
1536 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1537 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1538 /* requires equalities in normal form */
1539 bmap
= normalize_divs(bmap
, &progress
);
1540 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1542 if (bmap
&& progress
)
1543 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1548 __isl_give isl_basic_set
*isl_basic_set_simplify(
1549 __isl_take isl_basic_set
*bset
)
1551 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset
)));
1555 isl_bool
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1556 isl_int
*constraint
, unsigned div
)
1561 return isl_bool_error
;
1563 pos
= isl_basic_map_offset(bmap
, isl_dim_div
) + div
;
1565 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1567 isl_int_sub(bmap
->div
[div
][1],
1568 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1569 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1570 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1571 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1572 isl_int_add(bmap
->div
[div
][1],
1573 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1575 return isl_bool_false
;
1576 if (isl_seq_first_non_zero(constraint
+pos
+1,
1577 bmap
->n_div
-div
-1) != -1)
1578 return isl_bool_false
;
1579 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1580 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1581 return isl_bool_false
;
1582 if (isl_seq_first_non_zero(constraint
+pos
+1,
1583 bmap
->n_div
-div
-1) != -1)
1584 return isl_bool_false
;
1586 return isl_bool_false
;
1588 return isl_bool_true
;
1591 /* If the only constraints a div d=floor(f/m)
1592 * appears in are its two defining constraints
1595 * -(f - (m - 1)) + m d >= 0
1597 * then it can safely be removed.
1599 static isl_bool
div_is_redundant(__isl_keep isl_basic_map
*bmap
, int div
)
1602 isl_size v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
1603 unsigned pos
= 1 + v_div
+ div
;
1606 return isl_bool_error
;
1608 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1609 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1610 return isl_bool_false
;
1612 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1615 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1617 red
= isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
);
1618 if (red
< 0 || !red
)
1622 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1623 if (isl_int_is_zero(bmap
->div
[i
][0]))
1625 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1626 return isl_bool_false
;
1629 return isl_bool_true
;
1633 * Remove divs that don't occur in any of the constraints or other divs.
1634 * These can arise when dropping constraints from a basic map or
1635 * when the divs of a basic map have been temporarily aligned
1636 * with the divs of another basic map.
1638 static __isl_give isl_basic_map
*remove_redundant_divs(
1639 __isl_take isl_basic_map
*bmap
)
1644 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
1646 return isl_basic_map_free(bmap
);
1648 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1651 redundant
= div_is_redundant(bmap
, i
);
1653 return isl_basic_map_free(bmap
);
1656 bmap
= isl_basic_map_drop_constraints_involving(bmap
,
1658 bmap
= isl_basic_map_drop_div(bmap
, i
);
1663 /* Mark "bmap" as final, without checking for obviously redundant
1664 * integer divisions. This function should be used when "bmap"
1665 * is known not to involve any such integer divisions.
1667 __isl_give isl_basic_map
*isl_basic_map_mark_final(
1668 __isl_take isl_basic_map
*bmap
)
1672 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1676 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1678 __isl_give isl_basic_map
*isl_basic_map_finalize(__isl_take isl_basic_map
*bmap
)
1680 bmap
= remove_redundant_divs(bmap
);
1681 bmap
= isl_basic_map_mark_final(bmap
);
1685 __isl_give isl_basic_set
*isl_basic_set_finalize(
1686 __isl_take isl_basic_set
*bset
)
1688 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset
)));
1691 /* Remove definition of any div that is defined in terms of the given variable.
1692 * The div itself is not removed. Functions such as
1693 * eliminate_divs_ineq depend on the other divs remaining in place.
1695 static __isl_give isl_basic_map
*remove_dependent_vars(
1696 __isl_take isl_basic_map
*bmap
, int pos
)
1703 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1704 if (isl_int_is_zero(bmap
->div
[i
][0]))
1706 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1708 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
1715 /* Eliminate the specified variables from the constraints using
1716 * Fourier-Motzkin. The variables themselves are not removed.
1718 __isl_give isl_basic_map
*isl_basic_map_eliminate_vars(
1719 __isl_take isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1728 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
1730 return isl_basic_map_free(bmap
);
1732 bmap
= isl_basic_map_cow(bmap
);
1733 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1734 bmap
= remove_dependent_vars(bmap
, d
);
1738 for (d
= pos
+ n
- 1;
1739 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1740 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1741 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1742 int n_lower
, n_upper
;
1745 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1746 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1748 bmap
= eliminate_var_using_equality(bmap
, d
,
1749 bmap
->eq
[i
], 0, NULL
);
1750 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
1751 return isl_basic_map_free(bmap
);
1759 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1760 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1762 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1765 bmap
= isl_basic_map_extend_constraints(bmap
,
1766 0, n_lower
* n_upper
);
1769 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1771 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1774 for (j
= 0; j
< i
; ++j
) {
1775 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1778 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1779 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1781 k
= isl_basic_map_alloc_inequality(bmap
);
1784 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1786 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1787 1+d
, 1+total
, NULL
);
1789 isl_basic_map_drop_inequality(bmap
, i
);
1792 if (n_lower
> 0 && n_upper
> 0) {
1793 bmap
= isl_basic_map_normalize_constraints(bmap
);
1794 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1796 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1797 bmap
= isl_basic_map_remove_redundancies(bmap
);
1801 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1806 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1809 isl_basic_map_free(bmap
);
1813 __isl_give isl_basic_set
*isl_basic_set_eliminate_vars(
1814 __isl_take isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1816 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset
),
1820 /* Eliminate the specified n dimensions starting at first from the
1821 * constraints, without removing the dimensions from the space.
1822 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1823 * Otherwise, they are projected out and the original space is restored.
1825 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1826 __isl_take isl_basic_map
*bmap
,
1827 enum isl_dim_type type
, unsigned first
, unsigned n
)
1836 if (isl_basic_map_check_range(bmap
, type
, first
, n
) < 0)
1837 return isl_basic_map_free(bmap
);
1839 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1840 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1841 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1842 return isl_basic_map_finalize(bmap
);
1845 space
= isl_basic_map_get_space(bmap
);
1846 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1847 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1848 bmap
= isl_basic_map_reset_space(bmap
, space
);
1852 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1853 __isl_take isl_basic_set
*bset
,
1854 enum isl_dim_type type
, unsigned first
, unsigned n
)
1856 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1859 /* Remove all constraints from "bmap" that reference any unknown local
1860 * variables (directly or indirectly).
1862 * Dropping all constraints on a local variable will make it redundant,
1863 * so it will get removed implicitly by
1864 * isl_basic_map_drop_constraints_involving_dims. Some other local
1865 * variables may also end up becoming redundant if they only appear
1866 * in constraints together with the unknown local variable.
1867 * Therefore, start over after calling
1868 * isl_basic_map_drop_constraints_involving_dims.
1870 __isl_give isl_basic_map
*isl_basic_map_drop_constraints_involving_unknown_divs(
1871 __isl_take isl_basic_map
*bmap
)
1877 known
= isl_basic_map_divs_known(bmap
);
1879 return isl_basic_map_free(bmap
);
1883 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1885 return isl_basic_map_free(bmap
);
1886 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
) - 1;
1888 for (i
= 0; i
< n_div
; ++i
) {
1889 known
= isl_basic_map_div_is_known(bmap
, i
);
1891 return isl_basic_map_free(bmap
);
1894 bmap
= remove_dependent_vars(bmap
, o_div
+ i
);
1895 bmap
= isl_basic_map_drop_constraints_involving_dims(bmap
,
1897 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1899 return isl_basic_map_free(bmap
);
1906 /* Remove all constraints from "bset" that reference any unknown local
1907 * variables (directly or indirectly).
1909 __isl_give isl_basic_set
*isl_basic_set_drop_constraints_involving_unknown_divs(
1910 __isl_take isl_basic_set
*bset
)
1912 isl_basic_map
*bmap
;
1914 bmap
= bset_to_bmap(bset
);
1915 bmap
= isl_basic_map_drop_constraints_involving_unknown_divs(bmap
);
1916 return bset_from_bmap(bmap
);
1919 /* Remove all constraints from "map" that reference any unknown local
1920 * variables (directly or indirectly).
1922 * Since constraints may get dropped from the basic maps,
1923 * they may no longer be disjoint from each other.
1925 __isl_give isl_map
*isl_map_drop_constraints_involving_unknown_divs(
1926 __isl_take isl_map
*map
)
1931 known
= isl_map_divs_known(map
);
1933 return isl_map_free(map
);
1937 map
= isl_map_cow(map
);
1941 for (i
= 0; i
< map
->n
; ++i
) {
1943 isl_basic_map_drop_constraints_involving_unknown_divs(
1946 return isl_map_free(map
);
1950 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
1955 /* Don't assume equalities are in order, because align_divs
1956 * may have changed the order of the divs.
1958 static void compute_elimination_index(__isl_keep isl_basic_map
*bmap
, int *elim
,
1963 for (d
= 0; d
< len
; ++d
)
1965 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1966 for (d
= len
- 1; d
>= 0; --d
) {
1967 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1975 static void set_compute_elimination_index(__isl_keep isl_basic_set
*bset
,
1976 int *elim
, unsigned len
)
1978 compute_elimination_index(bset_to_bmap(bset
), elim
, len
);
1981 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1982 __isl_keep isl_basic_map
*bmap
, int *elim
, unsigned total
)
1987 for (d
= total
- 1; d
>= 0; --d
) {
1988 if (isl_int_is_zero(src
[1+d
]))
1993 isl_seq_cpy(dst
, src
, 1 + total
);
1996 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
2001 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
2002 __isl_keep isl_basic_set
*bset
, int *elim
, unsigned total
)
2004 return reduced_using_equalities(dst
, src
,
2005 bset_to_bmap(bset
), elim
, total
);
2008 static __isl_give isl_basic_set
*isl_basic_set_reduce_using_equalities(
2009 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2015 if (!bset
|| !context
)
2018 if (context
->n_eq
== 0) {
2019 isl_basic_set_free(context
);
2023 bset
= isl_basic_set_cow(bset
);
2024 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2028 elim
= isl_alloc_array(bset
->ctx
, int, dim
);
2031 set_compute_elimination_index(context
, elim
, dim
);
2032 for (i
= 0; i
< bset
->n_eq
; ++i
)
2033 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
2034 context
, elim
, dim
);
2035 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2036 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
2037 context
, elim
, dim
);
2038 isl_basic_set_free(context
);
2040 bset
= isl_basic_set_simplify(bset
);
2041 bset
= isl_basic_set_finalize(bset
);
2044 isl_basic_set_free(bset
);
2045 isl_basic_set_free(context
);
2049 /* For each inequality in "ineq" that is a shifted (more relaxed)
2050 * copy of an inequality in "context", mark the corresponding entry
2052 * If an inequality only has a non-negative constant term, then
2055 static isl_stat
mark_shifted_constraints(__isl_keep isl_mat
*ineq
,
2056 __isl_keep isl_basic_set
*context
, int *row
)
2058 struct isl_constraint_index ci
;
2059 isl_size n_ineq
, cols
;
2063 if (!ineq
|| !context
)
2064 return isl_stat_error
;
2065 if (context
->n_ineq
== 0)
2067 if (setup_constraint_index(&ci
, context
) < 0)
2068 return isl_stat_error
;
2070 n_ineq
= isl_mat_rows(ineq
);
2071 cols
= isl_mat_cols(ineq
);
2072 if (n_ineq
< 0 || cols
< 0)
2073 return isl_stat_error
;
2075 for (k
= 0; k
< n_ineq
; ++k
) {
2079 l
= isl_seq_first_non_zero(ineq
->row
[k
] + 1, total
);
2080 if (l
< 0 && isl_int_is_nonneg(ineq
->row
[k
][0])) {
2084 redundant
= constraint_index_is_redundant(&ci
, ineq
->row
[k
]);
2091 constraint_index_free(&ci
);
2094 constraint_index_free(&ci
);
2095 return isl_stat_error
;
2098 static __isl_give isl_basic_set
*remove_shifted_constraints(
2099 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*context
)
2101 struct isl_constraint_index ci
;
2104 if (!bset
|| !context
)
2107 if (context
->n_ineq
== 0)
2109 if (setup_constraint_index(&ci
, context
) < 0)
2112 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
2115 redundant
= constraint_index_is_redundant(&ci
, bset
->ineq
[k
]);
2120 bset
= isl_basic_set_cow(bset
);
2123 isl_basic_set_drop_inequality(bset
, k
);
2126 constraint_index_free(&ci
);
2129 constraint_index_free(&ci
);
2133 /* Remove constraints from "bmap" that are identical to constraints
2134 * in "context" or that are more relaxed (greater constant term).
2136 * We perform the test for shifted copies on the pure constraints
2137 * in remove_shifted_constraints.
2139 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
2140 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
2142 isl_basic_set
*bset
, *bset_context
;
2144 if (!bmap
|| !context
)
2147 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
2148 isl_basic_map_free(context
);
2152 bmap
= isl_basic_map_order_divs(bmap
);
2153 context
= isl_basic_map_align_divs(context
, bmap
);
2154 bmap
= isl_basic_map_align_divs(bmap
, context
);
2156 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
2157 bset_context
= isl_basic_map_underlying_set(context
);
2158 bset
= remove_shifted_constraints(bset
, bset_context
);
2159 isl_basic_set_free(bset_context
);
2161 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2165 isl_basic_map_free(bmap
);
2166 isl_basic_map_free(context
);
2170 /* Does the (linear part of a) constraint "c" involve any of the "len"
2171 * "relevant" dimensions?
2173 static int is_related(isl_int
*c
, int len
, int *relevant
)
2177 for (i
= 0; i
< len
; ++i
) {
2180 if (!isl_int_is_zero(c
[i
]))
2187 /* Drop constraints from "bmap" that do not involve any of
2188 * the dimensions marked "relevant".
2190 static __isl_give isl_basic_map
*drop_unrelated_constraints(
2191 __isl_take isl_basic_map
*bmap
, int *relevant
)
2196 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2198 return isl_basic_map_free(bmap
);
2199 for (i
= 0; i
< dim
; ++i
)
2205 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
)
2206 if (!is_related(bmap
->eq
[i
] + 1, dim
, relevant
)) {
2207 bmap
= isl_basic_map_cow(bmap
);
2208 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
2209 return isl_basic_map_free(bmap
);
2212 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
)
2213 if (!is_related(bmap
->ineq
[i
] + 1, dim
, relevant
)) {
2214 bmap
= isl_basic_map_cow(bmap
);
2215 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
2216 return isl_basic_map_free(bmap
);
2222 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2224 * In particular, for any variable involved in the constraint,
2225 * find the actual group id from before and replace the group
2226 * of the corresponding variable by the minimal group of all
2227 * the variables involved in the constraint considered so far
2228 * (if this minimum is smaller) or replace the minimum by this group
2229 * (if the minimum is larger).
2231 * At the end, all the variables in "c" will (indirectly) point
2232 * to the minimal of the groups that they referred to originally.
2234 static void update_groups(int dim
, int *group
, isl_int
*c
)
2239 for (j
= 0; j
< dim
; ++j
) {
2240 if (isl_int_is_zero(c
[j
]))
2242 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2243 group
[j
] = group
[group
[j
]];
2244 if (group
[j
] == min
)
2246 if (group
[j
] < min
) {
2247 if (min
>= 0 && min
< dim
)
2248 group
[min
] = group
[j
];
2251 group
[group
[j
]] = min
;
2255 /* Allocate an array of groups of variables, one for each variable
2256 * in "context", initialized to zero.
2258 static int *alloc_groups(__isl_keep isl_basic_set
*context
)
2263 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2266 ctx
= isl_basic_set_get_ctx(context
);
2267 return isl_calloc_array(ctx
, int, dim
);
2270 /* Drop constraints from "bmap" that only involve variables that are
2271 * not related to any of the variables marked with a "-1" in "group".
2273 * We construct groups of variables that collect variables that
2274 * (indirectly) appear in some common constraint of "bmap".
2275 * Each group is identified by the first variable in the group,
2276 * except for the special group of variables that was already identified
2277 * in the input as -1 (or are related to those variables).
2278 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2279 * otherwise the group of i is the group of group[i].
2281 * We first initialize groups for the remaining variables.
2282 * Then we iterate over the constraints of "bmap" and update the
2283 * group of the variables in the constraint by the smallest group.
2284 * Finally, we resolve indirect references to groups by running over
2287 * After computing the groups, we drop constraints that do not involve
2288 * any variables in the -1 group.
2290 __isl_give isl_basic_map
*isl_basic_map_drop_unrelated_constraints(
2291 __isl_take isl_basic_map
*bmap
, __isl_take
int *group
)
2297 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2299 return isl_basic_map_free(bmap
);
2302 for (i
= 0; i
< dim
; ++i
)
2304 last
= group
[i
] = i
;
2310 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2311 update_groups(dim
, group
, bmap
->eq
[i
] + 1);
2312 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
2313 update_groups(dim
, group
, bmap
->ineq
[i
] + 1);
2315 for (i
= 0; i
< dim
; ++i
)
2317 group
[i
] = group
[group
[i
]];
2319 for (i
= 0; i
< dim
; ++i
)
2320 group
[i
] = group
[i
] == -1;
2322 bmap
= drop_unrelated_constraints(bmap
, group
);
2328 /* Drop constraints from "context" that are irrelevant for computing
2329 * the gist of "bset".
2331 * In particular, drop constraints in variables that are not related
2332 * to any of the variables involved in the constraints of "bset"
2333 * in the sense that there is no sequence of constraints that connects them.
2335 * We first mark all variables that appear in "bset" as belonging
2336 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2338 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2339 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2345 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2346 if (!context
|| dim
< 0)
2347 return isl_basic_set_free(context
);
2349 group
= alloc_groups(context
);
2352 return isl_basic_set_free(context
);
2354 for (i
= 0; i
< dim
; ++i
) {
2355 for (j
= 0; j
< bset
->n_eq
; ++j
)
2356 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2358 if (j
< bset
->n_eq
) {
2362 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2363 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2365 if (j
< bset
->n_ineq
)
2369 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2372 /* Drop constraints from "context" that are irrelevant for computing
2373 * the gist of the inequalities "ineq".
2374 * Inequalities in "ineq" for which the corresponding element of row
2375 * is set to -1 have already been marked for removal and should be ignored.
2377 * In particular, drop constraints in variables that are not related
2378 * to any of the variables involved in "ineq"
2379 * in the sense that there is no sequence of constraints that connects them.
2381 * We first mark all variables that appear in "bset" as belonging
2382 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2384 static __isl_give isl_basic_set
*drop_irrelevant_constraints_marked(
2385 __isl_take isl_basic_set
*context
, __isl_keep isl_mat
*ineq
, int *row
)
2392 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2393 n
= isl_mat_rows(ineq
);
2394 if (dim
< 0 || n
< 0)
2395 return isl_basic_set_free(context
);
2397 group
= alloc_groups(context
);
2400 return isl_basic_set_free(context
);
2402 for (i
= 0; i
< dim
; ++i
) {
2403 for (j
= 0; j
< n
; ++j
) {
2406 if (!isl_int_is_zero(ineq
->row
[j
][1 + i
]))
2413 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2416 /* Do all "n" entries of "row" contain a negative value?
2418 static int all_neg(int *row
, int n
)
2422 for (i
= 0; i
< n
; ++i
)
2429 /* Update the inequalities in "bset" based on the information in "row"
2432 * In particular, the array "row" contains either -1, meaning that
2433 * the corresponding inequality of "bset" is redundant, or the index
2434 * of an inequality in "tab".
2436 * If the row entry is -1, then drop the inequality.
2437 * Otherwise, if the constraint is marked redundant in the tableau,
2438 * then drop the inequality. Similarly, if it is marked as an equality
2439 * in the tableau, then turn the inequality into an equality and
2440 * perform Gaussian elimination.
2442 static __isl_give isl_basic_set
*update_ineq(__isl_take isl_basic_set
*bset
,
2443 __isl_keep
int *row
, struct isl_tab
*tab
)
2448 int found_equality
= 0;
2452 if (tab
&& tab
->empty
)
2453 return isl_basic_set_set_to_empty(bset
);
2455 n_ineq
= bset
->n_ineq
;
2456 for (i
= n_ineq
- 1; i
>= 0; --i
) {
2458 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2459 return isl_basic_set_free(bset
);
2465 if (isl_tab_is_equality(tab
, n_eq
+ row
[i
])) {
2466 isl_basic_map_inequality_to_equality(bset
, i
);
2468 } else if (isl_tab_is_redundant(tab
, n_eq
+ row
[i
])) {
2469 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2470 return isl_basic_set_free(bset
);
2475 bset
= isl_basic_set_gauss(bset
, NULL
);
2476 bset
= isl_basic_set_finalize(bset
);
2480 /* Update the inequalities in "bset" based on the information in "row"
2481 * and "tab" and free all arguments (other than "bset").
2483 static __isl_give isl_basic_set
*update_ineq_free(
2484 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*ineq
,
2485 __isl_take isl_basic_set
*context
, __isl_take
int *row
,
2486 struct isl_tab
*tab
)
2489 isl_basic_set_free(context
);
2491 bset
= update_ineq(bset
, row
, tab
);
2498 /* Remove all information from bset that is redundant in the context
2500 * "ineq" contains the (possibly transformed) inequalities of "bset",
2501 * in the same order.
2502 * The (explicit) equalities of "bset" are assumed to have been taken
2503 * into account by the transformation such that only the inequalities
2505 * "context" is assumed not to be empty.
2507 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2508 * A value of -1 means that the inequality is obviously redundant and may
2509 * not even appear in "tab".
2511 * We first mark the inequalities of "bset"
2512 * that are obviously redundant with respect to some inequality in "context".
2513 * Then we remove those constraints from "context" that have become
2514 * irrelevant for computing the gist of "bset".
2515 * Note that this removal of constraints cannot be replaced by
2516 * a factorization because factors in "bset" may still be connected
2517 * to each other through constraints in "context".
2519 * If there are any inequalities left, we construct a tableau for
2520 * the context and then add the inequalities of "bset".
2521 * Before adding these inequalities, we freeze all constraints such that
2522 * they won't be considered redundant in terms of the constraints of "bset".
2523 * Then we detect all redundant constraints (among the
2524 * constraints that weren't frozen), first by checking for redundancy in the
2525 * the tableau and then by checking if replacing a constraint by its negation
2526 * would lead to an empty set. This last step is fairly expensive
2527 * and could be optimized by more reuse of the tableau.
2528 * Finally, we update bset according to the results.
2530 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2531 __isl_take isl_mat
*ineq
, __isl_take isl_basic_set
*context
)
2536 isl_basic_set
*combined
= NULL
;
2537 struct isl_tab
*tab
= NULL
;
2538 unsigned n_eq
, context_ineq
;
2540 if (!bset
|| !ineq
|| !context
)
2543 if (bset
->n_ineq
== 0 || isl_basic_set_plain_is_universe(context
)) {
2544 isl_basic_set_free(context
);
2549 ctx
= isl_basic_set_get_ctx(context
);
2550 row
= isl_calloc_array(ctx
, int, bset
->n_ineq
);
2554 if (mark_shifted_constraints(ineq
, context
, row
) < 0)
2556 if (all_neg(row
, bset
->n_ineq
))
2557 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2559 context
= drop_irrelevant_constraints_marked(context
, ineq
, row
);
2562 if (isl_basic_set_plain_is_universe(context
))
2563 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2565 n_eq
= context
->n_eq
;
2566 context_ineq
= context
->n_ineq
;
2567 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2568 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2569 tab
= isl_tab_from_basic_set(combined
, 0);
2570 for (i
= 0; i
< context_ineq
; ++i
)
2571 if (isl_tab_freeze_constraint(tab
, n_eq
+ i
) < 0)
2573 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2576 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2579 combined
= isl_basic_set_add_ineq(combined
, ineq
->row
[i
]);
2580 if (isl_tab_add_ineq(tab
, ineq
->row
[i
]) < 0)
2584 if (isl_tab_detect_implicit_equalities(tab
) < 0)
2586 if (isl_tab_detect_redundant(tab
) < 0)
2588 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
2589 isl_basic_set
*test
;
2595 if (tab
->con
[n_eq
+ r
].is_redundant
)
2597 test
= isl_basic_set_dup(combined
);
2598 test
= isl_inequality_negate(test
, r
);
2599 test
= isl_basic_set_update_from_tab(test
, tab
);
2600 is_empty
= isl_basic_set_is_empty(test
);
2601 isl_basic_set_free(test
);
2605 tab
->con
[n_eq
+ r
].is_redundant
= 1;
2607 bset
= update_ineq_free(bset
, ineq
, context
, row
, tab
);
2609 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2610 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2613 isl_basic_set_free(combined
);
2619 isl_basic_set_free(combined
);
2620 isl_basic_set_free(context
);
2621 isl_basic_set_free(bset
);
2625 /* Extract the inequalities of "bset" as an isl_mat.
2627 static __isl_give isl_mat
*extract_ineq(__isl_keep isl_basic_set
*bset
)
2633 total
= isl_basic_set_dim(bset
, isl_dim_all
);
2637 ctx
= isl_basic_set_get_ctx(bset
);
2638 ineq
= isl_mat_sub_alloc6(ctx
, bset
->ineq
, 0, bset
->n_ineq
,
2644 /* Remove all information from "bset" that is redundant in the context
2645 * of "context", for the case where both "bset" and "context" are
2648 static __isl_give isl_basic_set
*uset_gist_uncompressed(
2649 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2653 ineq
= extract_ineq(bset
);
2654 return uset_gist_full(bset
, ineq
, context
);
2657 /* Replace "bset" by an empty basic set in the same space.
2659 static __isl_give isl_basic_set
*replace_by_empty(
2660 __isl_take isl_basic_set
*bset
)
2664 space
= isl_basic_set_get_space(bset
);
2665 isl_basic_set_free(bset
);
2666 return isl_basic_set_empty(space
);
2669 /* Remove all information from "bset" that is redundant in the context
2670 * of "context", for the case where the combined equalities of
2671 * "bset" and "context" allow for a compression that can be obtained
2672 * by preapplication of "T".
2673 * If the compression of "context" is empty, meaning that "bset" and
2674 * "context" do not intersect, then return the empty set.
2676 * "bset" itself is not transformed by "T". Instead, the inequalities
2677 * are extracted from "bset" and those are transformed by "T".
2678 * uset_gist_full then determines which of the transformed inequalities
2679 * are redundant with respect to the transformed "context" and removes
2680 * the corresponding inequalities from "bset".
2682 * After preapplying "T" to the inequalities, any common factor is
2683 * removed from the coefficients. If this results in a tightening
2684 * of the constant term, then the same tightening is applied to
2685 * the corresponding untransformed inequality in "bset".
2686 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2690 * with 0 <= r < g, then it is equivalent to
2694 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2695 * subspace compressed by T since the latter would be transformed to
2699 static __isl_give isl_basic_set
*uset_gist_compressed(
2700 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
,
2701 __isl_take isl_mat
*T
)
2706 isl_size n_row
, n_col
;
2709 ineq
= extract_ineq(bset
);
2710 ineq
= isl_mat_product(ineq
, isl_mat_copy(T
));
2711 context
= isl_basic_set_preimage(context
, T
);
2713 if (!ineq
|| !context
)
2715 if (isl_basic_set_plain_is_empty(context
)) {
2717 isl_basic_set_free(context
);
2718 return replace_by_empty(bset
);
2721 ctx
= isl_mat_get_ctx(ineq
);
2722 n_row
= isl_mat_rows(ineq
);
2723 n_col
= isl_mat_cols(ineq
);
2724 if (n_row
< 0 || n_col
< 0)
2727 for (i
= 0; i
< n_row
; ++i
) {
2728 isl_seq_gcd(ineq
->row
[i
] + 1, n_col
- 1, &ctx
->normalize_gcd
);
2729 if (isl_int_is_zero(ctx
->normalize_gcd
))
2731 if (isl_int_is_one(ctx
->normalize_gcd
))
2733 isl_seq_scale_down(ineq
->row
[i
] + 1, ineq
->row
[i
] + 1,
2734 ctx
->normalize_gcd
, n_col
- 1);
2735 isl_int_fdiv_r(rem
, ineq
->row
[i
][0], ctx
->normalize_gcd
);
2736 isl_int_fdiv_q(ineq
->row
[i
][0],
2737 ineq
->row
[i
][0], ctx
->normalize_gcd
);
2738 if (isl_int_is_zero(rem
))
2740 bset
= isl_basic_set_cow(bset
);
2743 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], rem
);
2747 return uset_gist_full(bset
, ineq
, context
);
2750 isl_basic_set_free(context
);
2751 isl_basic_set_free(bset
);
2755 /* Project "bset" onto the variables that are involved in "template".
2757 static __isl_give isl_basic_set
*project_onto_involved(
2758 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*template)
2763 n
= isl_basic_set_dim(template, isl_dim_set
);
2764 if (n
< 0 || !template)
2765 return isl_basic_set_free(bset
);
2767 for (i
= 0; i
< n
; ++i
) {
2770 involved
= isl_basic_set_involves_dims(template,
2773 return isl_basic_set_free(bset
);
2776 bset
= isl_basic_set_eliminate_vars(bset
, i
, 1);
2782 /* Remove all information from bset that is redundant in the context
2783 * of context. In particular, equalities that are linear combinations
2784 * of those in context are removed. Then the inequalities that are
2785 * redundant in the context of the equalities and inequalities of
2786 * context are removed.
2788 * First of all, we drop those constraints from "context"
2789 * that are irrelevant for computing the gist of "bset".
2790 * Alternatively, we could factorize the intersection of "context" and "bset".
2792 * We first compute the intersection of the integer affine hulls
2793 * of "bset" and "context",
2794 * compute the gist inside this intersection and then reduce
2795 * the constraints with respect to the equalities of the context
2796 * that only involve variables already involved in the input.
2797 * If the intersection of the affine hulls turns out to be empty,
2798 * then return the empty set.
2800 * If two constraints are mutually redundant, then uset_gist_full
2801 * will remove the second of those constraints. We therefore first
2802 * sort the constraints so that constraints not involving existentially
2803 * quantified variables are given precedence over those that do.
2804 * We have to perform this sorting before the variable compression,
2805 * because that may effect the order of the variables.
2807 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2808 __isl_take isl_basic_set
*context
)
2813 isl_basic_set
*aff_context
;
2816 total
= isl_basic_set_dim(bset
, isl_dim_all
);
2817 if (total
< 0 || !context
)
2820 context
= drop_irrelevant_constraints(context
, bset
);
2822 bset
= isl_basic_set_detect_equalities(bset
);
2823 aff
= isl_basic_set_copy(bset
);
2824 aff
= isl_basic_set_plain_affine_hull(aff
);
2825 context
= isl_basic_set_detect_equalities(context
);
2826 aff_context
= isl_basic_set_copy(context
);
2827 aff_context
= isl_basic_set_plain_affine_hull(aff_context
);
2828 aff
= isl_basic_set_intersect(aff
, aff_context
);
2831 if (isl_basic_set_plain_is_empty(aff
)) {
2832 isl_basic_set_free(bset
);
2833 isl_basic_set_free(context
);
2836 bset
= isl_basic_set_sort_constraints(bset
);
2837 if (aff
->n_eq
== 0) {
2838 isl_basic_set_free(aff
);
2839 return uset_gist_uncompressed(bset
, context
);
2841 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2842 eq
= isl_mat_cow(eq
);
2843 T
= isl_mat_variable_compression(eq
, NULL
);
2844 isl_basic_set_free(aff
);
2845 if (T
&& T
->n_col
== 0) {
2847 isl_basic_set_free(context
);
2848 return replace_by_empty(bset
);
2851 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2852 aff_context
= project_onto_involved(aff_context
, bset
);
2854 bset
= uset_gist_compressed(bset
, context
, T
);
2855 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2858 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2859 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2864 isl_basic_set_free(bset
);
2865 isl_basic_set_free(context
);
2869 /* Return the number of equality constraints in "bmap" that involve
2870 * local variables. This function assumes that Gaussian elimination
2871 * has been applied to the equality constraints.
2873 static int n_div_eq(__isl_keep isl_basic_map
*bmap
)
2876 isl_size total
, n_div
;
2881 if (bmap
->n_eq
== 0)
2884 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2885 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2886 if (total
< 0 || n_div
< 0)
2890 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2891 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
,
2898 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2899 * The constraints are assumed not to involve any local variables.
2901 static __isl_give isl_basic_map
*basic_map_from_equalities(
2902 __isl_take isl_space
*space
, __isl_take isl_mat
*eq
)
2906 isl_basic_map
*bmap
= NULL
;
2908 total
= isl_space_dim(space
, isl_dim_all
);
2909 if (total
< 0 || !eq
)
2912 if (1 + total
!= eq
->n_col
)
2913 isl_die(isl_space_get_ctx(space
), isl_error_internal
,
2914 "unexpected number of columns", goto error
);
2916 bmap
= isl_basic_map_alloc_space(isl_space_copy(space
),
2918 for (i
= 0; i
< eq
->n_row
; ++i
) {
2919 k
= isl_basic_map_alloc_equality(bmap
);
2922 isl_seq_cpy(bmap
->eq
[k
], eq
->row
[i
], eq
->n_col
);
2925 isl_space_free(space
);
2929 isl_space_free(space
);
2931 isl_basic_map_free(bmap
);
2935 /* Construct and return a variable compression based on the equality
2936 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2937 * "n1" is the number of (initial) equality constraints in "bmap1"
2938 * that do involve local variables.
2939 * "n2" is the number of (initial) equality constraints in "bmap2"
2940 * that do involve local variables.
2941 * "total" is the total number of other variables.
2942 * This function assumes that Gaussian elimination
2943 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2944 * such that the equality constraints not involving local variables
2945 * are those that start at "n1" or "n2".
2947 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2948 * then simply compute the compression based on the equality constraints
2949 * in the other basic map.
2950 * Otherwise, combine the equality constraints from both into a new
2951 * basic map such that Gaussian elimination can be applied to this combination
2952 * and then construct a variable compression from the resulting
2953 * equality constraints.
2955 static __isl_give isl_mat
*combined_variable_compression(
2956 __isl_keep isl_basic_map
*bmap1
, int n1
,
2957 __isl_keep isl_basic_map
*bmap2
, int n2
, int total
)
2960 isl_mat
*E1
, *E2
, *V
;
2961 isl_basic_map
*bmap
;
2963 ctx
= isl_basic_map_get_ctx(bmap1
);
2964 if (bmap1
->n_eq
== n1
) {
2965 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2966 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2967 return isl_mat_variable_compression(E2
, NULL
);
2969 if (bmap2
->n_eq
== n2
) {
2970 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2971 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2972 return isl_mat_variable_compression(E1
, NULL
);
2974 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2975 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2976 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2977 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2978 E1
= isl_mat_concat(E1
, E2
);
2979 bmap
= basic_map_from_equalities(isl_basic_map_get_space(bmap1
), E1
);
2980 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2983 E1
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
2984 V
= isl_mat_variable_compression(E1
, NULL
);
2985 isl_basic_map_free(bmap
);
2990 /* Extract the stride constraints from "bmap", compressed
2991 * with respect to both the stride constraints in "context" and
2992 * the remaining equality constraints in both "bmap" and "context".
2993 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2994 * "context_n_eq" is the number of (initial) stride constraints in "context".
2996 * Let x be all variables in "bmap" (and "context") other than the local
2997 * variables. First compute a variable compression
3001 * based on the non-stride equality constraints in "bmap" and "context".
3002 * Consider the stride constraints of "context",
3006 * with y the local variables and plug in the variable compression,
3009 * A(V x') + B(y) = 0
3011 * Use these constraints to compute a parameter compression on x'
3015 * Now consider the stride constraints of "bmap"
3019 * and plug in x = V*T x''.
3020 * That is, return A = [C*V*T D].
3022 static __isl_give isl_mat
*extract_compressed_stride_constraints(
3023 __isl_keep isl_basic_map
*bmap
, int bmap_n_eq
,
3024 __isl_keep isl_basic_map
*context
, int context_n_eq
)
3026 isl_size total
, n_div
;
3028 isl_mat
*A
, *B
, *T
, *V
;
3030 total
= isl_basic_map_dim(context
, isl_dim_all
);
3031 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3032 if (total
< 0 || n_div
< 0)
3036 ctx
= isl_basic_map_get_ctx(bmap
);
3038 V
= combined_variable_compression(bmap
, bmap_n_eq
,
3039 context
, context_n_eq
, total
);
3041 A
= isl_mat_sub_alloc6(ctx
, context
->eq
, 0, context_n_eq
, 0, 1 + total
);
3042 B
= isl_mat_sub_alloc6(ctx
, context
->eq
,
3043 0, context_n_eq
, 1 + total
, n_div
);
3044 A
= isl_mat_product(A
, isl_mat_copy(V
));
3045 T
= isl_mat_parameter_compression_ext(A
, B
);
3046 T
= isl_mat_product(V
, T
);
3048 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3050 T
= isl_mat_free(T
);
3052 T
= isl_mat_diagonal(T
, isl_mat_identity(ctx
, n_div
));
3054 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
,
3055 0, bmap_n_eq
, 0, 1 + total
+ n_div
);
3056 A
= isl_mat_product(A
, T
);
3061 /* Remove the prime factors from *g that have an exponent that
3062 * is strictly smaller than the exponent in "c".
3063 * All exponents in *g are known to be smaller than or equal
3066 * That is, if *g is equal to
3068 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3070 * and "c" is equal to
3072 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3076 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3077 * p_n^{e_n * (e_n = f_n)}
3079 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3080 * neither does the gcd of *g and c / *g.
3081 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3082 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3083 * Dividing *g by this gcd therefore strictly reduces the exponent
3084 * of the prime factors that need to be removed, while leaving the
3085 * other prime factors untouched.
3086 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3087 * removes all undesired factors, without removing any others.
3089 static void remove_incomplete_powers(isl_int
*g
, isl_int c
)
3095 isl_int_divexact(t
, c
, *g
);
3096 isl_int_gcd(t
, t
, *g
);
3097 if (isl_int_is_one(t
))
3099 isl_int_divexact(*g
, *g
, t
);
3104 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3105 * of the same stride constraints in a compressed space that exploits
3106 * all equalities in the context and the other equalities in "bmap".
3108 * If the stride constraints of "bmap" are of the form
3112 * then A is of the form
3116 * If any of these constraints involves only a single local variable y,
3117 * then the constraint appears as
3127 * Let g be the gcd of m and the coefficients of h.
3128 * Then, in particular, g is a divisor of the coefficients of h and
3132 * is known to be a multiple of g.
3133 * If some prime factor in m appears with the same exponent in g,
3134 * then it can be removed from m because f(x) is already known
3135 * to be a multiple of g and therefore in particular of this power
3136 * of the prime factors.
3137 * Prime factors that appear with a smaller exponent in g cannot
3138 * be removed from m.
3139 * Let g' be the divisor of g containing all prime factors that
3140 * appear with the same exponent in m and g, then
3144 * can be replaced by
3146 * f(x) + m/g' y_i' = 0
3148 * Note that (if g' != 1) this changes the explicit representation
3149 * of y_i to that of y_i', so the integer division at position i
3150 * is marked unknown and later recomputed by a call to
3151 * isl_basic_map_gauss.
3153 static __isl_give isl_basic_map
*reduce_stride_constraints(
3154 __isl_take isl_basic_map
*bmap
, int n
, __isl_keep isl_mat
*A
)
3157 isl_size total
, n_div
;
3161 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3162 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3163 if (total
< 0 || n_div
< 0 || !A
)
3164 return isl_basic_map_free(bmap
);
3168 for (i
= 0; i
< n
; ++i
) {
3171 div
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, n_div
);
3173 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
3174 "equality constraints modified unexpectedly",
3176 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
+ div
+ 1,
3177 n_div
- div
- 1) != -1)
3179 if (isl_mat_row_gcd(A
, i
, &gcd
) < 0)
3181 if (isl_int_is_one(gcd
))
3183 remove_incomplete_powers(&gcd
, bmap
->eq
[i
][1 + total
+ div
]);
3184 if (isl_int_is_one(gcd
))
3186 isl_int_divexact(bmap
->eq
[i
][1 + total
+ div
],
3187 bmap
->eq
[i
][1 + total
+ div
], gcd
);
3188 bmap
= isl_basic_map_mark_div_unknown(bmap
, div
);
3196 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3201 isl_basic_map_free(bmap
);
3205 /* Simplify the stride constraints in "bmap" based on
3206 * the remaining equality constraints in "bmap" and all equality
3207 * constraints in "context".
3208 * Only do this if both "bmap" and "context" have stride constraints.
3210 * First extract a copy of the stride constraints in "bmap" in a compressed
3211 * space exploiting all the other equality constraints and then
3212 * use this compressed copy to simplify the original stride constraints.
3214 static __isl_give isl_basic_map
*gist_strides(__isl_take isl_basic_map
*bmap
,
3215 __isl_keep isl_basic_map
*context
)
3217 int bmap_n_eq
, context_n_eq
;
3220 if (!bmap
|| !context
)
3221 return isl_basic_map_free(bmap
);
3223 bmap_n_eq
= n_div_eq(bmap
);
3224 context_n_eq
= n_div_eq(context
);
3226 if (bmap_n_eq
< 0 || context_n_eq
< 0)
3227 return isl_basic_map_free(bmap
);
3228 if (bmap_n_eq
== 0 || context_n_eq
== 0)
3231 A
= extract_compressed_stride_constraints(bmap
, bmap_n_eq
,
3232 context
, context_n_eq
);
3233 bmap
= reduce_stride_constraints(bmap
, bmap_n_eq
, A
);
3240 /* Return a basic map that has the same intersection with "context" as "bmap"
3241 * and that is as "simple" as possible.
3243 * The core computation is performed on the pure constraints.
3244 * When we add back the meaning of the integer divisions, we need
3245 * to (re)introduce the div constraints. If we happen to have
3246 * discovered that some of these integer divisions are equal to
3247 * some affine combination of other variables, then these div
3248 * constraints may end up getting simplified in terms of the equalities,
3249 * resulting in extra inequalities on the other variables that
3250 * may have been removed already or that may not even have been
3251 * part of the input. We try and remove those constraints of
3252 * this form that are most obviously redundant with respect to
3253 * the context. We also remove those div constraints that are
3254 * redundant with respect to the other constraints in the result.
3256 * The stride constraints among the equality constraints in "bmap" are
3257 * also simplified with respecting to the other equality constraints
3258 * in "bmap" and with respect to all equality constraints in "context".
3260 __isl_give isl_basic_map
*isl_basic_map_gist(__isl_take isl_basic_map
*bmap
,
3261 __isl_take isl_basic_map
*context
)
3263 isl_basic_set
*bset
, *eq
;
3264 isl_basic_map
*eq_bmap
;
3265 isl_size total
, n_div
, n_div_bmap
;
3266 unsigned extra
, n_eq
, n_ineq
;
3268 if (!bmap
|| !context
)
3271 if (isl_basic_map_plain_is_universe(bmap
)) {
3272 isl_basic_map_free(context
);
3275 if (isl_basic_map_plain_is_empty(context
)) {
3276 isl_space
*space
= isl_basic_map_get_space(bmap
);
3277 isl_basic_map_free(bmap
);
3278 isl_basic_map_free(context
);
3279 return isl_basic_map_universe(space
);
3281 if (isl_basic_map_plain_is_empty(bmap
)) {
3282 isl_basic_map_free(context
);
3286 bmap
= isl_basic_map_remove_redundancies(bmap
);
3287 context
= isl_basic_map_remove_redundancies(context
);
3288 bmap
= isl_basic_map_order_divs(bmap
);
3289 context
= isl_basic_map_align_divs(context
, bmap
);
3291 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3292 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3293 n_div_bmap
= isl_basic_map_dim(bmap
, isl_dim_div
);
3294 if (n_div
< 0 || total
< 0 || n_div_bmap
< 0)
3296 extra
= n_div
- n_div_bmap
;
3298 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
3299 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, extra
);
3300 bset
= uset_gist(bset
,
3301 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
3302 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, total
, extra
);
3304 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
3305 isl_basic_set_plain_is_empty(bset
)) {
3306 isl_basic_map_free(context
);
3307 return isl_basic_map_overlying_set(bset
, bmap
);
3311 n_ineq
= bset
->n_ineq
;
3312 eq
= isl_basic_set_copy(bset
);
3313 eq
= isl_basic_set_cow(eq
);
3314 eq
= isl_basic_set_free_inequality(eq
, n_ineq
);
3315 bset
= isl_basic_set_free_equality(bset
, n_eq
);
3317 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
3318 eq_bmap
= gist_strides(eq_bmap
, context
);
3319 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
3320 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
3321 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
3322 bmap
= isl_basic_map_remove_redundancies(bmap
);
3326 isl_basic_map_free(bmap
);
3327 isl_basic_map_free(context
);
3332 * Assumes context has no implicit divs.
3334 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
3335 __isl_take isl_basic_map
*context
)
3339 if (!map
|| !context
)
3342 if (isl_basic_map_plain_is_empty(context
)) {
3343 isl_space
*space
= isl_map_get_space(map
);
3345 isl_basic_map_free(context
);
3346 return isl_map_universe(space
);
3349 context
= isl_basic_map_remove_redundancies(context
);
3350 map
= isl_map_cow(map
);
3351 if (isl_map_basic_map_check_equal_space(map
, context
) < 0)
3353 map
= isl_map_compute_divs(map
);
3356 for (i
= map
->n
- 1; i
>= 0; --i
) {
3357 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
3358 isl_basic_map_copy(context
));
3361 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
3362 isl_basic_map_free(map
->p
[i
]);
3363 if (i
!= map
->n
- 1)
3364 map
->p
[i
] = map
->p
[map
->n
- 1];
3368 isl_basic_map_free(context
);
3369 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3373 isl_basic_map_free(context
);
3377 /* Drop all inequalities from "bmap" that also appear in "context".
3378 * "context" is assumed to have only known local variables and
3379 * the initial local variables of "bmap" are assumed to be the same
3380 * as those of "context".
3381 * The constraints of both "bmap" and "context" are assumed
3382 * to have been sorted using isl_basic_map_sort_constraints.
3384 * Run through the inequality constraints of "bmap" and "context"
3386 * If a constraint of "bmap" involves variables not in "context",
3387 * then it cannot appear in "context".
3388 * If a matching constraint is found, it is removed from "bmap".
3390 static __isl_give isl_basic_map
*drop_inequalities(
3391 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3394 isl_size total
, bmap_total
;
3397 total
= isl_basic_map_dim(context
, isl_dim_all
);
3398 bmap_total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3399 if (total
< 0 || bmap_total
< 0)
3400 return isl_basic_map_free(bmap
);
3402 extra
= bmap_total
- total
;
3404 i1
= bmap
->n_ineq
- 1;
3405 i2
= context
->n_ineq
- 1;
3406 while (bmap
&& i1
>= 0 && i2
>= 0) {
3409 if (isl_seq_first_non_zero(bmap
->ineq
[i1
] + 1 + total
,
3414 cmp
= isl_basic_map_constraint_cmp(context
, bmap
->ineq
[i1
],
3424 if (isl_int_eq(bmap
->ineq
[i1
][0], context
->ineq
[i2
][0])) {
3425 bmap
= isl_basic_map_cow(bmap
);
3426 if (isl_basic_map_drop_inequality(bmap
, i1
) < 0)
3427 bmap
= isl_basic_map_free(bmap
);
3436 /* Drop all equalities from "bmap" that also appear in "context".
3437 * "context" is assumed to have only known local variables and
3438 * the initial local variables of "bmap" are assumed to be the same
3439 * as those of "context".
3441 * Run through the equality constraints of "bmap" and "context"
3443 * If a constraint of "bmap" involves variables not in "context",
3444 * then it cannot appear in "context".
3445 * If a matching constraint is found, it is removed from "bmap".
3447 static __isl_give isl_basic_map
*drop_equalities(
3448 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3451 isl_size total
, bmap_total
;
3454 total
= isl_basic_map_dim(context
, isl_dim_all
);
3455 bmap_total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3456 if (total
< 0 || bmap_total
< 0)
3457 return isl_basic_map_free(bmap
);
3459 extra
= bmap_total
- total
;
3461 i1
= bmap
->n_eq
- 1;
3462 i2
= context
->n_eq
- 1;
3464 while (bmap
&& i1
>= 0 && i2
>= 0) {
3467 if (isl_seq_first_non_zero(bmap
->eq
[i1
] + 1 + total
,
3470 last1
= isl_seq_last_non_zero(bmap
->eq
[i1
] + 1, total
);
3471 last2
= isl_seq_last_non_zero(context
->eq
[i2
] + 1, total
);
3472 if (last1
> last2
) {
3476 if (last1
< last2
) {
3480 if (isl_seq_eq(bmap
->eq
[i1
], context
->eq
[i2
], 1 + total
)) {
3481 bmap
= isl_basic_map_cow(bmap
);
3482 if (isl_basic_map_drop_equality(bmap
, i1
) < 0)
3483 bmap
= isl_basic_map_free(bmap
);
3492 /* Remove the constraints in "context" from "bmap".
3493 * "context" is assumed to have explicit representations
3494 * for all local variables.
3496 * First align the divs of "bmap" to those of "context" and
3497 * sort the constraints. Then drop all constraints from "bmap"
3498 * that appear in "context".
3500 __isl_give isl_basic_map
*isl_basic_map_plain_gist(
3501 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
3503 isl_bool done
, known
;
3505 done
= isl_basic_map_plain_is_universe(context
);
3506 if (done
== isl_bool_false
)
3507 done
= isl_basic_map_plain_is_universe(bmap
);
3508 if (done
== isl_bool_false
)
3509 done
= isl_basic_map_plain_is_empty(context
);
3510 if (done
== isl_bool_false
)
3511 done
= isl_basic_map_plain_is_empty(bmap
);
3515 isl_basic_map_free(context
);
3518 known
= isl_basic_map_divs_known(context
);
3522 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_invalid
,
3523 "context has unknown divs", goto error
);
3525 context
= isl_basic_map_order_divs(context
);
3526 bmap
= isl_basic_map_align_divs(bmap
, context
);
3527 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3528 bmap
= isl_basic_map_sort_constraints(bmap
);
3529 context
= isl_basic_map_sort_constraints(context
);
3531 bmap
= drop_inequalities(bmap
, context
);
3532 bmap
= drop_equalities(bmap
, context
);
3534 isl_basic_map_free(context
);
3535 bmap
= isl_basic_map_finalize(bmap
);
3538 isl_basic_map_free(bmap
);
3539 isl_basic_map_free(context
);
3543 /* Replace "map" by the disjunct at position "pos" and free "context".
3545 static __isl_give isl_map
*replace_by_disjunct(__isl_take isl_map
*map
,
3546 int pos
, __isl_take isl_basic_map
*context
)
3548 isl_basic_map
*bmap
;
3550 bmap
= isl_basic_map_copy(map
->p
[pos
]);
3552 isl_basic_map_free(context
);
3553 return isl_map_from_basic_map(bmap
);
3556 /* Remove the constraints in "context" from "map".
3557 * If any of the disjuncts in the result turns out to be the universe,
3558 * then return this universe.
3559 * "context" is assumed to have explicit representations
3560 * for all local variables.
3562 __isl_give isl_map
*isl_map_plain_gist_basic_map(__isl_take isl_map
*map
,
3563 __isl_take isl_basic_map
*context
)
3566 isl_bool univ
, known
;
3568 univ
= isl_basic_map_plain_is_universe(context
);
3572 isl_basic_map_free(context
);
3575 known
= isl_basic_map_divs_known(context
);
3579 isl_die(isl_map_get_ctx(map
), isl_error_invalid
,
3580 "context has unknown divs", goto error
);
3582 map
= isl_map_cow(map
);
3585 for (i
= 0; i
< map
->n
; ++i
) {
3586 map
->p
[i
] = isl_basic_map_plain_gist(map
->p
[i
],
3587 isl_basic_map_copy(context
));
3588 univ
= isl_basic_map_plain_is_universe(map
->p
[i
]);
3591 if (univ
&& map
->n
> 1)
3592 return replace_by_disjunct(map
, i
, context
);
3595 isl_basic_map_free(context
);
3596 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3598 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
3602 isl_basic_map_free(context
);
3606 /* Remove the constraints in "context" from "set".
3607 * If any of the disjuncts in the result turns out to be the universe,
3608 * then return this universe.
3609 * "context" is assumed to have explicit representations
3610 * for all local variables.
3612 __isl_give isl_set
*isl_set_plain_gist_basic_set(__isl_take isl_set
*set
,
3613 __isl_take isl_basic_set
*context
)
3615 return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set
),
3616 bset_to_bmap(context
)));
3619 /* Remove the constraints in "context" from "map".
3620 * If any of the disjuncts in the result turns out to be the universe,
3621 * then return this universe.
3622 * "context" is assumed to consist of a single disjunct and
3623 * to have explicit representations for all local variables.
3625 __isl_give isl_map
*isl_map_plain_gist(__isl_take isl_map
*map
,
3626 __isl_take isl_map
*context
)
3628 isl_basic_map
*hull
;
3630 hull
= isl_map_unshifted_simple_hull(context
);
3631 return isl_map_plain_gist_basic_map(map
, hull
);
3634 /* Replace "map" by a universe map in the same space and free "drop".
3636 static __isl_give isl_map
*replace_by_universe(__isl_take isl_map
*map
,
3637 __isl_take isl_map
*drop
)
3641 res
= isl_map_universe(isl_map_get_space(map
));
3647 /* Return a map that has the same intersection with "context" as "map"
3648 * and that is as "simple" as possible.
3650 * If "map" is already the universe, then we cannot make it any simpler.
3651 * Similarly, if "context" is the universe, then we cannot exploit it
3653 * If "map" and "context" are identical to each other, then we can
3654 * return the corresponding universe.
3656 * If either "map" or "context" consists of multiple disjuncts,
3657 * then check if "context" happens to be a subset of "map",
3658 * in which case all constraints can be removed.
3659 * In case of multiple disjuncts, the standard procedure
3660 * may not be able to detect that all constraints can be removed.
3662 * If none of these cases apply, we have to work a bit harder.
3663 * During this computation, we make use of a single disjunct context,
3664 * so if the original context consists of more than one disjunct
3665 * then we need to approximate the context by a single disjunct set.
3666 * Simply taking the simple hull may drop constraints that are
3667 * only implicitly available in each disjunct. We therefore also
3668 * look for constraints among those defining "map" that are valid
3669 * for the context. These can then be used to simplify away
3670 * the corresponding constraints in "map".
3672 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
3673 __isl_take isl_map
*context
)
3677 isl_size n_disjunct_map
, n_disjunct_context
;
3679 isl_basic_map
*hull
;
3681 is_universe
= isl_map_plain_is_universe(map
);
3682 if (is_universe
>= 0 && !is_universe
)
3683 is_universe
= isl_map_plain_is_universe(context
);
3684 if (is_universe
< 0)
3687 isl_map_free(context
);
3691 isl_map_align_params_bin(&map
, &context
);
3692 equal
= isl_map_plain_is_equal(map
, context
);
3696 return replace_by_universe(map
, context
);
3698 n_disjunct_map
= isl_map_n_basic_map(map
);
3699 n_disjunct_context
= isl_map_n_basic_map(context
);
3700 if (n_disjunct_map
< 0 || n_disjunct_context
< 0)
3702 if (n_disjunct_map
!= 1 || n_disjunct_context
!= 1) {
3703 subset
= isl_map_is_subset(context
, map
);
3707 return replace_by_universe(map
, context
);
3710 context
= isl_map_compute_divs(context
);
3713 if (n_disjunct_context
== 1) {
3714 hull
= isl_map_simple_hull(context
);
3719 ctx
= isl_map_get_ctx(map
);
3720 list
= isl_map_list_alloc(ctx
, 2);
3721 list
= isl_map_list_add(list
, isl_map_copy(context
));
3722 list
= isl_map_list_add(list
, isl_map_copy(map
));
3723 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
3726 return isl_map_gist_basic_map(map
, hull
);
3729 isl_map_free(context
);
3733 __isl_give isl_basic_set
*isl_basic_set_gist(__isl_take isl_basic_set
*bset
,
3734 __isl_take isl_basic_set
*context
)
3736 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset
),
3737 bset_to_bmap(context
)));
3740 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
3741 __isl_take isl_basic_set
*context
)
3743 return set_from_map(isl_map_gist_basic_map(set_to_map(set
),
3744 bset_to_bmap(context
)));
3747 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
3748 __isl_take isl_basic_set
*context
)
3750 isl_space
*space
= isl_set_get_space(set
);
3751 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
3752 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
3753 return isl_set_gist_basic_set(set
, dom_context
);
3756 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
3757 __isl_take isl_set
*context
)
3759 return set_from_map(isl_map_gist(set_to_map(set
), set_to_map(context
)));
3762 /* Compute the gist of "bmap" with respect to the constraints "context"
3765 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
3766 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
3768 isl_space
*space
= isl_basic_map_get_space(bmap
);
3769 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
3771 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
3772 return isl_basic_map_gist(bmap
, bmap_context
);
3775 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
3776 __isl_take isl_set
*context
)
3778 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3779 map_context
= isl_map_intersect_domain(map_context
, context
);
3780 return isl_map_gist(map
, map_context
);
3783 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
3784 __isl_take isl_set
*context
)
3786 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3787 map_context
= isl_map_intersect_range(map_context
, context
);
3788 return isl_map_gist(map
, map_context
);
3791 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
3792 __isl_take isl_set
*context
)
3794 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3795 map_context
= isl_map_intersect_params(map_context
, context
);
3796 return isl_map_gist(map
, map_context
);
3799 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
3800 __isl_take isl_set
*context
)
3802 return isl_map_gist_params(set
, context
);
3805 /* Quick check to see if two basic maps are disjoint.
3806 * In particular, we reduce the equalities and inequalities of
3807 * one basic map in the context of the equalities of the other
3808 * basic map and check if we get a contradiction.
3810 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3811 __isl_keep isl_basic_map
*bmap2
)
3813 struct isl_vec
*v
= NULL
;
3818 if (isl_basic_map_check_equal_space(bmap1
, bmap2
) < 0)
3819 return isl_bool_error
;
3820 if (bmap1
->n_div
|| bmap2
->n_div
)
3821 return isl_bool_false
;
3822 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
3823 return isl_bool_false
;
3825 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
3827 return isl_bool_error
;
3829 return isl_bool_false
;
3830 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
3833 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
3836 compute_elimination_index(bmap1
, elim
, total
);
3837 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
3839 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
3840 bmap1
, elim
, total
);
3841 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
3842 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3845 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
3847 reduced
= reduced_using_equalities(v
->block
.data
,
3848 bmap2
->ineq
[i
], bmap1
, elim
, total
);
3849 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3850 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3853 compute_elimination_index(bmap2
, elim
, total
);
3854 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
3856 reduced
= reduced_using_equalities(v
->block
.data
,
3857 bmap1
->ineq
[i
], bmap2
, elim
, total
);
3858 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3859 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3864 return isl_bool_false
;
3868 return isl_bool_true
;
3872 return isl_bool_error
;
3875 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3876 __isl_keep isl_basic_set
*bset2
)
3878 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1
),
3879 bset_to_bmap(bset2
));
3882 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3884 static isl_bool
all_pairs(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
,
3885 isl_bool (*test
)(__isl_keep isl_basic_map
*bmap1
,
3886 __isl_keep isl_basic_map
*bmap2
))
3891 return isl_bool_error
;
3893 for (i
= 0; i
< map1
->n
; ++i
) {
3894 for (j
= 0; j
< map2
->n
; ++j
) {
3895 isl_bool d
= test(map1
->p
[i
], map2
->p
[j
]);
3896 if (d
!= isl_bool_true
)
3901 return isl_bool_true
;
3904 /* Are "map1" and "map2" obviously disjoint, based on information
3905 * that can be derived without looking at the individual basic maps?
3907 * In particular, if one of them is empty or if they live in different spaces
3908 * (ignoring parameters), then they are clearly disjoint.
3910 static isl_bool
isl_map_plain_is_disjoint_global(__isl_keep isl_map
*map1
,
3911 __isl_keep isl_map
*map2
)
3917 return isl_bool_error
;
3919 disjoint
= isl_map_plain_is_empty(map1
);
3920 if (disjoint
< 0 || disjoint
)
3923 disjoint
= isl_map_plain_is_empty(map2
);
3924 if (disjoint
< 0 || disjoint
)
3927 match
= isl_map_tuple_is_equal(map1
, isl_dim_in
, map2
, isl_dim_in
);
3928 if (match
< 0 || !match
)
3929 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3931 match
= isl_map_tuple_is_equal(map1
, isl_dim_out
, map2
, isl_dim_out
);
3932 if (match
< 0 || !match
)
3933 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3935 return isl_bool_false
;
3938 /* Are "map1" and "map2" obviously disjoint?
3940 * If one of them is empty or if they live in different spaces (ignoring
3941 * parameters), then they are clearly disjoint.
3942 * This is checked by isl_map_plain_is_disjoint_global.
3944 * If they have different parameters, then we skip any further tests.
3946 * If they are obviously equal, but not obviously empty, then we will
3947 * not be able to detect if they are disjoint.
3949 * Otherwise we check if each basic map in "map1" is obviously disjoint
3950 * from each basic map in "map2".
3952 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
3953 __isl_keep isl_map
*map2
)
3959 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3960 if (disjoint
< 0 || disjoint
)
3963 match
= isl_map_has_equal_params(map1
, map2
);
3964 if (match
< 0 || !match
)
3965 return match
< 0 ? isl_bool_error
: isl_bool_false
;
3967 intersect
= isl_map_plain_is_equal(map1
, map2
);
3968 if (intersect
< 0 || intersect
)
3969 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3971 return all_pairs(map1
, map2
, &isl_basic_map_plain_is_disjoint
);
3974 /* Are "map1" and "map2" disjoint?
3975 * The parameters are assumed to have been aligned.
3977 * In particular, check whether all pairs of basic maps are disjoint.
3979 static isl_bool
isl_map_is_disjoint_aligned(__isl_keep isl_map
*map1
,
3980 __isl_keep isl_map
*map2
)
3982 return all_pairs(map1
, map2
, &isl_basic_map_is_disjoint
);
3985 /* Are "map1" and "map2" disjoint?
3987 * They are disjoint if they are "obviously disjoint" or if one of them
3988 * is empty. Otherwise, they are not disjoint if one of them is universal.
3989 * If the two inputs are (obviously) equal and not empty, then they are
3991 * If none of these cases apply, then check if all pairs of basic maps
3992 * are disjoint after aligning the parameters.
3994 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
3999 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
4000 if (disjoint
< 0 || disjoint
)
4003 disjoint
= isl_map_is_empty(map1
);
4004 if (disjoint
< 0 || disjoint
)
4007 disjoint
= isl_map_is_empty(map2
);
4008 if (disjoint
< 0 || disjoint
)
4011 intersect
= isl_map_plain_is_universe(map1
);
4012 if (intersect
< 0 || intersect
)
4013 return isl_bool_not(intersect
);
4015 intersect
= isl_map_plain_is_universe(map2
);
4016 if (intersect
< 0 || intersect
)
4017 return isl_bool_not(intersect
);
4019 intersect
= isl_map_plain_is_equal(map1
, map2
);
4020 if (intersect
< 0 || intersect
)
4021 return isl_bool_not(intersect
);
4023 return isl_map_align_params_map_map_and_test(map1
, map2
,
4024 &isl_map_is_disjoint_aligned
);
4027 /* Are "bmap1" and "bmap2" disjoint?
4029 * They are disjoint if they are "obviously disjoint" or if one of them
4030 * is empty. Otherwise, they are not disjoint if one of them is universal.
4031 * If none of these cases apply, we compute the intersection and see if
4032 * the result is empty.
4034 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
4035 __isl_keep isl_basic_map
*bmap2
)
4039 isl_basic_map
*test
;
4041 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
4042 if (disjoint
< 0 || disjoint
)
4045 disjoint
= isl_basic_map_is_empty(bmap1
);
4046 if (disjoint
< 0 || disjoint
)
4049 disjoint
= isl_basic_map_is_empty(bmap2
);
4050 if (disjoint
< 0 || disjoint
)
4053 intersect
= isl_basic_map_plain_is_universe(bmap1
);
4054 if (intersect
< 0 || intersect
)
4055 return isl_bool_not(intersect
);
4057 intersect
= isl_basic_map_plain_is_universe(bmap2
);
4058 if (intersect
< 0 || intersect
)
4059 return isl_bool_not(intersect
);
4061 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
4062 isl_basic_map_copy(bmap2
));
4063 disjoint
= isl_basic_map_is_empty(test
);
4064 isl_basic_map_free(test
);
4069 /* Are "bset1" and "bset2" disjoint?
4071 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
4072 __isl_keep isl_basic_set
*bset2
)
4074 return isl_basic_map_is_disjoint(bset1
, bset2
);
4077 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
4078 __isl_keep isl_set
*set2
)
4080 return isl_map_plain_is_disjoint(set_to_map(set1
), set_to_map(set2
));
4083 /* Are "set1" and "set2" disjoint?
4085 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
4087 return isl_map_is_disjoint(set1
, set2
);
4090 /* Is "v" equal to 0, 1 or -1?
4092 static int is_zero_or_one(isl_int v
)
4094 return isl_int_is_zero(v
) || isl_int_is_one(v
) || isl_int_is_negone(v
);
4097 /* Are the "n" coefficients starting at "first" of inequality constraints
4098 * "i" and "j" of "bmap" opposite to each other?
4100 static int is_opposite_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4103 return isl_seq_is_neg(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4106 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4107 * apart from the constant term?
4109 static isl_bool
is_opposite(__isl_keep isl_basic_map
*bmap
, int i
, int j
)
4113 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4115 return isl_bool_error
;
4116 return is_opposite_part(bmap
, i
, j
, 1, total
);
4119 /* Check if we can combine a given div with lower bound l and upper
4120 * bound u with some other div and if so return that other div.
4121 * Otherwise, return a position beyond the integer divisions.
4122 * Return -1 on error.
4124 * We first check that
4125 * - the bounds are opposites of each other (except for the constant
4127 * - the bounds do not reference any other div
4128 * - no div is defined in terms of this div
4130 * Let m be the size of the range allowed on the div by the bounds.
4131 * That is, the bounds are of the form
4133 * e <= a <= e + m - 1
4135 * with e some expression in the other variables.
4136 * We look for another div b such that no third div is defined in terms
4137 * of this second div b and such that in any constraint that contains
4138 * a (except for the given lower and upper bound), also contains b
4139 * with a coefficient that is m times that of b.
4140 * That is, all constraints (except for the lower and upper bound)
4143 * e + f (a + m b) >= 0
4145 * Furthermore, in the constraints that only contain b, the coefficient
4146 * of b should be equal to 1 or -1.
4147 * If so, we return b so that "a + m b" can be replaced by
4148 * a single div "c = a + m b".
4150 static int div_find_coalesce(__isl_keep isl_basic_map
*bmap
, int *pairs
,
4151 unsigned div
, unsigned l
, unsigned u
)
4159 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4162 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
4165 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + v_div
, div
) != -1)
4167 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + v_div
+ div
+ 1,
4168 n_div
- div
- 1) != -1)
4170 opp
= is_opposite(bmap
, l
, u
);
4171 if (opp
< 0 || !opp
)
4172 return opp
< 0 ? -1 : n_div
;
4174 for (i
= 0; i
< n_div
; ++i
) {
4175 if (isl_int_is_zero(bmap
->div
[i
][0]))
4177 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + v_div
+ div
]))
4181 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4182 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
4183 isl_int_sub(bmap
->ineq
[l
][0],
4184 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4185 bmap
= isl_basic_map_copy(bmap
);
4186 bmap
= isl_basic_map_set_to_empty(bmap
);
4187 isl_basic_map_free(bmap
);
4190 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4192 for (i
= 0; i
< n_div
; ++i
) {
4197 for (j
= 0; j
< n_div
; ++j
) {
4198 if (isl_int_is_zero(bmap
->div
[j
][0]))
4200 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + v_div
+ i
]))
4205 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4207 if (j
== l
|| j
== u
)
4209 if (isl_int_is_zero(bmap
->ineq
[j
][1 + v_div
+ div
])) {
4210 if (is_zero_or_one(bmap
->ineq
[j
][1 + v_div
+ i
]))
4214 if (isl_int_is_zero(bmap
->ineq
[j
][1 + v_div
+ i
]))
4216 isl_int_mul(bmap
->ineq
[j
][1 + v_div
+ div
],
4217 bmap
->ineq
[j
][1 + v_div
+ div
],
4219 valid
= isl_int_eq(bmap
->ineq
[j
][1 + v_div
+ div
],
4220 bmap
->ineq
[j
][1 + v_div
+ i
]);
4221 isl_int_divexact(bmap
->ineq
[j
][1 + v_div
+ div
],
4222 bmap
->ineq
[j
][1 + v_div
+ div
],
4227 if (j
< bmap
->n_ineq
)
4232 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4233 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4237 /* Internal data structure used during the construction and/or evaluation of
4238 * an inequality that ensures that a pair of bounds always allows
4239 * for an integer value.
4241 * "tab" is the tableau in which the inequality is evaluated. It may
4242 * be NULL until it is actually needed.
4243 * "v" contains the inequality coefficients.
4244 * "g", "fl" and "fu" are temporary scalars used during the construction and
4247 struct test_ineq_data
{
4248 struct isl_tab
*tab
;
4255 /* Free all the memory allocated by the fields of "data".
4257 static void test_ineq_data_clear(struct test_ineq_data
*data
)
4259 isl_tab_free(data
->tab
);
4260 isl_vec_free(data
->v
);
4261 isl_int_clear(data
->g
);
4262 isl_int_clear(data
->fl
);
4263 isl_int_clear(data
->fu
);
4266 /* Is the inequality stored in data->v satisfied by "bmap"?
4267 * That is, does it only attain non-negative values?
4268 * data->tab is a tableau corresponding to "bmap".
4270 static isl_bool
test_ineq_is_satisfied(__isl_keep isl_basic_map
*bmap
,
4271 struct test_ineq_data
*data
)
4274 enum isl_lp_result res
;
4276 ctx
= isl_basic_map_get_ctx(bmap
);
4278 data
->tab
= isl_tab_from_basic_map(bmap
, 0);
4279 res
= isl_tab_min(data
->tab
, data
->v
->el
, ctx
->one
, &data
->g
, NULL
, 0);
4280 if (res
== isl_lp_error
)
4281 return isl_bool_error
;
4282 return res
== isl_lp_ok
&& isl_int_is_nonneg(data
->g
);
4285 /* Given a lower and an upper bound on div i, do they always allow
4286 * for an integer value of the given div?
4287 * Determine this property by constructing an inequality
4288 * such that the property is guaranteed when the inequality is nonnegative.
4289 * The lower bound is inequality l, while the upper bound is inequality u.
4290 * The constructed inequality is stored in data->v.
4292 * Let the upper bound be
4296 * and the lower bound
4300 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4303 * - f_u e_l <= f_u f_l g a <= f_l e_u
4305 * Since all variables are integer valued, this is equivalent to
4307 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4309 * If this interval is at least f_u f_l g, then it contains at least
4310 * one integer value for a.
4311 * That is, the test constraint is
4313 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4317 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4319 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4320 * then the constraint can be scaled down by a factor g',
4321 * with the constant term replaced by
4322 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4323 * Note that the result of applying Fourier-Motzkin to this pair
4326 * f_l e_u + f_u e_l >= 0
4328 * If the constant term of the scaled down version of this constraint,
4329 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4330 * term of the scaled down test constraint, then the test constraint
4331 * is known to hold and no explicit evaluation is required.
4332 * This is essentially the Omega test.
4334 * If the test constraint consists of only a constant term, then
4335 * it is sufficient to look at the sign of this constant term.
4337 static isl_bool
int_between_bounds(__isl_keep isl_basic_map
*bmap
, int i
,
4338 int l
, int u
, struct test_ineq_data
*data
)
4343 offset
= isl_basic_map_offset(bmap
, isl_dim_div
);
4344 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4346 return isl_bool_error
;
4348 isl_int_gcd(data
->g
,
4349 bmap
->ineq
[l
][offset
+ i
], bmap
->ineq
[u
][offset
+ i
]);
4350 isl_int_divexact(data
->fl
, bmap
->ineq
[l
][offset
+ i
], data
->g
);
4351 isl_int_divexact(data
->fu
, bmap
->ineq
[u
][offset
+ i
], data
->g
);
4352 isl_int_neg(data
->fu
, data
->fu
);
4353 isl_seq_combine(data
->v
->el
, data
->fl
, bmap
->ineq
[u
],
4354 data
->fu
, bmap
->ineq
[l
], offset
+ n_div
);
4355 isl_int_mul(data
->g
, data
->g
, data
->fl
);
4356 isl_int_mul(data
->g
, data
->g
, data
->fu
);
4357 isl_int_sub(data
->g
, data
->g
, data
->fl
);
4358 isl_int_sub(data
->g
, data
->g
, data
->fu
);
4359 isl_int_add_ui(data
->g
, data
->g
, 1);
4360 isl_int_sub(data
->fl
, data
->v
->el
[0], data
->g
);
4362 isl_seq_gcd(data
->v
->el
+ 1, offset
- 1 + n_div
, &data
->g
);
4363 if (isl_int_is_zero(data
->g
))
4364 return isl_int_is_nonneg(data
->fl
);
4365 if (isl_int_is_one(data
->g
)) {
4366 isl_int_set(data
->v
->el
[0], data
->fl
);
4367 return test_ineq_is_satisfied(bmap
, data
);
4369 isl_int_fdiv_q(data
->fl
, data
->fl
, data
->g
);
4370 isl_int_fdiv_q(data
->v
->el
[0], data
->v
->el
[0], data
->g
);
4371 if (isl_int_eq(data
->fl
, data
->v
->el
[0]))
4372 return isl_bool_true
;
4373 isl_int_set(data
->v
->el
[0], data
->fl
);
4374 isl_seq_scale_down(data
->v
->el
+ 1, data
->v
->el
+ 1, data
->g
,
4375 offset
- 1 + n_div
);
4377 return test_ineq_is_satisfied(bmap
, data
);
4380 /* Remove more kinds of divs that are not strictly needed.
4381 * In particular, if all pairs of lower and upper bounds on a div
4382 * are such that they allow at least one integer value of the div,
4383 * then we can eliminate the div using Fourier-Motzkin without
4384 * introducing any spurious solutions.
4386 * If at least one of the two constraints has a unit coefficient for the div,
4387 * then the presence of such a value is guaranteed so there is no need to check.
4388 * In particular, the value attained by the bound with unit coefficient
4389 * can serve as this intermediate value.
4391 static __isl_give isl_basic_map
*drop_more_redundant_divs(
4392 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int n
)
4395 struct test_ineq_data data
= { NULL
, NULL
};
4400 isl_int_init(data
.g
);
4401 isl_int_init(data
.fl
);
4402 isl_int_init(data
.fu
);
4404 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4408 ctx
= isl_basic_map_get_ctx(bmap
);
4409 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
4410 data
.v
= isl_vec_alloc(ctx
, off
+ n_div
);
4419 for (i
= 0; i
< n_div
; ++i
) {
4422 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
4428 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4429 if (!isl_int_is_pos(bmap
->ineq
[l
][off
+ i
]))
4431 if (isl_int_is_one(bmap
->ineq
[l
][off
+ i
]))
4433 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4434 if (!isl_int_is_neg(bmap
->ineq
[u
][off
+ i
]))
4436 if (isl_int_is_negone(bmap
->ineq
[u
][off
+ i
]))
4438 has_int
= int_between_bounds(bmap
, i
, l
, u
,
4442 if (data
.tab
&& data
.tab
->empty
)
4447 if (u
< bmap
->n_ineq
)
4450 if (data
.tab
&& data
.tab
->empty
) {
4451 bmap
= isl_basic_map_set_to_empty(bmap
);
4454 if (l
== bmap
->n_ineq
) {
4462 test_ineq_data_clear(&data
);
4469 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
4470 return isl_basic_map_drop_redundant_divs(bmap
);
4473 isl_basic_map_free(bmap
);
4474 test_ineq_data_clear(&data
);
4478 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4479 * and the upper bound u, div1 always occurs together with div2 in the form
4480 * (div1 + m div2), where m is the constant range on the variable div1
4481 * allowed by l and u, replace the pair div1 and div2 by a single
4482 * div that is equal to div1 + m div2.
4484 * The new div will appear in the location that contains div2.
4485 * We need to modify all constraints that contain
4486 * div2 = (div - div1) / m
4487 * The coefficient of div2 is known to be equal to 1 or -1.
4488 * (If a constraint does not contain div2, it will also not contain div1.)
4489 * If the constraint also contains div1, then we know they appear
4490 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4491 * i.e., the coefficient of div is f.
4493 * Otherwise, we first need to introduce div1 into the constraint.
4502 * A lower bound on div2
4506 * can be replaced by
4508 * m div2 + div1 + m t + f >= 0
4514 * can be replaced by
4516 * -(m div2 + div1) + m t + f' >= 0
4518 * These constraint are those that we would obtain from eliminating
4519 * div1 using Fourier-Motzkin.
4521 * After all constraints have been modified, we drop the lower and upper
4522 * bound and then drop div1.
4523 * Since the new div is only placed in the same location that used
4524 * to store div2, but otherwise has a different meaning, any possible
4525 * explicit representation of the original div2 is removed.
4527 static __isl_give isl_basic_map
*coalesce_divs(__isl_take isl_basic_map
*bmap
,
4528 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
4536 ctx
= isl_basic_map_get_ctx(bmap
);
4538 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
4540 return isl_basic_map_free(bmap
);
4541 total
= 1 + v_div
+ bmap
->n_div
;
4544 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4545 isl_int_add_ui(m
, m
, 1);
4547 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4548 if (i
== l
|| i
== u
)
4550 if (isl_int_is_zero(bmap
->ineq
[i
][1 + v_div
+ div2
]))
4552 if (isl_int_is_zero(bmap
->ineq
[i
][1 + v_div
+ div1
])) {
4553 if (isl_int_is_pos(bmap
->ineq
[i
][1 + v_div
+ div2
]))
4554 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4555 ctx
->one
, bmap
->ineq
[l
], total
);
4557 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4558 ctx
->one
, bmap
->ineq
[u
], total
);
4560 isl_int_set(bmap
->ineq
[i
][1 + v_div
+ div2
],
4561 bmap
->ineq
[i
][1 + v_div
+ div1
]);
4562 isl_int_set_si(bmap
->ineq
[i
][1 + v_div
+ div1
], 0);
4567 isl_basic_map_drop_inequality(bmap
, l
);
4568 isl_basic_map_drop_inequality(bmap
, u
);
4570 isl_basic_map_drop_inequality(bmap
, u
);
4571 isl_basic_map_drop_inequality(bmap
, l
);
4573 bmap
= isl_basic_map_mark_div_unknown(bmap
, div2
);
4574 bmap
= isl_basic_map_drop_div(bmap
, div1
);
4578 /* First check if we can coalesce any pair of divs and
4579 * then continue with dropping more redundant divs.
4581 * We loop over all pairs of lower and upper bounds on a div
4582 * with coefficient 1 and -1, respectively, check if there
4583 * is any other div "c" with which we can coalesce the div
4584 * and if so, perform the coalescing.
4586 static __isl_give isl_basic_map
*coalesce_or_drop_more_redundant_divs(
4587 __isl_take isl_basic_map
*bmap
, int *pairs
, int n
)
4593 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
4594 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4595 if (v_div
< 0 || n_div
< 0)
4596 return isl_basic_map_free(bmap
);
4598 for (i
= 0; i
< n_div
; ++i
) {
4601 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4602 if (!isl_int_is_one(bmap
->ineq
[l
][1 + v_div
+ i
]))
4604 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4607 if (!isl_int_is_negone(bmap
->ineq
[u
][1+v_div
+i
]))
4609 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
4615 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
4616 return isl_basic_map_drop_redundant_divs(bmap
);
4621 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
4626 return drop_more_redundant_divs(bmap
, pairs
, n
);
4629 isl_basic_map_free(bmap
);
4633 /* Are the "n" coefficients starting at "first" of inequality constraints
4634 * "i" and "j" of "bmap" equal to each other?
4636 static int is_parallel_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4639 return isl_seq_eq(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4642 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4643 * apart from the constant term and the coefficient at position "pos"?
4645 static isl_bool
is_parallel_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4650 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4652 return isl_bool_error
;
4653 return is_parallel_part(bmap
, i
, j
, 1, pos
- 1) &&
4654 is_parallel_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4657 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4658 * apart from the constant term and the coefficient at position "pos"?
4660 static isl_bool
is_opposite_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4665 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4667 return isl_bool_error
;
4668 return is_opposite_part(bmap
, i
, j
, 1, pos
- 1) &&
4669 is_opposite_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4672 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4673 * been modified, simplying it if "simplify" is set.
4674 * Free the temporary data structure "pairs" that was associated
4675 * to the old version of "bmap".
4677 static __isl_give isl_basic_map
*drop_redundant_divs_again(
4678 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int simplify
)
4681 bmap
= isl_basic_map_simplify(bmap
);
4683 return isl_basic_map_drop_redundant_divs(bmap
);
4686 /* Is "div" the single unknown existentially quantified variable
4687 * in inequality constraint "ineq" of "bmap"?
4688 * "div" is known to have a non-zero coefficient in "ineq".
4690 static isl_bool
single_unknown(__isl_keep isl_basic_map
*bmap
, int ineq
,
4698 known
= isl_basic_map_div_is_known(bmap
, div
);
4699 if (known
< 0 || known
)
4700 return isl_bool_not(known
);
4701 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4703 return isl_bool_error
;
4705 return isl_bool_true
;
4706 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4707 for (i
= 0; i
< n_div
; ++i
) {
4712 if (isl_int_is_zero(bmap
->ineq
[ineq
][o_div
+ i
]))
4714 known
= isl_basic_map_div_is_known(bmap
, i
);
4715 if (known
< 0 || !known
)
4719 return isl_bool_true
;
4722 /* Does integer division "div" have coefficient 1 in inequality constraint
4725 static isl_bool
has_coef_one(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4729 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4730 if (isl_int_is_one(bmap
->ineq
[ineq
][o_div
+ div
]))
4731 return isl_bool_true
;
4733 return isl_bool_false
;
4736 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4737 * then try and drop redundant divs again,
4738 * freeing the temporary data structure "pairs" that was associated
4739 * to the old version of "bmap".
4741 static __isl_give isl_basic_map
*set_eq_and_try_again(
4742 __isl_take isl_basic_map
*bmap
, int ineq
, __isl_take
int *pairs
)
4744 bmap
= isl_basic_map_cow(bmap
);
4745 isl_basic_map_inequality_to_equality(bmap
, ineq
);
4746 return drop_redundant_divs_again(bmap
, pairs
, 1);
4749 /* Drop the integer division at position "div", along with the two
4750 * inequality constraints "ineq1" and "ineq2" in which it appears
4751 * from "bmap" and then try and drop redundant divs again,
4752 * freeing the temporary data structure "pairs" that was associated
4753 * to the old version of "bmap".
4755 static __isl_give isl_basic_map
*drop_div_and_try_again(
4756 __isl_take isl_basic_map
*bmap
, int div
, int ineq1
, int ineq2
,
4757 __isl_take
int *pairs
)
4759 if (ineq1
> ineq2
) {
4760 isl_basic_map_drop_inequality(bmap
, ineq1
);
4761 isl_basic_map_drop_inequality(bmap
, ineq2
);
4763 isl_basic_map_drop_inequality(bmap
, ineq2
);
4764 isl_basic_map_drop_inequality(bmap
, ineq1
);
4766 bmap
= isl_basic_map_drop_div(bmap
, div
);
4767 return drop_redundant_divs_again(bmap
, pairs
, 0);
4770 /* Given two inequality constraints
4772 * f(x) + n d + c >= 0, (ineq)
4774 * with d the variable at position "pos", and
4776 * f(x) + c0 >= 0, (lower)
4778 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4779 * determined by the first constraint.
4786 static void lower_bound_from_parallel(__isl_keep isl_basic_map
*bmap
,
4787 int ineq
, int lower
, int pos
, isl_int
*l
)
4789 isl_int_neg(*l
, bmap
->ineq
[ineq
][0]);
4790 isl_int_add(*l
, *l
, bmap
->ineq
[lower
][0]);
4791 isl_int_cdiv_q(*l
, *l
, bmap
->ineq
[ineq
][pos
]);
4794 /* Given two inequality constraints
4796 * f(x) + n d + c >= 0, (ineq)
4798 * with d the variable at position "pos", and
4800 * -f(x) - c0 >= 0, (upper)
4802 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4803 * determined by the first constraint.
4810 static void lower_bound_from_opposite(__isl_keep isl_basic_map
*bmap
,
4811 int ineq
, int upper
, int pos
, isl_int
*u
)
4813 isl_int_neg(*u
, bmap
->ineq
[ineq
][0]);
4814 isl_int_sub(*u
, *u
, bmap
->ineq
[upper
][0]);
4815 isl_int_cdiv_q(*u
, *u
, bmap
->ineq
[ineq
][pos
]);
4818 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4819 * does the corresponding lower bound have a fixed value in "bmap"?
4821 * In particular, "ineq" is of the form
4823 * f(x) + n d + c >= 0
4825 * with n > 0, c the constant term and
4826 * d the existentially quantified variable "div".
4827 * That is, the lower bound is
4829 * ceil((-f(x) - c)/n)
4831 * Look for a pair of constraints
4836 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4837 * That is, check that
4839 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4841 * If so, return the index of inequality f(x) + c0 >= 0.
4842 * Otherwise, return bmap->n_ineq.
4843 * Return -1 on error.
4845 static int lower_bound_is_cst(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4848 int lower
= -1, upper
= -1;
4853 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4854 for (i
= 0; i
< bmap
->n_ineq
&& (lower
< 0 || upper
< 0); ++i
) {
4859 if (!isl_int_is_zero(bmap
->ineq
[i
][o_div
+ div
]))
4861 par
= isl_bool_false
;
4863 par
= is_parallel_except(bmap
, ineq
, i
, o_div
+ div
);
4870 opp
= isl_bool_false
;
4872 opp
= is_opposite_except(bmap
, ineq
, i
, o_div
+ div
);
4879 if (lower
< 0 || upper
< 0)
4880 return bmap
->n_ineq
;
4885 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &l
);
4886 lower_bound_from_opposite(bmap
, ineq
, upper
, o_div
+ div
, &u
);
4888 equal
= isl_int_eq(l
, u
);
4893 return equal
? lower
: bmap
->n_ineq
;
4896 /* Given a lower bound constraint "ineq" on the existentially quantified
4897 * variable "div", such that the corresponding lower bound has
4898 * a fixed value in "bmap", assign this fixed value to the variable and
4899 * then try and drop redundant divs again,
4900 * freeing the temporary data structure "pairs" that was associated
4901 * to the old version of "bmap".
4902 * "lower" determines the constant value for the lower bound.
4904 * In particular, "ineq" is of the form
4906 * f(x) + n d + c >= 0,
4908 * while "lower" is of the form
4912 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4913 * is ceil((c0 - c)/n).
4915 static __isl_give isl_basic_map
*fix_cst_lower(__isl_take isl_basic_map
*bmap
,
4916 int div
, int ineq
, int lower
, int *pairs
)
4923 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4924 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &c
);
4925 bmap
= isl_basic_map_fix(bmap
, isl_dim_div
, div
, c
);
4930 return isl_basic_map_drop_redundant_divs(bmap
);
4933 /* Do any of the integer divisions of "bmap" involve integer division "div"?
4935 * The integer division "div" could only ever appear in any later
4936 * integer division (with an explicit representation).
4938 static isl_bool
any_div_involves_div(__isl_keep isl_basic_map
*bmap
, int div
)
4941 isl_size v_div
, n_div
;
4943 v_div
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
4944 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4945 if (v_div
< 0 || n_div
< 0)
4946 return isl_bool_error
;
4948 for (i
= div
+ 1; i
< n_div
; ++i
) {
4951 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, i
);
4953 return isl_bool_error
;
4956 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + v_div
+ div
]))
4957 return isl_bool_true
;
4960 return isl_bool_false
;
4963 /* Remove divs that are not strictly needed based on the inequality
4965 * In particular, if a div only occurs positively (or negatively)
4966 * in constraints, then it can simply be dropped.
4967 * Also, if a div occurs in only two constraints and if moreover
4968 * those two constraints are opposite to each other, except for the constant
4969 * term and if the sum of the constant terms is such that for any value
4970 * of the other values, there is always at least one integer value of the
4971 * div, i.e., if one plus this sum is greater than or equal to
4972 * the (absolute value) of the coefficient of the div in the constraints,
4973 * then we can also simply drop the div.
4975 * If an existentially quantified variable does not have an explicit
4976 * representation, appears in only a single lower bound that does not
4977 * involve any other such existentially quantified variables and appears
4978 * in this lower bound with coefficient 1,
4979 * then fix the variable to the value of the lower bound. That is,
4980 * turn the inequality into an equality.
4981 * If for any value of the other variables, there is any value
4982 * for the existentially quantified variable satisfying the constraints,
4983 * then this lower bound also satisfies the constraints.
4984 * It is therefore safe to pick this lower bound.
4986 * The same reasoning holds even if the coefficient is not one.
4987 * However, fixing the variable to the value of the lower bound may
4988 * in general introduce an extra integer division, in which case
4989 * it may be better to pick another value.
4990 * If this integer division has a known constant value, then plugging
4991 * in this constant value removes the existentially quantified variable
4992 * completely. In particular, if the lower bound is of the form
4993 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4994 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4995 * then the existentially quantified variable can be assigned this
4998 * We skip divs that appear in equalities or in the definition of other divs.
4999 * Divs that appear in the definition of other divs usually occur in at least
5000 * 4 constraints, but the constraints may have been simplified.
5002 * If any divs are left after these simple checks then we move on
5003 * to more complicated cases in drop_more_redundant_divs.
5005 static __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs_ineq(
5006 __isl_take isl_basic_map
*bmap
)
5016 if (bmap
->n_div
== 0)
5019 off
= isl_basic_map_var_offset(bmap
, isl_dim_div
);
5021 return isl_basic_map_free(bmap
);
5022 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
5026 n_ineq
= isl_basic_map_n_inequality(bmap
);
5029 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5031 int last_pos
, last_neg
;
5034 isl_bool involves
, opp
, set_div
;
5036 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
5037 involves
= any_div_involves_div(bmap
, i
);
5042 for (j
= 0; j
< bmap
->n_eq
; ++j
)
5043 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
5049 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
5050 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
5054 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
5059 pairs
[i
] = pos
* neg
;
5060 if (pairs
[i
] == 0) {
5061 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
5062 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
5063 isl_basic_map_drop_inequality(bmap
, j
);
5064 bmap
= isl_basic_map_drop_div(bmap
, i
);
5065 return drop_redundant_divs_again(bmap
, pairs
, 0);
5068 opp
= isl_bool_false
;
5070 opp
= is_opposite(bmap
, last_pos
, last_neg
);
5075 isl_bool single
, one
;
5079 single
= single_unknown(bmap
, last_pos
, i
);
5084 one
= has_coef_one(bmap
, i
, last_pos
);
5088 return set_eq_and_try_again(bmap
, last_pos
,
5090 lower
= lower_bound_is_cst(bmap
, i
, last_pos
);
5094 return fix_cst_lower(bmap
, i
, last_pos
, lower
,
5099 isl_int_add(bmap
->ineq
[last_pos
][0],
5100 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
5101 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
5102 bmap
->ineq
[last_pos
][0], 1);
5103 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
5104 bmap
->ineq
[last_pos
][1+off
+i
]);
5105 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
5106 bmap
->ineq
[last_pos
][0], 1);
5107 isl_int_sub(bmap
->ineq
[last_pos
][0],
5108 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
5110 return drop_div_and_try_again(bmap
, i
,
5111 last_pos
, last_neg
, pairs
);
5113 set_div
= isl_bool_false
;
5115 set_div
= ok_to_set_div_from_bound(bmap
, i
, last_pos
);
5117 return isl_basic_map_free(bmap
);
5119 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
5120 return drop_redundant_divs_again(bmap
, pairs
, 1);
5127 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
5133 isl_basic_map_free(bmap
);
5137 /* Consider the coefficients at "c" as a row vector and replace
5138 * them with their product with "T". "T" is assumed to be a square matrix.
5140 static isl_stat
preimage(isl_int
*c
, __isl_keep isl_mat
*T
)
5146 n
= isl_mat_rows(T
);
5148 return isl_stat_error
;
5149 if (isl_seq_first_non_zero(c
, n
) == -1)
5151 ctx
= isl_mat_get_ctx(T
);
5152 v
= isl_vec_alloc(ctx
, n
);
5154 return isl_stat_error
;
5155 isl_seq_swp_or_cpy(v
->el
, c
, n
);
5156 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5158 return isl_stat_error
;
5159 isl_seq_swp_or_cpy(c
, v
->el
, n
);
5165 /* Plug in T for the variables in "bmap" starting at "pos".
5166 * T is a linear unimodular matrix, i.e., without constant term.
5168 static __isl_give isl_basic_map
*isl_basic_map_preimage_vars(
5169 __isl_take isl_basic_map
*bmap
, unsigned pos
, __isl_take isl_mat
*T
)
5172 isl_size n_row
, n_col
;
5174 bmap
= isl_basic_map_cow(bmap
);
5175 n_row
= isl_mat_rows(T
);
5176 n_col
= isl_mat_cols(T
);
5177 if (!bmap
|| n_row
< 0 || n_col
< 0)
5181 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5182 "expecting square matrix", goto error
);
5184 if (isl_basic_map_check_range(bmap
, isl_dim_all
, pos
, n_col
) < 0)
5187 for (i
= 0; i
< bmap
->n_eq
; ++i
)
5188 if (preimage(bmap
->eq
[i
] + 1 + pos
, T
) < 0)
5190 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
5191 if (preimage(bmap
->ineq
[i
] + 1 + pos
, T
) < 0)
5193 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5194 if (isl_basic_map_div_is_marked_unknown(bmap
, i
))
5196 if (preimage(bmap
->div
[i
] + 1 + 1 + pos
, T
) < 0)
5203 isl_basic_map_free(bmap
);
5208 /* Remove divs that are not strictly needed.
5210 * First look for an equality constraint involving two or more
5211 * existentially quantified variables without an explicit
5212 * representation. Replace the combination that appears
5213 * in the equality constraint by a single existentially quantified
5214 * variable such that the equality can be used to derive
5215 * an explicit representation for the variable.
5216 * If there are no more such equality constraints, then continue
5217 * with isl_basic_map_drop_redundant_divs_ineq.
5219 * In particular, if the equality constraint is of the form
5221 * f(x) + \sum_i c_i a_i = 0
5223 * with a_i existentially quantified variable without explicit
5224 * representation, then apply a transformation on the existentially
5225 * quantified variables to turn the constraint into
5229 * with g the gcd of the c_i.
5230 * In order to easily identify which existentially quantified variables
5231 * have a complete explicit representation, i.e., without being defined
5232 * in terms of other existentially quantified variables without
5233 * an explicit representation, the existentially quantified variables
5236 * The variable transformation is computed by extending the row
5237 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5239 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5244 * with [c_1/g ... c_n/g] representing the first row of U.
5245 * The inverse of U is then plugged into the original constraints.
5246 * The call to isl_basic_map_simplify makes sure the explicit
5247 * representation for a_1' is extracted from the equality constraint.
5249 __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs(
5250 __isl_take isl_basic_map
*bmap
)
5262 if (isl_basic_map_divs_known(bmap
))
5263 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5264 if (bmap
->n_eq
== 0)
5265 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5266 bmap
= isl_basic_map_sort_divs(bmap
);
5270 first
= isl_basic_map_first_unknown_div(bmap
);
5272 return isl_basic_map_free(bmap
);
5274 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
5275 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
5277 return isl_basic_map_free(bmap
);
5279 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5280 l
= isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ first
,
5285 if (isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ l
+ 1,
5286 n_div
- (l
+ 1)) == -1)
5290 if (i
>= bmap
->n_eq
)
5291 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5293 ctx
= isl_basic_map_get_ctx(bmap
);
5294 T
= isl_mat_alloc(ctx
, n_div
- l
, n_div
- l
);
5296 return isl_basic_map_free(bmap
);
5297 isl_seq_cpy(T
->row
[0], bmap
->eq
[i
] + o_div
+ l
, n_div
- l
);
5298 T
= isl_mat_normalize_row(T
, 0);
5299 T
= isl_mat_unimodular_complete(T
, 1);
5300 T
= isl_mat_right_inverse(T
);
5302 for (i
= l
; i
< n_div
; ++i
)
5303 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
5304 bmap
= isl_basic_map_preimage_vars(bmap
, o_div
- 1 + l
, T
);
5305 bmap
= isl_basic_map_simplify(bmap
);
5307 return isl_basic_map_drop_redundant_divs(bmap
);
5310 /* Does "bmap" satisfy any equality that involves more than 2 variables
5311 * and/or has coefficients different from -1 and 1?
5313 static isl_bool
has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
5318 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5320 return isl_bool_error
;
5322 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5325 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
5328 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5329 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5330 return isl_bool_true
;
5333 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5337 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5338 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5339 return isl_bool_true
;
5342 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5344 return isl_bool_true
;
5347 return isl_bool_false
;
5350 /* Remove any common factor g from the constraint coefficients in "v".
5351 * The constant term is stored in the first position and is replaced
5352 * by floor(c/g). If any common factor is removed and if this results
5353 * in a tightening of the constraint, then set *tightened.
5355 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
5362 ctx
= isl_vec_get_ctx(v
);
5363 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
5364 if (isl_int_is_zero(ctx
->normalize_gcd
))
5366 if (isl_int_is_one(ctx
->normalize_gcd
))
5371 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
5373 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
5374 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
5379 /* If "bmap" is an integer set that satisfies any equality involving
5380 * more than 2 variables and/or has coefficients different from -1 and 1,
5381 * then use variable compression to reduce the coefficients by removing
5382 * any (hidden) common factor.
5383 * In particular, apply the variable compression to each constraint,
5384 * factor out any common factor in the non-constant coefficients and
5385 * then apply the inverse of the compression.
5386 * At the end, we mark the basic map as having reduced constants.
5387 * If this flag is still set on the next invocation of this function,
5388 * then we skip the computation.
5390 * Removing a common factor may result in a tightening of some of
5391 * the constraints. If this happens, then we may end up with two
5392 * opposite inequalities that can be replaced by an equality.
5393 * We therefore call isl_basic_map_detect_inequality_pairs,
5394 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5395 * and isl_basic_map_gauss if such a pair was found.
5397 * Tightening may also result in some other constraints becoming
5398 * (rationally) redundant with respect to the tightened constraint
5399 * (in combination with other constraints). The basic map may
5400 * therefore no longer be assumed to have no redundant constraints.
5402 * Note that this function may leave the result in an inconsistent state.
5403 * In particular, the constraints may not be gaussed.
5404 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5405 * for some of the test cases to pass successfully.
5406 * Any potential modification of the representation is therefore only
5407 * performed on a single copy of the basic map.
5409 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
5410 __isl_take isl_basic_map
*bmap
)
5416 isl_mat
*eq
, *T
, *T2
;
5422 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
5424 if (isl_basic_map_is_rational(bmap
))
5426 if (bmap
->n_eq
== 0)
5428 multi
= has_multiple_var_equality(bmap
);
5430 return isl_basic_map_free(bmap
);
5434 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5436 return isl_basic_map_free(bmap
);
5437 ctx
= isl_basic_map_get_ctx(bmap
);
5438 v
= isl_vec_alloc(ctx
, 1 + total
);
5440 return isl_basic_map_free(bmap
);
5442 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
5443 T
= isl_mat_variable_compression(eq
, &T2
);
5446 if (T
->n_col
== 0) {
5450 return isl_basic_map_set_to_empty(bmap
);
5453 bmap
= isl_basic_map_cow(bmap
);
5458 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5459 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
5460 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5461 v
= normalize_constraint(v
, &tightened
);
5462 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
5465 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
5472 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
5477 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
5478 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
5480 bmap
= eliminate_divs_eq(bmap
, &progress
);
5481 bmap
= isl_basic_map_gauss(bmap
, NULL
);
5490 return isl_basic_map_free(bmap
);
5493 /* Shift the integer division at position "div" of "bmap"
5494 * by "shift" times the variable at position "pos".
5495 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5496 * corresponds to the constant term.
5498 * That is, if the integer division has the form
5502 * then replace it by
5504 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5506 __isl_give isl_basic_map
*isl_basic_map_shift_div(
5507 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
5510 isl_size total
, n_div
;
5512 if (isl_int_is_zero(shift
))
5514 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5515 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
5517 if (total
< 0 || n_div
< 0)
5518 return isl_basic_map_free(bmap
);
5520 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
5522 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5523 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
5525 isl_int_submul(bmap
->eq
[i
][pos
],
5526 shift
, bmap
->eq
[i
][1 + total
+ div
]);
5528 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5529 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
5531 isl_int_submul(bmap
->ineq
[i
][pos
],
5532 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
5534 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5535 if (isl_int_is_zero(bmap
->div
[i
][0]))
5537 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
5539 isl_int_submul(bmap
->div
[i
][1 + pos
],
5540 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);