2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
14 #include "isl_basis_reduction.h"
16 static void save_alpha(GBR_LP
*lp
, int first
, int n
, GBR_type
*alpha
)
20 for (i
= 0; i
< n
; ++i
)
21 GBR_lp_get_alpha(lp
, first
+ i
, &alpha
[i
]);
24 /* Compute a reduced basis for the set represented by the tableau "tab".
25 * tab->basis, must be initialized by the calling function to an affine
26 * unimodular basis, is updated to reflect the reduced basis.
27 * The first tab->n_zero rows of the basis (ignoring the constant row)
28 * are assumed to correspond to equalities and are left untouched.
29 * tab->n_zero is updated to reflect any additional equalities that
30 * have been detected in the first rows of the new basis.
31 * The final tab->n_unbounded rows of the basis are assumed to correspond
32 * to unbounded directions and are also left untouched.
33 * In particular this means that the remaining rows are assumed to
34 * correspond to bounded directions.
36 * This function implements the algorithm described in
37 * "An Implementation of the Generalized Basis Reduction Algorithm
38 * for Integer Programming" of Cook el al. to compute a reduced basis.
39 * We use \epsilon = 1/4.
41 * If ctx->opt->gbr_only_first is set, the user is only interested
42 * in the first direction. In this case we stop the basis reduction when
43 * the width in the first direction becomes smaller than 2.
45 struct isl_tab
*isl_tab_compute_reduced_basis(struct isl_tab
*tab
)
53 GBR_type F_old
, alpha
, F_new
;
56 struct isl_vec
*b_tmp
;
58 GBR_type
*alpha_buffer
[2] = { NULL
, NULL
};
59 GBR_type
*alpha_saved
;
80 gbr_only_first
= ctx
->opt
->gbr_only_first
;
86 n_bounded
= dim
- tab
->n_unbounded
;
87 if (n_bounded
<= tab
->n_zero
+ 1)
103 b_tmp
= isl_vec_alloc(ctx
, dim
);
107 F
= isl_alloc_array(ctx
, GBR_type
, n_bounded
);
108 alpha_buffer
[0] = isl_alloc_array(ctx
, GBR_type
, n_bounded
);
109 alpha_buffer
[1] = isl_alloc_array(ctx
, GBR_type
, n_bounded
);
110 alpha_saved
= alpha_buffer
[0];
112 if (!F
|| !alpha_buffer
[0] || !alpha_buffer
[1])
115 for (i
= 0; i
< n_bounded
; ++i
) {
117 GBR_init(alpha_buffer
[0][i
]);
118 GBR_init(alpha_buffer
[1][i
]);
124 lp
= GBR_lp_init(tab
);
130 GBR_lp_set_obj(lp
, B
->row
[1+i
]+1, dim
);
131 ctx
->stats
->gbr_solved_lps
++;
132 unbounded
= GBR_lp_solve(lp
);
133 isl_assert(ctx
, !unbounded
, goto error
);
134 GBR_lp_get_obj_val(lp
, &F
[i
]);
136 if (GBR_lt(F
[i
], one
)) {
137 if (!GBR_is_zero(F
[i
])) {
138 empty
= GBR_lp_cut(lp
, B
->row
[1+i
]+1);
147 if (i
+1 == tab
->n_zero
) {
148 GBR_lp_set_obj(lp
, B
->row
[1+i
+1]+1, dim
);
149 ctx
->stats
->gbr_solved_lps
++;
150 unbounded
= GBR_lp_solve(lp
);
151 isl_assert(ctx
, !unbounded
, goto error
);
152 GBR_lp_get_obj_val(lp
, &F_new
);
153 fixed
= GBR_lp_is_fixed(lp
);
154 GBR_set_ui(alpha
, 0);
157 row
= GBR_lp_next_row(lp
);
158 GBR_set(F_new
, F_saved
);
160 GBR_set(alpha
, alpha_saved
[i
]);
162 row
= GBR_lp_add_row(lp
, B
->row
[1+i
]+1, dim
);
163 GBR_lp_set_obj(lp
, B
->row
[1+i
+1]+1, dim
);
164 ctx
->stats
->gbr_solved_lps
++;
165 unbounded
= GBR_lp_solve(lp
);
166 isl_assert(ctx
, !unbounded
, goto error
);
167 GBR_lp_get_obj_val(lp
, &F_new
);
168 fixed
= GBR_lp_is_fixed(lp
);
170 GBR_lp_get_alpha(lp
, row
, &alpha
);
173 save_alpha(lp
, row
-i
, i
, alpha_saved
);
175 if (GBR_lp_del_row(lp
) < 0)
178 GBR_set(F
[i
+1], F_new
);
180 GBR_floor(mu
[0], alpha
);
181 GBR_ceil(mu
[1], alpha
);
183 if (isl_int_eq(mu
[0], mu
[1]))
184 isl_int_set(tmp
, mu
[0]);
188 for (j
= 0; j
<= 1; ++j
) {
189 isl_int_set(tmp
, mu
[j
]);
190 isl_seq_combine(b_tmp
->el
,
191 ctx
->one
, B
->row
[1+i
+1]+1,
192 tmp
, B
->row
[1+i
]+1, dim
);
193 GBR_lp_set_obj(lp
, b_tmp
->el
, dim
);
194 ctx
->stats
->gbr_solved_lps
++;
195 unbounded
= GBR_lp_solve(lp
);
196 isl_assert(ctx
, !unbounded
, goto error
);
197 GBR_lp_get_obj_val(lp
, &mu_F
[j
]);
198 mu_fixed
[j
] = GBR_lp_is_fixed(lp
);
200 save_alpha(lp
, row
-i
, i
, alpha_buffer
[j
]);
203 if (GBR_lt(mu_F
[0], mu_F
[1]))
208 isl_int_set(tmp
, mu
[j
]);
209 GBR_set(F_new
, mu_F
[j
]);
211 alpha_saved
= alpha_buffer
[j
];
213 isl_seq_combine(B
->row
[1+i
+1]+1, ctx
->one
, B
->row
[1+i
+1]+1,
214 tmp
, B
->row
[1+i
]+1, dim
);
216 if (i
+1 == tab
->n_zero
&& fixed
) {
217 if (!GBR_is_zero(F
[i
+1])) {
218 empty
= GBR_lp_cut(lp
, B
->row
[1+i
+1]+1);
221 GBR_set_ui(F
[i
+1], 0);
226 GBR_set(F_old
, F
[i
]);
229 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
230 GBR_set_ui(mu_F
[0], 4);
231 GBR_mul(mu_F
[0], mu_F
[0], F_new
);
232 GBR_set_ui(mu_F
[1], 3);
233 GBR_mul(mu_F
[1], mu_F
[1], F_old
);
234 if (GBR_lt(mu_F
[0], mu_F
[1])) {
235 B
= isl_mat_swap_rows(B
, 1 + i
, 1 + i
+ 1);
236 if (i
> tab
->n_zero
) {
238 GBR_set(F_saved
, F_new
);
240 if (GBR_lp_del_row(lp
) < 0)
244 GBR_set(F
[tab
->n_zero
], F_new
);
245 if (gbr_only_first
&& GBR_lt(F
[tab
->n_zero
], two
))
249 if (!GBR_is_zero(F
[tab
->n_zero
])) {
250 empty
= GBR_lp_cut(lp
, B
->row
[1+tab
->n_zero
]+1);
253 GBR_set_ui(F
[tab
->n_zero
], 0);
259 GBR_lp_add_row(lp
, B
->row
[1+i
]+1, dim
);
262 } while (i
< n_bounded
- 1);
276 for (i
= 0; i
< n_bounded
; ++i
) {
278 GBR_clear(alpha_buffer
[0][i
]);
279 GBR_clear(alpha_buffer
[1][i
]);
282 free(alpha_buffer
[0]);
283 free(alpha_buffer
[1]);
297 isl_int_clear(mu
[0]);
298 isl_int_clear(mu
[1]);
305 struct isl_mat
*isl_basic_set_reduced_basis(struct isl_basic_set
*bset
)
307 struct isl_mat
*basis
;
310 isl_assert(bset
->ctx
, bset
->n_eq
== 0, return NULL
);
312 tab
= isl_tab_from_basic_set(bset
);
313 tab
->basis
= isl_mat_identity(bset
->ctx
, 1 + tab
->n_var
);
314 tab
= isl_tab_compute_reduced_basis(tab
);
318 basis
= isl_mat_copy(tab
->basis
);