2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_sample.h"
11 #include "isl_sample_piplib.h"
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
18 #include "isl_basis_reduction.h"
20 static struct isl_vec
*empty_sample(struct isl_basic_set
*bset
)
24 vec
= isl_vec_alloc(bset
->ctx
, 0);
25 isl_basic_set_free(bset
);
29 /* Construct a zero sample of the same dimension as bset.
30 * As a special case, if bset is zero-dimensional, this
31 * function creates a zero-dimensional sample point.
33 static struct isl_vec
*zero_sample(struct isl_basic_set
*bset
)
36 struct isl_vec
*sample
;
38 dim
= isl_basic_set_total_dim(bset
);
39 sample
= isl_vec_alloc(bset
->ctx
, 1 + dim
);
41 isl_int_set_si(sample
->el
[0], 1);
42 isl_seq_clr(sample
->el
+ 1, dim
);
44 isl_basic_set_free(bset
);
48 static struct isl_vec
*interval_sample(struct isl_basic_set
*bset
)
52 struct isl_vec
*sample
;
54 bset
= isl_basic_set_simplify(bset
);
57 if (isl_basic_set_fast_is_empty(bset
))
58 return empty_sample(bset
);
59 if (bset
->n_eq
== 0 && bset
->n_ineq
== 0)
60 return zero_sample(bset
);
62 sample
= isl_vec_alloc(bset
->ctx
, 2);
63 isl_int_set_si(sample
->block
.data
[0], 1);
66 isl_assert(bset
->ctx
, bset
->n_eq
== 1, goto error
);
67 isl_assert(bset
->ctx
, bset
->n_ineq
== 0, goto error
);
68 if (isl_int_is_one(bset
->eq
[0][1]))
69 isl_int_neg(sample
->el
[1], bset
->eq
[0][0]);
71 isl_assert(bset
->ctx
, isl_int_is_negone(bset
->eq
[0][1]),
73 isl_int_set(sample
->el
[1], bset
->eq
[0][0]);
75 isl_basic_set_free(bset
);
80 if (isl_int_is_one(bset
->ineq
[0][1]))
81 isl_int_neg(sample
->block
.data
[1], bset
->ineq
[0][0]);
83 isl_int_set(sample
->block
.data
[1], bset
->ineq
[0][0]);
84 for (i
= 1; i
< bset
->n_ineq
; ++i
) {
85 isl_seq_inner_product(sample
->block
.data
,
86 bset
->ineq
[i
], 2, &t
);
87 if (isl_int_is_neg(t
))
91 if (i
< bset
->n_ineq
) {
93 return empty_sample(bset
);
96 isl_basic_set_free(bset
);
99 isl_basic_set_free(bset
);
100 isl_vec_free(sample
);
104 static struct isl_mat
*independent_bounds(struct isl_basic_set
*bset
)
107 struct isl_mat
*dirs
= NULL
;
108 struct isl_mat
*bounds
= NULL
;
114 dim
= isl_basic_set_n_dim(bset
);
115 bounds
= isl_mat_alloc(bset
->ctx
, 1+dim
, 1+dim
);
119 isl_int_set_si(bounds
->row
[0][0], 1);
120 isl_seq_clr(bounds
->row
[0]+1, dim
);
123 if (bset
->n_ineq
== 0)
126 dirs
= isl_mat_alloc(bset
->ctx
, dim
, dim
);
128 isl_mat_free(bounds
);
131 isl_seq_cpy(dirs
->row
[0], bset
->ineq
[0]+1, dirs
->n_col
);
132 isl_seq_cpy(bounds
->row
[1], bset
->ineq
[0], bounds
->n_col
);
133 for (j
= 1, n
= 1; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
136 isl_seq_cpy(dirs
->row
[n
], bset
->ineq
[j
]+1, dirs
->n_col
);
138 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
141 for (i
= 0; i
< n
; ++i
) {
143 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
], dirs
->n_col
);
148 isl_seq_elim(dirs
->row
[n
], dirs
->row
[i
], pos
,
150 pos
= isl_seq_first_non_zero(dirs
->row
[n
], dirs
->n_col
);
158 isl_int
*t
= dirs
->row
[n
];
159 for (k
= n
; k
> i
; --k
)
160 dirs
->row
[k
] = dirs
->row
[k
-1];
164 isl_seq_cpy(bounds
->row
[n
], bset
->ineq
[j
], bounds
->n_col
);
171 static void swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
173 isl_int
*t
= bset
->ineq
[a
];
174 bset
->ineq
[a
] = bset
->ineq
[b
];
178 /* Skew into positive orthant and project out lineality space.
180 * We perform a unimodular transformation that turns a selected
181 * maximal set of linearly independent bounds into constraints
182 * on the first dimensions that impose that these first dimensions
183 * are non-negative. In particular, the constraint matrix is lower
184 * triangular with positive entries on the diagonal and negative
186 * If "bset" has a lineality space then these constraints (and therefore
187 * all constraints in bset) only involve the first dimensions.
188 * The remaining dimensions then do not appear in any constraints and
189 * we can select any value for them, say zero. We therefore project
190 * out this final dimensions and plug in the value zero later. This
191 * is accomplished by simply dropping the final columns of
192 * the unimodular transformation.
194 static struct isl_basic_set
*isl_basic_set_skew_to_positive_orthant(
195 struct isl_basic_set
*bset
, struct isl_mat
**T
)
197 struct isl_mat
*U
= NULL
;
198 struct isl_mat
*bounds
= NULL
;
200 unsigned old_dim
, new_dim
;
206 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
207 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
208 isl_assert(bset
->ctx
, bset
->n_eq
== 0, goto error
);
210 old_dim
= isl_basic_set_n_dim(bset
);
211 /* Try to move (multiples of) unit rows up. */
212 for (i
= 0, j
= 0; i
< bset
->n_ineq
; ++i
) {
213 int pos
= isl_seq_first_non_zero(bset
->ineq
[i
]+1, old_dim
);
216 if (isl_seq_first_non_zero(bset
->ineq
[i
]+1+pos
+1,
220 swap_inequality(bset
, i
, j
);
223 bounds
= independent_bounds(bset
);
226 new_dim
= bounds
->n_row
- 1;
227 bounds
= isl_mat_left_hermite(bounds
, 1, &U
, NULL
);
230 U
= isl_mat_drop_cols(U
, 1 + new_dim
, old_dim
- new_dim
);
231 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
235 isl_mat_free(bounds
);
238 isl_mat_free(bounds
);
240 isl_basic_set_free(bset
);
244 /* Find a sample integer point, if any, in bset, which is known
245 * to have equalities. If bset contains no integer points, then
246 * return a zero-length vector.
247 * We simply remove the known equalities, compute a sample
248 * in the resulting bset, using the specified recurse function,
249 * and then transform the sample back to the original space.
251 static struct isl_vec
*sample_eq(struct isl_basic_set
*bset
,
252 struct isl_vec
*(*recurse
)(struct isl_basic_set
*))
255 struct isl_vec
*sample
;
260 bset
= isl_basic_set_remove_equalities(bset
, &T
, NULL
);
261 sample
= recurse(bset
);
262 if (!sample
|| sample
->size
== 0)
265 sample
= isl_mat_vec_product(T
, sample
);
269 /* Return a matrix containing the equalities of the tableau
270 * in constraint form. The tableau is assumed to have
271 * an associated bset that has been kept up-to-date.
273 static struct isl_mat
*tab_equalities(struct isl_tab
*tab
)
278 struct isl_basic_set
*bset
;
283 bset
= isl_tab_peek_bset(tab
);
284 isl_assert(tab
->mat
->ctx
, bset
, return NULL
);
286 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
287 if (tab
->empty
|| n_eq
== 0)
288 return isl_mat_alloc(tab
->mat
->ctx
, 0, tab
->n_var
);
289 if (n_eq
== tab
->n_var
)
290 return isl_mat_identity(tab
->mat
->ctx
, tab
->n_var
);
292 eq
= isl_mat_alloc(tab
->mat
->ctx
, n_eq
, tab
->n_var
);
295 for (i
= 0, j
= 0; i
< tab
->n_con
; ++i
) {
296 if (tab
->con
[i
].is_row
)
298 if (tab
->con
[i
].index
>= 0 && tab
->con
[i
].index
>= tab
->n_dead
)
301 isl_seq_cpy(eq
->row
[j
], bset
->eq
[i
] + 1, tab
->n_var
);
303 isl_seq_cpy(eq
->row
[j
],
304 bset
->ineq
[i
- bset
->n_eq
] + 1, tab
->n_var
);
307 isl_assert(bset
->ctx
, j
== n_eq
, goto error
);
314 /* Compute and return an initial basis for the bounded tableau "tab".
316 * If the tableau is either full-dimensional or zero-dimensional,
317 * the we simply return an identity matrix.
318 * Otherwise, we construct a basis whose first directions correspond
321 static struct isl_mat
*initial_basis(struct isl_tab
*tab
)
327 n_eq
= tab
->n_var
- tab
->n_col
+ tab
->n_dead
;
328 if (tab
->empty
|| n_eq
== 0 || n_eq
== tab
->n_var
)
329 return isl_mat_identity(tab
->mat
->ctx
, 1 + tab
->n_var
);
331 eq
= tab_equalities(tab
);
332 eq
= isl_mat_left_hermite(eq
, 0, NULL
, &Q
);
337 Q
= isl_mat_lin_to_aff(Q
);
341 /* Given a tableau representing a set, find and return
342 * an integer point in the set, if there is any.
344 * We perform a depth first search
345 * for an integer point, by scanning all possible values in the range
346 * attained by a basis vector, where an initial basis may have been set
347 * by the calling function. Otherwise an initial basis that exploits
348 * the equalities in the tableau is created.
349 * tab->n_zero is currently ignored and is clobbered by this function.
351 * The tableau is allowed to have unbounded direction, but then
352 * the calling function needs to set an initial basis, with the
353 * unbounded directions last and with tab->n_unbounded set
354 * to the number of unbounded directions.
355 * Furthermore, the calling functions needs to add shifted copies
356 * of all constraints involving unbounded directions to ensure
357 * that any feasible rational value in these directions can be rounded
358 * up to yield a feasible integer value.
359 * In particular, let B define the given basis x' = B x
360 * and let T be the inverse of B, i.e., X = T x'.
361 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
362 * or a T x' + c >= 0 in terms of the given basis. Assume that
363 * the bounded directions have an integer value, then we can safely
364 * round up the values for the unbounded directions if we make sure
365 * that x' not only satisfies the original constraint, but also
366 * the constraint "a T x' + c + s >= 0" with s the sum of all
367 * negative values in the last n_unbounded entries of "a T".
368 * The calling function therefore needs to add the constraint
369 * a x + c + s >= 0. The current function then scans the first
370 * directions for an integer value and once those have been found,
371 * it can compute "T ceil(B x)" to yield an integer point in the set.
372 * Note that during the search, the first rows of B may be changed
373 * by a basis reduction, but the last n_unbounded rows of B remain
374 * unaltered and are also not mixed into the first rows.
376 * The search is implemented iteratively. "level" identifies the current
377 * basis vector. "init" is true if we want the first value at the current
378 * level and false if we want the next value.
380 * The initial basis is the identity matrix. If the range in some direction
381 * contains more than one integer value, we perform basis reduction based
382 * on the value of ctx->opt->gbr
383 * - ISL_GBR_NEVER: never perform basis reduction
384 * - ISL_GBR_ONCE: only perform basis reduction the first
385 * time such a range is encountered
386 * - ISL_GBR_ALWAYS: always perform basis reduction when
387 * such a range is encountered
389 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
390 * reduction computation to return early. That is, as soon as it
391 * finds a reasonable first direction.
393 struct isl_vec
*isl_tab_sample(struct isl_tab
*tab
)
398 struct isl_vec
*sample
;
401 enum isl_lp_result res
;
405 struct isl_tab_undo
**snap
;
410 return isl_vec_alloc(tab
->mat
->ctx
, 0);
413 tab
->basis
= initial_basis(tab
);
416 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_row
== tab
->n_var
+ 1,
418 isl_assert(tab
->mat
->ctx
, tab
->basis
->n_col
== tab
->n_var
+ 1,
425 if (tab
->n_unbounded
== tab
->n_var
) {
426 sample
= isl_tab_get_sample_value(tab
);
427 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
), sample
);
428 sample
= isl_vec_ceil(sample
);
429 sample
= isl_mat_vec_inverse_product(isl_mat_copy(tab
->basis
),
434 if (isl_tab_extend_cons(tab
, dim
+ 1) < 0)
437 min
= isl_vec_alloc(ctx
, dim
);
438 max
= isl_vec_alloc(ctx
, dim
);
439 snap
= isl_alloc_array(ctx
, struct isl_tab_undo
*, dim
);
441 if (!min
|| !max
|| !snap
)
451 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
452 ctx
->one
, &min
->el
[level
], NULL
, 0);
453 if (res
== isl_lp_empty
)
455 isl_assert(ctx
, res
!= isl_lp_unbounded
, goto error
);
456 if (res
== isl_lp_error
)
458 if (!empty
&& isl_tab_sample_is_integer(tab
))
460 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
461 tab
->basis
->row
[1 + level
] + 1, dim
);
462 res
= isl_tab_min(tab
, tab
->basis
->row
[1 + level
],
463 ctx
->one
, &max
->el
[level
], NULL
, 0);
464 isl_seq_neg(tab
->basis
->row
[1 + level
] + 1,
465 tab
->basis
->row
[1 + level
] + 1, dim
);
466 isl_int_neg(max
->el
[level
], max
->el
[level
]);
467 if (res
== isl_lp_empty
)
469 isl_assert(ctx
, res
!= isl_lp_unbounded
, goto error
);
470 if (res
== isl_lp_error
)
472 if (!empty
&& isl_tab_sample_is_integer(tab
))
474 if (!empty
&& !reduced
&&
475 ctx
->opt
->gbr
!= ISL_GBR_NEVER
&&
476 isl_int_lt(min
->el
[level
], max
->el
[level
])) {
477 unsigned gbr_only_first
;
478 if (ctx
->opt
->gbr
== ISL_GBR_ONCE
)
479 ctx
->opt
->gbr
= ISL_GBR_NEVER
;
481 gbr_only_first
= ctx
->opt
->gbr_only_first
;
482 ctx
->opt
->gbr_only_first
=
483 ctx
->opt
->gbr
== ISL_GBR_ALWAYS
;
484 tab
= isl_tab_compute_reduced_basis(tab
);
485 ctx
->opt
->gbr_only_first
= gbr_only_first
;
486 if (!tab
|| !tab
->basis
)
492 snap
[level
] = isl_tab_snap(tab
);
494 isl_int_add_ui(min
->el
[level
], min
->el
[level
], 1);
496 if (empty
|| isl_int_gt(min
->el
[level
], max
->el
[level
])) {
500 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
504 isl_int_neg(tab
->basis
->row
[1 + level
][0], min
->el
[level
]);
505 tab
= isl_tab_add_valid_eq(tab
, tab
->basis
->row
[1 + level
]);
506 isl_int_set_si(tab
->basis
->row
[1 + level
][0], 0);
507 if (level
+ tab
->n_unbounded
< dim
- 1) {
516 sample
= isl_tab_get_sample_value(tab
);
519 if (tab
->n_unbounded
&& !isl_int_is_one(sample
->el
[0])) {
520 sample
= isl_mat_vec_product(isl_mat_copy(tab
->basis
),
522 sample
= isl_vec_ceil(sample
);
523 sample
= isl_mat_vec_inverse_product(
524 isl_mat_copy(tab
->basis
), sample
);
527 sample
= isl_vec_alloc(ctx
, 0);
542 /* Given a basic set that is known to be bounded, find and return
543 * an integer point in the basic set, if there is any.
545 * After handling some trivial cases, we construct a tableau
546 * and then use isl_tab_sample to find a sample, passing it
547 * the identity matrix as initial basis.
549 static struct isl_vec
*sample_bounded(struct isl_basic_set
*bset
)
553 struct isl_vec
*sample
;
554 struct isl_tab
*tab
= NULL
;
559 if (isl_basic_set_fast_is_empty(bset
))
560 return empty_sample(bset
);
562 dim
= isl_basic_set_total_dim(bset
);
564 return zero_sample(bset
);
566 return interval_sample(bset
);
568 return sample_eq(bset
, sample_bounded
);
572 tab
= isl_tab_from_basic_set(bset
);
573 if (tab
&& tab
->empty
) {
575 ISL_F_SET(bset
, ISL_BASIC_SET_EMPTY
);
576 sample
= isl_vec_alloc(bset
->ctx
, 0);
577 isl_basic_set_free(bset
);
581 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
583 if (!ISL_F_ISSET(bset
, ISL_BASIC_SET_NO_IMPLICIT
))
584 tab
= isl_tab_detect_implicit_equalities(tab
);
588 sample
= isl_tab_sample(tab
);
592 if (sample
->size
> 0) {
593 isl_vec_free(bset
->sample
);
594 bset
->sample
= isl_vec_copy(sample
);
597 isl_basic_set_free(bset
);
601 isl_basic_set_free(bset
);
606 /* Given a basic set "bset" and a value "sample" for the first coordinates
607 * of bset, plug in these values and drop the corresponding coordinates.
609 * We do this by computing the preimage of the transformation
615 * where [1 s] is the sample value and I is the identity matrix of the
616 * appropriate dimension.
618 static struct isl_basic_set
*plug_in(struct isl_basic_set
*bset
,
619 struct isl_vec
*sample
)
625 if (!bset
|| !sample
)
628 total
= isl_basic_set_total_dim(bset
);
629 T
= isl_mat_alloc(bset
->ctx
, 1 + total
, 1 + total
- (sample
->size
- 1));
633 for (i
= 0; i
< sample
->size
; ++i
) {
634 isl_int_set(T
->row
[i
][0], sample
->el
[i
]);
635 isl_seq_clr(T
->row
[i
] + 1, T
->n_col
- 1);
637 for (i
= 0; i
< T
->n_col
- 1; ++i
) {
638 isl_seq_clr(T
->row
[sample
->size
+ i
], T
->n_col
);
639 isl_int_set_si(T
->row
[sample
->size
+ i
][1 + i
], 1);
641 isl_vec_free(sample
);
643 bset
= isl_basic_set_preimage(bset
, T
);
646 isl_basic_set_free(bset
);
647 isl_vec_free(sample
);
651 /* Given a basic set "bset", return any (possibly non-integer) point
654 static struct isl_vec
*rational_sample(struct isl_basic_set
*bset
)
657 struct isl_vec
*sample
;
662 tab
= isl_tab_from_basic_set(bset
);
663 sample
= isl_tab_get_sample_value(tab
);
666 isl_basic_set_free(bset
);
671 /* Given a linear cone "cone" and a rational point "vec",
672 * construct a polyhedron with shifted copies of the constraints in "cone",
673 * i.e., a polyhedron with "cone" as its recession cone, such that each
674 * point x in this polyhedron is such that the unit box positioned at x
675 * lies entirely inside the affine cone 'vec + cone'.
676 * Any rational point in this polyhedron may therefore be rounded up
677 * to yield an integer point that lies inside said affine cone.
679 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
680 * point "vec" by v/d.
681 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
682 * by <a_i, x> - b/d >= 0.
683 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
684 * We prefer this polyhedron over the actual affine cone because it doesn't
685 * require a scaling of the constraints.
686 * If each of the vertices of the unit cube positioned at x lies inside
687 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
688 * We therefore impose that x' = x + \sum e_i, for any selection of unit
689 * vectors lies inside the polyhedron, i.e.,
691 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
693 * The most stringent of these constraints is the one that selects
694 * all negative a_i, so the polyhedron we are looking for has constraints
696 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
698 * Note that if cone were known to have only non-negative rays
699 * (which can be accomplished by a unimodular transformation),
700 * then we would only have to check the points x' = x + e_i
701 * and we only have to add the smallest negative a_i (if any)
702 * instead of the sum of all negative a_i.
704 static struct isl_basic_set
*shift_cone(struct isl_basic_set
*cone
,
710 struct isl_basic_set
*shift
= NULL
;
715 isl_assert(cone
->ctx
, cone
->n_eq
== 0, goto error
);
717 total
= isl_basic_set_total_dim(cone
);
719 shift
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone
),
722 for (i
= 0; i
< cone
->n_ineq
; ++i
) {
723 k
= isl_basic_set_alloc_inequality(shift
);
726 isl_seq_cpy(shift
->ineq
[k
] + 1, cone
->ineq
[i
] + 1, total
);
727 isl_seq_inner_product(shift
->ineq
[k
] + 1, vec
->el
+ 1, total
,
729 isl_int_cdiv_q(shift
->ineq
[k
][0],
730 shift
->ineq
[k
][0], vec
->el
[0]);
731 isl_int_neg(shift
->ineq
[k
][0], shift
->ineq
[k
][0]);
732 for (j
= 0; j
< total
; ++j
) {
733 if (isl_int_is_nonneg(shift
->ineq
[k
][1 + j
]))
735 isl_int_add(shift
->ineq
[k
][0],
736 shift
->ineq
[k
][0], shift
->ineq
[k
][1 + j
]);
740 isl_basic_set_free(cone
);
743 return isl_basic_set_finalize(shift
);
745 isl_basic_set_free(shift
);
746 isl_basic_set_free(cone
);
751 /* Given a rational point vec in a (transformed) basic set,
752 * such that cone is the recession cone of the original basic set,
753 * "round up" the rational point to an integer point.
755 * We first check if the rational point just happens to be integer.
756 * If not, we transform the cone in the same way as the basic set,
757 * pick a point x in this cone shifted to the rational point such that
758 * the whole unit cube at x is also inside this affine cone.
759 * Then we simply round up the coordinates of x and return the
760 * resulting integer point.
762 static struct isl_vec
*round_up_in_cone(struct isl_vec
*vec
,
763 struct isl_basic_set
*cone
, struct isl_mat
*U
)
767 if (!vec
|| !cone
|| !U
)
770 isl_assert(vec
->ctx
, vec
->size
!= 0, goto error
);
771 if (isl_int_is_one(vec
->el
[0])) {
773 isl_basic_set_free(cone
);
777 total
= isl_basic_set_total_dim(cone
);
778 cone
= isl_basic_set_preimage(cone
, U
);
779 cone
= isl_basic_set_remove_dims(cone
, 0, total
- (vec
->size
- 1));
781 cone
= shift_cone(cone
, vec
);
783 vec
= rational_sample(cone
);
784 vec
= isl_vec_ceil(vec
);
789 isl_basic_set_free(cone
);
793 /* Concatenate two integer vectors, i.e., two vectors with denominator
794 * (stored in element 0) equal to 1.
796 static struct isl_vec
*vec_concat(struct isl_vec
*vec1
, struct isl_vec
*vec2
)
802 isl_assert(vec1
->ctx
, vec1
->size
> 0, goto error
);
803 isl_assert(vec2
->ctx
, vec2
->size
> 0, goto error
);
804 isl_assert(vec1
->ctx
, isl_int_is_one(vec1
->el
[0]), goto error
);
805 isl_assert(vec2
->ctx
, isl_int_is_one(vec2
->el
[0]), goto error
);
807 vec
= isl_vec_alloc(vec1
->ctx
, vec1
->size
+ vec2
->size
- 1);
811 isl_seq_cpy(vec
->el
, vec1
->el
, vec1
->size
);
812 isl_seq_cpy(vec
->el
+ vec1
->size
, vec2
->el
+ 1, vec2
->size
- 1);
824 /* Drop all constraints in bset that involve any of the dimensions
825 * first to first+n-1.
827 static struct isl_basic_set
*drop_constraints_involving
828 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
835 bset
= isl_basic_set_cow(bset
);
837 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
838 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
840 isl_basic_set_drop_inequality(bset
, i
);
846 /* Give a basic set "bset" with recession cone "cone", compute and
847 * return an integer point in bset, if any.
849 * If the recession cone is full-dimensional, then we know that
850 * bset contains an infinite number of integer points and it is
851 * fairly easy to pick one of them.
852 * If the recession cone is not full-dimensional, then we first
853 * transform bset such that the bounded directions appear as
854 * the first dimensions of the transformed basic set.
855 * We do this by using a unimodular transformation that transforms
856 * the equalities in the recession cone to equalities on the first
859 * The transformed set is then projected onto its bounded dimensions.
860 * Note that to compute this projection, we can simply drop all constraints
861 * involving any of the unbounded dimensions since these constraints
862 * cannot be combined to produce a constraint on the bounded dimensions.
863 * To see this, assume that there is such a combination of constraints
864 * that produces a constraint on the bounded dimensions. This means
865 * that some combination of the unbounded dimensions has both an upper
866 * bound and a lower bound in terms of the bounded dimensions, but then
867 * this combination would be a bounded direction too and would have been
868 * transformed into a bounded dimensions.
870 * We then compute a sample value in the bounded dimensions.
871 * If no such value can be found, then the original set did not contain
872 * any integer points and we are done.
873 * Otherwise, we plug in the value we found in the bounded dimensions,
874 * project out these bounded dimensions and end up with a set with
875 * a full-dimensional recession cone.
876 * A sample point in this set is computed by "rounding up" any
877 * rational point in the set.
879 * The sample points in the bounded and unbounded dimensions are
880 * then combined into a single sample point and transformed back
881 * to the original space.
883 __isl_give isl_vec
*isl_basic_set_sample_with_cone(
884 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*cone
)
888 struct isl_mat
*M
, *U
;
889 struct isl_vec
*sample
;
890 struct isl_vec
*cone_sample
;
892 struct isl_basic_set
*bounded
;
898 total
= isl_basic_set_total_dim(cone
);
899 cone_dim
= total
- cone
->n_eq
;
901 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
902 M
= isl_mat_left_hermite(M
, 0, &U
, NULL
);
907 U
= isl_mat_lin_to_aff(U
);
908 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
910 bounded
= isl_basic_set_copy(bset
);
911 bounded
= drop_constraints_involving(bounded
, total
- cone_dim
, cone_dim
);
912 bounded
= isl_basic_set_drop_dims(bounded
, total
- cone_dim
, cone_dim
);
913 sample
= sample_bounded(bounded
);
914 if (!sample
|| sample
->size
== 0) {
915 isl_basic_set_free(bset
);
916 isl_basic_set_free(cone
);
920 bset
= plug_in(bset
, isl_vec_copy(sample
));
921 cone_sample
= rational_sample(bset
);
922 cone_sample
= round_up_in_cone(cone_sample
, cone
, isl_mat_copy(U
));
923 sample
= vec_concat(sample
, cone_sample
);
924 sample
= isl_mat_vec_product(U
, sample
);
927 isl_basic_set_free(cone
);
928 isl_basic_set_free(bset
);
932 static void vec_sum_of_neg(struct isl_vec
*v
, isl_int
*s
)
936 isl_int_set_si(*s
, 0);
938 for (i
= 0; i
< v
->size
; ++i
)
939 if (isl_int_is_neg(v
->el
[i
]))
940 isl_int_add(*s
, *s
, v
->el
[i
]);
943 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
944 * to the recession cone and the inverse of a new basis U = inv(B),
945 * with the unbounded directions in B last,
946 * add constraints to "tab" that ensure any rational value
947 * in the unbounded directions can be rounded up to an integer value.
949 * The new basis is given by x' = B x, i.e., x = U x'.
950 * For any rational value of the last tab->n_unbounded coordinates
951 * in the update tableau, the value that is obtained by rounding
952 * up this value should be contained in the original tableau.
953 * For any constraint "a x + c >= 0", we therefore need to add
954 * a constraint "a x + c + s >= 0", with s the sum of all negative
955 * entries in the last elements of "a U".
957 * Since we are not interested in the first entries of any of the "a U",
958 * we first drop the columns of U that correpond to bounded directions.
960 static int tab_shift_cone(struct isl_tab
*tab
,
961 struct isl_tab
*tab_cone
, struct isl_mat
*U
)
965 struct isl_basic_set
*bset
= NULL
;
967 if (tab
&& tab
->n_unbounded
== 0) {
972 if (!tab
|| !tab_cone
|| !U
)
974 bset
= isl_tab_peek_bset(tab_cone
);
975 U
= isl_mat_drop_cols(U
, 0, tab
->n_var
- tab
->n_unbounded
);
976 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
978 struct isl_vec
*row
= NULL
;
979 if (isl_tab_is_equality(tab_cone
, tab_cone
->n_eq
+ i
))
981 row
= isl_vec_alloc(bset
->ctx
, tab_cone
->n_var
);
984 isl_seq_cpy(row
->el
, bset
->ineq
[i
] + 1, tab_cone
->n_var
);
985 row
= isl_vec_mat_product(row
, isl_mat_copy(U
));
988 vec_sum_of_neg(row
, &v
);
990 if (isl_int_is_zero(v
))
992 tab
= isl_tab_extend(tab
, 1);
993 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
994 ok
= isl_tab_add_ineq(tab
, bset
->ineq
[i
]) >= 0;
995 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], v
);
1009 /* Compute and return an initial basis for the possibly
1010 * unbounded tableau "tab". "tab_cone" is a tableau
1011 * for the corresponding recession cone.
1012 * Additionally, add constraints to "tab" that ensure
1013 * that any rational value for the unbounded directions
1014 * can be rounded up to an integer value.
1016 * If the tableau is bounded, i.e., if the recession cone
1017 * is zero-dimensional, then we just use inital_basis.
1018 * Otherwise, we construct a basis whose first directions
1019 * correspond to equalities, followed by bounded directions,
1020 * i.e., equalities in the recession cone.
1021 * The remaining directions are then unbounded.
1023 int isl_tab_set_initial_basis_with_cone(struct isl_tab
*tab
,
1024 struct isl_tab
*tab_cone
)
1027 struct isl_mat
*cone_eq
;
1028 struct isl_mat
*U
, *Q
;
1030 if (!tab
|| !tab_cone
)
1033 if (tab_cone
->n_col
== tab_cone
->n_dead
) {
1034 tab
->basis
= initial_basis(tab
);
1035 return tab
->basis
? 0 : -1;
1038 eq
= tab_equalities(tab
);
1041 tab
->n_zero
= eq
->n_row
;
1042 cone_eq
= tab_equalities(tab_cone
);
1043 eq
= isl_mat_concat(eq
, cone_eq
);
1046 tab
->n_unbounded
= tab
->n_var
- (eq
->n_row
- tab
->n_zero
);
1047 eq
= isl_mat_left_hermite(eq
, 0, &U
, &Q
);
1051 tab
->basis
= isl_mat_lin_to_aff(Q
);
1052 if (tab_shift_cone(tab
, tab_cone
, U
) < 0)
1059 /* Compute and return a sample point in bset using generalized basis
1060 * reduction. We first check if the input set has a non-trivial
1061 * recession cone. If so, we perform some extra preprocessing in
1062 * sample_with_cone. Otherwise, we directly perform generalized basis
1065 static struct isl_vec
*gbr_sample(struct isl_basic_set
*bset
)
1068 struct isl_basic_set
*cone
;
1070 dim
= isl_basic_set_total_dim(bset
);
1072 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
1074 if (cone
->n_eq
< dim
)
1075 return isl_basic_set_sample_with_cone(bset
, cone
);
1077 isl_basic_set_free(cone
);
1078 return sample_bounded(bset
);
1081 static struct isl_vec
*pip_sample(struct isl_basic_set
*bset
)
1084 struct isl_ctx
*ctx
;
1085 struct isl_vec
*sample
;
1087 bset
= isl_basic_set_skew_to_positive_orthant(bset
, &T
);
1092 sample
= isl_pip_basic_set_sample(bset
);
1094 if (sample
&& sample
->size
!= 0)
1095 sample
= isl_mat_vec_product(T
, sample
);
1102 static struct isl_vec
*basic_set_sample(struct isl_basic_set
*bset
, int bounded
)
1104 struct isl_ctx
*ctx
;
1110 if (isl_basic_set_fast_is_empty(bset
))
1111 return empty_sample(bset
);
1113 dim
= isl_basic_set_n_dim(bset
);
1114 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
1115 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
1117 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
1118 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
1122 struct isl_vec
*sample
= isl_vec_copy(bset
->sample
);
1123 isl_basic_set_free(bset
);
1127 isl_vec_free(bset
->sample
);
1128 bset
->sample
= NULL
;
1131 return sample_eq(bset
, bounded
? isl_basic_set_sample_bounded
1132 : isl_basic_set_sample_vec
);
1134 return zero_sample(bset
);
1136 return interval_sample(bset
);
1138 switch (bset
->ctx
->opt
->ilp_solver
) {
1140 return pip_sample(bset
);
1142 return bounded
? sample_bounded(bset
) : gbr_sample(bset
);
1144 isl_assert(bset
->ctx
, 0, );
1146 isl_basic_set_free(bset
);
1150 __isl_give isl_vec
*isl_basic_set_sample_vec(__isl_take isl_basic_set
*bset
)
1152 return basic_set_sample(bset
, 0);
1155 /* Compute an integer sample in "bset", where the caller guarantees
1156 * that "bset" is bounded.
1158 struct isl_vec
*isl_basic_set_sample_bounded(struct isl_basic_set
*bset
)
1160 return basic_set_sample(bset
, 1);
1163 __isl_give isl_basic_set
*isl_basic_set_from_vec(__isl_take isl_vec
*vec
)
1167 struct isl_basic_set
*bset
= NULL
;
1168 struct isl_ctx
*ctx
;
1174 isl_assert(ctx
, vec
->size
!= 0, goto error
);
1176 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
1179 dim
= isl_basic_set_n_dim(bset
);
1180 for (i
= dim
- 1; i
>= 0; --i
) {
1181 k
= isl_basic_set_alloc_equality(bset
);
1184 isl_seq_clr(bset
->eq
[k
], 1 + dim
);
1185 isl_int_neg(bset
->eq
[k
][0], vec
->el
[1 + i
]);
1186 isl_int_set(bset
->eq
[k
][1 + i
], vec
->el
[0]);
1192 isl_basic_set_free(bset
);
1197 __isl_give isl_basic_map
*isl_basic_map_sample(__isl_take isl_basic_map
*bmap
)
1199 struct isl_basic_set
*bset
;
1200 struct isl_vec
*sample_vec
;
1202 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1203 sample_vec
= isl_basic_set_sample_vec(bset
);
1206 if (sample_vec
->size
== 0) {
1207 struct isl_basic_map
*sample
;
1208 sample
= isl_basic_map_empty_like(bmap
);
1209 isl_vec_free(sample_vec
);
1210 isl_basic_map_free(bmap
);
1213 bset
= isl_basic_set_from_vec(sample_vec
);
1214 return isl_basic_map_overlying_set(bset
, bmap
);
1216 isl_basic_map_free(bmap
);
1220 __isl_give isl_basic_map
*isl_map_sample(__isl_take isl_map
*map
)
1223 isl_basic_map
*sample
= NULL
;
1228 for (i
= 0; i
< map
->n
; ++i
) {
1229 sample
= isl_basic_map_sample(isl_basic_map_copy(map
->p
[i
]));
1232 if (!ISL_F_ISSET(sample
, ISL_BASIC_MAP_EMPTY
))
1234 isl_basic_map_free(sample
);
1237 sample
= isl_basic_map_empty_like_map(map
);
1245 __isl_give isl_basic_set
*isl_set_sample(__isl_take isl_set
*set
)
1247 return (isl_basic_set
*) isl_map_sample((isl_map
*)set
);