2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
20 #include <isl/space.h>
23 #include <isl/union_set.h>
24 #include <isl/union_map.h>
26 #include <isl/schedule_node.h>
28 #include <isl/stream.h>
30 enum isl_restriction_type
{
31 isl_restriction_type_empty
,
32 isl_restriction_type_none
,
33 isl_restriction_type_input
,
34 isl_restriction_type_output
37 struct isl_restriction
{
38 enum isl_restriction_type type
;
44 /* Create a restriction of the given type.
46 static __isl_give isl_restriction
*isl_restriction_alloc(
47 __isl_take isl_map
*source_map
, enum isl_restriction_type type
)
50 isl_restriction
*restr
;
55 ctx
= isl_map_get_ctx(source_map
);
56 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
62 isl_map_free(source_map
);
65 isl_map_free(source_map
);
69 /* Create a restriction that doesn't restrict anything.
71 __isl_give isl_restriction
*isl_restriction_none(__isl_take isl_map
*source_map
)
73 return isl_restriction_alloc(source_map
, isl_restriction_type_none
);
76 /* Create a restriction that removes everything.
78 __isl_give isl_restriction
*isl_restriction_empty(
79 __isl_take isl_map
*source_map
)
81 return isl_restriction_alloc(source_map
, isl_restriction_type_empty
);
84 /* Create a restriction on the input of the maximization problem
85 * based on the given source and sink restrictions.
87 __isl_give isl_restriction
*isl_restriction_input(
88 __isl_take isl_set
*source_restr
, __isl_take isl_set
*sink_restr
)
91 isl_restriction
*restr
;
93 if (!source_restr
|| !sink_restr
)
96 ctx
= isl_set_get_ctx(source_restr
);
97 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
101 restr
->type
= isl_restriction_type_input
;
102 restr
->source
= source_restr
;
103 restr
->sink
= sink_restr
;
107 isl_set_free(source_restr
);
108 isl_set_free(sink_restr
);
112 /* Create a restriction on the output of the maximization problem
113 * based on the given source restriction.
115 __isl_give isl_restriction
*isl_restriction_output(
116 __isl_take isl_set
*source_restr
)
119 isl_restriction
*restr
;
124 ctx
= isl_set_get_ctx(source_restr
);
125 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
129 restr
->type
= isl_restriction_type_output
;
130 restr
->source
= source_restr
;
134 isl_set_free(source_restr
);
138 __isl_null isl_restriction
*isl_restriction_free(
139 __isl_take isl_restriction
*restr
)
144 isl_set_free(restr
->source
);
145 isl_set_free(restr
->sink
);
150 isl_ctx
*isl_restriction_get_ctx(__isl_keep isl_restriction
*restr
)
152 return restr
? isl_set_get_ctx(restr
->source
) : NULL
;
155 /* A private structure to keep track of a mapping together with
156 * a user-specified identifier and a boolean indicating whether
157 * the map represents a must or may access/dependence.
159 struct isl_labeled_map
{
165 typedef isl_bool (*isl_access_coscheduled
)(void *first
, void *second
);
167 /* A structure containing the input for dependence analysis:
169 * - n_must + n_may (<= max_source) sources
170 * - a function for determining the relative order of sources and sink
171 * - an optional function "coscheduled" for determining whether sources
172 * may be coscheduled. If "coscheduled" is NULL, then the sources
173 * are assumed not to be coscheduled.
174 * The must sources are placed before the may sources.
176 * domain_map is an auxiliary map that maps the sink access relation
177 * to the domain of this access relation.
178 * This field is only needed when restrict_fn is set and
179 * the field itself is set by isl_access_info_compute_flow.
181 * restrict_fn is a callback that (if not NULL) will be called
182 * right before any lexicographical maximization.
184 struct isl_access_info
{
186 struct isl_labeled_map sink
;
187 isl_access_level_before level_before
;
188 isl_access_coscheduled coscheduled
;
190 isl_access_restrict restrict_fn
;
196 struct isl_labeled_map source
[1];
199 /* A structure containing the output of dependence analysis:
200 * - n_source dependences
201 * - a wrapped subset of the sink for which definitely no source could be found
202 * - a wrapped subset of the sink for which possibly no source could be found
205 isl_set
*must_no_source
;
206 isl_set
*may_no_source
;
208 struct isl_labeled_map
*dep
;
211 /* Construct an isl_access_info structure and fill it up with
212 * the given data. The number of sources is set to 0.
214 __isl_give isl_access_info
*isl_access_info_alloc(__isl_take isl_map
*sink
,
215 void *sink_user
, isl_access_level_before fn
, int max_source
)
218 struct isl_access_info
*acc
;
223 ctx
= isl_map_get_ctx(sink
);
224 isl_assert(ctx
, max_source
>= 0, goto error
);
226 acc
= isl_calloc(ctx
, struct isl_access_info
,
227 sizeof(struct isl_access_info
) +
228 (max_source
- 1) * sizeof(struct isl_labeled_map
));
232 acc
->sink
.map
= sink
;
233 acc
->sink
.data
= sink_user
;
234 acc
->level_before
= fn
;
235 acc
->max_source
= max_source
;
245 /* Free the given isl_access_info structure.
247 __isl_null isl_access_info
*isl_access_info_free(
248 __isl_take isl_access_info
*acc
)
254 isl_map_free(acc
->domain_map
);
255 isl_map_free(acc
->sink
.map
);
256 for (i
= 0; i
< acc
->n_must
+ acc
->n_may
; ++i
)
257 isl_map_free(acc
->source
[i
].map
);
262 isl_ctx
*isl_access_info_get_ctx(__isl_keep isl_access_info
*acc
)
264 return acc
? isl_map_get_ctx(acc
->sink
.map
) : NULL
;
267 __isl_give isl_access_info
*isl_access_info_set_restrict(
268 __isl_take isl_access_info
*acc
, isl_access_restrict fn
, void *user
)
272 acc
->restrict_fn
= fn
;
273 acc
->restrict_user
= user
;
277 /* Add another source to an isl_access_info structure, making
278 * sure the "must" sources are placed before the "may" sources.
279 * This function may be called at most max_source times on a
280 * given isl_access_info structure, with max_source as specified
281 * in the call to isl_access_info_alloc that constructed the structure.
283 __isl_give isl_access_info
*isl_access_info_add_source(
284 __isl_take isl_access_info
*acc
, __isl_take isl_map
*source
,
285 int must
, void *source_user
)
291 ctx
= isl_map_get_ctx(acc
->sink
.map
);
292 isl_assert(ctx
, acc
->n_must
+ acc
->n_may
< acc
->max_source
, goto error
);
296 acc
->source
[acc
->n_must
+ acc
->n_may
] =
297 acc
->source
[acc
->n_must
];
298 acc
->source
[acc
->n_must
].map
= source
;
299 acc
->source
[acc
->n_must
].data
= source_user
;
300 acc
->source
[acc
->n_must
].must
= 1;
303 acc
->source
[acc
->n_must
+ acc
->n_may
].map
= source
;
304 acc
->source
[acc
->n_must
+ acc
->n_may
].data
= source_user
;
305 acc
->source
[acc
->n_must
+ acc
->n_may
].must
= 0;
311 isl_map_free(source
);
312 isl_access_info_free(acc
);
316 /* A helper struct carrying the isl_access_info and an error condition.
318 struct access_sort_info
{
319 isl_access_info
*access_info
;
323 /* Return -n, 0 or n (with n a positive value), depending on whether
324 * the source access identified by p1 should be sorted before, together
325 * or after that identified by p2.
327 * If p1 appears before p2, then it should be sorted first.
328 * For more generic initial schedules, it is possible that neither
329 * p1 nor p2 appears before the other, or at least not in any obvious way.
330 * We therefore also check if p2 appears before p1, in which case p2
331 * should be sorted first.
332 * If not, we try to order the two statements based on the description
333 * of the iteration domains. This results in an arbitrary, but fairly
336 * In case of an error, sort_info.error is set to true and all elements are
337 * reported to be equal.
339 static int access_sort_cmp(const void *p1
, const void *p2
, void *user
)
341 struct access_sort_info
*sort_info
= user
;
342 isl_access_info
*acc
= sort_info
->access_info
;
344 if (sort_info
->error
)
347 const struct isl_labeled_map
*i1
, *i2
;
350 i1
= (const struct isl_labeled_map
*) p1
;
351 i2
= (const struct isl_labeled_map
*) p2
;
353 level1
= acc
->level_before(i1
->data
, i2
->data
);
359 level2
= acc
->level_before(i2
->data
, i1
->data
);
365 h1
= isl_map_get_hash(i1
->map
);
366 h2
= isl_map_get_hash(i2
->map
);
367 return h1
> h2
? 1 : h1
< h2
? -1 : 0;
369 sort_info
->error
= 1;
373 /* Sort the must source accesses in their textual order.
375 static __isl_give isl_access_info
*isl_access_info_sort_sources(
376 __isl_take isl_access_info
*acc
)
378 struct access_sort_info sort_info
;
380 sort_info
.access_info
= acc
;
385 if (acc
->n_must
<= 1)
388 if (isl_sort(acc
->source
, acc
->n_must
, sizeof(struct isl_labeled_map
),
389 access_sort_cmp
, &sort_info
) < 0)
390 return isl_access_info_free(acc
);
392 return isl_access_info_free(acc
);
397 /* Align the parameters of the two spaces if needed and then call
400 static __isl_give isl_space
*space_align_and_join(__isl_take isl_space
*left
,
401 __isl_take isl_space
*right
)
403 isl_bool equal_params
;
405 equal_params
= isl_space_has_equal_params(left
, right
);
406 if (equal_params
< 0)
409 return isl_space_join(left
, right
);
411 left
= isl_space_align_params(left
, isl_space_copy(right
));
412 right
= isl_space_align_params(right
, isl_space_copy(left
));
413 return isl_space_join(left
, right
);
415 isl_space_free(left
);
416 isl_space_free(right
);
420 /* Initialize an empty isl_flow structure corresponding to a given
421 * isl_access_info structure.
422 * For each must access, two dependences are created (initialized
423 * to the empty relation), one for the resulting must dependences
424 * and one for the resulting may dependences. May accesses can
425 * only lead to may dependences, so only one dependence is created
427 * This function is private as isl_flow structures are only supposed
428 * to be created by isl_access_info_compute_flow.
430 static __isl_give isl_flow
*isl_flow_alloc(__isl_keep isl_access_info
*acc
)
434 struct isl_flow
*dep
;
439 ctx
= isl_map_get_ctx(acc
->sink
.map
);
440 dep
= isl_calloc_type(ctx
, struct isl_flow
);
444 n
= 2 * acc
->n_must
+ acc
->n_may
;
445 dep
->dep
= isl_calloc_array(ctx
, struct isl_labeled_map
, n
);
450 for (i
= 0; i
< acc
->n_must
; ++i
) {
452 space
= space_align_and_join(
453 isl_map_get_space(acc
->source
[i
].map
),
454 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
455 dep
->dep
[2 * i
].map
= isl_map_empty(space
);
456 dep
->dep
[2 * i
+ 1].map
= isl_map_copy(dep
->dep
[2 * i
].map
);
457 dep
->dep
[2 * i
].data
= acc
->source
[i
].data
;
458 dep
->dep
[2 * i
+ 1].data
= acc
->source
[i
].data
;
459 dep
->dep
[2 * i
].must
= 1;
460 dep
->dep
[2 * i
+ 1].must
= 0;
461 if (!dep
->dep
[2 * i
].map
|| !dep
->dep
[2 * i
+ 1].map
)
464 for (i
= acc
->n_must
; i
< acc
->n_must
+ acc
->n_may
; ++i
) {
466 space
= space_align_and_join(
467 isl_map_get_space(acc
->source
[i
].map
),
468 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
469 dep
->dep
[acc
->n_must
+ i
].map
= isl_map_empty(space
);
470 dep
->dep
[acc
->n_must
+ i
].data
= acc
->source
[i
].data
;
471 dep
->dep
[acc
->n_must
+ i
].must
= 0;
472 if (!dep
->dep
[acc
->n_must
+ i
].map
)
482 /* Iterate over all sources and for each resulting flow dependence
483 * that is not empty, call the user specfied function.
484 * The second argument in this function call identifies the source,
485 * while the third argument correspond to the final argument of
486 * the isl_flow_foreach call.
488 isl_stat
isl_flow_foreach(__isl_keep isl_flow
*deps
,
489 isl_stat (*fn
)(__isl_take isl_map
*dep
, int must
, void *dep_user
,
496 return isl_stat_error
;
498 for (i
= 0; i
< deps
->n_source
; ++i
) {
499 if (isl_map_plain_is_empty(deps
->dep
[i
].map
))
501 if (fn(isl_map_copy(deps
->dep
[i
].map
), deps
->dep
[i
].must
,
502 deps
->dep
[i
].data
, user
) < 0)
503 return isl_stat_error
;
509 /* Return a copy of the subset of the sink for which no source could be found.
511 __isl_give isl_map
*isl_flow_get_no_source(__isl_keep isl_flow
*deps
, int must
)
517 return isl_set_unwrap(isl_set_copy(deps
->must_no_source
));
519 return isl_set_unwrap(isl_set_copy(deps
->may_no_source
));
522 __isl_null isl_flow
*isl_flow_free(__isl_take isl_flow
*deps
)
528 isl_set_free(deps
->must_no_source
);
529 isl_set_free(deps
->may_no_source
);
531 for (i
= 0; i
< deps
->n_source
; ++i
)
532 isl_map_free(deps
->dep
[i
].map
);
540 isl_ctx
*isl_flow_get_ctx(__isl_keep isl_flow
*deps
)
542 return deps
? isl_set_get_ctx(deps
->must_no_source
) : NULL
;
545 /* Return a map that enforces that the domain iteration occurs after
546 * the range iteration at the given level.
547 * If level is odd, then the domain iteration should occur after
548 * the target iteration in their shared level/2 outermost loops.
549 * In this case we simply need to enforce that these outermost
550 * loop iterations are the same.
551 * If level is even, then the loop iterator of the domain should
552 * be greater than the loop iterator of the range at the last
553 * of the level/2 shared loops, i.e., loop level/2 - 1.
555 static __isl_give isl_map
*after_at_level(__isl_take isl_space
*space
,
558 struct isl_basic_map
*bmap
;
561 bmap
= isl_basic_map_equal(space
, level
/2);
563 bmap
= isl_basic_map_more_at(space
, level
/2 - 1);
565 return isl_map_from_basic_map(bmap
);
568 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
569 * but first check if the user has set acc->restrict_fn and if so
570 * update either the input or the output of the maximization problem
571 * with respect to the resulting restriction.
573 * Since the user expects a mapping from sink iterations to source iterations,
574 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
575 * to accessed array elements, we first need to project out the accessed
576 * sink array elements by applying acc->domain_map.
577 * Similarly, the sink restriction specified by the user needs to be
578 * converted back to the wrapped map.
580 static __isl_give isl_map
*restricted_partial_lexmax(
581 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*dep
,
582 int source
, __isl_take isl_set
*sink
, __isl_give isl_set
**empty
)
585 isl_restriction
*restr
;
586 isl_set
*sink_domain
;
590 if (!acc
->restrict_fn
)
591 return isl_map_partial_lexmax(dep
, sink
, empty
);
593 source_map
= isl_map_copy(dep
);
594 source_map
= isl_map_apply_domain(source_map
,
595 isl_map_copy(acc
->domain_map
));
596 sink_domain
= isl_set_copy(sink
);
597 sink_domain
= isl_set_apply(sink_domain
, isl_map_copy(acc
->domain_map
));
598 restr
= acc
->restrict_fn(source_map
, sink_domain
,
599 acc
->source
[source
].data
, acc
->restrict_user
);
600 isl_set_free(sink_domain
);
601 isl_map_free(source_map
);
605 if (restr
->type
== isl_restriction_type_input
) {
606 dep
= isl_map_intersect_range(dep
, isl_set_copy(restr
->source
));
607 sink_restr
= isl_set_copy(restr
->sink
);
608 sink_restr
= isl_set_apply(sink_restr
,
609 isl_map_reverse(isl_map_copy(acc
->domain_map
)));
610 sink
= isl_set_intersect(sink
, sink_restr
);
611 } else if (restr
->type
== isl_restriction_type_empty
) {
612 isl_space
*space
= isl_map_get_space(dep
);
614 dep
= isl_map_empty(space
);
617 res
= isl_map_partial_lexmax(dep
, sink
, empty
);
619 if (restr
->type
== isl_restriction_type_output
)
620 res
= isl_map_intersect_range(res
, isl_set_copy(restr
->source
));
622 isl_restriction_free(restr
);
631 /* Compute the last iteration of must source j that precedes the sink
632 * at the given level for sink iterations in set_C.
633 * The subset of set_C for which no such iteration can be found is returned
636 static struct isl_map
*last_source(struct isl_access_info
*acc
,
637 struct isl_set
*set_C
,
638 int j
, int level
, struct isl_set
**empty
)
640 struct isl_map
*read_map
;
641 struct isl_map
*write_map
;
642 struct isl_map
*dep_map
;
643 struct isl_map
*after
;
644 struct isl_map
*result
;
646 read_map
= isl_map_copy(acc
->sink
.map
);
647 write_map
= isl_map_copy(acc
->source
[j
].map
);
648 write_map
= isl_map_reverse(write_map
);
649 dep_map
= isl_map_apply_range(read_map
, write_map
);
650 after
= after_at_level(isl_map_get_space(dep_map
), level
);
651 dep_map
= isl_map_intersect(dep_map
, after
);
652 result
= restricted_partial_lexmax(acc
, dep_map
, j
, set_C
, empty
);
653 result
= isl_map_reverse(result
);
658 /* For a given mapping between iterations of must source j and iterations
659 * of the sink, compute the last iteration of must source k preceding
660 * the sink at level before_level for any of the sink iterations,
661 * but following the corresponding iteration of must source j at level
664 static struct isl_map
*last_later_source(struct isl_access_info
*acc
,
665 struct isl_map
*old_map
,
666 int j
, int before_level
,
667 int k
, int after_level
,
668 struct isl_set
**empty
)
671 struct isl_set
*set_C
;
672 struct isl_map
*read_map
;
673 struct isl_map
*write_map
;
674 struct isl_map
*dep_map
;
675 struct isl_map
*after_write
;
676 struct isl_map
*before_read
;
677 struct isl_map
*result
;
679 set_C
= isl_map_range(isl_map_copy(old_map
));
680 read_map
= isl_map_copy(acc
->sink
.map
);
681 write_map
= isl_map_copy(acc
->source
[k
].map
);
683 write_map
= isl_map_reverse(write_map
);
684 dep_map
= isl_map_apply_range(read_map
, write_map
);
685 space
= space_align_and_join(isl_map_get_space(acc
->source
[k
].map
),
686 isl_space_reverse(isl_map_get_space(acc
->source
[j
].map
)));
687 after_write
= after_at_level(space
, after_level
);
688 after_write
= isl_map_apply_range(after_write
, old_map
);
689 after_write
= isl_map_reverse(after_write
);
690 dep_map
= isl_map_intersect(dep_map
, after_write
);
691 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
692 dep_map
= isl_map_intersect(dep_map
, before_read
);
693 result
= restricted_partial_lexmax(acc
, dep_map
, k
, set_C
, empty
);
694 result
= isl_map_reverse(result
);
699 /* Given a shared_level between two accesses, return 1 if the
700 * the first can precede the second at the requested target_level.
701 * If the target level is odd, i.e., refers to a statement level
702 * dimension, then first needs to precede second at the requested
703 * level, i.e., shared_level must be equal to target_level.
704 * If the target level is odd, then the two loops should share
705 * at least the requested number of outer loops.
707 static int can_precede_at_level(int shared_level
, int target_level
)
709 if (shared_level
< target_level
)
711 if ((target_level
% 2) && shared_level
> target_level
)
716 /* Given a possible flow dependence temp_rel[j] between source j and the sink
717 * at level sink_level, remove those elements for which
718 * there is an iteration of another source k < j that is closer to the sink.
719 * The flow dependences temp_rel[k] are updated with the improved sources.
720 * Any improved source needs to precede the sink at the same level
721 * and needs to follow source j at the same or a deeper level.
722 * The lower this level, the later the execution date of source k.
723 * We therefore consider lower levels first.
725 * If temp_rel[j] is empty, then there can be no improvement and
726 * we return immediately.
728 * This function returns isl_stat_ok in case it was executed successfully and
729 * isl_stat_error in case of errors during the execution of this function.
731 static isl_stat
intermediate_sources(__isl_keep isl_access_info
*acc
,
732 struct isl_map
**temp_rel
, int j
, int sink_level
)
735 isl_size n_in
= isl_map_dim(acc
->source
[j
].map
, isl_dim_in
);
736 int depth
= 2 * n_in
+ 1;
739 return isl_stat_error
;
740 if (isl_map_plain_is_empty(temp_rel
[j
]))
743 for (k
= j
- 1; k
>= 0; --k
) {
745 plevel
= acc
->level_before(acc
->source
[k
].data
, acc
->sink
.data
);
747 return isl_stat_error
;
748 if (!can_precede_at_level(plevel
, sink_level
))
751 plevel2
= acc
->level_before(acc
->source
[j
].data
,
752 acc
->source
[k
].data
);
754 return isl_stat_error
;
756 for (level
= sink_level
; level
<= depth
; ++level
) {
758 struct isl_set
*trest
;
759 struct isl_map
*copy
;
761 if (!can_precede_at_level(plevel2
, level
))
764 copy
= isl_map_copy(temp_rel
[j
]);
765 T
= last_later_source(acc
, copy
, j
, sink_level
, k
,
767 if (isl_map_plain_is_empty(T
)) {
772 temp_rel
[j
] = isl_map_intersect_range(temp_rel
[j
], trest
);
773 temp_rel
[k
] = isl_map_union_disjoint(temp_rel
[k
], T
);
780 /* Compute all iterations of may source j that precedes the sink at the given
781 * level for sink iterations in set_C.
783 static __isl_give isl_map
*all_sources(__isl_keep isl_access_info
*acc
,
784 __isl_take isl_set
*set_C
, int j
, int level
)
791 read_map
= isl_map_copy(acc
->sink
.map
);
792 read_map
= isl_map_intersect_domain(read_map
, set_C
);
793 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
794 write_map
= isl_map_reverse(write_map
);
795 dep_map
= isl_map_apply_range(read_map
, write_map
);
796 after
= after_at_level(isl_map_get_space(dep_map
), level
);
797 dep_map
= isl_map_intersect(dep_map
, after
);
799 return isl_map_reverse(dep_map
);
802 /* For a given mapping between iterations of must source k and iterations
803 * of the sink, compute all iterations of may source j preceding
804 * the sink at level before_level for any of the sink iterations,
805 * but following the corresponding iteration of must source k at level
808 static __isl_give isl_map
*all_later_sources(__isl_keep isl_access_info
*acc
,
809 __isl_take isl_map
*old_map
,
810 int j
, int before_level
, int k
, int after_level
)
817 isl_map
*after_write
;
818 isl_map
*before_read
;
820 set_C
= isl_map_range(isl_map_copy(old_map
));
821 read_map
= isl_map_copy(acc
->sink
.map
);
822 read_map
= isl_map_intersect_domain(read_map
, set_C
);
823 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
825 write_map
= isl_map_reverse(write_map
);
826 dep_map
= isl_map_apply_range(read_map
, write_map
);
827 space
= isl_space_join(isl_map_get_space(
828 acc
->source
[acc
->n_must
+ j
].map
),
829 isl_space_reverse(isl_map_get_space(acc
->source
[k
].map
)));
830 after_write
= after_at_level(space
, after_level
);
831 after_write
= isl_map_apply_range(after_write
, old_map
);
832 after_write
= isl_map_reverse(after_write
);
833 dep_map
= isl_map_intersect(dep_map
, after_write
);
834 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
835 dep_map
= isl_map_intersect(dep_map
, before_read
);
836 return isl_map_reverse(dep_map
);
839 /* Given the must and may dependence relations for the must accesses
840 * for level sink_level, check if there are any accesses of may access j
841 * that occur in between and return their union.
842 * If some of these accesses are intermediate with respect to
843 * (previously thought to be) must dependences, then these
844 * must dependences are turned into may dependences.
846 static __isl_give isl_map
*all_intermediate_sources(
847 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*map
,
848 struct isl_map
**must_rel
, struct isl_map
**may_rel
,
849 int j
, int sink_level
)
852 isl_size n_in
= isl_map_dim(acc
->source
[acc
->n_must
+ j
].map
,
854 int depth
= 2 * n_in
+ 1;
857 return isl_map_free(map
);
858 for (k
= 0; k
< acc
->n_must
; ++k
) {
861 if (isl_map_plain_is_empty(may_rel
[k
]) &&
862 isl_map_plain_is_empty(must_rel
[k
]))
865 plevel
= acc
->level_before(acc
->source
[k
].data
,
866 acc
->source
[acc
->n_must
+ j
].data
);
868 return isl_map_free(map
);
870 for (level
= sink_level
; level
<= depth
; ++level
) {
875 if (!can_precede_at_level(plevel
, level
))
878 copy
= isl_map_copy(may_rel
[k
]);
879 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
880 map
= isl_map_union(map
, T
);
882 copy
= isl_map_copy(must_rel
[k
]);
883 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
884 ran
= isl_map_range(isl_map_copy(T
));
885 map
= isl_map_union(map
, T
);
886 may_rel
[k
] = isl_map_union_disjoint(may_rel
[k
],
887 isl_map_intersect_range(isl_map_copy(must_rel
[k
]),
889 T
= isl_map_from_domain_and_range(
891 isl_space_domain(isl_map_get_space(must_rel
[k
]))),
893 must_rel
[k
] = isl_map_subtract(must_rel
[k
], T
);
900 /* Given a dependence relation "old_map" between a must-source and the sink,
901 * return a subset of the dependences, augmented with instances
902 * of the source at position "pos" in "acc" that are coscheduled
903 * with the must-source and that access the same element.
904 * That is, if the input lives in a space T -> K, then the output
905 * lives in the space [T -> S] -> K, with S the space of source "pos", and
906 * the domain factor of the domain product is a subset of the input.
907 * The sources are considered to be coscheduled if they have the same values
908 * for the initial "depth" coordinates.
910 * First construct a dependence relation S -> K and a mapping
911 * between coscheduled sources T -> S.
912 * The second is combined with the original dependence relation T -> K
913 * to form a relation in T -> [S -> K], which is subsequently
914 * uncurried to [T -> S] -> K.
915 * This result is then intersected with the dependence relation S -> K
916 * to form the output.
918 * In case a negative depth is given, NULL is returned to indicate an error.
920 static __isl_give isl_map
*coscheduled_source(__isl_keep isl_access_info
*acc
,
921 __isl_keep isl_map
*old_map
, int pos
, int depth
)
934 set_C
= isl_map_range(isl_map_copy(old_map
));
935 read_map
= isl_map_copy(acc
->sink
.map
);
936 read_map
= isl_map_intersect_domain(read_map
, set_C
);
937 write_map
= isl_map_copy(acc
->source
[pos
].map
);
938 dep_map
= isl_map_domain_product(write_map
, read_map
);
939 dep_map
= isl_set_unwrap(isl_map_domain(dep_map
));
940 space
= isl_space_join(isl_map_get_space(old_map
),
941 isl_space_reverse(isl_map_get_space(dep_map
)));
942 equal
= isl_map_from_basic_map(isl_basic_map_equal(space
, depth
));
943 map
= isl_map_range_product(equal
, isl_map_copy(old_map
));
944 map
= isl_map_uncurry(map
);
945 map
= isl_map_intersect_domain_factor_range(map
, dep_map
);
950 /* After the dependences derived from a must-source have been computed
951 * at a certain level, check if any of the sources of the must-dependences
952 * may be coscheduled with other sources.
953 * If they are any such sources, then there is no way of determining
954 * which of the sources actually comes last and the must-dependences
955 * need to be turned into may-dependences, while dependences from
956 * the other sources need to be added to the may-dependences as well.
957 * "acc" describes the sources and a callback for checking whether
958 * two sources may be coscheduled. If acc->coscheduled is NULL then
959 * the sources are assumed not to be coscheduled.
960 * "must_rel" and "may_rel" describe the must and may-dependence relations
961 * computed at the current level for the must-sources. Some of the dependences
962 * may be moved from "must_rel" to "may_rel".
963 * "flow" contains all dependences computed so far (apart from those
964 * in "must_rel" and "may_rel") and may be updated with additional
965 * dependences derived from may-sources.
967 * In particular, consider all the must-sources with a non-empty
968 * dependence relation in "must_rel". They are considered in reverse
969 * order because that is the order in which they are considered in the caller.
970 * If any of the must-sources are coscheduled, then the last one
971 * is the one that will have a corresponding dependence relation.
972 * For each must-source i, consider both all the previous must-sources
973 * and all the may-sources. If any of those may be coscheduled with
974 * must-source i, then compute the coscheduled instances that access
975 * the same memory elements. The result is a relation [T -> S] -> K.
976 * The projection onto T -> K is a subset of the must-dependence relation
977 * that needs to be turned into may-dependences.
978 * The projection onto S -> K needs to be added to the may-dependences
980 * Since a given must-source instance may be coscheduled with several
981 * other source instances, the dependences that need to be turned
982 * into may-dependences are first collected and only actually removed
983 * from the must-dependences after all other sources have been considered.
985 static __isl_give isl_flow
*handle_coscheduled(__isl_keep isl_access_info
*acc
,
986 __isl_keep isl_map
**must_rel
, __isl_keep isl_map
**may_rel
,
987 __isl_take isl_flow
*flow
)
991 if (!acc
->coscheduled
)
993 for (i
= acc
->n_must
- 1; i
>= 0; --i
) {
996 if (isl_map_plain_is_empty(must_rel
[i
]))
998 move
= isl_map_empty(isl_map_get_space(must_rel
[i
]));
999 for (j
= i
- 1; j
>= 0; --j
) {
1001 isl_bool coscheduled
;
1002 isl_map
*map
, *factor
;
1004 coscheduled
= acc
->coscheduled(acc
->source
[i
].data
,
1005 acc
->source
[j
].data
);
1006 if (coscheduled
< 0) {
1008 return isl_flow_free(flow
);
1012 depth
= acc
->level_before(acc
->source
[i
].data
,
1013 acc
->source
[j
].data
) / 2;
1014 map
= coscheduled_source(acc
, must_rel
[i
], j
, depth
);
1015 factor
= isl_map_domain_factor_range(isl_map_copy(map
));
1016 may_rel
[j
] = isl_map_union(may_rel
[j
], factor
);
1017 map
= isl_map_domain_factor_domain(map
);
1018 move
= isl_map_union(move
, map
);
1020 for (j
= 0; j
< acc
->n_may
; ++j
) {
1022 isl_bool coscheduled
;
1023 isl_map
*map
, *factor
;
1025 pos
= acc
->n_must
+ j
;
1026 coscheduled
= acc
->coscheduled(acc
->source
[i
].data
,
1027 acc
->source
[pos
].data
);
1028 if (coscheduled
< 0) {
1030 return isl_flow_free(flow
);
1034 depth
= acc
->level_before(acc
->source
[i
].data
,
1035 acc
->source
[pos
].data
) / 2;
1036 map
= coscheduled_source(acc
, must_rel
[i
], pos
, depth
);
1037 factor
= isl_map_domain_factor_range(isl_map_copy(map
));
1038 pos
= 2 * acc
->n_must
+ j
;
1039 flow
->dep
[pos
].map
= isl_map_union(flow
->dep
[pos
].map
,
1041 map
= isl_map_domain_factor_domain(map
);
1042 move
= isl_map_union(move
, map
);
1044 must_rel
[i
] = isl_map_subtract(must_rel
[i
], isl_map_copy(move
));
1045 may_rel
[i
] = isl_map_union(may_rel
[i
], move
);
1051 /* Compute dependences for the case where all accesses are "may"
1052 * accesses, which boils down to computing memory based dependences.
1053 * The generic algorithm would also work in this case, but it would
1054 * be overkill to use it.
1056 static __isl_give isl_flow
*compute_mem_based_dependences(
1057 __isl_keep isl_access_info
*acc
)
1064 res
= isl_flow_alloc(acc
);
1068 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
1069 maydo
= isl_set_copy(mustdo
);
1071 for (i
= 0; i
< acc
->n_may
; ++i
) {
1078 plevel
= acc
->level_before(acc
->source
[i
].data
, acc
->sink
.data
);
1082 is_before
= plevel
& 1;
1085 space
= isl_map_get_space(res
->dep
[i
].map
);
1087 before
= isl_map_lex_le_first(space
, plevel
);
1089 before
= isl_map_lex_lt_first(space
, plevel
);
1090 dep
= isl_map_apply_range(isl_map_copy(acc
->source
[i
].map
),
1091 isl_map_reverse(isl_map_copy(acc
->sink
.map
)));
1092 dep
= isl_map_intersect(dep
, before
);
1093 mustdo
= isl_set_subtract(mustdo
,
1094 isl_map_range(isl_map_copy(dep
)));
1095 res
->dep
[i
].map
= isl_map_union(res
->dep
[i
].map
, dep
);
1098 res
->may_no_source
= isl_set_subtract(maydo
, isl_set_copy(mustdo
));
1099 res
->must_no_source
= mustdo
;
1103 isl_set_free(mustdo
);
1104 isl_set_free(maydo
);
1109 /* Compute dependences for the case where there is at least one
1112 * The core algorithm considers all levels in which a source may precede
1113 * the sink, where a level may either be a statement level or a loop level.
1114 * The outermost statement level is 1, the first loop level is 2, etc...
1115 * The algorithm basically does the following:
1116 * for all levels l of the read access from innermost to outermost
1117 * for all sources w that may precede the sink access at that level
1118 * compute the last iteration of the source that precedes the sink access
1120 * add result to possible last accesses at level l of source w
1121 * for all sources w2 that we haven't considered yet at this level that may
1122 * also precede the sink access
1123 * for all levels l2 of w from l to innermost
1124 * for all possible last accesses dep of w at l
1125 * compute last iteration of w2 between the source and sink
1127 * add result to possible last accesses at level l of write w2
1128 * and replace possible last accesses dep by the remainder
1131 * The above algorithm is applied to the must access. During the course
1132 * of the algorithm, we keep track of sink iterations that still
1133 * need to be considered. These iterations are split into those that
1134 * haven't been matched to any source access (mustdo) and those that have only
1135 * been matched to may accesses (maydo).
1136 * At the end of each level, must-sources and may-sources that are coscheduled
1137 * with the sources of the must-dependences at that level are considered.
1138 * If any coscheduled instances are found, then corresponding may-dependences
1139 * are added and the original must-dependences are turned into may-dependences.
1140 * Afterwards, the may accesses that occur after must-dependence sources
1142 * In particular, we consider may accesses that precede the remaining
1143 * sink iterations, moving elements from mustdo to maydo when appropriate,
1144 * and may accesses that occur between a must source and a sink of any
1145 * dependences found at the current level, turning must dependences into
1146 * may dependences when appropriate.
1149 static __isl_give isl_flow
*compute_val_based_dependences(
1150 __isl_keep isl_access_info
*acc
)
1154 isl_set
*mustdo
= NULL
;
1155 isl_set
*maydo
= NULL
;
1159 isl_map
**must_rel
= NULL
;
1160 isl_map
**may_rel
= NULL
;
1165 res
= isl_flow_alloc(acc
);
1168 ctx
= isl_map_get_ctx(acc
->sink
.map
);
1170 n_in
= isl_map_dim(acc
->sink
.map
, isl_dim_in
);
1173 depth
= 2 * n_in
+ 1;
1174 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
1175 maydo
= isl_set_empty(isl_set_get_space(mustdo
));
1176 if (!mustdo
|| !maydo
)
1178 if (isl_set_plain_is_empty(mustdo
))
1181 must_rel
= isl_calloc_array(ctx
, struct isl_map
*, acc
->n_must
);
1182 may_rel
= isl_calloc_array(ctx
, struct isl_map
*, acc
->n_must
);
1183 if (!must_rel
|| !may_rel
)
1186 for (level
= depth
; level
>= 1; --level
) {
1187 for (j
= acc
->n_must
-1; j
>=0; --j
) {
1189 space
= isl_map_get_space(res
->dep
[2 * j
].map
);
1190 must_rel
[j
] = isl_map_empty(space
);
1191 may_rel
[j
] = isl_map_copy(must_rel
[j
]);
1194 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1196 struct isl_set
*rest
;
1199 plevel
= acc
->level_before(acc
->source
[j
].data
,
1203 if (!can_precede_at_level(plevel
, level
))
1206 T
= last_source(acc
, mustdo
, j
, level
, &rest
);
1207 must_rel
[j
] = isl_map_union_disjoint(must_rel
[j
], T
);
1210 if (intermediate_sources(acc
, must_rel
, j
, level
) < 0)
1213 T
= last_source(acc
, maydo
, j
, level
, &rest
);
1214 may_rel
[j
] = isl_map_union_disjoint(may_rel
[j
], T
);
1217 if (intermediate_sources(acc
, may_rel
, j
, level
) < 0)
1220 if (isl_set_plain_is_empty(mustdo
) &&
1221 isl_set_plain_is_empty(maydo
))
1224 for (j
= j
- 1; j
>= 0; --j
) {
1227 plevel
= acc
->level_before(acc
->source
[j
].data
,
1231 if (!can_precede_at_level(plevel
, level
))
1234 if (intermediate_sources(acc
, must_rel
, j
, level
) < 0)
1236 if (intermediate_sources(acc
, may_rel
, j
, level
) < 0)
1240 res
= handle_coscheduled(acc
, must_rel
, may_rel
, res
);
1244 for (j
= 0; j
< acc
->n_may
; ++j
) {
1249 plevel
= acc
->level_before(acc
->source
[acc
->n_must
+ j
].data
,
1253 if (!can_precede_at_level(plevel
, level
))
1256 T
= all_sources(acc
, isl_set_copy(maydo
), j
, level
);
1257 res
->dep
[2 * acc
->n_must
+ j
].map
=
1258 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1259 T
= all_sources(acc
, isl_set_copy(mustdo
), j
, level
);
1260 ran
= isl_map_range(isl_map_copy(T
));
1261 res
->dep
[2 * acc
->n_must
+ j
].map
=
1262 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1263 mustdo
= isl_set_subtract(mustdo
, isl_set_copy(ran
));
1264 maydo
= isl_set_union_disjoint(maydo
, ran
);
1266 T
= res
->dep
[2 * acc
->n_must
+ j
].map
;
1267 T
= all_intermediate_sources(acc
, T
, must_rel
, may_rel
,
1269 res
->dep
[2 * acc
->n_must
+ j
].map
= T
;
1272 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1273 res
->dep
[2 * j
].map
=
1274 isl_map_union_disjoint(res
->dep
[2 * j
].map
,
1276 res
->dep
[2 * j
+ 1].map
=
1277 isl_map_union_disjoint(res
->dep
[2 * j
+ 1].map
,
1281 if (isl_set_plain_is_empty(mustdo
) &&
1282 isl_set_plain_is_empty(maydo
))
1289 res
->must_no_source
= mustdo
;
1290 res
->may_no_source
= maydo
;
1294 for (j
= 0; j
< acc
->n_must
; ++j
)
1295 isl_map_free(must_rel
[j
]);
1297 for (j
= 0; j
< acc
->n_must
; ++j
)
1298 isl_map_free(may_rel
[j
]);
1300 isl_set_free(mustdo
);
1301 isl_set_free(maydo
);
1307 /* Given a "sink" access, a list of n "source" accesses,
1308 * compute for each iteration of the sink access
1309 * and for each element accessed by that iteration,
1310 * the source access in the list that last accessed the
1311 * element accessed by the sink access before this sink access.
1312 * Each access is given as a map from the loop iterators
1313 * to the array indices.
1314 * The result is a list of n relations between source and sink
1315 * iterations and a subset of the domain of the sink access,
1316 * corresponding to those iterations that access an element
1317 * not previously accessed.
1319 * To deal with multi-valued sink access relations, the sink iteration
1320 * domain is first extended with dimensions that correspond to the data
1321 * space. However, these extra dimensions are not projected out again.
1322 * It is up to the caller to decide whether these dimensions should be kept.
1324 static __isl_give isl_flow
*access_info_compute_flow_core(
1325 __isl_take isl_access_info
*acc
)
1327 struct isl_flow
*res
= NULL
;
1332 acc
->sink
.map
= isl_map_range_map(acc
->sink
.map
);
1336 if (acc
->n_must
== 0)
1337 res
= compute_mem_based_dependences(acc
);
1339 acc
= isl_access_info_sort_sources(acc
);
1340 res
= compute_val_based_dependences(acc
);
1342 acc
= isl_access_info_free(acc
);
1345 if (!res
->must_no_source
|| !res
->may_no_source
)
1349 isl_access_info_free(acc
);
1354 /* Given a "sink" access, a list of n "source" accesses,
1355 * compute for each iteration of the sink access
1356 * and for each element accessed by that iteration,
1357 * the source access in the list that last accessed the
1358 * element accessed by the sink access before this sink access.
1359 * Each access is given as a map from the loop iterators
1360 * to the array indices.
1361 * The result is a list of n relations between source and sink
1362 * iterations and a subset of the domain of the sink access,
1363 * corresponding to those iterations that access an element
1364 * not previously accessed.
1366 * To deal with multi-valued sink access relations,
1367 * access_info_compute_flow_core extends the sink iteration domain
1368 * with dimensions that correspond to the data space. These extra dimensions
1369 * are projected out from the result of access_info_compute_flow_core.
1371 __isl_give isl_flow
*isl_access_info_compute_flow(__isl_take isl_access_info
*acc
)
1374 struct isl_flow
*res
;
1379 acc
->domain_map
= isl_map_domain_map(isl_map_copy(acc
->sink
.map
));
1380 res
= access_info_compute_flow_core(acc
);
1384 for (j
= 0; j
< res
->n_source
; ++j
) {
1385 res
->dep
[j
].map
= isl_map_range_factor_domain(res
->dep
[j
].map
);
1386 if (!res
->dep
[j
].map
)
1397 /* Keep track of some information about a schedule for a given
1398 * access. In particular, keep track of which dimensions
1399 * have a constant value and of the actual constant values.
1401 struct isl_sched_info
{
1406 static void sched_info_free(__isl_take
struct isl_sched_info
*info
)
1410 isl_vec_free(info
->cst
);
1415 /* Extract information on the constant dimensions of the schedule
1416 * for a given access. The "map" is of the form
1420 * with S the schedule domain, D the iteration domain and A the data domain.
1422 static __isl_give
struct isl_sched_info
*sched_info_alloc(
1423 __isl_keep isl_map
*map
)
1427 struct isl_sched_info
*info
;
1434 space
= isl_space_unwrap(isl_space_domain(isl_map_get_space(map
)));
1437 n
= isl_space_dim(space
, isl_dim_in
);
1438 isl_space_free(space
);
1442 ctx
= isl_map_get_ctx(map
);
1443 info
= isl_alloc_type(ctx
, struct isl_sched_info
);
1446 info
->is_cst
= isl_alloc_array(ctx
, int, n
);
1447 info
->cst
= isl_vec_alloc(ctx
, n
);
1448 if (n
&& (!info
->is_cst
|| !info
->cst
))
1451 for (i
= 0; i
< n
; ++i
) {
1454 v
= isl_map_plain_get_val_if_fixed(map
, isl_dim_in
, i
);
1457 info
->is_cst
[i
] = !isl_val_is_nan(v
);
1458 if (info
->is_cst
[i
])
1459 info
->cst
= isl_vec_set_element_val(info
->cst
, i
, v
);
1466 sched_info_free(info
);
1470 /* The different types of access relations that isl_union_access_info
1473 * "isl_access_sink" represents the sink accesses.
1474 * "isl_access_must_source" represents the definite source accesses.
1475 * "isl_access_may_source" represents the possible source accesses.
1476 * "isl_access_kill" represents the kills.
1478 * isl_access_sink is sometimes treated differently and
1479 * should therefore appear first.
1481 enum isl_access_type
{
1483 isl_access_must_source
,
1484 isl_access_may_source
,
1489 /* This structure represents the input for a dependence analysis computation.
1491 * "access" contains the access relations.
1493 * "schedule" or "schedule_map" represents the execution order.
1494 * Exactly one of these fields should be NULL. The other field
1495 * determines the execution order.
1497 * The domains of these four maps refer to the same iteration spaces(s).
1498 * The ranges of the first three maps also refer to the same data space(s).
1500 * After a call to isl_union_access_info_introduce_schedule,
1501 * the "schedule_map" field no longer contains useful information.
1503 struct isl_union_access_info
{
1504 isl_union_map
*access
[isl_access_end
];
1506 isl_schedule
*schedule
;
1507 isl_union_map
*schedule_map
;
1510 /* Free "access" and return NULL.
1512 __isl_null isl_union_access_info
*isl_union_access_info_free(
1513 __isl_take isl_union_access_info
*access
)
1515 enum isl_access_type i
;
1520 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
1521 isl_union_map_free(access
->access
[i
]);
1522 isl_schedule_free(access
->schedule
);
1523 isl_union_map_free(access
->schedule_map
);
1529 /* Return the isl_ctx to which "access" belongs.
1531 isl_ctx
*isl_union_access_info_get_ctx(__isl_keep isl_union_access_info
*access
)
1535 return isl_union_map_get_ctx(access
->access
[isl_access_sink
]);
1538 /* Construct an empty (invalid) isl_union_access_info object.
1539 * The caller is responsible for setting the sink access relation and
1540 * initializing all the other fields, e.g., by calling
1541 * isl_union_access_info_init.
1543 static __isl_give isl_union_access_info
*isl_union_access_info_alloc(
1546 return isl_calloc_type(ctx
, isl_union_access_info
);
1549 /* Initialize all the fields of "info", except the sink access relation,
1550 * which is assumed to have been set by the caller.
1552 * By default, we use the schedule field of the isl_union_access_info,
1553 * but this may be overridden by a call
1554 * to isl_union_access_info_set_schedule_map.
1556 static __isl_give isl_union_access_info
*isl_union_access_info_init(
1557 __isl_take isl_union_access_info
*info
)
1560 isl_union_map
*empty
;
1561 enum isl_access_type i
;
1565 if (!info
->access
[isl_access_sink
])
1566 return isl_union_access_info_free(info
);
1568 space
= isl_union_map_get_space(info
->access
[isl_access_sink
]);
1569 empty
= isl_union_map_empty(isl_space_copy(space
));
1570 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1571 if (!info
->access
[i
])
1572 info
->access
[i
] = isl_union_map_copy(empty
);
1573 isl_union_map_free(empty
);
1574 if (!info
->schedule
&& !info
->schedule_map
)
1575 info
->schedule
= isl_schedule_empty(isl_space_copy(space
));
1576 isl_space_free(space
);
1578 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1579 if (!info
->access
[i
])
1580 return isl_union_access_info_free(info
);
1581 if (!info
->schedule
&& !info
->schedule_map
)
1582 return isl_union_access_info_free(info
);
1587 /* Create a new isl_union_access_info with the given sink accesses and
1588 * and no other accesses or schedule information.
1590 __isl_give isl_union_access_info
*isl_union_access_info_from_sink(
1591 __isl_take isl_union_map
*sink
)
1594 isl_union_access_info
*access
;
1598 ctx
= isl_union_map_get_ctx(sink
);
1599 access
= isl_union_access_info_alloc(ctx
);
1602 access
->access
[isl_access_sink
] = sink
;
1603 return isl_union_access_info_init(access
);
1605 isl_union_map_free(sink
);
1609 /* Replace the access relation of type "type" of "info" by "access".
1611 static __isl_give isl_union_access_info
*isl_union_access_info_set(
1612 __isl_take isl_union_access_info
*info
,
1613 enum isl_access_type type
, __isl_take isl_union_map
*access
)
1615 if (!info
|| !access
)
1618 isl_union_map_free(info
->access
[type
]);
1619 info
->access
[type
] = access
;
1623 isl_union_access_info_free(info
);
1624 isl_union_map_free(access
);
1628 /* Replace the definite source accesses of "access" by "must_source".
1630 __isl_give isl_union_access_info
*isl_union_access_info_set_must_source(
1631 __isl_take isl_union_access_info
*access
,
1632 __isl_take isl_union_map
*must_source
)
1634 return isl_union_access_info_set(access
, isl_access_must_source
,
1638 /* Replace the possible source accesses of "access" by "may_source".
1640 __isl_give isl_union_access_info
*isl_union_access_info_set_may_source(
1641 __isl_take isl_union_access_info
*access
,
1642 __isl_take isl_union_map
*may_source
)
1644 return isl_union_access_info_set(access
, isl_access_may_source
,
1648 /* Replace the kills of "info" by "kill".
1650 __isl_give isl_union_access_info
*isl_union_access_info_set_kill(
1651 __isl_take isl_union_access_info
*info
, __isl_take isl_union_map
*kill
)
1653 return isl_union_access_info_set(info
, isl_access_kill
, kill
);
1656 /* Return the access relation of type "type" of "info".
1658 static __isl_give isl_union_map
*isl_union_access_info_get(
1659 __isl_keep isl_union_access_info
*info
, enum isl_access_type type
)
1663 return isl_union_map_copy(info
->access
[type
]);
1666 /* Return the definite source accesses of "info".
1668 __isl_give isl_union_map
*isl_union_access_info_get_must_source(
1669 __isl_keep isl_union_access_info
*info
)
1671 return isl_union_access_info_get(info
, isl_access_must_source
);
1674 /* Return the possible source accesses of "info".
1676 __isl_give isl_union_map
*isl_union_access_info_get_may_source(
1677 __isl_keep isl_union_access_info
*info
)
1679 return isl_union_access_info_get(info
, isl_access_may_source
);
1682 /* Return the kills of "info".
1684 __isl_give isl_union_map
*isl_union_access_info_get_kill(
1685 __isl_keep isl_union_access_info
*info
)
1687 return isl_union_access_info_get(info
, isl_access_kill
);
1690 /* Does "info" specify any kills?
1692 static isl_bool
isl_union_access_has_kill(
1693 __isl_keep isl_union_access_info
*info
)
1698 return isl_bool_error
;
1699 empty
= isl_union_map_is_empty(info
->access
[isl_access_kill
]);
1700 return isl_bool_not(empty
);
1703 /* Replace the schedule of "access" by "schedule".
1704 * Also free the schedule_map in case it was set last.
1706 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule(
1707 __isl_take isl_union_access_info
*access
,
1708 __isl_take isl_schedule
*schedule
)
1710 if (!access
|| !schedule
)
1713 access
->schedule_map
= isl_union_map_free(access
->schedule_map
);
1714 isl_schedule_free(access
->schedule
);
1715 access
->schedule
= schedule
;
1719 isl_union_access_info_free(access
);
1720 isl_schedule_free(schedule
);
1724 /* Replace the schedule map of "access" by "schedule_map".
1725 * Also free the schedule in case it was set last.
1727 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule_map(
1728 __isl_take isl_union_access_info
*access
,
1729 __isl_take isl_union_map
*schedule_map
)
1731 if (!access
|| !schedule_map
)
1734 isl_union_map_free(access
->schedule_map
);
1735 access
->schedule
= isl_schedule_free(access
->schedule
);
1736 access
->schedule_map
= schedule_map
;
1740 isl_union_access_info_free(access
);
1741 isl_union_map_free(schedule_map
);
1745 __isl_give isl_union_access_info
*isl_union_access_info_copy(
1746 __isl_keep isl_union_access_info
*access
)
1748 isl_union_access_info
*copy
;
1749 enum isl_access_type i
;
1753 copy
= isl_union_access_info_from_sink(
1754 isl_union_map_copy(access
->access
[isl_access_sink
]));
1755 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1756 copy
= isl_union_access_info_set(copy
, i
,
1757 isl_union_map_copy(access
->access
[i
]));
1758 if (access
->schedule
)
1759 copy
= isl_union_access_info_set_schedule(copy
,
1760 isl_schedule_copy(access
->schedule
));
1762 copy
= isl_union_access_info_set_schedule_map(copy
,
1763 isl_union_map_copy(access
->schedule_map
));
1769 #define BASE union_map
1770 #include "print_yaml_field_templ.c"
1772 /* An enumeration of the various keys that may appear in a YAML mapping
1773 * of an isl_union_access_info object.
1774 * The keys for the access relation types are assumed to have the same values
1775 * as the access relation types in isl_access_type.
1778 isl_ai_key_error
= -1,
1779 isl_ai_key_sink
= isl_access_sink
,
1780 isl_ai_key_must_source
= isl_access_must_source
,
1781 isl_ai_key_may_source
= isl_access_may_source
,
1782 isl_ai_key_kill
= isl_access_kill
,
1783 isl_ai_key_schedule_map
,
1784 isl_ai_key_schedule
,
1788 /* Textual representations of the YAML keys for an isl_union_access_info
1791 static char *key_str
[] = {
1792 [isl_ai_key_sink
] = "sink",
1793 [isl_ai_key_must_source
] = "must_source",
1794 [isl_ai_key_may_source
] = "may_source",
1795 [isl_ai_key_kill
] = "kill",
1796 [isl_ai_key_schedule_map
] = "schedule_map",
1797 [isl_ai_key_schedule
] = "schedule",
1800 /* Print a key-value pair corresponding to the access relation of type "type"
1801 * of a YAML mapping of "info" to "p".
1803 * The sink access relation is always printed, but any other access relation
1804 * is only printed if it is non-empty.
1806 static __isl_give isl_printer
*print_access_field(__isl_take isl_printer
*p
,
1807 __isl_keep isl_union_access_info
*info
, enum isl_access_type type
)
1809 if (type
!= isl_access_sink
) {
1812 empty
= isl_union_map_is_empty(info
->access
[type
]);
1814 return isl_printer_free(p
);
1818 return print_yaml_field_union_map(p
, key_str
[type
], info
->access
[type
]);
1821 /* Print the information contained in "access" to "p".
1822 * The information is printed as a YAML document.
1824 __isl_give isl_printer
*isl_printer_print_union_access_info(
1825 __isl_take isl_printer
*p
, __isl_keep isl_union_access_info
*access
)
1827 enum isl_access_type i
;
1830 return isl_printer_free(p
);
1832 p
= isl_printer_yaml_start_mapping(p
);
1833 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
1834 p
= print_access_field(p
, access
, i
);
1835 if (access
->schedule
) {
1836 p
= isl_printer_print_str(p
, key_str
[isl_ai_key_schedule
]);
1837 p
= isl_printer_yaml_next(p
);
1838 p
= isl_printer_print_schedule(p
, access
->schedule
);
1839 p
= isl_printer_yaml_next(p
);
1841 p
= print_yaml_field_union_map(p
,
1842 key_str
[isl_ai_key_schedule_map
], access
->schedule_map
);
1844 p
= isl_printer_yaml_end_mapping(p
);
1849 /* Return a string representation of the information in "access".
1850 * The information is printed in flow format.
1852 __isl_give
char *isl_union_access_info_to_str(
1853 __isl_keep isl_union_access_info
*access
)
1861 p
= isl_printer_to_str(isl_union_access_info_get_ctx(access
));
1862 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_FLOW
);
1863 p
= isl_printer_print_union_access_info(p
, access
);
1864 s
= isl_printer_get_str(p
);
1865 isl_printer_free(p
);
1871 #define KEY enum isl_ai_key
1873 #define KEY_ERROR isl_ai_key_error
1875 #define KEY_END isl_ai_key_end
1876 #include "extract_key.c"
1879 #define BASE union_map
1880 #include "read_in_string_templ.c"
1882 /* Read an isl_union_access_info object from "s".
1884 * Start off with an empty (invalid) isl_union_access_info object and
1885 * then fill up the fields based on the input.
1886 * The input needs to contain at least a description of the sink
1887 * access relation as well as some form of schedule.
1888 * The other access relations are set to empty relations
1889 * by isl_union_access_info_init if they are not specified in the input.
1891 __isl_give isl_union_access_info
*isl_stream_read_union_access_info(
1895 isl_union_access_info
*info
;
1898 int schedule_set
= 0;
1900 if (isl_stream_yaml_read_start_mapping(s
))
1903 ctx
= isl_stream_get_ctx(s
);
1904 info
= isl_union_access_info_alloc(ctx
);
1905 while ((more
= isl_stream_yaml_next(s
)) > 0) {
1906 enum isl_ai_key key
;
1907 isl_union_map
*access
, *schedule_map
;
1908 isl_schedule
*schedule
;
1911 if (isl_stream_yaml_next(s
) < 0)
1912 return isl_union_access_info_free(info
);
1914 case isl_ai_key_end
:
1915 case isl_ai_key_error
:
1916 return isl_union_access_info_free(info
);
1917 case isl_ai_key_sink
:
1919 case isl_ai_key_must_source
:
1920 case isl_ai_key_may_source
:
1921 case isl_ai_key_kill
:
1922 access
= read_union_map(s
);
1923 info
= isl_union_access_info_set(info
, key
, access
);
1927 case isl_ai_key_schedule_map
:
1929 schedule_map
= read_union_map(s
);
1930 info
= isl_union_access_info_set_schedule_map(info
,
1935 case isl_ai_key_schedule
:
1937 schedule
= isl_stream_read_schedule(s
);
1938 info
= isl_union_access_info_set_schedule(info
,
1946 return isl_union_access_info_free(info
);
1948 if (isl_stream_yaml_read_end_mapping(s
) < 0) {
1949 isl_stream_error(s
, NULL
, "unexpected extra elements");
1950 return isl_union_access_info_free(info
);
1954 isl_stream_error(s
, NULL
, "no sink specified");
1955 return isl_union_access_info_free(info
);
1958 if (!schedule_set
) {
1959 isl_stream_error(s
, NULL
, "no schedule specified");
1960 return isl_union_access_info_free(info
);
1963 return isl_union_access_info_init(info
);
1966 /* Read an isl_union_access_info object from the file "input".
1968 __isl_give isl_union_access_info
*isl_union_access_info_read_from_file(
1969 isl_ctx
*ctx
, FILE *input
)
1972 isl_union_access_info
*access
;
1974 s
= isl_stream_new_file(ctx
, input
);
1977 access
= isl_stream_read_union_access_info(s
);
1983 /* Update the fields of "access" such that they all have the same parameters,
1984 * keeping in mind that the schedule_map field may be NULL and ignoring
1985 * the schedule field.
1987 static __isl_give isl_union_access_info
*isl_union_access_info_align_params(
1988 __isl_take isl_union_access_info
*access
)
1991 enum isl_access_type i
;
1996 space
= isl_union_map_get_space(access
->access
[isl_access_sink
]);
1997 for (i
= isl_access_sink
+ 1; i
< isl_access_end
; ++i
)
1998 space
= isl_space_align_params(space
,
1999 isl_union_map_get_space(access
->access
[i
]));
2000 if (access
->schedule_map
)
2001 space
= isl_space_align_params(space
,
2002 isl_union_map_get_space(access
->schedule_map
));
2003 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
2005 isl_union_map_align_params(access
->access
[i
],
2006 isl_space_copy(space
));
2007 if (!access
->schedule_map
) {
2008 isl_space_free(space
);
2010 access
->schedule_map
=
2011 isl_union_map_align_params(access
->schedule_map
, space
);
2012 if (!access
->schedule_map
)
2013 return isl_union_access_info_free(access
);
2016 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
2017 if (!access
->access
[i
])
2018 return isl_union_access_info_free(access
);
2023 /* Prepend the schedule dimensions to the iteration domains.
2025 * That is, if the schedule is of the form
2029 * while the access relations are of the form
2033 * then the updated access relations are of the form
2037 * The schedule map is also replaced by the map
2041 * that is used during the internal computation.
2042 * Neither the original schedule map nor this updated schedule map
2043 * are used after the call to this function.
2045 static __isl_give isl_union_access_info
*
2046 isl_union_access_info_introduce_schedule(
2047 __isl_take isl_union_access_info
*access
)
2050 enum isl_access_type i
;
2055 sm
= isl_union_map_reverse(access
->schedule_map
);
2056 sm
= isl_union_map_range_map(sm
);
2057 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
2059 isl_union_map_apply_range(isl_union_map_copy(sm
),
2061 access
->schedule_map
= sm
;
2063 for (i
= isl_access_sink
; i
< isl_access_end
; ++i
)
2064 if (!access
->access
[i
])
2065 return isl_union_access_info_free(access
);
2066 if (!access
->schedule_map
)
2067 return isl_union_access_info_free(access
);
2072 /* This structure represents the result of a dependence analysis computation.
2074 * "must_dep" represents the full definite dependences
2075 * "may_dep" represents the full non-definite dependences.
2076 * Both are of the form
2078 * [Source] -> [[Sink -> Data]]
2080 * (after the schedule dimensions have been projected out).
2081 * "must_no_source" represents the subset of the sink accesses for which
2082 * definitely no source was found.
2083 * "may_no_source" represents the subset of the sink accesses for which
2084 * possibly, but not definitely, no source was found.
2086 struct isl_union_flow
{
2087 isl_union_map
*must_dep
;
2088 isl_union_map
*may_dep
;
2089 isl_union_map
*must_no_source
;
2090 isl_union_map
*may_no_source
;
2093 /* Return the isl_ctx to which "flow" belongs.
2095 isl_ctx
*isl_union_flow_get_ctx(__isl_keep isl_union_flow
*flow
)
2097 return flow
? isl_union_map_get_ctx(flow
->must_dep
) : NULL
;
2100 /* Free "flow" and return NULL.
2102 __isl_null isl_union_flow
*isl_union_flow_free(__isl_take isl_union_flow
*flow
)
2106 isl_union_map_free(flow
->must_dep
);
2107 isl_union_map_free(flow
->may_dep
);
2108 isl_union_map_free(flow
->must_no_source
);
2109 isl_union_map_free(flow
->may_no_source
);
2114 void isl_union_flow_dump(__isl_keep isl_union_flow
*flow
)
2119 fprintf(stderr
, "must dependences: ");
2120 isl_union_map_dump(flow
->must_dep
);
2121 fprintf(stderr
, "may dependences: ");
2122 isl_union_map_dump(flow
->may_dep
);
2123 fprintf(stderr
, "must no source: ");
2124 isl_union_map_dump(flow
->must_no_source
);
2125 fprintf(stderr
, "may no source: ");
2126 isl_union_map_dump(flow
->may_no_source
);
2129 /* Return the full definite dependences in "flow", with accessed elements.
2131 __isl_give isl_union_map
*isl_union_flow_get_full_must_dependence(
2132 __isl_keep isl_union_flow
*flow
)
2136 return isl_union_map_copy(flow
->must_dep
);
2139 /* Return the full possible dependences in "flow", including the definite
2140 * dependences, with accessed elements.
2142 __isl_give isl_union_map
*isl_union_flow_get_full_may_dependence(
2143 __isl_keep isl_union_flow
*flow
)
2147 return isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
2148 isl_union_map_copy(flow
->may_dep
));
2151 /* Return the definite dependences in "flow", without the accessed elements.
2153 __isl_give isl_union_map
*isl_union_flow_get_must_dependence(
2154 __isl_keep isl_union_flow
*flow
)
2160 dep
= isl_union_map_copy(flow
->must_dep
);
2161 return isl_union_map_range_factor_domain(dep
);
2164 /* Return the possible dependences in "flow", including the definite
2165 * dependences, without the accessed elements.
2167 __isl_give isl_union_map
*isl_union_flow_get_may_dependence(
2168 __isl_keep isl_union_flow
*flow
)
2174 dep
= isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
2175 isl_union_map_copy(flow
->may_dep
));
2176 return isl_union_map_range_factor_domain(dep
);
2179 /* Return the non-definite dependences in "flow".
2181 static __isl_give isl_union_map
*isl_union_flow_get_non_must_dependence(
2182 __isl_keep isl_union_flow
*flow
)
2186 return isl_union_map_copy(flow
->may_dep
);
2189 /* Return the subset of the sink accesses for which definitely
2190 * no source was found.
2192 __isl_give isl_union_map
*isl_union_flow_get_must_no_source(
2193 __isl_keep isl_union_flow
*flow
)
2197 return isl_union_map_copy(flow
->must_no_source
);
2200 /* Return the subset of the sink accesses for which possibly
2201 * no source was found, including those for which definitely
2202 * no source was found.
2204 __isl_give isl_union_map
*isl_union_flow_get_may_no_source(
2205 __isl_keep isl_union_flow
*flow
)
2209 return isl_union_map_union(isl_union_map_copy(flow
->must_no_source
),
2210 isl_union_map_copy(flow
->may_no_source
));
2213 /* Return the subset of the sink accesses for which possibly, but not
2214 * definitely, no source was found.
2216 static __isl_give isl_union_map
*isl_union_flow_get_non_must_no_source(
2217 __isl_keep isl_union_flow
*flow
)
2221 return isl_union_map_copy(flow
->may_no_source
);
2224 /* Create a new isl_union_flow object, initialized with empty
2225 * dependence relations and sink subsets.
2227 static __isl_give isl_union_flow
*isl_union_flow_alloc(
2228 __isl_take isl_space
*space
)
2231 isl_union_map
*empty
;
2232 isl_union_flow
*flow
;
2236 ctx
= isl_space_get_ctx(space
);
2237 flow
= isl_alloc_type(ctx
, isl_union_flow
);
2241 empty
= isl_union_map_empty(space
);
2242 flow
->must_dep
= isl_union_map_copy(empty
);
2243 flow
->may_dep
= isl_union_map_copy(empty
);
2244 flow
->must_no_source
= isl_union_map_copy(empty
);
2245 flow
->may_no_source
= empty
;
2247 if (!flow
->must_dep
|| !flow
->may_dep
||
2248 !flow
->must_no_source
|| !flow
->may_no_source
)
2249 return isl_union_flow_free(flow
);
2253 isl_space_free(space
);
2257 /* Copy this isl_union_flow object.
2259 __isl_give isl_union_flow
*isl_union_flow_copy(__isl_keep isl_union_flow
*flow
)
2261 isl_union_flow
*copy
;
2266 copy
= isl_union_flow_alloc(isl_union_map_get_space(flow
->must_dep
));
2271 copy
->must_dep
= isl_union_map_union(copy
->must_dep
,
2272 isl_union_map_copy(flow
->must_dep
));
2273 copy
->may_dep
= isl_union_map_union(copy
->may_dep
,
2274 isl_union_map_copy(flow
->may_dep
));
2275 copy
->must_no_source
= isl_union_map_union(copy
->must_no_source
,
2276 isl_union_map_copy(flow
->must_no_source
));
2277 copy
->may_no_source
= isl_union_map_union(copy
->may_no_source
,
2278 isl_union_map_copy(flow
->may_no_source
));
2280 if (!copy
->must_dep
|| !copy
->may_dep
||
2281 !copy
->must_no_source
|| !copy
->may_no_source
)
2282 return isl_union_flow_free(copy
);
2287 /* Drop the schedule dimensions from the iteration domains in "flow".
2288 * In particular, the schedule dimensions have been prepended
2289 * to the iteration domains prior to the dependence analysis by
2290 * replacing the iteration domain D, by the wrapped map [S -> D].
2291 * Replace these wrapped maps by the original D.
2293 * In particular, the dependences computed by access_info_compute_flow_core
2296 * [S -> D] -> [[S' -> D'] -> A]
2298 * The schedule dimensions are projected out by first currying the range,
2301 * [S -> D] -> [S' -> [D' -> A]]
2303 * and then computing the factor range
2307 static __isl_give isl_union_flow
*isl_union_flow_drop_schedule(
2308 __isl_take isl_union_flow
*flow
)
2313 flow
->must_dep
= isl_union_map_range_curry(flow
->must_dep
);
2314 flow
->must_dep
= isl_union_map_factor_range(flow
->must_dep
);
2315 flow
->may_dep
= isl_union_map_range_curry(flow
->may_dep
);
2316 flow
->may_dep
= isl_union_map_factor_range(flow
->may_dep
);
2317 flow
->must_no_source
=
2318 isl_union_map_domain_factor_range(flow
->must_no_source
);
2319 flow
->may_no_source
=
2320 isl_union_map_domain_factor_range(flow
->may_no_source
);
2322 if (!flow
->must_dep
|| !flow
->may_dep
||
2323 !flow
->must_no_source
|| !flow
->may_no_source
)
2324 return isl_union_flow_free(flow
);
2329 struct isl_compute_flow_data
{
2330 isl_union_map
*must_source
;
2331 isl_union_map
*may_source
;
2332 isl_union_flow
*flow
;
2337 struct isl_sched_info
*sink_info
;
2338 struct isl_sched_info
**source_info
;
2339 isl_access_info
*accesses
;
2342 static isl_stat
count_matching_array(__isl_take isl_map
*map
, void *user
)
2346 struct isl_compute_flow_data
*data
;
2348 data
= (struct isl_compute_flow_data
*)user
;
2350 space
= isl_space_range(isl_map_get_space(map
));
2352 eq
= isl_space_is_equal(space
, data
->dim
);
2354 isl_space_free(space
);
2358 return isl_stat_error
;
2365 static isl_stat
collect_matching_array(__isl_take isl_map
*map
, void *user
)
2369 struct isl_sched_info
*info
;
2370 struct isl_compute_flow_data
*data
;
2372 data
= (struct isl_compute_flow_data
*)user
;
2374 space
= isl_space_range(isl_map_get_space(map
));
2376 eq
= isl_space_is_equal(space
, data
->dim
);
2378 isl_space_free(space
);
2387 info
= sched_info_alloc(map
);
2388 data
->source_info
[data
->count
] = info
;
2390 data
->accesses
= isl_access_info_add_source(data
->accesses
,
2391 map
, data
->must
, info
);
2398 return isl_stat_error
;
2401 /* Determine the shared nesting level and the "textual order" of
2402 * the given accesses.
2404 * We first determine the minimal schedule dimension for both accesses.
2406 * If among those dimensions, we can find one where both have a fixed
2407 * value and if moreover those values are different, then the previous
2408 * dimension is the last shared nesting level and the textual order
2409 * is determined based on the order of the fixed values.
2410 * If no such fixed values can be found, then we set the shared
2411 * nesting level to the minimal schedule dimension, with no textual ordering.
2413 static int before(void *first
, void *second
)
2415 struct isl_sched_info
*info1
= first
;
2416 struct isl_sched_info
*info2
= second
;
2420 n1
= isl_vec_size(info1
->cst
);
2421 n2
= isl_vec_size(info2
->cst
);
2422 if (n1
< 0 || n2
< 0)
2428 for (i
= 0; i
< n1
; ++i
) {
2432 if (!info1
->is_cst
[i
])
2434 if (!info2
->is_cst
[i
])
2436 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
2440 r
= 2 * i
+ (cmp
< 0);
2448 /* Check if the given two accesses may be coscheduled.
2449 * If so, return isl_bool_true. Otherwise return isl_bool_false.
2451 * Two accesses may only be coscheduled if the fixed schedule
2452 * coordinates have the same values.
2454 static isl_bool
coscheduled(void *first
, void *second
)
2456 struct isl_sched_info
*info1
= first
;
2457 struct isl_sched_info
*info2
= second
;
2461 n1
= isl_vec_size(info1
->cst
);
2462 n2
= isl_vec_size(info2
->cst
);
2463 if (n1
< 0 || n2
< 0)
2464 return isl_bool_error
;
2469 for (i
= 0; i
< n1
; ++i
) {
2472 if (!info1
->is_cst
[i
])
2474 if (!info2
->is_cst
[i
])
2476 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
2478 return isl_bool_false
;
2481 return isl_bool_true
;
2484 /* Given a sink access, look for all the source accesses that access
2485 * the same array and perform dataflow analysis on them using
2486 * isl_access_info_compute_flow_core.
2488 static isl_stat
compute_flow(__isl_take isl_map
*map
, void *user
)
2492 struct isl_compute_flow_data
*data
;
2496 data
= (struct isl_compute_flow_data
*)user
;
2499 ctx
= isl_map_get_ctx(map
);
2501 data
->accesses
= NULL
;
2502 data
->sink_info
= NULL
;
2503 data
->source_info
= NULL
;
2505 data
->dim
= isl_space_range(isl_map_get_space(map
));
2507 if (isl_union_map_foreach_map(data
->must_source
,
2508 &count_matching_array
, data
) < 0)
2510 if (isl_union_map_foreach_map(data
->may_source
,
2511 &count_matching_array
, data
) < 0)
2514 data
->sink_info
= sched_info_alloc(map
);
2515 data
->source_info
= isl_calloc_array(ctx
, struct isl_sched_info
*,
2518 data
->accesses
= isl_access_info_alloc(isl_map_copy(map
),
2519 data
->sink_info
, &before
, data
->count
);
2520 if (!data
->sink_info
|| (data
->count
&& !data
->source_info
) ||
2523 data
->accesses
->coscheduled
= &coscheduled
;
2526 if (isl_union_map_foreach_map(data
->must_source
,
2527 &collect_matching_array
, data
) < 0)
2530 if (isl_union_map_foreach_map(data
->may_source
,
2531 &collect_matching_array
, data
) < 0)
2534 flow
= access_info_compute_flow_core(data
->accesses
);
2535 data
->accesses
= NULL
;
2540 df
->must_no_source
= isl_union_map_union(df
->must_no_source
,
2541 isl_union_map_from_map(isl_flow_get_no_source(flow
, 1)));
2542 df
->may_no_source
= isl_union_map_union(df
->may_no_source
,
2543 isl_union_map_from_map(isl_flow_get_no_source(flow
, 0)));
2545 for (i
= 0; i
< flow
->n_source
; ++i
) {
2547 dep
= isl_union_map_from_map(isl_map_copy(flow
->dep
[i
].map
));
2548 if (flow
->dep
[i
].must
)
2549 df
->must_dep
= isl_union_map_union(df
->must_dep
, dep
);
2551 df
->may_dep
= isl_union_map_union(df
->may_dep
, dep
);
2554 isl_flow_free(flow
);
2556 sched_info_free(data
->sink_info
);
2557 if (data
->source_info
) {
2558 for (i
= 0; i
< data
->count
; ++i
)
2559 sched_info_free(data
->source_info
[i
]);
2560 free(data
->source_info
);
2562 isl_space_free(data
->dim
);
2567 isl_access_info_free(data
->accesses
);
2568 sched_info_free(data
->sink_info
);
2569 if (data
->source_info
) {
2570 for (i
= 0; i
< data
->count
; ++i
)
2571 sched_info_free(data
->source_info
[i
]);
2572 free(data
->source_info
);
2574 isl_space_free(data
->dim
);
2577 return isl_stat_error
;
2580 /* Add the kills of "info" to the must-sources.
2582 static __isl_give isl_union_access_info
*
2583 isl_union_access_info_add_kill_to_must_source(
2584 __isl_take isl_union_access_info
*info
)
2586 isl_union_map
*must
, *kill
;
2588 must
= isl_union_access_info_get_must_source(info
);
2589 kill
= isl_union_access_info_get_kill(info
);
2590 must
= isl_union_map_union(must
, kill
);
2591 return isl_union_access_info_set_must_source(info
, must
);
2594 /* Drop dependences from "flow" that purely originate from kills.
2595 * That is, only keep those dependences that originate from
2596 * the original must-sources "must" and/or the original may-sources "may".
2597 * In particular, "must" contains the must-sources from before
2598 * the kills were added and "may" contains the may-source from before
2599 * the kills were removed.
2601 * The dependences are of the form
2603 * Source -> [Sink -> Data]
2605 * Only those dependences are kept where the Source -> Data part
2606 * is a subset of the original may-sources or must-sources.
2607 * Of those, only the must-dependences that intersect with the must-sources
2608 * remain must-dependences.
2609 * If there is some overlap between the may-sources and the must-sources,
2610 * then the may-dependences and must-dependences may also overlap.
2611 * This should be fine since the may-dependences are only kept
2612 * disjoint from the must-dependences for the isl_union_map_compute_flow
2613 * interface. This interface does not support kills, so it will
2614 * not end up calling this function.
2616 static __isl_give isl_union_flow
*isl_union_flow_drop_kill_source(
2617 __isl_take isl_union_flow
*flow
, __isl_take isl_union_map
*must
,
2618 __isl_take isl_union_map
*may
)
2620 isl_union_map
*move
;
2624 move
= isl_union_map_copy(flow
->must_dep
);
2625 move
= isl_union_map_intersect_range_factor_range(move
,
2626 isl_union_map_copy(may
));
2627 may
= isl_union_map_union(may
, isl_union_map_copy(must
));
2628 flow
->may_dep
= isl_union_map_intersect_range_factor_range(
2629 flow
->may_dep
, may
);
2630 flow
->must_dep
= isl_union_map_intersect_range_factor_range(
2631 flow
->must_dep
, must
);
2632 flow
->may_dep
= isl_union_map_union(flow
->may_dep
, move
);
2633 if (!flow
->must_dep
|| !flow
->may_dep
)
2634 return isl_union_flow_free(flow
);
2638 isl_union_map_free(must
);
2639 isl_union_map_free(may
);
2643 /* Remove the must accesses from the may accesses.
2645 * A must access always trumps a may access, so there is no need
2646 * for a must access to also be considered as a may access. Doing so
2647 * would only cost extra computations only to find out that
2648 * the duplicated may access does not make any difference.
2650 static __isl_give isl_union_access_info
*isl_union_access_info_normalize(
2651 __isl_take isl_union_access_info
*access
)
2655 access
->access
[isl_access_may_source
] =
2656 isl_union_map_subtract(access
->access
[isl_access_may_source
],
2657 isl_union_map_copy(access
->access
[isl_access_must_source
]));
2658 if (!access
->access
[isl_access_may_source
])
2659 return isl_union_access_info_free(access
);
2664 /* Given a description of the "sink" accesses, the "source" accesses and
2665 * a schedule, compute for each instance of a sink access
2666 * and for each element accessed by that instance,
2667 * the possible or definite source accesses that last accessed the
2668 * element accessed by the sink access before this sink access
2669 * in the sense that there is no intermediate definite source access.
2671 * The must_no_source and may_no_source elements of the result
2672 * are subsets of access->sink. The elements must_dep and may_dep
2673 * map domain elements of access->{may,must)_source to
2674 * domain elements of access->sink.
2676 * This function is used when only the schedule map representation
2679 * We first prepend the schedule dimensions to the domain
2680 * of the accesses so that we can easily compare their relative order.
2681 * Then we consider each sink access individually in compute_flow.
2683 static __isl_give isl_union_flow
*compute_flow_union_map(
2684 __isl_take isl_union_access_info
*access
)
2686 struct isl_compute_flow_data data
;
2687 isl_union_map
*sink
;
2689 access
= isl_union_access_info_align_params(access
);
2690 access
= isl_union_access_info_introduce_schedule(access
);
2694 data
.must_source
= access
->access
[isl_access_must_source
];
2695 data
.may_source
= access
->access
[isl_access_may_source
];
2697 sink
= access
->access
[isl_access_sink
];
2698 data
.flow
= isl_union_flow_alloc(isl_union_map_get_space(sink
));
2700 if (isl_union_map_foreach_map(sink
, &compute_flow
, &data
) < 0)
2703 data
.flow
= isl_union_flow_drop_schedule(data
.flow
);
2705 isl_union_access_info_free(access
);
2708 isl_union_access_info_free(access
);
2709 isl_union_flow_free(data
.flow
);
2713 /* A schedule access relation.
2715 * The access relation "access" is of the form [S -> D] -> A,
2716 * where S corresponds to the prefix schedule at "node".
2717 * "must" is only relevant for source accesses and indicates
2718 * whether the access is a must source or a may source.
2720 struct isl_scheduled_access
{
2723 isl_schedule_node
*node
;
2726 /* Data structure for keeping track of individual scheduled sink and source
2727 * accesses when computing dependence analysis based on a schedule tree.
2729 * "n_sink" is the number of used entries in "sink"
2730 * "n_source" is the number of used entries in "source"
2732 * "set_sink", "must" and "node" are only used inside collect_sink_source,
2733 * to keep track of the current node and
2734 * of what extract_sink_source needs to do.
2736 struct isl_compute_flow_schedule_data
{
2737 isl_union_access_info
*access
;
2742 struct isl_scheduled_access
*sink
;
2743 struct isl_scheduled_access
*source
;
2747 isl_schedule_node
*node
;
2750 /* Align the parameters of all sinks with all sources.
2752 * If there are no sinks or no sources, then no alignment is needed.
2754 static void isl_compute_flow_schedule_data_align_params(
2755 struct isl_compute_flow_schedule_data
*data
)
2760 if (data
->n_sink
== 0 || data
->n_source
== 0)
2763 space
= isl_map_get_space(data
->sink
[0].access
);
2765 for (i
= 1; i
< data
->n_sink
; ++i
)
2766 space
= isl_space_align_params(space
,
2767 isl_map_get_space(data
->sink
[i
].access
));
2768 for (i
= 0; i
< data
->n_source
; ++i
)
2769 space
= isl_space_align_params(space
,
2770 isl_map_get_space(data
->source
[i
].access
));
2772 for (i
= 0; i
< data
->n_sink
; ++i
)
2773 data
->sink
[i
].access
=
2774 isl_map_align_params(data
->sink
[i
].access
,
2775 isl_space_copy(space
));
2776 for (i
= 0; i
< data
->n_source
; ++i
)
2777 data
->source
[i
].access
=
2778 isl_map_align_params(data
->source
[i
].access
,
2779 isl_space_copy(space
));
2781 isl_space_free(space
);
2784 /* Free all the memory referenced from "data".
2785 * Do not free "data" itself as it may be allocated on the stack.
2787 static void isl_compute_flow_schedule_data_clear(
2788 struct isl_compute_flow_schedule_data
*data
)
2795 for (i
= 0; i
< data
->n_sink
; ++i
) {
2796 isl_map_free(data
->sink
[i
].access
);
2797 isl_schedule_node_free(data
->sink
[i
].node
);
2800 for (i
= 0; i
< data
->n_source
; ++i
) {
2801 isl_map_free(data
->source
[i
].access
);
2802 isl_schedule_node_free(data
->source
[i
].node
);
2808 /* isl_schedule_foreach_schedule_node_top_down callback for counting
2809 * (an upper bound on) the number of sinks and sources.
2811 * Sinks and sources are only extracted at leaves of the tree,
2812 * so we skip the node if it is not a leaf.
2813 * Otherwise we increment data->n_sink and data->n_source with
2814 * the number of spaces in the sink and source access domains
2815 * that reach this node.
2817 static isl_bool
count_sink_source(__isl_keep isl_schedule_node
*node
,
2820 struct isl_compute_flow_schedule_data
*data
= user
;
2821 isl_union_set
*domain
;
2822 isl_union_map
*umap
;
2823 isl_bool r
= isl_bool_false
;
2826 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2827 return isl_bool_true
;
2829 domain
= isl_schedule_node_get_universe_domain(node
);
2831 umap
= isl_union_map_copy(data
->access
->access
[isl_access_sink
]);
2832 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2833 data
->n_sink
+= n
= isl_union_map_n_map(umap
);
2834 isl_union_map_free(umap
);
2838 umap
= isl_union_map_copy(data
->access
->access
[isl_access_must_source
]);
2839 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2840 data
->n_source
+= n
= isl_union_map_n_map(umap
);
2841 isl_union_map_free(umap
);
2845 umap
= isl_union_map_copy(data
->access
->access
[isl_access_may_source
]);
2846 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2847 data
->n_source
+= n
= isl_union_map_n_map(umap
);
2848 isl_union_map_free(umap
);
2852 isl_union_set_free(domain
);
2857 /* Add a single scheduled sink or source (depending on data->set_sink)
2858 * with scheduled access relation "map", must property data->must and
2859 * schedule node data->node to the list of sinks or sources.
2861 static isl_stat
extract_sink_source(__isl_take isl_map
*map
, void *user
)
2863 struct isl_compute_flow_schedule_data
*data
= user
;
2864 struct isl_scheduled_access
*access
;
2867 access
= data
->sink
+ data
->n_sink
++;
2869 access
= data
->source
+ data
->n_source
++;
2871 access
->access
= map
;
2872 access
->must
= data
->must
;
2873 access
->node
= isl_schedule_node_copy(data
->node
);
2878 /* isl_schedule_foreach_schedule_node_top_down callback for collecting
2879 * individual scheduled source and sink accesses (taking into account
2880 * the domain of the schedule).
2882 * We only collect accesses at the leaves of the schedule tree.
2883 * We prepend the schedule dimensions at the leaf to the iteration
2884 * domains of the source and sink accesses and then extract
2885 * the individual accesses (per space).
2887 * In particular, if the prefix schedule at the node is of the form
2891 * while the access relations are of the form
2895 * then the updated access relations are of the form
2899 * Note that S consists of a single space such that introducing S
2900 * in the access relations does not increase the number of spaces.
2902 static isl_bool
collect_sink_source(__isl_keep isl_schedule_node
*node
,
2905 struct isl_compute_flow_schedule_data
*data
= user
;
2906 isl_union_map
*prefix
;
2907 isl_union_map
*umap
;
2908 isl_bool r
= isl_bool_false
;
2910 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2911 return isl_bool_true
;
2915 prefix
= isl_schedule_node_get_prefix_schedule_relation(node
);
2916 prefix
= isl_union_map_reverse(prefix
);
2917 prefix
= isl_union_map_range_map(prefix
);
2920 umap
= isl_union_map_copy(data
->access
->access
[isl_access_sink
]);
2921 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2922 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2924 isl_union_map_free(umap
);
2928 umap
= isl_union_map_copy(data
->access
->access
[isl_access_must_source
]);
2929 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2930 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2932 isl_union_map_free(umap
);
2936 umap
= isl_union_map_copy(data
->access
->access
[isl_access_may_source
]);
2937 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2938 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2940 isl_union_map_free(umap
);
2942 isl_union_map_free(prefix
);
2947 /* isl_access_info_compute_flow callback for determining whether
2948 * the shared nesting level and the ordering within that level
2949 * for two scheduled accesses for use in compute_single_flow.
2951 * The tokens passed to this function refer to the leaves
2952 * in the schedule tree where the accesses take place.
2954 * If n is the shared number of loops, then we need to return
2955 * "2 * n + 1" if "first" precedes "second" inside the innermost
2956 * shared loop and "2 * n" otherwise.
2958 * The innermost shared ancestor may be the leaves themselves
2959 * if the accesses take place in the same leaf. Otherwise,
2960 * it is either a set node or a sequence node. Only in the case
2961 * of a sequence node do we consider one access to precede the other.
2963 static int before_node(void *first
, void *second
)
2965 isl_schedule_node
*node1
= first
;
2966 isl_schedule_node
*node2
= second
;
2967 isl_schedule_node
*shared
;
2971 shared
= isl_schedule_node_get_shared_ancestor(node1
, node2
);
2972 depth
= isl_schedule_node_get_schedule_depth(shared
);
2974 isl_schedule_node_free(shared
);
2978 if (isl_schedule_node_get_type(shared
) == isl_schedule_node_sequence
) {
2979 isl_size pos1
, pos2
;
2981 pos1
= isl_schedule_node_get_ancestor_child_position(node1
,
2983 pos2
= isl_schedule_node_get_ancestor_child_position(node2
,
2985 if (pos1
< 0 || pos2
< 0) {
2986 isl_schedule_node_free(shared
);
2989 before
= pos1
< pos2
;
2992 isl_schedule_node_free(shared
);
2994 return 2 * depth
+ before
;
2997 /* Check if the given two accesses may be coscheduled.
2998 * If so, return isl_bool_true. Otherwise return isl_bool_false.
3000 * Two accesses may only be coscheduled if they appear in the same leaf.
3002 static isl_bool
coscheduled_node(void *first
, void *second
)
3004 isl_schedule_node
*node1
= first
;
3005 isl_schedule_node
*node2
= second
;
3007 return isl_bool_ok(node1
== node2
);
3010 /* Add the scheduled sources from "data" that access
3011 * the same data space as "sink" to "access".
3013 static __isl_give isl_access_info
*add_matching_sources(
3014 __isl_take isl_access_info
*access
, struct isl_scheduled_access
*sink
,
3015 struct isl_compute_flow_schedule_data
*data
)
3020 space
= isl_space_range(isl_map_get_space(sink
->access
));
3021 for (i
= 0; i
< data
->n_source
; ++i
) {
3022 struct isl_scheduled_access
*source
;
3023 isl_space
*source_space
;
3026 source
= &data
->source
[i
];
3027 source_space
= isl_map_get_space(source
->access
);
3028 source_space
= isl_space_range(source_space
);
3029 eq
= isl_space_is_equal(space
, source_space
);
3030 isl_space_free(source_space
);
3037 access
= isl_access_info_add_source(access
,
3038 isl_map_copy(source
->access
), source
->must
, source
->node
);
3041 isl_space_free(space
);
3044 isl_space_free(space
);
3045 isl_access_info_free(access
);
3049 /* Given a scheduled sink access relation "sink", compute the corresponding
3050 * dependences on the sources in "data" and add the computed dependences
3053 * The dependences computed by access_info_compute_flow_core are of the form
3055 * [S -> I] -> [[S' -> I'] -> A]
3057 * The schedule dimensions are projected out by first currying the range,
3060 * [S -> I] -> [S' -> [I' -> A]]
3062 * and then computing the factor range
3066 static __isl_give isl_union_flow
*compute_single_flow(
3067 __isl_take isl_union_flow
*uf
, struct isl_scheduled_access
*sink
,
3068 struct isl_compute_flow_schedule_data
*data
)
3071 isl_access_info
*access
;
3078 access
= isl_access_info_alloc(isl_map_copy(sink
->access
), sink
->node
,
3079 &before_node
, data
->n_source
);
3081 access
->coscheduled
= &coscheduled_node
;
3082 access
= add_matching_sources(access
, sink
, data
);
3084 flow
= access_info_compute_flow_core(access
);
3086 return isl_union_flow_free(uf
);
3088 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 1));
3089 uf
->must_no_source
= isl_union_map_union(uf
->must_no_source
,
3090 isl_union_map_from_map(map
));
3091 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 0));
3092 uf
->may_no_source
= isl_union_map_union(uf
->may_no_source
,
3093 isl_union_map_from_map(map
));
3095 for (i
= 0; i
< flow
->n_source
; ++i
) {
3098 map
= isl_map_range_curry(isl_map_copy(flow
->dep
[i
].map
));
3099 map
= isl_map_factor_range(map
);
3100 dep
= isl_union_map_from_map(map
);
3101 if (flow
->dep
[i
].must
)
3102 uf
->must_dep
= isl_union_map_union(uf
->must_dep
, dep
);
3104 uf
->may_dep
= isl_union_map_union(uf
->may_dep
, dep
);
3107 isl_flow_free(flow
);
3112 /* Given a description of the "sink" accesses, the "source" accesses and
3113 * a schedule, compute for each instance of a sink access
3114 * and for each element accessed by that instance,
3115 * the possible or definite source accesses that last accessed the
3116 * element accessed by the sink access before this sink access
3117 * in the sense that there is no intermediate definite source access.
3118 * Only consider dependences between statement instances that belong
3119 * to the domain of the schedule.
3121 * The must_no_source and may_no_source elements of the result
3122 * are subsets of access->sink. The elements must_dep and may_dep
3123 * map domain elements of access->{may,must)_source to
3124 * domain elements of access->sink.
3126 * This function is used when a schedule tree representation
3129 * We extract the individual scheduled source and sink access relations
3130 * (taking into account the domain of the schedule) and
3131 * then compute dependences for each scheduled sink individually.
3133 static __isl_give isl_union_flow
*compute_flow_schedule(
3134 __isl_take isl_union_access_info
*access
)
3136 struct isl_compute_flow_schedule_data data
= { access
};
3140 isl_union_flow
*flow
;
3142 ctx
= isl_union_access_info_get_ctx(access
);
3146 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
3147 &count_sink_source
, &data
) < 0)
3150 n
= data
.n_sink
+ data
.n_source
;
3151 data
.sink
= isl_calloc_array(ctx
, struct isl_scheduled_access
, n
);
3152 if (n
&& !data
.sink
)
3154 data
.source
= data
.sink
+ data
.n_sink
;
3158 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
3159 &collect_sink_source
, &data
) < 0)
3162 space
= isl_union_map_get_space(access
->access
[isl_access_sink
]);
3163 flow
= isl_union_flow_alloc(space
);
3165 isl_compute_flow_schedule_data_align_params(&data
);
3167 for (i
= 0; i
< data
.n_sink
; ++i
)
3168 flow
= compute_single_flow(flow
, &data
.sink
[i
], &data
);
3170 isl_compute_flow_schedule_data_clear(&data
);
3172 isl_union_access_info_free(access
);
3175 isl_union_access_info_free(access
);
3176 isl_compute_flow_schedule_data_clear(&data
);
3180 /* Given a description of the "sink" accesses, the "source" accesses and
3181 * a schedule, compute for each instance of a sink access
3182 * and for each element accessed by that instance,
3183 * the possible or definite source accesses that last accessed the
3184 * element accessed by the sink access before this sink access
3185 * in the sense that there is no intermediate definite source access.
3187 * The must_no_source and may_no_source elements of the result
3188 * are subsets of access->sink. The elements must_dep and may_dep
3189 * map domain elements of access->{may,must)_source to
3190 * domain elements of access->sink.
3192 * If any kills have been specified, then they are treated as
3193 * must-sources internally. Any dependence that purely derives
3194 * from an original kill is removed from the output.
3196 * We check whether the schedule is available as a schedule tree
3197 * or a schedule map and call the corresponding function to perform
3200 __isl_give isl_union_flow
*isl_union_access_info_compute_flow(
3201 __isl_take isl_union_access_info
*access
)
3204 isl_union_map
*must
= NULL
, *may
= NULL
;
3205 isl_union_flow
*flow
;
3207 has_kill
= isl_union_access_has_kill(access
);
3211 must
= isl_union_access_info_get_must_source(access
);
3212 may
= isl_union_access_info_get_may_source(access
);
3214 access
= isl_union_access_info_add_kill_to_must_source(access
);
3215 access
= isl_union_access_info_normalize(access
);
3218 if (access
->schedule
)
3219 flow
= compute_flow_schedule(access
);
3221 flow
= compute_flow_union_map(access
);
3223 flow
= isl_union_flow_drop_kill_source(flow
, must
, may
);
3226 isl_union_access_info_free(access
);
3227 isl_union_map_free(must
);
3228 isl_union_map_free(may
);
3232 /* Print the information contained in "flow" to "p".
3233 * The information is printed as a YAML document.
3235 __isl_give isl_printer
*isl_printer_print_union_flow(
3236 __isl_take isl_printer
*p
, __isl_keep isl_union_flow
*flow
)
3238 isl_union_map
*umap
;
3241 return isl_printer_free(p
);
3243 p
= isl_printer_yaml_start_mapping(p
);
3244 umap
= isl_union_flow_get_full_must_dependence(flow
);
3245 p
= print_yaml_field_union_map(p
, "must_dependence", umap
);
3246 isl_union_map_free(umap
);
3247 umap
= isl_union_flow_get_full_may_dependence(flow
);
3248 p
= print_yaml_field_union_map(p
, "may_dependence", umap
);
3249 isl_union_map_free(umap
);
3250 p
= print_yaml_field_union_map(p
, "must_no_source",
3251 flow
->must_no_source
);
3252 umap
= isl_union_flow_get_may_no_source(flow
);
3253 p
= print_yaml_field_union_map(p
, "may_no_source", umap
);
3254 isl_union_map_free(umap
);
3255 p
= isl_printer_yaml_end_mapping(p
);
3260 /* Return a string representation of the information in "flow".
3261 * The information is printed in flow format.
3263 __isl_give
char *isl_union_flow_to_str(__isl_keep isl_union_flow
*flow
)
3271 p
= isl_printer_to_str(isl_union_flow_get_ctx(flow
));
3272 p
= isl_printer_set_yaml_style(p
, ISL_YAML_STYLE_FLOW
);
3273 p
= isl_printer_print_union_flow(p
, flow
);
3274 s
= isl_printer_get_str(p
);
3275 isl_printer_free(p
);
3280 /* Given a collection of "sink" and "source" accesses,
3281 * compute for each iteration of a sink access
3282 * and for each element accessed by that iteration,
3283 * the source access in the list that last accessed the
3284 * element accessed by the sink access before this sink access.
3285 * Each access is given as a map from the loop iterators
3286 * to the array indices.
3287 * The result is a relations between source and sink
3288 * iterations and a subset of the domain of the sink accesses,
3289 * corresponding to those iterations that access an element
3290 * not previously accessed.
3292 * We collect the inputs in an isl_union_access_info object,
3293 * call isl_union_access_info_compute_flow and extract
3294 * the outputs from the result.
3296 int isl_union_map_compute_flow(__isl_take isl_union_map
*sink
,
3297 __isl_take isl_union_map
*must_source
,
3298 __isl_take isl_union_map
*may_source
,
3299 __isl_take isl_union_map
*schedule
,
3300 __isl_give isl_union_map
**must_dep
, __isl_give isl_union_map
**may_dep
,
3301 __isl_give isl_union_map
**must_no_source
,
3302 __isl_give isl_union_map
**may_no_source
)
3304 isl_union_access_info
*access
;
3305 isl_union_flow
*flow
;
3307 access
= isl_union_access_info_from_sink(sink
);
3308 access
= isl_union_access_info_set_must_source(access
, must_source
);
3309 access
= isl_union_access_info_set_may_source(access
, may_source
);
3310 access
= isl_union_access_info_set_schedule_map(access
, schedule
);
3311 flow
= isl_union_access_info_compute_flow(access
);
3314 *must_dep
= isl_union_flow_get_must_dependence(flow
);
3316 *may_dep
= isl_union_flow_get_non_must_dependence(flow
);
3318 *must_no_source
= isl_union_flow_get_must_no_source(flow
);
3320 *may_no_source
= isl_union_flow_get_non_must_no_source(flow
);
3322 isl_union_flow_free(flow
);
3324 if ((must_dep
&& !*must_dep
) || (may_dep
&& !*may_dep
) ||
3325 (must_no_source
&& !*must_no_source
) ||
3326 (may_no_source
&& !*may_no_source
))
3332 *must_dep
= isl_union_map_free(*must_dep
);
3334 *may_dep
= isl_union_map_free(*may_dep
);
3336 *must_no_source
= isl_union_map_free(*must_no_source
);
3338 *may_no_source
= isl_union_map_free(*may_no_source
);