isl_dim_set_tuple_name: allow explicit removal of tuple name
[isl.git] / isl_transitive_closure.c
blob975dbbdd38a354422c4079d059192424cec7146c
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
14 #include <isl_dim_private.h>
15 #include <isl_lp.h>
16 #include <isl_union_map.h>
18 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
20 isl_map *map2;
21 int closed;
23 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
24 closed = isl_map_is_subset(map2, map);
25 isl_map_free(map2);
27 return closed;
30 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
32 isl_union_map *umap2;
33 int closed;
35 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
36 isl_union_map_copy(umap));
37 closed = isl_union_map_is_subset(umap2, umap);
38 isl_union_map_free(umap2);
40 return closed;
43 /* Given a map that represents a path with the length of the path
44 * encoded as the difference between the last output coordindate
45 * and the last input coordinate, set this length to either
46 * exactly "length" (if "exactly" is set) or at least "length"
47 * (if "exactly" is not set).
49 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
50 int exactly, int length)
52 struct isl_dim *dim;
53 struct isl_basic_map *bmap;
54 unsigned d;
55 unsigned nparam;
56 int k;
57 isl_int *c;
59 if (!map)
60 return NULL;
62 dim = isl_map_get_dim(map);
63 d = isl_dim_size(dim, isl_dim_in);
64 nparam = isl_dim_size(dim, isl_dim_param);
65 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
66 if (exactly) {
67 k = isl_basic_map_alloc_equality(bmap);
68 c = bmap->eq[k];
69 } else {
70 k = isl_basic_map_alloc_inequality(bmap);
71 c = bmap->ineq[k];
73 if (k < 0)
74 goto error;
75 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
76 isl_int_set_si(c[0], -length);
77 isl_int_set_si(c[1 + nparam + d - 1], -1);
78 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
80 bmap = isl_basic_map_finalize(bmap);
81 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
83 return map;
84 error:
85 isl_basic_map_free(bmap);
86 isl_map_free(map);
87 return NULL;
90 /* Check whether the overapproximation of the power of "map" is exactly
91 * the power of "map". Let R be "map" and A_k the overapproximation.
92 * The approximation is exact if
94 * A_1 = R
95 * A_k = A_{k-1} \circ R k >= 2
97 * Since A_k is known to be an overapproximation, we only need to check
99 * A_1 \subset R
100 * A_k \subset A_{k-1} \circ R k >= 2
102 * In practice, "app" has an extra input and output coordinate
103 * to encode the length of the path. So, we first need to add
104 * this coordinate to "map" and set the length of the path to
105 * one.
107 static int check_power_exactness(__isl_take isl_map *map,
108 __isl_take isl_map *app)
110 int exact;
111 isl_map *app_1;
112 isl_map *app_2;
114 map = isl_map_add(map, isl_dim_in, 1);
115 map = isl_map_add(map, isl_dim_out, 1);
116 map = set_path_length(map, 1, 1);
118 app_1 = set_path_length(isl_map_copy(app), 1, 1);
120 exact = isl_map_is_subset(app_1, map);
121 isl_map_free(app_1);
123 if (!exact || exact < 0) {
124 isl_map_free(app);
125 isl_map_free(map);
126 return exact;
129 app_1 = set_path_length(isl_map_copy(app), 0, 1);
130 app_2 = set_path_length(app, 0, 2);
131 app_1 = isl_map_apply_range(map, app_1);
133 exact = isl_map_is_subset(app_2, app_1);
135 isl_map_free(app_1);
136 isl_map_free(app_2);
138 return exact;
141 /* Check whether the overapproximation of the power of "map" is exactly
142 * the power of "map", possibly after projecting out the power (if "project"
143 * is set).
145 * If "project" is set and if "steps" can only result in acyclic paths,
146 * then we check
148 * A = R \cup (A \circ R)
150 * where A is the overapproximation with the power projected out, i.e.,
151 * an overapproximation of the transitive closure.
152 * More specifically, since A is known to be an overapproximation, we check
154 * A \subset R \cup (A \circ R)
156 * Otherwise, we check if the power is exact.
158 * Note that "app" has an extra input and output coordinate to encode
159 * the length of the part. If we are only interested in the transitive
160 * closure, then we can simply project out these coordinates first.
162 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
163 int project)
165 isl_map *test;
166 int exact;
167 unsigned d;
169 if (!project)
170 return check_power_exactness(map, app);
172 d = isl_map_dim(map, isl_dim_in);
173 app = set_path_length(app, 0, 1);
174 app = isl_map_project_out(app, isl_dim_in, d, 1);
175 app = isl_map_project_out(app, isl_dim_out, d, 1);
177 app = isl_map_reset_dim(app, isl_map_get_dim(map));
179 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
180 test = isl_map_union(test, isl_map_copy(map));
182 exact = isl_map_is_subset(app, test);
184 isl_map_free(app);
185 isl_map_free(test);
187 isl_map_free(map);
189 return exact;
193 * The transitive closure implementation is based on the paper
194 * "Computing the Transitive Closure of a Union of Affine Integer
195 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
196 * Albert Cohen.
199 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
200 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
201 * that maps an element x to any element that can be reached
202 * by taking a non-negative number of steps along any of
203 * the extended offsets v'_i = [v_i 1].
204 * That is, construct
206 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
208 * For any element in this relation, the number of steps taken
209 * is equal to the difference in the final coordinates.
211 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
212 __isl_keep isl_mat *steps)
214 int i, j, k;
215 struct isl_basic_map *path = NULL;
216 unsigned d;
217 unsigned n;
218 unsigned nparam;
220 if (!dim || !steps)
221 goto error;
223 d = isl_dim_size(dim, isl_dim_in);
224 n = steps->n_row;
225 nparam = isl_dim_size(dim, isl_dim_param);
227 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
229 for (i = 0; i < n; ++i) {
230 k = isl_basic_map_alloc_div(path);
231 if (k < 0)
232 goto error;
233 isl_assert(steps->ctx, i == k, goto error);
234 isl_int_set_si(path->div[k][0], 0);
237 for (i = 0; i < d; ++i) {
238 k = isl_basic_map_alloc_equality(path);
239 if (k < 0)
240 goto error;
241 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
242 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
243 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
244 if (i == d - 1)
245 for (j = 0; j < n; ++j)
246 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
247 else
248 for (j = 0; j < n; ++j)
249 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
250 steps->row[j][i]);
253 for (i = 0; i < n; ++i) {
254 k = isl_basic_map_alloc_inequality(path);
255 if (k < 0)
256 goto error;
257 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
258 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
261 isl_dim_free(dim);
263 path = isl_basic_map_simplify(path);
264 path = isl_basic_map_finalize(path);
265 return isl_map_from_basic_map(path);
266 error:
267 isl_dim_free(dim);
268 isl_basic_map_free(path);
269 return NULL;
272 #define IMPURE 0
273 #define PURE_PARAM 1
274 #define PURE_VAR 2
275 #define MIXED 3
277 /* Check whether the parametric constant term of constraint c is never
278 * positive in "bset".
280 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
281 isl_int *c, int *div_purity)
283 unsigned d;
284 unsigned n_div;
285 unsigned nparam;
286 int i;
287 int k;
288 int empty;
290 n_div = isl_basic_set_dim(bset, isl_dim_div);
291 d = isl_basic_set_dim(bset, isl_dim_set);
292 nparam = isl_basic_set_dim(bset, isl_dim_param);
294 bset = isl_basic_set_copy(bset);
295 bset = isl_basic_set_cow(bset);
296 bset = isl_basic_set_extend_constraints(bset, 0, 1);
297 k = isl_basic_set_alloc_inequality(bset);
298 if (k < 0)
299 goto error;
300 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
301 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
302 for (i = 0; i < n_div; ++i) {
303 if (div_purity[i] != PURE_PARAM)
304 continue;
305 isl_int_set(bset->ineq[k][1 + nparam + d + i],
306 c[1 + nparam + d + i]);
308 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
309 empty = isl_basic_set_is_empty(bset);
310 isl_basic_set_free(bset);
312 return empty;
313 error:
314 isl_basic_set_free(bset);
315 return -1;
318 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
319 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
320 * Return MIXED if only the coefficients of the parameters and the set
321 * variables are non-zero and if moreover the parametric constant
322 * can never attain positive values.
323 * Return IMPURE otherwise.
325 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
326 int eq)
328 unsigned d;
329 unsigned n_div;
330 unsigned nparam;
331 int empty;
332 int i;
333 int p = 0, v = 0;
335 n_div = isl_basic_set_dim(bset, isl_dim_div);
336 d = isl_basic_set_dim(bset, isl_dim_set);
337 nparam = isl_basic_set_dim(bset, isl_dim_param);
339 for (i = 0; i < n_div; ++i) {
340 if (isl_int_is_zero(c[1 + nparam + d + i]))
341 continue;
342 switch (div_purity[i]) {
343 case PURE_PARAM: p = 1; break;
344 case PURE_VAR: v = 1; break;
345 default: return IMPURE;
348 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
349 return PURE_VAR;
350 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
351 return PURE_PARAM;
353 empty = parametric_constant_never_positive(bset, c, div_purity);
354 if (eq && empty >= 0 && !empty) {
355 isl_seq_neg(c, c, 1 + nparam + d + n_div);
356 empty = parametric_constant_never_positive(bset, c, div_purity);
359 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
362 /* Return an array of integers indicating the type of each div in bset.
363 * If the div is (recursively) defined in terms of only the parameters,
364 * then the type is PURE_PARAM.
365 * If the div is (recursively) defined in terms of only the set variables,
366 * then the type is PURE_VAR.
367 * Otherwise, the type is IMPURE.
369 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
371 int i, j;
372 int *div_purity;
373 unsigned d;
374 unsigned n_div;
375 unsigned nparam;
377 if (!bset)
378 return NULL;
380 n_div = isl_basic_set_dim(bset, isl_dim_div);
381 d = isl_basic_set_dim(bset, isl_dim_set);
382 nparam = isl_basic_set_dim(bset, isl_dim_param);
384 div_purity = isl_alloc_array(bset->ctx, int, n_div);
385 if (!div_purity)
386 return NULL;
388 for (i = 0; i < bset->n_div; ++i) {
389 int p = 0, v = 0;
390 if (isl_int_is_zero(bset->div[i][0])) {
391 div_purity[i] = IMPURE;
392 continue;
394 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
395 p = 1;
396 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
397 v = 1;
398 for (j = 0; j < i; ++j) {
399 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
400 continue;
401 switch (div_purity[j]) {
402 case PURE_PARAM: p = 1; break;
403 case PURE_VAR: v = 1; break;
404 default: p = v = 1; break;
407 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
410 return div_purity;
413 /* Given a path with the as yet unconstrained length at position "pos",
414 * check if setting the length to zero results in only the identity
415 * mapping.
417 int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
419 isl_basic_map *test = NULL;
420 isl_basic_map *id = NULL;
421 int k;
422 int is_id;
424 test = isl_basic_map_copy(path);
425 test = isl_basic_map_extend_constraints(test, 1, 0);
426 k = isl_basic_map_alloc_equality(test);
427 if (k < 0)
428 goto error;
429 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
430 isl_int_set_si(test->eq[k][pos], 1);
431 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
432 is_id = isl_basic_map_is_equal(test, id);
433 isl_basic_map_free(test);
434 isl_basic_map_free(id);
435 return is_id;
436 error:
437 isl_basic_map_free(test);
438 return -1;
441 __isl_give isl_basic_map *add_delta_constraints(__isl_take isl_basic_map *path,
442 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
443 unsigned d, int *div_purity, int eq)
445 int i, k;
446 int n = eq ? delta->n_eq : delta->n_ineq;
447 isl_int **delta_c = eq ? delta->eq : delta->ineq;
448 unsigned n_div;
450 n_div = isl_basic_set_dim(delta, isl_dim_div);
452 for (i = 0; i < n; ++i) {
453 isl_int *path_c;
454 int p = purity(delta, delta_c[i], div_purity, eq);
455 if (p < 0)
456 goto error;
457 if (p == IMPURE)
458 continue;
459 if (eq && p != MIXED) {
460 k = isl_basic_map_alloc_equality(path);
461 path_c = path->eq[k];
462 } else {
463 k = isl_basic_map_alloc_inequality(path);
464 path_c = path->ineq[k];
466 if (k < 0)
467 goto error;
468 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
469 if (p == PURE_VAR) {
470 isl_seq_cpy(path_c + off,
471 delta_c[i] + 1 + nparam, d);
472 isl_int_set(path_c[off + d], delta_c[i][0]);
473 } else if (p == PURE_PARAM) {
474 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
475 } else {
476 isl_seq_cpy(path_c + off,
477 delta_c[i] + 1 + nparam, d);
478 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
480 isl_seq_cpy(path_c + off - n_div,
481 delta_c[i] + 1 + nparam + d, n_div);
484 return path;
485 error:
486 isl_basic_map_free(path);
487 return NULL;
490 /* Given a set of offsets "delta", construct a relation of the
491 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
492 * is an overapproximation of the relations that
493 * maps an element x to any element that can be reached
494 * by taking a non-negative number of steps along any of
495 * the elements in "delta".
496 * That is, construct an approximation of
498 * { [x] -> [y] : exists f \in \delta, k \in Z :
499 * y = x + k [f, 1] and k >= 0 }
501 * For any element in this relation, the number of steps taken
502 * is equal to the difference in the final coordinates.
504 * In particular, let delta be defined as
506 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
507 * C x + C'p + c >= 0 and
508 * D x + D'p + d >= 0 }
510 * where the constraints C x + C'p + c >= 0 are such that the parametric
511 * constant term of each constraint j, "C_j x + C'_j p + c_j",
512 * can never attain positive values, then the relation is constructed as
514 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
515 * A f + k a >= 0 and B p + b >= 0 and
516 * C f + C'p + c >= 0 and k >= 1 }
517 * union { [x] -> [x] }
519 * If the zero-length paths happen to correspond exactly to the identity
520 * mapping, then we return
522 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
523 * A f + k a >= 0 and B p + b >= 0 and
524 * C f + C'p + c >= 0 and k >= 0 }
526 * instead.
528 * Existentially quantified variables in \delta are handled by
529 * classifying them as independent of the parameters, purely
530 * parameter dependent and others. Constraints containing
531 * any of the other existentially quantified variables are removed.
532 * This is safe, but leads to an additional overapproximation.
534 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
535 __isl_take isl_basic_set *delta)
537 isl_basic_map *path = NULL;
538 unsigned d;
539 unsigned n_div;
540 unsigned nparam;
541 unsigned off;
542 int i, k;
543 int is_id;
544 int *div_purity = NULL;
546 if (!delta)
547 goto error;
548 n_div = isl_basic_set_dim(delta, isl_dim_div);
549 d = isl_basic_set_dim(delta, isl_dim_set);
550 nparam = isl_basic_set_dim(delta, isl_dim_param);
551 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
552 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
553 off = 1 + nparam + 2 * (d + 1) + n_div;
555 for (i = 0; i < n_div + d + 1; ++i) {
556 k = isl_basic_map_alloc_div(path);
557 if (k < 0)
558 goto error;
559 isl_int_set_si(path->div[k][0], 0);
562 for (i = 0; i < d + 1; ++i) {
563 k = isl_basic_map_alloc_equality(path);
564 if (k < 0)
565 goto error;
566 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
567 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
568 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
569 isl_int_set_si(path->eq[k][off + i], 1);
572 div_purity = get_div_purity(delta);
573 if (!div_purity)
574 goto error;
576 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1);
577 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0);
579 is_id = empty_path_is_identity(path, off + d);
580 if (is_id < 0)
581 goto error;
583 k = isl_basic_map_alloc_inequality(path);
584 if (k < 0)
585 goto error;
586 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
587 if (!is_id)
588 isl_int_set_si(path->ineq[k][0], -1);
589 isl_int_set_si(path->ineq[k][off + d], 1);
591 free(div_purity);
592 isl_basic_set_free(delta);
593 path = isl_basic_map_finalize(path);
594 if (is_id) {
595 isl_dim_free(dim);
596 return isl_map_from_basic_map(path);
598 return isl_basic_map_union(path,
599 isl_basic_map_identity(isl_dim_domain(dim)));
600 error:
601 free(div_purity);
602 isl_dim_free(dim);
603 isl_basic_set_free(delta);
604 isl_basic_map_free(path);
605 return NULL;
608 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
609 * construct a map that equates the parameter to the difference
610 * in the final coordinates and imposes that this difference is positive.
611 * That is, construct
613 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
615 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
616 unsigned param)
618 struct isl_basic_map *bmap;
619 unsigned d;
620 unsigned nparam;
621 int k;
623 d = isl_dim_size(dim, isl_dim_in);
624 nparam = isl_dim_size(dim, isl_dim_param);
625 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
626 k = isl_basic_map_alloc_equality(bmap);
627 if (k < 0)
628 goto error;
629 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
630 isl_int_set_si(bmap->eq[k][1 + param], -1);
631 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
632 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
634 k = isl_basic_map_alloc_inequality(bmap);
635 if (k < 0)
636 goto error;
637 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
638 isl_int_set_si(bmap->ineq[k][1 + param], 1);
639 isl_int_set_si(bmap->ineq[k][0], -1);
641 bmap = isl_basic_map_finalize(bmap);
642 return isl_map_from_basic_map(bmap);
643 error:
644 isl_basic_map_free(bmap);
645 return NULL;
648 /* Check whether "path" is acyclic, where the last coordinates of domain
649 * and range of path encode the number of steps taken.
650 * That is, check whether
652 * { d | d = y - x and (x,y) in path }
654 * does not contain any element with positive last coordinate (positive length)
655 * and zero remaining coordinates (cycle).
657 static int is_acyclic(__isl_take isl_map *path)
659 int i;
660 int acyclic;
661 unsigned dim;
662 struct isl_set *delta;
664 delta = isl_map_deltas(path);
665 dim = isl_set_dim(delta, isl_dim_set);
666 for (i = 0; i < dim; ++i) {
667 if (i == dim -1)
668 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
669 else
670 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
673 acyclic = isl_set_is_empty(delta);
674 isl_set_free(delta);
676 return acyclic;
679 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
680 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
681 * construct a map that is an overapproximation of the map
682 * that takes an element from the space D \times Z to another
683 * element from the same space, such that the first n coordinates of the
684 * difference between them is a sum of differences between images
685 * and pre-images in one of the R_i and such that the last coordinate
686 * is equal to the number of steps taken.
687 * That is, let
689 * \Delta_i = { y - x | (x, y) in R_i }
691 * then the constructed map is an overapproximation of
693 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
694 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
696 * The elements of the singleton \Delta_i's are collected as the
697 * rows of the steps matrix. For all these \Delta_i's together,
698 * a single path is constructed.
699 * For each of the other \Delta_i's, we compute an overapproximation
700 * of the paths along elements of \Delta_i.
701 * Since each of these paths performs an addition, composition is
702 * symmetric and we can simply compose all resulting paths in any order.
704 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
705 __isl_keep isl_map *map, int *project)
707 struct isl_mat *steps = NULL;
708 struct isl_map *path = NULL;
709 unsigned d;
710 int i, j, n;
712 d = isl_map_dim(map, isl_dim_in);
714 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
716 steps = isl_mat_alloc(map->ctx, map->n, d);
717 if (!steps)
718 goto error;
720 n = 0;
721 for (i = 0; i < map->n; ++i) {
722 struct isl_basic_set *delta;
724 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
726 for (j = 0; j < d; ++j) {
727 int fixed;
729 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
730 &steps->row[n][j]);
731 if (fixed < 0) {
732 isl_basic_set_free(delta);
733 goto error;
735 if (!fixed)
736 break;
740 if (j < d) {
741 path = isl_map_apply_range(path,
742 path_along_delta(isl_dim_copy(dim), delta));
743 path = isl_map_coalesce(path);
744 } else {
745 isl_basic_set_free(delta);
746 ++n;
750 if (n > 0) {
751 steps->n_row = n;
752 path = isl_map_apply_range(path,
753 path_along_steps(isl_dim_copy(dim), steps));
756 if (project && *project) {
757 *project = is_acyclic(isl_map_copy(path));
758 if (*project < 0)
759 goto error;
762 isl_dim_free(dim);
763 isl_mat_free(steps);
764 return path;
765 error:
766 isl_dim_free(dim);
767 isl_mat_free(steps);
768 isl_map_free(path);
769 return NULL;
772 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
774 isl_set *i;
775 int no_overlap;
777 if (!isl_dim_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set))
778 return 0;
780 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
781 no_overlap = isl_set_is_empty(i);
782 isl_set_free(i);
784 return no_overlap < 0 ? -1 : !no_overlap;
787 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
788 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
789 * construct a map that is an overapproximation of the map
790 * that takes an element from the dom R \times Z to an
791 * element from ran R \times Z, such that the first n coordinates of the
792 * difference between them is a sum of differences between images
793 * and pre-images in one of the R_i and such that the last coordinate
794 * is equal to the number of steps taken.
795 * That is, let
797 * \Delta_i = { y - x | (x, y) in R_i }
799 * then the constructed map is an overapproximation of
801 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
802 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
803 * x in dom R and x + d in ran R and
804 * \sum_i k_i >= 1 }
806 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
807 __isl_keep isl_map *map, int *exact, int project)
809 struct isl_set *domain = NULL;
810 struct isl_set *range = NULL;
811 struct isl_map *app = NULL;
812 struct isl_map *path = NULL;
814 domain = isl_map_domain(isl_map_copy(map));
815 domain = isl_set_coalesce(domain);
816 range = isl_map_range(isl_map_copy(map));
817 range = isl_set_coalesce(range);
818 if (!isl_set_overlaps(domain, range)) {
819 isl_set_free(domain);
820 isl_set_free(range);
821 isl_dim_free(dim);
823 map = isl_map_copy(map);
824 map = isl_map_add(map, isl_dim_in, 1);
825 map = isl_map_add(map, isl_dim_out, 1);
826 map = set_path_length(map, 1, 1);
827 return map;
829 app = isl_map_from_domain_and_range(domain, range);
830 app = isl_map_add(app, isl_dim_in, 1);
831 app = isl_map_add(app, isl_dim_out, 1);
833 path = construct_extended_path(isl_dim_copy(dim), map,
834 exact && *exact ? &project : NULL);
835 app = isl_map_intersect(app, path);
837 if (exact && *exact &&
838 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
839 project)) < 0)
840 goto error;
842 isl_dim_free(dim);
843 app = set_path_length(app, 0, 1);
844 return app;
845 error:
846 isl_dim_free(dim);
847 isl_map_free(app);
848 return NULL;
851 /* Call construct_component and, if "project" is set, project out
852 * the final coordinates.
854 static __isl_give isl_map *construct_projected_component(
855 __isl_take isl_dim *dim,
856 __isl_keep isl_map *map, int *exact, int project)
858 isl_map *app;
859 unsigned d;
861 if (!dim)
862 return NULL;
863 d = isl_dim_size(dim, isl_dim_in);
865 app = construct_component(dim, map, exact, project);
866 if (project) {
867 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
868 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
870 return app;
873 /* Compute an extended version, i.e., with path lengths, of
874 * an overapproximation of the transitive closure of "bmap"
875 * with path lengths greater than or equal to zero and with
876 * domain and range equal to "dom".
878 static __isl_give isl_map *q_closure(__isl_take isl_dim *dim,
879 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
881 int project = 1;
882 isl_map *path;
883 isl_map *map;
884 isl_map *app;
886 dom = isl_set_add(dom, isl_dim_set, 1);
887 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
888 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
889 path = construct_extended_path(dim, map, &project);
890 app = isl_map_intersect(app, path);
892 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
893 goto error;
895 return app;
896 error:
897 isl_map_free(app);
898 return NULL;
901 /* Check whether qc has any elements of length at least one
902 * with domain and/or range outside of dom and ran.
904 static int has_spurious_elements(__isl_keep isl_map *qc,
905 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
907 isl_set *s;
908 int subset;
909 unsigned d;
911 if (!qc || !dom || !ran)
912 return -1;
914 d = isl_map_dim(qc, isl_dim_in);
916 qc = isl_map_copy(qc);
917 qc = set_path_length(qc, 0, 1);
918 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
919 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
921 s = isl_map_domain(isl_map_copy(qc));
922 subset = isl_set_is_subset(s, dom);
923 isl_set_free(s);
924 if (subset < 0)
925 goto error;
926 if (!subset) {
927 isl_map_free(qc);
928 return 1;
931 s = isl_map_range(qc);
932 subset = isl_set_is_subset(s, ran);
933 isl_set_free(s);
935 return subset < 0 ? -1 : !subset;
936 error:
937 isl_map_free(qc);
938 return -1;
941 #define LEFT 2
942 #define RIGHT 1
944 /* For each basic map in "map", except i, check whether it combines
945 * with the transitive closure that is reflexive on C combines
946 * to the left and to the right.
948 * In particular, if
950 * dom map_j \subseteq C
952 * then right[j] is set to 1. Otherwise, if
954 * ran map_i \cap dom map_j = \emptyset
956 * then right[j] is set to 0. Otherwise, composing to the right
957 * is impossible.
959 * Similar, for composing to the left, we have if
961 * ran map_j \subseteq C
963 * then left[j] is set to 1. Otherwise, if
965 * dom map_i \cap ran map_j = \emptyset
967 * then left[j] is set to 0. Otherwise, composing to the left
968 * is impossible.
970 * The return value is or'd with LEFT if composing to the left
971 * is possible and with RIGHT if composing to the right is possible.
973 static int composability(__isl_keep isl_set *C, int i,
974 isl_set **dom, isl_set **ran, int *left, int *right,
975 __isl_keep isl_map *map)
977 int j;
978 int ok;
980 ok = LEFT | RIGHT;
981 for (j = 0; j < map->n && ok; ++j) {
982 int overlaps, subset;
983 if (j == i)
984 continue;
986 if (ok & RIGHT) {
987 if (!dom[j])
988 dom[j] = isl_set_from_basic_set(
989 isl_basic_map_domain(
990 isl_basic_map_copy(map->p[j])));
991 if (!dom[j])
992 return -1;
993 overlaps = isl_set_overlaps(ran[i], dom[j]);
994 if (overlaps < 0)
995 return -1;
996 if (!overlaps)
997 right[j] = 0;
998 else {
999 subset = isl_set_is_subset(dom[j], C);
1000 if (subset < 0)
1001 return -1;
1002 if (subset)
1003 right[j] = 1;
1004 else
1005 ok &= ~RIGHT;
1009 if (ok & LEFT) {
1010 if (!ran[j])
1011 ran[j] = isl_set_from_basic_set(
1012 isl_basic_map_range(
1013 isl_basic_map_copy(map->p[j])));
1014 if (!ran[j])
1015 return -1;
1016 overlaps = isl_set_overlaps(dom[i], ran[j]);
1017 if (overlaps < 0)
1018 return -1;
1019 if (!overlaps)
1020 left[j] = 0;
1021 else {
1022 subset = isl_set_is_subset(ran[j], C);
1023 if (subset < 0)
1024 return -1;
1025 if (subset)
1026 left[j] = 1;
1027 else
1028 ok &= ~LEFT;
1033 return ok;
1036 /* Return a map that is a union of the basic maps in "map", except i,
1037 * composed to left and right with qc based on the entries of "left"
1038 * and "right".
1040 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1041 __isl_take isl_map *qc, int *left, int *right)
1043 int j;
1044 isl_map *comp;
1046 comp = isl_map_empty(isl_map_get_dim(map));
1047 for (j = 0; j < map->n; ++j) {
1048 isl_map *map_j;
1050 if (j == i)
1051 continue;
1053 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1054 if (left && left[j])
1055 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1056 if (right && right[j])
1057 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1058 comp = isl_map_union(comp, map_j);
1061 comp = isl_map_compute_divs(comp);
1062 comp = isl_map_coalesce(comp);
1064 isl_map_free(qc);
1066 return comp;
1069 /* Compute the transitive closure of "map" incrementally by
1070 * computing
1072 * map_i^+ \cup qc^+
1074 * or
1076 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1078 * or
1080 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1082 * depending on whether left or right are NULL.
1084 static __isl_give isl_map *compute_incremental(
1085 __isl_take isl_dim *dim, __isl_keep isl_map *map,
1086 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1088 isl_map *map_i;
1089 isl_map *tc;
1090 isl_map *rtc = NULL;
1092 if (!map)
1093 goto error;
1094 isl_assert(map->ctx, left || right, goto error);
1096 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1097 tc = construct_projected_component(isl_dim_copy(dim), map_i,
1098 exact, 1);
1099 isl_map_free(map_i);
1101 if (*exact)
1102 qc = isl_map_transitive_closure(qc, exact);
1104 if (!*exact) {
1105 isl_dim_free(dim);
1106 isl_map_free(tc);
1107 isl_map_free(qc);
1108 return isl_map_universe(isl_map_get_dim(map));
1111 if (!left || !right)
1112 rtc = isl_map_union(isl_map_copy(tc),
1113 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc))));
1114 if (!right)
1115 qc = isl_map_apply_range(rtc, qc);
1116 if (!left)
1117 qc = isl_map_apply_range(qc, rtc);
1118 qc = isl_map_union(tc, qc);
1120 isl_dim_free(dim);
1122 return qc;
1123 error:
1124 isl_dim_free(dim);
1125 isl_map_free(qc);
1126 return NULL;
1129 /* Given a map "map", try to find a basic map such that
1130 * map^+ can be computed as
1132 * map^+ = map_i^+ \cup
1133 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1135 * with C the simple hull of the domain and range of the input map.
1136 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1137 * and by intersecting domain and range with C.
1138 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1139 * Also, we only use the incremental computation if all the transitive
1140 * closures are exact and if the number of basic maps in the union,
1141 * after computing the integer divisions, is smaller than the number
1142 * of basic maps in the input map.
1144 static int incemental_on_entire_domain(__isl_keep isl_dim *dim,
1145 __isl_keep isl_map *map,
1146 isl_set **dom, isl_set **ran, int *left, int *right,
1147 __isl_give isl_map **res)
1149 int i;
1150 isl_set *C;
1151 unsigned d;
1153 *res = NULL;
1155 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1156 isl_map_range(isl_map_copy(map)));
1157 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1158 if (!C)
1159 return -1;
1160 if (C->n != 1) {
1161 isl_set_free(C);
1162 return 0;
1165 d = isl_map_dim(map, isl_dim_in);
1167 for (i = 0; i < map->n; ++i) {
1168 isl_map *qc;
1169 int exact_i, spurious;
1170 int j;
1171 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1172 isl_basic_map_copy(map->p[i])));
1173 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1174 isl_basic_map_copy(map->p[i])));
1175 qc = q_closure(isl_dim_copy(dim), isl_set_copy(C),
1176 map->p[i], &exact_i);
1177 if (!qc)
1178 goto error;
1179 if (!exact_i) {
1180 isl_map_free(qc);
1181 continue;
1183 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1184 if (spurious) {
1185 isl_map_free(qc);
1186 if (spurious < 0)
1187 goto error;
1188 continue;
1190 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1191 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1192 qc = isl_map_compute_divs(qc);
1193 for (j = 0; j < map->n; ++j)
1194 left[j] = right[j] = 1;
1195 qc = compose(map, i, qc, left, right);
1196 if (!qc)
1197 goto error;
1198 if (qc->n >= map->n) {
1199 isl_map_free(qc);
1200 continue;
1202 *res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1203 left, right, &exact_i);
1204 if (!*res)
1205 goto error;
1206 if (exact_i)
1207 break;
1208 isl_map_free(*res);
1209 *res = NULL;
1212 isl_set_free(C);
1214 return *res != NULL;
1215 error:
1216 isl_set_free(C);
1217 return -1;
1220 /* Try and compute the transitive closure of "map" as
1222 * map^+ = map_i^+ \cup
1223 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1225 * with C either the simple hull of the domain and range of the entire
1226 * map or the simple hull of domain and range of map_i.
1228 static __isl_give isl_map *incremental_closure(__isl_take isl_dim *dim,
1229 __isl_keep isl_map *map, int *exact, int project)
1231 int i;
1232 isl_set **dom = NULL;
1233 isl_set **ran = NULL;
1234 int *left = NULL;
1235 int *right = NULL;
1236 isl_set *C;
1237 unsigned d;
1238 isl_map *res = NULL;
1240 if (!project)
1241 return construct_projected_component(dim, map, exact, project);
1243 if (!map)
1244 goto error;
1245 if (map->n <= 1)
1246 return construct_projected_component(dim, map, exact, project);
1248 d = isl_map_dim(map, isl_dim_in);
1250 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1251 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1252 left = isl_calloc_array(map->ctx, int, map->n);
1253 right = isl_calloc_array(map->ctx, int, map->n);
1254 if (!ran || !dom || !left || !right)
1255 goto error;
1257 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1258 goto error;
1260 for (i = 0; !res && i < map->n; ++i) {
1261 isl_map *qc;
1262 int exact_i, spurious, comp;
1263 if (!dom[i])
1264 dom[i] = isl_set_from_basic_set(
1265 isl_basic_map_domain(
1266 isl_basic_map_copy(map->p[i])));
1267 if (!dom[i])
1268 goto error;
1269 if (!ran[i])
1270 ran[i] = isl_set_from_basic_set(
1271 isl_basic_map_range(
1272 isl_basic_map_copy(map->p[i])));
1273 if (!ran[i])
1274 goto error;
1275 C = isl_set_union(isl_set_copy(dom[i]),
1276 isl_set_copy(ran[i]));
1277 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1278 if (!C)
1279 goto error;
1280 if (C->n != 1) {
1281 isl_set_free(C);
1282 continue;
1284 comp = composability(C, i, dom, ran, left, right, map);
1285 if (!comp || comp < 0) {
1286 isl_set_free(C);
1287 if (comp < 0)
1288 goto error;
1289 continue;
1291 qc = q_closure(isl_dim_copy(dim), C, map->p[i], &exact_i);
1292 if (!qc)
1293 goto error;
1294 if (!exact_i) {
1295 isl_map_free(qc);
1296 continue;
1298 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1299 if (spurious) {
1300 isl_map_free(qc);
1301 if (spurious < 0)
1302 goto error;
1303 continue;
1305 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1306 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1307 qc = isl_map_compute_divs(qc);
1308 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1309 (comp & RIGHT) ? right : NULL);
1310 if (!qc)
1311 goto error;
1312 if (qc->n >= map->n) {
1313 isl_map_free(qc);
1314 continue;
1316 res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1317 (comp & LEFT) ? left : NULL,
1318 (comp & RIGHT) ? right : NULL, &exact_i);
1319 if (!res)
1320 goto error;
1321 if (exact_i)
1322 break;
1323 isl_map_free(res);
1324 res = NULL;
1327 for (i = 0; i < map->n; ++i) {
1328 isl_set_free(dom[i]);
1329 isl_set_free(ran[i]);
1331 free(dom);
1332 free(ran);
1333 free(left);
1334 free(right);
1336 if (res) {
1337 isl_dim_free(dim);
1338 return res;
1341 return construct_projected_component(dim, map, exact, project);
1342 error:
1343 if (dom)
1344 for (i = 0; i < map->n; ++i)
1345 isl_set_free(dom[i]);
1346 free(dom);
1347 if (ran)
1348 for (i = 0; i < map->n; ++i)
1349 isl_set_free(ran[i]);
1350 free(ran);
1351 free(left);
1352 free(right);
1353 isl_dim_free(dim);
1354 return NULL;
1357 /* Given an array of sets "set", add "dom" at position "pos"
1358 * and search for elements at earlier positions that overlap with "dom".
1359 * If any can be found, then merge all of them, together with "dom", into
1360 * a single set and assign the union to the first in the array,
1361 * which becomes the new group leader for all groups involved in the merge.
1362 * During the search, we only consider group leaders, i.e., those with
1363 * group[i] = i, as the other sets have already been combined
1364 * with one of the group leaders.
1366 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1368 int i;
1370 group[pos] = pos;
1371 set[pos] = isl_set_copy(dom);
1373 for (i = pos - 1; i >= 0; --i) {
1374 int o;
1376 if (group[i] != i)
1377 continue;
1379 o = isl_set_overlaps(set[i], dom);
1380 if (o < 0)
1381 goto error;
1382 if (!o)
1383 continue;
1385 set[i] = isl_set_union(set[i], set[group[pos]]);
1386 set[group[pos]] = NULL;
1387 if (!set[i])
1388 goto error;
1389 group[group[pos]] = i;
1390 group[pos] = i;
1393 isl_set_free(dom);
1394 return 0;
1395 error:
1396 isl_set_free(dom);
1397 return -1;
1400 /* Replace each entry in the n by n grid of maps by the cross product
1401 * with the relation { [i] -> [i + 1] }.
1403 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1405 int i, j, k;
1406 isl_dim *dim;
1407 isl_basic_map *bstep;
1408 isl_map *step;
1409 unsigned nparam;
1411 if (!map)
1412 return -1;
1414 dim = isl_map_get_dim(map);
1415 nparam = isl_dim_size(dim, isl_dim_param);
1416 dim = isl_dim_drop(dim, isl_dim_in, 0, isl_dim_size(dim, isl_dim_in));
1417 dim = isl_dim_drop(dim, isl_dim_out, 0, isl_dim_size(dim, isl_dim_out));
1418 dim = isl_dim_add(dim, isl_dim_in, 1);
1419 dim = isl_dim_add(dim, isl_dim_out, 1);
1420 bstep = isl_basic_map_alloc_dim(dim, 0, 1, 0);
1421 k = isl_basic_map_alloc_equality(bstep);
1422 if (k < 0) {
1423 isl_basic_map_free(bstep);
1424 return -1;
1426 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1427 isl_int_set_si(bstep->eq[k][0], 1);
1428 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1429 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1430 bstep = isl_basic_map_finalize(bstep);
1431 step = isl_map_from_basic_map(bstep);
1433 for (i = 0; i < n; ++i)
1434 for (j = 0; j < n; ++j)
1435 grid[i][j] = isl_map_product(grid[i][j],
1436 isl_map_copy(step));
1438 isl_map_free(step);
1440 return 0;
1443 /* The core of the Floyd-Warshall algorithm.
1444 * Updates the given n x x matrix of relations in place.
1446 * The algorithm iterates over all vertices. In each step, the whole
1447 * matrix is updated to include all paths that go to the current vertex,
1448 * possibly stay there a while (including passing through earlier vertices)
1449 * and then come back. At the start of each iteration, the diagonal
1450 * element corresponding to the current vertex is replaced by its
1451 * transitive closure to account for all indirect paths that stay
1452 * in the current vertex.
1454 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1456 int r, p, q;
1458 for (r = 0; r < n; ++r) {
1459 int r_exact;
1460 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1461 (exact && *exact) ? &r_exact : NULL);
1462 if (exact && *exact && !r_exact)
1463 *exact = 0;
1465 for (p = 0; p < n; ++p)
1466 for (q = 0; q < n; ++q) {
1467 isl_map *loop;
1468 if (p == r && q == r)
1469 continue;
1470 loop = isl_map_apply_range(
1471 isl_map_copy(grid[p][r]),
1472 isl_map_copy(grid[r][q]));
1473 grid[p][q] = isl_map_union(grid[p][q], loop);
1474 loop = isl_map_apply_range(
1475 isl_map_copy(grid[p][r]),
1476 isl_map_apply_range(
1477 isl_map_copy(grid[r][r]),
1478 isl_map_copy(grid[r][q])));
1479 grid[p][q] = isl_map_union(grid[p][q], loop);
1480 grid[p][q] = isl_map_coalesce(grid[p][q]);
1485 /* Given a partition of the domains and ranges of the basic maps in "map",
1486 * apply the Floyd-Warshall algorithm with the elements in the partition
1487 * as vertices.
1489 * In particular, there are "n" elements in the partition and "group" is
1490 * an array of length 2 * map->n with entries in [0,n-1].
1492 * We first construct a matrix of relations based on the partition information,
1493 * apply Floyd-Warshall on this matrix of relations and then take the
1494 * union of all entries in the matrix as the final result.
1496 * If we are actually computing the power instead of the transitive closure,
1497 * i.e., when "project" is not set, then the result should have the
1498 * path lengths encoded as the difference between an extra pair of
1499 * coordinates. We therefore apply the nested transitive closures
1500 * to relations that include these lengths. In particular, we replace
1501 * the input relation by the cross product with the unit length relation
1502 * { [i] -> [i + 1] }.
1504 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
1505 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1507 int i, j, k;
1508 isl_map ***grid = NULL;
1509 isl_map *app;
1511 if (!map)
1512 goto error;
1514 if (n == 1) {
1515 free(group);
1516 return incremental_closure(dim, map, exact, project);
1519 grid = isl_calloc_array(map->ctx, isl_map **, n);
1520 if (!grid)
1521 goto error;
1522 for (i = 0; i < n; ++i) {
1523 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1524 if (!grid[i])
1525 goto error;
1526 for (j = 0; j < n; ++j)
1527 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
1530 for (k = 0; k < map->n; ++k) {
1531 i = group[2 * k];
1532 j = group[2 * k + 1];
1533 grid[i][j] = isl_map_union(grid[i][j],
1534 isl_map_from_basic_map(
1535 isl_basic_map_copy(map->p[k])));
1538 if (!project && add_length(map, grid, n) < 0)
1539 goto error;
1541 floyd_warshall_iterate(grid, n, exact);
1543 app = isl_map_empty(isl_map_get_dim(map));
1545 for (i = 0; i < n; ++i) {
1546 for (j = 0; j < n; ++j)
1547 app = isl_map_union(app, grid[i][j]);
1548 free(grid[i]);
1550 free(grid);
1552 free(group);
1553 isl_dim_free(dim);
1555 return app;
1556 error:
1557 if (grid)
1558 for (i = 0; i < n; ++i) {
1559 if (!grid[i])
1560 continue;
1561 for (j = 0; j < n; ++j)
1562 isl_map_free(grid[i][j]);
1563 free(grid[i]);
1565 free(grid);
1566 free(group);
1567 isl_dim_free(dim);
1568 return NULL;
1571 /* Partition the domains and ranges of the n basic relations in list
1572 * into disjoint cells.
1574 * To find the partition, we simply consider all of the domains
1575 * and ranges in turn and combine those that overlap.
1576 * "set" contains the partition elements and "group" indicates
1577 * to which partition element a given domain or range belongs.
1578 * The domain of basic map i corresponds to element 2 * i in these arrays,
1579 * while the domain corresponds to element 2 * i + 1.
1580 * During the construction group[k] is either equal to k,
1581 * in which case set[k] contains the union of all the domains and
1582 * ranges in the corresponding group, or is equal to some l < k,
1583 * with l another domain or range in the same group.
1585 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1586 isl_set ***set, int *n_group)
1588 int i;
1589 int *group = NULL;
1590 int g;
1592 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1593 group = isl_alloc_array(ctx, int, 2 * n);
1595 if (!*set || !group)
1596 goto error;
1598 for (i = 0; i < n; ++i) {
1599 isl_set *dom;
1600 dom = isl_set_from_basic_set(isl_basic_map_domain(
1601 isl_basic_map_copy(list[i])));
1602 if (merge(*set, group, dom, 2 * i) < 0)
1603 goto error;
1604 dom = isl_set_from_basic_set(isl_basic_map_range(
1605 isl_basic_map_copy(list[i])));
1606 if (merge(*set, group, dom, 2 * i + 1) < 0)
1607 goto error;
1610 g = 0;
1611 for (i = 0; i < 2 * n; ++i)
1612 if (group[i] == i)
1613 group[i] = g++;
1614 else
1615 group[i] = group[group[i]];
1617 *n_group = g;
1619 return group;
1620 error:
1621 if (*set) {
1622 for (i = 0; i < 2 * n; ++i)
1623 isl_set_free((*set)[i]);
1624 free(*set);
1625 *set = NULL;
1627 free(group);
1628 return NULL;
1631 /* Check if the domains and ranges of the basic maps in "map" can
1632 * be partitioned, and if so, apply Floyd-Warshall on the elements
1633 * of the partition. Note that we also apply this algorithm
1634 * if we want to compute the power, i.e., when "project" is not set.
1635 * However, the results are unlikely to be exact since the recursive
1636 * calls inside the Floyd-Warshall algorithm typically result in
1637 * non-linear path lengths quite quickly.
1639 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
1640 __isl_keep isl_map *map, int *exact, int project)
1642 int i;
1643 isl_set **set = NULL;
1644 int *group = NULL;
1645 int n;
1647 if (!map)
1648 goto error;
1649 if (map->n <= 1)
1650 return incremental_closure(dim, map, exact, project);
1652 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1653 if (!group)
1654 goto error;
1656 for (i = 0; i < 2 * map->n; ++i)
1657 isl_set_free(set[i]);
1659 free(set);
1661 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1662 error:
1663 isl_dim_free(dim);
1664 return NULL;
1667 /* Structure for representing the nodes in the graph being traversed
1668 * using Tarjan's algorithm.
1669 * index represents the order in which nodes are visited.
1670 * min_index is the index of the root of a (sub)component.
1671 * on_stack indicates whether the node is currently on the stack.
1673 struct basic_map_sort_node {
1674 int index;
1675 int min_index;
1676 int on_stack;
1678 /* Structure for representing the graph being traversed
1679 * using Tarjan's algorithm.
1680 * len is the number of nodes
1681 * node is an array of nodes
1682 * stack contains the nodes on the path from the root to the current node
1683 * sp is the stack pointer
1684 * index is the index of the last node visited
1685 * order contains the elements of the components separated by -1
1686 * op represents the current position in order
1688 * check_closed is set if we may have used the fact that
1689 * a pair of basic maps can be interchanged
1691 struct basic_map_sort {
1692 int len;
1693 struct basic_map_sort_node *node;
1694 int *stack;
1695 int sp;
1696 int index;
1697 int *order;
1698 int op;
1699 int check_closed;
1702 static void basic_map_sort_free(struct basic_map_sort *s)
1704 if (!s)
1705 return;
1706 free(s->node);
1707 free(s->stack);
1708 free(s->order);
1709 free(s);
1712 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1714 struct basic_map_sort *s;
1715 int i;
1717 s = isl_calloc_type(ctx, struct basic_map_sort);
1718 if (!s)
1719 return NULL;
1720 s->len = len;
1721 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1722 if (!s->node)
1723 goto error;
1724 for (i = 0; i < len; ++i)
1725 s->node[i].index = -1;
1726 s->stack = isl_alloc_array(ctx, int, len);
1727 if (!s->stack)
1728 goto error;
1729 s->order = isl_alloc_array(ctx, int, 2 * len);
1730 if (!s->order)
1731 goto error;
1733 s->sp = 0;
1734 s->index = 0;
1735 s->op = 0;
1737 s->check_closed = 0;
1739 return s;
1740 error:
1741 basic_map_sort_free(s);
1742 return NULL;
1745 /* Check whether in the computation of the transitive closure
1746 * "bmap1" (R_1) should follow (or be part of the same component as)
1747 * "bmap2" (R_2).
1749 * That is check whether
1751 * R_1 \circ R_2
1753 * is a subset of
1755 * R_2 \circ R_1
1757 * If so, then there is no reason for R_1 to immediately follow R_2
1758 * in any path.
1760 * *check_closed is set if the subset relation holds while
1761 * R_1 \circ R_2 is not empty.
1763 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1764 __isl_keep isl_basic_map *bmap2, int *check_closed)
1766 struct isl_map *map12 = NULL;
1767 struct isl_map *map21 = NULL;
1768 int subset;
1770 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap2->dim, isl_dim_out))
1771 return 0;
1773 map21 = isl_map_from_basic_map(
1774 isl_basic_map_apply_range(
1775 isl_basic_map_copy(bmap2),
1776 isl_basic_map_copy(bmap1)));
1777 subset = isl_map_is_empty(map21);
1778 if (subset < 0)
1779 goto error;
1780 if (subset) {
1781 isl_map_free(map21);
1782 return 0;
1785 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap1->dim, isl_dim_out) ||
1786 !isl_dim_tuple_match(bmap2->dim, isl_dim_in, bmap2->dim, isl_dim_out)) {
1787 isl_map_free(map21);
1788 return 1;
1791 map12 = isl_map_from_basic_map(
1792 isl_basic_map_apply_range(
1793 isl_basic_map_copy(bmap1),
1794 isl_basic_map_copy(bmap2)));
1796 subset = isl_map_is_subset(map21, map12);
1798 isl_map_free(map12);
1799 isl_map_free(map21);
1801 if (subset)
1802 *check_closed = 1;
1804 return subset < 0 ? -1 : !subset;
1805 error:
1806 isl_map_free(map21);
1807 return -1;
1810 /* Perform Tarjan's algorithm for computing the strongly connected components
1811 * in the graph with the disjuncts of "map" as vertices and with an
1812 * edge between any pair of disjuncts such that the first has
1813 * to be applied after the second.
1815 static int power_components_tarjan(struct basic_map_sort *s,
1816 __isl_keep isl_basic_map **list, int i)
1818 int j;
1820 s->node[i].index = s->index;
1821 s->node[i].min_index = s->index;
1822 s->node[i].on_stack = 1;
1823 s->index++;
1824 s->stack[s->sp++] = i;
1826 for (j = s->len - 1; j >= 0; --j) {
1827 int f;
1829 if (j == i)
1830 continue;
1831 if (s->node[j].index >= 0 &&
1832 (!s->node[j].on_stack ||
1833 s->node[j].index > s->node[i].min_index))
1834 continue;
1836 f = basic_map_follows(list[i], list[j], &s->check_closed);
1837 if (f < 0)
1838 return -1;
1839 if (!f)
1840 continue;
1842 if (s->node[j].index < 0) {
1843 power_components_tarjan(s, list, j);
1844 if (s->node[j].min_index < s->node[i].min_index)
1845 s->node[i].min_index = s->node[j].min_index;
1846 } else if (s->node[j].index < s->node[i].min_index)
1847 s->node[i].min_index = s->node[j].index;
1850 if (s->node[i].index != s->node[i].min_index)
1851 return 0;
1853 do {
1854 j = s->stack[--s->sp];
1855 s->node[j].on_stack = 0;
1856 s->order[s->op++] = j;
1857 } while (j != i);
1858 s->order[s->op++] = -1;
1860 return 0;
1863 /* Decompose the "len" basic relations in "list" into strongly connected
1864 * components.
1866 static struct basic_map_sort *basic_map_sort_init(isl_ctx *ctx, int len,
1867 __isl_keep isl_basic_map **list)
1869 int i;
1870 struct basic_map_sort *s = NULL;
1872 s = basic_map_sort_alloc(ctx, len);
1873 if (!s)
1874 return NULL;
1875 for (i = len - 1; i >= 0; --i) {
1876 if (s->node[i].index >= 0)
1877 continue;
1878 if (power_components_tarjan(s, list, i) < 0)
1879 goto error;
1882 return s;
1883 error:
1884 basic_map_sort_free(s);
1885 return NULL;
1888 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1889 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1890 * construct a map that is an overapproximation of the map
1891 * that takes an element from the dom R \times Z to an
1892 * element from ran R \times Z, such that the first n coordinates of the
1893 * difference between them is a sum of differences between images
1894 * and pre-images in one of the R_i and such that the last coordinate
1895 * is equal to the number of steps taken.
1896 * If "project" is set, then these final coordinates are not included,
1897 * i.e., a relation of type Z^n -> Z^n is returned.
1898 * That is, let
1900 * \Delta_i = { y - x | (x, y) in R_i }
1902 * then the constructed map is an overapproximation of
1904 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1905 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1906 * x in dom R and x + d in ran R }
1908 * or
1910 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1911 * d = (\sum_i k_i \delta_i) and
1912 * x in dom R and x + d in ran R }
1914 * if "project" is set.
1916 * We first split the map into strongly connected components, perform
1917 * the above on each component and then join the results in the correct
1918 * order, at each join also taking in the union of both arguments
1919 * to allow for paths that do not go through one of the two arguments.
1921 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1922 __isl_keep isl_map *map, int *exact, int project)
1924 int i, n, c;
1925 struct isl_map *path = NULL;
1926 struct basic_map_sort *s = NULL;
1927 int *orig_exact;
1928 int local_exact;
1930 if (!map)
1931 goto error;
1932 if (map->n <= 1)
1933 return floyd_warshall(dim, map, exact, project);
1935 s = basic_map_sort_init(map->ctx, map->n, map->p);
1936 if (!s)
1937 goto error;
1939 orig_exact = exact;
1940 if (s->check_closed && !exact)
1941 exact = &local_exact;
1943 c = 0;
1944 i = 0;
1945 n = map->n;
1946 if (project)
1947 path = isl_map_empty(isl_map_get_dim(map));
1948 else
1949 path = isl_map_empty(isl_dim_copy(dim));
1950 while (n) {
1951 struct isl_map *comp;
1952 isl_map *path_comp, *path_comb;
1953 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
1954 while (s->order[i] != -1) {
1955 comp = isl_map_add_basic_map(comp,
1956 isl_basic_map_copy(map->p[s->order[i]]));
1957 --n;
1958 ++i;
1960 path_comp = floyd_warshall(isl_dim_copy(dim),
1961 comp, exact, project);
1962 path_comb = isl_map_apply_range(isl_map_copy(path),
1963 isl_map_copy(path_comp));
1964 path = isl_map_union(path, path_comp);
1965 path = isl_map_union(path, path_comb);
1966 isl_map_free(comp);
1967 ++i;
1968 ++c;
1971 if (c > 1 && s->check_closed && !*exact) {
1972 int closed;
1974 closed = isl_map_is_transitively_closed(path);
1975 if (closed < 0)
1976 goto error;
1977 if (!closed) {
1978 basic_map_sort_free(s);
1979 isl_map_free(path);
1980 return floyd_warshall(dim, map, orig_exact, project);
1984 basic_map_sort_free(s);
1985 isl_dim_free(dim);
1987 return path;
1988 error:
1989 basic_map_sort_free(s);
1990 isl_dim_free(dim);
1991 isl_map_free(path);
1992 return NULL;
1995 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1996 * construct a map that is an overapproximation of the map
1997 * that takes an element from the space D to another
1998 * element from the same space, such that the difference between
1999 * them is a strictly positive sum of differences between images
2000 * and pre-images in one of the R_i.
2001 * The number of differences in the sum is equated to parameter "param".
2002 * That is, let
2004 * \Delta_i = { y - x | (x, y) in R_i }
2006 * then the constructed map is an overapproximation of
2008 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2009 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2010 * or
2012 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2013 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2015 * if "project" is set.
2017 * If "project" is not set, then
2018 * we construct an extended mapping with an extra coordinate
2019 * that indicates the number of steps taken. In particular,
2020 * the difference in the last coordinate is equal to the number
2021 * of steps taken to move from a domain element to the corresponding
2022 * image element(s).
2024 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
2025 int *exact, int project)
2027 struct isl_map *app = NULL;
2028 struct isl_dim *dim = NULL;
2029 unsigned d;
2031 if (!map)
2032 return NULL;
2034 dim = isl_map_get_dim(map);
2036 d = isl_dim_size(dim, isl_dim_in);
2037 dim = isl_dim_add(dim, isl_dim_in, 1);
2038 dim = isl_dim_add(dim, isl_dim_out, 1);
2040 app = construct_power_components(isl_dim_copy(dim), map,
2041 exact, project);
2043 isl_dim_free(dim);
2045 return app;
2048 /* Compute the positive powers of "map", or an overapproximation.
2049 * If the result is exact, then *exact is set to 1.
2051 * If project is set, then we are actually interested in the transitive
2052 * closure, so we can use a more relaxed exactness check.
2053 * The lengths of the paths are also projected out instead of being
2054 * encoded as the difference between an extra pair of final coordinates.
2056 static __isl_give isl_map *map_power(__isl_take isl_map *map,
2057 int *exact, int project)
2059 struct isl_map *app = NULL;
2061 if (exact)
2062 *exact = 1;
2064 if (!map)
2065 return NULL;
2067 isl_assert(map->ctx,
2068 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2069 goto error);
2071 app = construct_power(map, exact, project);
2073 isl_map_free(map);
2074 return app;
2075 error:
2076 isl_map_free(map);
2077 isl_map_free(app);
2078 return NULL;
2081 /* Compute the positive powers of "map", or an overapproximation.
2082 * The power is given by parameter "param". If the result is exact,
2083 * then *exact is set to 1.
2084 * map_power constructs an extended relation with the path lengths
2085 * encoded as the difference between the final coordinates.
2086 * In the final step, this difference is equated to the parameter "param"
2087 * and made positive. The extra coordinates are subsequently projected out.
2089 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
2090 int *exact)
2092 isl_dim *target_dim;
2093 isl_dim *dim;
2094 isl_map *diff;
2095 unsigned d;
2097 if (!map)
2098 return NULL;
2100 isl_assert(map->ctx, param < isl_map_dim(map, isl_dim_param),
2101 goto error);
2103 d = isl_map_dim(map, isl_dim_in);
2105 map = isl_map_compute_divs(map);
2106 map = isl_map_coalesce(map);
2108 if (isl_map_fast_is_empty(map))
2109 return map;
2111 target_dim = isl_map_get_dim(map);
2112 map = map_power(map, exact, 0);
2114 dim = isl_map_get_dim(map);
2115 diff = equate_parameter_to_length(dim, param);
2116 map = isl_map_intersect(map, diff);
2117 map = isl_map_project_out(map, isl_dim_in, d, 1);
2118 map = isl_map_project_out(map, isl_dim_out, d, 1);
2120 map = isl_map_reset_dim(map, target_dim);
2122 return map;
2123 error:
2124 isl_map_free(map);
2125 return NULL;
2128 /* Compute a relation that maps each element in the range of the input
2129 * relation to the lengths of all paths composed of edges in the input
2130 * relation that end up in the given range element.
2131 * The result may be an overapproximation, in which case *exact is set to 0.
2132 * The resulting relation is very similar to the power relation.
2133 * The difference are that the domain has been projected out, the
2134 * range has become the domain and the exponent is the range instead
2135 * of a parameter.
2137 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2138 int *exact)
2140 isl_dim *dim;
2141 isl_map *diff;
2142 unsigned d;
2143 unsigned param;
2145 if (!map)
2146 return NULL;
2148 d = isl_map_dim(map, isl_dim_in);
2149 param = isl_map_dim(map, isl_dim_param);
2151 map = isl_map_compute_divs(map);
2152 map = isl_map_coalesce(map);
2154 if (isl_map_fast_is_empty(map)) {
2155 if (exact)
2156 *exact = 1;
2157 map = isl_map_project_out(map, isl_dim_out, 0, d);
2158 map = isl_map_add(map, isl_dim_out, 1);
2159 return map;
2162 map = map_power(map, exact, 0);
2164 map = isl_map_add(map, isl_dim_param, 1);
2165 dim = isl_map_get_dim(map);
2166 diff = equate_parameter_to_length(dim, param);
2167 map = isl_map_intersect(map, diff);
2168 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2169 map = isl_map_project_out(map, isl_dim_out, d, 1);
2170 map = isl_map_reverse(map);
2171 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2173 return map;
2176 /* Check whether equality i of bset is a pure stride constraint
2177 * on a single dimensions, i.e., of the form
2179 * v = k e
2181 * with k a constant and e an existentially quantified variable.
2183 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2185 int k;
2186 unsigned nparam;
2187 unsigned d;
2188 unsigned n_div;
2189 int pos1;
2190 int pos2;
2192 if (!bset)
2193 return -1;
2195 if (!isl_int_is_zero(bset->eq[i][0]))
2196 return 0;
2198 nparam = isl_basic_set_dim(bset, isl_dim_param);
2199 d = isl_basic_set_dim(bset, isl_dim_set);
2200 n_div = isl_basic_set_dim(bset, isl_dim_div);
2202 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2203 return 0;
2204 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2205 if (pos1 == -1)
2206 return 0;
2207 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2208 d - pos1 - 1) != -1)
2209 return 0;
2211 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2212 if (pos2 == -1)
2213 return 0;
2214 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2215 n_div - pos2 - 1) != -1)
2216 return 0;
2217 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2218 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2219 return 0;
2221 return 1;
2224 /* Given a map, compute the smallest superset of this map that is of the form
2226 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2228 * (where p ranges over the (non-parametric) dimensions),
2229 * compute the transitive closure of this map, i.e.,
2231 * { i -> j : exists k > 0:
2232 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2234 * and intersect domain and range of this transitive closure with
2235 * the given domain and range.
2237 * If with_id is set, then try to include as much of the identity mapping
2238 * as possible, by computing
2240 * { i -> j : exists k >= 0:
2241 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2243 * instead (i.e., allow k = 0).
2245 * In practice, we compute the difference set
2247 * delta = { j - i | i -> j in map },
2249 * look for stride constraint on the individual dimensions and compute
2250 * (constant) lower and upper bounds for each individual dimension,
2251 * adding a constraint for each bound not equal to infinity.
2253 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2254 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2256 int i;
2257 int k;
2258 unsigned d;
2259 unsigned nparam;
2260 unsigned total;
2261 isl_dim *dim;
2262 isl_set *delta;
2263 isl_map *app = NULL;
2264 isl_basic_set *aff = NULL;
2265 isl_basic_map *bmap = NULL;
2266 isl_vec *obj = NULL;
2267 isl_int opt;
2269 isl_int_init(opt);
2271 delta = isl_map_deltas(isl_map_copy(map));
2273 aff = isl_set_affine_hull(isl_set_copy(delta));
2274 if (!aff)
2275 goto error;
2276 dim = isl_map_get_dim(map);
2277 d = isl_dim_size(dim, isl_dim_in);
2278 nparam = isl_dim_size(dim, isl_dim_param);
2279 total = isl_dim_total(dim);
2280 bmap = isl_basic_map_alloc_dim(dim,
2281 aff->n_div + 1, aff->n_div, 2 * d + 1);
2282 for (i = 0; i < aff->n_div + 1; ++i) {
2283 k = isl_basic_map_alloc_div(bmap);
2284 if (k < 0)
2285 goto error;
2286 isl_int_set_si(bmap->div[k][0], 0);
2288 for (i = 0; i < aff->n_eq; ++i) {
2289 if (!is_eq_stride(aff, i))
2290 continue;
2291 k = isl_basic_map_alloc_equality(bmap);
2292 if (k < 0)
2293 goto error;
2294 isl_seq_clr(bmap->eq[k], 1 + nparam);
2295 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2296 aff->eq[i] + 1 + nparam, d);
2297 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2298 aff->eq[i] + 1 + nparam, d);
2299 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2300 aff->eq[i] + 1 + nparam + d, aff->n_div);
2301 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2303 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2304 if (!obj)
2305 goto error;
2306 isl_seq_clr(obj->el, 1 + nparam + d);
2307 for (i = 0; i < d; ++ i) {
2308 enum isl_lp_result res;
2310 isl_int_set_si(obj->el[1 + nparam + i], 1);
2312 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2313 NULL, NULL);
2314 if (res == isl_lp_error)
2315 goto error;
2316 if (res == isl_lp_ok) {
2317 k = isl_basic_map_alloc_inequality(bmap);
2318 if (k < 0)
2319 goto error;
2320 isl_seq_clr(bmap->ineq[k],
2321 1 + nparam + 2 * d + bmap->n_div);
2322 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2323 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2324 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2327 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2328 NULL, NULL);
2329 if (res == isl_lp_error)
2330 goto error;
2331 if (res == isl_lp_ok) {
2332 k = isl_basic_map_alloc_inequality(bmap);
2333 if (k < 0)
2334 goto error;
2335 isl_seq_clr(bmap->ineq[k],
2336 1 + nparam + 2 * d + bmap->n_div);
2337 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2338 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2339 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2342 isl_int_set_si(obj->el[1 + nparam + i], 0);
2344 k = isl_basic_map_alloc_inequality(bmap);
2345 if (k < 0)
2346 goto error;
2347 isl_seq_clr(bmap->ineq[k],
2348 1 + nparam + 2 * d + bmap->n_div);
2349 if (!with_id)
2350 isl_int_set_si(bmap->ineq[k][0], -1);
2351 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2353 app = isl_map_from_domain_and_range(dom, ran);
2355 isl_vec_free(obj);
2356 isl_basic_set_free(aff);
2357 isl_map_free(map);
2358 bmap = isl_basic_map_finalize(bmap);
2359 isl_set_free(delta);
2360 isl_int_clear(opt);
2362 map = isl_map_from_basic_map(bmap);
2363 map = isl_map_intersect(map, app);
2365 return map;
2366 error:
2367 isl_vec_free(obj);
2368 isl_basic_map_free(bmap);
2369 isl_basic_set_free(aff);
2370 isl_set_free(dom);
2371 isl_set_free(ran);
2372 isl_map_free(map);
2373 isl_set_free(delta);
2374 isl_int_clear(opt);
2375 return NULL;
2378 /* Given a map, compute the smallest superset of this map that is of the form
2380 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2382 * (where p ranges over the (non-parametric) dimensions),
2383 * compute the transitive closure of this map, i.e.,
2385 * { i -> j : exists k > 0:
2386 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2388 * and intersect domain and range of this transitive closure with
2389 * domain and range of the original map.
2391 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2393 isl_set *domain;
2394 isl_set *range;
2396 domain = isl_map_domain(isl_map_copy(map));
2397 domain = isl_set_coalesce(domain);
2398 range = isl_map_range(isl_map_copy(map));
2399 range = isl_set_coalesce(range);
2401 return box_closure_on_domain(map, domain, range, 0);
2404 /* Given a map, compute the smallest superset of this map that is of the form
2406 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2408 * (where p ranges over the (non-parametric) dimensions),
2409 * compute the transitive and partially reflexive closure of this map, i.e.,
2411 * { i -> j : exists k >= 0:
2412 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2414 * and intersect domain and range of this transitive closure with
2415 * the given domain.
2417 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2418 __isl_take isl_set *dom)
2420 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2423 /* Check whether app is the transitive closure of map.
2424 * In particular, check that app is acyclic and, if so,
2425 * check that
2427 * app \subset (map \cup (map \circ app))
2429 static int check_exactness_omega(__isl_keep isl_map *map,
2430 __isl_keep isl_map *app)
2432 isl_set *delta;
2433 int i;
2434 int is_empty, is_exact;
2435 unsigned d;
2436 isl_map *test;
2438 delta = isl_map_deltas(isl_map_copy(app));
2439 d = isl_set_dim(delta, isl_dim_set);
2440 for (i = 0; i < d; ++i)
2441 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2442 is_empty = isl_set_is_empty(delta);
2443 isl_set_free(delta);
2444 if (is_empty < 0)
2445 return -1;
2446 if (!is_empty)
2447 return 0;
2449 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2450 test = isl_map_union(test, isl_map_copy(map));
2451 is_exact = isl_map_is_subset(app, test);
2452 isl_map_free(test);
2454 return is_exact;
2457 /* Check if basic map M_i can be combined with all the other
2458 * basic maps such that
2460 * (\cup_j M_j)^+
2462 * can be computed as
2464 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2466 * In particular, check if we can compute a compact representation
2467 * of
2469 * M_i^* \circ M_j \circ M_i^*
2471 * for each j != i.
2472 * Let M_i^? be an extension of M_i^+ that allows paths
2473 * of length zero, i.e., the result of box_closure(., 1).
2474 * The criterion, as proposed by Kelly et al., is that
2475 * id = M_i^? - M_i^+ can be represented as a basic map
2476 * and that
2478 * id \circ M_j \circ id = M_j
2480 * for each j != i.
2482 * If this function returns 1, then tc and qc are set to
2483 * M_i^+ and M_i^?, respectively.
2485 static int can_be_split_off(__isl_keep isl_map *map, int i,
2486 __isl_give isl_map **tc, __isl_give isl_map **qc)
2488 isl_map *map_i, *id = NULL;
2489 int j = -1;
2490 isl_set *C;
2492 *tc = NULL;
2493 *qc = NULL;
2495 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2496 isl_map_range(isl_map_copy(map)));
2497 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2498 if (!C)
2499 goto error;
2501 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2502 *tc = box_closure(isl_map_copy(map_i));
2503 *qc = box_closure_with_identity(map_i, C);
2504 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2506 if (!id || !*qc)
2507 goto error;
2508 if (id->n != 1 || (*qc)->n != 1)
2509 goto done;
2511 for (j = 0; j < map->n; ++j) {
2512 isl_map *map_j, *test;
2513 int is_ok;
2515 if (i == j)
2516 continue;
2517 map_j = isl_map_from_basic_map(
2518 isl_basic_map_copy(map->p[j]));
2519 test = isl_map_apply_range(isl_map_copy(id),
2520 isl_map_copy(map_j));
2521 test = isl_map_apply_range(test, isl_map_copy(id));
2522 is_ok = isl_map_is_equal(test, map_j);
2523 isl_map_free(map_j);
2524 isl_map_free(test);
2525 if (is_ok < 0)
2526 goto error;
2527 if (!is_ok)
2528 break;
2531 done:
2532 isl_map_free(id);
2533 if (j == map->n)
2534 return 1;
2536 isl_map_free(*qc);
2537 isl_map_free(*tc);
2538 *qc = NULL;
2539 *tc = NULL;
2541 return 0;
2542 error:
2543 isl_map_free(id);
2544 isl_map_free(*qc);
2545 isl_map_free(*tc);
2546 *qc = NULL;
2547 *tc = NULL;
2548 return -1;
2551 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2552 int *exact)
2554 isl_map *app;
2556 app = box_closure(isl_map_copy(map));
2557 if (exact)
2558 *exact = check_exactness_omega(map, app);
2560 isl_map_free(map);
2561 return app;
2564 /* Compute an overapproximation of the transitive closure of "map"
2565 * using a variation of the algorithm from
2566 * "Transitive Closure of Infinite Graphs and its Applications"
2567 * by Kelly et al.
2569 * We first check whether we can can split of any basic map M_i and
2570 * compute
2572 * (\cup_j M_j)^+
2574 * as
2576 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2578 * using a recursive call on the remaining map.
2580 * If not, we simply call box_closure on the whole map.
2582 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2583 int *exact)
2585 int i, j;
2586 int exact_i;
2587 isl_map *app;
2589 if (!map)
2590 return NULL;
2591 if (map->n == 1)
2592 return box_closure_with_check(map, exact);
2594 for (i = 0; i < map->n; ++i) {
2595 int ok;
2596 isl_map *qc, *tc;
2597 ok = can_be_split_off(map, i, &tc, &qc);
2598 if (ok < 0)
2599 goto error;
2600 if (!ok)
2601 continue;
2603 app = isl_map_alloc_dim(isl_map_get_dim(map), map->n - 1, 0);
2605 for (j = 0; j < map->n; ++j) {
2606 if (j == i)
2607 continue;
2608 app = isl_map_add_basic_map(app,
2609 isl_basic_map_copy(map->p[j]));
2612 app = isl_map_apply_range(isl_map_copy(qc), app);
2613 app = isl_map_apply_range(app, qc);
2615 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2616 exact_i = check_exactness_omega(map, app);
2617 if (exact_i == 1) {
2618 if (exact)
2619 *exact = exact_i;
2620 isl_map_free(map);
2621 return app;
2623 isl_map_free(app);
2624 if (exact_i < 0)
2625 goto error;
2628 return box_closure_with_check(map, exact);
2629 error:
2630 isl_map_free(map);
2631 return NULL;
2634 /* Compute the transitive closure of "map", or an overapproximation.
2635 * If the result is exact, then *exact is set to 1.
2636 * Simply use map_power to compute the powers of map, but tell
2637 * it to project out the lengths of the paths instead of equating
2638 * the length to a parameter.
2640 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2641 int *exact)
2643 isl_dim *target_dim;
2644 int closed;
2646 if (!map)
2647 goto error;
2649 if (map->ctx->opt->closure == ISL_CLOSURE_OMEGA)
2650 return transitive_closure_omega(map, exact);
2652 map = isl_map_compute_divs(map);
2653 map = isl_map_coalesce(map);
2654 closed = isl_map_is_transitively_closed(map);
2655 if (closed < 0)
2656 goto error;
2657 if (closed) {
2658 if (exact)
2659 *exact = 1;
2660 return map;
2663 target_dim = isl_map_get_dim(map);
2664 map = map_power(map, exact, 1);
2665 map = isl_map_reset_dim(map, target_dim);
2667 return map;
2668 error:
2669 isl_map_free(map);
2670 return NULL;
2673 static int inc_count(__isl_take isl_map *map, void *user)
2675 int *n = user;
2677 *n += map->n;
2679 isl_map_free(map);
2681 return 0;
2684 static int collect_basic_map(__isl_take isl_map *map, void *user)
2686 int i;
2687 isl_basic_map ***next = user;
2689 for (i = 0; i < map->n; ++i) {
2690 **next = isl_basic_map_copy(map->p[i]);
2691 if (!**next)
2692 goto error;
2693 (*next)++;
2696 isl_map_free(map);
2697 return 0;
2698 error:
2699 isl_map_free(map);
2700 return -1;
2703 /* Perform Floyd-Warshall on the given list of basic relations.
2704 * The basic relations may live in different dimensions,
2705 * but basic relations that get assigned to the diagonal of the
2706 * grid have domains and ranges of the same dimension and so
2707 * the standard algorithm can be used because the nested transitive
2708 * closures are only applied to diagonal elements and because all
2709 * compositions are peformed on relations with compatible domains and ranges.
2711 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2712 __isl_keep isl_basic_map **list, int n, int *exact)
2714 int i, j, k;
2715 int n_group;
2716 int *group = NULL;
2717 isl_set **set = NULL;
2718 isl_map ***grid = NULL;
2719 isl_union_map *app;
2721 group = setup_groups(ctx, list, n, &set, &n_group);
2722 if (!group)
2723 goto error;
2725 grid = isl_calloc_array(ctx, isl_map **, n_group);
2726 if (!grid)
2727 goto error;
2728 for (i = 0; i < n_group; ++i) {
2729 grid[i] = isl_calloc_array(map->ctx, isl_map *, n_group);
2730 if (!grid[i])
2731 goto error;
2732 for (j = 0; j < n_group; ++j) {
2733 isl_dim *dim1, *dim2, *dim;
2734 dim1 = isl_dim_reverse(isl_set_get_dim(set[i]));
2735 dim2 = isl_set_get_dim(set[j]);
2736 dim = isl_dim_join(dim1, dim2);
2737 grid[i][j] = isl_map_empty(dim);
2741 for (k = 0; k < n; ++k) {
2742 i = group[2 * k];
2743 j = group[2 * k + 1];
2744 grid[i][j] = isl_map_union(grid[i][j],
2745 isl_map_from_basic_map(
2746 isl_basic_map_copy(list[k])));
2749 floyd_warshall_iterate(grid, n_group, exact);
2751 app = isl_union_map_empty(isl_map_get_dim(grid[0][0]));
2753 for (i = 0; i < n_group; ++i) {
2754 for (j = 0; j < n_group; ++j)
2755 app = isl_union_map_add_map(app, grid[i][j]);
2756 free(grid[i]);
2758 free(grid);
2760 for (i = 0; i < 2 * n; ++i)
2761 isl_set_free(set[i]);
2762 free(set);
2764 free(group);
2765 return app;
2766 error:
2767 if (grid)
2768 for (i = 0; i < n_group; ++i) {
2769 if (!grid[i])
2770 continue;
2771 for (j = 0; j < n_group; ++j)
2772 isl_map_free(grid[i][j]);
2773 free(grid[i]);
2775 free(grid);
2776 if (set) {
2777 for (i = 0; i < 2 * n; ++i)
2778 isl_set_free(set[i]);
2779 free(set);
2781 free(group);
2782 return NULL;
2785 /* Perform Floyd-Warshall on the given union relation.
2786 * The implementation is very similar to that for non-unions.
2787 * The main difference is that it is applied unconditionally.
2788 * We first extract a list of basic maps from the union map
2789 * and then perform the algorithm on this list.
2791 static __isl_give isl_union_map *union_floyd_warshall(
2792 __isl_take isl_union_map *umap, int *exact)
2794 int i, n;
2795 isl_ctx *ctx;
2796 isl_basic_map **list;
2797 isl_basic_map **next;
2798 isl_union_map *res;
2800 n = 0;
2801 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2802 goto error;
2804 ctx = isl_union_map_get_ctx(umap);
2805 list = isl_calloc_array(ctx, isl_basic_map *, n);
2806 if (!list)
2807 goto error;
2809 next = list;
2810 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2811 goto error;
2813 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2815 if (list) {
2816 for (i = 0; i < n; ++i)
2817 isl_basic_map_free(list[i]);
2818 free(list);
2821 isl_union_map_free(umap);
2822 return res;
2823 error:
2824 if (list) {
2825 for (i = 0; i < n; ++i)
2826 isl_basic_map_free(list[i]);
2827 free(list);
2829 isl_union_map_free(umap);
2830 return NULL;
2833 /* Decompose the give union relation into strongly connected components.
2834 * The implementation is essentially the same as that of
2835 * construct_power_components with the major difference that all
2836 * operations are performed on union maps.
2838 static __isl_give isl_union_map *union_components(
2839 __isl_take isl_union_map *umap, int *exact)
2841 int i;
2842 int n;
2843 isl_ctx *ctx;
2844 isl_basic_map **list;
2845 isl_basic_map **next;
2846 isl_union_map *path = NULL;
2847 struct basic_map_sort *s = NULL;
2848 int c, l;
2849 int recheck = 0;
2851 n = 0;
2852 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2853 goto error;
2855 if (n <= 1)
2856 return union_floyd_warshall(umap, exact);
2858 ctx = isl_union_map_get_ctx(umap);
2859 list = isl_calloc_array(ctx, isl_basic_map *, n);
2860 if (!list)
2861 goto error;
2863 next = list;
2864 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2865 goto error;
2867 s = basic_map_sort_init(ctx, n, list);
2868 if (!s)
2869 goto error;
2871 c = 0;
2872 i = 0;
2873 l = n;
2874 path = isl_union_map_empty(isl_union_map_get_dim(umap));
2875 while (l) {
2876 isl_union_map *comp;
2877 isl_union_map *path_comp, *path_comb;
2878 comp = isl_union_map_empty(isl_union_map_get_dim(umap));
2879 while (s->order[i] != -1) {
2880 comp = isl_union_map_add_map(comp,
2881 isl_map_from_basic_map(
2882 isl_basic_map_copy(list[s->order[i]])));
2883 --l;
2884 ++i;
2886 path_comp = union_floyd_warshall(comp, exact);
2887 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2888 isl_union_map_copy(path_comp));
2889 path = isl_union_map_union(path, path_comp);
2890 path = isl_union_map_union(path, path_comb);
2891 ++i;
2892 ++c;
2895 if (c > 1 && s->check_closed && !*exact) {
2896 int closed;
2898 closed = isl_union_map_is_transitively_closed(path);
2899 if (closed < 0)
2900 goto error;
2901 recheck = !closed;
2904 basic_map_sort_free(s);
2906 for (i = 0; i < n; ++i)
2907 isl_basic_map_free(list[i]);
2908 free(list);
2910 if (recheck) {
2911 isl_union_map_free(path);
2912 return union_floyd_warshall(umap, exact);
2915 isl_union_map_free(umap);
2917 return path;
2918 error:
2919 basic_map_sort_free(s);
2920 if (list) {
2921 for (i = 0; i < n; ++i)
2922 isl_basic_map_free(list[i]);
2923 free(list);
2925 isl_union_map_free(umap);
2926 isl_union_map_free(path);
2927 return NULL;
2930 /* Compute the transitive closure of "umap", or an overapproximation.
2931 * If the result is exact, then *exact is set to 1.
2933 __isl_give isl_union_map *isl_union_map_transitive_closure(
2934 __isl_take isl_union_map *umap, int *exact)
2936 int closed;
2938 if (!umap)
2939 return NULL;
2941 if (exact)
2942 *exact = 1;
2944 umap = isl_union_map_compute_divs(umap);
2945 umap = isl_union_map_coalesce(umap);
2946 closed = isl_union_map_is_transitively_closed(umap);
2947 if (closed < 0)
2948 goto error;
2949 if (closed)
2950 return umap;
2951 umap = union_components(umap, exact);
2952 return umap;
2953 error:
2954 isl_union_map_free(umap);
2955 return NULL;