isl_printer_print_qpolynomial: drop special case for lone integer division
[isl.git] / isl_ilp.c
blob4ada75389e9950b7505023b646f7e6e240fa8ffc
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include <isl/ilp.h>
13 #include <isl/union_set.h>
14 #include "isl_sample.h"
15 #include <isl_seq.h>
16 #include "isl_equalities.h"
17 #include <isl_aff_private.h>
18 #include <isl_local_space_private.h>
19 #include <isl_mat_private.h>
20 #include <isl_val_private.h>
21 #include <isl_vec_private.h>
22 #include <isl_lp_private.h>
23 #include <isl_ilp_private.h>
24 #include <isl/deprecated/ilp_int.h>
26 /* Given a basic set "bset", construct a basic set U such that for
27 * each element x in U, the whole unit box positioned at x is inside
28 * the given basic set.
29 * Note that U may not contain all points that satisfy this property.
31 * We simply add the sum of all negative coefficients to the constant
32 * term. This ensures that if x satisfies the resulting constraints,
33 * then x plus any sum of unit vectors satisfies the original constraints.
35 static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset)
37 int i, j, k;
38 struct isl_basic_set *unit_box = NULL;
39 unsigned total;
41 if (!bset)
42 goto error;
44 if (bset->n_eq != 0) {
45 isl_space *space = isl_basic_set_get_space(bset);
46 isl_basic_set_free(bset);
47 return isl_basic_set_empty(space);
50 total = isl_basic_set_total_dim(bset);
51 unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
52 0, 0, bset->n_ineq);
54 for (i = 0; i < bset->n_ineq; ++i) {
55 k = isl_basic_set_alloc_inequality(unit_box);
56 if (k < 0)
57 goto error;
58 isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
59 for (j = 0; j < total; ++j) {
60 if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
61 continue;
62 isl_int_add(unit_box->ineq[k][0],
63 unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
67 isl_basic_set_free(bset);
68 return unit_box;
69 error:
70 isl_basic_set_free(bset);
71 isl_basic_set_free(unit_box);
72 return NULL;
75 /* Find an integer point in "bset", preferably one that is
76 * close to minimizing "f".
78 * We first check if we can easily put unit boxes inside bset.
79 * If so, we take the best base point of any of the unit boxes we can find
80 * and round it up to the nearest integer.
81 * If not, we simply pick any integer point in "bset".
83 static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f)
85 enum isl_lp_result res;
86 struct isl_basic_set *unit_box;
87 struct isl_vec *sol;
89 unit_box = unit_box_base_points(isl_basic_set_copy(bset));
91 res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
92 NULL, NULL, &sol);
93 if (res == isl_lp_ok) {
94 isl_basic_set_free(unit_box);
95 return isl_vec_ceil(sol);
98 isl_basic_set_free(unit_box);
100 return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
103 /* Restrict "bset" to those points with values for f in the interval [l, u].
105 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
106 isl_int *f, isl_int l, isl_int u)
108 int k;
109 unsigned total;
111 total = isl_basic_set_total_dim(bset);
112 bset = isl_basic_set_extend_constraints(bset, 0, 2);
114 k = isl_basic_set_alloc_inequality(bset);
115 if (k < 0)
116 goto error;
117 isl_seq_cpy(bset->ineq[k], f, 1 + total);
118 isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
120 k = isl_basic_set_alloc_inequality(bset);
121 if (k < 0)
122 goto error;
123 isl_seq_neg(bset->ineq[k], f, 1 + total);
124 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
126 return bset;
127 error:
128 isl_basic_set_free(bset);
129 return NULL;
132 /* Find an integer point in "bset" that minimizes f (in any) such that
133 * the value of f lies inside the interval [l, u].
134 * Return this integer point if it can be found.
135 * Otherwise, return sol.
137 * We perform a number of steps until l > u.
138 * In each step, we look for an integer point with value in either
139 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
140 * The choice depends on whether we have found an integer point in the
141 * previous step. If so, we look for the next point in half of the remaining
142 * interval.
143 * If we find a point, the current solution is updated and u is set
144 * to its value minus 1.
145 * If no point can be found, we update l to the upper bound of the interval
146 * we checked (u or l+floor(u-l-1/2)) plus 1.
148 static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset,
149 isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u)
151 isl_int tmp;
152 int divide = 1;
154 isl_int_init(tmp);
156 while (isl_int_le(l, u)) {
157 struct isl_basic_set *slice;
158 struct isl_vec *sample;
160 if (!divide)
161 isl_int_set(tmp, u);
162 else {
163 isl_int_sub(tmp, u, l);
164 isl_int_fdiv_q_ui(tmp, tmp, 2);
165 isl_int_add(tmp, tmp, l);
167 slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
168 sample = isl_basic_set_sample_vec(slice);
169 if (!sample) {
170 isl_vec_free(sol);
171 sol = NULL;
172 break;
174 if (sample->size > 0) {
175 isl_vec_free(sol);
176 sol = sample;
177 isl_seq_inner_product(f, sol->el, sol->size, opt);
178 isl_int_sub_ui(u, *opt, 1);
179 divide = 1;
180 } else {
181 isl_vec_free(sample);
182 if (!divide)
183 break;
184 isl_int_add_ui(l, tmp, 1);
185 divide = 0;
189 isl_int_clear(tmp);
191 return sol;
194 /* Find an integer point in "bset" that minimizes f (if any).
195 * If sol_p is not NULL then the integer point is returned in *sol_p.
196 * The optimal value of f is returned in *opt.
198 * The algorithm maintains a currently best solution and an interval [l, u]
199 * of values of f for which integer solutions could potentially still be found.
200 * The initial value of the best solution so far is any solution.
201 * The initial value of l is minimal value of f over the rationals
202 * (rounded up to the nearest integer).
203 * The initial value of u is the value of f at the initial solution minus 1.
205 * We then call solve_ilp_search to perform a binary search on the interval.
207 static enum isl_lp_result solve_ilp(struct isl_basic_set *bset,
208 isl_int *f, isl_int *opt,
209 struct isl_vec **sol_p)
211 enum isl_lp_result res;
212 isl_int l, u;
213 struct isl_vec *sol;
215 res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
216 opt, NULL, &sol);
217 if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
218 if (sol_p)
219 *sol_p = sol;
220 else
221 isl_vec_free(sol);
222 return isl_lp_ok;
224 isl_vec_free(sol);
225 if (res == isl_lp_error || res == isl_lp_empty)
226 return res;
228 sol = initial_solution(bset, f);
229 if (!sol)
230 return isl_lp_error;
231 if (sol->size == 0) {
232 isl_vec_free(sol);
233 return isl_lp_empty;
235 if (res == isl_lp_unbounded) {
236 isl_vec_free(sol);
237 return isl_lp_unbounded;
240 isl_int_init(l);
241 isl_int_init(u);
243 isl_int_set(l, *opt);
245 isl_seq_inner_product(f, sol->el, sol->size, opt);
246 isl_int_sub_ui(u, *opt, 1);
248 sol = solve_ilp_search(bset, f, opt, sol, l, u);
249 if (!sol)
250 res = isl_lp_error;
252 isl_int_clear(l);
253 isl_int_clear(u);
255 if (sol_p)
256 *sol_p = sol;
257 else
258 isl_vec_free(sol);
260 return res;
263 static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max,
264 isl_int *f, isl_int *opt,
265 struct isl_vec **sol_p)
267 unsigned dim;
268 enum isl_lp_result res;
269 struct isl_mat *T = NULL;
270 struct isl_vec *v;
272 bset = isl_basic_set_copy(bset);
273 dim = isl_basic_set_total_dim(bset);
274 v = isl_vec_alloc(bset->ctx, 1 + dim);
275 if (!v)
276 goto error;
277 isl_seq_cpy(v->el, f, 1 + dim);
278 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
279 v = isl_vec_mat_product(v, isl_mat_copy(T));
280 if (!v)
281 goto error;
282 res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
283 isl_vec_free(v);
284 if (res == isl_lp_ok && sol_p) {
285 *sol_p = isl_mat_vec_product(T, *sol_p);
286 if (!*sol_p)
287 res = isl_lp_error;
288 } else
289 isl_mat_free(T);
290 isl_basic_set_free(bset);
291 return res;
292 error:
293 isl_mat_free(T);
294 isl_basic_set_free(bset);
295 return isl_lp_error;
298 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
299 * f (if any).
300 * If sol_p is not NULL then the integer point is returned in *sol_p.
301 * The optimal value of f is returned in *opt.
303 * If there is any equality among the points in "bset", then we first
304 * project it out. Otherwise, we continue with solve_ilp above.
306 enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max,
307 isl_int *f, isl_int *opt,
308 struct isl_vec **sol_p)
310 unsigned dim;
311 enum isl_lp_result res;
313 if (!bset)
314 return isl_lp_error;
315 if (sol_p)
316 *sol_p = NULL;
318 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0,
319 return isl_lp_error);
321 if (isl_basic_set_plain_is_empty(bset))
322 return isl_lp_empty;
324 if (bset->n_eq)
325 return solve_ilp_with_eq(bset, max, f, opt, sol_p);
327 dim = isl_basic_set_total_dim(bset);
329 if (max)
330 isl_seq_neg(f, f, 1 + dim);
332 res = solve_ilp(bset, f, opt, sol_p);
334 if (max) {
335 isl_seq_neg(f, f, 1 + dim);
336 isl_int_neg(*opt, *opt);
339 return res;
342 static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max,
343 __isl_keep isl_aff *obj, isl_int *opt)
345 enum isl_lp_result res;
347 if (!obj)
348 return isl_lp_error;
349 bset = isl_basic_set_copy(bset);
350 bset = isl_basic_set_underlying_set(bset);
351 res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL);
352 isl_basic_set_free(bset);
353 return res;
356 static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset)
358 int i;
359 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
360 isl_mat *div;
362 div = isl_mat_alloc(ctx, bset->n_div,
363 1 + 1 + isl_basic_set_total_dim(bset));
364 if (!div)
365 return NULL;
367 for (i = 0; i < bset->n_div; ++i)
368 isl_seq_cpy(div->row[i], bset->div[i], div->n_col);
370 return div;
373 enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max,
374 __isl_keep isl_aff *obj, isl_int *opt)
376 int *exp1 = NULL;
377 int *exp2 = NULL;
378 isl_ctx *ctx;
379 isl_mat *bset_div = NULL;
380 isl_mat *div = NULL;
381 enum isl_lp_result res;
382 int bset_n_div, obj_n_div;
384 if (!bset || !obj)
385 return isl_lp_error;
387 ctx = isl_aff_get_ctx(obj);
388 if (!isl_space_is_equal(bset->dim, obj->ls->dim))
389 isl_die(ctx, isl_error_invalid,
390 "spaces don't match", return isl_lp_error);
391 if (!isl_int_is_one(obj->v->el[0]))
392 isl_die(ctx, isl_error_unsupported,
393 "expecting integer affine expression",
394 return isl_lp_error);
396 bset_n_div = isl_basic_set_dim(bset, isl_dim_div);
397 obj_n_div = isl_aff_dim(obj, isl_dim_div);
398 if (bset_n_div == 0 && obj_n_div == 0)
399 return basic_set_opt(bset, max, obj, opt);
401 bset = isl_basic_set_copy(bset);
402 obj = isl_aff_copy(obj);
404 bset_div = extract_divs(bset);
405 exp1 = isl_alloc_array(ctx, int, bset_n_div);
406 exp2 = isl_alloc_array(ctx, int, obj_n_div);
407 if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2))
408 goto error;
410 div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);
412 bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
413 obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);
415 res = basic_set_opt(bset, max, obj, opt);
417 isl_mat_free(bset_div);
418 isl_mat_free(div);
419 free(exp1);
420 free(exp2);
421 isl_basic_set_free(bset);
422 isl_aff_free(obj);
424 return res;
425 error:
426 isl_mat_free(div);
427 isl_mat_free(bset_div);
428 free(exp1);
429 free(exp2);
430 isl_basic_set_free(bset);
431 isl_aff_free(obj);
432 return isl_lp_error;
435 /* Compute the minimum (maximum if max is set) of the integer affine
436 * expression obj over the points in set and put the result in *opt.
438 * The parameters are assumed to have been aligned.
440 static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max,
441 __isl_keep isl_aff *obj, isl_int *opt)
443 int i;
444 enum isl_lp_result res;
445 int empty = 1;
446 isl_int opt_i;
448 if (!set || !obj)
449 return isl_lp_error;
450 if (set->n == 0)
451 return isl_lp_empty;
453 res = isl_basic_set_opt(set->p[0], max, obj, opt);
454 if (res == isl_lp_error || res == isl_lp_unbounded)
455 return res;
456 if (set->n == 1)
457 return res;
458 if (res == isl_lp_ok)
459 empty = 0;
461 isl_int_init(opt_i);
462 for (i = 1; i < set->n; ++i) {
463 res = isl_basic_set_opt(set->p[i], max, obj, &opt_i);
464 if (res == isl_lp_error || res == isl_lp_unbounded) {
465 isl_int_clear(opt_i);
466 return res;
468 if (res == isl_lp_empty)
469 continue;
470 empty = 0;
471 if (max ? isl_int_gt(opt_i, *opt) : isl_int_lt(opt_i, *opt))
472 isl_int_set(*opt, opt_i);
474 isl_int_clear(opt_i);
476 return empty ? isl_lp_empty : isl_lp_ok;
479 /* Compute the minimum (maximum if max is set) of the integer affine
480 * expression obj over the points in set and put the result in *opt.
482 enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max,
483 __isl_keep isl_aff *obj, isl_int *opt)
485 enum isl_lp_result res;
487 if (!set || !obj)
488 return isl_lp_error;
490 if (isl_space_match(set->dim, isl_dim_param,
491 obj->ls->dim, isl_dim_param))
492 return isl_set_opt_aligned(set, max, obj, opt);
494 set = isl_set_copy(set);
495 obj = isl_aff_copy(obj);
496 set = isl_set_align_params(set, isl_aff_get_domain_space(obj));
497 obj = isl_aff_align_params(obj, isl_set_get_space(set));
499 res = isl_set_opt_aligned(set, max, obj, opt);
501 isl_set_free(set);
502 isl_aff_free(obj);
504 return res;
507 enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset,
508 __isl_keep isl_aff *obj, isl_int *opt)
510 return isl_basic_set_opt(bset, 1, obj, opt);
513 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
514 __isl_keep isl_aff *obj, isl_int *opt)
516 return isl_set_opt(set, 1, obj, opt);
519 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
520 __isl_keep isl_aff *obj, isl_int *opt)
522 return isl_set_opt(set, 0, obj, opt);
525 /* Convert the result of a function that returns an isl_lp_result
526 * to an isl_val. The numerator of "v" is set to the optimal value
527 * if lp_res is isl_lp_ok. "max" is set if a maximum was computed.
529 * Return "v" with denominator set to 1 if lp_res is isl_lp_ok.
530 * Return NULL on error.
531 * Return a NaN if lp_res is isl_lp_empty.
532 * Return infinity or negative infinity if lp_res is isl_lp_unbounded,
533 * depending on "max".
535 static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res,
536 __isl_take isl_val *v, int max)
538 isl_ctx *ctx;
540 if (lp_res == isl_lp_ok) {
541 isl_int_set_si(v->d, 1);
542 return isl_val_normalize(v);
544 ctx = isl_val_get_ctx(v);
545 isl_val_free(v);
546 if (lp_res == isl_lp_error)
547 return NULL;
548 if (lp_res == isl_lp_empty)
549 return isl_val_nan(ctx);
550 if (max)
551 return isl_val_infty(ctx);
552 else
553 return isl_val_neginfty(ctx);
556 /* Return the minimum (maximum if max is set) of the integer affine
557 * expression "obj" over the points in "bset".
559 * Return infinity or negative infinity if the optimal value is unbounded and
560 * NaN if "bset" is empty.
562 * Call isl_basic_set_opt and translate the results.
564 __isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset,
565 int max, __isl_keep isl_aff *obj)
567 isl_ctx *ctx;
568 isl_val *res;
569 enum isl_lp_result lp_res;
571 if (!bset || !obj)
572 return NULL;
574 ctx = isl_aff_get_ctx(obj);
575 res = isl_val_alloc(ctx);
576 if (!res)
577 return NULL;
578 lp_res = isl_basic_set_opt(bset, max, obj, &res->n);
579 return convert_lp_result(lp_res, res, max);
582 /* Return the maximum of the integer affine
583 * expression "obj" over the points in "bset".
585 * Return infinity or negative infinity if the optimal value is unbounded and
586 * NaN if "bset" is empty.
588 __isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset,
589 __isl_keep isl_aff *obj)
591 return isl_basic_set_opt_val(bset, 1, obj);
594 /* Return the minimum (maximum if max is set) of the integer affine
595 * expression "obj" over the points in "set".
597 * Return infinity or negative infinity if the optimal value is unbounded and
598 * NaN if "set" is empty.
600 * Call isl_set_opt and translate the results.
602 __isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max,
603 __isl_keep isl_aff *obj)
605 isl_ctx *ctx;
606 isl_val *res;
607 enum isl_lp_result lp_res;
609 if (!set || !obj)
610 return NULL;
612 ctx = isl_aff_get_ctx(obj);
613 res = isl_val_alloc(ctx);
614 if (!res)
615 return NULL;
616 lp_res = isl_set_opt(set, max, obj, &res->n);
617 return convert_lp_result(lp_res, res, max);
620 /* Return the minimum of the integer affine
621 * expression "obj" over the points in "set".
623 * Return infinity or negative infinity if the optimal value is unbounded and
624 * NaN if "set" is empty.
626 __isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set,
627 __isl_keep isl_aff *obj)
629 return isl_set_opt_val(set, 0, obj);
632 /* Return the maximum of the integer affine
633 * expression "obj" over the points in "set".
635 * Return infinity or negative infinity if the optimal value is unbounded and
636 * NaN if "set" is empty.
638 __isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set,
639 __isl_keep isl_aff *obj)
641 return isl_set_opt_val(set, 1, obj);
644 /* Return the optimum (min or max depending on "max") of "v1" and "v2",
645 * where either may be NaN, signifying an uninitialized value.
646 * That is, if either is NaN, then return the other one.
648 static __isl_give isl_val *val_opt(__isl_take isl_val *v1,
649 __isl_take isl_val *v2, int max)
651 if (!v1 || !v2)
652 goto error;
653 if (isl_val_is_nan(v1)) {
654 isl_val_free(v1);
655 return v2;
657 if (isl_val_is_nan(v2)) {
658 isl_val_free(v2);
659 return v1;
661 if (max)
662 return isl_val_max(v1, v2);
663 else
664 return isl_val_min(v1, v2);
665 error:
666 isl_val_free(v1);
667 isl_val_free(v2);
668 return NULL;
671 /* Internal data structure for isl_set_opt_pw_aff.
673 * "max" is set if the maximum should be computed.
674 * "set" is the set over which the optimum should be computed.
675 * "res" contains the current optimum and is initialized to NaN.
677 struct isl_set_opt_data {
678 int max;
679 isl_set *set;
681 isl_val *res;
684 /* Update the optimum in data->res with respect to the affine function
685 * "aff" defined over "set".
687 static isl_stat piece_opt(__isl_take isl_set *set, __isl_take isl_aff *aff,
688 void *user)
690 struct isl_set_opt_data *data = user;
691 isl_val *opt;
693 set = isl_set_intersect(set, isl_set_copy(data->set));
694 opt = isl_set_opt_val(set, data->max, aff);
695 isl_set_free(set);
696 isl_aff_free(aff);
698 data->res = val_opt(data->res, opt, data->max);
699 if (!data->res)
700 return isl_stat_error;
702 return isl_stat_ok;
705 /* Return the minimum (maximum if "max" is set) of the integer piecewise affine
706 * expression "obj" over the points in "set".
708 * Return infinity or negative infinity if the optimal value is unbounded and
709 * NaN if the intersection of "set" with the domain of "obj" is empty.
711 * Initialize the result to NaN and then update it for each of the pieces
712 * in "obj".
714 static __isl_give isl_val *isl_set_opt_pw_aff(__isl_keep isl_set *set, int max,
715 __isl_keep isl_pw_aff *obj)
717 struct isl_set_opt_data data = { max, set };
719 data.res = isl_val_nan(isl_set_get_ctx(set));
720 if (isl_pw_aff_foreach_piece(obj, &piece_opt, &data) < 0)
721 return isl_val_free(data.res);
723 return data.res;
726 /* Internal data structure for isl_union_set_opt_union_pw_aff.
728 * "max" is set if the maximum should be computed.
729 * "obj" is the objective function that needs to be optimized.
730 * "res" contains the current optimum and is initialized to NaN.
732 struct isl_union_set_opt_data {
733 int max;
734 isl_union_pw_aff *obj;
736 isl_val *res;
739 /* Update the optimum in data->res with the optimum over "set".
740 * Do so by first extracting the matching objective function
741 * from data->obj.
743 static isl_stat set_opt(__isl_take isl_set *set, void *user)
745 struct isl_union_set_opt_data *data = user;
746 isl_space *space;
747 isl_pw_aff *pa;
748 isl_val *opt;
750 space = isl_set_get_space(set);
751 space = isl_space_from_domain(space);
752 space = isl_space_add_dims(space, isl_dim_out, 1);
753 pa = isl_union_pw_aff_extract_pw_aff(data->obj, space);
754 opt = isl_set_opt_pw_aff(set, data->max, pa);
755 isl_pw_aff_free(pa);
756 isl_set_free(set);
758 data->res = val_opt(data->res, opt, data->max);
759 if (!data->res)
760 return isl_stat_error;
762 return isl_stat_ok;
765 /* Return the minimum (maximum if "max" is set) of the integer piecewise affine
766 * expression "obj" over the points in "uset".
768 * Return infinity or negative infinity if the optimal value is unbounded and
769 * NaN if the intersection of "uset" with the domain of "obj" is empty.
771 * Initialize the result to NaN and then update it for each of the sets
772 * in "uset".
774 static __isl_give isl_val *isl_union_set_opt_union_pw_aff(
775 __isl_keep isl_union_set *uset, int max,
776 __isl_keep isl_union_pw_aff *obj)
778 struct isl_union_set_opt_data data = { max, obj };
780 data.res = isl_val_nan(isl_union_set_get_ctx(uset));
781 if (isl_union_set_foreach_set(uset, &set_opt, &data) < 0)
782 return isl_val_free(data.res);
784 return data.res;
787 /* Return a list of minima (maxima if "max" is set) over the points in "uset"
788 * for each of the expressions in "obj".
790 * An element in the list is infinity or negative infinity if the optimal
791 * value of the corresponding expression is unbounded and
792 * NaN if the intersection of "uset" with the domain of the expression
793 * is empty.
795 * Iterate over all the expressions in "obj" and collect the results.
797 static __isl_give isl_multi_val *isl_union_set_opt_multi_union_pw_aff(
798 __isl_keep isl_union_set *uset, int max,
799 __isl_keep isl_multi_union_pw_aff *obj)
801 int i, n;
802 isl_multi_val *mv;
804 if (!uset || !obj)
805 return NULL;
807 n = isl_multi_union_pw_aff_dim(obj, isl_dim_set);
808 mv = isl_multi_val_zero(isl_multi_union_pw_aff_get_space(obj));
810 for (i = 0; i < n; ++i) {
811 isl_val *v;
812 isl_union_pw_aff *upa;
814 upa = isl_multi_union_pw_aff_get_union_pw_aff(obj, i);
815 v = isl_union_set_opt_union_pw_aff(uset, max, upa);
816 isl_union_pw_aff_free(upa);
817 mv = isl_multi_val_set_val(mv, i, v);
820 return mv;
823 /* Return a list of minima over the points in "uset"
824 * for each of the expressions in "obj".
826 * An element in the list is infinity or negative infinity if the optimal
827 * value of the corresponding expression is unbounded and
828 * NaN if the intersection of "uset" with the domain of the expression
829 * is empty.
831 __isl_give isl_multi_val *isl_union_set_min_multi_union_pw_aff(
832 __isl_keep isl_union_set *uset, __isl_keep isl_multi_union_pw_aff *obj)
834 return isl_union_set_opt_multi_union_pw_aff(uset, 0, obj);