2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 #include <isl_ctx_private.h>
13 #include <isl_mat_private.h>
14 #include <isl_vec_private.h>
15 #include "isl_map_private.h"
18 #include <isl_config.h>
21 * The implementation of tableaus in this file was inspired by Section 8
22 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
23 * prover for program checking".
26 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
27 unsigned n_row
, unsigned n_var
, unsigned M
)
33 tab
= isl_calloc_type(ctx
, struct isl_tab
);
36 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
39 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
40 if (n_var
&& !tab
->var
)
42 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
43 if (n_row
&& !tab
->con
)
45 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
46 if (n_var
&& !tab
->col_var
)
48 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
49 if (n_row
&& !tab
->row_var
)
51 for (i
= 0; i
< n_var
; ++i
) {
52 tab
->var
[i
].index
= i
;
53 tab
->var
[i
].is_row
= 0;
54 tab
->var
[i
].is_nonneg
= 0;
55 tab
->var
[i
].is_zero
= 0;
56 tab
->var
[i
].is_redundant
= 0;
57 tab
->var
[i
].frozen
= 0;
58 tab
->var
[i
].negated
= 0;
72 tab
->strict_redundant
= 0;
79 tab
->bottom
.type
= isl_tab_undo_bottom
;
80 tab
->bottom
.next
= NULL
;
81 tab
->top
= &tab
->bottom
;
93 isl_ctx
*isl_tab_get_ctx(struct isl_tab
*tab
)
95 return tab
? isl_mat_get_ctx(tab
->mat
) : NULL
;
98 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
107 if (tab
->max_con
< tab
->n_con
+ n_new
) {
108 struct isl_tab_var
*con
;
110 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
111 struct isl_tab_var
, tab
->max_con
+ n_new
);
115 tab
->max_con
+= n_new
;
117 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
120 tab
->mat
= isl_mat_extend(tab
->mat
,
121 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
124 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
125 int, tab
->mat
->n_row
);
128 tab
->row_var
= row_var
;
130 enum isl_tab_row_sign
*s
;
131 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
132 enum isl_tab_row_sign
, tab
->mat
->n_row
);
141 /* Make room for at least n_new extra variables.
142 * Return -1 if anything went wrong.
144 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
146 struct isl_tab_var
*var
;
147 unsigned off
= 2 + tab
->M
;
149 if (tab
->max_var
< tab
->n_var
+ n_new
) {
150 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
151 struct isl_tab_var
, tab
->n_var
+ n_new
);
155 tab
->max_var
+= n_new
;
158 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
161 tab
->mat
= isl_mat_extend(tab
->mat
,
162 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
165 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
166 int, tab
->n_col
+ n_new
);
175 struct isl_tab
*isl_tab_extend(struct isl_tab
*tab
, unsigned n_new
)
177 if (isl_tab_extend_cons(tab
, n_new
) >= 0)
184 static void free_undo_record(struct isl_tab_undo
*undo
)
186 switch (undo
->type
) {
187 case isl_tab_undo_saved_basis
:
188 free(undo
->u
.col_var
);
195 static void free_undo(struct isl_tab
*tab
)
197 struct isl_tab_undo
*undo
, *next
;
199 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
201 free_undo_record(undo
);
206 void isl_tab_free(struct isl_tab
*tab
)
211 isl_mat_free(tab
->mat
);
212 isl_vec_free(tab
->dual
);
213 isl_basic_map_free(tab
->bmap
);
219 isl_mat_free(tab
->samples
);
220 free(tab
->sample_index
);
221 isl_mat_free(tab
->basis
);
225 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
235 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
238 dup
->mat
= isl_mat_dup(tab
->mat
);
241 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
242 if (tab
->max_var
&& !dup
->var
)
244 for (i
= 0; i
< tab
->n_var
; ++i
)
245 dup
->var
[i
] = tab
->var
[i
];
246 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
247 if (tab
->max_con
&& !dup
->con
)
249 for (i
= 0; i
< tab
->n_con
; ++i
)
250 dup
->con
[i
] = tab
->con
[i
];
251 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
252 if ((tab
->mat
->n_col
- off
) && !dup
->col_var
)
254 for (i
= 0; i
< tab
->n_col
; ++i
)
255 dup
->col_var
[i
] = tab
->col_var
[i
];
256 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
257 if (tab
->mat
->n_row
&& !dup
->row_var
)
259 for (i
= 0; i
< tab
->n_row
; ++i
)
260 dup
->row_var
[i
] = tab
->row_var
[i
];
262 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
264 if (tab
->mat
->n_row
&& !dup
->row_sign
)
266 for (i
= 0; i
< tab
->n_row
; ++i
)
267 dup
->row_sign
[i
] = tab
->row_sign
[i
];
270 dup
->samples
= isl_mat_dup(tab
->samples
);
273 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
274 tab
->samples
->n_row
);
275 if (tab
->samples
->n_row
&& !dup
->sample_index
)
277 dup
->n_sample
= tab
->n_sample
;
278 dup
->n_outside
= tab
->n_outside
;
280 dup
->n_row
= tab
->n_row
;
281 dup
->n_con
= tab
->n_con
;
282 dup
->n_eq
= tab
->n_eq
;
283 dup
->max_con
= tab
->max_con
;
284 dup
->n_col
= tab
->n_col
;
285 dup
->n_var
= tab
->n_var
;
286 dup
->max_var
= tab
->max_var
;
287 dup
->n_param
= tab
->n_param
;
288 dup
->n_div
= tab
->n_div
;
289 dup
->n_dead
= tab
->n_dead
;
290 dup
->n_redundant
= tab
->n_redundant
;
291 dup
->rational
= tab
->rational
;
292 dup
->empty
= tab
->empty
;
293 dup
->strict_redundant
= 0;
297 tab
->cone
= tab
->cone
;
298 dup
->bottom
.type
= isl_tab_undo_bottom
;
299 dup
->bottom
.next
= NULL
;
300 dup
->top
= &dup
->bottom
;
302 dup
->n_zero
= tab
->n_zero
;
303 dup
->n_unbounded
= tab
->n_unbounded
;
304 dup
->basis
= isl_mat_dup(tab
->basis
);
312 /* Construct the coefficient matrix of the product tableau
314 * mat{1,2} is the coefficient matrix of tableau {1,2}
315 * row{1,2} is the number of rows in tableau {1,2}
316 * col{1,2} is the number of columns in tableau {1,2}
317 * off is the offset to the coefficient column (skipping the
318 * denominator, the constant term and the big parameter if any)
319 * r{1,2} is the number of redundant rows in tableau {1,2}
320 * d{1,2} is the number of dead columns in tableau {1,2}
322 * The order of the rows and columns in the result is as explained
323 * in isl_tab_product.
325 static struct isl_mat
*tab_mat_product(struct isl_mat
*mat1
,
326 struct isl_mat
*mat2
, unsigned row1
, unsigned row2
,
327 unsigned col1
, unsigned col2
,
328 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
331 struct isl_mat
*prod
;
334 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
340 for (i
= 0; i
< r1
; ++i
) {
341 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
342 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
343 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
344 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
345 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
349 for (i
= 0; i
< r2
; ++i
) {
350 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
351 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
352 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
353 mat2
->row
[i
] + off
, d2
);
354 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
355 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
356 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
360 for (i
= 0; i
< row1
- r1
; ++i
) {
361 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
362 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
363 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
364 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
365 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
369 for (i
= 0; i
< row2
- r2
; ++i
) {
370 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
371 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
372 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
373 mat2
->row
[r2
+ i
] + off
, d2
);
374 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
375 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
376 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
382 /* Update the row or column index of a variable that corresponds
383 * to a variable in the first input tableau.
385 static void update_index1(struct isl_tab_var
*var
,
386 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
388 if (var
->index
== -1)
390 if (var
->is_row
&& var
->index
>= r1
)
392 if (!var
->is_row
&& var
->index
>= d1
)
396 /* Update the row or column index of a variable that corresponds
397 * to a variable in the second input tableau.
399 static void update_index2(struct isl_tab_var
*var
,
400 unsigned row1
, unsigned col1
,
401 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
403 if (var
->index
== -1)
418 /* Create a tableau that represents the Cartesian product of the sets
419 * represented by tableaus tab1 and tab2.
420 * The order of the rows in the product is
421 * - redundant rows of tab1
422 * - redundant rows of tab2
423 * - non-redundant rows of tab1
424 * - non-redundant rows of tab2
425 * The order of the columns is
428 * - coefficient of big parameter, if any
429 * - dead columns of tab1
430 * - dead columns of tab2
431 * - live columns of tab1
432 * - live columns of tab2
433 * The order of the variables and the constraints is a concatenation
434 * of order in the two input tableaus.
436 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
439 struct isl_tab
*prod
;
441 unsigned r1
, r2
, d1
, d2
;
446 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
447 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
448 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
449 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
450 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
451 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
452 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
453 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
454 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
457 r1
= tab1
->n_redundant
;
458 r2
= tab2
->n_redundant
;
461 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
464 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
465 tab1
->n_row
, tab2
->n_row
,
466 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
469 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
470 tab1
->max_var
+ tab2
->max_var
);
471 if ((tab1
->max_var
+ tab2
->max_var
) && !prod
->var
)
473 for (i
= 0; i
< tab1
->n_var
; ++i
) {
474 prod
->var
[i
] = tab1
->var
[i
];
475 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
477 for (i
= 0; i
< tab2
->n_var
; ++i
) {
478 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
479 update_index2(&prod
->var
[tab1
->n_var
+ i
],
480 tab1
->n_row
, tab1
->n_col
,
483 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
484 tab1
->max_con
+ tab2
->max_con
);
485 if ((tab1
->max_con
+ tab2
->max_con
) && !prod
->con
)
487 for (i
= 0; i
< tab1
->n_con
; ++i
) {
488 prod
->con
[i
] = tab1
->con
[i
];
489 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
491 for (i
= 0; i
< tab2
->n_con
; ++i
) {
492 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
493 update_index2(&prod
->con
[tab1
->n_con
+ i
],
494 tab1
->n_row
, tab1
->n_col
,
497 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
498 tab1
->n_col
+ tab2
->n_col
);
499 if ((tab1
->n_col
+ tab2
->n_col
) && !prod
->col_var
)
501 for (i
= 0; i
< tab1
->n_col
; ++i
) {
502 int pos
= i
< d1
? i
: i
+ d2
;
503 prod
->col_var
[pos
] = tab1
->col_var
[i
];
505 for (i
= 0; i
< tab2
->n_col
; ++i
) {
506 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
507 int t
= tab2
->col_var
[i
];
512 prod
->col_var
[pos
] = t
;
514 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
515 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
516 if ((tab1
->mat
->n_row
+ tab2
->mat
->n_row
) && !prod
->row_var
)
518 for (i
= 0; i
< tab1
->n_row
; ++i
) {
519 int pos
= i
< r1
? i
: i
+ r2
;
520 prod
->row_var
[pos
] = tab1
->row_var
[i
];
522 for (i
= 0; i
< tab2
->n_row
; ++i
) {
523 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
524 int t
= tab2
->row_var
[i
];
529 prod
->row_var
[pos
] = t
;
531 prod
->samples
= NULL
;
532 prod
->sample_index
= NULL
;
533 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
534 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
536 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
537 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
538 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
539 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
542 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
543 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
544 prod
->rational
= tab1
->rational
;
545 prod
->empty
= tab1
->empty
|| tab2
->empty
;
546 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
550 prod
->cone
= tab1
->cone
;
551 prod
->bottom
.type
= isl_tab_undo_bottom
;
552 prod
->bottom
.next
= NULL
;
553 prod
->top
= &prod
->bottom
;
556 prod
->n_unbounded
= 0;
565 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
570 return &tab
->con
[~i
];
573 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
575 return var_from_index(tab
, tab
->row_var
[i
]);
578 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
580 return var_from_index(tab
, tab
->col_var
[i
]);
583 /* Check if there are any upper bounds on column variable "var",
584 * i.e., non-negative rows where var appears with a negative coefficient.
585 * Return 1 if there are no such bounds.
587 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
588 struct isl_tab_var
*var
)
591 unsigned off
= 2 + tab
->M
;
595 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
596 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
598 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
604 /* Check if there are any lower bounds on column variable "var",
605 * i.e., non-negative rows where var appears with a positive coefficient.
606 * Return 1 if there are no such bounds.
608 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
609 struct isl_tab_var
*var
)
612 unsigned off
= 2 + tab
->M
;
616 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
617 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
619 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
625 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int t
)
627 unsigned off
= 2 + tab
->M
;
631 isl_int_mul(t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
632 isl_int_submul(t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
637 isl_int_mul(t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
638 isl_int_submul(t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
639 return isl_int_sgn(t
);
642 /* Given the index of a column "c", return the index of a row
643 * that can be used to pivot the column in, with either an increase
644 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
645 * If "var" is not NULL, then the row returned will be different from
646 * the one associated with "var".
648 * Each row in the tableau is of the form
650 * x_r = a_r0 + \sum_i a_ri x_i
652 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
653 * impose any limit on the increase or decrease in the value of x_c
654 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
655 * for the row with the smallest (most stringent) such bound.
656 * Note that the common denominator of each row drops out of the fraction.
657 * To check if row j has a smaller bound than row r, i.e.,
658 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
659 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
660 * where -sign(a_jc) is equal to "sgn".
662 static int pivot_row(struct isl_tab
*tab
,
663 struct isl_tab_var
*var
, int sgn
, int c
)
667 unsigned off
= 2 + tab
->M
;
671 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
672 if (var
&& j
== var
->index
)
674 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
676 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
682 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, t
);
683 if (tsgn
< 0 || (tsgn
== 0 &&
684 tab
->row_var
[j
] < tab
->row_var
[r
]))
691 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
692 * (sgn < 0) the value of row variable var.
693 * If not NULL, then skip_var is a row variable that should be ignored
694 * while looking for a pivot row. It is usually equal to var.
696 * As the given row in the tableau is of the form
698 * x_r = a_r0 + \sum_i a_ri x_i
700 * we need to find a column such that the sign of a_ri is equal to "sgn"
701 * (such that an increase in x_i will have the desired effect) or a
702 * column with a variable that may attain negative values.
703 * If a_ri is positive, then we need to move x_i in the same direction
704 * to obtain the desired effect. Otherwise, x_i has to move in the
705 * opposite direction.
707 static void find_pivot(struct isl_tab
*tab
,
708 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
709 int sgn
, int *row
, int *col
)
716 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
717 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
720 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
721 if (isl_int_is_zero(tr
[j
]))
723 if (isl_int_sgn(tr
[j
]) != sgn
&&
724 var_from_col(tab
, j
)->is_nonneg
)
726 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
732 sgn
*= isl_int_sgn(tr
[c
]);
733 r
= pivot_row(tab
, skip_var
, sgn
, c
);
734 *row
= r
< 0 ? var
->index
: r
;
738 /* Return 1 if row "row" represents an obviously redundant inequality.
740 * - it represents an inequality or a variable
741 * - that is the sum of a non-negative sample value and a positive
742 * combination of zero or more non-negative constraints.
744 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
747 unsigned off
= 2 + tab
->M
;
749 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
752 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
754 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
756 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
759 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
760 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
762 if (tab
->col_var
[i
] >= 0)
764 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
766 if (!var_from_col(tab
, i
)->is_nonneg
)
772 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
775 enum isl_tab_row_sign s
;
777 t
= tab
->row_var
[row1
];
778 tab
->row_var
[row1
] = tab
->row_var
[row2
];
779 tab
->row_var
[row2
] = t
;
780 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
781 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
782 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
786 s
= tab
->row_sign
[row1
];
787 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
788 tab
->row_sign
[row2
] = s
;
791 static int push_union(struct isl_tab
*tab
,
792 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
793 static int push_union(struct isl_tab
*tab
,
794 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
796 struct isl_tab_undo
*undo
;
803 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
808 undo
->next
= tab
->top
;
814 int isl_tab_push_var(struct isl_tab
*tab
,
815 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
817 union isl_tab_undo_val u
;
819 u
.var_index
= tab
->row_var
[var
->index
];
821 u
.var_index
= tab
->col_var
[var
->index
];
822 return push_union(tab
, type
, u
);
825 int isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
827 union isl_tab_undo_val u
= { 0 };
828 return push_union(tab
, type
, u
);
831 /* Push a record on the undo stack describing the current basic
832 * variables, so that the this state can be restored during rollback.
834 int isl_tab_push_basis(struct isl_tab
*tab
)
837 union isl_tab_undo_val u
;
839 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
840 if (tab
->n_col
&& !u
.col_var
)
842 for (i
= 0; i
< tab
->n_col
; ++i
)
843 u
.col_var
[i
] = tab
->col_var
[i
];
844 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
847 int isl_tab_push_callback(struct isl_tab
*tab
, struct isl_tab_callback
*callback
)
849 union isl_tab_undo_val u
;
850 u
.callback
= callback
;
851 return push_union(tab
, isl_tab_undo_callback
, u
);
854 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
861 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
864 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
865 if (!tab
->sample_index
)
873 int isl_tab_add_sample(struct isl_tab
*tab
, __isl_take isl_vec
*sample
)
878 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
879 int *t
= isl_realloc_array(tab
->mat
->ctx
,
880 tab
->sample_index
, int, tab
->n_sample
+ 1);
883 tab
->sample_index
= t
;
886 tab
->samples
= isl_mat_extend(tab
->samples
,
887 tab
->n_sample
+ 1, tab
->samples
->n_col
);
891 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
892 isl_vec_free(sample
);
893 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
898 isl_vec_free(sample
);
902 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
904 if (s
!= tab
->n_outside
) {
905 int t
= tab
->sample_index
[tab
->n_outside
];
906 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
907 tab
->sample_index
[s
] = t
;
908 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
911 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
919 /* Record the current number of samples so that we can remove newer
920 * samples during a rollback.
922 int isl_tab_save_samples(struct isl_tab
*tab
)
924 union isl_tab_undo_val u
;
930 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
933 /* Mark row with index "row" as being redundant.
934 * If we may need to undo the operation or if the row represents
935 * a variable of the original problem, the row is kept,
936 * but no longer considered when looking for a pivot row.
937 * Otherwise, the row is simply removed.
939 * The row may be interchanged with some other row. If it
940 * is interchanged with a later row, return 1. Otherwise return 0.
941 * If the rows are checked in order in the calling function,
942 * then a return value of 1 means that the row with the given
943 * row number may now contain a different row that hasn't been checked yet.
945 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
947 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
948 var
->is_redundant
= 1;
949 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
950 if (tab
->preserve
|| tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
951 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
953 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
956 if (row
!= tab
->n_redundant
)
957 swap_rows(tab
, row
, tab
->n_redundant
);
959 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
961 if (row
!= tab
->n_row
- 1)
962 swap_rows(tab
, row
, tab
->n_row
- 1);
963 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
969 int isl_tab_mark_empty(struct isl_tab
*tab
)
973 if (!tab
->empty
&& tab
->need_undo
)
974 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
980 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
982 struct isl_tab_var
*var
;
987 var
= &tab
->con
[con
];
995 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
1000 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1001 * the original sign of the pivot element.
1002 * We only keep track of row signs during PILP solving and in this case
1003 * we only pivot a row with negative sign (meaning the value is always
1004 * non-positive) using a positive pivot element.
1006 * For each row j, the new value of the parametric constant is equal to
1008 * a_j0 - a_jc a_r0/a_rc
1010 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1011 * a_r0 is the parametric constant of the pivot row and a_jc is the
1012 * pivot column entry of the row j.
1013 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1014 * remains the same if a_jc has the same sign as the row j or if
1015 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1017 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1020 struct isl_mat
*mat
= tab
->mat
;
1021 unsigned off
= 2 + tab
->M
;
1026 if (tab
->row_sign
[row
] == 0)
1028 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1029 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1030 tab
->row_sign
[row
] = isl_tab_row_pos
;
1031 for (i
= 0; i
< tab
->n_row
; ++i
) {
1035 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1038 if (!tab
->row_sign
[i
])
1040 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1042 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1044 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1048 /* Given a row number "row" and a column number "col", pivot the tableau
1049 * such that the associated variables are interchanged.
1050 * The given row in the tableau expresses
1052 * x_r = a_r0 + \sum_i a_ri x_i
1056 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1058 * Substituting this equality into the other rows
1060 * x_j = a_j0 + \sum_i a_ji x_i
1062 * with a_jc \ne 0, we obtain
1064 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1071 * where i is any other column and j is any other row,
1072 * is therefore transformed into
1074 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1075 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1077 * The transformation is performed along the following steps
1079 * d_r/n_rc n_ri/n_rc
1082 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1085 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1086 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1088 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1089 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1091 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1092 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1094 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1095 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1098 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1104 struct isl_mat
*mat
= tab
->mat
;
1105 struct isl_tab_var
*var
;
1106 unsigned off
= 2 + tab
->M
;
1108 ctx
= isl_tab_get_ctx(tab
);
1109 if (isl_ctx_next_operation(ctx
) < 0)
1112 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1113 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1115 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1116 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1118 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1119 if (j
== off
- 1 + col
)
1121 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1123 if (!isl_int_is_one(mat
->row
[row
][0]))
1124 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1125 for (i
= 0; i
< tab
->n_row
; ++i
) {
1128 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1130 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1131 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1132 if (j
== off
- 1 + col
)
1134 isl_int_mul(mat
->row
[i
][1 + j
],
1135 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1136 isl_int_addmul(mat
->row
[i
][1 + j
],
1137 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1139 isl_int_mul(mat
->row
[i
][off
+ col
],
1140 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1141 if (!isl_int_is_one(mat
->row
[i
][0]))
1142 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1144 t
= tab
->row_var
[row
];
1145 tab
->row_var
[row
] = tab
->col_var
[col
];
1146 tab
->col_var
[col
] = t
;
1147 var
= isl_tab_var_from_row(tab
, row
);
1150 var
= var_from_col(tab
, col
);
1153 update_row_sign(tab
, row
, col
, sgn
);
1156 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1157 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1159 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1160 isl_tab_row_is_redundant(tab
, i
)) {
1161 int redo
= isl_tab_mark_redundant(tab
, i
);
1171 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1172 * or down (sgn < 0) to a row. The variable is assumed not to be
1173 * unbounded in the specified direction.
1174 * If sgn = 0, then the variable is unbounded in both directions,
1175 * and we pivot with any row we can find.
1177 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1178 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1181 unsigned off
= 2 + tab
->M
;
1187 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1188 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1190 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1192 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1193 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1196 return isl_tab_pivot(tab
, r
, var
->index
);
1199 /* Check whether all variables that are marked as non-negative
1200 * also have a non-negative sample value. This function is not
1201 * called from the current code but is useful during debugging.
1203 static void check_table(struct isl_tab
*tab
) __attribute__ ((unused
));
1204 static void check_table(struct isl_tab
*tab
)
1210 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1211 struct isl_tab_var
*var
;
1212 var
= isl_tab_var_from_row(tab
, i
);
1213 if (!var
->is_nonneg
)
1216 isl_assert(tab
->mat
->ctx
,
1217 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1218 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1221 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1226 /* Return the sign of the maximal value of "var".
1227 * If the sign is not negative, then on return from this function,
1228 * the sample value will also be non-negative.
1230 * If "var" is manifestly unbounded wrt positive values, we are done.
1231 * Otherwise, we pivot the variable up to a row if needed
1232 * Then we continue pivoting down until either
1233 * - no more down pivots can be performed
1234 * - the sample value is positive
1235 * - the variable is pivoted into a manifestly unbounded column
1237 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1241 if (max_is_manifestly_unbounded(tab
, var
))
1243 if (to_row(tab
, var
, 1) < 0)
1245 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1246 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1248 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1249 if (isl_tab_pivot(tab
, row
, col
) < 0)
1251 if (!var
->is_row
) /* manifestly unbounded */
1257 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1259 struct isl_tab_var
*var
;
1264 var
= &tab
->con
[con
];
1265 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1266 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1268 return sign_of_max(tab
, var
);
1271 static int row_is_neg(struct isl_tab
*tab
, int row
)
1274 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1275 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1277 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1279 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1282 static int row_sgn(struct isl_tab
*tab
, int row
)
1285 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1286 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1287 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1289 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1292 /* Perform pivots until the row variable "var" has a non-negative
1293 * sample value or until no more upward pivots can be performed.
1294 * Return the sign of the sample value after the pivots have been
1297 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1301 while (row_is_neg(tab
, var
->index
)) {
1302 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1305 if (isl_tab_pivot(tab
, row
, col
) < 0)
1307 if (!var
->is_row
) /* manifestly unbounded */
1310 return row_sgn(tab
, var
->index
);
1313 /* Perform pivots until we are sure that the row variable "var"
1314 * can attain non-negative values. After return from this
1315 * function, "var" is still a row variable, but its sample
1316 * value may not be non-negative, even if the function returns 1.
1318 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1322 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1323 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1326 if (row
== var
->index
) /* manifestly unbounded */
1328 if (isl_tab_pivot(tab
, row
, col
) < 0)
1331 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1334 /* Return a negative value if "var" can attain negative values.
1335 * Return a non-negative value otherwise.
1337 * If "var" is manifestly unbounded wrt negative values, we are done.
1338 * Otherwise, if var is in a column, we can pivot it down to a row.
1339 * Then we continue pivoting down until either
1340 * - the pivot would result in a manifestly unbounded column
1341 * => we don't perform the pivot, but simply return -1
1342 * - no more down pivots can be performed
1343 * - the sample value is negative
1344 * If the sample value becomes negative and the variable is supposed
1345 * to be nonnegative, then we undo the last pivot.
1346 * However, if the last pivot has made the pivoting variable
1347 * obviously redundant, then it may have moved to another row.
1348 * In that case we look for upward pivots until we reach a non-negative
1351 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1354 struct isl_tab_var
*pivot_var
= NULL
;
1356 if (min_is_manifestly_unbounded(tab
, var
))
1360 row
= pivot_row(tab
, NULL
, -1, col
);
1361 pivot_var
= var_from_col(tab
, col
);
1362 if (isl_tab_pivot(tab
, row
, col
) < 0)
1364 if (var
->is_redundant
)
1366 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1367 if (var
->is_nonneg
) {
1368 if (!pivot_var
->is_redundant
&&
1369 pivot_var
->index
== row
) {
1370 if (isl_tab_pivot(tab
, row
, col
) < 0)
1373 if (restore_row(tab
, var
) < -1)
1379 if (var
->is_redundant
)
1381 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1382 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1383 if (row
== var
->index
)
1386 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1387 pivot_var
= var_from_col(tab
, col
);
1388 if (isl_tab_pivot(tab
, row
, col
) < 0)
1390 if (var
->is_redundant
)
1393 if (pivot_var
&& var
->is_nonneg
) {
1394 /* pivot back to non-negative value */
1395 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1396 if (isl_tab_pivot(tab
, row
, col
) < 0)
1399 if (restore_row(tab
, var
) < -1)
1405 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1408 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1410 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1413 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1414 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1415 tab
->mat
->row
[row
][0]);
1418 /* Return 1 if "var" can attain values <= -1.
1419 * Return 0 otherwise.
1421 * The sample value of "var" is assumed to be non-negative when the
1422 * the function is called. If 1 is returned then the constraint
1423 * is not redundant and the sample value is made non-negative again before
1424 * the function returns.
1426 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1429 struct isl_tab_var
*pivot_var
;
1431 if (min_is_manifestly_unbounded(tab
, var
))
1435 row
= pivot_row(tab
, NULL
, -1, col
);
1436 pivot_var
= var_from_col(tab
, col
);
1437 if (isl_tab_pivot(tab
, row
, col
) < 0)
1439 if (var
->is_redundant
)
1441 if (row_at_most_neg_one(tab
, var
->index
)) {
1442 if (var
->is_nonneg
) {
1443 if (!pivot_var
->is_redundant
&&
1444 pivot_var
->index
== row
) {
1445 if (isl_tab_pivot(tab
, row
, col
) < 0)
1448 if (restore_row(tab
, var
) < -1)
1454 if (var
->is_redundant
)
1457 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1458 if (row
== var
->index
) {
1459 if (restore_row(tab
, var
) < -1)
1465 pivot_var
= var_from_col(tab
, col
);
1466 if (isl_tab_pivot(tab
, row
, col
) < 0)
1468 if (var
->is_redundant
)
1470 } while (!row_at_most_neg_one(tab
, var
->index
));
1471 if (var
->is_nonneg
) {
1472 /* pivot back to non-negative value */
1473 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1474 if (isl_tab_pivot(tab
, row
, col
) < 0)
1476 if (restore_row(tab
, var
) < -1)
1482 /* Return 1 if "var" can attain values >= 1.
1483 * Return 0 otherwise.
1485 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1490 if (max_is_manifestly_unbounded(tab
, var
))
1492 if (to_row(tab
, var
, 1) < 0)
1494 r
= tab
->mat
->row
[var
->index
];
1495 while (isl_int_lt(r
[1], r
[0])) {
1496 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1498 return isl_int_ge(r
[1], r
[0]);
1499 if (row
== var
->index
) /* manifestly unbounded */
1501 if (isl_tab_pivot(tab
, row
, col
) < 0)
1507 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1510 unsigned off
= 2 + tab
->M
;
1511 t
= tab
->col_var
[col1
];
1512 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1513 tab
->col_var
[col2
] = t
;
1514 var_from_col(tab
, col1
)->index
= col1
;
1515 var_from_col(tab
, col2
)->index
= col2
;
1516 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1519 /* Mark column with index "col" as representing a zero variable.
1520 * If we may need to undo the operation the column is kept,
1521 * but no longer considered.
1522 * Otherwise, the column is simply removed.
1524 * The column may be interchanged with some other column. If it
1525 * is interchanged with a later column, return 1. Otherwise return 0.
1526 * If the columns are checked in order in the calling function,
1527 * then a return value of 1 means that the column with the given
1528 * column number may now contain a different column that
1529 * hasn't been checked yet.
1531 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1533 var_from_col(tab
, col
)->is_zero
= 1;
1534 if (tab
->need_undo
) {
1535 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1536 var_from_col(tab
, col
)) < 0)
1538 if (col
!= tab
->n_dead
)
1539 swap_cols(tab
, col
, tab
->n_dead
);
1543 if (col
!= tab
->n_col
- 1)
1544 swap_cols(tab
, col
, tab
->n_col
- 1);
1545 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1551 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1553 unsigned off
= 2 + tab
->M
;
1555 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1556 tab
->mat
->row
[row
][0]))
1558 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1559 tab
->n_col
- tab
->n_dead
) != -1)
1562 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1563 tab
->mat
->row
[row
][0]);
1566 /* For integer tableaus, check if any of the coordinates are stuck
1567 * at a non-integral value.
1569 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1578 for (i
= 0; i
< tab
->n_var
; ++i
) {
1579 if (!tab
->var
[i
].is_row
)
1581 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1588 /* Row variable "var" is non-negative and cannot attain any values
1589 * larger than zero. This means that the coefficients of the unrestricted
1590 * column variables are zero and that the coefficients of the non-negative
1591 * column variables are zero or negative.
1592 * Each of the non-negative variables with a negative coefficient can
1593 * then also be written as the negative sum of non-negative variables
1594 * and must therefore also be zero.
1596 static int close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1597 static int close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1600 struct isl_mat
*mat
= tab
->mat
;
1601 unsigned off
= 2 + tab
->M
;
1603 isl_assert(tab
->mat
->ctx
, var
->is_nonneg
, return -1);
1606 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1608 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1610 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1612 isl_assert(tab
->mat
->ctx
,
1613 isl_int_is_neg(mat
->row
[var
->index
][off
+ j
]), return -1);
1614 recheck
= isl_tab_kill_col(tab
, j
);
1620 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
1622 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1627 /* Add a constraint to the tableau and allocate a row for it.
1628 * Return the index into the constraint array "con".
1630 int isl_tab_allocate_con(struct isl_tab
*tab
)
1634 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1635 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1638 tab
->con
[r
].index
= tab
->n_row
;
1639 tab
->con
[r
].is_row
= 1;
1640 tab
->con
[r
].is_nonneg
= 0;
1641 tab
->con
[r
].is_zero
= 0;
1642 tab
->con
[r
].is_redundant
= 0;
1643 tab
->con
[r
].frozen
= 0;
1644 tab
->con
[r
].negated
= 0;
1645 tab
->row_var
[tab
->n_row
] = ~r
;
1649 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1655 /* Add a variable to the tableau and allocate a column for it.
1656 * Return the index into the variable array "var".
1658 int isl_tab_allocate_var(struct isl_tab
*tab
)
1662 unsigned off
= 2 + tab
->M
;
1664 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1665 isl_assert(tab
->mat
->ctx
, tab
->n_var
< tab
->max_var
, return -1);
1668 tab
->var
[r
].index
= tab
->n_col
;
1669 tab
->var
[r
].is_row
= 0;
1670 tab
->var
[r
].is_nonneg
= 0;
1671 tab
->var
[r
].is_zero
= 0;
1672 tab
->var
[r
].is_redundant
= 0;
1673 tab
->var
[r
].frozen
= 0;
1674 tab
->var
[r
].negated
= 0;
1675 tab
->col_var
[tab
->n_col
] = r
;
1677 for (i
= 0; i
< tab
->n_row
; ++i
)
1678 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1682 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1688 /* Add a row to the tableau. The row is given as an affine combination
1689 * of the original variables and needs to be expressed in terms of the
1692 * We add each term in turn.
1693 * If r = n/d_r is the current sum and we need to add k x, then
1694 * if x is a column variable, we increase the numerator of
1695 * this column by k d_r
1696 * if x = f/d_x is a row variable, then the new representation of r is
1698 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1699 * --- + --- = ------------------- = -------------------
1700 * d_r d_r d_r d_x/g m
1702 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1704 * If tab->M is set, then, internally, each variable x is represented
1705 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1707 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1713 unsigned off
= 2 + tab
->M
;
1715 r
= isl_tab_allocate_con(tab
);
1721 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1722 isl_int_set_si(row
[0], 1);
1723 isl_int_set(row
[1], line
[0]);
1724 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1725 for (i
= 0; i
< tab
->n_var
; ++i
) {
1726 if (tab
->var
[i
].is_zero
)
1728 if (tab
->var
[i
].is_row
) {
1730 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1731 isl_int_swap(a
, row
[0]);
1732 isl_int_divexact(a
, row
[0], a
);
1734 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1735 isl_int_mul(b
, b
, line
[1 + i
]);
1736 isl_seq_combine(row
+ 1, a
, row
+ 1,
1737 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1738 1 + tab
->M
+ tab
->n_col
);
1740 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1741 line
[1 + i
], row
[0]);
1742 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1743 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1745 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1750 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1755 static int drop_row(struct isl_tab
*tab
, int row
)
1757 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1, return -1);
1758 if (row
!= tab
->n_row
- 1)
1759 swap_rows(tab
, row
, tab
->n_row
- 1);
1765 static int drop_col(struct isl_tab
*tab
, int col
)
1767 isl_assert(tab
->mat
->ctx
, tab
->col_var
[col
] == tab
->n_var
- 1, return -1);
1768 if (col
!= tab
->n_col
- 1)
1769 swap_cols(tab
, col
, tab
->n_col
- 1);
1775 /* Add inequality "ineq" and check if it conflicts with the
1776 * previously added constraints or if it is obviously redundant.
1778 int isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1787 struct isl_basic_map
*bmap
= tab
->bmap
;
1789 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, return -1);
1790 isl_assert(tab
->mat
->ctx
,
1791 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, return -1);
1792 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1793 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1800 isl_int_swap(ineq
[0], cst
);
1802 r
= isl_tab_add_row(tab
, ineq
);
1804 isl_int_swap(ineq
[0], cst
);
1809 tab
->con
[r
].is_nonneg
= 1;
1810 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1812 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1813 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1818 sgn
= restore_row(tab
, &tab
->con
[r
]);
1822 return isl_tab_mark_empty(tab
);
1823 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1824 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1829 /* Pivot a non-negative variable down until it reaches the value zero
1830 * and then pivot the variable into a column position.
1832 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1833 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1837 unsigned off
= 2 + tab
->M
;
1842 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1843 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1844 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1845 if (isl_tab_pivot(tab
, row
, col
) < 0)
1851 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1852 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1855 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1856 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1862 /* We assume Gaussian elimination has been performed on the equalities.
1863 * The equalities can therefore never conflict.
1864 * Adding the equalities is currently only really useful for a later call
1865 * to isl_tab_ineq_type.
1867 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1874 r
= isl_tab_add_row(tab
, eq
);
1878 r
= tab
->con
[r
].index
;
1879 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
1880 tab
->n_col
- tab
->n_dead
);
1881 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
1883 if (isl_tab_pivot(tab
, r
, i
) < 0)
1885 if (isl_tab_kill_col(tab
, i
) < 0)
1895 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
1897 unsigned off
= 2 + tab
->M
;
1899 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
1901 if (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))
1903 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1904 tab
->n_col
- tab
->n_dead
) == -1;
1907 /* Add an equality that is known to be valid for the given tableau.
1909 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1911 struct isl_tab_var
*var
;
1916 r
= isl_tab_add_row(tab
, eq
);
1922 if (row_is_manifestly_zero(tab
, r
)) {
1924 if (isl_tab_mark_redundant(tab
, r
) < 0)
1929 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
1930 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
1935 if (to_col(tab
, var
) < 0)
1938 if (isl_tab_kill_col(tab
, var
->index
) < 0)
1944 static int add_zero_row(struct isl_tab
*tab
)
1949 r
= isl_tab_allocate_con(tab
);
1953 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1954 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
1955 isl_int_set_si(row
[0], 1);
1960 /* Add equality "eq" and check if it conflicts with the
1961 * previously added constraints or if it is obviously redundant.
1963 int isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1965 struct isl_tab_undo
*snap
= NULL
;
1966 struct isl_tab_var
*var
;
1974 isl_assert(tab
->mat
->ctx
, !tab
->M
, return -1);
1977 snap
= isl_tab_snap(tab
);
1981 isl_int_swap(eq
[0], cst
);
1983 r
= isl_tab_add_row(tab
, eq
);
1985 isl_int_swap(eq
[0], cst
);
1993 if (row_is_manifestly_zero(tab
, row
)) {
1995 if (isl_tab_rollback(tab
, snap
) < 0)
2003 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2004 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2006 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2007 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
2008 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2009 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2013 if (add_zero_row(tab
) < 0)
2017 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2020 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2027 sgn
= sign_of_max(tab
, var
);
2031 if (isl_tab_mark_empty(tab
) < 0)
2038 if (to_col(tab
, var
) < 0)
2041 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2047 /* Construct and return an inequality that expresses an upper bound
2049 * In particular, if the div is given by
2053 * then the inequality expresses
2057 static struct isl_vec
*ineq_for_div(struct isl_basic_map
*bmap
, unsigned div
)
2061 struct isl_vec
*ineq
;
2066 total
= isl_basic_map_total_dim(bmap
);
2067 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2069 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2073 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2074 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2078 /* For a div d = floor(f/m), add the constraints
2081 * -(f-(m-1)) + m d >= 0
2083 * Note that the second constraint is the negation of
2087 * If add_ineq is not NULL, then this function is used
2088 * instead of isl_tab_add_ineq to effectively add the inequalities.
2090 static int add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2091 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2095 struct isl_vec
*ineq
;
2097 total
= isl_basic_map_total_dim(tab
->bmap
);
2098 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2100 ineq
= ineq_for_div(tab
->bmap
, div
);
2105 if (add_ineq(user
, ineq
->el
) < 0)
2108 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2112 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2113 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2114 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2115 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2118 if (add_ineq(user
, ineq
->el
) < 0)
2121 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2133 /* Check whether the div described by "div" is obviously non-negative.
2134 * If we are using a big parameter, then we will encode the div
2135 * as div' = M + div, which is always non-negative.
2136 * Otherwise, we check whether div is a non-negative affine combination
2137 * of non-negative variables.
2139 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2146 if (isl_int_is_neg(div
->el
[1]))
2149 for (i
= 0; i
< tab
->n_var
; ++i
) {
2150 if (isl_int_is_neg(div
->el
[2 + i
]))
2152 if (isl_int_is_zero(div
->el
[2 + i
]))
2154 if (!tab
->var
[i
].is_nonneg
)
2161 /* Add an extra div, prescribed by "div" to the tableau and
2162 * the associated bmap (which is assumed to be non-NULL).
2164 * If add_ineq is not NULL, then this function is used instead
2165 * of isl_tab_add_ineq to add the div constraints.
2166 * This complication is needed because the code in isl_tab_pip
2167 * wants to perform some extra processing when an inequality
2168 * is added to the tableau.
2170 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
,
2171 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2180 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
2182 nonneg
= div_is_nonneg(tab
, div
);
2184 if (isl_tab_extend_cons(tab
, 3) < 0)
2186 if (isl_tab_extend_vars(tab
, 1) < 0)
2188 r
= isl_tab_allocate_var(tab
);
2193 tab
->var
[r
].is_nonneg
= 1;
2195 tab
->bmap
= isl_basic_map_extend_space(tab
->bmap
,
2196 isl_basic_map_get_space(tab
->bmap
), 1, 0, 2);
2197 k
= isl_basic_map_alloc_div(tab
->bmap
);
2200 isl_seq_cpy(tab
->bmap
->div
[k
], div
->el
, div
->size
);
2201 if (isl_tab_push(tab
, isl_tab_undo_bmap_div
) < 0)
2204 if (add_div_constraints(tab
, k
, add_ineq
, user
) < 0)
2210 /* If "track" is set, then we want to keep track of all constraints in tab
2211 * in its bmap field. This field is initialized from a copy of "bmap",
2212 * so we need to make sure that all constraints in "bmap" also appear
2213 * in the constructed tab.
2215 __isl_give
struct isl_tab
*isl_tab_from_basic_map(
2216 __isl_keep isl_basic_map
*bmap
, int track
)
2219 struct isl_tab
*tab
;
2223 tab
= isl_tab_alloc(bmap
->ctx
,
2224 isl_basic_map_total_dim(bmap
) + bmap
->n_ineq
+ 1,
2225 isl_basic_map_total_dim(bmap
), 0);
2228 tab
->preserve
= track
;
2229 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2230 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2231 if (isl_tab_mark_empty(tab
) < 0)
2235 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2236 tab
= add_eq(tab
, bmap
->eq
[i
]);
2240 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2241 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2247 if (track
&& isl_tab_track_bmap(tab
, isl_basic_map_copy(bmap
)) < 0)
2255 __isl_give
struct isl_tab
*isl_tab_from_basic_set(
2256 __isl_keep isl_basic_set
*bset
, int track
)
2258 return isl_tab_from_basic_map(bset
, track
);
2261 /* Construct a tableau corresponding to the recession cone of "bset".
2263 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2268 struct isl_tab
*tab
;
2269 unsigned offset
= 0;
2274 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2275 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2276 isl_basic_set_total_dim(bset
) - offset
, 0);
2279 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2283 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2284 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2286 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2289 tab
= add_eq(tab
, bset
->eq
[i
]);
2290 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2294 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2296 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2297 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2298 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2301 tab
->con
[r
].is_nonneg
= 1;
2302 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2314 /* Assuming "tab" is the tableau of a cone, check if the cone is
2315 * bounded, i.e., if it is empty or only contains the origin.
2317 int isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2325 if (tab
->n_dead
== tab
->n_col
)
2329 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2330 struct isl_tab_var
*var
;
2332 var
= isl_tab_var_from_row(tab
, i
);
2333 if (!var
->is_nonneg
)
2335 sgn
= sign_of_max(tab
, var
);
2340 if (close_row(tab
, var
) < 0)
2344 if (tab
->n_dead
== tab
->n_col
)
2346 if (i
== tab
->n_row
)
2351 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2358 for (i
= 0; i
< tab
->n_var
; ++i
) {
2360 if (!tab
->var
[i
].is_row
)
2362 row
= tab
->var
[i
].index
;
2363 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2364 tab
->mat
->row
[row
][0]))
2370 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2373 struct isl_vec
*vec
;
2375 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2379 isl_int_set_si(vec
->block
.data
[0], 1);
2380 for (i
= 0; i
< tab
->n_var
; ++i
) {
2381 if (!tab
->var
[i
].is_row
)
2382 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2384 int row
= tab
->var
[i
].index
;
2385 isl_int_divexact(vec
->block
.data
[1 + i
],
2386 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2393 struct isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2396 struct isl_vec
*vec
;
2402 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2408 isl_int_set_si(vec
->block
.data
[0], 1);
2409 for (i
= 0; i
< tab
->n_var
; ++i
) {
2411 if (!tab
->var
[i
].is_row
) {
2412 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2415 row
= tab
->var
[i
].index
;
2416 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2417 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2418 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2419 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2420 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2422 vec
= isl_vec_normalize(vec
);
2428 /* Update "bmap" based on the results of the tableau "tab".
2429 * In particular, implicit equalities are made explicit, redundant constraints
2430 * are removed and if the sample value happens to be integer, it is stored
2431 * in "bmap" (unless "bmap" already had an integer sample).
2433 * The tableau is assumed to have been created from "bmap" using
2434 * isl_tab_from_basic_map.
2436 struct isl_basic_map
*isl_basic_map_update_from_tab(struct isl_basic_map
*bmap
,
2437 struct isl_tab
*tab
)
2449 bmap
= isl_basic_map_set_to_empty(bmap
);
2451 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2452 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2453 isl_basic_map_inequality_to_equality(bmap
, i
);
2454 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2455 isl_basic_map_drop_inequality(bmap
, i
);
2457 if (bmap
->n_eq
!= n_eq
)
2458 isl_basic_map_gauss(bmap
, NULL
);
2459 if (!tab
->rational
&&
2460 !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2461 bmap
->sample
= extract_integer_sample(tab
);
2465 struct isl_basic_set
*isl_basic_set_update_from_tab(struct isl_basic_set
*bset
,
2466 struct isl_tab
*tab
)
2468 return (struct isl_basic_set
*)isl_basic_map_update_from_tab(
2469 (struct isl_basic_map
*)bset
, tab
);
2472 /* Given a non-negative variable "var", add a new non-negative variable
2473 * that is the opposite of "var", ensuring that var can only attain the
2475 * If var = n/d is a row variable, then the new variable = -n/d.
2476 * If var is a column variables, then the new variable = -var.
2477 * If the new variable cannot attain non-negative values, then
2478 * the resulting tableau is empty.
2479 * Otherwise, we know the value will be zero and we close the row.
2481 static int cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2486 unsigned off
= 2 + tab
->M
;
2490 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -1);
2491 isl_assert(tab
->mat
->ctx
, var
->is_nonneg
, return -1);
2493 if (isl_tab_extend_cons(tab
, 1) < 0)
2497 tab
->con
[r
].index
= tab
->n_row
;
2498 tab
->con
[r
].is_row
= 1;
2499 tab
->con
[r
].is_nonneg
= 0;
2500 tab
->con
[r
].is_zero
= 0;
2501 tab
->con
[r
].is_redundant
= 0;
2502 tab
->con
[r
].frozen
= 0;
2503 tab
->con
[r
].negated
= 0;
2504 tab
->row_var
[tab
->n_row
] = ~r
;
2505 row
= tab
->mat
->row
[tab
->n_row
];
2508 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2509 isl_seq_neg(row
+ 1,
2510 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2512 isl_int_set_si(row
[0], 1);
2513 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2514 isl_int_set_si(row
[off
+ var
->index
], -1);
2519 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
2522 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2526 if (isl_tab_mark_empty(tab
) < 0)
2530 tab
->con
[r
].is_nonneg
= 1;
2531 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2534 if (close_row(tab
, &tab
->con
[r
]) < 0)
2540 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2541 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2542 * by r' = r + 1 >= 0.
2543 * If r is a row variable, we simply increase the constant term by one
2544 * (taking into account the denominator).
2545 * If r is a column variable, then we need to modify each row that
2546 * refers to r = r' - 1 by substituting this equality, effectively
2547 * subtracting the coefficient of the column from the constant.
2548 * We should only do this if the minimum is manifestly unbounded,
2549 * however. Otherwise, we may end up with negative sample values
2550 * for non-negative variables.
2551 * So, if r is a column variable with a minimum that is not
2552 * manifestly unbounded, then we need to move it to a row.
2553 * However, the sample value of this row may be negative,
2554 * even after the relaxation, so we need to restore it.
2555 * We therefore prefer to pivot a column up to a row, if possible.
2557 struct isl_tab
*isl_tab_relax(struct isl_tab
*tab
, int con
)
2559 struct isl_tab_var
*var
;
2560 unsigned off
= 2 + tab
->M
;
2565 var
= &tab
->con
[con
];
2567 if (var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_redundant
))
2568 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2569 "cannot relax redundant constraint", goto error
);
2570 if (!var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_dead
))
2571 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2572 "cannot relax dead constraint", goto error
);
2574 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2575 if (to_row(tab
, var
, 1) < 0)
2577 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2578 if (to_row(tab
, var
, -1) < 0)
2582 isl_int_add(tab
->mat
->row
[var
->index
][1],
2583 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2584 if (restore_row(tab
, var
) < 0)
2589 for (i
= 0; i
< tab
->n_row
; ++i
) {
2590 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2592 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2593 tab
->mat
->row
[i
][off
+ var
->index
]);
2598 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2607 /* Remove the sign constraint from constraint "con".
2609 * If the constraint variable was originally marked non-negative,
2610 * then we make sure we mark it non-negative again during rollback.
2612 int isl_tab_unrestrict(struct isl_tab
*tab
, int con
)
2614 struct isl_tab_var
*var
;
2619 var
= &tab
->con
[con
];
2620 if (!var
->is_nonneg
)
2624 if (isl_tab_push_var(tab
, isl_tab_undo_unrestrict
, var
) < 0)
2630 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2635 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2638 static int may_be_equality(struct isl_tab
*tab
, int row
)
2640 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2641 : isl_int_lt(tab
->mat
->row
[row
][1],
2642 tab
->mat
->row
[row
][0]);
2645 /* Check for (near) equalities among the constraints.
2646 * A constraint is an equality if it is non-negative and if
2647 * its maximal value is either
2648 * - zero (in case of rational tableaus), or
2649 * - strictly less than 1 (in case of integer tableaus)
2651 * We first mark all non-redundant and non-dead variables that
2652 * are not frozen and not obviously not an equality.
2653 * Then we iterate over all marked variables if they can attain
2654 * any values larger than zero or at least one.
2655 * If the maximal value is zero, we mark any column variables
2656 * that appear in the row as being zero and mark the row as being redundant.
2657 * Otherwise, if the maximal value is strictly less than one (and the
2658 * tableau is integer), then we restrict the value to being zero
2659 * by adding an opposite non-negative variable.
2661 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2670 if (tab
->n_dead
== tab
->n_col
)
2674 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2675 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2676 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2677 may_be_equality(tab
, i
);
2681 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2682 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2683 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2688 struct isl_tab_var
*var
;
2690 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2691 var
= isl_tab_var_from_row(tab
, i
);
2695 if (i
== tab
->n_row
) {
2696 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2697 var
= var_from_col(tab
, i
);
2701 if (i
== tab
->n_col
)
2706 sgn
= sign_of_max(tab
, var
);
2710 if (close_row(tab
, var
) < 0)
2712 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
2713 if (cut_to_hyperplane(tab
, var
) < 0)
2715 return isl_tab_detect_implicit_equalities(tab
);
2717 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2718 var
= isl_tab_var_from_row(tab
, i
);
2721 if (may_be_equality(tab
, i
))
2731 /* Update the element of row_var or col_var that corresponds to
2732 * constraint tab->con[i] to a move from position "old" to position "i".
2734 static int update_con_after_move(struct isl_tab
*tab
, int i
, int old
)
2739 index
= tab
->con
[i
].index
;
2742 p
= tab
->con
[i
].is_row
? tab
->row_var
: tab
->col_var
;
2743 if (p
[index
] != ~old
)
2744 isl_die(tab
->mat
->ctx
, isl_error_internal
,
2745 "broken internal state", return -1);
2751 /* Rotate the "n" constraints starting at "first" to the right,
2752 * putting the last constraint in the position of the first constraint.
2754 static int rotate_constraints(struct isl_tab
*tab
, int first
, int n
)
2757 struct isl_tab_var var
;
2762 last
= first
+ n
- 1;
2763 var
= tab
->con
[last
];
2764 for (i
= last
; i
> first
; --i
) {
2765 tab
->con
[i
] = tab
->con
[i
- 1];
2766 if (update_con_after_move(tab
, i
, i
- 1) < 0)
2769 tab
->con
[first
] = var
;
2770 if (update_con_after_move(tab
, first
, last
) < 0)
2776 /* Make the equalities that are implicit in "bmap" but that have been
2777 * detected in the corresponding "tab" explicit in "bmap" and update
2778 * "tab" to reflect the new order of the constraints.
2780 * In particular, if inequality i is an implicit equality then
2781 * isl_basic_map_inequality_to_equality will move the inequality
2782 * in front of the other equality and it will move the last inequality
2783 * in the position of inequality i.
2784 * In the tableau, the inequalities of "bmap" are stored after the equalities
2785 * and so the original order
2787 * E E E E E A A A I B B B B L
2791 * I E E E E E A A A L B B B B
2793 * where I is the implicit equality, the E are equalities,
2794 * the A inequalities before I, the B inequalities after I and
2795 * L the last inequality.
2796 * We therefore need to rotate to the right two sets of constraints,
2797 * those up to and including I and those after I.
2799 * If "tab" contains any constraints that are not in "bmap" then they
2800 * appear after those in "bmap" and they should be left untouched.
2802 * Note that this function leaves "bmap" in a temporary state
2803 * as it does not call isl_basic_map_gauss. Calling this function
2804 * is the responsibility of the caller.
2806 __isl_give isl_basic_map
*isl_tab_make_equalities_explicit(struct isl_tab
*tab
,
2807 __isl_take isl_basic_map
*bmap
)
2812 return isl_basic_map_free(bmap
);
2816 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2817 if (!isl_tab_is_equality(tab
, bmap
->n_eq
+ i
))
2819 isl_basic_map_inequality_to_equality(bmap
, i
);
2820 if (rotate_constraints(tab
, 0, tab
->n_eq
+ i
+ 1) < 0)
2821 return isl_basic_map_free(bmap
);
2822 if (rotate_constraints(tab
, tab
->n_eq
+ i
+ 1,
2823 bmap
->n_ineq
- i
) < 0)
2824 return isl_basic_map_free(bmap
);
2831 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2835 if (tab
->rational
) {
2836 int sgn
= sign_of_min(tab
, var
);
2841 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
2848 /* Check for (near) redundant constraints.
2849 * A constraint is redundant if it is non-negative and if
2850 * its minimal value (temporarily ignoring the non-negativity) is either
2851 * - zero (in case of rational tableaus), or
2852 * - strictly larger than -1 (in case of integer tableaus)
2854 * We first mark all non-redundant and non-dead variables that
2855 * are not frozen and not obviously negatively unbounded.
2856 * Then we iterate over all marked variables if they can attain
2857 * any values smaller than zero or at most negative one.
2858 * If not, we mark the row as being redundant (assuming it hasn't
2859 * been detected as being obviously redundant in the mean time).
2861 int isl_tab_detect_redundant(struct isl_tab
*tab
)
2870 if (tab
->n_redundant
== tab
->n_row
)
2874 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2875 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2876 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2880 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2881 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2882 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2883 !min_is_manifestly_unbounded(tab
, var
);
2888 struct isl_tab_var
*var
;
2890 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2891 var
= isl_tab_var_from_row(tab
, i
);
2895 if (i
== tab
->n_row
) {
2896 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2897 var
= var_from_col(tab
, i
);
2901 if (i
== tab
->n_col
)
2906 red
= con_is_redundant(tab
, var
);
2909 if (red
&& !var
->is_redundant
)
2910 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
2912 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2913 var
= var_from_col(tab
, i
);
2916 if (!min_is_manifestly_unbounded(tab
, var
))
2926 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
2933 if (tab
->con
[con
].is_zero
)
2935 if (tab
->con
[con
].is_redundant
)
2937 if (!tab
->con
[con
].is_row
)
2938 return tab
->con
[con
].index
< tab
->n_dead
;
2940 row
= tab
->con
[con
].index
;
2943 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
2944 (!tab
->M
|| isl_int_is_zero(tab
->mat
->row
[row
][2])) &&
2945 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2946 tab
->n_col
- tab
->n_dead
) == -1;
2949 /* Return the minimal value of the affine expression "f" with denominator
2950 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2951 * the expression cannot attain arbitrarily small values.
2952 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2953 * The return value reflects the nature of the result (empty, unbounded,
2954 * minimal value returned in *opt).
2956 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
2957 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
2961 enum isl_lp_result res
= isl_lp_ok
;
2962 struct isl_tab_var
*var
;
2963 struct isl_tab_undo
*snap
;
2966 return isl_lp_error
;
2969 return isl_lp_empty
;
2971 snap
= isl_tab_snap(tab
);
2972 r
= isl_tab_add_row(tab
, f
);
2974 return isl_lp_error
;
2978 find_pivot(tab
, var
, var
, -1, &row
, &col
);
2979 if (row
== var
->index
) {
2980 res
= isl_lp_unbounded
;
2985 if (isl_tab_pivot(tab
, row
, col
) < 0)
2986 return isl_lp_error
;
2988 isl_int_mul(tab
->mat
->row
[var
->index
][0],
2989 tab
->mat
->row
[var
->index
][0], denom
);
2990 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
2993 isl_vec_free(tab
->dual
);
2994 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
2996 return isl_lp_error
;
2997 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
2998 for (i
= 0; i
< tab
->n_con
; ++i
) {
3000 if (tab
->con
[i
].is_row
) {
3001 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
3004 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
3005 if (tab
->con
[i
].negated
)
3006 isl_int_neg(tab
->dual
->el
[1 + i
],
3007 tab
->mat
->row
[var
->index
][pos
]);
3009 isl_int_set(tab
->dual
->el
[1 + i
],
3010 tab
->mat
->row
[var
->index
][pos
]);
3013 if (opt
&& res
== isl_lp_ok
) {
3015 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
3016 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
3018 isl_int_cdiv_q(*opt
, tab
->mat
->row
[var
->index
][1],
3019 tab
->mat
->row
[var
->index
][0]);
3021 if (isl_tab_rollback(tab
, snap
) < 0)
3022 return isl_lp_error
;
3026 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
3030 if (tab
->con
[con
].is_zero
)
3032 if (tab
->con
[con
].is_redundant
)
3034 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
3037 /* Take a snapshot of the tableau that can be restored by s call to
3040 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
3048 /* Undo the operation performed by isl_tab_relax.
3050 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
3051 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3053 unsigned off
= 2 + tab
->M
;
3055 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
3056 if (to_row(tab
, var
, 1) < 0)
3060 isl_int_sub(tab
->mat
->row
[var
->index
][1],
3061 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
3062 if (var
->is_nonneg
) {
3063 int sgn
= restore_row(tab
, var
);
3064 isl_assert(tab
->mat
->ctx
, sgn
>= 0, return -1);
3069 for (i
= 0; i
< tab
->n_row
; ++i
) {
3070 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
3072 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
3073 tab
->mat
->row
[i
][off
+ var
->index
]);
3081 /* Undo the operation performed by isl_tab_unrestrict.
3083 * In particular, mark the variable as being non-negative and make
3084 * sure the sample value respects this constraint.
3086 static int ununrestrict(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3090 if (var
->is_row
&& restore_row(tab
, var
) < -1)
3096 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3097 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3099 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
3100 switch (undo
->type
) {
3101 case isl_tab_undo_nonneg
:
3104 case isl_tab_undo_redundant
:
3105 var
->is_redundant
= 0;
3107 restore_row(tab
, isl_tab_var_from_row(tab
, tab
->n_redundant
));
3109 case isl_tab_undo_freeze
:
3112 case isl_tab_undo_zero
:
3117 case isl_tab_undo_allocate
:
3118 if (undo
->u
.var_index
>= 0) {
3119 isl_assert(tab
->mat
->ctx
, !var
->is_row
, return -1);
3120 drop_col(tab
, var
->index
);
3124 if (!max_is_manifestly_unbounded(tab
, var
)) {
3125 if (to_row(tab
, var
, 1) < 0)
3127 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
3128 if (to_row(tab
, var
, -1) < 0)
3131 if (to_row(tab
, var
, 0) < 0)
3134 drop_row(tab
, var
->index
);
3136 case isl_tab_undo_relax
:
3137 return unrelax(tab
, var
);
3138 case isl_tab_undo_unrestrict
:
3139 return ununrestrict(tab
, var
);
3141 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3142 "perform_undo_var called on invalid undo record",
3149 /* Restore the tableau to the state where the basic variables
3150 * are those in "col_var".
3151 * We first construct a list of variables that are currently in
3152 * the basis, but shouldn't. Then we iterate over all variables
3153 * that should be in the basis and for each one that is currently
3154 * not in the basis, we exchange it with one of the elements of the
3155 * list constructed before.
3156 * We can always find an appropriate variable to pivot with because
3157 * the current basis is mapped to the old basis by a non-singular
3158 * matrix and so we can never end up with a zero row.
3160 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
3164 int *extra
= NULL
; /* current columns that contain bad stuff */
3165 unsigned off
= 2 + tab
->M
;
3167 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
3168 if (tab
->n_col
&& !extra
)
3170 for (i
= 0; i
< tab
->n_col
; ++i
) {
3171 for (j
= 0; j
< tab
->n_col
; ++j
)
3172 if (tab
->col_var
[i
] == col_var
[j
])
3176 extra
[n_extra
++] = i
;
3178 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
3179 struct isl_tab_var
*var
;
3182 for (j
= 0; j
< tab
->n_col
; ++j
)
3183 if (col_var
[i
] == tab
->col_var
[j
])
3187 var
= var_from_index(tab
, col_var
[i
]);
3189 for (j
= 0; j
< n_extra
; ++j
)
3190 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
3192 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
3193 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
3195 extra
[j
] = extra
[--n_extra
];
3205 /* Remove all samples with index n or greater, i.e., those samples
3206 * that were added since we saved this number of samples in
3207 * isl_tab_save_samples.
3209 static void drop_samples_since(struct isl_tab
*tab
, int n
)
3213 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
3214 if (tab
->sample_index
[i
] < n
)
3217 if (i
!= tab
->n_sample
- 1) {
3218 int t
= tab
->sample_index
[tab
->n_sample
-1];
3219 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
3220 tab
->sample_index
[i
] = t
;
3221 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
3227 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3228 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3230 switch (undo
->type
) {
3231 case isl_tab_undo_empty
:
3234 case isl_tab_undo_nonneg
:
3235 case isl_tab_undo_redundant
:
3236 case isl_tab_undo_freeze
:
3237 case isl_tab_undo_zero
:
3238 case isl_tab_undo_allocate
:
3239 case isl_tab_undo_relax
:
3240 case isl_tab_undo_unrestrict
:
3241 return perform_undo_var(tab
, undo
);
3242 case isl_tab_undo_bmap_eq
:
3243 return isl_basic_map_free_equality(tab
->bmap
, 1);
3244 case isl_tab_undo_bmap_ineq
:
3245 return isl_basic_map_free_inequality(tab
->bmap
, 1);
3246 case isl_tab_undo_bmap_div
:
3247 if (isl_basic_map_free_div(tab
->bmap
, 1) < 0)
3250 tab
->samples
->n_col
--;
3252 case isl_tab_undo_saved_basis
:
3253 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
3256 case isl_tab_undo_drop_sample
:
3259 case isl_tab_undo_saved_samples
:
3260 drop_samples_since(tab
, undo
->u
.n
);
3262 case isl_tab_undo_callback
:
3263 return undo
->u
.callback
->run(undo
->u
.callback
);
3265 isl_assert(tab
->mat
->ctx
, 0, return -1);
3270 /* Return the tableau to the state it was in when the snapshot "snap"
3273 int isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
3275 struct isl_tab_undo
*undo
, *next
;
3281 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
3285 if (perform_undo(tab
, undo
) < 0) {
3291 free_undo_record(undo
);
3300 /* The given row "row" represents an inequality violated by all
3301 * points in the tableau. Check for some special cases of such
3302 * separating constraints.
3303 * In particular, if the row has been reduced to the constant -1,
3304 * then we know the inequality is adjacent (but opposite) to
3305 * an equality in the tableau.
3306 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3307 * of the tableau and c a positive constant, then the inequality
3308 * is adjacent (but opposite) to the inequality r'.
3310 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
3313 unsigned off
= 2 + tab
->M
;
3316 return isl_ineq_separate
;
3318 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
3319 return isl_ineq_separate
;
3321 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3322 tab
->n_col
- tab
->n_dead
);
3324 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
3325 return isl_ineq_adj_eq
;
3327 return isl_ineq_separate
;
3330 if (!isl_int_eq(tab
->mat
->row
[row
][1],
3331 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
3332 return isl_ineq_separate
;
3334 pos
= isl_seq_first_non_zero(
3335 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
3336 tab
->n_col
- tab
->n_dead
- pos
- 1);
3338 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
3341 /* Check the effect of inequality "ineq" on the tableau "tab".
3343 * isl_ineq_redundant: satisfied by all points in the tableau
3344 * isl_ineq_separate: satisfied by no point in the tableau
3345 * isl_ineq_cut: satisfied by some by not all points
3346 * isl_ineq_adj_eq: adjacent to an equality
3347 * isl_ineq_adj_ineq: adjacent to an inequality.
3349 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
3351 enum isl_ineq_type type
= isl_ineq_error
;
3352 struct isl_tab_undo
*snap
= NULL
;
3357 return isl_ineq_error
;
3359 if (isl_tab_extend_cons(tab
, 1) < 0)
3360 return isl_ineq_error
;
3362 snap
= isl_tab_snap(tab
);
3364 con
= isl_tab_add_row(tab
, ineq
);
3368 row
= tab
->con
[con
].index
;
3369 if (isl_tab_row_is_redundant(tab
, row
))
3370 type
= isl_ineq_redundant
;
3371 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
3373 isl_int_abs_ge(tab
->mat
->row
[row
][1],
3374 tab
->mat
->row
[row
][0]))) {
3375 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
3379 type
= isl_ineq_cut
;
3381 type
= separation_type(tab
, row
);
3383 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
3387 type
= isl_ineq_cut
;
3389 type
= isl_ineq_redundant
;
3392 if (isl_tab_rollback(tab
, snap
))
3393 return isl_ineq_error
;
3396 return isl_ineq_error
;
3399 int isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
3401 bmap
= isl_basic_map_cow(bmap
);
3406 bmap
= isl_basic_map_set_to_empty(bmap
);
3413 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, goto error
);
3414 isl_assert(tab
->mat
->ctx
,
3415 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, goto error
);
3421 isl_basic_map_free(bmap
);
3425 int isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
3427 return isl_tab_track_bmap(tab
, (isl_basic_map
*)bset
);
3430 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
3435 return (isl_basic_set
*)tab
->bmap
;
3438 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
3439 FILE *out
, int indent
)
3445 fprintf(out
, "%*snull tab\n", indent
, "");
3448 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
3449 tab
->n_redundant
, tab
->n_dead
);
3451 fprintf(out
, ", rational");
3453 fprintf(out
, ", empty");
3455 fprintf(out
, "%*s[", indent
, "");
3456 for (i
= 0; i
< tab
->n_var
; ++i
) {
3458 fprintf(out
, (i
== tab
->n_param
||
3459 i
== tab
->n_var
- tab
->n_div
) ? "; "
3461 fprintf(out
, "%c%d%s", tab
->var
[i
].is_row
? 'r' : 'c',
3463 tab
->var
[i
].is_zero
? " [=0]" :
3464 tab
->var
[i
].is_redundant
? " [R]" : "");
3466 fprintf(out
, "]\n");
3467 fprintf(out
, "%*s[", indent
, "");
3468 for (i
= 0; i
< tab
->n_con
; ++i
) {
3471 fprintf(out
, "%c%d%s", tab
->con
[i
].is_row
? 'r' : 'c',
3473 tab
->con
[i
].is_zero
? " [=0]" :
3474 tab
->con
[i
].is_redundant
? " [R]" : "");
3476 fprintf(out
, "]\n");
3477 fprintf(out
, "%*s[", indent
, "");
3478 for (i
= 0; i
< tab
->n_row
; ++i
) {
3479 const char *sign
= "";
3482 if (tab
->row_sign
) {
3483 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
3485 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
3487 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
3492 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
3493 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
3495 fprintf(out
, "]\n");
3496 fprintf(out
, "%*s[", indent
, "");
3497 for (i
= 0; i
< tab
->n_col
; ++i
) {
3500 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
3501 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
3503 fprintf(out
, "]\n");
3504 r
= tab
->mat
->n_row
;
3505 tab
->mat
->n_row
= tab
->n_row
;
3506 c
= tab
->mat
->n_col
;
3507 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
3508 isl_mat_print_internal(tab
->mat
, out
, indent
);
3509 tab
->mat
->n_row
= r
;
3510 tab
->mat
->n_col
= c
;
3512 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
3515 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
3517 isl_tab_print_internal(tab
, stderr
, 0);