2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_options_private.h>
21 #include <isl_config.h>
24 * The implementation of parametric integer linear programming in this file
25 * was inspired by the paper "Parametric Integer Programming" and the
26 * report "Solving systems of affine (in)equalities" by Paul Feautrier
29 * The strategy used for obtaining a feasible solution is different
30 * from the one used in isl_tab.c. In particular, in isl_tab.c,
31 * upon finding a constraint that is not yet satisfied, we pivot
32 * in a row that increases the constant term of the row holding the
33 * constraint, making sure the sample solution remains feasible
34 * for all the constraints it already satisfied.
35 * Here, we always pivot in the row holding the constraint,
36 * choosing a column that induces the lexicographically smallest
37 * increment to the sample solution.
39 * By starting out from a sample value that is lexicographically
40 * smaller than any integer point in the problem space, the first
41 * feasible integer sample point we find will also be the lexicographically
42 * smallest. If all variables can be assumed to be non-negative,
43 * then the initial sample value may be chosen equal to zero.
44 * However, we will not make this assumption. Instead, we apply
45 * the "big parameter" trick. Any variable x is then not directly
46 * used in the tableau, but instead it is represented by another
47 * variable x' = M + x, where M is an arbitrarily large (positive)
48 * value. x' is therefore always non-negative, whatever the value of x.
49 * Taking as initial sample value x' = 0 corresponds to x = -M,
50 * which is always smaller than any possible value of x.
52 * The big parameter trick is used in the main tableau and
53 * also in the context tableau if isl_context_lex is used.
54 * In this case, each tableaus has its own big parameter.
55 * Before doing any real work, we check if all the parameters
56 * happen to be non-negative. If so, we drop the column corresponding
57 * to M from the initial context tableau.
58 * If isl_context_gbr is used, then the big parameter trick is only
59 * used in the main tableau.
63 struct isl_context_op
{
64 /* detect nonnegative parameters in context and mark them in tab */
65 struct isl_tab
*(*detect_nonnegative_parameters
)(
66 struct isl_context
*context
, struct isl_tab
*tab
);
67 /* return temporary reference to basic set representation of context */
68 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
69 /* return temporary reference to tableau representation of context */
70 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
71 /* add equality; check is 1 if eq may not be valid;
72 * update is 1 if we may want to call ineq_sign on context later.
74 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
75 int check
, int update
);
76 /* add inequality; check is 1 if ineq may not be valid;
77 * update is 1 if we may want to call ineq_sign on context later.
79 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
80 int check
, int update
);
81 /* check sign of ineq based on previous information.
82 * strict is 1 if saturation should be treated as a positive sign.
84 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
85 isl_int
*ineq
, int strict
);
86 /* check if inequality maintains feasibility */
87 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
88 /* return index of a div that corresponds to "div" */
89 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
91 /* add div "div" to context and return non-negativity */
92 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
93 int (*detect_equalities
)(struct isl_context
*context
,
95 /* return row index of "best" split */
96 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
97 /* check if context has already been determined to be empty */
98 int (*is_empty
)(struct isl_context
*context
);
99 /* check if context is still usable */
100 int (*is_ok
)(struct isl_context
*context
);
101 /* save a copy/snapshot of context */
102 void *(*save
)(struct isl_context
*context
);
103 /* restore saved context */
104 void (*restore
)(struct isl_context
*context
, void *);
105 /* discard saved context */
106 void (*discard
)(void *);
107 /* invalidate context */
108 void (*invalidate
)(struct isl_context
*context
);
110 void (*free
)(struct isl_context
*context
);
114 struct isl_context_op
*op
;
117 struct isl_context_lex
{
118 struct isl_context context
;
122 /* A stack (linked list) of solutions of subtrees of the search space.
124 * "M" describes the solution in terms of the dimensions of "dom".
125 * The number of columns of "M" is one more than the total number
126 * of dimensions of "dom".
128 * If "M" is NULL, then there is no solution on "dom".
130 struct isl_partial_sol
{
132 struct isl_basic_set
*dom
;
135 struct isl_partial_sol
*next
;
139 struct isl_sol_callback
{
140 struct isl_tab_callback callback
;
144 /* isl_sol is an interface for constructing a solution to
145 * a parametric integer linear programming problem.
146 * Every time the algorithm reaches a state where a solution
147 * can be read off from the tableau (including cases where the tableau
148 * is empty), the function "add" is called on the isl_sol passed
149 * to find_solutions_main.
151 * The context tableau is owned by isl_sol and is updated incrementally.
153 * There are currently two implementations of this interface,
154 * isl_sol_map, which simply collects the solutions in an isl_map
155 * and (optionally) the parts of the context where there is no solution
157 * isl_sol_for, which calls a user-defined function for each part of
166 struct isl_context
*context
;
167 struct isl_partial_sol
*partial
;
168 void (*add
)(struct isl_sol
*sol
,
169 struct isl_basic_set
*dom
, struct isl_mat
*M
);
170 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
171 void (*free
)(struct isl_sol
*sol
);
172 struct isl_sol_callback dec_level
;
175 static void sol_free(struct isl_sol
*sol
)
177 struct isl_partial_sol
*partial
, *next
;
180 for (partial
= sol
->partial
; partial
; partial
= next
) {
181 next
= partial
->next
;
182 isl_basic_set_free(partial
->dom
);
183 isl_mat_free(partial
->M
);
189 /* Push a partial solution represented by a domain and mapping M
190 * onto the stack of partial solutions.
192 static void sol_push_sol(struct isl_sol
*sol
,
193 struct isl_basic_set
*dom
, struct isl_mat
*M
)
195 struct isl_partial_sol
*partial
;
197 if (sol
->error
|| !dom
)
200 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
204 partial
->level
= sol
->level
;
207 partial
->next
= sol
->partial
;
209 sol
->partial
= partial
;
213 isl_basic_set_free(dom
);
218 /* Pop one partial solution from the partial solution stack and
219 * pass it on to sol->add or sol->add_empty.
221 static void sol_pop_one(struct isl_sol
*sol
)
223 struct isl_partial_sol
*partial
;
225 partial
= sol
->partial
;
226 sol
->partial
= partial
->next
;
229 sol
->add(sol
, partial
->dom
, partial
->M
);
231 sol
->add_empty(sol
, partial
->dom
);
235 /* Return a fresh copy of the domain represented by the context tableau.
237 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
239 struct isl_basic_set
*bset
;
244 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
245 bset
= isl_basic_set_update_from_tab(bset
,
246 sol
->context
->op
->peek_tab(sol
->context
));
251 /* Check whether two partial solutions have the same mapping, where n_div
252 * is the number of divs that the two partial solutions have in common.
254 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
260 if (!s1
->M
!= !s2
->M
)
265 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
267 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
268 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
269 s1
->M
->n_col
-1-dim
-n_div
) != -1)
271 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
272 s2
->M
->n_col
-1-dim
-n_div
) != -1)
274 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
280 /* Pop all solutions from the partial solution stack that were pushed onto
281 * the stack at levels that are deeper than the current level.
282 * If the two topmost elements on the stack have the same level
283 * and represent the same solution, then their domains are combined.
284 * This combined domain is the same as the current context domain
285 * as sol_pop is called each time we move back to a higher level.
287 static void sol_pop(struct isl_sol
*sol
)
289 struct isl_partial_sol
*partial
;
295 if (sol
->level
== 0) {
296 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
301 partial
= sol
->partial
;
305 if (partial
->level
<= sol
->level
)
308 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
309 n_div
= isl_basic_set_dim(
310 sol
->context
->op
->peek_basic_set(sol
->context
),
313 if (!same_solution(partial
, partial
->next
, n_div
)) {
317 struct isl_basic_set
*bset
;
321 n
= isl_basic_set_dim(partial
->next
->dom
, isl_dim_div
);
323 bset
= sol_domain(sol
);
324 isl_basic_set_free(partial
->next
->dom
);
325 partial
->next
->dom
= bset
;
326 M
= partial
->next
->M
;
328 M
= isl_mat_drop_cols(M
, M
->n_col
- n
, n
);
329 partial
->next
->M
= M
;
333 partial
->next
->level
= sol
->level
;
338 sol
->partial
= partial
->next
;
339 isl_basic_set_free(partial
->dom
);
340 isl_mat_free(partial
->M
);
347 error
: sol
->error
= 1;
350 static void sol_dec_level(struct isl_sol
*sol
)
360 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
362 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
364 sol_dec_level(callback
->sol
);
366 return callback
->sol
->error
? -1 : 0;
369 /* Move down to next level and push callback onto context tableau
370 * to decrease the level again when it gets rolled back across
371 * the current state. That is, dec_level will be called with
372 * the context tableau in the same state as it is when inc_level
375 static void sol_inc_level(struct isl_sol
*sol
)
383 tab
= sol
->context
->op
->peek_tab(sol
->context
);
384 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
388 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
392 if (isl_int_is_one(m
))
395 for (i
= 0; i
< n_row
; ++i
)
396 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
399 /* Add the solution identified by the tableau and the context tableau.
401 * The layout of the variables is as follows.
402 * tab->n_var is equal to the total number of variables in the input
403 * map (including divs that were copied from the context)
404 * + the number of extra divs constructed
405 * Of these, the first tab->n_param and the last tab->n_div variables
406 * correspond to the variables in the context, i.e.,
407 * tab->n_param + tab->n_div = context_tab->n_var
408 * tab->n_param is equal to the number of parameters and input
409 * dimensions in the input map
410 * tab->n_div is equal to the number of divs in the context
412 * If there is no solution, then call add_empty with a basic set
413 * that corresponds to the context tableau. (If add_empty is NULL,
416 * If there is a solution, then first construct a matrix that maps
417 * all dimensions of the context to the output variables, i.e.,
418 * the output dimensions in the input map.
419 * The divs in the input map (if any) that do not correspond to any
420 * div in the context do not appear in the solution.
421 * The algorithm will make sure that they have an integer value,
422 * but these values themselves are of no interest.
423 * We have to be careful not to drop or rearrange any divs in the
424 * context because that would change the meaning of the matrix.
426 * To extract the value of the output variables, it should be noted
427 * that we always use a big parameter M in the main tableau and so
428 * the variable stored in this tableau is not an output variable x itself, but
429 * x' = M + x (in case of minimization)
431 * x' = M - x (in case of maximization)
432 * If x' appears in a column, then its optimal value is zero,
433 * which means that the optimal value of x is an unbounded number
434 * (-M for minimization and M for maximization).
435 * We currently assume that the output dimensions in the original map
436 * are bounded, so this cannot occur.
437 * Similarly, when x' appears in a row, then the coefficient of M in that
438 * row is necessarily 1.
439 * If the row in the tableau represents
440 * d x' = c + d M + e(y)
441 * then, in case of minimization, the corresponding row in the matrix
444 * with a d = m, the (updated) common denominator of the matrix.
445 * In case of maximization, the row will be
448 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
450 struct isl_basic_set
*bset
= NULL
;
451 struct isl_mat
*mat
= NULL
;
456 if (sol
->error
|| !tab
)
459 if (tab
->empty
&& !sol
->add_empty
)
461 if (sol
->context
->op
->is_empty(sol
->context
))
464 bset
= sol_domain(sol
);
467 sol_push_sol(sol
, bset
, NULL
);
473 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
474 1 + tab
->n_param
+ tab
->n_div
);
480 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
481 isl_int_set_si(mat
->row
[0][0], 1);
482 for (row
= 0; row
< sol
->n_out
; ++row
) {
483 int i
= tab
->n_param
+ row
;
486 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
487 if (!tab
->var
[i
].is_row
) {
489 isl_die(mat
->ctx
, isl_error_invalid
,
490 "unbounded optimum", goto error2
);
494 r
= tab
->var
[i
].index
;
496 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
497 isl_die(mat
->ctx
, isl_error_invalid
,
498 "unbounded optimum", goto error2
);
499 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
500 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
501 scale_rows(mat
, m
, 1 + row
);
502 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
503 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
504 for (j
= 0; j
< tab
->n_param
; ++j
) {
506 if (tab
->var
[j
].is_row
)
508 col
= tab
->var
[j
].index
;
509 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
510 tab
->mat
->row
[r
][off
+ col
]);
512 for (j
= 0; j
< tab
->n_div
; ++j
) {
514 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
516 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
517 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
518 tab
->mat
->row
[r
][off
+ col
]);
521 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
527 sol_push_sol(sol
, bset
, mat
);
532 isl_basic_set_free(bset
);
540 struct isl_set
*empty
;
543 static void sol_map_free(struct isl_sol_map
*sol_map
)
547 if (sol_map
->sol
.context
)
548 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
549 isl_map_free(sol_map
->map
);
550 isl_set_free(sol_map
->empty
);
554 static void sol_map_free_wrap(struct isl_sol
*sol
)
556 sol_map_free((struct isl_sol_map
*)sol
);
559 /* This function is called for parts of the context where there is
560 * no solution, with "bset" corresponding to the context tableau.
561 * Simply add the basic set to the set "empty".
563 static void sol_map_add_empty(struct isl_sol_map
*sol
,
564 struct isl_basic_set
*bset
)
568 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
570 sol
->empty
= isl_set_grow(sol
->empty
, 1);
571 bset
= isl_basic_set_simplify(bset
);
572 bset
= isl_basic_set_finalize(bset
);
573 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
576 isl_basic_set_free(bset
);
579 isl_basic_set_free(bset
);
583 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
584 struct isl_basic_set
*bset
)
586 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
589 /* Given a basic map "dom" that represents the context and an affine
590 * matrix "M" that maps the dimensions of the context to the
591 * output variables, construct a basic map with the same parameters
592 * and divs as the context, the dimensions of the context as input
593 * dimensions and a number of output dimensions that is equal to
594 * the number of output dimensions in the input map.
596 * The constraints and divs of the context are simply copied
597 * from "dom". For each row
601 * is added, with d the common denominator of M.
603 static void sol_map_add(struct isl_sol_map
*sol
,
604 struct isl_basic_set
*dom
, struct isl_mat
*M
)
607 struct isl_basic_map
*bmap
= NULL
;
615 if (sol
->sol
.error
|| !dom
|| !M
)
618 n_out
= sol
->sol
.n_out
;
619 n_eq
= dom
->n_eq
+ n_out
;
620 n_ineq
= dom
->n_ineq
;
622 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
623 total
= isl_map_dim(sol
->map
, isl_dim_all
);
624 bmap
= isl_basic_map_alloc_space(isl_map_get_space(sol
->map
),
625 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
628 if (sol
->sol
.rational
)
629 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
630 for (i
= 0; i
< dom
->n_div
; ++i
) {
631 int k
= isl_basic_map_alloc_div(bmap
);
634 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
635 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
636 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
637 dom
->div
[i
] + 1 + 1 + nparam
, i
);
639 for (i
= 0; i
< dom
->n_eq
; ++i
) {
640 int k
= isl_basic_map_alloc_equality(bmap
);
643 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
644 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
645 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
646 dom
->eq
[i
] + 1 + nparam
, n_div
);
648 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
649 int k
= isl_basic_map_alloc_inequality(bmap
);
652 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
653 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
654 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
655 dom
->ineq
[i
] + 1 + nparam
, n_div
);
657 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
658 int k
= isl_basic_map_alloc_equality(bmap
);
661 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
662 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
663 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
664 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
665 M
->row
[1 + i
] + 1 + nparam
, n_div
);
667 bmap
= isl_basic_map_simplify(bmap
);
668 bmap
= isl_basic_map_finalize(bmap
);
669 sol
->map
= isl_map_grow(sol
->map
, 1);
670 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
671 isl_basic_set_free(dom
);
677 isl_basic_set_free(dom
);
679 isl_basic_map_free(bmap
);
683 static void sol_map_add_wrap(struct isl_sol
*sol
,
684 struct isl_basic_set
*dom
, struct isl_mat
*M
)
686 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
690 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
691 * i.e., the constant term and the coefficients of all variables that
692 * appear in the context tableau.
693 * Note that the coefficient of the big parameter M is NOT copied.
694 * The context tableau may not have a big parameter and even when it
695 * does, it is a different big parameter.
697 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
700 unsigned off
= 2 + tab
->M
;
702 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
703 for (i
= 0; i
< tab
->n_param
; ++i
) {
704 if (tab
->var
[i
].is_row
)
705 isl_int_set_si(line
[1 + i
], 0);
707 int col
= tab
->var
[i
].index
;
708 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
711 for (i
= 0; i
< tab
->n_div
; ++i
) {
712 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
713 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
715 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
716 isl_int_set(line
[1 + tab
->n_param
+ i
],
717 tab
->mat
->row
[row
][off
+ col
]);
722 /* Check if rows "row1" and "row2" have identical "parametric constants",
723 * as explained above.
724 * In this case, we also insist that the coefficients of the big parameter
725 * be the same as the values of the constants will only be the same
726 * if these coefficients are also the same.
728 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
731 unsigned off
= 2 + tab
->M
;
733 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
736 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
737 tab
->mat
->row
[row2
][2]))
740 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
741 int pos
= i
< tab
->n_param
? i
:
742 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
745 if (tab
->var
[pos
].is_row
)
747 col
= tab
->var
[pos
].index
;
748 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
749 tab
->mat
->row
[row2
][off
+ col
]))
755 /* Return an inequality that expresses that the "parametric constant"
756 * should be non-negative.
757 * This function is only called when the coefficient of the big parameter
760 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
762 struct isl_vec
*ineq
;
764 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
768 get_row_parameter_line(tab
, row
, ineq
->el
);
770 ineq
= isl_vec_normalize(ineq
);
775 /* Normalize a div expression of the form
777 * [(g*f(x) + c)/(g * m)]
779 * with c the constant term and f(x) the remaining coefficients, to
783 static void normalize_div(__isl_keep isl_vec
*div
)
785 isl_ctx
*ctx
= isl_vec_get_ctx(div
);
786 int len
= div
->size
- 2;
788 isl_seq_gcd(div
->el
+ 2, len
, &ctx
->normalize_gcd
);
789 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, div
->el
[0]);
791 if (isl_int_is_one(ctx
->normalize_gcd
))
794 isl_int_divexact(div
->el
[0], div
->el
[0], ctx
->normalize_gcd
);
795 isl_int_fdiv_q(div
->el
[1], div
->el
[1], ctx
->normalize_gcd
);
796 isl_seq_scale_down(div
->el
+ 2, div
->el
+ 2, ctx
->normalize_gcd
, len
);
799 /* Return a integer division for use in a parametric cut based on the given row.
800 * In particular, let the parametric constant of the row be
804 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
805 * The div returned is equal to
807 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
809 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
813 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
817 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
818 get_row_parameter_line(tab
, row
, div
->el
+ 1);
819 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
821 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
826 /* Return a integer division for use in transferring an integrality constraint
828 * In particular, let the parametric constant of the row be
832 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
833 * The the returned div is equal to
835 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
837 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
841 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
845 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
846 get_row_parameter_line(tab
, row
, div
->el
+ 1);
848 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
853 /* Construct and return an inequality that expresses an upper bound
855 * In particular, if the div is given by
859 * then the inequality expresses
863 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
867 struct isl_vec
*ineq
;
872 total
= isl_basic_set_total_dim(bset
);
873 div_pos
= 1 + total
- bset
->n_div
+ div
;
875 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
879 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
880 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
884 /* Given a row in the tableau and a div that was created
885 * using get_row_split_div and that has been constrained to equality, i.e.,
887 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
889 * replace the expression "\sum_i {a_i} y_i" in the row by d,
890 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
891 * The coefficients of the non-parameters in the tableau have been
892 * verified to be integral. We can therefore simply replace coefficient b
893 * by floor(b). For the coefficients of the parameters we have
894 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
897 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
899 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
900 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
902 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
904 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
905 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
907 isl_assert(tab
->mat
->ctx
,
908 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
909 isl_seq_combine(tab
->mat
->row
[row
] + 1,
910 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
911 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
912 1 + tab
->M
+ tab
->n_col
);
914 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
916 isl_int_add_ui(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
],
917 tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
926 /* Check if the (parametric) constant of the given row is obviously
927 * negative, meaning that we don't need to consult the context tableau.
928 * If there is a big parameter and its coefficient is non-zero,
929 * then this coefficient determines the outcome.
930 * Otherwise, we check whether the constant is negative and
931 * all non-zero coefficients of parameters are negative and
932 * belong to non-negative parameters.
934 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
938 unsigned off
= 2 + tab
->M
;
941 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
943 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
947 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
949 for (i
= 0; i
< tab
->n_param
; ++i
) {
950 /* Eliminated parameter */
951 if (tab
->var
[i
].is_row
)
953 col
= tab
->var
[i
].index
;
954 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
956 if (!tab
->var
[i
].is_nonneg
)
958 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
961 for (i
= 0; i
< tab
->n_div
; ++i
) {
962 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
964 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
965 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
967 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
969 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
975 /* Check if the (parametric) constant of the given row is obviously
976 * non-negative, meaning that we don't need to consult the context tableau.
977 * If there is a big parameter and its coefficient is non-zero,
978 * then this coefficient determines the outcome.
979 * Otherwise, we check whether the constant is non-negative and
980 * all non-zero coefficients of parameters are positive and
981 * belong to non-negative parameters.
983 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
987 unsigned off
= 2 + tab
->M
;
990 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
992 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
996 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
998 for (i
= 0; i
< tab
->n_param
; ++i
) {
999 /* Eliminated parameter */
1000 if (tab
->var
[i
].is_row
)
1002 col
= tab
->var
[i
].index
;
1003 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1005 if (!tab
->var
[i
].is_nonneg
)
1007 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1010 for (i
= 0; i
< tab
->n_div
; ++i
) {
1011 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1013 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1014 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1016 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
1018 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1024 /* Given a row r and two columns, return the column that would
1025 * lead to the lexicographically smallest increment in the sample
1026 * solution when leaving the basis in favor of the row.
1027 * Pivoting with column c will increment the sample value by a non-negative
1028 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1029 * corresponding to the non-parametric variables.
1030 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
1031 * with all other entries in this virtual row equal to zero.
1032 * If variable v appears in a row, then a_{v,c} is the element in column c
1035 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1036 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1037 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1038 * increment. Otherwise, it's c2.
1040 static int lexmin_col_pair(struct isl_tab
*tab
,
1041 int row
, int col1
, int col2
, isl_int tmp
)
1046 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1048 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1052 if (!tab
->var
[i
].is_row
) {
1053 if (tab
->var
[i
].index
== col1
)
1055 if (tab
->var
[i
].index
== col2
)
1060 if (tab
->var
[i
].index
== row
)
1063 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1064 s1
= isl_int_sgn(r
[col1
]);
1065 s2
= isl_int_sgn(r
[col2
]);
1066 if (s1
== 0 && s2
== 0)
1073 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1074 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1075 if (isl_int_is_pos(tmp
))
1077 if (isl_int_is_neg(tmp
))
1083 /* Given a row in the tableau, find and return the column that would
1084 * result in the lexicographically smallest, but positive, increment
1085 * in the sample point.
1086 * If there is no such column, then return tab->n_col.
1087 * If anything goes wrong, return -1.
1089 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1092 int col
= tab
->n_col
;
1096 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1100 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1101 if (tab
->col_var
[j
] >= 0 &&
1102 (tab
->col_var
[j
] < tab
->n_param
||
1103 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1106 if (!isl_int_is_pos(tr
[j
]))
1109 if (col
== tab
->n_col
)
1112 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1113 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1123 /* Return the first known violated constraint, i.e., a non-negative
1124 * constraint that currently has an either obviously negative value
1125 * or a previously determined to be negative value.
1127 * If any constraint has a negative coefficient for the big parameter,
1128 * if any, then we return one of these first.
1130 static int first_neg(struct isl_tab
*tab
)
1135 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1136 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1138 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1141 tab
->row_sign
[row
] = isl_tab_row_neg
;
1144 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1145 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1147 if (tab
->row_sign
) {
1148 if (tab
->row_sign
[row
] == 0 &&
1149 is_obviously_neg(tab
, row
))
1150 tab
->row_sign
[row
] = isl_tab_row_neg
;
1151 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1153 } else if (!is_obviously_neg(tab
, row
))
1160 /* Check whether the invariant that all columns are lexico-positive
1161 * is satisfied. This function is not called from the current code
1162 * but is useful during debugging.
1164 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1165 static void check_lexpos(struct isl_tab
*tab
)
1167 unsigned off
= 2 + tab
->M
;
1172 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1173 if (tab
->col_var
[col
] >= 0 &&
1174 (tab
->col_var
[col
] < tab
->n_param
||
1175 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1177 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1178 if (!tab
->var
[var
].is_row
) {
1179 if (tab
->var
[var
].index
== col
)
1184 row
= tab
->var
[var
].index
;
1185 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1187 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1189 fprintf(stderr
, "lexneg column %d (row %d)\n",
1192 if (var
>= tab
->n_var
- tab
->n_div
)
1193 fprintf(stderr
, "zero column %d\n", col
);
1197 /* Report to the caller that the given constraint is part of an encountered
1200 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1202 return tab
->conflict(con
, tab
->conflict_user
);
1205 /* Given a conflicting row in the tableau, report all constraints
1206 * involved in the row to the caller. That is, the row itself
1207 * (if it represents a constraint) and all constraint columns with
1208 * non-zero (and therefore negative) coefficients.
1210 static int report_conflict(struct isl_tab
*tab
, int row
)
1218 if (tab
->row_var
[row
] < 0 &&
1219 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1222 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1224 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1225 if (tab
->col_var
[j
] >= 0 &&
1226 (tab
->col_var
[j
] < tab
->n_param
||
1227 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1230 if (!isl_int_is_neg(tr
[j
]))
1233 if (tab
->col_var
[j
] < 0 &&
1234 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1241 /* Resolve all known or obviously violated constraints through pivoting.
1242 * In particular, as long as we can find any violated constraint, we
1243 * look for a pivoting column that would result in the lexicographically
1244 * smallest increment in the sample point. If there is no such column
1245 * then the tableau is infeasible.
1247 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1248 static int restore_lexmin(struct isl_tab
*tab
)
1256 while ((row
= first_neg(tab
)) != -1) {
1257 col
= lexmin_pivot_col(tab
, row
);
1258 if (col
>= tab
->n_col
) {
1259 if (report_conflict(tab
, row
) < 0)
1261 if (isl_tab_mark_empty(tab
) < 0)
1267 if (isl_tab_pivot(tab
, row
, col
) < 0)
1273 /* Given a row that represents an equality, look for an appropriate
1275 * In particular, if there are any non-zero coefficients among
1276 * the non-parameter variables, then we take the last of these
1277 * variables. Eliminating this variable in terms of the other
1278 * variables and/or parameters does not influence the property
1279 * that all column in the initial tableau are lexicographically
1280 * positive. The row corresponding to the eliminated variable
1281 * will only have non-zero entries below the diagonal of the
1282 * initial tableau. That is, we transform
1288 * If there is no such non-parameter variable, then we are dealing with
1289 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1290 * for elimination. This will ensure that the eliminated parameter
1291 * always has an integer value whenever all the other parameters are integral.
1292 * If there is no such parameter then we return -1.
1294 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1296 unsigned off
= 2 + tab
->M
;
1299 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1301 if (tab
->var
[i
].is_row
)
1303 col
= tab
->var
[i
].index
;
1304 if (col
<= tab
->n_dead
)
1306 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1309 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1310 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1312 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1318 /* Add an equality that is known to be valid to the tableau.
1319 * We first check if we can eliminate a variable or a parameter.
1320 * If not, we add the equality as two inequalities.
1321 * In this case, the equality was a pure parameter equality and there
1322 * is no need to resolve any constraint violations.
1324 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1331 r
= isl_tab_add_row(tab
, eq
);
1335 r
= tab
->con
[r
].index
;
1336 i
= last_var_col_or_int_par_col(tab
, r
);
1338 tab
->con
[r
].is_nonneg
= 1;
1339 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1341 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1342 r
= isl_tab_add_row(tab
, eq
);
1345 tab
->con
[r
].is_nonneg
= 1;
1346 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1349 if (isl_tab_pivot(tab
, r
, i
) < 0)
1351 if (isl_tab_kill_col(tab
, i
) < 0)
1362 /* Check if the given row is a pure constant.
1364 static int is_constant(struct isl_tab
*tab
, int row
)
1366 unsigned off
= 2 + tab
->M
;
1368 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1369 tab
->n_col
- tab
->n_dead
) == -1;
1372 /* Add an equality that may or may not be valid to the tableau.
1373 * If the resulting row is a pure constant, then it must be zero.
1374 * Otherwise, the resulting tableau is empty.
1376 * If the row is not a pure constant, then we add two inequalities,
1377 * each time checking that they can be satisfied.
1378 * In the end we try to use one of the two constraints to eliminate
1381 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1382 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1386 struct isl_tab_undo
*snap
;
1390 snap
= isl_tab_snap(tab
);
1391 r1
= isl_tab_add_row(tab
, eq
);
1394 tab
->con
[r1
].is_nonneg
= 1;
1395 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1398 row
= tab
->con
[r1
].index
;
1399 if (is_constant(tab
, row
)) {
1400 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1401 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1402 if (isl_tab_mark_empty(tab
) < 0)
1406 if (isl_tab_rollback(tab
, snap
) < 0)
1411 if (restore_lexmin(tab
) < 0)
1416 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1418 r2
= isl_tab_add_row(tab
, eq
);
1421 tab
->con
[r2
].is_nonneg
= 1;
1422 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1425 if (restore_lexmin(tab
) < 0)
1430 if (!tab
->con
[r1
].is_row
) {
1431 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1433 } else if (!tab
->con
[r2
].is_row
) {
1434 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1439 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1440 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1442 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1443 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1444 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1445 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1454 /* Add an inequality to the tableau, resolving violations using
1457 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1464 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1465 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1470 r
= isl_tab_add_row(tab
, ineq
);
1473 tab
->con
[r
].is_nonneg
= 1;
1474 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1476 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1477 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1482 if (restore_lexmin(tab
) < 0)
1484 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1485 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1486 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1494 /* Check if the coefficients of the parameters are all integral.
1496 static int integer_parameter(struct isl_tab
*tab
, int row
)
1500 unsigned off
= 2 + tab
->M
;
1502 for (i
= 0; i
< tab
->n_param
; ++i
) {
1503 /* Eliminated parameter */
1504 if (tab
->var
[i
].is_row
)
1506 col
= tab
->var
[i
].index
;
1507 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1508 tab
->mat
->row
[row
][0]))
1511 for (i
= 0; i
< tab
->n_div
; ++i
) {
1512 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1514 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1515 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1516 tab
->mat
->row
[row
][0]))
1522 /* Check if the coefficients of the non-parameter variables are all integral.
1524 static int integer_variable(struct isl_tab
*tab
, int row
)
1527 unsigned off
= 2 + tab
->M
;
1529 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1530 if (tab
->col_var
[i
] >= 0 &&
1531 (tab
->col_var
[i
] < tab
->n_param
||
1532 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1534 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1535 tab
->mat
->row
[row
][0]))
1541 /* Check if the constant term is integral.
1543 static int integer_constant(struct isl_tab
*tab
, int row
)
1545 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1546 tab
->mat
->row
[row
][0]);
1549 #define I_CST 1 << 0
1550 #define I_PAR 1 << 1
1551 #define I_VAR 1 << 2
1553 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1554 * that is non-integer and therefore requires a cut and return
1555 * the index of the variable.
1556 * For parametric tableaus, there are three parts in a row,
1557 * the constant, the coefficients of the parameters and the rest.
1558 * For each part, we check whether the coefficients in that part
1559 * are all integral and if so, set the corresponding flag in *f.
1560 * If the constant and the parameter part are integral, then the
1561 * current sample value is integral and no cut is required
1562 * (irrespective of whether the variable part is integral).
1564 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1566 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1568 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1571 if (!tab
->var
[var
].is_row
)
1573 row
= tab
->var
[var
].index
;
1574 if (integer_constant(tab
, row
))
1575 ISL_FL_SET(flags
, I_CST
);
1576 if (integer_parameter(tab
, row
))
1577 ISL_FL_SET(flags
, I_PAR
);
1578 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1580 if (integer_variable(tab
, row
))
1581 ISL_FL_SET(flags
, I_VAR
);
1588 /* Check for first (non-parameter) variable that is non-integer and
1589 * therefore requires a cut and return the corresponding row.
1590 * For parametric tableaus, there are three parts in a row,
1591 * the constant, the coefficients of the parameters and the rest.
1592 * For each part, we check whether the coefficients in that part
1593 * are all integral and if so, set the corresponding flag in *f.
1594 * If the constant and the parameter part are integral, then the
1595 * current sample value is integral and no cut is required
1596 * (irrespective of whether the variable part is integral).
1598 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1600 int var
= next_non_integer_var(tab
, -1, f
);
1602 return var
< 0 ? -1 : tab
->var
[var
].index
;
1605 /* Add a (non-parametric) cut to cut away the non-integral sample
1606 * value of the given row.
1608 * If the row is given by
1610 * m r = f + \sum_i a_i y_i
1614 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1616 * The big parameter, if any, is ignored, since it is assumed to be big
1617 * enough to be divisible by any integer.
1618 * If the tableau is actually a parametric tableau, then this function
1619 * is only called when all coefficients of the parameters are integral.
1620 * The cut therefore has zero coefficients for the parameters.
1622 * The current value is known to be negative, so row_sign, if it
1623 * exists, is set accordingly.
1625 * Return the row of the cut or -1.
1627 static int add_cut(struct isl_tab
*tab
, int row
)
1632 unsigned off
= 2 + tab
->M
;
1634 if (isl_tab_extend_cons(tab
, 1) < 0)
1636 r
= isl_tab_allocate_con(tab
);
1640 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1641 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1642 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1643 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1644 isl_int_neg(r_row
[1], r_row
[1]);
1646 isl_int_set_si(r_row
[2], 0);
1647 for (i
= 0; i
< tab
->n_col
; ++i
)
1648 isl_int_fdiv_r(r_row
[off
+ i
],
1649 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1651 tab
->con
[r
].is_nonneg
= 1;
1652 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1655 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1657 return tab
->con
[r
].index
;
1663 /* Given a non-parametric tableau, add cuts until an integer
1664 * sample point is obtained or until the tableau is determined
1665 * to be integer infeasible.
1666 * As long as there is any non-integer value in the sample point,
1667 * we add appropriate cuts, if possible, for each of these
1668 * non-integer values and then resolve the violated
1669 * cut constraints using restore_lexmin.
1670 * If one of the corresponding rows is equal to an integral
1671 * combination of variables/constraints plus a non-integral constant,
1672 * then there is no way to obtain an integer point and we return
1673 * a tableau that is marked empty.
1674 * The parameter cutting_strategy controls the strategy used when adding cuts
1675 * to remove non-integer points. CUT_ALL adds all possible cuts
1676 * before continuing the search. CUT_ONE adds only one cut at a time.
1678 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
,
1679 int cutting_strategy
)
1690 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1692 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1693 if (isl_tab_mark_empty(tab
) < 0)
1697 row
= tab
->var
[var
].index
;
1698 row
= add_cut(tab
, row
);
1701 if (cutting_strategy
== CUT_ONE
)
1703 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1704 if (restore_lexmin(tab
) < 0)
1715 /* Check whether all the currently active samples also satisfy the inequality
1716 * "ineq" (treated as an equality if eq is set).
1717 * Remove those samples that do not.
1719 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1727 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1728 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1729 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1732 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1734 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1735 1 + tab
->n_var
, &v
);
1736 sgn
= isl_int_sgn(v
);
1737 if (eq
? (sgn
== 0) : (sgn
>= 0))
1739 tab
= isl_tab_drop_sample(tab
, i
);
1751 /* Check whether the sample value of the tableau is finite,
1752 * i.e., either the tableau does not use a big parameter, or
1753 * all values of the variables are equal to the big parameter plus
1754 * some constant. This constant is the actual sample value.
1756 static int sample_is_finite(struct isl_tab
*tab
)
1763 for (i
= 0; i
< tab
->n_var
; ++i
) {
1765 if (!tab
->var
[i
].is_row
)
1767 row
= tab
->var
[i
].index
;
1768 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1774 /* Check if the context tableau of sol has any integer points.
1775 * Leave tab in empty state if no integer point can be found.
1776 * If an integer point can be found and if moreover it is finite,
1777 * then it is added to the list of sample values.
1779 * This function is only called when none of the currently active sample
1780 * values satisfies the most recently added constraint.
1782 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1784 struct isl_tab_undo
*snap
;
1789 snap
= isl_tab_snap(tab
);
1790 if (isl_tab_push_basis(tab
) < 0)
1793 tab
= cut_to_integer_lexmin(tab
, CUT_ALL
);
1797 if (!tab
->empty
&& sample_is_finite(tab
)) {
1798 struct isl_vec
*sample
;
1800 sample
= isl_tab_get_sample_value(tab
);
1802 tab
= isl_tab_add_sample(tab
, sample
);
1805 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1814 /* Check if any of the currently active sample values satisfies
1815 * the inequality "ineq" (an equality if eq is set).
1817 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1825 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1826 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1827 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1830 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1832 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1833 1 + tab
->n_var
, &v
);
1834 sgn
= isl_int_sgn(v
);
1835 if (eq
? (sgn
== 0) : (sgn
>= 0))
1840 return i
< tab
->n_sample
;
1843 /* Add a div specified by "div" to the tableau "tab" and return
1844 * 1 if the div is obviously non-negative.
1846 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1847 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1851 struct isl_mat
*samples
;
1854 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1857 nonneg
= tab
->var
[r
].is_nonneg
;
1858 tab
->var
[r
].frozen
= 1;
1860 samples
= isl_mat_extend(tab
->samples
,
1861 tab
->n_sample
, 1 + tab
->n_var
);
1862 tab
->samples
= samples
;
1865 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1866 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1867 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1868 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1869 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1875 /* Add a div specified by "div" to both the main tableau and
1876 * the context tableau. In case of the main tableau, we only
1877 * need to add an extra div. In the context tableau, we also
1878 * need to express the meaning of the div.
1879 * Return the index of the div or -1 if anything went wrong.
1881 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1882 struct isl_vec
*div
)
1887 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1890 if (!context
->op
->is_ok(context
))
1893 if (isl_tab_extend_vars(tab
, 1) < 0)
1895 r
= isl_tab_allocate_var(tab
);
1899 tab
->var
[r
].is_nonneg
= 1;
1900 tab
->var
[r
].frozen
= 1;
1903 return tab
->n_div
- 1;
1905 context
->op
->invalidate(context
);
1909 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1912 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1914 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1915 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1917 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1924 /* Return the index of a div that corresponds to "div".
1925 * We first check if we already have such a div and if not, we create one.
1927 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1928 struct isl_vec
*div
)
1931 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1936 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1940 return add_div(tab
, context
, div
);
1943 /* Add a parametric cut to cut away the non-integral sample value
1945 * Let a_i be the coefficients of the constant term and the parameters
1946 * and let b_i be the coefficients of the variables or constraints
1947 * in basis of the tableau.
1948 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1950 * The cut is expressed as
1952 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1954 * If q did not already exist in the context tableau, then it is added first.
1955 * If q is in a column of the main tableau then the "+ q" can be accomplished
1956 * by setting the corresponding entry to the denominator of the constraint.
1957 * If q happens to be in a row of the main tableau, then the corresponding
1958 * row needs to be added instead (taking care of the denominators).
1959 * Note that this is very unlikely, but perhaps not entirely impossible.
1961 * The current value of the cut is known to be negative (or at least
1962 * non-positive), so row_sign is set accordingly.
1964 * Return the row of the cut or -1.
1966 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1967 struct isl_context
*context
)
1969 struct isl_vec
*div
;
1976 unsigned off
= 2 + tab
->M
;
1981 div
= get_row_parameter_div(tab
, row
);
1986 d
= context
->op
->get_div(context
, tab
, div
);
1991 if (isl_tab_extend_cons(tab
, 1) < 0)
1993 r
= isl_tab_allocate_con(tab
);
1997 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1998 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1999 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
2000 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
2001 isl_int_neg(r_row
[1], r_row
[1]);
2003 isl_int_set_si(r_row
[2], 0);
2004 for (i
= 0; i
< tab
->n_param
; ++i
) {
2005 if (tab
->var
[i
].is_row
)
2007 col
= tab
->var
[i
].index
;
2008 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2009 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2010 tab
->mat
->row
[row
][0]);
2011 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2013 for (i
= 0; i
< tab
->n_div
; ++i
) {
2014 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
2016 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
2017 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2018 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2019 tab
->mat
->row
[row
][0]);
2020 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2022 for (i
= 0; i
< tab
->n_col
; ++i
) {
2023 if (tab
->col_var
[i
] >= 0 &&
2024 (tab
->col_var
[i
] < tab
->n_param
||
2025 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
2027 isl_int_fdiv_r(r_row
[off
+ i
],
2028 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
2030 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
2032 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2034 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
2035 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
2036 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
2037 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
2038 r_row
[0], tab
->mat
->row
[d_row
] + 1,
2039 off
- 1 + tab
->n_col
);
2040 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
2043 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2044 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
2047 tab
->con
[r
].is_nonneg
= 1;
2048 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2051 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
2053 row
= tab
->con
[r
].index
;
2055 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
2061 /* Construct a tableau for bmap that can be used for computing
2062 * the lexicographic minimum (or maximum) of bmap.
2063 * If not NULL, then dom is the domain where the minimum
2064 * should be computed. In this case, we set up a parametric
2065 * tableau with row signs (initialized to "unknown").
2066 * If M is set, then the tableau will use a big parameter.
2067 * If max is set, then a maximum should be computed instead of a minimum.
2068 * This means that for each variable x, the tableau will contain the variable
2069 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2070 * of the variables in all constraints are negated prior to adding them
2073 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2074 struct isl_basic_set
*dom
, unsigned M
, int max
)
2077 struct isl_tab
*tab
;
2079 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2080 isl_basic_map_total_dim(bmap
), M
);
2084 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2086 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2087 tab
->n_div
= dom
->n_div
;
2088 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2089 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2093 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2094 if (isl_tab_mark_empty(tab
) < 0)
2099 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2100 tab
->var
[i
].is_nonneg
= 1;
2101 tab
->var
[i
].frozen
= 1;
2103 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2105 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2106 bmap
->eq
[i
] + 1 + tab
->n_param
,
2107 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2108 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2110 isl_seq_neg(bmap
->eq
[i
] + 1 + tab
->n_param
,
2111 bmap
->eq
[i
] + 1 + tab
->n_param
,
2112 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2113 if (!tab
|| tab
->empty
)
2116 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2118 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2120 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2121 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2122 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2123 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2125 isl_seq_neg(bmap
->ineq
[i
] + 1 + tab
->n_param
,
2126 bmap
->ineq
[i
] + 1 + tab
->n_param
,
2127 tab
->n_var
- tab
->n_param
- tab
->n_div
);
2128 if (!tab
|| tab
->empty
)
2137 /* Given a main tableau where more than one row requires a split,
2138 * determine and return the "best" row to split on.
2140 * Given two rows in the main tableau, if the inequality corresponding
2141 * to the first row is redundant with respect to that of the second row
2142 * in the current tableau, then it is better to split on the second row,
2143 * since in the positive part, both row will be positive.
2144 * (In the negative part a pivot will have to be performed and just about
2145 * anything can happen to the sign of the other row.)
2147 * As a simple heuristic, we therefore select the row that makes the most
2148 * of the other rows redundant.
2150 * Perhaps it would also be useful to look at the number of constraints
2151 * that conflict with any given constraint.
2153 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2155 struct isl_tab_undo
*snap
;
2161 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2164 snap
= isl_tab_snap(context_tab
);
2166 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2167 struct isl_tab_undo
*snap2
;
2168 struct isl_vec
*ineq
= NULL
;
2172 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2174 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2177 ineq
= get_row_parameter_ineq(tab
, split
);
2180 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2185 snap2
= isl_tab_snap(context_tab
);
2187 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2188 struct isl_tab_var
*var
;
2192 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2194 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2197 ineq
= get_row_parameter_ineq(tab
, row
);
2200 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2204 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2205 if (!context_tab
->empty
&&
2206 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2208 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2211 if (best
== -1 || r
> best_r
) {
2215 if (isl_tab_rollback(context_tab
, snap
) < 0)
2222 static struct isl_basic_set
*context_lex_peek_basic_set(
2223 struct isl_context
*context
)
2225 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2228 return isl_tab_peek_bset(clex
->tab
);
2231 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2233 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2237 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2238 int check
, int update
)
2240 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2241 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2243 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2246 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2250 clex
->tab
= check_integer_feasible(clex
->tab
);
2253 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2256 isl_tab_free(clex
->tab
);
2260 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2261 int check
, int update
)
2263 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2264 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2266 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2268 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2272 clex
->tab
= check_integer_feasible(clex
->tab
);
2275 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2278 isl_tab_free(clex
->tab
);
2282 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2284 struct isl_context
*context
= (struct isl_context
*)user
;
2285 context_lex_add_ineq(context
, ineq
, 0, 0);
2286 return context
->op
->is_ok(context
) ? 0 : -1;
2289 /* Check which signs can be obtained by "ineq" on all the currently
2290 * active sample values. See row_sign for more information.
2292 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2298 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2300 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2301 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2302 return isl_tab_row_unknown
);
2305 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2306 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2307 1 + tab
->n_var
, &tmp
);
2308 sgn
= isl_int_sgn(tmp
);
2309 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2310 if (res
== isl_tab_row_unknown
)
2311 res
= isl_tab_row_pos
;
2312 if (res
== isl_tab_row_neg
)
2313 res
= isl_tab_row_any
;
2316 if (res
== isl_tab_row_unknown
)
2317 res
= isl_tab_row_neg
;
2318 if (res
== isl_tab_row_pos
)
2319 res
= isl_tab_row_any
;
2321 if (res
== isl_tab_row_any
)
2329 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2330 isl_int
*ineq
, int strict
)
2332 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2333 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2336 /* Check whether "ineq" can be added to the tableau without rendering
2339 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2341 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2342 struct isl_tab_undo
*snap
;
2348 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2351 snap
= isl_tab_snap(clex
->tab
);
2352 if (isl_tab_push_basis(clex
->tab
) < 0)
2354 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2355 clex
->tab
= check_integer_feasible(clex
->tab
);
2358 feasible
= !clex
->tab
->empty
;
2359 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2365 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2366 struct isl_vec
*div
)
2368 return get_div(tab
, context
, div
);
2371 /* Add a div specified by "div" to the context tableau and return
2372 * 1 if the div is obviously non-negative.
2373 * context_tab_add_div will always return 1, because all variables
2374 * in a isl_context_lex tableau are non-negative.
2375 * However, if we are using a big parameter in the context, then this only
2376 * reflects the non-negativity of the variable used to _encode_ the
2377 * div, i.e., div' = M + div, so we can't draw any conclusions.
2379 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2381 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2383 nonneg
= context_tab_add_div(clex
->tab
, div
,
2384 context_lex_add_ineq_wrap
, context
);
2392 static int context_lex_detect_equalities(struct isl_context
*context
,
2393 struct isl_tab
*tab
)
2398 static int context_lex_best_split(struct isl_context
*context
,
2399 struct isl_tab
*tab
)
2401 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2402 struct isl_tab_undo
*snap
;
2405 snap
= isl_tab_snap(clex
->tab
);
2406 if (isl_tab_push_basis(clex
->tab
) < 0)
2408 r
= best_split(tab
, clex
->tab
);
2410 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2416 static int context_lex_is_empty(struct isl_context
*context
)
2418 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2421 return clex
->tab
->empty
;
2424 static void *context_lex_save(struct isl_context
*context
)
2426 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2427 struct isl_tab_undo
*snap
;
2429 snap
= isl_tab_snap(clex
->tab
);
2430 if (isl_tab_push_basis(clex
->tab
) < 0)
2432 if (isl_tab_save_samples(clex
->tab
) < 0)
2438 static void context_lex_restore(struct isl_context
*context
, void *save
)
2440 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2441 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2442 isl_tab_free(clex
->tab
);
2447 static void context_lex_discard(void *save
)
2451 static int context_lex_is_ok(struct isl_context
*context
)
2453 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2457 /* For each variable in the context tableau, check if the variable can
2458 * only attain non-negative values. If so, mark the parameter as non-negative
2459 * in the main tableau. This allows for a more direct identification of some
2460 * cases of violated constraints.
2462 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2463 struct isl_tab
*context_tab
)
2466 struct isl_tab_undo
*snap
;
2467 struct isl_vec
*ineq
= NULL
;
2468 struct isl_tab_var
*var
;
2471 if (context_tab
->n_var
== 0)
2474 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2478 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2481 snap
= isl_tab_snap(context_tab
);
2484 isl_seq_clr(ineq
->el
, ineq
->size
);
2485 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2486 isl_int_set_si(ineq
->el
[1 + i
], 1);
2487 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2489 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2490 if (!context_tab
->empty
&&
2491 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2493 if (i
>= tab
->n_param
)
2494 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2495 tab
->var
[j
].is_nonneg
= 1;
2498 isl_int_set_si(ineq
->el
[1 + i
], 0);
2499 if (isl_tab_rollback(context_tab
, snap
) < 0)
2503 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2504 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2516 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2517 struct isl_context
*context
, struct isl_tab
*tab
)
2519 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2520 struct isl_tab_undo
*snap
;
2525 snap
= isl_tab_snap(clex
->tab
);
2526 if (isl_tab_push_basis(clex
->tab
) < 0)
2529 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2531 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2540 static void context_lex_invalidate(struct isl_context
*context
)
2542 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2543 isl_tab_free(clex
->tab
);
2547 static void context_lex_free(struct isl_context
*context
)
2549 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2550 isl_tab_free(clex
->tab
);
2554 struct isl_context_op isl_context_lex_op
= {
2555 context_lex_detect_nonnegative_parameters
,
2556 context_lex_peek_basic_set
,
2557 context_lex_peek_tab
,
2559 context_lex_add_ineq
,
2560 context_lex_ineq_sign
,
2561 context_lex_test_ineq
,
2562 context_lex_get_div
,
2563 context_lex_add_div
,
2564 context_lex_detect_equalities
,
2565 context_lex_best_split
,
2566 context_lex_is_empty
,
2569 context_lex_restore
,
2570 context_lex_discard
,
2571 context_lex_invalidate
,
2575 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2577 struct isl_tab
*tab
;
2581 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2584 if (isl_tab_track_bset(tab
, bset
) < 0)
2586 tab
= isl_tab_init_samples(tab
);
2589 isl_basic_set_free(bset
);
2593 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2595 struct isl_context_lex
*clex
;
2600 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2604 clex
->context
.op
= &isl_context_lex_op
;
2606 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2607 if (restore_lexmin(clex
->tab
) < 0)
2609 clex
->tab
= check_integer_feasible(clex
->tab
);
2613 return &clex
->context
;
2615 clex
->context
.op
->free(&clex
->context
);
2619 /* Representation of the context when using generalized basis reduction.
2621 * "shifted" contains the offsets of the unit hypercubes that lie inside the
2622 * context. Any rational point in "shifted" can therefore be rounded
2623 * up to an integer point in the context.
2624 * If the context is constrained by any equality, then "shifted" is not used
2625 * as it would be empty.
2627 struct isl_context_gbr
{
2628 struct isl_context context
;
2629 struct isl_tab
*tab
;
2630 struct isl_tab
*shifted
;
2631 struct isl_tab
*cone
;
2634 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2635 struct isl_context
*context
, struct isl_tab
*tab
)
2637 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2640 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2643 static struct isl_basic_set
*context_gbr_peek_basic_set(
2644 struct isl_context
*context
)
2646 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2649 return isl_tab_peek_bset(cgbr
->tab
);
2652 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2654 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2658 /* Initialize the "shifted" tableau of the context, which
2659 * contains the constraints of the original tableau shifted
2660 * by the sum of all negative coefficients. This ensures
2661 * that any rational point in the shifted tableau can
2662 * be rounded up to yield an integer point in the original tableau.
2664 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2667 struct isl_vec
*cst
;
2668 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2669 unsigned dim
= isl_basic_set_total_dim(bset
);
2671 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2675 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2676 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2677 for (j
= 0; j
< dim
; ++j
) {
2678 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2680 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2681 bset
->ineq
[i
][1 + j
]);
2685 cgbr
->shifted
= isl_tab_from_basic_set(bset
, 0);
2687 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2688 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2693 /* Check if the shifted tableau is non-empty, and if so
2694 * use the sample point to construct an integer point
2695 * of the context tableau.
2697 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2699 struct isl_vec
*sample
;
2702 gbr_init_shifted(cgbr
);
2705 if (cgbr
->shifted
->empty
)
2706 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2708 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2709 sample
= isl_vec_ceil(sample
);
2714 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2721 for (i
= 0; i
< bset
->n_eq
; ++i
)
2722 isl_int_set_si(bset
->eq
[i
][0], 0);
2724 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2725 isl_int_set_si(bset
->ineq
[i
][0], 0);
2730 static int use_shifted(struct isl_context_gbr
*cgbr
)
2734 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2737 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2739 struct isl_basic_set
*bset
;
2740 struct isl_basic_set
*cone
;
2742 if (isl_tab_sample_is_integer(cgbr
->tab
))
2743 return isl_tab_get_sample_value(cgbr
->tab
);
2745 if (use_shifted(cgbr
)) {
2746 struct isl_vec
*sample
;
2748 sample
= gbr_get_shifted_sample(cgbr
);
2749 if (!sample
|| sample
->size
> 0)
2752 isl_vec_free(sample
);
2756 bset
= isl_tab_peek_bset(cgbr
->tab
);
2757 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2760 if (isl_tab_track_bset(cgbr
->cone
,
2761 isl_basic_set_copy(bset
)) < 0)
2764 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2767 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2768 struct isl_vec
*sample
;
2769 struct isl_tab_undo
*snap
;
2771 if (cgbr
->tab
->basis
) {
2772 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2773 isl_mat_free(cgbr
->tab
->basis
);
2774 cgbr
->tab
->basis
= NULL
;
2776 cgbr
->tab
->n_zero
= 0;
2777 cgbr
->tab
->n_unbounded
= 0;
2780 snap
= isl_tab_snap(cgbr
->tab
);
2782 sample
= isl_tab_sample(cgbr
->tab
);
2784 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2785 isl_vec_free(sample
);
2792 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2793 cone
= drop_constant_terms(cone
);
2794 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2795 cone
= isl_basic_set_underlying_set(cone
);
2796 cone
= isl_basic_set_gauss(cone
, NULL
);
2798 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2799 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2800 bset
= isl_basic_set_underlying_set(bset
);
2801 bset
= isl_basic_set_gauss(bset
, NULL
);
2803 return isl_basic_set_sample_with_cone(bset
, cone
);
2806 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2808 struct isl_vec
*sample
;
2813 if (cgbr
->tab
->empty
)
2816 sample
= gbr_get_sample(cgbr
);
2820 if (sample
->size
== 0) {
2821 isl_vec_free(sample
);
2822 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2827 cgbr
->tab
= isl_tab_add_sample(cgbr
->tab
, sample
);
2831 isl_tab_free(cgbr
->tab
);
2835 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2840 if (isl_tab_extend_cons(tab
, 2) < 0)
2843 if (isl_tab_add_eq(tab
, eq
) < 0)
2852 /* Add the equality described by "eq" to the context.
2853 * If "check" is set, then we check if the context is empty after
2854 * adding the equality.
2855 * If "update" is set, then we check if the samples are still valid.
2857 * We do not explicitly add shifted copies of the equality to
2858 * cgbr->shifted since they would conflict with each other.
2859 * Instead, we directly mark cgbr->shifted empty.
2861 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2862 int check
, int update
)
2864 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2866 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2868 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2869 if (isl_tab_mark_empty(cgbr
->shifted
) < 0)
2873 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2874 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2876 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2881 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2885 check_gbr_integer_feasible(cgbr
);
2888 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2891 isl_tab_free(cgbr
->tab
);
2895 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2900 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2903 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2906 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2909 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2911 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2914 for (i
= 0; i
< dim
; ++i
) {
2915 if (!isl_int_is_neg(ineq
[1 + i
]))
2917 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2920 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2923 for (i
= 0; i
< dim
; ++i
) {
2924 if (!isl_int_is_neg(ineq
[1 + i
]))
2926 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2930 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2931 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2933 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2939 isl_tab_free(cgbr
->tab
);
2943 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2944 int check
, int update
)
2946 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2948 add_gbr_ineq(cgbr
, ineq
);
2953 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2957 check_gbr_integer_feasible(cgbr
);
2960 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2963 isl_tab_free(cgbr
->tab
);
2967 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2969 struct isl_context
*context
= (struct isl_context
*)user
;
2970 context_gbr_add_ineq(context
, ineq
, 0, 0);
2971 return context
->op
->is_ok(context
) ? 0 : -1;
2974 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2975 isl_int
*ineq
, int strict
)
2977 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2978 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2981 /* Check whether "ineq" can be added to the tableau without rendering
2984 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2986 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2987 struct isl_tab_undo
*snap
;
2988 struct isl_tab_undo
*shifted_snap
= NULL
;
2989 struct isl_tab_undo
*cone_snap
= NULL
;
2995 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2998 snap
= isl_tab_snap(cgbr
->tab
);
3000 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3002 cone_snap
= isl_tab_snap(cgbr
->cone
);
3003 add_gbr_ineq(cgbr
, ineq
);
3004 check_gbr_integer_feasible(cgbr
);
3007 feasible
= !cgbr
->tab
->empty
;
3008 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3011 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
3013 } else if (cgbr
->shifted
) {
3014 isl_tab_free(cgbr
->shifted
);
3015 cgbr
->shifted
= NULL
;
3018 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
3020 } else if (cgbr
->cone
) {
3021 isl_tab_free(cgbr
->cone
);
3028 /* Return the column of the last of the variables associated to
3029 * a column that has a non-zero coefficient.
3030 * This function is called in a context where only coefficients
3031 * of parameters or divs can be non-zero.
3033 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
3038 if (tab
->n_var
== 0)
3041 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
3042 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
3044 if (tab
->var
[i
].is_row
)
3046 col
= tab
->var
[i
].index
;
3047 if (!isl_int_is_zero(p
[col
]))
3054 /* Look through all the recently added equalities in the context
3055 * to see if we can propagate any of them to the main tableau.
3057 * The newly added equalities in the context are encoded as pairs
3058 * of inequalities starting at inequality "first".
3060 * We tentatively add each of these equalities to the main tableau
3061 * and if this happens to result in a row with a final coefficient
3062 * that is one or negative one, we use it to kill a column
3063 * in the main tableau. Otherwise, we discard the tentatively
3066 static void propagate_equalities(struct isl_context_gbr
*cgbr
,
3067 struct isl_tab
*tab
, unsigned first
)
3070 struct isl_vec
*eq
= NULL
;
3072 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
3076 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
3079 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
3080 tab
->n_var
- tab
->n_param
- tab
->n_div
);
3081 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
3084 struct isl_tab_undo
*snap
;
3085 snap
= isl_tab_snap(tab
);
3087 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
3088 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
3089 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3092 r
= isl_tab_add_row(tab
, eq
->el
);
3095 r
= tab
->con
[r
].index
;
3096 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3097 if (j
< 0 || j
< tab
->n_dead
||
3098 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3099 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3100 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3101 if (isl_tab_rollback(tab
, snap
) < 0)
3105 if (isl_tab_pivot(tab
, r
, j
) < 0)
3107 if (isl_tab_kill_col(tab
, j
) < 0)
3110 if (restore_lexmin(tab
) < 0)
3119 isl_tab_free(cgbr
->tab
);
3123 static int context_gbr_detect_equalities(struct isl_context
*context
,
3124 struct isl_tab
*tab
)
3126 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3127 struct isl_ctx
*ctx
;
3130 ctx
= cgbr
->tab
->mat
->ctx
;
3133 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3134 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3137 if (isl_tab_track_bset(cgbr
->cone
,
3138 isl_basic_set_copy(bset
)) < 0)
3141 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3144 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3145 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3148 if (cgbr
->tab
->bmap
->n_ineq
> n_ineq
)
3149 propagate_equalities(cgbr
, tab
, n_ineq
);
3153 isl_tab_free(cgbr
->tab
);
3158 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3159 struct isl_vec
*div
)
3161 return get_div(tab
, context
, div
);
3164 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3166 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3170 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3172 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3174 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3177 cgbr
->cone
->bmap
= isl_basic_map_extend_space(cgbr
->cone
->bmap
,
3178 isl_basic_map_get_space(cgbr
->cone
->bmap
), 1, 0, 2);
3179 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3182 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3183 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3186 return context_tab_add_div(cgbr
->tab
, div
,
3187 context_gbr_add_ineq_wrap
, context
);
3190 static int context_gbr_best_split(struct isl_context
*context
,
3191 struct isl_tab
*tab
)
3193 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3194 struct isl_tab_undo
*snap
;
3197 snap
= isl_tab_snap(cgbr
->tab
);
3198 r
= best_split(tab
, cgbr
->tab
);
3200 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3206 static int context_gbr_is_empty(struct isl_context
*context
)
3208 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3211 return cgbr
->tab
->empty
;
3214 struct isl_gbr_tab_undo
{
3215 struct isl_tab_undo
*tab_snap
;
3216 struct isl_tab_undo
*shifted_snap
;
3217 struct isl_tab_undo
*cone_snap
;
3220 static void *context_gbr_save(struct isl_context
*context
)
3222 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3223 struct isl_gbr_tab_undo
*snap
;
3228 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3232 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3233 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3237 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3239 snap
->shifted_snap
= NULL
;
3242 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3244 snap
->cone_snap
= NULL
;
3252 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3254 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3255 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3258 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0) {
3259 isl_tab_free(cgbr
->tab
);
3263 if (snap
->shifted_snap
) {
3264 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3266 } else if (cgbr
->shifted
) {
3267 isl_tab_free(cgbr
->shifted
);
3268 cgbr
->shifted
= NULL
;
3271 if (snap
->cone_snap
) {
3272 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3274 } else if (cgbr
->cone
) {
3275 isl_tab_free(cgbr
->cone
);
3284 isl_tab_free(cgbr
->tab
);
3288 static void context_gbr_discard(void *save
)
3290 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3294 static int context_gbr_is_ok(struct isl_context
*context
)
3296 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3300 static void context_gbr_invalidate(struct isl_context
*context
)
3302 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3303 isl_tab_free(cgbr
->tab
);
3307 static void context_gbr_free(struct isl_context
*context
)
3309 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3310 isl_tab_free(cgbr
->tab
);
3311 isl_tab_free(cgbr
->shifted
);
3312 isl_tab_free(cgbr
->cone
);
3316 struct isl_context_op isl_context_gbr_op
= {
3317 context_gbr_detect_nonnegative_parameters
,
3318 context_gbr_peek_basic_set
,
3319 context_gbr_peek_tab
,
3321 context_gbr_add_ineq
,
3322 context_gbr_ineq_sign
,
3323 context_gbr_test_ineq
,
3324 context_gbr_get_div
,
3325 context_gbr_add_div
,
3326 context_gbr_detect_equalities
,
3327 context_gbr_best_split
,
3328 context_gbr_is_empty
,
3331 context_gbr_restore
,
3332 context_gbr_discard
,
3333 context_gbr_invalidate
,
3337 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3339 struct isl_context_gbr
*cgbr
;
3344 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3348 cgbr
->context
.op
= &isl_context_gbr_op
;
3350 cgbr
->shifted
= NULL
;
3352 cgbr
->tab
= isl_tab_from_basic_set(dom
, 1);
3353 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3356 check_gbr_integer_feasible(cgbr
);
3358 return &cgbr
->context
;
3360 cgbr
->context
.op
->free(&cgbr
->context
);
3364 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3369 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3370 return isl_context_lex_alloc(dom
);
3372 return isl_context_gbr_alloc(dom
);
3375 /* Construct an isl_sol_map structure for accumulating the solution.
3376 * If track_empty is set, then we also keep track of the parts
3377 * of the context where there is no solution.
3378 * If max is set, then we are solving a maximization, rather than
3379 * a minimization problem, which means that the variables in the
3380 * tableau have value "M - x" rather than "M + x".
3382 static struct isl_sol
*sol_map_init(struct isl_basic_map
*bmap
,
3383 struct isl_basic_set
*dom
, int track_empty
, int max
)
3385 struct isl_sol_map
*sol_map
= NULL
;
3390 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3394 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3395 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3396 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3397 sol_map
->sol
.max
= max
;
3398 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3399 sol_map
->sol
.add
= &sol_map_add_wrap
;
3400 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3401 sol_map
->sol
.free
= &sol_map_free_wrap
;
3402 sol_map
->map
= isl_map_alloc_space(isl_basic_map_get_space(bmap
), 1,
3407 sol_map
->sol
.context
= isl_context_alloc(dom
);
3408 if (!sol_map
->sol
.context
)
3412 sol_map
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
3413 1, ISL_SET_DISJOINT
);
3414 if (!sol_map
->empty
)
3418 isl_basic_set_free(dom
);
3419 return &sol_map
->sol
;
3421 isl_basic_set_free(dom
);
3422 sol_map_free(sol_map
);
3426 /* Check whether all coefficients of (non-parameter) variables
3427 * are non-positive, meaning that no pivots can be performed on the row.
3429 static int is_critical(struct isl_tab
*tab
, int row
)
3432 unsigned off
= 2 + tab
->M
;
3434 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3435 if (tab
->col_var
[j
] >= 0 &&
3436 (tab
->col_var
[j
] < tab
->n_param
||
3437 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3440 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3447 /* Check whether the inequality represented by vec is strict over the integers,
3448 * i.e., there are no integer values satisfying the constraint with
3449 * equality. This happens if the gcd of the coefficients is not a divisor
3450 * of the constant term. If so, scale the constraint down by the gcd
3451 * of the coefficients.
3453 static int is_strict(struct isl_vec
*vec
)
3459 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3460 if (!isl_int_is_one(gcd
)) {
3461 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3462 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3463 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3470 /* Determine the sign of the given row of the main tableau.
3471 * The result is one of
3472 * isl_tab_row_pos: always non-negative; no pivot needed
3473 * isl_tab_row_neg: always non-positive; pivot
3474 * isl_tab_row_any: can be both positive and negative; split
3476 * We first handle some simple cases
3477 * - the row sign may be known already
3478 * - the row may be obviously non-negative
3479 * - the parametric constant may be equal to that of another row
3480 * for which we know the sign. This sign will be either "pos" or
3481 * "any". If it had been "neg" then we would have pivoted before.
3483 * If none of these cases hold, we check the value of the row for each
3484 * of the currently active samples. Based on the signs of these values
3485 * we make an initial determination of the sign of the row.
3487 * all zero -> unk(nown)
3488 * all non-negative -> pos
3489 * all non-positive -> neg
3490 * both negative and positive -> all
3492 * If we end up with "all", we are done.
3493 * Otherwise, we perform a check for positive and/or negative
3494 * values as follows.
3496 * samples neg unk pos
3502 * There is no special sign for "zero", because we can usually treat zero
3503 * as either non-negative or non-positive, whatever works out best.
3504 * However, if the row is "critical", meaning that pivoting is impossible
3505 * then we don't want to limp zero with the non-positive case, because
3506 * then we we would lose the solution for those values of the parameters
3507 * where the value of the row is zero. Instead, we treat 0 as non-negative
3508 * ensuring a split if the row can attain both zero and negative values.
3509 * The same happens when the original constraint was one that could not
3510 * be satisfied with equality by any integer values of the parameters.
3511 * In this case, we normalize the constraint, but then a value of zero
3512 * for the normalized constraint is actually a positive value for the
3513 * original constraint, so again we need to treat zero as non-negative.
3514 * In both these cases, we have the following decision tree instead:
3516 * all non-negative -> pos
3517 * all negative -> neg
3518 * both negative and non-negative -> all
3526 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3527 struct isl_sol
*sol
, int row
)
3529 struct isl_vec
*ineq
= NULL
;
3530 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3535 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3536 return tab
->row_sign
[row
];
3537 if (is_obviously_nonneg(tab
, row
))
3538 return isl_tab_row_pos
;
3539 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3540 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3542 if (identical_parameter_line(tab
, row
, row2
))
3543 return tab
->row_sign
[row2
];
3546 critical
= is_critical(tab
, row
);
3548 ineq
= get_row_parameter_ineq(tab
, row
);
3552 strict
= is_strict(ineq
);
3554 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3555 critical
|| strict
);
3557 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3558 /* test for negative values */
3560 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3561 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3563 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3567 res
= isl_tab_row_pos
;
3569 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3571 if (res
== isl_tab_row_neg
) {
3572 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3573 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3577 if (res
== isl_tab_row_neg
) {
3578 /* test for positive values */
3580 if (!critical
&& !strict
)
3581 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3583 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3587 res
= isl_tab_row_any
;
3594 return isl_tab_row_unknown
;
3597 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3599 /* Find solutions for values of the parameters that satisfy the given
3602 * We currently take a snapshot of the context tableau that is reset
3603 * when we return from this function, while we make a copy of the main
3604 * tableau, leaving the original main tableau untouched.
3605 * These are fairly arbitrary choices. Making a copy also of the context
3606 * tableau would obviate the need to undo any changes made to it later,
3607 * while taking a snapshot of the main tableau could reduce memory usage.
3608 * If we were to switch to taking a snapshot of the main tableau,
3609 * we would have to keep in mind that we need to save the row signs
3610 * and that we need to do this before saving the current basis
3611 * such that the basis has been restore before we restore the row signs.
3613 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3619 saved
= sol
->context
->op
->save(sol
->context
);
3621 tab
= isl_tab_dup(tab
);
3625 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3627 find_solutions(sol
, tab
);
3630 sol
->context
->op
->restore(sol
->context
, saved
);
3632 sol
->context
->op
->discard(saved
);
3638 /* Record the absence of solutions for those values of the parameters
3639 * that do not satisfy the given inequality with equality.
3641 static void no_sol_in_strict(struct isl_sol
*sol
,
3642 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3647 if (!sol
->context
|| sol
->error
)
3649 saved
= sol
->context
->op
->save(sol
->context
);
3651 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3653 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3662 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3664 sol
->context
->op
->restore(sol
->context
, saved
);
3670 /* Compute the lexicographic minimum of the set represented by the main
3671 * tableau "tab" within the context "sol->context_tab".
3672 * On entry the sample value of the main tableau is lexicographically
3673 * less than or equal to this lexicographic minimum.
3674 * Pivots are performed until a feasible point is found, which is then
3675 * necessarily equal to the minimum, or until the tableau is found to
3676 * be infeasible. Some pivots may need to be performed for only some
3677 * feasible values of the context tableau. If so, the context tableau
3678 * is split into a part where the pivot is needed and a part where it is not.
3680 * Whenever we enter the main loop, the main tableau is such that no
3681 * "obvious" pivots need to be performed on it, where "obvious" means
3682 * that the given row can be seen to be negative without looking at
3683 * the context tableau. In particular, for non-parametric problems,
3684 * no pivots need to be performed on the main tableau.
3685 * The caller of find_solutions is responsible for making this property
3686 * hold prior to the first iteration of the loop, while restore_lexmin
3687 * is called before every other iteration.
3689 * Inside the main loop, we first examine the signs of the rows of
3690 * the main tableau within the context of the context tableau.
3691 * If we find a row that is always non-positive for all values of
3692 * the parameters satisfying the context tableau and negative for at
3693 * least one value of the parameters, we perform the appropriate pivot
3694 * and start over. An exception is the case where no pivot can be
3695 * performed on the row. In this case, we require that the sign of
3696 * the row is negative for all values of the parameters (rather than just
3697 * non-positive). This special case is handled inside row_sign, which
3698 * will say that the row can have any sign if it determines that it can
3699 * attain both negative and zero values.
3701 * If we can't find a row that always requires a pivot, but we can find
3702 * one or more rows that require a pivot for some values of the parameters
3703 * (i.e., the row can attain both positive and negative signs), then we split
3704 * the context tableau into two parts, one where we force the sign to be
3705 * non-negative and one where we force is to be negative.
3706 * The non-negative part is handled by a recursive call (through find_in_pos).
3707 * Upon returning from this call, we continue with the negative part and
3708 * perform the required pivot.
3710 * If no such rows can be found, all rows are non-negative and we have
3711 * found a (rational) feasible point. If we only wanted a rational point
3713 * Otherwise, we check if all values of the sample point of the tableau
3714 * are integral for the variables. If so, we have found the minimal
3715 * integral point and we are done.
3716 * If the sample point is not integral, then we need to make a distinction
3717 * based on whether the constant term is non-integral or the coefficients
3718 * of the parameters. Furthermore, in order to decide how to handle
3719 * the non-integrality, we also need to know whether the coefficients
3720 * of the other columns in the tableau are integral. This leads
3721 * to the following table. The first two rows do not correspond
3722 * to a non-integral sample point and are only mentioned for completeness.
3724 * constant parameters other
3727 * int int rat | -> no problem
3729 * rat int int -> fail
3731 * rat int rat -> cut
3734 * rat rat rat | -> parametric cut
3737 * rat rat int | -> split context
3739 * If the parametric constant is completely integral, then there is nothing
3740 * to be done. If the constant term is non-integral, but all the other
3741 * coefficient are integral, then there is nothing that can be done
3742 * and the tableau has no integral solution.
3743 * If, on the other hand, one or more of the other columns have rational
3744 * coefficients, but the parameter coefficients are all integral, then
3745 * we can perform a regular (non-parametric) cut.
3746 * Finally, if there is any parameter coefficient that is non-integral,
3747 * then we need to involve the context tableau. There are two cases here.
3748 * If at least one other column has a rational coefficient, then we
3749 * can perform a parametric cut in the main tableau by adding a new
3750 * integer division in the context tableau.
3751 * If all other columns have integral coefficients, then we need to
3752 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3753 * is always integral. We do this by introducing an integer division
3754 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3755 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3756 * Since q is expressed in the tableau as
3757 * c + \sum a_i y_i - m q >= 0
3758 * -c - \sum a_i y_i + m q + m - 1 >= 0
3759 * it is sufficient to add the inequality
3760 * -c - \sum a_i y_i + m q >= 0
3761 * In the part of the context where this inequality does not hold, the
3762 * main tableau is marked as being empty.
3764 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3766 struct isl_context
*context
;
3769 if (!tab
|| sol
->error
)
3772 context
= sol
->context
;
3776 if (context
->op
->is_empty(context
))
3779 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3782 enum isl_tab_row_sign sgn
;
3786 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3787 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3789 sgn
= row_sign(tab
, sol
, row
);
3792 tab
->row_sign
[row
] = sgn
;
3793 if (sgn
== isl_tab_row_any
)
3795 if (sgn
== isl_tab_row_any
&& split
== -1)
3797 if (sgn
== isl_tab_row_neg
)
3800 if (row
< tab
->n_row
)
3803 struct isl_vec
*ineq
;
3805 split
= context
->op
->best_split(context
, tab
);
3808 ineq
= get_row_parameter_ineq(tab
, split
);
3812 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3813 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3815 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3816 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3818 tab
->row_sign
[split
] = isl_tab_row_pos
;
3820 find_in_pos(sol
, tab
, ineq
->el
);
3821 tab
->row_sign
[split
] = isl_tab_row_neg
;
3823 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3824 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3826 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3834 row
= first_non_integer_row(tab
, &flags
);
3837 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3838 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3839 if (isl_tab_mark_empty(tab
) < 0)
3843 row
= add_cut(tab
, row
);
3844 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3845 struct isl_vec
*div
;
3846 struct isl_vec
*ineq
;
3848 div
= get_row_split_div(tab
, row
);
3851 d
= context
->op
->get_div(context
, tab
, div
);
3855 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3859 no_sol_in_strict(sol
, tab
, ineq
);
3860 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3861 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3863 if (sol
->error
|| !context
->op
->is_ok(context
))
3865 tab
= set_row_cst_to_div(tab
, row
, d
);
3866 if (context
->op
->is_empty(context
))
3869 row
= add_parametric_cut(tab
, row
, context
);
3884 /* Does "sol" contain a pair of partial solutions that could potentially
3887 * We currently only check that "sol" is not in an error state
3888 * and that there are at least two partial solutions of which the final two
3889 * are defined at the same level.
3891 static int sol_has_mergeable_solutions(struct isl_sol
*sol
)
3897 if (!sol
->partial
->next
)
3899 return sol
->partial
->level
== sol
->partial
->next
->level
;
3902 /* Compute the lexicographic minimum of the set represented by the main
3903 * tableau "tab" within the context "sol->context_tab".
3905 * As a preprocessing step, we first transfer all the purely parametric
3906 * equalities from the main tableau to the context tableau, i.e.,
3907 * parameters that have been pivoted to a row.
3908 * These equalities are ignored by the main algorithm, because the
3909 * corresponding rows may not be marked as being non-negative.
3910 * In parts of the context where the added equality does not hold,
3911 * the main tableau is marked as being empty.
3913 * Before we embark on the actual computation, we save a copy
3914 * of the context. When we return, we check if there are any
3915 * partial solutions that can potentially be merged. If so,
3916 * we perform a rollback to the initial state of the context.
3917 * The merging of partial solutions happens inside calls to
3918 * sol_dec_level that are pushed onto the undo stack of the context.
3919 * If there are no partial solutions that can potentially be merged
3920 * then the rollback is skipped as it would just be wasted effort.
3922 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3932 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3936 if (tab
->row_var
[row
] < 0)
3938 if (tab
->row_var
[row
] >= tab
->n_param
&&
3939 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3941 if (tab
->row_var
[row
] < tab
->n_param
)
3942 p
= tab
->row_var
[row
];
3944 p
= tab
->row_var
[row
]
3945 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3947 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3950 get_row_parameter_line(tab
, row
, eq
->el
);
3951 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3952 eq
= isl_vec_normalize(eq
);
3955 no_sol_in_strict(sol
, tab
, eq
);
3957 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3959 no_sol_in_strict(sol
, tab
, eq
);
3960 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3962 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3966 if (isl_tab_mark_redundant(tab
, row
) < 0)
3969 if (sol
->context
->op
->is_empty(sol
->context
))
3972 row
= tab
->n_redundant
- 1;
3975 saved
= sol
->context
->op
->save(sol
->context
);
3977 find_solutions(sol
, tab
);
3979 if (sol_has_mergeable_solutions(sol
))
3980 sol
->context
->op
->restore(sol
->context
, saved
);
3982 sol
->context
->op
->discard(saved
);
3993 /* Check if integer division "div" of "dom" also occurs in "bmap".
3994 * If so, return its position within the divs.
3995 * If not, return -1.
3997 static int find_context_div(struct isl_basic_map
*bmap
,
3998 struct isl_basic_set
*dom
, unsigned div
)
4001 unsigned b_dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4002 unsigned d_dim
= isl_space_dim(dom
->dim
, isl_dim_all
);
4004 if (isl_int_is_zero(dom
->div
[div
][0]))
4006 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
4009 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4010 if (isl_int_is_zero(bmap
->div
[i
][0]))
4012 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
4013 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
4015 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
4021 /* The correspondence between the variables in the main tableau,
4022 * the context tableau, and the input map and domain is as follows.
4023 * The first n_param and the last n_div variables of the main tableau
4024 * form the variables of the context tableau.
4025 * In the basic map, these n_param variables correspond to the
4026 * parameters and the input dimensions. In the domain, they correspond
4027 * to the parameters and the set dimensions.
4028 * The n_div variables correspond to the integer divisions in the domain.
4029 * To ensure that everything lines up, we may need to copy some of the
4030 * integer divisions of the domain to the map. These have to be placed
4031 * in the same order as those in the context and they have to be placed
4032 * after any other integer divisions that the map may have.
4033 * This function performs the required reordering.
4035 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
4036 struct isl_basic_set
*dom
)
4042 for (i
= 0; i
< dom
->n_div
; ++i
)
4043 if (find_context_div(bmap
, dom
, i
) != -1)
4045 other
= bmap
->n_div
- common
;
4046 if (dom
->n_div
- common
> 0) {
4047 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
4048 dom
->n_div
- common
, 0, 0);
4052 for (i
= 0; i
< dom
->n_div
; ++i
) {
4053 int pos
= find_context_div(bmap
, dom
, i
);
4055 pos
= isl_basic_map_alloc_div(bmap
);
4058 isl_int_set_si(bmap
->div
[pos
][0], 0);
4060 if (pos
!= other
+ i
)
4061 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
4065 isl_basic_map_free(bmap
);
4069 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4070 * some obvious symmetries.
4072 * We make sure the divs in the domain are properly ordered,
4073 * because they will be added one by one in the given order
4074 * during the construction of the solution map.
4076 static struct isl_sol
*basic_map_partial_lexopt_base(
4077 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4078 __isl_give isl_set
**empty
, int max
,
4079 struct isl_sol
*(*init
)(__isl_keep isl_basic_map
*bmap
,
4080 __isl_take isl_basic_set
*dom
, int track_empty
, int max
))
4082 struct isl_tab
*tab
;
4083 struct isl_sol
*sol
= NULL
;
4084 struct isl_context
*context
;
4087 dom
= isl_basic_set_order_divs(dom
);
4088 bmap
= align_context_divs(bmap
, dom
);
4090 sol
= init(bmap
, dom
, !!empty
, max
);
4094 context
= sol
->context
;
4095 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
4097 else if (isl_basic_map_plain_is_empty(bmap
)) {
4100 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
4102 tab
= tab_for_lexmin(bmap
,
4103 context
->op
->peek_basic_set(context
), 1, max
);
4104 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4105 find_solutions_main(sol
, tab
);
4110 isl_basic_map_free(bmap
);
4114 isl_basic_map_free(bmap
);
4118 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4119 * some obvious symmetries.
4121 * We call basic_map_partial_lexopt_base and extract the results.
4123 static __isl_give isl_map
*basic_map_partial_lexopt_base_map(
4124 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4125 __isl_give isl_set
**empty
, int max
)
4127 isl_map
*result
= NULL
;
4128 struct isl_sol
*sol
;
4129 struct isl_sol_map
*sol_map
;
4131 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
4135 sol_map
= (struct isl_sol_map
*) sol
;
4137 result
= isl_map_copy(sol_map
->map
);
4139 *empty
= isl_set_copy(sol_map
->empty
);
4140 sol_free(&sol_map
->sol
);
4144 /* Structure used during detection of parallel constraints.
4145 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4146 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4147 * val: the coefficients of the output variables
4149 struct isl_constraint_equal_info
{
4150 isl_basic_map
*bmap
;
4156 /* Check whether the coefficients of the output variables
4157 * of the constraint in "entry" are equal to info->val.
4159 static int constraint_equal(const void *entry
, const void *val
)
4161 isl_int
**row
= (isl_int
**)entry
;
4162 const struct isl_constraint_equal_info
*info
= val
;
4164 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4167 /* Check whether "bmap" has a pair of constraints that have
4168 * the same coefficients for the output variables.
4169 * Note that the coefficients of the existentially quantified
4170 * variables need to be zero since the existentially quantified
4171 * of the result are usually not the same as those of the input.
4172 * the isl_dim_out and isl_dim_div dimensions.
4173 * If so, return 1 and return the row indices of the two constraints
4174 * in *first and *second.
4176 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4177 int *first
, int *second
)
4180 isl_ctx
*ctx
= isl_basic_map_get_ctx(bmap
);
4181 struct isl_hash_table
*table
= NULL
;
4182 struct isl_hash_table_entry
*entry
;
4183 struct isl_constraint_equal_info info
;
4187 ctx
= isl_basic_map_get_ctx(bmap
);
4188 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4192 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4193 isl_basic_map_dim(bmap
, isl_dim_in
);
4195 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4196 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4197 info
.n_out
= n_out
+ n_div
;
4198 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4201 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4202 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4204 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4206 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4207 entry
= isl_hash_table_find(ctx
, table
, hash
,
4208 constraint_equal
, &info
, 1);
4213 entry
->data
= &bmap
->ineq
[i
];
4216 if (i
< bmap
->n_ineq
) {
4217 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4221 isl_hash_table_free(ctx
, table
);
4223 return i
< bmap
->n_ineq
;
4225 isl_hash_table_free(ctx
, table
);
4229 /* Given a set of upper bounds in "var", add constraints to "bset"
4230 * that make the i-th bound smallest.
4232 * In particular, if there are n bounds b_i, then add the constraints
4234 * b_i <= b_j for j > i
4235 * b_i < b_j for j < i
4237 static __isl_give isl_basic_set
*select_minimum(__isl_take isl_basic_set
*bset
,
4238 __isl_keep isl_mat
*var
, int i
)
4243 ctx
= isl_mat_get_ctx(var
);
4245 for (j
= 0; j
< var
->n_row
; ++j
) {
4248 k
= isl_basic_set_alloc_inequality(bset
);
4251 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4252 ctx
->negone
, var
->row
[i
], var
->n_col
);
4253 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4255 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4258 bset
= isl_basic_set_finalize(bset
);
4262 isl_basic_set_free(bset
);
4266 /* Given a set of upper bounds on the last "input" variable m,
4267 * construct a set that assigns the minimal upper bound to m, i.e.,
4268 * construct a set that divides the space into cells where one
4269 * of the upper bounds is smaller than all the others and assign
4270 * this upper bound to m.
4272 * In particular, if there are n bounds b_i, then the result
4273 * consists of n basic sets, each one of the form
4276 * b_i <= b_j for j > i
4277 * b_i < b_j for j < i
4279 static __isl_give isl_set
*set_minimum(__isl_take isl_space
*dim
,
4280 __isl_take isl_mat
*var
)
4283 isl_basic_set
*bset
= NULL
;
4285 isl_set
*set
= NULL
;
4290 ctx
= isl_space_get_ctx(dim
);
4291 set
= isl_set_alloc_space(isl_space_copy(dim
),
4292 var
->n_row
, ISL_SET_DISJOINT
);
4294 for (i
= 0; i
< var
->n_row
; ++i
) {
4295 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0,
4297 k
= isl_basic_set_alloc_equality(bset
);
4300 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4301 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4302 bset
= select_minimum(bset
, var
, i
);
4303 set
= isl_set_add_basic_set(set
, bset
);
4306 isl_space_free(dim
);
4310 isl_basic_set_free(bset
);
4312 isl_space_free(dim
);
4317 /* Given that the last input variable of "bmap" represents the minimum
4318 * of the bounds in "cst", check whether we need to split the domain
4319 * based on which bound attains the minimum.
4321 * A split is needed when the minimum appears in an integer division
4322 * or in an equality. Otherwise, it is only needed if it appears in
4323 * an upper bound that is different from the upper bounds on which it
4326 static int need_split_basic_map(__isl_keep isl_basic_map
*bmap
,
4327 __isl_keep isl_mat
*cst
)
4333 pos
= cst
->n_col
- 1;
4334 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4336 for (i
= 0; i
< bmap
->n_div
; ++i
)
4337 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4340 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4341 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4344 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4345 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4347 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4349 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4350 total
- pos
- 1) >= 0)
4353 for (j
= 0; j
< cst
->n_row
; ++j
)
4354 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4356 if (j
>= cst
->n_row
)
4363 /* Given that the last set variable of "bset" represents the minimum
4364 * of the bounds in "cst", check whether we need to split the domain
4365 * based on which bound attains the minimum.
4367 * We simply call need_split_basic_map here. This is safe because
4368 * the position of the minimum is computed from "cst" and not
4371 static int need_split_basic_set(__isl_keep isl_basic_set
*bset
,
4372 __isl_keep isl_mat
*cst
)
4374 return need_split_basic_map((isl_basic_map
*)bset
, cst
);
4377 /* Given that the last set variable of "set" represents the minimum
4378 * of the bounds in "cst", check whether we need to split the domain
4379 * based on which bound attains the minimum.
4381 static int need_split_set(__isl_keep isl_set
*set
, __isl_keep isl_mat
*cst
)
4385 for (i
= 0; i
< set
->n
; ++i
)
4386 if (need_split_basic_set(set
->p
[i
], cst
))
4392 /* Given a set of which the last set variable is the minimum
4393 * of the bounds in "cst", split each basic set in the set
4394 * in pieces where one of the bounds is (strictly) smaller than the others.
4395 * This subdivision is given in "min_expr".
4396 * The variable is subsequently projected out.
4398 * We only do the split when it is needed.
4399 * For example if the last input variable m = min(a,b) and the only
4400 * constraints in the given basic set are lower bounds on m,
4401 * i.e., l <= m = min(a,b), then we can simply project out m
4402 * to obtain l <= a and l <= b, without having to split on whether
4403 * m is equal to a or b.
4405 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4406 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4413 if (!empty
|| !min_expr
|| !cst
)
4416 n_in
= isl_set_dim(empty
, isl_dim_set
);
4417 dim
= isl_set_get_space(empty
);
4418 dim
= isl_space_drop_dims(dim
, isl_dim_set
, n_in
- 1, 1);
4419 res
= isl_set_empty(dim
);
4421 for (i
= 0; i
< empty
->n
; ++i
) {
4424 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4425 if (need_split_basic_set(empty
->p
[i
], cst
))
4426 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4427 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4429 res
= isl_set_union_disjoint(res
, set
);
4432 isl_set_free(empty
);
4433 isl_set_free(min_expr
);
4437 isl_set_free(empty
);
4438 isl_set_free(min_expr
);
4443 /* Given a map of which the last input variable is the minimum
4444 * of the bounds in "cst", split each basic set in the set
4445 * in pieces where one of the bounds is (strictly) smaller than the others.
4446 * This subdivision is given in "min_expr".
4447 * The variable is subsequently projected out.
4449 * The implementation is essentially the same as that of "split".
4451 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4452 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4459 if (!opt
|| !min_expr
|| !cst
)
4462 n_in
= isl_map_dim(opt
, isl_dim_in
);
4463 dim
= isl_map_get_space(opt
);
4464 dim
= isl_space_drop_dims(dim
, isl_dim_in
, n_in
- 1, 1);
4465 res
= isl_map_empty(dim
);
4467 for (i
= 0; i
< opt
->n
; ++i
) {
4470 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4471 if (need_split_basic_map(opt
->p
[i
], cst
))
4472 map
= isl_map_intersect_domain(map
,
4473 isl_set_copy(min_expr
));
4474 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4476 res
= isl_map_union_disjoint(res
, map
);
4480 isl_set_free(min_expr
);
4485 isl_set_free(min_expr
);
4490 static __isl_give isl_map
*basic_map_partial_lexopt(
4491 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4492 __isl_give isl_set
**empty
, int max
);
4497 isl_pw_multi_aff
*pma
;
4500 /* This function is called from basic_map_partial_lexopt_symm.
4501 * The last variable of "bmap" and "dom" corresponds to the minimum
4502 * of the bounds in "cst". "map_space" is the space of the original
4503 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4504 * is the space of the original domain.
4506 * We recursively call basic_map_partial_lexopt and then plug in
4507 * the definition of the minimum in the result.
4509 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_map_core(
4510 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4511 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
4512 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
4516 union isl_lex_res res
;
4518 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
4520 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4523 *empty
= split(*empty
,
4524 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4525 *empty
= isl_set_reset_space(*empty
, set_space
);
4528 opt
= split_domain(opt
, min_expr
, cst
);
4529 opt
= isl_map_reset_space(opt
, map_space
);
4535 /* Given a basic map with at least two parallel constraints (as found
4536 * by the function parallel_constraints), first look for more constraints
4537 * parallel to the two constraint and replace the found list of parallel
4538 * constraints by a single constraint with as "input" part the minimum
4539 * of the input parts of the list of constraints. Then, recursively call
4540 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4541 * and plug in the definition of the minimum in the result.
4543 * More specifically, given a set of constraints
4547 * Replace this set by a single constraint
4551 * with u a new parameter with constraints
4555 * Any solution to the new system is also a solution for the original system
4558 * a x >= -u >= -b_i(p)
4560 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4561 * therefore be plugged into the solution.
4563 static union isl_lex_res
basic_map_partial_lexopt_symm(
4564 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4565 __isl_give isl_set
**empty
, int max
, int first
, int second
,
4566 __isl_give
union isl_lex_res (*core
)(__isl_take isl_basic_map
*bmap
,
4567 __isl_take isl_basic_set
*dom
,
4568 __isl_give isl_set
**empty
,
4569 int max
, __isl_take isl_mat
*cst
,
4570 __isl_take isl_space
*map_space
,
4571 __isl_take isl_space
*set_space
))
4575 unsigned n_in
, n_out
, n_div
;
4577 isl_vec
*var
= NULL
;
4578 isl_mat
*cst
= NULL
;
4579 isl_space
*map_space
, *set_space
;
4580 union isl_lex_res res
;
4582 map_space
= isl_basic_map_get_space(bmap
);
4583 set_space
= empty
? isl_basic_set_get_space(dom
) : NULL
;
4585 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4586 isl_basic_map_dim(bmap
, isl_dim_in
);
4587 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4589 ctx
= isl_basic_map_get_ctx(bmap
);
4590 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4591 var
= isl_vec_alloc(ctx
, n_out
);
4597 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4598 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4599 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4603 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4607 for (i
= 0; i
< n
; ++i
)
4608 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4610 bmap
= isl_basic_map_cow(bmap
);
4613 for (i
= n
- 1; i
>= 0; --i
)
4614 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4617 bmap
= isl_basic_map_add(bmap
, isl_dim_in
, 1);
4618 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4619 k
= isl_basic_map_alloc_inequality(bmap
);
4622 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4623 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4624 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4625 bmap
= isl_basic_map_finalize(bmap
);
4627 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4628 dom
= isl_basic_set_add_dims(dom
, isl_dim_set
, 1);
4629 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4630 for (i
= 0; i
< n
; ++i
) {
4631 k
= isl_basic_set_alloc_inequality(dom
);
4634 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4635 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4636 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4642 return core(bmap
, dom
, empty
, max
, cst
, map_space
, set_space
);
4644 isl_space_free(map_space
);
4645 isl_space_free(set_space
);
4649 isl_basic_set_free(dom
);
4650 isl_basic_map_free(bmap
);
4655 static __isl_give isl_map
*basic_map_partial_lexopt_symm_map(
4656 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4657 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4659 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4660 first
, second
, &basic_map_partial_lexopt_symm_map_core
).map
;
4663 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4664 * equalities and removing redundant constraints.
4666 * We first check if there are any parallel constraints (left).
4667 * If not, we are in the base case.
4668 * If there are parallel constraints, we replace them by a single
4669 * constraint in basic_map_partial_lexopt_symm and then call
4670 * this function recursively to look for more parallel constraints.
4672 static __isl_give isl_map
*basic_map_partial_lexopt(
4673 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4674 __isl_give isl_set
**empty
, int max
)
4682 if (bmap
->ctx
->opt
->pip_symmetry
)
4683 par
= parallel_constraints(bmap
, &first
, &second
);
4687 return basic_map_partial_lexopt_base_map(bmap
, dom
, empty
, max
);
4689 return basic_map_partial_lexopt_symm_map(bmap
, dom
, empty
, max
,
4692 isl_basic_set_free(dom
);
4693 isl_basic_map_free(bmap
);
4697 /* Compute the lexicographic minimum (or maximum if "max" is set)
4698 * of "bmap" over the domain "dom" and return the result as a map.
4699 * If "empty" is not NULL, then *empty is assigned a set that
4700 * contains those parts of the domain where there is no solution.
4701 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4702 * then we compute the rational optimum. Otherwise, we compute
4703 * the integral optimum.
4705 * We perform some preprocessing. As the PILP solver does not
4706 * handle implicit equalities very well, we first make sure all
4707 * the equalities are explicitly available.
4709 * We also add context constraints to the basic map and remove
4710 * redundant constraints. This is only needed because of the
4711 * way we handle simple symmetries. In particular, we currently look
4712 * for symmetries on the constraints, before we set up the main tableau.
4713 * It is then no good to look for symmetries on possibly redundant constraints.
4715 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4716 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4717 struct isl_set
**empty
, int max
)
4724 isl_assert(bmap
->ctx
,
4725 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4727 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4728 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4730 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4731 bmap
= isl_basic_map_detect_equalities(bmap
);
4732 bmap
= isl_basic_map_remove_redundancies(bmap
);
4734 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4736 isl_basic_set_free(dom
);
4737 isl_basic_map_free(bmap
);
4741 struct isl_sol_for
{
4743 int (*fn
)(__isl_take isl_basic_set
*dom
,
4744 __isl_take isl_aff_list
*list
, void *user
);
4748 static void sol_for_free(struct isl_sol_for
*sol_for
)
4750 if (sol_for
->sol
.context
)
4751 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4755 static void sol_for_free_wrap(struct isl_sol
*sol
)
4757 sol_for_free((struct isl_sol_for
*)sol
);
4760 /* Add the solution identified by the tableau and the context tableau.
4762 * See documentation of sol_add for more details.
4764 * Instead of constructing a basic map, this function calls a user
4765 * defined function with the current context as a basic set and
4766 * a list of affine expressions representing the relation between
4767 * the input and output. The space over which the affine expressions
4768 * are defined is the same as that of the domain. The number of
4769 * affine expressions in the list is equal to the number of output variables.
4771 static void sol_for_add(struct isl_sol_for
*sol
,
4772 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4776 isl_local_space
*ls
;
4780 if (sol
->sol
.error
|| !dom
|| !M
)
4783 ctx
= isl_basic_set_get_ctx(dom
);
4784 ls
= isl_basic_set_get_local_space(dom
);
4785 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4786 for (i
= 1; i
< M
->n_row
; ++i
) {
4787 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4789 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
4790 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4792 aff
= isl_aff_normalize(aff
);
4793 list
= isl_aff_list_add(list
, aff
);
4795 isl_local_space_free(ls
);
4797 dom
= isl_basic_set_finalize(dom
);
4799 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4802 isl_basic_set_free(dom
);
4806 isl_basic_set_free(dom
);
4811 static void sol_for_add_wrap(struct isl_sol
*sol
,
4812 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4814 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4817 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4818 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4822 struct isl_sol_for
*sol_for
= NULL
;
4824 struct isl_basic_set
*dom
= NULL
;
4826 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4830 dom_dim
= isl_space_domain(isl_space_copy(bmap
->dim
));
4831 dom
= isl_basic_set_universe(dom_dim
);
4833 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4834 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4835 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4837 sol_for
->user
= user
;
4838 sol_for
->sol
.max
= max
;
4839 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4840 sol_for
->sol
.add
= &sol_for_add_wrap
;
4841 sol_for
->sol
.add_empty
= NULL
;
4842 sol_for
->sol
.free
= &sol_for_free_wrap
;
4844 sol_for
->sol
.context
= isl_context_alloc(dom
);
4845 if (!sol_for
->sol
.context
)
4848 isl_basic_set_free(dom
);
4851 isl_basic_set_free(dom
);
4852 sol_for_free(sol_for
);
4856 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4857 struct isl_tab
*tab
)
4859 find_solutions_main(&sol_for
->sol
, tab
);
4862 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4863 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4867 struct isl_sol_for
*sol_for
= NULL
;
4869 bmap
= isl_basic_map_copy(bmap
);
4870 bmap
= isl_basic_map_detect_equalities(bmap
);
4874 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4878 if (isl_basic_map_plain_is_empty(bmap
))
4881 struct isl_tab
*tab
;
4882 struct isl_context
*context
= sol_for
->sol
.context
;
4883 tab
= tab_for_lexmin(bmap
,
4884 context
->op
->peek_basic_set(context
), 1, max
);
4885 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4886 sol_for_find_solutions(sol_for
, tab
);
4887 if (sol_for
->sol
.error
)
4891 sol_free(&sol_for
->sol
);
4892 isl_basic_map_free(bmap
);
4895 sol_free(&sol_for
->sol
);
4896 isl_basic_map_free(bmap
);
4900 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set
*bset
, int max
,
4901 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4905 return isl_basic_map_foreach_lexopt(bset
, max
, fn
, user
);
4908 /* Check if the given sequence of len variables starting at pos
4909 * represents a trivial (i.e., zero) solution.
4910 * The variables are assumed to be non-negative and to come in pairs,
4911 * with each pair representing a variable of unrestricted sign.
4912 * The solution is trivial if each such pair in the sequence consists
4913 * of two identical values, meaning that the variable being represented
4916 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4923 for (i
= 0; i
< len
; i
+= 2) {
4927 neg_row
= tab
->var
[pos
+ i
].is_row
?
4928 tab
->var
[pos
+ i
].index
: -1;
4929 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4930 tab
->var
[pos
+ i
+ 1].index
: -1;
4933 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4935 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4938 if (neg_row
< 0 || pos_row
< 0)
4940 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4941 tab
->mat
->row
[pos_row
][1]))
4948 /* Return the index of the first trivial region or -1 if all regions
4951 static int first_trivial_region(struct isl_tab
*tab
,
4952 int n_region
, struct isl_region
*region
)
4956 for (i
= 0; i
< n_region
; ++i
) {
4957 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4964 /* Check if the solution is optimal, i.e., whether the first
4965 * n_op entries are zero.
4967 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4971 for (i
= 0; i
< n_op
; ++i
)
4972 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4977 /* Add constraints to "tab" that ensure that any solution is significantly
4978 * better that that represented by "sol". That is, find the first
4979 * relevant (within first n_op) non-zero coefficient and force it (along
4980 * with all previous coefficients) to be zero.
4981 * If the solution is already optimal (all relevant coefficients are zero),
4982 * then just mark the table as empty.
4984 static int force_better_solution(struct isl_tab
*tab
,
4985 __isl_keep isl_vec
*sol
, int n_op
)
4994 for (i
= 0; i
< n_op
; ++i
)
4995 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4999 if (isl_tab_mark_empty(tab
) < 0)
5004 ctx
= isl_vec_get_ctx(sol
);
5005 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5009 for (; i
>= 0; --i
) {
5011 isl_int_set_si(v
->el
[1 + i
], -1);
5012 if (add_lexmin_eq(tab
, v
->el
) < 0)
5023 struct isl_trivial
{
5027 struct isl_tab_undo
*snap
;
5030 /* Return the lexicographically smallest non-trivial solution of the
5031 * given ILP problem.
5033 * All variables are assumed to be non-negative.
5035 * n_op is the number of initial coordinates to optimize.
5036 * That is, once a solution has been found, we will only continue looking
5037 * for solution that result in significantly better values for those
5038 * initial coordinates. That is, we only continue looking for solutions
5039 * that increase the number of initial zeros in this sequence.
5041 * A solution is non-trivial, if it is non-trivial on each of the
5042 * specified regions. Each region represents a sequence of pairs
5043 * of variables. A solution is non-trivial on such a region if
5044 * at least one of these pairs consists of different values, i.e.,
5045 * such that the non-negative variable represented by the pair is non-zero.
5047 * Whenever a conflict is encountered, all constraints involved are
5048 * reported to the caller through a call to "conflict".
5050 * We perform a simple branch-and-bound backtracking search.
5051 * Each level in the search represents initially trivial region that is forced
5052 * to be non-trivial.
5053 * At each level we consider n cases, where n is the length of the region.
5054 * In terms of the n/2 variables of unrestricted signs being encoded by
5055 * the region, we consider the cases
5058 * x_0 = 0 and x_1 >= 1
5059 * x_0 = 0 and x_1 <= -1
5060 * x_0 = 0 and x_1 = 0 and x_2 >= 1
5061 * x_0 = 0 and x_1 = 0 and x_2 <= -1
5063 * The cases are considered in this order, assuming that each pair
5064 * x_i_a x_i_b represents the value x_i_b - x_i_a.
5065 * That is, x_0 >= 1 is enforced by adding the constraint
5066 * x_0_b - x_0_a >= 1
5068 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
5069 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
5070 struct isl_region
*region
,
5071 int (*conflict
)(int con
, void *user
), void *user
)
5077 isl_vec
*sol
= NULL
;
5078 struct isl_tab
*tab
;
5079 struct isl_trivial
*triv
= NULL
;
5085 ctx
= isl_basic_set_get_ctx(bset
);
5086 sol
= isl_vec_alloc(ctx
, 0);
5088 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5091 tab
->conflict
= conflict
;
5092 tab
->conflict_user
= user
;
5094 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5095 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
5102 while (level
>= 0) {
5106 tab
= cut_to_integer_lexmin(tab
, CUT_ONE
);
5111 r
= first_trivial_region(tab
, n_region
, region
);
5113 for (i
= 0; i
< level
; ++i
)
5116 sol
= isl_tab_get_sample_value(tab
);
5119 if (is_optimal(sol
, n_op
))
5123 if (level
>= n_region
)
5124 isl_die(ctx
, isl_error_internal
,
5125 "nesting level too deep", goto error
);
5126 if (isl_tab_extend_cons(tab
,
5127 2 * region
[r
].len
+ 2 * n_op
) < 0)
5129 triv
[level
].region
= r
;
5130 triv
[level
].side
= 0;
5133 r
= triv
[level
].region
;
5134 side
= triv
[level
].side
;
5135 base
= 2 * (side
/2);
5137 if (side
>= region
[r
].len
) {
5142 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
5147 if (triv
[level
].update
) {
5148 if (force_better_solution(tab
, sol
, n_op
) < 0)
5150 triv
[level
].update
= 0;
5153 if (side
== base
&& base
>= 2) {
5154 for (j
= base
- 2; j
< base
; ++j
) {
5156 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
5157 if (add_lexmin_eq(tab
, v
->el
) < 0)
5162 triv
[level
].snap
= isl_tab_snap(tab
);
5163 if (isl_tab_push_basis(tab
) < 0)
5167 isl_int_set_si(v
->el
[0], -1);
5168 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
5169 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
5170 tab
= add_lexmin_ineq(tab
, v
->el
);
5180 isl_basic_set_free(bset
);
5187 isl_basic_set_free(bset
);
5192 /* Return the lexicographically smallest rational point in "bset",
5193 * assuming that all variables are non-negative.
5194 * If "bset" is empty, then return a zero-length vector.
5196 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
5197 __isl_take isl_basic_set
*bset
)
5199 struct isl_tab
*tab
;
5200 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
5206 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5210 sol
= isl_vec_alloc(ctx
, 0);
5212 sol
= isl_tab_get_sample_value(tab
);
5214 isl_basic_set_free(bset
);
5218 isl_basic_set_free(bset
);
5222 struct isl_sol_pma
{
5224 isl_pw_multi_aff
*pma
;
5228 static void sol_pma_free(struct isl_sol_pma
*sol_pma
)
5232 if (sol_pma
->sol
.context
)
5233 sol_pma
->sol
.context
->op
->free(sol_pma
->sol
.context
);
5234 isl_pw_multi_aff_free(sol_pma
->pma
);
5235 isl_set_free(sol_pma
->empty
);
5239 /* This function is called for parts of the context where there is
5240 * no solution, with "bset" corresponding to the context tableau.
5241 * Simply add the basic set to the set "empty".
5243 static void sol_pma_add_empty(struct isl_sol_pma
*sol
,
5244 __isl_take isl_basic_set
*bset
)
5248 isl_assert(bset
->ctx
, sol
->empty
, goto error
);
5250 sol
->empty
= isl_set_grow(sol
->empty
, 1);
5251 bset
= isl_basic_set_simplify(bset
);
5252 bset
= isl_basic_set_finalize(bset
);
5253 sol
->empty
= isl_set_add_basic_set(sol
->empty
, bset
);
5258 isl_basic_set_free(bset
);
5262 /* Given a basic map "dom" that represents the context and an affine
5263 * matrix "M" that maps the dimensions of the context to the
5264 * output variables, construct an isl_pw_multi_aff with a single
5265 * cell corresponding to "dom" and affine expressions copied from "M".
5267 static void sol_pma_add(struct isl_sol_pma
*sol
,
5268 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5271 isl_local_space
*ls
;
5273 isl_multi_aff
*maff
;
5274 isl_pw_multi_aff
*pma
;
5276 maff
= isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol
->pma
));
5277 ls
= isl_basic_set_get_local_space(dom
);
5278 for (i
= 1; i
< M
->n_row
; ++i
) {
5279 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5281 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
5282 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
5284 aff
= isl_aff_normalize(aff
);
5285 maff
= isl_multi_aff_set_aff(maff
, i
- 1, aff
);
5287 isl_local_space_free(ls
);
5289 dom
= isl_basic_set_simplify(dom
);
5290 dom
= isl_basic_set_finalize(dom
);
5291 pma
= isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom
), maff
);
5292 sol
->pma
= isl_pw_multi_aff_add_disjoint(sol
->pma
, pma
);
5297 static void sol_pma_free_wrap(struct isl_sol
*sol
)
5299 sol_pma_free((struct isl_sol_pma
*)sol
);
5302 static void sol_pma_add_empty_wrap(struct isl_sol
*sol
,
5303 __isl_take isl_basic_set
*bset
)
5305 sol_pma_add_empty((struct isl_sol_pma
*)sol
, bset
);
5308 static void sol_pma_add_wrap(struct isl_sol
*sol
,
5309 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5311 sol_pma_add((struct isl_sol_pma
*)sol
, dom
, M
);
5314 /* Construct an isl_sol_pma structure for accumulating the solution.
5315 * If track_empty is set, then we also keep track of the parts
5316 * of the context where there is no solution.
5317 * If max is set, then we are solving a maximization, rather than
5318 * a minimization problem, which means that the variables in the
5319 * tableau have value "M - x" rather than "M + x".
5321 static struct isl_sol
*sol_pma_init(__isl_keep isl_basic_map
*bmap
,
5322 __isl_take isl_basic_set
*dom
, int track_empty
, int max
)
5324 struct isl_sol_pma
*sol_pma
= NULL
;
5329 sol_pma
= isl_calloc_type(bmap
->ctx
, struct isl_sol_pma
);
5333 sol_pma
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
5334 sol_pma
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
5335 sol_pma
->sol
.dec_level
.sol
= &sol_pma
->sol
;
5336 sol_pma
->sol
.max
= max
;
5337 sol_pma
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
5338 sol_pma
->sol
.add
= &sol_pma_add_wrap
;
5339 sol_pma
->sol
.add_empty
= track_empty
? &sol_pma_add_empty_wrap
: NULL
;
5340 sol_pma
->sol
.free
= &sol_pma_free_wrap
;
5341 sol_pma
->pma
= isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap
));
5345 sol_pma
->sol
.context
= isl_context_alloc(dom
);
5346 if (!sol_pma
->sol
.context
)
5350 sol_pma
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
5351 1, ISL_SET_DISJOINT
);
5352 if (!sol_pma
->empty
)
5356 isl_basic_set_free(dom
);
5357 return &sol_pma
->sol
;
5359 isl_basic_set_free(dom
);
5360 sol_pma_free(sol_pma
);
5364 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5365 * some obvious symmetries.
5367 * We call basic_map_partial_lexopt_base and extract the results.
5369 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_base_pma(
5370 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5371 __isl_give isl_set
**empty
, int max
)
5373 isl_pw_multi_aff
*result
= NULL
;
5374 struct isl_sol
*sol
;
5375 struct isl_sol_pma
*sol_pma
;
5377 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
5381 sol_pma
= (struct isl_sol_pma
*) sol
;
5383 result
= isl_pw_multi_aff_copy(sol_pma
->pma
);
5385 *empty
= isl_set_copy(sol_pma
->empty
);
5386 sol_free(&sol_pma
->sol
);
5390 /* Given that the last input variable of "maff" represents the minimum
5391 * of some bounds, check whether we need to plug in the expression
5394 * In particular, check if the last input variable appears in any
5395 * of the expressions in "maff".
5397 static int need_substitution(__isl_keep isl_multi_aff
*maff
)
5402 pos
= isl_multi_aff_dim(maff
, isl_dim_in
) - 1;
5404 for (i
= 0; i
< maff
->n
; ++i
)
5405 if (isl_aff_involves_dims(maff
->p
[i
], isl_dim_in
, pos
, 1))
5411 /* Given a set of upper bounds on the last "input" variable m,
5412 * construct a piecewise affine expression that selects
5413 * the minimal upper bound to m, i.e.,
5414 * divide the space into cells where one
5415 * of the upper bounds is smaller than all the others and select
5416 * this upper bound on that cell.
5418 * In particular, if there are n bounds b_i, then the result
5419 * consists of n cell, each one of the form
5421 * b_i <= b_j for j > i
5422 * b_i < b_j for j < i
5424 * The affine expression on this cell is
5428 static __isl_give isl_pw_aff
*set_minimum_pa(__isl_take isl_space
*space
,
5429 __isl_take isl_mat
*var
)
5432 isl_aff
*aff
= NULL
;
5433 isl_basic_set
*bset
= NULL
;
5435 isl_pw_aff
*paff
= NULL
;
5436 isl_space
*pw_space
;
5437 isl_local_space
*ls
= NULL
;
5442 ctx
= isl_space_get_ctx(space
);
5443 ls
= isl_local_space_from_space(isl_space_copy(space
));
5444 pw_space
= isl_space_copy(space
);
5445 pw_space
= isl_space_from_domain(pw_space
);
5446 pw_space
= isl_space_add_dims(pw_space
, isl_dim_out
, 1);
5447 paff
= isl_pw_aff_alloc_size(pw_space
, var
->n_row
);
5449 for (i
= 0; i
< var
->n_row
; ++i
) {
5452 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5453 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0,
5457 isl_int_set_si(aff
->v
->el
[0], 1);
5458 isl_seq_cpy(aff
->v
->el
+ 1, var
->row
[i
], var
->n_col
);
5459 isl_int_set_si(aff
->v
->el
[1 + var
->n_col
], 0);
5460 bset
= select_minimum(bset
, var
, i
);
5461 paff_i
= isl_pw_aff_alloc(isl_set_from_basic_set(bset
), aff
);
5462 paff
= isl_pw_aff_add_disjoint(paff
, paff_i
);
5465 isl_local_space_free(ls
);
5466 isl_space_free(space
);
5471 isl_basic_set_free(bset
);
5472 isl_pw_aff_free(paff
);
5473 isl_local_space_free(ls
);
5474 isl_space_free(space
);
5479 /* Given a piecewise multi-affine expression of which the last input variable
5480 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5481 * This minimum expression is given in "min_expr_pa".
5482 * The set "min_expr" contains the same information, but in the form of a set.
5483 * The variable is subsequently projected out.
5485 * The implementation is similar to those of "split" and "split_domain".
5486 * If the variable appears in a given expression, then minimum expression
5487 * is plugged in. Otherwise, if the variable appears in the constraints
5488 * and a split is required, then the domain is split. Otherwise, no split
5491 static __isl_give isl_pw_multi_aff
*split_domain_pma(
5492 __isl_take isl_pw_multi_aff
*opt
, __isl_take isl_pw_aff
*min_expr_pa
,
5493 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
5498 isl_pw_multi_aff
*res
;
5500 if (!opt
|| !min_expr
|| !cst
)
5503 n_in
= isl_pw_multi_aff_dim(opt
, isl_dim_in
);
5504 space
= isl_pw_multi_aff_get_space(opt
);
5505 space
= isl_space_drop_dims(space
, isl_dim_in
, n_in
- 1, 1);
5506 res
= isl_pw_multi_aff_empty(space
);
5508 for (i
= 0; i
< opt
->n
; ++i
) {
5509 isl_pw_multi_aff
*pma
;
5511 pma
= isl_pw_multi_aff_alloc(isl_set_copy(opt
->p
[i
].set
),
5512 isl_multi_aff_copy(opt
->p
[i
].maff
));
5513 if (need_substitution(opt
->p
[i
].maff
))
5514 pma
= isl_pw_multi_aff_substitute(pma
,
5515 isl_dim_in
, n_in
- 1, min_expr_pa
);
5516 else if (need_split_set(opt
->p
[i
].set
, cst
))
5517 pma
= isl_pw_multi_aff_intersect_domain(pma
,
5518 isl_set_copy(min_expr
));
5519 pma
= isl_pw_multi_aff_project_out(pma
,
5520 isl_dim_in
, n_in
- 1, 1);
5522 res
= isl_pw_multi_aff_add_disjoint(res
, pma
);
5525 isl_pw_multi_aff_free(opt
);
5526 isl_pw_aff_free(min_expr_pa
);
5527 isl_set_free(min_expr
);
5531 isl_pw_multi_aff_free(opt
);
5532 isl_pw_aff_free(min_expr_pa
);
5533 isl_set_free(min_expr
);
5538 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5539 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5540 __isl_give isl_set
**empty
, int max
);
5542 /* This function is called from basic_map_partial_lexopt_symm.
5543 * The last variable of "bmap" and "dom" corresponds to the minimum
5544 * of the bounds in "cst". "map_space" is the space of the original
5545 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5546 * is the space of the original domain.
5548 * We recursively call basic_map_partial_lexopt and then plug in
5549 * the definition of the minimum in the result.
5551 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_pma_core(
5552 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5553 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
5554 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
5556 isl_pw_multi_aff
*opt
;
5557 isl_pw_aff
*min_expr_pa
;
5559 union isl_lex_res res
;
5561 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
5562 min_expr_pa
= set_minimum_pa(isl_basic_set_get_space(dom
),
5565 opt
= basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5568 *empty
= split(*empty
,
5569 isl_set_copy(min_expr
), isl_mat_copy(cst
));
5570 *empty
= isl_set_reset_space(*empty
, set_space
);
5573 opt
= split_domain_pma(opt
, min_expr_pa
, min_expr
, cst
);
5574 opt
= isl_pw_multi_aff_reset_space(opt
, map_space
);
5580 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_symm_pma(
5581 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5582 __isl_give isl_set
**empty
, int max
, int first
, int second
)
5584 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
5585 first
, second
, &basic_map_partial_lexopt_symm_pma_core
).pma
;
5588 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5589 * equalities and removing redundant constraints.
5591 * We first check if there are any parallel constraints (left).
5592 * If not, we are in the base case.
5593 * If there are parallel constraints, we replace them by a single
5594 * constraint in basic_map_partial_lexopt_symm_pma and then call
5595 * this function recursively to look for more parallel constraints.
5597 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5598 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5599 __isl_give isl_set
**empty
, int max
)
5607 if (bmap
->ctx
->opt
->pip_symmetry
)
5608 par
= parallel_constraints(bmap
, &first
, &second
);
5612 return basic_map_partial_lexopt_base_pma(bmap
, dom
, empty
, max
);
5614 return basic_map_partial_lexopt_symm_pma(bmap
, dom
, empty
, max
,
5617 isl_basic_set_free(dom
);
5618 isl_basic_map_free(bmap
);
5622 /* Compute the lexicographic minimum (or maximum if "max" is set)
5623 * of "bmap" over the domain "dom" and return the result as a piecewise
5624 * multi-affine expression.
5625 * If "empty" is not NULL, then *empty is assigned a set that
5626 * contains those parts of the domain where there is no solution.
5627 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5628 * then we compute the rational optimum. Otherwise, we compute
5629 * the integral optimum.
5631 * We perform some preprocessing. As the PILP solver does not
5632 * handle implicit equalities very well, we first make sure all
5633 * the equalities are explicitly available.
5635 * We also add context constraints to the basic map and remove
5636 * redundant constraints. This is only needed because of the
5637 * way we handle simple symmetries. In particular, we currently look
5638 * for symmetries on the constraints, before we set up the main tableau.
5639 * It is then no good to look for symmetries on possibly redundant constraints.
5641 __isl_give isl_pw_multi_aff
*isl_basic_map_partial_lexopt_pw_multi_aff(
5642 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5643 __isl_give isl_set
**empty
, int max
)
5650 isl_assert(bmap
->ctx
,
5651 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
5653 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
5654 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5656 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
5657 bmap
= isl_basic_map_detect_equalities(bmap
);
5658 bmap
= isl_basic_map_remove_redundancies(bmap
);
5660 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5662 isl_basic_set_free(dom
);
5663 isl_basic_map_free(bmap
);