2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
16 #include <isl_lp_private.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
25 #include <isl_range.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
30 #include <isl/deprecated/polynomial_int.h>
32 static unsigned pos(__isl_keep isl_space
*dim
, enum isl_dim_type type
)
35 case isl_dim_param
: return 0;
36 case isl_dim_in
: return dim
->nparam
;
37 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
42 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
50 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
55 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
57 return (struct isl_upoly_cst
*)up
;
60 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
65 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
67 return (struct isl_upoly_rec
*)up
;
70 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
71 __isl_keep
struct isl_upoly
*up2
)
74 struct isl_upoly_rec
*rec1
, *rec2
;
80 if (up1
->var
!= up2
->var
)
82 if (isl_upoly_is_cst(up1
)) {
83 struct isl_upoly_cst
*cst1
, *cst2
;
84 cst1
= isl_upoly_as_cst(up1
);
85 cst2
= isl_upoly_as_cst(up2
);
88 return isl_int_eq(cst1
->n
, cst2
->n
) &&
89 isl_int_eq(cst1
->d
, cst2
->d
);
92 rec1
= isl_upoly_as_rec(up1
);
93 rec2
= isl_upoly_as_rec(up2
);
97 if (rec1
->n
!= rec2
->n
)
100 for (i
= 0; i
< rec1
->n
; ++i
) {
101 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
109 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
111 struct isl_upoly_cst
*cst
;
115 if (!isl_upoly_is_cst(up
))
118 cst
= isl_upoly_as_cst(up
);
122 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
125 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
127 struct isl_upoly_cst
*cst
;
131 if (!isl_upoly_is_cst(up
))
134 cst
= isl_upoly_as_cst(up
);
138 return isl_int_sgn(cst
->n
);
141 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
143 struct isl_upoly_cst
*cst
;
147 if (!isl_upoly_is_cst(up
))
150 cst
= isl_upoly_as_cst(up
);
154 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
157 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
159 struct isl_upoly_cst
*cst
;
163 if (!isl_upoly_is_cst(up
))
166 cst
= isl_upoly_as_cst(up
);
170 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
173 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
175 struct isl_upoly_cst
*cst
;
179 if (!isl_upoly_is_cst(up
))
182 cst
= isl_upoly_as_cst(up
);
186 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
189 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
191 struct isl_upoly_cst
*cst
;
195 if (!isl_upoly_is_cst(up
))
198 cst
= isl_upoly_as_cst(up
);
202 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
205 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
207 struct isl_upoly_cst
*cst
;
211 if (!isl_upoly_is_cst(up
))
214 cst
= isl_upoly_as_cst(up
);
218 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
221 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
223 struct isl_upoly_cst
*cst
;
225 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
234 isl_int_init(cst
->n
);
235 isl_int_init(cst
->d
);
240 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
242 struct isl_upoly_cst
*cst
;
244 cst
= isl_upoly_cst_alloc(ctx
);
248 isl_int_set_si(cst
->n
, 0);
249 isl_int_set_si(cst
->d
, 1);
254 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
256 struct isl_upoly_cst
*cst
;
258 cst
= isl_upoly_cst_alloc(ctx
);
262 isl_int_set_si(cst
->n
, 1);
263 isl_int_set_si(cst
->d
, 1);
268 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
270 struct isl_upoly_cst
*cst
;
272 cst
= isl_upoly_cst_alloc(ctx
);
276 isl_int_set_si(cst
->n
, 1);
277 isl_int_set_si(cst
->d
, 0);
282 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
284 struct isl_upoly_cst
*cst
;
286 cst
= isl_upoly_cst_alloc(ctx
);
290 isl_int_set_si(cst
->n
, -1);
291 isl_int_set_si(cst
->d
, 0);
296 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
298 struct isl_upoly_cst
*cst
;
300 cst
= isl_upoly_cst_alloc(ctx
);
304 isl_int_set_si(cst
->n
, 0);
305 isl_int_set_si(cst
->d
, 0);
310 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
311 isl_int n
, isl_int d
)
313 struct isl_upoly_cst
*cst
;
315 cst
= isl_upoly_cst_alloc(ctx
);
319 isl_int_set(cst
->n
, n
);
320 isl_int_set(cst
->d
, d
);
325 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
328 struct isl_upoly_rec
*rec
;
330 isl_assert(ctx
, var
>= 0, return NULL
);
331 isl_assert(ctx
, size
>= 0, return NULL
);
332 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
333 sizeof(struct isl_upoly_rec
) +
334 size
* sizeof(struct isl_upoly
*));
349 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_domain_space(
350 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*dim
)
352 qp
= isl_qpolynomial_cow(qp
);
356 isl_space_free(qp
->dim
);
361 isl_qpolynomial_free(qp
);
366 /* Reset the space of "qp". This function is called from isl_pw_templ.c
367 * and doesn't know if the space of an element object is represented
368 * directly or through its domain. It therefore passes along both.
370 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space_and_domain(
371 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
,
372 __isl_take isl_space
*domain
)
374 isl_space_free(space
);
375 return isl_qpolynomial_reset_domain_space(qp
, domain
);
378 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
380 return qp
? qp
->dim
->ctx
: NULL
;
383 __isl_give isl_space
*isl_qpolynomial_get_domain_space(
384 __isl_keep isl_qpolynomial
*qp
)
386 return qp
? isl_space_copy(qp
->dim
) : NULL
;
389 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
394 space
= isl_space_copy(qp
->dim
);
395 space
= isl_space_from_domain(space
);
396 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
400 /* Externally, an isl_qpolynomial has a map space, but internally, the
401 * ls field corresponds to the domain of that space.
403 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
404 enum isl_dim_type type
)
408 if (type
== isl_dim_out
)
410 if (type
== isl_dim_in
)
412 return isl_space_dim(qp
->dim
, type
);
415 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
417 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
420 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
422 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
425 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
427 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
430 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
432 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
435 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
437 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
440 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
442 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
445 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
447 isl_int_clear(cst
->n
);
448 isl_int_clear(cst
->d
);
451 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
455 for (i
= 0; i
< rec
->n
; ++i
)
456 isl_upoly_free(rec
->p
[i
]);
459 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
468 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
470 struct isl_upoly_cst
*cst
;
471 struct isl_upoly_cst
*dup
;
473 cst
= isl_upoly_as_cst(up
);
477 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
480 isl_int_set(dup
->n
, cst
->n
);
481 isl_int_set(dup
->d
, cst
->d
);
486 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
489 struct isl_upoly_rec
*rec
;
490 struct isl_upoly_rec
*dup
;
492 rec
= isl_upoly_as_rec(up
);
496 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
500 for (i
= 0; i
< rec
->n
; ++i
) {
501 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
509 isl_upoly_free(&dup
->up
);
513 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
518 if (isl_upoly_is_cst(up
))
519 return isl_upoly_dup_cst(up
);
521 return isl_upoly_dup_rec(up
);
524 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
532 return isl_upoly_dup(up
);
535 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
544 upoly_free_cst((struct isl_upoly_cst
*)up
);
546 upoly_free_rec((struct isl_upoly_rec
*)up
);
548 isl_ctx_deref(up
->ctx
);
552 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
557 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
558 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
559 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
560 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
565 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
566 __isl_take
struct isl_upoly
*up2
)
568 struct isl_upoly_cst
*cst1
;
569 struct isl_upoly_cst
*cst2
;
571 up1
= isl_upoly_cow(up1
);
575 cst1
= isl_upoly_as_cst(up1
);
576 cst2
= isl_upoly_as_cst(up2
);
578 if (isl_int_eq(cst1
->d
, cst2
->d
))
579 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
581 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
582 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
583 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
586 isl_upoly_cst_reduce(cst1
);
596 static __isl_give
struct isl_upoly
*replace_by_zero(
597 __isl_take
struct isl_upoly
*up
)
605 return isl_upoly_zero(ctx
);
608 static __isl_give
struct isl_upoly
*replace_by_constant_term(
609 __isl_take
struct isl_upoly
*up
)
611 struct isl_upoly_rec
*rec
;
612 struct isl_upoly
*cst
;
617 rec
= isl_upoly_as_rec(up
);
620 cst
= isl_upoly_copy(rec
->p
[0]);
628 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
629 __isl_take
struct isl_upoly
*up2
)
632 struct isl_upoly_rec
*rec1
, *rec2
;
637 if (isl_upoly_is_nan(up1
)) {
642 if (isl_upoly_is_nan(up2
)) {
647 if (isl_upoly_is_zero(up1
)) {
652 if (isl_upoly_is_zero(up2
)) {
657 if (up1
->var
< up2
->var
)
658 return isl_upoly_sum(up2
, up1
);
660 if (up2
->var
< up1
->var
) {
661 struct isl_upoly_rec
*rec
;
662 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
666 up1
= isl_upoly_cow(up1
);
667 rec
= isl_upoly_as_rec(up1
);
670 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
672 up1
= replace_by_constant_term(up1
);
676 if (isl_upoly_is_cst(up1
))
677 return isl_upoly_sum_cst(up1
, up2
);
679 rec1
= isl_upoly_as_rec(up1
);
680 rec2
= isl_upoly_as_rec(up2
);
684 if (rec1
->n
< rec2
->n
)
685 return isl_upoly_sum(up2
, up1
);
687 up1
= isl_upoly_cow(up1
);
688 rec1
= isl_upoly_as_rec(up1
);
692 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
693 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
694 isl_upoly_copy(rec2
->p
[i
]));
697 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
698 isl_upoly_free(rec1
->p
[i
]);
704 up1
= replace_by_zero(up1
);
705 else if (rec1
->n
== 1)
706 up1
= replace_by_constant_term(up1
);
717 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
718 __isl_take
struct isl_upoly
*up
, isl_int v
)
720 struct isl_upoly_cst
*cst
;
722 up
= isl_upoly_cow(up
);
726 cst
= isl_upoly_as_cst(up
);
728 isl_int_addmul(cst
->n
, cst
->d
, v
);
733 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
734 __isl_take
struct isl_upoly
*up
, isl_int v
)
736 struct isl_upoly_rec
*rec
;
741 if (isl_upoly_is_cst(up
))
742 return isl_upoly_cst_add_isl_int(up
, v
);
744 up
= isl_upoly_cow(up
);
745 rec
= isl_upoly_as_rec(up
);
749 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
759 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
760 __isl_take
struct isl_upoly
*up
, isl_int v
)
762 struct isl_upoly_cst
*cst
;
764 if (isl_upoly_is_zero(up
))
767 up
= isl_upoly_cow(up
);
771 cst
= isl_upoly_as_cst(up
);
773 isl_int_mul(cst
->n
, cst
->n
, v
);
778 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
779 __isl_take
struct isl_upoly
*up
, isl_int v
)
782 struct isl_upoly_rec
*rec
;
787 if (isl_upoly_is_cst(up
))
788 return isl_upoly_cst_mul_isl_int(up
, v
);
790 up
= isl_upoly_cow(up
);
791 rec
= isl_upoly_as_rec(up
);
795 for (i
= 0; i
< rec
->n
; ++i
) {
796 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
807 /* Multiply the constant polynomial "up" by "v".
809 static __isl_give
struct isl_upoly
*isl_upoly_cst_scale_val(
810 __isl_take
struct isl_upoly
*up
, __isl_keep isl_val
*v
)
812 struct isl_upoly_cst
*cst
;
814 if (isl_upoly_is_zero(up
))
817 up
= isl_upoly_cow(up
);
821 cst
= isl_upoly_as_cst(up
);
823 isl_int_mul(cst
->n
, cst
->n
, v
->n
);
824 isl_int_mul(cst
->d
, cst
->d
, v
->d
);
825 isl_upoly_cst_reduce(cst
);
830 /* Multiply the polynomial "up" by "v".
832 static __isl_give
struct isl_upoly
*isl_upoly_scale_val(
833 __isl_take
struct isl_upoly
*up
, __isl_keep isl_val
*v
)
836 struct isl_upoly_rec
*rec
;
841 if (isl_upoly_is_cst(up
))
842 return isl_upoly_cst_scale_val(up
, v
);
844 up
= isl_upoly_cow(up
);
845 rec
= isl_upoly_as_rec(up
);
849 for (i
= 0; i
< rec
->n
; ++i
) {
850 rec
->p
[i
] = isl_upoly_scale_val(rec
->p
[i
], v
);
861 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
862 __isl_take
struct isl_upoly
*up2
)
864 struct isl_upoly_cst
*cst1
;
865 struct isl_upoly_cst
*cst2
;
867 up1
= isl_upoly_cow(up1
);
871 cst1
= isl_upoly_as_cst(up1
);
872 cst2
= isl_upoly_as_cst(up2
);
874 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
875 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
877 isl_upoly_cst_reduce(cst1
);
887 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
888 __isl_take
struct isl_upoly
*up2
)
890 struct isl_upoly_rec
*rec1
;
891 struct isl_upoly_rec
*rec2
;
892 struct isl_upoly_rec
*res
= NULL
;
896 rec1
= isl_upoly_as_rec(up1
);
897 rec2
= isl_upoly_as_rec(up2
);
900 size
= rec1
->n
+ rec2
->n
- 1;
901 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
905 for (i
= 0; i
< rec1
->n
; ++i
) {
906 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
907 isl_upoly_copy(rec1
->p
[i
]));
912 for (; i
< size
; ++i
) {
913 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
918 for (i
= 0; i
< rec1
->n
; ++i
) {
919 for (j
= 1; j
< rec2
->n
; ++j
) {
920 struct isl_upoly
*up
;
921 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
922 isl_upoly_copy(rec1
->p
[i
]));
923 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
936 isl_upoly_free(&res
->up
);
940 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
941 __isl_take
struct isl_upoly
*up2
)
946 if (isl_upoly_is_nan(up1
)) {
951 if (isl_upoly_is_nan(up2
)) {
956 if (isl_upoly_is_zero(up1
)) {
961 if (isl_upoly_is_zero(up2
)) {
966 if (isl_upoly_is_one(up1
)) {
971 if (isl_upoly_is_one(up2
)) {
976 if (up1
->var
< up2
->var
)
977 return isl_upoly_mul(up2
, up1
);
979 if (up2
->var
< up1
->var
) {
981 struct isl_upoly_rec
*rec
;
982 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
983 isl_ctx
*ctx
= up1
->ctx
;
986 return isl_upoly_nan(ctx
);
988 up1
= isl_upoly_cow(up1
);
989 rec
= isl_upoly_as_rec(up1
);
993 for (i
= 0; i
< rec
->n
; ++i
) {
994 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
995 isl_upoly_copy(up2
));
1003 if (isl_upoly_is_cst(up1
))
1004 return isl_upoly_mul_cst(up1
, up2
);
1006 return isl_upoly_mul_rec(up1
, up2
);
1008 isl_upoly_free(up1
);
1009 isl_upoly_free(up2
);
1013 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
1016 struct isl_upoly
*res
;
1024 res
= isl_upoly_copy(up
);
1026 res
= isl_upoly_one(up
->ctx
);
1028 while (power
>>= 1) {
1029 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
1031 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
1038 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*dim
,
1039 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
1041 struct isl_qpolynomial
*qp
= NULL
;
1047 if (!isl_space_is_set(dim
))
1048 isl_die(isl_space_get_ctx(dim
), isl_error_invalid
,
1049 "domain of polynomial should be a set", goto error
);
1051 total
= isl_space_dim(dim
, isl_dim_all
);
1053 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
1058 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
1067 isl_space_free(dim
);
1069 isl_qpolynomial_free(qp
);
1073 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
1082 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
1084 struct isl_qpolynomial
*dup
;
1089 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
1090 isl_upoly_copy(qp
->upoly
));
1093 isl_mat_free(dup
->div
);
1094 dup
->div
= isl_mat_copy(qp
->div
);
1100 isl_qpolynomial_free(dup
);
1104 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1112 return isl_qpolynomial_dup(qp
);
1115 __isl_null isl_qpolynomial
*isl_qpolynomial_free(
1116 __isl_take isl_qpolynomial
*qp
)
1124 isl_space_free(qp
->dim
);
1125 isl_mat_free(qp
->div
);
1126 isl_upoly_free(qp
->upoly
);
1132 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1135 struct isl_upoly_rec
*rec
;
1136 struct isl_upoly_cst
*cst
;
1138 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1141 for (i
= 0; i
< 1 + power
; ++i
) {
1142 rec
->p
[i
] = isl_upoly_zero(ctx
);
1147 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1148 isl_int_set_si(cst
->n
, 1);
1152 isl_upoly_free(&rec
->up
);
1156 /* r array maps original positions to new positions.
1158 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1162 struct isl_upoly_rec
*rec
;
1163 struct isl_upoly
*base
;
1164 struct isl_upoly
*res
;
1166 if (isl_upoly_is_cst(up
))
1169 rec
= isl_upoly_as_rec(up
);
1173 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1175 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1176 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1178 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1179 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1180 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1183 isl_upoly_free(base
);
1192 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1197 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1198 div1
->n_col
>= div2
->n_col
, return -1);
1200 if (div1
->n_row
== div2
->n_row
)
1201 return isl_mat_is_equal(div1
, div2
);
1203 n_row
= div1
->n_row
;
1204 n_col
= div1
->n_col
;
1205 div1
->n_row
= div2
->n_row
;
1206 div1
->n_col
= div2
->n_col
;
1208 equal
= isl_mat_is_equal(div1
, div2
);
1210 div1
->n_row
= n_row
;
1211 div1
->n_col
= n_col
;
1216 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1220 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1221 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1226 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1229 struct isl_div_sort_info
{
1234 static int div_sort_cmp(const void *p1
, const void *p2
)
1236 const struct isl_div_sort_info
*i1
, *i2
;
1237 i1
= (const struct isl_div_sort_info
*) p1
;
1238 i2
= (const struct isl_div_sort_info
*) p2
;
1240 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1243 /* Sort divs and remove duplicates.
1245 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1250 struct isl_div_sort_info
*array
= NULL
;
1251 int *pos
= NULL
, *at
= NULL
;
1252 int *reordering
= NULL
;
1257 if (qp
->div
->n_row
<= 1)
1260 div_pos
= isl_space_dim(qp
->dim
, isl_dim_all
);
1262 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1264 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1265 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1266 len
= qp
->div
->n_col
- 2;
1267 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1268 if (!array
|| !pos
|| !at
|| !reordering
)
1271 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1272 array
[i
].div
= qp
->div
;
1278 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1281 for (i
= 0; i
< div_pos
; ++i
)
1284 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1285 if (pos
[array
[i
].row
] == i
)
1287 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1288 pos
[at
[i
]] = pos
[array
[i
].row
];
1289 at
[pos
[array
[i
].row
]] = at
[i
];
1290 at
[i
] = array
[i
].row
;
1291 pos
[array
[i
].row
] = i
;
1295 for (i
= 0; i
< len
- div_pos
; ++i
) {
1297 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1298 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1299 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1300 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1301 2 + div_pos
+ i
- skip
);
1302 qp
->div
= isl_mat_drop_cols(qp
->div
,
1303 2 + div_pos
+ i
- skip
, 1);
1306 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1309 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1311 if (!qp
->upoly
|| !qp
->div
)
1325 isl_qpolynomial_free(qp
);
1329 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1330 int *exp
, int first
)
1333 struct isl_upoly_rec
*rec
;
1335 if (isl_upoly_is_cst(up
))
1338 if (up
->var
< first
)
1341 if (exp
[up
->var
- first
] == up
->var
- first
)
1344 up
= isl_upoly_cow(up
);
1348 up
->var
= exp
[up
->var
- first
] + first
;
1350 rec
= isl_upoly_as_rec(up
);
1354 for (i
= 0; i
< rec
->n
; ++i
) {
1355 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1366 static __isl_give isl_qpolynomial
*with_merged_divs(
1367 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1368 __isl_take isl_qpolynomial
*qp2
),
1369 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1373 isl_mat
*div
= NULL
;
1376 qp1
= isl_qpolynomial_cow(qp1
);
1377 qp2
= isl_qpolynomial_cow(qp2
);
1382 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1383 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1385 n_div1
= qp1
->div
->n_row
;
1386 n_div2
= qp2
->div
->n_row
;
1387 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, n_div1
);
1388 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, n_div2
);
1389 if ((n_div1
&& !exp1
) || (n_div2
&& !exp2
))
1392 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1396 isl_mat_free(qp1
->div
);
1397 qp1
->div
= isl_mat_copy(div
);
1398 isl_mat_free(qp2
->div
);
1399 qp2
->div
= isl_mat_copy(div
);
1401 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1402 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1404 if (!qp1
->upoly
|| !qp2
->upoly
)
1411 return fn(qp1
, qp2
);
1416 isl_qpolynomial_free(qp1
);
1417 isl_qpolynomial_free(qp2
);
1421 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1422 __isl_take isl_qpolynomial
*qp2
)
1424 qp1
= isl_qpolynomial_cow(qp1
);
1429 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1430 return isl_qpolynomial_add(qp2
, qp1
);
1432 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1433 if (!compatible_divs(qp1
->div
, qp2
->div
))
1434 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1436 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1440 isl_qpolynomial_free(qp2
);
1444 isl_qpolynomial_free(qp1
);
1445 isl_qpolynomial_free(qp2
);
1449 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1450 __isl_keep isl_set
*dom
,
1451 __isl_take isl_qpolynomial
*qp1
,
1452 __isl_take isl_qpolynomial
*qp2
)
1454 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1455 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1459 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1460 __isl_take isl_qpolynomial
*qp2
)
1462 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1465 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1466 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1468 if (isl_int_is_zero(v
))
1471 qp
= isl_qpolynomial_cow(qp
);
1475 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1481 isl_qpolynomial_free(qp
);
1486 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1491 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1494 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1495 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1497 if (isl_int_is_one(v
))
1500 if (qp
&& isl_int_is_zero(v
)) {
1501 isl_qpolynomial
*zero
;
1502 zero
= isl_qpolynomial_zero_on_domain(isl_space_copy(qp
->dim
));
1503 isl_qpolynomial_free(qp
);
1507 qp
= isl_qpolynomial_cow(qp
);
1511 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1517 isl_qpolynomial_free(qp
);
1521 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1522 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1524 return isl_qpolynomial_mul_isl_int(qp
, v
);
1527 /* Multiply "qp" by "v".
1529 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_val(
1530 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1535 if (!isl_val_is_rat(v
))
1536 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1537 "expecting rational factor", goto error
);
1539 if (isl_val_is_one(v
)) {
1544 if (isl_val_is_zero(v
)) {
1547 space
= isl_qpolynomial_get_domain_space(qp
);
1548 isl_qpolynomial_free(qp
);
1550 return isl_qpolynomial_zero_on_domain(space
);
1553 qp
= isl_qpolynomial_cow(qp
);
1557 qp
->upoly
= isl_upoly_scale_val(qp
->upoly
, v
);
1559 qp
= isl_qpolynomial_free(qp
);
1565 isl_qpolynomial_free(qp
);
1569 /* Divide "qp" by "v".
1571 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_down_val(
1572 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1577 if (!isl_val_is_rat(v
))
1578 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1579 "expecting rational factor", goto error
);
1580 if (isl_val_is_zero(v
))
1581 isl_die(isl_val_get_ctx(v
), isl_error_invalid
,
1582 "cannot scale down by zero", goto error
);
1584 return isl_qpolynomial_scale_val(qp
, isl_val_inv(v
));
1587 isl_qpolynomial_free(qp
);
1591 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1592 __isl_take isl_qpolynomial
*qp2
)
1594 qp1
= isl_qpolynomial_cow(qp1
);
1599 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1600 return isl_qpolynomial_mul(qp2
, qp1
);
1602 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1603 if (!compatible_divs(qp1
->div
, qp2
->div
))
1604 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1606 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1610 isl_qpolynomial_free(qp2
);
1614 isl_qpolynomial_free(qp1
);
1615 isl_qpolynomial_free(qp2
);
1619 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1622 qp
= isl_qpolynomial_cow(qp
);
1627 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1633 isl_qpolynomial_free(qp
);
1637 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1638 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1645 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1649 for (i
= 0; i
< pwqp
->n
; ++i
) {
1650 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1652 return isl_pw_qpolynomial_free(pwqp
);
1658 __isl_give isl_qpolynomial
*isl_qpolynomial_zero_on_domain(
1659 __isl_take isl_space
*dim
)
1663 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1666 __isl_give isl_qpolynomial
*isl_qpolynomial_one_on_domain(
1667 __isl_take isl_space
*dim
)
1671 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1674 __isl_give isl_qpolynomial
*isl_qpolynomial_infty_on_domain(
1675 __isl_take isl_space
*dim
)
1679 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1682 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty_on_domain(
1683 __isl_take isl_space
*dim
)
1687 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1690 __isl_give isl_qpolynomial
*isl_qpolynomial_nan_on_domain(
1691 __isl_take isl_space
*dim
)
1695 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1698 __isl_give isl_qpolynomial
*isl_qpolynomial_cst_on_domain(
1699 __isl_take isl_space
*dim
,
1702 struct isl_qpolynomial
*qp
;
1703 struct isl_upoly_cst
*cst
;
1708 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1712 cst
= isl_upoly_as_cst(qp
->upoly
);
1713 isl_int_set(cst
->n
, v
);
1718 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1719 isl_int
*n
, isl_int
*d
)
1721 struct isl_upoly_cst
*cst
;
1726 if (!isl_upoly_is_cst(qp
->upoly
))
1729 cst
= isl_upoly_as_cst(qp
->upoly
);
1734 isl_int_set(*n
, cst
->n
);
1736 isl_int_set(*d
, cst
->d
);
1741 /* Return the constant term of "up".
1743 static __isl_give isl_val
*isl_upoly_get_constant_val(
1744 __isl_keep
struct isl_upoly
*up
)
1746 struct isl_upoly_cst
*cst
;
1751 while (!isl_upoly_is_cst(up
)) {
1752 struct isl_upoly_rec
*rec
;
1754 rec
= isl_upoly_as_rec(up
);
1760 cst
= isl_upoly_as_cst(up
);
1763 return isl_val_rat_from_isl_int(cst
->up
.ctx
, cst
->n
, cst
->d
);
1766 /* Return the constant term of "qp".
1768 __isl_give isl_val
*isl_qpolynomial_get_constant_val(
1769 __isl_keep isl_qpolynomial
*qp
)
1774 return isl_upoly_get_constant_val(qp
->upoly
);
1777 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1780 struct isl_upoly_rec
*rec
;
1788 rec
= isl_upoly_as_rec(up
);
1795 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1797 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1803 return isl_upoly_is_affine(rec
->p
[0]);
1806 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1811 if (qp
->div
->n_row
> 0)
1814 return isl_upoly_is_affine(qp
->upoly
);
1817 static void update_coeff(__isl_keep isl_vec
*aff
,
1818 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1823 if (isl_int_is_zero(cst
->n
))
1828 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1829 isl_int_divexact(f
, cst
->d
, gcd
);
1830 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1831 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1832 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1837 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1838 __isl_keep isl_vec
*aff
)
1840 struct isl_upoly_cst
*cst
;
1841 struct isl_upoly_rec
*rec
;
1847 struct isl_upoly_cst
*cst
;
1849 cst
= isl_upoly_as_cst(up
);
1852 update_coeff(aff
, cst
, 0);
1856 rec
= isl_upoly_as_rec(up
);
1859 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1861 cst
= isl_upoly_as_cst(rec
->p
[1]);
1864 update_coeff(aff
, cst
, 1 + up
->var
);
1866 return isl_upoly_update_affine(rec
->p
[0], aff
);
1869 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1870 __isl_keep isl_qpolynomial
*qp
)
1878 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
1879 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1883 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1884 isl_int_set_si(aff
->el
[0], 1);
1886 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1895 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1896 __isl_keep isl_qpolynomial
*qp2
)
1903 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
1904 if (equal
< 0 || !equal
)
1907 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1908 if (equal
< 0 || !equal
)
1911 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1914 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1917 struct isl_upoly_rec
*rec
;
1919 if (isl_upoly_is_cst(up
)) {
1920 struct isl_upoly_cst
*cst
;
1921 cst
= isl_upoly_as_cst(up
);
1924 isl_int_lcm(*d
, *d
, cst
->d
);
1928 rec
= isl_upoly_as_rec(up
);
1932 for (i
= 0; i
< rec
->n
; ++i
)
1933 upoly_update_den(rec
->p
[i
], d
);
1936 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1938 isl_int_set_si(*d
, 1);
1941 upoly_update_den(qp
->upoly
, d
);
1944 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow_on_domain(
1945 __isl_take isl_space
*dim
, int pos
, int power
)
1947 struct isl_ctx
*ctx
;
1954 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1957 __isl_give isl_qpolynomial
*isl_qpolynomial_var_on_domain(__isl_take isl_space
*dim
,
1958 enum isl_dim_type type
, unsigned pos
)
1963 isl_assert(dim
->ctx
, isl_space_dim(dim
, isl_dim_in
) == 0, goto error
);
1964 isl_assert(dim
->ctx
, pos
< isl_space_dim(dim
, type
), goto error
);
1966 if (type
== isl_dim_set
)
1967 pos
+= isl_space_dim(dim
, isl_dim_param
);
1969 return isl_qpolynomial_var_pow_on_domain(dim
, pos
, 1);
1971 isl_space_free(dim
);
1975 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1976 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1979 struct isl_upoly_rec
*rec
;
1980 struct isl_upoly
*base
, *res
;
1985 if (isl_upoly_is_cst(up
))
1988 if (up
->var
< first
)
1991 rec
= isl_upoly_as_rec(up
);
1995 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1997 if (up
->var
>= first
+ n
)
1998 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
2000 base
= isl_upoly_copy(subs
[up
->var
- first
]);
2002 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
2003 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2004 struct isl_upoly
*t
;
2005 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
2006 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2007 res
= isl_upoly_sum(res
, t
);
2010 isl_upoly_free(base
);
2019 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
2020 isl_int denom
, unsigned len
)
2023 struct isl_upoly
*up
;
2025 isl_assert(ctx
, len
>= 1, return NULL
);
2027 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
2028 for (i
= 0; i
< len
- 1; ++i
) {
2029 struct isl_upoly
*t
;
2030 struct isl_upoly
*c
;
2032 if (isl_int_is_zero(f
[1 + i
]))
2035 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
2036 t
= isl_upoly_var_pow(ctx
, i
, 1);
2037 t
= isl_upoly_mul(c
, t
);
2038 up
= isl_upoly_sum(up
, t
);
2044 /* Remove common factor of non-constant terms and denominator.
2046 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
2048 isl_ctx
*ctx
= qp
->div
->ctx
;
2049 unsigned total
= qp
->div
->n_col
- 2;
2051 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
2052 isl_int_gcd(ctx
->normalize_gcd
,
2053 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
2054 if (isl_int_is_one(ctx
->normalize_gcd
))
2057 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
2058 ctx
->normalize_gcd
, total
);
2059 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
2060 ctx
->normalize_gcd
);
2061 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
2062 ctx
->normalize_gcd
);
2065 /* Replace the integer division identified by "div" by the polynomial "s".
2066 * The integer division is assumed not to appear in the definition
2067 * of any other integer divisions.
2069 static __isl_give isl_qpolynomial
*substitute_div(
2070 __isl_take isl_qpolynomial
*qp
,
2071 int div
, __isl_take
struct isl_upoly
*s
)
2080 qp
= isl_qpolynomial_cow(qp
);
2084 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
2085 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
2089 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
2092 for (i
= 0; i
< total
+ div
; ++i
)
2094 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
2095 reordering
[i
] = i
- 1;
2096 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
2097 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
2098 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2101 if (!qp
->upoly
|| !qp
->div
)
2107 isl_qpolynomial_free(qp
);
2112 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2113 * divisions because d is equal to 1 by their definition, i.e., e.
2115 static __isl_give isl_qpolynomial
*substitute_non_divs(
2116 __isl_take isl_qpolynomial
*qp
)
2120 struct isl_upoly
*s
;
2125 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
2126 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
2127 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
2129 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
2130 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
2132 isl_seq_combine(qp
->div
->row
[j
] + 1,
2133 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
2134 qp
->div
->row
[j
][2 + total
+ i
],
2135 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
2136 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
2137 normalize_div(qp
, j
);
2139 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
2140 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
2141 qp
= substitute_div(qp
, i
, s
);
2148 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2149 * with d the denominator. When replacing the coefficient e of x by
2150 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2151 * inside the division, so we need to add floor(e/d) * x outside.
2152 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2153 * to adjust the coefficient of x in each later div that depends on the
2154 * current div "div" and also in the affine expression "aff"
2155 * (if it too depends on "div").
2157 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2158 __isl_keep isl_vec
*aff
)
2162 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2165 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
2166 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
2167 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
2169 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2170 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
2171 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2172 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2173 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
2174 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
2175 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
2177 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
2178 v
, qp
->div
->row
[j
][2 + total
+ div
]);
2184 /* Check if the last non-zero coefficient is bigger that half of the
2185 * denominator. If so, we will invert the div to further reduce the number
2186 * of distinct divs that may appear.
2187 * If the last non-zero coefficient is exactly half the denominator,
2188 * then we continue looking for earlier coefficients that are bigger
2189 * than half the denominator.
2191 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
2196 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
2197 if (isl_int_is_zero(div
->row
[row
][i
]))
2199 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2200 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2201 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2211 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2212 * We only invert the coefficients of e (and the coefficient of q in
2213 * later divs and in "aff"). After calling this function, the
2214 * coefficients of e should be reduced again.
2216 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2217 __isl_keep isl_vec
*aff
)
2219 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2221 isl_seq_neg(qp
->div
->row
[div
] + 1,
2222 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2223 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2224 isl_int_add(qp
->div
->row
[div
][1],
2225 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2226 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2227 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2228 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2229 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2232 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2233 * in the interval [0, d-1], with d the denominator and such that the
2234 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2236 * After the reduction, some divs may have become redundant or identical,
2237 * so we call substitute_non_divs and sort_divs. If these functions
2238 * eliminate divs or merge two or more divs into one, the coefficients
2239 * of the enclosing divs may have to be reduced again, so we call
2240 * ourselves recursively if the number of divs decreases.
2242 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2245 isl_vec
*aff
= NULL
;
2246 struct isl_upoly
*s
;
2252 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2253 aff
= isl_vec_clr(aff
);
2257 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2259 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2260 normalize_div(qp
, i
);
2261 reduce_div(qp
, i
, aff
);
2262 if (needs_invert(qp
->div
, i
)) {
2263 invert_div(qp
, i
, aff
);
2264 reduce_div(qp
, i
, aff
);
2268 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2269 qp
->div
->ctx
->one
, aff
->size
);
2270 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2277 n_div
= qp
->div
->n_row
;
2278 qp
= substitute_non_divs(qp
);
2280 if (qp
&& qp
->div
->n_row
< n_div
)
2281 return reduce_divs(qp
);
2285 isl_qpolynomial_free(qp
);
2290 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst_on_domain(
2291 __isl_take isl_space
*dim
, const isl_int n
, const isl_int d
)
2293 struct isl_qpolynomial
*qp
;
2294 struct isl_upoly_cst
*cst
;
2299 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2303 cst
= isl_upoly_as_cst(qp
->upoly
);
2304 isl_int_set(cst
->n
, n
);
2305 isl_int_set(cst
->d
, d
);
2310 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2312 __isl_give isl_qpolynomial
*isl_qpolynomial_val_on_domain(
2313 __isl_take isl_space
*domain
, __isl_take isl_val
*val
)
2315 isl_qpolynomial
*qp
;
2316 struct isl_upoly_cst
*cst
;
2318 if (!domain
|| !val
)
2321 qp
= isl_qpolynomial_alloc(isl_space_copy(domain
), 0,
2322 isl_upoly_zero(domain
->ctx
));
2326 cst
= isl_upoly_as_cst(qp
->upoly
);
2327 isl_int_set(cst
->n
, val
->n
);
2328 isl_int_set(cst
->d
, val
->d
);
2330 isl_space_free(domain
);
2334 isl_space_free(domain
);
2339 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2341 struct isl_upoly_rec
*rec
;
2347 if (isl_upoly_is_cst(up
))
2351 active
[up
->var
] = 1;
2353 rec
= isl_upoly_as_rec(up
);
2354 for (i
= 0; i
< rec
->n
; ++i
)
2355 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2361 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2364 int d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2369 for (i
= 0; i
< d
; ++i
)
2370 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2371 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2377 return up_set_active(qp
->upoly
, active
, d
);
2380 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2381 enum isl_dim_type type
, unsigned first
, unsigned n
)
2392 isl_assert(qp
->dim
->ctx
,
2393 first
+ n
<= isl_qpolynomial_dim(qp
, type
), return -1);
2394 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2395 type
== isl_dim_in
, return -1);
2397 active
= isl_calloc_array(qp
->dim
->ctx
, int,
2398 isl_space_dim(qp
->dim
, isl_dim_all
));
2399 if (set_active(qp
, active
) < 0)
2402 if (type
== isl_dim_in
)
2403 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2404 for (i
= 0; i
< n
; ++i
)
2405 if (active
[first
+ i
]) {
2418 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2419 * of the divs that do appear in the quasi-polynomial.
2421 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2422 __isl_take isl_qpolynomial
*qp
)
2429 int *reordering
= NULL
;
2436 if (qp
->div
->n_row
== 0)
2439 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2440 len
= qp
->div
->n_col
- 2;
2441 ctx
= isl_qpolynomial_get_ctx(qp
);
2442 active
= isl_calloc_array(ctx
, int, len
);
2446 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2449 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2450 if (!active
[d
+ i
]) {
2454 for (j
= 0; j
< i
; ++j
) {
2455 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2467 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2471 for (i
= 0; i
< d
; ++i
)
2475 n_div
= qp
->div
->n_row
;
2476 for (i
= 0; i
< n_div
; ++i
) {
2477 if (!active
[d
+ i
]) {
2478 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2479 qp
->div
= isl_mat_drop_cols(qp
->div
,
2480 2 + d
+ i
- skip
, 1);
2483 reordering
[d
+ i
] = d
+ i
- skip
;
2486 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2488 if (!qp
->upoly
|| !qp
->div
)
2498 isl_qpolynomial_free(qp
);
2502 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2503 unsigned first
, unsigned n
)
2506 struct isl_upoly_rec
*rec
;
2510 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2512 if (up
->var
< first
+ n
) {
2513 up
= replace_by_constant_term(up
);
2514 return isl_upoly_drop(up
, first
, n
);
2516 up
= isl_upoly_cow(up
);
2520 rec
= isl_upoly_as_rec(up
);
2524 for (i
= 0; i
< rec
->n
; ++i
) {
2525 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2536 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2537 __isl_take isl_qpolynomial
*qp
,
2538 enum isl_dim_type type
, unsigned pos
, const char *s
)
2540 qp
= isl_qpolynomial_cow(qp
);
2543 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2548 isl_qpolynomial_free(qp
);
2552 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2553 __isl_take isl_qpolynomial
*qp
,
2554 enum isl_dim_type type
, unsigned first
, unsigned n
)
2558 if (type
== isl_dim_out
)
2559 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2560 "cannot drop output/set dimension",
2562 if (type
== isl_dim_in
)
2564 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2567 qp
= isl_qpolynomial_cow(qp
);
2571 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2573 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2574 type
== isl_dim_set
, goto error
);
2576 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2580 if (type
== isl_dim_set
)
2581 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2583 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2587 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2593 isl_qpolynomial_free(qp
);
2597 /* Project the domain of the quasi-polynomial onto its parameter space.
2598 * The quasi-polynomial may not involve any of the domain dimensions.
2600 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2601 __isl_take isl_qpolynomial
*qp
)
2607 n
= isl_qpolynomial_dim(qp
, isl_dim_in
);
2608 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_in
, 0, n
);
2610 return isl_qpolynomial_free(qp
);
2612 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2613 "polynomial involves some of the domain dimensions",
2614 return isl_qpolynomial_free(qp
));
2615 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_in
, 0, n
);
2616 space
= isl_qpolynomial_get_domain_space(qp
);
2617 space
= isl_space_params(space
);
2618 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
2622 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2623 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2629 struct isl_upoly
*up
;
2633 if (eq
->n_eq
== 0) {
2634 isl_basic_set_free(eq
);
2638 qp
= isl_qpolynomial_cow(qp
);
2641 qp
->div
= isl_mat_cow(qp
->div
);
2645 total
= 1 + isl_space_dim(eq
->dim
, isl_dim_all
);
2647 isl_int_init(denom
);
2648 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2649 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2650 if (j
< 0 || j
== 0 || j
>= total
)
2653 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2654 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2656 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2657 &qp
->div
->row
[k
][0]);
2658 normalize_div(qp
, k
);
2661 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2662 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2663 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2664 isl_int_set_si(eq
->eq
[i
][j
], 0);
2666 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2667 eq
->eq
[i
], denom
, total
);
2668 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2671 isl_int_clear(denom
);
2676 isl_basic_set_free(eq
);
2678 qp
= substitute_non_divs(qp
);
2683 isl_basic_set_free(eq
);
2684 isl_qpolynomial_free(qp
);
2688 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2690 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2691 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2695 if (qp
->div
->n_row
> 0)
2696 eq
= isl_basic_set_add_dims(eq
, isl_dim_set
, qp
->div
->n_row
);
2697 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2699 isl_basic_set_free(eq
);
2700 isl_qpolynomial_free(qp
);
2704 static __isl_give isl_basic_set
*add_div_constraints(
2705 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2713 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2716 total
= isl_basic_set_total_dim(bset
);
2717 for (i
= 0; i
< div
->n_row
; ++i
)
2718 if (isl_basic_set_add_div_constraints_var(bset
,
2719 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2726 isl_basic_set_free(bset
);
2730 /* Look for equalities among the variables shared by context and qp
2731 * and the integer divisions of qp, if any.
2732 * The equalities are then used to eliminate variables and/or integer
2733 * divisions from qp.
2735 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2736 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2742 if (qp
->div
->n_row
> 0) {
2743 isl_basic_set
*bset
;
2744 context
= isl_set_add_dims(context
, isl_dim_set
,
2746 bset
= isl_basic_set_universe(isl_set_get_space(context
));
2747 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2748 context
= isl_set_intersect(context
,
2749 isl_set_from_basic_set(bset
));
2752 aff
= isl_set_affine_hull(context
);
2753 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2755 isl_qpolynomial_free(qp
);
2756 isl_set_free(context
);
2760 __isl_give isl_qpolynomial
*isl_qpolynomial_gist_params(
2761 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2763 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
2764 isl_set
*dom_context
= isl_set_universe(space
);
2765 dom_context
= isl_set_intersect_params(dom_context
, context
);
2766 return isl_qpolynomial_gist(qp
, dom_context
);
2769 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2770 __isl_take isl_qpolynomial
*qp
)
2776 if (isl_qpolynomial_is_zero(qp
)) {
2777 isl_space
*dim
= isl_qpolynomial_get_space(qp
);
2778 isl_qpolynomial_free(qp
);
2779 return isl_pw_qpolynomial_zero(dim
);
2782 dom
= isl_set_universe(isl_qpolynomial_get_domain_space(qp
));
2783 return isl_pw_qpolynomial_alloc(dom
, qp
);
2787 #define PW isl_pw_qpolynomial
2789 #define EL isl_qpolynomial
2791 #define EL_IS_ZERO is_zero
2795 #define IS_ZERO is_zero
2798 #undef DEFAULT_IS_ZERO
2799 #define DEFAULT_IS_ZERO 1
2803 #include <isl_pw_templ.c>
2806 #define UNION isl_union_pw_qpolynomial
2808 #define PART isl_pw_qpolynomial
2810 #define PARTS pw_qpolynomial
2812 #include <isl_union_templ.c>
2814 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2822 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2825 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2828 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add(
2829 __isl_take isl_pw_qpolynomial
*pwqp1
,
2830 __isl_take isl_pw_qpolynomial
*pwqp2
)
2832 return isl_pw_qpolynomial_union_add_(pwqp1
, pwqp2
);
2835 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2836 __isl_take isl_pw_qpolynomial
*pwqp1
,
2837 __isl_take isl_pw_qpolynomial
*pwqp2
)
2840 struct isl_pw_qpolynomial
*res
;
2842 if (!pwqp1
|| !pwqp2
)
2845 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
2848 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2849 isl_pw_qpolynomial_free(pwqp2
);
2853 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2854 isl_pw_qpolynomial_free(pwqp1
);
2858 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2859 isl_pw_qpolynomial_free(pwqp1
);
2863 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2864 isl_pw_qpolynomial_free(pwqp2
);
2868 n
= pwqp1
->n
* pwqp2
->n
;
2869 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
2871 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2872 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2873 struct isl_set
*common
;
2874 struct isl_qpolynomial
*prod
;
2875 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2876 isl_set_copy(pwqp2
->p
[j
].set
));
2877 if (isl_set_plain_is_empty(common
)) {
2878 isl_set_free(common
);
2882 prod
= isl_qpolynomial_mul(
2883 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2884 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2886 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2890 isl_pw_qpolynomial_free(pwqp1
);
2891 isl_pw_qpolynomial_free(pwqp2
);
2895 isl_pw_qpolynomial_free(pwqp1
);
2896 isl_pw_qpolynomial_free(pwqp2
);
2900 __isl_give isl_val
*isl_upoly_eval(__isl_take
struct isl_upoly
*up
,
2901 __isl_take isl_vec
*vec
)
2904 struct isl_upoly_rec
*rec
;
2908 if (isl_upoly_is_cst(up
)) {
2910 res
= isl_upoly_get_constant_val(up
);
2915 rec
= isl_upoly_as_rec(up
);
2919 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2921 base
= isl_val_rat_from_isl_int(up
->ctx
,
2922 vec
->el
[1 + up
->var
], vec
->el
[0]);
2924 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2927 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2928 res
= isl_val_mul(res
, isl_val_copy(base
));
2929 res
= isl_val_add(res
,
2930 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2931 isl_vec_copy(vec
)));
2944 __isl_give isl_val
*isl_qpolynomial_eval(__isl_take isl_qpolynomial
*qp
,
2945 __isl_take isl_point
*pnt
)
2952 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
2954 if (qp
->div
->n_row
== 0)
2955 ext
= isl_vec_copy(pnt
->vec
);
2958 unsigned dim
= isl_space_dim(qp
->dim
, isl_dim_all
);
2959 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2963 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2964 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2965 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2966 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2967 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2968 qp
->div
->row
[i
][0]);
2972 v
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2974 isl_qpolynomial_free(qp
);
2975 isl_point_free(pnt
);
2979 isl_qpolynomial_free(qp
);
2980 isl_point_free(pnt
);
2984 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2985 __isl_keep
struct isl_upoly_cst
*cst2
)
2990 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2991 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2992 cmp
= isl_int_sgn(t
);
2997 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2998 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2999 unsigned first
, unsigned n
)
3007 if (type
== isl_dim_out
)
3008 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3009 "cannot insert output/set dimensions",
3011 if (type
== isl_dim_in
)
3013 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
3016 qp
= isl_qpolynomial_cow(qp
);
3020 isl_assert(qp
->div
->ctx
, first
<= isl_space_dim(qp
->dim
, type
),
3023 g_pos
= pos(qp
->dim
, type
) + first
;
3025 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
3029 total
= qp
->div
->n_col
- 2;
3030 if (total
> g_pos
) {
3032 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
3035 for (i
= 0; i
< total
- g_pos
; ++i
)
3037 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
3043 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
3049 isl_qpolynomial_free(qp
);
3053 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
3054 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
3058 pos
= isl_qpolynomial_dim(qp
, type
);
3060 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
3063 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
3064 __isl_take isl_pw_qpolynomial
*pwqp
,
3065 enum isl_dim_type type
, unsigned n
)
3069 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
3071 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
3074 static int *reordering_move(isl_ctx
*ctx
,
3075 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
3080 reordering
= isl_alloc_array(ctx
, int, len
);
3085 for (i
= 0; i
< dst
; ++i
)
3087 for (i
= 0; i
< n
; ++i
)
3088 reordering
[src
+ i
] = dst
+ i
;
3089 for (i
= 0; i
< src
- dst
; ++i
)
3090 reordering
[dst
+ i
] = dst
+ n
+ i
;
3091 for (i
= 0; i
< len
- src
- n
; ++i
)
3092 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
3094 for (i
= 0; i
< src
; ++i
)
3096 for (i
= 0; i
< n
; ++i
)
3097 reordering
[src
+ i
] = dst
+ i
;
3098 for (i
= 0; i
< dst
- src
; ++i
)
3099 reordering
[src
+ n
+ i
] = src
+ i
;
3100 for (i
= 0; i
< len
- dst
- n
; ++i
)
3101 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
3107 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
3108 __isl_take isl_qpolynomial
*qp
,
3109 enum isl_dim_type dst_type
, unsigned dst_pos
,
3110 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
3119 qp
= isl_qpolynomial_cow(qp
);
3123 if (dst_type
== isl_dim_out
|| src_type
== isl_dim_out
)
3124 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3125 "cannot move output/set dimension",
3127 if (dst_type
== isl_dim_in
)
3128 dst_type
= isl_dim_set
;
3129 if (src_type
== isl_dim_in
)
3130 src_type
= isl_dim_set
;
3132 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_space_dim(qp
->dim
, src_type
),
3135 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
3136 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
3137 if (dst_type
> src_type
)
3140 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
3147 reordering
= reordering_move(qp
->dim
->ctx
,
3148 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
3152 qp
->upoly
= reorder(qp
->upoly
, reordering
);
3157 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3163 isl_qpolynomial_free(qp
);
3167 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_space
*dim
,
3168 isl_int
*f
, isl_int denom
)
3170 struct isl_upoly
*up
;
3172 dim
= isl_space_domain(dim
);
3176 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
,
3177 1 + isl_space_dim(dim
, isl_dim_all
));
3179 return isl_qpolynomial_alloc(dim
, 0, up
);
3182 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3185 struct isl_upoly
*up
;
3186 isl_qpolynomial
*qp
;
3191 ctx
= isl_aff_get_ctx(aff
);
3192 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3195 qp
= isl_qpolynomial_alloc(isl_aff_get_domain_space(aff
),
3196 aff
->ls
->div
->n_row
, up
);
3200 isl_mat_free(qp
->div
);
3201 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3202 qp
->div
= isl_mat_cow(qp
->div
);
3207 qp
= reduce_divs(qp
);
3208 qp
= remove_redundant_divs(qp
);
3212 return isl_qpolynomial_free(qp
);
3215 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3216 __isl_take isl_pw_aff
*pwaff
)
3219 isl_pw_qpolynomial
*pwqp
;
3224 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3227 for (i
= 0; i
< pwaff
->n
; ++i
) {
3229 isl_qpolynomial
*qp
;
3231 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3232 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3233 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3236 isl_pw_aff_free(pwaff
);
3240 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3241 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3245 aff
= isl_constraint_get_bound(c
, type
, pos
);
3246 isl_constraint_free(c
);
3247 return isl_qpolynomial_from_aff(aff
);
3250 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3251 * in "qp" by subs[i].
3253 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3254 __isl_take isl_qpolynomial
*qp
,
3255 enum isl_dim_type type
, unsigned first
, unsigned n
,
3256 __isl_keep isl_qpolynomial
**subs
)
3259 struct isl_upoly
**ups
;
3264 qp
= isl_qpolynomial_cow(qp
);
3268 if (type
== isl_dim_out
)
3269 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3270 "cannot substitute output/set dimension",
3272 if (type
== isl_dim_in
)
3275 for (i
= 0; i
< n
; ++i
)
3279 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
3282 for (i
= 0; i
< n
; ++i
)
3283 isl_assert(qp
->dim
->ctx
, isl_space_is_equal(qp
->dim
, subs
[i
]->dim
),
3286 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3287 for (i
= 0; i
< n
; ++i
)
3288 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3290 first
+= pos(qp
->dim
, type
);
3292 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3295 for (i
= 0; i
< n
; ++i
)
3296 ups
[i
] = subs
[i
]->upoly
;
3298 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3307 isl_qpolynomial_free(qp
);
3311 /* Extend "bset" with extra set dimensions for each integer division
3312 * in "qp" and then call "fn" with the extended bset and the polynomial
3313 * that results from replacing each of the integer divisions by the
3314 * corresponding extra set dimension.
3316 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3317 __isl_keep isl_basic_set
*bset
,
3318 int (*fn
)(__isl_take isl_basic_set
*bset
,
3319 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3323 isl_qpolynomial
*poly
;
3327 if (qp
->div
->n_row
== 0)
3328 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3331 div
= isl_mat_copy(qp
->div
);
3332 dim
= isl_space_copy(qp
->dim
);
3333 dim
= isl_space_add_dims(dim
, isl_dim_set
, qp
->div
->n_row
);
3334 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3335 bset
= isl_basic_set_copy(bset
);
3336 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, qp
->div
->n_row
);
3337 bset
= add_div_constraints(bset
, div
);
3339 return fn(bset
, poly
, user
);
3344 /* Return total degree in variables first (inclusive) up to last (exclusive).
3346 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3350 struct isl_upoly_rec
*rec
;
3354 if (isl_upoly_is_zero(up
))
3356 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3359 rec
= isl_upoly_as_rec(up
);
3363 for (i
= 0; i
< rec
->n
; ++i
) {
3366 if (isl_upoly_is_zero(rec
->p
[i
]))
3368 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3378 /* Return total degree in set variables.
3380 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3388 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3389 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3390 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3393 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3394 unsigned pos
, int deg
)
3397 struct isl_upoly_rec
*rec
;
3402 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3404 return isl_upoly_copy(up
);
3406 return isl_upoly_zero(up
->ctx
);
3409 rec
= isl_upoly_as_rec(up
);
3413 if (up
->var
== pos
) {
3415 return isl_upoly_copy(rec
->p
[deg
]);
3417 return isl_upoly_zero(up
->ctx
);
3420 up
= isl_upoly_copy(up
);
3421 up
= isl_upoly_cow(up
);
3422 rec
= isl_upoly_as_rec(up
);
3426 for (i
= 0; i
< rec
->n
; ++i
) {
3427 struct isl_upoly
*t
;
3428 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3431 isl_upoly_free(rec
->p
[i
]);
3441 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3443 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3444 __isl_keep isl_qpolynomial
*qp
,
3445 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3448 struct isl_upoly
*up
;
3454 if (type
== isl_dim_out
)
3455 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3456 "output/set dimension does not have a coefficient",
3458 if (type
== isl_dim_in
)
3461 isl_assert(qp
->div
->ctx
, t_pos
< isl_space_dim(qp
->dim
, type
),
3464 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3465 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3467 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
, up
);
3470 isl_mat_free(c
->div
);
3471 c
->div
= isl_mat_copy(qp
->div
);
3476 isl_qpolynomial_free(c
);
3480 /* Homogenize the polynomial in the variables first (inclusive) up to
3481 * last (exclusive) by inserting powers of variable first.
3482 * Variable first is assumed not to appear in the input.
3484 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3485 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3486 int first
, int last
)
3489 struct isl_upoly_rec
*rec
;
3493 if (isl_upoly_is_zero(up
))
3497 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3498 struct isl_upoly
*hom
;
3500 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3503 rec
= isl_upoly_as_rec(hom
);
3504 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3509 up
= isl_upoly_cow(up
);
3510 rec
= isl_upoly_as_rec(up
);
3514 for (i
= 0; i
< rec
->n
; ++i
) {
3515 if (isl_upoly_is_zero(rec
->p
[i
]))
3517 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3518 up
->var
< last
? deg
+ i
: i
, target
,
3530 /* Homogenize the polynomial in the set variables by introducing
3531 * powers of an extra set variable at position 0.
3533 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3534 __isl_take isl_qpolynomial
*poly
)
3538 int deg
= isl_qpolynomial_degree(poly
);
3543 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_in
, 0, 1);
3544 poly
= isl_qpolynomial_cow(poly
);
3548 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3549 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3550 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3557 isl_qpolynomial_free(poly
);
3561 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*dim
,
3562 __isl_take isl_mat
*div
)
3570 n
= isl_space_dim(dim
, isl_dim_all
) + div
->n_row
;
3572 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3573 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3580 isl_int_init(term
->n
);
3581 isl_int_init(term
->d
);
3585 isl_space_free(dim
);
3590 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3599 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3608 total
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3610 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3614 isl_int_set(dup
->n
, term
->n
);
3615 isl_int_set(dup
->d
, term
->d
);
3617 for (i
= 0; i
< total
; ++i
)
3618 dup
->pow
[i
] = term
->pow
[i
];
3623 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3631 return isl_term_dup(term
);
3634 void isl_term_free(__isl_take isl_term
*term
)
3639 if (--term
->ref
> 0)
3642 isl_space_free(term
->dim
);
3643 isl_mat_free(term
->div
);
3644 isl_int_clear(term
->n
);
3645 isl_int_clear(term
->d
);
3649 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3657 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
3658 case isl_dim_div
: return term
->div
->n_row
;
3659 case isl_dim_all
: return isl_space_dim(term
->dim
, isl_dim_all
) +
3665 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3667 return term
? term
->dim
->ctx
: NULL
;
3670 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3674 isl_int_set(*n
, term
->n
);
3677 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3681 isl_int_set(*d
, term
->d
);
3684 /* Return the coefficient of the term "term".
3686 __isl_give isl_val
*isl_term_get_coefficient_val(__isl_keep isl_term
*term
)
3691 return isl_val_rat_from_isl_int(isl_term_get_ctx(term
),
3695 int isl_term_get_exp(__isl_keep isl_term
*term
,
3696 enum isl_dim_type type
, unsigned pos
)
3701 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3703 if (type
>= isl_dim_set
)
3704 pos
+= isl_space_dim(term
->dim
, isl_dim_param
);
3705 if (type
>= isl_dim_div
)
3706 pos
+= isl_space_dim(term
->dim
, isl_dim_set
);
3708 return term
->pow
[pos
];
3711 __isl_give isl_aff
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3713 isl_local_space
*ls
;
3719 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3722 ls
= isl_local_space_alloc_div(isl_space_copy(term
->dim
),
3723 isl_mat_copy(term
->div
));
3724 aff
= isl_aff_alloc(ls
);
3728 isl_seq_cpy(aff
->v
->el
, term
->div
->row
[pos
], aff
->v
->size
);
3730 aff
= isl_aff_normalize(aff
);
3735 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3736 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3737 __isl_take isl_term
*term
, void *user
)
3740 struct isl_upoly_rec
*rec
;
3745 if (isl_upoly_is_zero(up
))
3748 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3749 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3750 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3752 if (isl_upoly_is_cst(up
)) {
3753 struct isl_upoly_cst
*cst
;
3754 cst
= isl_upoly_as_cst(up
);
3757 term
= isl_term_cow(term
);
3760 isl_int_set(term
->n
, cst
->n
);
3761 isl_int_set(term
->d
, cst
->d
);
3762 if (fn(isl_term_copy(term
), user
) < 0)
3767 rec
= isl_upoly_as_rec(up
);
3771 for (i
= 0; i
< rec
->n
; ++i
) {
3772 term
= isl_term_cow(term
);
3775 term
->pow
[up
->var
] = i
;
3776 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3780 term
->pow
[up
->var
] = 0;
3784 isl_term_free(term
);
3788 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3789 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3796 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3800 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3802 isl_term_free(term
);
3804 return term
? 0 : -1;
3807 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3809 struct isl_upoly
*up
;
3810 isl_qpolynomial
*qp
;
3816 n
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3818 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3819 for (i
= 0; i
< n
; ++i
) {
3822 up
= isl_upoly_mul(up
,
3823 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3826 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
), term
->div
->n_row
, up
);
3829 isl_mat_free(qp
->div
);
3830 qp
->div
= isl_mat_copy(term
->div
);
3834 isl_term_free(term
);
3837 isl_qpolynomial_free(qp
);
3838 isl_term_free(term
);
3842 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3843 __isl_take isl_space
*dim
)
3852 if (isl_space_is_equal(qp
->dim
, dim
)) {
3853 isl_space_free(dim
);
3857 qp
= isl_qpolynomial_cow(qp
);
3861 extra
= isl_space_dim(dim
, isl_dim_set
) -
3862 isl_space_dim(qp
->dim
, isl_dim_set
);
3863 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
3864 if (qp
->div
->n_row
) {
3867 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3870 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3872 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3877 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3880 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3881 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3883 isl_space_free(qp
->dim
);
3888 isl_space_free(dim
);
3889 isl_qpolynomial_free(qp
);
3893 /* For each parameter or variable that does not appear in qp,
3894 * first eliminate the variable from all constraints and then set it to zero.
3896 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3897 __isl_keep isl_qpolynomial
*qp
)
3908 d
= isl_space_dim(set
->dim
, isl_dim_all
);
3909 active
= isl_calloc_array(set
->ctx
, int, d
);
3910 if (set_active(qp
, active
) < 0)
3913 for (i
= 0; i
< d
; ++i
)
3922 nparam
= isl_space_dim(set
->dim
, isl_dim_param
);
3923 nvar
= isl_space_dim(set
->dim
, isl_dim_set
);
3924 for (i
= 0; i
< nparam
; ++i
) {
3927 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3928 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3930 for (i
= 0; i
< nvar
; ++i
) {
3931 if (active
[nparam
+ i
])
3933 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3934 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3946 struct isl_opt_data
{
3947 isl_qpolynomial
*qp
;
3953 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3955 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3958 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3962 } else if (data
->max
) {
3963 data
->opt
= isl_val_max(data
->opt
, val
);
3965 data
->opt
= isl_val_min(data
->opt
, val
);
3971 __isl_give isl_val
*isl_qpolynomial_opt_on_domain(
3972 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3974 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3979 if (isl_upoly_is_cst(qp
->upoly
)) {
3981 data
.opt
= isl_qpolynomial_get_constant_val(qp
);
3982 isl_qpolynomial_free(qp
);
3986 set
= fix_inactive(set
, qp
);
3989 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3993 data
.opt
= isl_val_zero(isl_set_get_ctx(set
));
3996 isl_qpolynomial_free(qp
);
4000 isl_qpolynomial_free(qp
);
4001 isl_val_free(data
.opt
);
4005 __isl_give isl_qpolynomial
*isl_qpolynomial_morph_domain(
4006 __isl_take isl_qpolynomial
*qp
, __isl_take isl_morph
*morph
)
4011 struct isl_upoly
**subs
;
4012 isl_mat
*mat
, *diag
;
4014 qp
= isl_qpolynomial_cow(qp
);
4019 isl_assert(ctx
, isl_space_is_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
4021 n_sub
= morph
->inv
->n_row
- 1;
4022 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4023 n_sub
+= qp
->div
->n_row
;
4024 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
4028 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
4029 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
4030 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
4031 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4032 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4033 subs
[morph
->inv
->n_row
- 1 + i
] =
4034 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
4036 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
4038 for (i
= 0; i
< n_sub
; ++i
)
4039 isl_upoly_free(subs
[i
]);
4042 diag
= isl_mat_diag(ctx
, 1, morph
->inv
->row
[0][0]);
4043 mat
= isl_mat_diagonal(diag
, isl_mat_copy(morph
->inv
));
4044 diag
= isl_mat_diag(ctx
, qp
->div
->n_row
, morph
->inv
->row
[0][0]);
4045 mat
= isl_mat_diagonal(mat
, diag
);
4046 qp
->div
= isl_mat_product(qp
->div
, mat
);
4047 isl_space_free(qp
->dim
);
4048 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
4050 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
4053 isl_morph_free(morph
);
4057 isl_qpolynomial_free(qp
);
4058 isl_morph_free(morph
);
4062 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
4063 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
4064 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
4066 return isl_union_pw_qpolynomial_match_bin_op(upwqp1
, upwqp2
,
4067 &isl_pw_qpolynomial_mul
);
4070 /* Reorder the columns of the given div definitions according to the
4073 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
4074 __isl_take isl_reordering
*r
)
4083 extra
= isl_space_dim(r
->dim
, isl_dim_all
) + div
->n_row
- r
->len
;
4084 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
4088 for (i
= 0; i
< div
->n_row
; ++i
) {
4089 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
4090 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
4091 for (j
= 0; j
< r
->len
; ++j
)
4092 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
4093 div
->row
[i
][2 + j
]);
4096 isl_reordering_free(r
);
4100 isl_reordering_free(r
);
4105 /* Reorder the dimension of "qp" according to the given reordering.
4107 __isl_give isl_qpolynomial
*isl_qpolynomial_realign_domain(
4108 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
4110 qp
= isl_qpolynomial_cow(qp
);
4114 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4118 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
4122 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
4126 qp
= isl_qpolynomial_reset_domain_space(qp
, isl_space_copy(r
->dim
));
4128 isl_reordering_free(r
);
4131 isl_qpolynomial_free(qp
);
4132 isl_reordering_free(r
);
4136 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4137 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4142 if (!isl_space_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
4143 isl_reordering
*exp
;
4145 model
= isl_space_drop_dims(model
, isl_dim_in
,
4146 0, isl_space_dim(model
, isl_dim_in
));
4147 model
= isl_space_drop_dims(model
, isl_dim_out
,
4148 0, isl_space_dim(model
, isl_dim_out
));
4149 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4150 exp
= isl_reordering_extend_space(exp
,
4151 isl_qpolynomial_get_domain_space(qp
));
4152 qp
= isl_qpolynomial_realign_domain(qp
, exp
);
4155 isl_space_free(model
);
4158 isl_space_free(model
);
4159 isl_qpolynomial_free(qp
);
4163 struct isl_split_periods_data
{
4165 isl_pw_qpolynomial
*res
;
4168 /* Create a slice where the integer division "div" has the fixed value "v".
4169 * In particular, if "div" refers to floor(f/m), then create a slice
4171 * m v <= f <= m v + (m - 1)
4176 * -f + m v + (m - 1) >= 0
4178 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*dim
,
4179 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4182 isl_basic_set
*bset
= NULL
;
4188 total
= isl_space_dim(dim
, isl_dim_all
);
4189 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0, 0, 2);
4191 k
= isl_basic_set_alloc_inequality(bset
);
4194 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4195 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4197 k
= isl_basic_set_alloc_inequality(bset
);
4200 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4201 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4202 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4203 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4205 isl_space_free(dim
);
4206 return isl_set_from_basic_set(bset
);
4208 isl_basic_set_free(bset
);
4209 isl_space_free(dim
);
4213 static int split_periods(__isl_take isl_set
*set
,
4214 __isl_take isl_qpolynomial
*qp
, void *user
);
4216 /* Create a slice of the domain "set" such that integer division "div"
4217 * has the fixed value "v" and add the results to data->res,
4218 * replacing the integer division by "v" in "qp".
4220 static int set_div(__isl_take isl_set
*set
,
4221 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4222 struct isl_split_periods_data
*data
)
4227 struct isl_upoly
*cst
;
4229 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4230 set
= isl_set_intersect(set
, slice
);
4235 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4237 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4238 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4240 isl_int_addmul(qp
->div
->row
[i
][1],
4241 qp
->div
->row
[i
][2 + total
+ div
], v
);
4242 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4245 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4246 qp
= substitute_div(qp
, div
, cst
);
4248 return split_periods(set
, qp
, data
);
4251 isl_qpolynomial_free(qp
);
4255 /* Split the domain "set" such that integer division "div"
4256 * has a fixed value (ranging from "min" to "max") on each slice
4257 * and add the results to data->res.
4259 static int split_div(__isl_take isl_set
*set
,
4260 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4261 struct isl_split_periods_data
*data
)
4263 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4264 isl_set
*set_i
= isl_set_copy(set
);
4265 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4267 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4271 isl_qpolynomial_free(qp
);
4275 isl_qpolynomial_free(qp
);
4279 /* If "qp" refers to any integer division
4280 * that can only attain "max_periods" distinct values on "set"
4281 * then split the domain along those distinct values.
4282 * Add the results (or the original if no splitting occurs)
4285 static int split_periods(__isl_take isl_set
*set
,
4286 __isl_take isl_qpolynomial
*qp
, void *user
)
4289 isl_pw_qpolynomial
*pwqp
;
4290 struct isl_split_periods_data
*data
;
4295 data
= (struct isl_split_periods_data
*)user
;
4300 if (qp
->div
->n_row
== 0) {
4301 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4302 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4308 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4309 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4310 enum isl_lp_result lp_res
;
4312 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4313 qp
->div
->n_row
) != -1)
4316 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4317 set
->ctx
->one
, &min
, NULL
, NULL
);
4318 if (lp_res
== isl_lp_error
)
4320 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4322 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4324 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4325 set
->ctx
->one
, &max
, NULL
, NULL
);
4326 if (lp_res
== isl_lp_error
)
4328 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4330 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4332 isl_int_sub(max
, max
, min
);
4333 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4334 isl_int_add(max
, max
, min
);
4339 if (i
< qp
->div
->n_row
) {
4340 r
= split_div(set
, qp
, i
, min
, max
, data
);
4342 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4343 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4355 isl_qpolynomial_free(qp
);
4359 /* If any quasi-polynomial in pwqp refers to any integer division
4360 * that can only attain "max_periods" distinct values on its domain
4361 * then split the domain along those distinct values.
4363 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4364 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4366 struct isl_split_periods_data data
;
4368 data
.max_periods
= max_periods
;
4369 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4371 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4374 isl_pw_qpolynomial_free(pwqp
);
4378 isl_pw_qpolynomial_free(data
.res
);
4379 isl_pw_qpolynomial_free(pwqp
);
4383 /* Construct a piecewise quasipolynomial that is constant on the given
4384 * domain. In particular, it is
4387 * infinity if cst == -1
4389 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4390 __isl_take isl_basic_set
*bset
, int cst
)
4393 isl_qpolynomial
*qp
;
4398 bset
= isl_basic_set_params(bset
);
4399 dim
= isl_basic_set_get_space(bset
);
4401 qp
= isl_qpolynomial_infty_on_domain(dim
);
4403 qp
= isl_qpolynomial_zero_on_domain(dim
);
4405 qp
= isl_qpolynomial_one_on_domain(dim
);
4406 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4409 /* Factor bset, call fn on each of the factors and return the product.
4411 * If no factors can be found, simply call fn on the input.
4412 * Otherwise, construct the factors based on the factorizer,
4413 * call fn on each factor and compute the product.
4415 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4416 __isl_take isl_basic_set
*bset
,
4417 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4423 isl_qpolynomial
*qp
;
4424 isl_pw_qpolynomial
*pwqp
;
4428 f
= isl_basic_set_factorizer(bset
);
4431 if (f
->n_group
== 0) {
4432 isl_factorizer_free(f
);
4436 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4437 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4439 dim
= isl_basic_set_get_space(bset
);
4440 dim
= isl_space_domain(dim
);
4441 set
= isl_set_universe(isl_space_copy(dim
));
4442 qp
= isl_qpolynomial_one_on_domain(dim
);
4443 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4445 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4447 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4448 isl_basic_set
*bset_i
;
4449 isl_pw_qpolynomial
*pwqp_i
;
4451 bset_i
= isl_basic_set_copy(bset
);
4452 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4453 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4454 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4456 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4457 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4458 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4460 pwqp_i
= fn(bset_i
);
4461 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4466 isl_basic_set_free(bset
);
4467 isl_factorizer_free(f
);
4471 isl_basic_set_free(bset
);
4475 /* Factor bset, call fn on each of the factors and return the product.
4476 * The function is assumed to evaluate to zero on empty domains,
4477 * to one on zero-dimensional domains and to infinity on unbounded domains
4478 * and will not be called explicitly on zero-dimensional or unbounded domains.
4480 * We first check for some special cases and remove all equalities.
4481 * Then we hand over control to compressed_multiplicative_call.
4483 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4484 __isl_take isl_basic_set
*bset
,
4485 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4489 isl_pw_qpolynomial
*pwqp
;
4494 if (isl_basic_set_plain_is_empty(bset
))
4495 return constant_on_domain(bset
, 0);
4497 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
4498 return constant_on_domain(bset
, 1);
4500 bounded
= isl_basic_set_is_bounded(bset
);
4504 return constant_on_domain(bset
, -1);
4506 if (bset
->n_eq
== 0)
4507 return compressed_multiplicative_call(bset
, fn
);
4509 morph
= isl_basic_set_full_compression(bset
);
4510 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4512 pwqp
= compressed_multiplicative_call(bset
, fn
);
4514 morph
= isl_morph_dom_params(morph
);
4515 morph
= isl_morph_ran_params(morph
);
4516 morph
= isl_morph_inverse(morph
);
4518 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, morph
);
4522 isl_basic_set_free(bset
);
4526 /* Drop all floors in "qp", turning each integer division [a/m] into
4527 * a rational division a/m. If "down" is set, then the integer division
4528 * is replaced by (a-(m-1))/m instead.
4530 static __isl_give isl_qpolynomial
*qp_drop_floors(
4531 __isl_take isl_qpolynomial
*qp
, int down
)
4534 struct isl_upoly
*s
;
4538 if (qp
->div
->n_row
== 0)
4541 qp
= isl_qpolynomial_cow(qp
);
4545 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4547 isl_int_sub(qp
->div
->row
[i
][1],
4548 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4549 isl_int_add_ui(qp
->div
->row
[i
][1],
4550 qp
->div
->row
[i
][1], 1);
4552 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4553 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4554 qp
= substitute_div(qp
, i
, s
);
4562 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4563 * a rational division a/m.
4565 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4566 __isl_take isl_pw_qpolynomial
*pwqp
)
4573 if (isl_pw_qpolynomial_is_zero(pwqp
))
4576 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4580 for (i
= 0; i
< pwqp
->n
; ++i
) {
4581 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4588 isl_pw_qpolynomial_free(pwqp
);
4592 /* Adjust all the integer divisions in "qp" such that they are at least
4593 * one over the given orthant (identified by "signs"). This ensures
4594 * that they will still be non-negative even after subtracting (m-1)/m.
4596 * In particular, f is replaced by f' + v, changing f = [a/m]
4597 * to f' = [(a - m v)/m].
4598 * If the constant term k in a is smaller than m,
4599 * the constant term of v is set to floor(k/m) - 1.
4600 * For any other term, if the coefficient c and the variable x have
4601 * the same sign, then no changes are needed.
4602 * Otherwise, if the variable is positive (and c is negative),
4603 * then the coefficient of x in v is set to floor(c/m).
4604 * If the variable is negative (and c is positive),
4605 * then the coefficient of x in v is set to ceil(c/m).
4607 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4613 struct isl_upoly
*s
;
4615 qp
= isl_qpolynomial_cow(qp
);
4618 qp
->div
= isl_mat_cow(qp
->div
);
4622 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4623 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4625 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4626 isl_int
*row
= qp
->div
->row
[i
];
4630 if (isl_int_lt(row
[1], row
[0])) {
4631 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4632 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4633 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4635 for (j
= 0; j
< total
; ++j
) {
4636 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4639 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4641 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4642 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4644 for (j
= 0; j
< i
; ++j
) {
4645 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4647 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4648 row
[2 + total
+ j
], row
[0]);
4649 isl_int_submul(row
[2 + total
+ j
],
4650 row
[0], v
->el
[1 + total
+ j
]);
4652 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4653 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4655 isl_seq_combine(qp
->div
->row
[j
] + 1,
4656 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4657 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4659 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4660 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4661 qp
->div
->ctx
->one
, v
->size
);
4662 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4672 isl_qpolynomial_free(qp
);
4676 struct isl_to_poly_data
{
4678 isl_pw_qpolynomial
*res
;
4679 isl_qpolynomial
*qp
;
4682 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4683 * We first make all integer divisions positive and then split the
4684 * quasipolynomials into terms with sign data->sign (the direction
4685 * of the requested approximation) and terms with the opposite sign.
4686 * In the first set of terms, each integer division [a/m] is
4687 * overapproximated by a/m, while in the second it is underapproximated
4690 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4693 struct isl_to_poly_data
*data
= user
;
4694 isl_pw_qpolynomial
*t
;
4695 isl_qpolynomial
*qp
, *up
, *down
;
4697 qp
= isl_qpolynomial_copy(data
->qp
);
4698 qp
= make_divs_pos(qp
, signs
);
4700 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4701 up
= qp_drop_floors(up
, 0);
4702 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4703 down
= qp_drop_floors(down
, 1);
4705 isl_qpolynomial_free(qp
);
4706 qp
= isl_qpolynomial_add(up
, down
);
4708 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4709 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4714 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4715 * the polynomial will be an overapproximation. If "sign" is negative,
4716 * it will be an underapproximation. If "sign" is zero, the approximation
4717 * will lie somewhere in between.
4719 * In particular, is sign == 0, we simply drop the floors, turning
4720 * the integer divisions into rational divisions.
4721 * Otherwise, we split the domains into orthants, make all integer divisions
4722 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4723 * depending on the requested sign and the sign of the term in which
4724 * the integer division appears.
4726 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4727 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4730 struct isl_to_poly_data data
;
4733 return pwqp_drop_floors(pwqp
);
4739 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4741 for (i
= 0; i
< pwqp
->n
; ++i
) {
4742 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4743 isl_pw_qpolynomial
*t
;
4744 t
= isl_pw_qpolynomial_alloc(
4745 isl_set_copy(pwqp
->p
[i
].set
),
4746 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4747 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4750 data
.qp
= pwqp
->p
[i
].qp
;
4751 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4752 &to_polynomial_on_orthant
, &data
) < 0)
4756 isl_pw_qpolynomial_free(pwqp
);
4760 isl_pw_qpolynomial_free(pwqp
);
4761 isl_pw_qpolynomial_free(data
.res
);
4765 static int poly_entry(void **entry
, void *user
)
4768 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4770 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4772 return *pwqp
? 0 : -1;
4775 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4776 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4778 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4782 if (isl_hash_table_foreach(upwqp
->space
->ctx
, &upwqp
->table
,
4783 &poly_entry
, &sign
) < 0)
4788 isl_union_pw_qpolynomial_free(upwqp
);
4792 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4793 __isl_take isl_qpolynomial
*qp
)
4797 isl_vec
*aff
= NULL
;
4798 isl_basic_map
*bmap
= NULL
;
4804 if (!isl_upoly_is_affine(qp
->upoly
))
4805 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4806 "input quasi-polynomial not affine", goto error
);
4807 aff
= isl_qpolynomial_extract_affine(qp
);
4810 dim
= isl_qpolynomial_get_space(qp
);
4811 pos
= 1 + isl_space_offset(dim
, isl_dim_out
);
4812 n_div
= qp
->div
->n_row
;
4813 bmap
= isl_basic_map_alloc_space(dim
, n_div
, 1, 2 * n_div
);
4815 for (i
= 0; i
< n_div
; ++i
) {
4816 k
= isl_basic_map_alloc_div(bmap
);
4819 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4820 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4821 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4824 k
= isl_basic_map_alloc_equality(bmap
);
4827 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4828 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4829 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4832 isl_qpolynomial_free(qp
);
4833 bmap
= isl_basic_map_finalize(bmap
);
4837 isl_qpolynomial_free(qp
);
4838 isl_basic_map_free(bmap
);