isl_tab_detect_redundant: return status instead of isl_tab *
[isl.git] / isl_sample.c
blob83fbf4e3f2ca703812e03c541ad1ae143aeaa244
1 #include "isl_sample.h"
2 #include "isl_sample_piplib.h"
3 #include "isl_vec.h"
4 #include "isl_mat.h"
5 #include "isl_seq.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_tab.h"
9 #include "isl_basis_reduction.h"
11 static struct isl_vec *empty_sample(struct isl_basic_set *bset)
13 struct isl_vec *vec;
15 vec = isl_vec_alloc(bset->ctx, 0);
16 isl_basic_set_free(bset);
17 return vec;
20 /* Construct a zero sample of the same dimension as bset.
21 * As a special case, if bset is zero-dimensional, this
22 * function creates a zero-dimensional sample point.
24 static struct isl_vec *zero_sample(struct isl_basic_set *bset)
26 unsigned dim;
27 struct isl_vec *sample;
29 dim = isl_basic_set_total_dim(bset);
30 sample = isl_vec_alloc(bset->ctx, 1 + dim);
31 if (sample) {
32 isl_int_set_si(sample->el[0], 1);
33 isl_seq_clr(sample->el + 1, dim);
35 isl_basic_set_free(bset);
36 return sample;
39 static struct isl_vec *interval_sample(struct isl_basic_set *bset)
41 int i;
42 isl_int t;
43 struct isl_vec *sample;
45 bset = isl_basic_set_simplify(bset);
46 if (!bset)
47 return NULL;
48 if (isl_basic_set_fast_is_empty(bset))
49 return empty_sample(bset);
50 if (bset->n_eq == 0 && bset->n_ineq == 0)
51 return zero_sample(bset);
53 sample = isl_vec_alloc(bset->ctx, 2);
54 isl_int_set_si(sample->block.data[0], 1);
56 if (bset->n_eq > 0) {
57 isl_assert(bset->ctx, bset->n_eq == 1, goto error);
58 isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
59 if (isl_int_is_one(bset->eq[0][1]))
60 isl_int_neg(sample->el[1], bset->eq[0][0]);
61 else {
62 isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
63 goto error);
64 isl_int_set(sample->el[1], bset->eq[0][0]);
66 isl_basic_set_free(bset);
67 return sample;
70 isl_int_init(t);
71 if (isl_int_is_one(bset->ineq[0][1]))
72 isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
73 else
74 isl_int_set(sample->block.data[1], bset->ineq[0][0]);
75 for (i = 1; i < bset->n_ineq; ++i) {
76 isl_seq_inner_product(sample->block.data,
77 bset->ineq[i], 2, &t);
78 if (isl_int_is_neg(t))
79 break;
81 isl_int_clear(t);
82 if (i < bset->n_ineq) {
83 isl_vec_free(sample);
84 return empty_sample(bset);
87 isl_basic_set_free(bset);
88 return sample;
89 error:
90 isl_basic_set_free(bset);
91 isl_vec_free(sample);
92 return NULL;
95 static struct isl_mat *independent_bounds(struct isl_basic_set *bset)
97 int i, j, n;
98 struct isl_mat *dirs = NULL;
99 struct isl_mat *bounds = NULL;
100 unsigned dim;
102 if (!bset)
103 return NULL;
105 dim = isl_basic_set_n_dim(bset);
106 bounds = isl_mat_alloc(bset->ctx, 1+dim, 1+dim);
107 if (!bounds)
108 return NULL;
110 isl_int_set_si(bounds->row[0][0], 1);
111 isl_seq_clr(bounds->row[0]+1, dim);
112 bounds->n_row = 1;
114 if (bset->n_ineq == 0)
115 return bounds;
117 dirs = isl_mat_alloc(bset->ctx, dim, dim);
118 if (!dirs) {
119 isl_mat_free(bounds);
120 return NULL;
122 isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col);
123 isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col);
124 for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) {
125 int pos;
127 isl_seq_cpy(dirs->row[n], bset->ineq[j]+1, dirs->n_col);
129 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
130 if (pos < 0)
131 continue;
132 for (i = 0; i < n; ++i) {
133 int pos_i;
134 pos_i = isl_seq_first_non_zero(dirs->row[i], dirs->n_col);
135 if (pos_i < pos)
136 continue;
137 if (pos_i > pos)
138 break;
139 isl_seq_elim(dirs->row[n], dirs->row[i], pos,
140 dirs->n_col, NULL);
141 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
142 if (pos < 0)
143 break;
145 if (pos < 0)
146 continue;
147 if (i < n) {
148 int k;
149 isl_int *t = dirs->row[n];
150 for (k = n; k > i; --k)
151 dirs->row[k] = dirs->row[k-1];
152 dirs->row[i] = t;
154 ++n;
155 isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col);
157 isl_mat_free(dirs);
158 bounds->n_row = 1+n;
159 return bounds;
162 static void swap_inequality(struct isl_basic_set *bset, int a, int b)
164 isl_int *t = bset->ineq[a];
165 bset->ineq[a] = bset->ineq[b];
166 bset->ineq[b] = t;
169 /* Skew into positive orthant and project out lineality space.
171 * We perform a unimodular transformation that turns a selected
172 * maximal set of linearly independent bounds into constraints
173 * on the first dimensions that impose that these first dimensions
174 * are non-negative. In particular, the constraint matrix is lower
175 * triangular with positive entries on the diagonal and negative
176 * entries below.
177 * If "bset" has a lineality space then these constraints (and therefore
178 * all constraints in bset) only involve the first dimensions.
179 * The remaining dimensions then do not appear in any constraints and
180 * we can select any value for them, say zero. We therefore project
181 * out this final dimensions and plug in the value zero later. This
182 * is accomplished by simply dropping the final columns of
183 * the unimodular transformation.
185 static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant(
186 struct isl_basic_set *bset, struct isl_mat **T)
188 struct isl_mat *U = NULL;
189 struct isl_mat *bounds = NULL;
190 int i, j;
191 unsigned old_dim, new_dim;
193 *T = NULL;
194 if (!bset)
195 return NULL;
197 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
198 isl_assert(bset->ctx, bset->n_div == 0, goto error);
199 isl_assert(bset->ctx, bset->n_eq == 0, goto error);
201 old_dim = isl_basic_set_n_dim(bset);
202 /* Try to move (multiples of) unit rows up. */
203 for (i = 0, j = 0; i < bset->n_ineq; ++i) {
204 int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim);
205 if (pos < 0)
206 continue;
207 if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1,
208 old_dim-pos-1) >= 0)
209 continue;
210 if (i != j)
211 swap_inequality(bset, i, j);
212 ++j;
214 bounds = independent_bounds(bset);
215 if (!bounds)
216 goto error;
217 new_dim = bounds->n_row - 1;
218 bounds = isl_mat_left_hermite(bounds, 1, &U, NULL);
219 if (!bounds)
220 goto error;
221 U = isl_mat_drop_cols(U, 1 + new_dim, old_dim - new_dim);
222 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
223 if (!bset)
224 goto error;
225 *T = U;
226 isl_mat_free(bounds);
227 return bset;
228 error:
229 isl_mat_free(bounds);
230 isl_mat_free(U);
231 isl_basic_set_free(bset);
232 return NULL;
235 /* Find a sample integer point, if any, in bset, which is known
236 * to have equalities. If bset contains no integer points, then
237 * return a zero-length vector.
238 * We simply remove the known equalities, compute a sample
239 * in the resulting bset, using the specified recurse function,
240 * and then transform the sample back to the original space.
242 static struct isl_vec *sample_eq(struct isl_basic_set *bset,
243 struct isl_vec *(*recurse)(struct isl_basic_set *))
245 struct isl_mat *T;
246 struct isl_vec *sample;
248 if (!bset)
249 return NULL;
251 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
252 sample = recurse(bset);
253 if (!sample || sample->size == 0)
254 isl_mat_free(T);
255 else
256 sample = isl_mat_vec_product(T, sample);
257 return sample;
260 /* Return a matrix containing the equalities of the tableau
261 * in constraint form. The tableau is assumed to have
262 * an associated bset that has been kept up-to-date.
264 static struct isl_mat *tab_equalities(struct isl_tab *tab)
266 int i, j;
267 int n_eq;
268 struct isl_mat *eq;
269 struct isl_basic_set *bset;
271 if (!tab)
272 return NULL;
274 isl_assert(tab->mat->ctx, tab->bset, return NULL);
275 bset = tab->bset;
277 n_eq = tab->n_var - tab->n_col + tab->n_dead;
278 if (tab->empty || n_eq == 0)
279 return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
280 if (n_eq == tab->n_var)
281 return isl_mat_identity(tab->mat->ctx, tab->n_var);
283 eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
284 if (!eq)
285 return NULL;
286 for (i = 0, j = 0; i < tab->n_con; ++i) {
287 if (tab->con[i].is_row)
288 continue;
289 if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
290 continue;
291 if (i < bset->n_eq)
292 isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
293 else
294 isl_seq_cpy(eq->row[j],
295 bset->ineq[i - bset->n_eq] + 1, tab->n_var);
296 ++j;
298 isl_assert(bset->ctx, j == n_eq, goto error);
299 return eq;
300 error:
301 isl_mat_free(eq);
302 return NULL;
305 /* Compute and return an initial basis for the bounded tableau "tab".
307 * If the tableau is either full-dimensional or zero-dimensional,
308 * the we simply return an identity matrix.
309 * Otherwise, we construct a basis whose first directions correspond
310 * to equalities.
312 static struct isl_mat *initial_basis(struct isl_tab *tab)
314 int n_eq;
315 struct isl_mat *eq;
316 struct isl_mat *Q;
318 n_eq = tab->n_var - tab->n_col + tab->n_dead;
319 if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
320 return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
322 eq = tab_equalities(tab);
323 eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
324 if (!eq)
325 return NULL;
326 isl_mat_free(eq);
328 Q = isl_mat_lin_to_aff(Q);
329 return Q;
332 /* Given a tableau representing a set, find and return
333 * an integer point in the set, if there is any.
335 * We perform a depth first search
336 * for an integer point, by scanning all possible values in the range
337 * attained by a basis vector, where an initial basis may have been set
338 * by the calling function. Otherwise an initial basis that exploits
339 * the equalities in the tableau is created.
340 * tab->n_zero is currently ignored and is clobbered by this function.
342 * The tableau is allowed to have unbounded direction, but then
343 * the calling function needs to set an initial basis, with the
344 * unbounded directions last and with tab->n_unbounded set
345 * to the number of unbounded directions.
346 * Furthermore, the calling functions needs to add shifted copies
347 * of all constraints involving unbounded directions to ensure
348 * that any feasible rational value in these directions can be rounded
349 * up to yield a feasible integer value.
350 * In particular, let B define the given basis x' = B x
351 * and let T be the inverse of B, i.e., X = T x'.
352 * Let a x + c >= 0 be a constraint of the set represented by the tableau,
353 * or a T x' + c >= 0 in terms of the given basis. Assume that
354 * the bounded directions have an integer value, then we can safely
355 * round up the values for the unbounded directions if we make sure
356 * that x' not only satisfies the original constraint, but also
357 * the constraint "a T x' + c + s >= 0" with s the sum of all
358 * negative values in the last n_unbounded entries of "a T".
359 * The calling function therefore needs to add the constraint
360 * a x + c + s >= 0. The current function then scans the first
361 * directions for an integer value and once those have been found,
362 * it can compute "T ceil(B x)" to yield an integer point in the set.
363 * Note that during the search, the first rows of B may be changed
364 * by a basis reduction, but the last n_unbounded rows of B remain
365 * unaltered and are also not mixed into the first rows.
367 * The search is implemented iteratively. "level" identifies the current
368 * basis vector. "init" is true if we want the first value at the current
369 * level and false if we want the next value.
371 * The initial basis is the identity matrix. If the range in some direction
372 * contains more than one integer value, we perform basis reduction based
373 * on the value of ctx->opt->gbr
374 * - ISL_GBR_NEVER: never perform basis reduction
375 * - ISL_GBR_ONCE: only perform basis reduction the first
376 * time such a range is encountered
377 * - ISL_GBR_ALWAYS: always perform basis reduction when
378 * such a range is encountered
380 * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
381 * reduction computation to return early. That is, as soon as it
382 * finds a reasonable first direction.
384 struct isl_vec *isl_tab_sample(struct isl_tab *tab)
386 unsigned dim;
387 unsigned gbr;
388 struct isl_ctx *ctx;
389 struct isl_vec *sample;
390 struct isl_vec *min;
391 struct isl_vec *max;
392 enum isl_lp_result res;
393 int level;
394 int init;
395 int reduced;
396 struct isl_tab_undo **snap;
398 if (!tab)
399 return NULL;
400 if (tab->empty)
401 return isl_vec_alloc(tab->mat->ctx, 0);
403 if (!tab->basis)
404 tab->basis = initial_basis(tab);
405 if (!tab->basis)
406 return NULL;
407 isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
408 return NULL);
409 isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
410 return NULL);
412 ctx = tab->mat->ctx;
413 dim = tab->n_var;
414 gbr = ctx->opt->gbr;
416 if (tab->n_unbounded == tab->n_var) {
417 sample = isl_tab_get_sample_value(tab);
418 sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
419 sample = isl_vec_ceil(sample);
420 sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
421 sample);
422 return sample;
425 if (isl_tab_extend_cons(tab, dim + 1) < 0)
426 return NULL;
428 min = isl_vec_alloc(ctx, dim);
429 max = isl_vec_alloc(ctx, dim);
430 snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
432 if (!min || !max || !snap)
433 goto error;
435 level = 0;
436 init = 1;
437 reduced = 0;
439 while (level >= 0) {
440 int empty = 0;
441 if (init) {
442 res = isl_tab_min(tab, tab->basis->row[1 + level],
443 ctx->one, &min->el[level], NULL, 0);
444 if (res == isl_lp_empty)
445 empty = 1;
446 isl_assert(ctx, res != isl_lp_unbounded, goto error);
447 if (res == isl_lp_error)
448 goto error;
449 if (!empty && isl_tab_sample_is_integer(tab))
450 break;
451 isl_seq_neg(tab->basis->row[1 + level] + 1,
452 tab->basis->row[1 + level] + 1, dim);
453 res = isl_tab_min(tab, tab->basis->row[1 + level],
454 ctx->one, &max->el[level], NULL, 0);
455 isl_seq_neg(tab->basis->row[1 + level] + 1,
456 tab->basis->row[1 + level] + 1, dim);
457 isl_int_neg(max->el[level], max->el[level]);
458 if (res == isl_lp_empty)
459 empty = 1;
460 isl_assert(ctx, res != isl_lp_unbounded, goto error);
461 if (res == isl_lp_error)
462 goto error;
463 if (!empty && isl_tab_sample_is_integer(tab))
464 break;
465 if (!empty && !reduced &&
466 ctx->opt->gbr != ISL_GBR_NEVER &&
467 isl_int_lt(min->el[level], max->el[level])) {
468 unsigned gbr_only_first;
469 if (ctx->opt->gbr == ISL_GBR_ONCE)
470 ctx->opt->gbr = ISL_GBR_NEVER;
471 tab->n_zero = level;
472 gbr_only_first = ctx->opt->gbr_only_first;
473 ctx->opt->gbr_only_first =
474 ctx->opt->gbr == ISL_GBR_ALWAYS;
475 tab = isl_tab_compute_reduced_basis(tab);
476 ctx->opt->gbr_only_first = gbr_only_first;
477 if (!tab || !tab->basis)
478 goto error;
479 reduced = 1;
480 continue;
482 reduced = 0;
483 snap[level] = isl_tab_snap(tab);
484 } else
485 isl_int_add_ui(min->el[level], min->el[level], 1);
487 if (empty || isl_int_gt(min->el[level], max->el[level])) {
488 level--;
489 init = 0;
490 if (level >= 0)
491 if (isl_tab_rollback(tab, snap[level]) < 0)
492 goto error;
493 continue;
495 isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
496 tab = isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]);
497 isl_int_set_si(tab->basis->row[1 + level][0], 0);
498 if (level + tab->n_unbounded < dim - 1) {
499 ++level;
500 init = 1;
501 continue;
503 break;
506 if (level >= 0) {
507 sample = isl_tab_get_sample_value(tab);
508 if (!sample)
509 goto error;
510 if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
511 sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
512 sample);
513 sample = isl_vec_ceil(sample);
514 sample = isl_mat_vec_inverse_product(
515 isl_mat_copy(tab->basis), sample);
517 } else
518 sample = isl_vec_alloc(ctx, 0);
520 ctx->opt->gbr = gbr;
521 isl_vec_free(min);
522 isl_vec_free(max);
523 free(snap);
524 return sample;
525 error:
526 ctx->opt->gbr = gbr;
527 isl_vec_free(min);
528 isl_vec_free(max);
529 free(snap);
530 return NULL;
533 /* Given a basic set that is known to be bounded, find and return
534 * an integer point in the basic set, if there is any.
536 * After handling some trivial cases, we construct a tableau
537 * and then use isl_tab_sample to find a sample, passing it
538 * the identity matrix as initial basis.
540 static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
542 unsigned dim;
543 struct isl_ctx *ctx;
544 struct isl_vec *sample;
545 struct isl_tab *tab = NULL;
547 if (!bset)
548 return NULL;
550 if (isl_basic_set_fast_is_empty(bset))
551 return empty_sample(bset);
553 dim = isl_basic_set_total_dim(bset);
554 if (dim == 0)
555 return zero_sample(bset);
556 if (dim == 1)
557 return interval_sample(bset);
558 if (bset->n_eq > 0)
559 return sample_eq(bset, sample_bounded);
561 ctx = bset->ctx;
563 tab = isl_tab_from_basic_set(bset);
564 if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
565 tab = isl_tab_detect_implicit_equalities(tab);
566 if (!tab)
567 goto error;
569 tab->bset = isl_basic_set_copy(bset);
571 sample = isl_tab_sample(tab);
572 if (!sample)
573 goto error;
575 if (sample->size > 0) {
576 isl_vec_free(bset->sample);
577 bset->sample = isl_vec_copy(sample);
580 isl_basic_set_free(bset);
581 isl_tab_free(tab);
582 return sample;
583 error:
584 isl_basic_set_free(bset);
585 isl_tab_free(tab);
586 return NULL;
589 /* Given a basic set "bset" and a value "sample" for the first coordinates
590 * of bset, plug in these values and drop the corresponding coordinates.
592 * We do this by computing the preimage of the transformation
594 * [ 1 0 ]
595 * x = [ s 0 ] x'
596 * [ 0 I ]
598 * where [1 s] is the sample value and I is the identity matrix of the
599 * appropriate dimension.
601 static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
602 struct isl_vec *sample)
604 int i;
605 unsigned total;
606 struct isl_mat *T;
608 if (!bset || !sample)
609 goto error;
611 total = isl_basic_set_total_dim(bset);
612 T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
613 if (!T)
614 goto error;
616 for (i = 0; i < sample->size; ++i) {
617 isl_int_set(T->row[i][0], sample->el[i]);
618 isl_seq_clr(T->row[i] + 1, T->n_col - 1);
620 for (i = 0; i < T->n_col - 1; ++i) {
621 isl_seq_clr(T->row[sample->size + i], T->n_col);
622 isl_int_set_si(T->row[sample->size + i][1 + i], 1);
624 isl_vec_free(sample);
626 bset = isl_basic_set_preimage(bset, T);
627 return bset;
628 error:
629 isl_basic_set_free(bset);
630 isl_vec_free(sample);
631 return NULL;
634 /* Given a basic set "bset", return any (possibly non-integer) point
635 * in the basic set.
637 static struct isl_vec *rational_sample(struct isl_basic_set *bset)
639 struct isl_tab *tab;
640 struct isl_vec *sample;
642 if (!bset)
643 return NULL;
645 tab = isl_tab_from_basic_set(bset);
646 sample = isl_tab_get_sample_value(tab);
647 isl_tab_free(tab);
649 isl_basic_set_free(bset);
651 return sample;
654 /* Given a linear cone "cone" and a rational point "vec",
655 * construct a polyhedron with shifted copies of the constraints in "cone",
656 * i.e., a polyhedron with "cone" as its recession cone, such that each
657 * point x in this polyhedron is such that the unit box positioned at x
658 * lies entirely inside the affine cone 'vec + cone'.
659 * Any rational point in this polyhedron may therefore be rounded up
660 * to yield an integer point that lies inside said affine cone.
662 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
663 * point "vec" by v/d.
664 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
665 * by <a_i, x> - b/d >= 0.
666 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
667 * We prefer this polyhedron over the actual affine cone because it doesn't
668 * require a scaling of the constraints.
669 * If each of the vertices of the unit cube positioned at x lies inside
670 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
671 * We therefore impose that x' = x + \sum e_i, for any selection of unit
672 * vectors lies inside the polyhedron, i.e.,
674 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
676 * The most stringent of these constraints is the one that selects
677 * all negative a_i, so the polyhedron we are looking for has constraints
679 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
681 * Note that if cone were known to have only non-negative rays
682 * (which can be accomplished by a unimodular transformation),
683 * then we would only have to check the points x' = x + e_i
684 * and we only have to add the smallest negative a_i (if any)
685 * instead of the sum of all negative a_i.
687 static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
688 struct isl_vec *vec)
690 int i, j, k;
691 unsigned total;
693 struct isl_basic_set *shift = NULL;
695 if (!cone || !vec)
696 goto error;
698 isl_assert(cone->ctx, cone->n_eq == 0, goto error);
700 total = isl_basic_set_total_dim(cone);
702 shift = isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone),
703 0, 0, cone->n_ineq);
705 for (i = 0; i < cone->n_ineq; ++i) {
706 k = isl_basic_set_alloc_inequality(shift);
707 if (k < 0)
708 goto error;
709 isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
710 isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
711 &shift->ineq[k][0]);
712 isl_int_cdiv_q(shift->ineq[k][0],
713 shift->ineq[k][0], vec->el[0]);
714 isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
715 for (j = 0; j < total; ++j) {
716 if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
717 continue;
718 isl_int_add(shift->ineq[k][0],
719 shift->ineq[k][0], shift->ineq[k][1 + j]);
723 isl_basic_set_free(cone);
724 isl_vec_free(vec);
726 return isl_basic_set_finalize(shift);
727 error:
728 isl_basic_set_free(shift);
729 isl_basic_set_free(cone);
730 isl_vec_free(vec);
731 return NULL;
734 /* Given a rational point vec in a (transformed) basic set,
735 * such that cone is the recession cone of the original basic set,
736 * "round up" the rational point to an integer point.
738 * We first check if the rational point just happens to be integer.
739 * If not, we transform the cone in the same way as the basic set,
740 * pick a point x in this cone shifted to the rational point such that
741 * the whole unit cube at x is also inside this affine cone.
742 * Then we simply round up the coordinates of x and return the
743 * resulting integer point.
745 static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
746 struct isl_basic_set *cone, struct isl_mat *U)
748 unsigned total;
750 if (!vec || !cone || !U)
751 goto error;
753 isl_assert(vec->ctx, vec->size != 0, goto error);
754 if (isl_int_is_one(vec->el[0])) {
755 isl_mat_free(U);
756 isl_basic_set_free(cone);
757 return vec;
760 total = isl_basic_set_total_dim(cone);
761 cone = isl_basic_set_preimage(cone, U);
762 cone = isl_basic_set_remove_dims(cone, 0, total - (vec->size - 1));
764 cone = shift_cone(cone, vec);
766 vec = rational_sample(cone);
767 vec = isl_vec_ceil(vec);
768 return vec;
769 error:
770 isl_mat_free(U);
771 isl_vec_free(vec);
772 isl_basic_set_free(cone);
773 return NULL;
776 /* Concatenate two integer vectors, i.e., two vectors with denominator
777 * (stored in element 0) equal to 1.
779 static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
781 struct isl_vec *vec;
783 if (!vec1 || !vec2)
784 goto error;
785 isl_assert(vec1->ctx, vec1->size > 0, goto error);
786 isl_assert(vec2->ctx, vec2->size > 0, goto error);
787 isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
788 isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
790 vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
791 if (!vec)
792 goto error;
794 isl_seq_cpy(vec->el, vec1->el, vec1->size);
795 isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
797 isl_vec_free(vec1);
798 isl_vec_free(vec2);
800 return vec;
801 error:
802 isl_vec_free(vec1);
803 isl_vec_free(vec2);
804 return NULL;
807 /* Drop all constraints in bset that involve any of the dimensions
808 * first to first+n-1.
810 static struct isl_basic_set *drop_constraints_involving
811 (struct isl_basic_set *bset, unsigned first, unsigned n)
813 int i;
815 if (!bset)
816 return NULL;
818 bset = isl_basic_set_cow(bset);
820 for (i = bset->n_ineq - 1; i >= 0; --i) {
821 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
822 continue;
823 isl_basic_set_drop_inequality(bset, i);
826 return bset;
829 /* Give a basic set "bset" with recession cone "cone", compute and
830 * return an integer point in bset, if any.
832 * If the recession cone is full-dimensional, then we know that
833 * bset contains an infinite number of integer points and it is
834 * fairly easy to pick one of them.
835 * If the recession cone is not full-dimensional, then we first
836 * transform bset such that the bounded directions appear as
837 * the first dimensions of the transformed basic set.
838 * We do this by using a unimodular transformation that transforms
839 * the equalities in the recession cone to equalities on the first
840 * dimensions.
842 * The transformed set is then projected onto its bounded dimensions.
843 * Note that to compute this projection, we can simply drop all constraints
844 * involving any of the unbounded dimensions since these constraints
845 * cannot be combined to produce a constraint on the bounded dimensions.
846 * To see this, assume that there is such a combination of constraints
847 * that produces a constraint on the bounded dimensions. This means
848 * that some combination of the unbounded dimensions has both an upper
849 * bound and a lower bound in terms of the bounded dimensions, but then
850 * this combination would be a bounded direction too and would have been
851 * transformed into a bounded dimensions.
853 * We then compute a sample value in the bounded dimensions.
854 * If no such value can be found, then the original set did not contain
855 * any integer points and we are done.
856 * Otherwise, we plug in the value we found in the bounded dimensions,
857 * project out these bounded dimensions and end up with a set with
858 * a full-dimensional recession cone.
859 * A sample point in this set is computed by "rounding up" any
860 * rational point in the set.
862 * The sample points in the bounded and unbounded dimensions are
863 * then combined into a single sample point and transformed back
864 * to the original space.
866 __isl_give isl_vec *isl_basic_set_sample_with_cone(
867 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
869 unsigned total;
870 unsigned cone_dim;
871 struct isl_mat *M, *U;
872 struct isl_vec *sample;
873 struct isl_vec *cone_sample;
874 struct isl_ctx *ctx;
875 struct isl_basic_set *bounded;
877 if (!bset || !cone)
878 goto error;
880 ctx = bset->ctx;
881 total = isl_basic_set_total_dim(cone);
882 cone_dim = total - cone->n_eq;
884 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
885 M = isl_mat_left_hermite(M, 0, &U, NULL);
886 if (!M)
887 goto error;
888 isl_mat_free(M);
890 U = isl_mat_lin_to_aff(U);
891 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
893 bounded = isl_basic_set_copy(bset);
894 bounded = drop_constraints_involving(bounded, total - cone_dim, cone_dim);
895 bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
896 sample = sample_bounded(bounded);
897 if (!sample || sample->size == 0) {
898 isl_basic_set_free(bset);
899 isl_basic_set_free(cone);
900 isl_mat_free(U);
901 return sample;
903 bset = plug_in(bset, isl_vec_copy(sample));
904 cone_sample = rational_sample(bset);
905 cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
906 sample = vec_concat(sample, cone_sample);
907 sample = isl_mat_vec_product(U, sample);
908 return sample;
909 error:
910 isl_basic_set_free(cone);
911 isl_basic_set_free(bset);
912 return NULL;
915 static void vec_sum_of_neg(struct isl_vec *v, isl_int *s)
917 int i;
919 isl_int_set_si(*s, 0);
921 for (i = 0; i < v->size; ++i)
922 if (isl_int_is_neg(v->el[i]))
923 isl_int_add(*s, *s, v->el[i]);
926 /* Given a tableau "tab", a tableau "tab_cone" that corresponds
927 * to the recession cone and the inverse of a new basis U = inv(B),
928 * with the unbounded directions in B last,
929 * add constraints to "tab" that ensure any rational value
930 * in the unbounded directions can be rounded up to an integer value.
932 * The new basis is given by x' = B x, i.e., x = U x'.
933 * For any rational value of the last tab->n_unbounded coordinates
934 * in the update tableau, the value that is obtained by rounding
935 * up this value should be contained in the original tableau.
936 * For any constraint "a x + c >= 0", we therefore need to add
937 * a constraint "a x + c + s >= 0", with s the sum of all negative
938 * entries in the last elements of "a U".
940 * Since we are not interested in the first entries of any of the "a U",
941 * we first drop the columns of U that correpond to bounded directions.
943 static int tab_shift_cone(struct isl_tab *tab,
944 struct isl_tab *tab_cone, struct isl_mat *U)
946 int i;
947 isl_int v;
948 struct isl_basic_set *bset = NULL;
950 if (tab && tab->n_unbounded == 0) {
951 isl_mat_free(U);
952 return 0;
954 isl_int_init(v);
955 if (!tab || !tab_cone || !U)
956 goto error;
957 bset = tab_cone->bset;
958 U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
959 for (i = 0; i < bset->n_ineq; ++i) {
960 int ok;
961 struct isl_vec *row = NULL;
962 if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
963 continue;
964 row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
965 if (!row)
966 goto error;
967 isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
968 row = isl_vec_mat_product(row, isl_mat_copy(U));
969 if (!row)
970 goto error;
971 vec_sum_of_neg(row, &v);
972 isl_vec_free(row);
973 if (isl_int_is_zero(v))
974 continue;
975 tab = isl_tab_extend(tab, 1);
976 isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
977 ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
978 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
979 if (!ok)
980 goto error;
983 isl_mat_free(U);
984 isl_int_clear(v);
985 return 0;
986 error:
987 isl_mat_free(U);
988 isl_int_clear(v);
989 return -1;
992 /* Compute and return an initial basis for the possibly
993 * unbounded tableau "tab". "tab_cone" is a tableau
994 * for the corresponding recession cone.
995 * Additionally, add constraints to "tab" that ensure
996 * that any rational value for the unbounded directions
997 * can be rounded up to an integer value.
999 * If the tableau is bounded, i.e., if the recession cone
1000 * is zero-dimensional, then we just use inital_basis.
1001 * Otherwise, we construct a basis whose first directions
1002 * correspond to equalities, followed by bounded directions,
1003 * i.e., equalities in the recession cone.
1004 * The remaining directions are then unbounded.
1006 int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
1007 struct isl_tab *tab_cone)
1009 struct isl_mat *eq;
1010 struct isl_mat *cone_eq;
1011 struct isl_mat *U, *Q;
1013 if (!tab || !tab_cone)
1014 return -1;
1016 if (tab_cone->n_col == tab_cone->n_dead) {
1017 tab->basis = initial_basis(tab);
1018 return tab->basis ? 0 : -1;
1021 eq = tab_equalities(tab);
1022 if (!eq)
1023 return -1;
1024 tab->n_zero = eq->n_row;
1025 cone_eq = tab_equalities(tab_cone);
1026 eq = isl_mat_concat(eq, cone_eq);
1027 if (!eq)
1028 return -1;
1029 tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
1030 eq = isl_mat_left_hermite(eq, 0, &U, &Q);
1031 if (!eq)
1032 return -1;
1033 isl_mat_free(eq);
1034 tab->basis = isl_mat_lin_to_aff(Q);
1035 if (tab_shift_cone(tab, tab_cone, U) < 0)
1036 return -1;
1037 if (!tab->basis)
1038 return -1;
1039 return 0;
1042 /* Compute and return a sample point in bset using generalized basis
1043 * reduction. We first check if the input set has a non-trivial
1044 * recession cone. If so, we perform some extra preprocessing in
1045 * sample_with_cone. Otherwise, we directly perform generalized basis
1046 * reduction.
1048 static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
1050 unsigned dim;
1051 struct isl_basic_set *cone;
1053 dim = isl_basic_set_total_dim(bset);
1055 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
1057 if (cone->n_eq < dim)
1058 return isl_basic_set_sample_with_cone(bset, cone);
1060 isl_basic_set_free(cone);
1061 return sample_bounded(bset);
1064 static struct isl_vec *pip_sample(struct isl_basic_set *bset)
1066 struct isl_mat *T;
1067 struct isl_ctx *ctx;
1068 struct isl_vec *sample;
1070 bset = isl_basic_set_skew_to_positive_orthant(bset, &T);
1071 if (!bset)
1072 return NULL;
1074 ctx = bset->ctx;
1075 sample = isl_pip_basic_set_sample(bset);
1077 if (sample && sample->size != 0)
1078 sample = isl_mat_vec_product(T, sample);
1079 else
1080 isl_mat_free(T);
1082 return sample;
1085 static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded)
1087 struct isl_ctx *ctx;
1088 unsigned dim;
1089 if (!bset)
1090 return NULL;
1092 ctx = bset->ctx;
1093 if (isl_basic_set_fast_is_empty(bset))
1094 return empty_sample(bset);
1096 dim = isl_basic_set_n_dim(bset);
1097 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
1098 isl_assert(ctx, bset->n_div == 0, goto error);
1100 if (bset->sample && bset->sample->size == 1 + dim) {
1101 int contains = isl_basic_set_contains(bset, bset->sample);
1102 if (contains < 0)
1103 goto error;
1104 if (contains) {
1105 struct isl_vec *sample = isl_vec_copy(bset->sample);
1106 isl_basic_set_free(bset);
1107 return sample;
1110 isl_vec_free(bset->sample);
1111 bset->sample = NULL;
1113 if (bset->n_eq > 0)
1114 return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
1115 : isl_basic_set_sample_vec);
1116 if (dim == 0)
1117 return zero_sample(bset);
1118 if (dim == 1)
1119 return interval_sample(bset);
1121 switch (bset->ctx->opt->ilp_solver) {
1122 case ISL_ILP_PIP:
1123 return pip_sample(bset);
1124 case ISL_ILP_GBR:
1125 return bounded ? sample_bounded(bset) : gbr_sample(bset);
1127 isl_assert(bset->ctx, 0, );
1128 error:
1129 isl_basic_set_free(bset);
1130 return NULL;
1133 __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
1135 return basic_set_sample(bset, 0);
1138 /* Compute an integer sample in "bset", where the caller guarantees
1139 * that "bset" is bounded.
1141 struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset)
1143 return basic_set_sample(bset, 1);
1146 __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
1148 int i;
1149 int k;
1150 struct isl_basic_set *bset = NULL;
1151 struct isl_ctx *ctx;
1152 unsigned dim;
1154 if (!vec)
1155 return NULL;
1156 ctx = vec->ctx;
1157 isl_assert(ctx, vec->size != 0, goto error);
1159 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
1160 if (!bset)
1161 goto error;
1162 dim = isl_basic_set_n_dim(bset);
1163 for (i = dim - 1; i >= 0; --i) {
1164 k = isl_basic_set_alloc_equality(bset);
1165 if (k < 0)
1166 goto error;
1167 isl_seq_clr(bset->eq[k], 1 + dim);
1168 isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
1169 isl_int_set(bset->eq[k][1 + i], vec->el[0]);
1171 bset->sample = vec;
1173 return bset;
1174 error:
1175 isl_basic_set_free(bset);
1176 isl_vec_free(vec);
1177 return NULL;
1180 __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
1182 struct isl_basic_set *bset;
1183 struct isl_vec *sample_vec;
1185 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1186 sample_vec = isl_basic_set_sample_vec(bset);
1187 if (!sample_vec)
1188 goto error;
1189 if (sample_vec->size == 0) {
1190 struct isl_basic_map *sample;
1191 sample = isl_basic_map_empty_like(bmap);
1192 isl_vec_free(sample_vec);
1193 isl_basic_map_free(bmap);
1194 return sample;
1196 bset = isl_basic_set_from_vec(sample_vec);
1197 return isl_basic_map_overlying_set(bset, bmap);
1198 error:
1199 isl_basic_map_free(bmap);
1200 return NULL;
1203 __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
1205 int i;
1206 isl_basic_map *sample = NULL;
1208 if (!map)
1209 goto error;
1211 for (i = 0; i < map->n; ++i) {
1212 sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
1213 if (!sample)
1214 goto error;
1215 if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
1216 break;
1217 isl_basic_map_free(sample);
1219 if (i == map->n)
1220 sample = isl_basic_map_empty_like_map(map);
1221 isl_map_free(map);
1222 return sample;
1223 error:
1224 isl_map_free(map);
1225 return NULL;
1228 __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
1230 return (isl_basic_set *) isl_map_sample((isl_map *)set);