3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
8 using C<GMP> or C<imath>.
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
184 =head3 Changes since isl-0.12
188 =item * C<isl_int> has been replaced by C<isl_val>.
189 Some of the old functions are still available in C<isl/deprecated/*.h>
190 but they will be removed in the future.
192 =item * The functions C<isl_pw_qpolynomial_eval>,
193 C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
194 and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
195 an C<isl_val> instead of an C<isl_qpolynomial>.
197 =item * The function C<isl_band_member_is_zero_distance>
198 has been removed. Essentially the same functionality is available
199 through C<isl_band_member_is_coincident>, except that it requires
200 setting up coincidence constraints.
201 The option C<schedule_outer_zero_distance> has accordingly been
202 replaced by the option C<schedule_outer_coincidence>.
204 =item * The function C<isl_vertex_get_expr> has been changed
205 to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
206 The function C<isl_vertex_get_domain> has been changed to return
207 a regular basic set, rather than a rational basic set.
211 =head3 Changes since isl-0.14
215 =item * The function C<isl_union_pw_multi_aff_add> now consistently
216 computes the sum on the shared definition domain.
217 The function C<isl_union_pw_multi_aff_union_add> has been added
218 to compute the sum on the union of definition domains.
219 The original behavior of C<isl_union_pw_multi_aff_add> was
220 confused and is no longer available.
222 =item * Band forests have been replaced by schedule trees.
224 =item * The function C<isl_union_map_compute_flow> has been
225 replaced by the function C<isl_union_access_info_compute_flow>.
226 Note that the may dependence relation returned by
227 C<isl_union_flow_get_may_dependence> is the union of
228 the two dependence relations returned by
229 C<isl_union_map_compute_flow>. Similarly for the no source relations.
230 The function C<isl_union_map_compute_flow> is still available
231 for backward compatibility, but it will be removed in the future.
233 =item * The function C<isl_basic_set_drop_constraint> has been
236 =item * The function C<isl_ast_build_ast_from_schedule> has been
237 renamed to C<isl_ast_build_node_from_schedule_map>.
238 The original name is still available
239 for backward compatibility, but it will be removed in the future.
241 =item * The C<separation_class> AST generation option has been
244 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
245 have been renamed to C<isl_constraint_alloc_equality> and
246 C<isl_constraint_alloc_inequality>. The original names have been
247 kept for backward compatibility, but they will be removed in the future.
249 =item * The C<schedule_fuse> option has been replaced
250 by the C<schedule_serialize_sccs> option. The effect
251 of setting the C<schedule_fuse> option to C<ISL_SCHEDULE_FUSE_MIN>
252 is now obtained by turning on the C<schedule_serialize_sccs> option.
256 =head3 Changes since isl-0.17
260 =item * The function C<isl_printer_print_ast_expr> no longer prints
261 in C format by default. To print in C format, the output format
262 of the printer needs to have been explicitly set to C<ISL_FORMAT_C>.
263 As a result, the function C<isl_ast_expr_to_str> no longer prints
264 the expression in C format. Use C<isl_ast_expr_to_C_str> instead.
266 =item * The functions C<isl_set_align_divs> and C<isl_map_align_divs>
267 have been deprecated. The function C<isl_set_lift> has an effect
268 that is similar to C<isl_set_align_divs> and could in some cases
269 be used as an alternative.
273 =head3 Changes since isl-0.19
277 =item * Zero-dimensional objects of type C<isl_multi_pw_aff> or
278 C<isl_multi_union_pw_aff> can now keep track of an explicit domain.
279 This explicit domain, if present, is taken into account
280 by various operations that take such objects as input.
286 C<isl> is released under the MIT license.
290 Permission is hereby granted, free of charge, to any person obtaining a copy of
291 this software and associated documentation files (the "Software"), to deal in
292 the Software without restriction, including without limitation the rights to
293 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
294 of the Software, and to permit persons to whom the Software is furnished to do
295 so, subject to the following conditions:
297 The above copyright notice and this permission notice shall be included in all
298 copies or substantial portions of the Software.
300 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
301 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
302 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
303 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
304 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
305 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
310 Note that by default C<isl> requires C<GMP>, which is released
311 under the GNU Lesser General Public License (LGPL). This means
312 that code linked against C<isl> is also linked against LGPL code.
314 When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C<isl>
315 will link against C<imath>, a library for exact integer arithmetic released
316 under the MIT license.
320 The source of C<isl> can be obtained either as a tarball
321 or from the git repository. Both are available from
322 L<http://isl.gforge.inria.fr/>.
323 The installation process depends on how you obtained
326 =head2 Installation from the git repository
330 =item 1 Clone or update the repository
332 The first time the source is obtained, you need to clone
335 git clone git://repo.or.cz/isl.git
337 To obtain updates, you need to pull in the latest changes
341 =item 2 Optionally get C<imath> submodule
343 To build C<isl> with C<imath>, you need to obtain the C<imath>
344 submodule by running in the git source tree of C<isl>
349 This will fetch the required version of C<imath> in a subdirectory of C<isl>.
351 =item 2 Generate C<configure>
357 After performing the above steps, continue
358 with the L<Common installation instructions>.
360 =head2 Common installation instructions
364 =item 1 Obtain C<GMP>
366 By default, building C<isl> requires C<GMP>, including its headers files.
367 Your distribution may not provide these header files by default
368 and you may need to install a package called C<gmp-devel> or something
369 similar. Alternatively, C<GMP> can be built from
370 source, available from L<http://gmplib.org/>.
371 C<GMP> is not needed if you build C<isl> with C<imath>.
375 C<isl> uses the standard C<autoconf> C<configure> script.
380 optionally followed by some configure options.
381 A complete list of options can be obtained by running
385 Below we discuss some of the more common options.
391 Installation prefix for C<isl>
393 =item C<--with-int=[gmp|imath|imath-32]>
395 Select the integer library to be used by C<isl>, the default is C<gmp>.
396 With C<imath-32>, C<isl> will use 32 bit integers, but fall back to C<imath>
397 for values out of the 32 bit range. In most applications, C<isl> will run
398 fastest with the C<imath-32> option, followed by C<gmp> and C<imath>, the
401 =item C<--with-gmp-prefix>
403 Installation prefix for C<GMP> (architecture-independent files).
405 =item C<--with-gmp-exec-prefix>
407 Installation prefix for C<GMP> (architecture-dependent files).
415 =item 4 Install (optional)
421 =head1 Integer Set Library
423 =head2 Memory Management
425 Since a high-level operation on isl objects usually involves
426 several substeps and since the user is usually not interested in
427 the intermediate results, most functions that return a new object
428 will also release all the objects passed as arguments.
429 If the user still wants to use one or more of these arguments
430 after the function call, she should pass along a copy of the
431 object rather than the object itself.
432 The user is then responsible for making sure that the original
433 object gets used somewhere else or is explicitly freed.
435 The arguments and return values of all documented functions are
436 annotated to make clear which arguments are released and which
437 arguments are preserved. In particular, the following annotations
444 C<__isl_give> means that a new object is returned.
445 The user should make sure that the returned pointer is
446 used exactly once as a value for an C<__isl_take> argument.
447 In between, it can be used as a value for as many
448 C<__isl_keep> arguments as the user likes.
449 There is one exception, and that is the case where the
450 pointer returned is C<NULL>. Is this case, the user
451 is free to use it as an C<__isl_take> argument or not.
452 When applied to a C<char *>, the returned pointer needs to be
457 C<__isl_null> means that a C<NULL> value is returned.
461 C<__isl_take> means that the object the argument points to
462 is taken over by the function and may no longer be used
463 by the user as an argument to any other function.
464 The pointer value must be one returned by a function
465 returning an C<__isl_give> pointer.
466 If the user passes in a C<NULL> value, then this will
467 be treated as an error in the sense that the function will
468 not perform its usual operation. However, it will still
469 make sure that all the other C<__isl_take> arguments
474 C<__isl_keep> means that the function will only use the object
475 temporarily. After the function has finished, the user
476 can still use it as an argument to other functions.
477 A C<NULL> value will be treated in the same way as
478 a C<NULL> value for an C<__isl_take> argument.
479 This annotation may also be used on return values of
480 type C<const char *>, in which case the returned pointer should
481 not be freed by the user and is only valid until the object
482 from which it was derived is updated or freed.
486 =head2 Initialization
488 All manipulations of integer sets and relations occur within
489 the context of an C<isl_ctx>.
490 A given C<isl_ctx> can only be used within a single thread.
491 All arguments of a function are required to have been allocated
492 within the same context.
493 There are currently no functions available for moving an object
494 from one C<isl_ctx> to another C<isl_ctx>. This means that
495 there is currently no way of safely moving an object from one
496 thread to another, unless the whole C<isl_ctx> is moved.
498 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
499 freed using C<isl_ctx_free>.
500 All objects allocated within an C<isl_ctx> should be freed
501 before the C<isl_ctx> itself is freed.
503 isl_ctx *isl_ctx_alloc();
504 void isl_ctx_free(isl_ctx *ctx);
506 The user can impose a bound on the number of low-level I<operations>
507 that can be performed by an C<isl_ctx>. This bound can be set and
508 retrieved using the following functions. A bound of zero means that
509 no bound is imposed. The number of operations performed can be
510 reset using C<isl_ctx_reset_operations>. Note that the number
511 of low-level operations needed to perform a high-level computation
512 may differ significantly across different versions
513 of C<isl>, but it should be the same across different platforms
514 for the same version of C<isl>.
516 Warning: This feature is experimental. C<isl> has good support to abort and
517 bail out during the computation, but this feature may exercise error code paths
518 that are normally not used that much. Consequently, it is not unlikely that
519 hidden bugs will be exposed.
521 void isl_ctx_set_max_operations(isl_ctx *ctx,
522 unsigned long max_operations);
523 unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
524 void isl_ctx_reset_operations(isl_ctx *ctx);
526 In order to be able to create an object in the same context
527 as another object, most object types (described later in
528 this document) provide a function to obtain the context
529 in which the object was created.
532 isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
533 isl_ctx *isl_multi_val_get_ctx(
534 __isl_keep isl_multi_val *mv);
537 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
539 #include <isl/local_space.h>
540 isl_ctx *isl_local_space_get_ctx(
541 __isl_keep isl_local_space *ls);
544 isl_ctx *isl_set_list_get_ctx(
545 __isl_keep isl_set_list *list);
548 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
549 isl_ctx *isl_multi_aff_get_ctx(
550 __isl_keep isl_multi_aff *maff);
551 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
552 isl_ctx *isl_pw_multi_aff_get_ctx(
553 __isl_keep isl_pw_multi_aff *pma);
554 isl_ctx *isl_multi_pw_aff_get_ctx(
555 __isl_keep isl_multi_pw_aff *mpa);
556 isl_ctx *isl_union_pw_aff_get_ctx(
557 __isl_keep isl_union_pw_aff *upa);
558 isl_ctx *isl_union_pw_multi_aff_get_ctx(
559 __isl_keep isl_union_pw_multi_aff *upma);
560 isl_ctx *isl_multi_union_pw_aff_get_ctx(
561 __isl_keep isl_multi_union_pw_aff *mupa);
563 #include <isl/id_to_ast_expr.h>
564 isl_ctx *isl_id_to_ast_expr_get_ctx(
565 __isl_keep isl_id_to_ast_expr *id2expr);
567 #include <isl/point.h>
568 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
571 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
574 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
576 #include <isl/vertices.h>
577 isl_ctx *isl_vertices_get_ctx(
578 __isl_keep isl_vertices *vertices);
579 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
580 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
582 #include <isl/flow.h>
583 isl_ctx *isl_restriction_get_ctx(
584 __isl_keep isl_restriction *restr);
585 isl_ctx *isl_union_access_info_get_ctx(
586 __isl_keep isl_union_access_info *access);
587 isl_ctx *isl_union_flow_get_ctx(
588 __isl_keep isl_union_flow *flow);
590 #include <isl/schedule.h>
591 isl_ctx *isl_schedule_get_ctx(
592 __isl_keep isl_schedule *sched);
593 isl_ctx *isl_schedule_constraints_get_ctx(
594 __isl_keep isl_schedule_constraints *sc);
596 #include <isl/schedule_node.h>
597 isl_ctx *isl_schedule_node_get_ctx(
598 __isl_keep isl_schedule_node *node);
600 #include <isl/ast_build.h>
601 isl_ctx *isl_ast_build_get_ctx(
602 __isl_keep isl_ast_build *build);
605 isl_ctx *isl_ast_expr_get_ctx(
606 __isl_keep isl_ast_expr *expr);
607 isl_ctx *isl_ast_node_get_ctx(
608 __isl_keep isl_ast_node *node);
612 C<isl> uses two special return types for functions that either return
613 a boolean or that in principle do not return anything.
614 In particular, the C<isl_bool> type has three possible values:
615 C<isl_bool_true> (a positive integer value), indicating I<true> or I<yes>;
616 C<isl_bool_false> (the integer value zero), indicating I<false> or I<no>; and
617 C<isl_bool_error> (a negative integer value), indicating that something
618 went wrong. The following function can be used to negate an C<isl_bool>,
619 where the negation of C<isl_bool_error> is C<isl_bool_error> again.
622 isl_bool isl_bool_not(isl_bool b);
624 The C<isl_stat> type has two possible values:
625 C<isl_stat_ok> (the integer value zero), indicating a successful
627 C<isl_stat_error> (a negative integer value), indicating that something
629 See L</"Error Handling"> for more information on
630 C<isl_bool_error> and C<isl_stat_error>.
634 An C<isl_val> represents an integer value, a rational value
635 or one of three special values, infinity, negative infinity and NaN.
636 Some predefined values can be created using the following functions.
639 __isl_give isl_val *isl_val_zero(isl_ctx *ctx);
640 __isl_give isl_val *isl_val_one(isl_ctx *ctx);
641 __isl_give isl_val *isl_val_negone(isl_ctx *ctx);
642 __isl_give isl_val *isl_val_nan(isl_ctx *ctx);
643 __isl_give isl_val *isl_val_infty(isl_ctx *ctx);
644 __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
646 Specific integer values can be created using the following functions.
649 __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
651 __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
653 __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
654 size_t n, size_t size, const void *chunks);
656 The function C<isl_val_int_from_chunks> constructs an C<isl_val>
657 from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
658 The least significant digit is assumed to be stored first.
660 Value objects can be copied and freed using the following functions.
663 __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
664 __isl_null isl_val *isl_val_free(__isl_take isl_val *v);
666 They can be inspected using the following functions.
669 long isl_val_get_num_si(__isl_keep isl_val *v);
670 long isl_val_get_den_si(__isl_keep isl_val *v);
671 __isl_give isl_val *isl_val_get_den_val(
672 __isl_keep isl_val *v);
673 double isl_val_get_d(__isl_keep isl_val *v);
674 size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
676 int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
677 size_t size, void *chunks);
679 C<isl_val_n_abs_num_chunks> returns the number of I<digits>
680 of C<size> bytes needed to store the absolute value of the
682 C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
683 which is assumed to have been preallocated by the caller.
684 The least significant digit is stored first.
685 Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
686 C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
687 and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
689 An C<isl_val> can be modified using the following function.
692 __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
695 The following unary properties are defined on C<isl_val>s.
698 int isl_val_sgn(__isl_keep isl_val *v);
699 isl_bool isl_val_is_zero(__isl_keep isl_val *v);
700 isl_bool isl_val_is_one(__isl_keep isl_val *v);
701 isl_bool isl_val_is_negone(__isl_keep isl_val *v);
702 isl_bool isl_val_is_nonneg(__isl_keep isl_val *v);
703 isl_bool isl_val_is_nonpos(__isl_keep isl_val *v);
704 isl_bool isl_val_is_pos(__isl_keep isl_val *v);
705 isl_bool isl_val_is_neg(__isl_keep isl_val *v);
706 isl_bool isl_val_is_int(__isl_keep isl_val *v);
707 isl_bool isl_val_is_rat(__isl_keep isl_val *v);
708 isl_bool isl_val_is_nan(__isl_keep isl_val *v);
709 isl_bool isl_val_is_infty(__isl_keep isl_val *v);
710 isl_bool isl_val_is_neginfty(__isl_keep isl_val *v);
712 Note that the sign of NaN is undefined.
714 The following binary properties are defined on pairs of C<isl_val>s.
717 isl_bool isl_val_lt(__isl_keep isl_val *v1,
718 __isl_keep isl_val *v2);
719 isl_bool isl_val_le(__isl_keep isl_val *v1,
720 __isl_keep isl_val *v2);
721 isl_bool isl_val_gt(__isl_keep isl_val *v1,
722 __isl_keep isl_val *v2);
723 isl_bool isl_val_ge(__isl_keep isl_val *v1,
724 __isl_keep isl_val *v2);
725 isl_bool isl_val_eq(__isl_keep isl_val *v1,
726 __isl_keep isl_val *v2);
727 isl_bool isl_val_ne(__isl_keep isl_val *v1,
728 __isl_keep isl_val *v2);
729 isl_bool isl_val_abs_eq(__isl_keep isl_val *v1,
730 __isl_keep isl_val *v2);
732 Comparisons to NaN always return false.
733 That is, a NaN is not considered to hold any relative position
734 with respect to any value. In particular, a NaN
735 is neither considered to be equal to nor to be different from
736 any value (including another NaN).
737 The function C<isl_val_abs_eq> checks whether its two arguments
738 are equal in absolute value.
740 For integer C<isl_val>s we additionally have the following binary property.
743 isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1,
744 __isl_keep isl_val *v2);
746 An C<isl_val> can also be compared to an integer using the following
747 function. The result is undefined for NaN.
750 int isl_val_cmp_si(__isl_keep isl_val *v, long i);
752 The following unary operations are available on C<isl_val>s.
755 __isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
756 __isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
757 __isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
758 __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
759 __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
760 __isl_give isl_val *isl_val_inv(__isl_take isl_val *v);
761 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
763 The following binary operations are available on C<isl_val>s.
766 __isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
767 __isl_take isl_val *v2);
768 __isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
769 __isl_take isl_val *v2);
770 __isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
771 __isl_take isl_val *v2);
772 __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
774 __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
775 __isl_take isl_val *v2);
776 __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
778 __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
779 __isl_take isl_val *v2);
780 __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
782 __isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
783 __isl_take isl_val *v2);
784 __isl_give isl_val *isl_val_div_ui(__isl_take isl_val *v1,
787 On integer values, we additionally have the following operations.
790 __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
791 __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
792 __isl_take isl_val *v2);
793 __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
794 __isl_take isl_val *v2);
795 __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
796 __isl_take isl_val *v2, __isl_give isl_val **x,
797 __isl_give isl_val **y);
799 The function C<isl_val_gcdext> returns the greatest common divisor g
800 of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
801 that C<*x> * C<v1> + C<*y> * C<v2> = g.
803 =head3 GMP specific functions
805 These functions are only available if C<isl> has been compiled with C<GMP>
808 Specific integer and rational values can be created from C<GMP> values using
809 the following functions.
811 #include <isl/val_gmp.h>
812 __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
814 __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
815 const mpz_t n, const mpz_t d);
817 The numerator and denominator of a rational value can be extracted as
818 C<GMP> values using the following functions.
820 #include <isl/val_gmp.h>
821 int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
822 int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
824 =head2 Sets and Relations
826 C<isl> uses six types of objects for representing sets and relations,
827 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
828 C<isl_union_set> and C<isl_union_map>.
829 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
830 can be described as a conjunction of affine constraints, while
831 C<isl_set> and C<isl_map> represent unions of
832 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
833 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
834 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
835 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
836 where spaces are considered different if they have a different number
837 of dimensions and/or different names (see L<"Spaces">).
838 The difference between sets and relations (maps) is that sets have
839 one set of variables, while relations have two sets of variables,
840 input variables and output variables.
842 =head2 Error Handling
844 C<isl> supports different ways to react in case a runtime error is triggered.
845 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
846 with two maps that have incompatible spaces. There are three possible ways
847 to react on error: to warn, to continue or to abort.
849 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
850 the last error in the corresponding C<isl_ctx> and the function in which the
851 error was triggered returns a value indicating that some error has
852 occurred. In case of functions returning a pointer, this value is
853 C<NULL>. In case of functions returning an C<isl_bool> or an
854 C<isl_stat>, this value is C<isl_bool_error> or C<isl_stat_error>.
855 An error does not corrupt internal state,
856 such that isl can continue to be used. C<isl> also provides functions to
857 read the last error, including the specific error message,
858 the isl source file where the error occurred and the line number,
859 and to reset all information about the last error. The
860 last error is only stored for information purposes. Its presence does not
861 change the behavior of C<isl>. Hence, resetting an error is not required to
862 continue to use isl, but only to observe new errors.
865 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
866 const char *isl_ctx_last_error_msg(isl_ctx *ctx);
867 const char *isl_ctx_last_error_file(isl_ctx *ctx);
868 int isl_ctx_last_error_line(isl_ctx *ctx);
869 void isl_ctx_reset_error(isl_ctx *ctx);
871 If no error has occurred since the last call to C<isl_ctx_reset_error>,
872 then the functions C<isl_ctx_last_error_msg> and
873 C<isl_ctx_last_error_file> return C<NULL>.
875 Another option is to continue on error. This is similar to warn on error mode,
876 except that C<isl> does not print any warning. This allows a program to
877 implement its own error reporting.
879 The last option is to directly abort the execution of the program from within
880 the isl library. This makes it obviously impossible to recover from an error,
881 but it allows to directly spot the error location. By aborting on error,
882 debuggers break at the location the error occurred and can provide a stack
883 trace. Other tools that automatically provide stack traces on abort or that do
884 not want to continue execution after an error was triggered may also prefer to
887 The on error behavior of isl can be specified by calling
888 C<isl_options_set_on_error> or by setting the command line option
889 C<--isl-on-error>. Valid arguments for the function call are
890 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
891 choices for the command line option are C<warn>, C<continue> and C<abort>.
892 It is also possible to query the current error mode.
894 #include <isl/options.h>
895 isl_stat isl_options_set_on_error(isl_ctx *ctx, int val);
896 int isl_options_get_on_error(isl_ctx *ctx);
900 Identifiers are used to identify both individual dimensions
901 and tuples of dimensions. They consist of an optional name and an optional
902 user pointer. The name and the user pointer cannot both be C<NULL>, however.
903 Identifiers with the same name but different pointer values
904 are considered to be distinct.
905 Similarly, identifiers with different names but the same pointer value
906 are also considered to be distinct.
907 Equal identifiers are represented using the same object.
908 Pairs of identifiers can therefore be tested for equality using the
910 Identifiers can be constructed, copied, freed, inspected and printed
911 using the following functions.
914 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
915 __isl_keep const char *name, void *user);
916 __isl_give isl_id *isl_id_set_free_user(
917 __isl_take isl_id *id,
918 void (*free_user)(void *user));
919 __isl_give isl_id *isl_id_copy(isl_id *id);
920 __isl_null isl_id *isl_id_free(__isl_take isl_id *id);
922 void *isl_id_get_user(__isl_keep isl_id *id);
923 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
925 __isl_give isl_printer *isl_printer_print_id(
926 __isl_take isl_printer *p, __isl_keep isl_id *id);
928 The callback set by C<isl_id_set_free_user> is called on the user
929 pointer when the last reference to the C<isl_id> is freed.
930 Note that C<isl_id_get_name> returns a pointer to some internal
931 data structure, so the result can only be used while the
932 corresponding C<isl_id> is alive.
936 Whenever a new set, relation or similar object is created from scratch,
937 the space in which it lives needs to be specified using an C<isl_space>.
938 Each space involves zero or more parameters and zero, one or two
939 tuples of set or input/output dimensions. The parameters and dimensions
940 are identified by an C<isl_dim_type> and a position.
941 The type C<isl_dim_param> refers to parameters,
942 the type C<isl_dim_set> refers to set dimensions (for spaces
943 with a single tuple of dimensions) and the types C<isl_dim_in>
944 and C<isl_dim_out> refer to input and output dimensions
945 (for spaces with two tuples of dimensions).
946 Local spaces (see L</"Local Spaces">) also contain dimensions
947 of type C<isl_dim_div>.
948 Note that parameters are only identified by their position within
949 a given object. Across different objects, parameters are (usually)
950 identified by their names or identifiers. Only unnamed parameters
951 are identified by their positions across objects. The use of unnamed
952 parameters is discouraged.
954 #include <isl/space.h>
955 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
956 unsigned nparam, unsigned n_in, unsigned n_out);
957 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
959 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
960 unsigned nparam, unsigned dim);
961 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
962 __isl_null isl_space *isl_space_free(__isl_take isl_space *space);
964 The space used for creating a parameter domain
965 needs to be created using C<isl_space_params_alloc>.
966 For other sets, the space
967 needs to be created using C<isl_space_set_alloc>, while
968 for a relation, the space
969 needs to be created using C<isl_space_alloc>.
971 To check whether a given space is that of a set or a map
972 or whether it is a parameter space, use these functions:
974 #include <isl/space.h>
975 isl_bool isl_space_is_params(__isl_keep isl_space *space);
976 isl_bool isl_space_is_set(__isl_keep isl_space *space);
977 isl_bool isl_space_is_map(__isl_keep isl_space *space);
979 Spaces can be compared using the following functions:
981 #include <isl/space.h>
982 isl_bool isl_space_is_equal(__isl_keep isl_space *space1,
983 __isl_keep isl_space *space2);
984 isl_bool isl_space_has_equal_params(
985 __isl_keep isl_space *space1,
986 __isl_keep isl_space *space2);
987 isl_bool isl_space_has_equal_tuples(
988 __isl_keep isl_space *space1,
989 __isl_keep isl_space *space2);
990 isl_bool isl_space_is_domain(__isl_keep isl_space *space1,
991 __isl_keep isl_space *space2);
992 isl_bool isl_space_is_range(__isl_keep isl_space *space1,
993 __isl_keep isl_space *space2);
994 isl_bool isl_space_tuple_is_equal(
995 __isl_keep isl_space *space1,
996 enum isl_dim_type type1,
997 __isl_keep isl_space *space2,
998 enum isl_dim_type type2);
1000 C<isl_space_is_domain> checks whether the first argument is equal
1001 to the domain of the second argument. This requires in particular that
1002 the first argument is a set space and that the second argument
1003 is a map space. C<isl_space_tuple_is_equal> checks whether the given
1004 tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
1005 spaces are the same. That is, it checks if they have the same
1006 identifier (if any), the same dimension and the same internal structure
1009 C<isl_space_has_equal_params> checks whether two spaces
1010 have the same parameters in the same order.
1011 C<isl_space_has_equal_tuples> check whether two spaces have
1012 the same tuples. In contrast to C<isl_space_is_equal> below,
1013 it does not check the
1014 parameters. This is useful because many C<isl> functions align the
1015 parameters before they perform their operations, such that equivalence
1017 C<isl_space_is_equal> checks whether two spaces are identical,
1018 meaning that they have the same parameters and the same tuples.
1019 That is, it checks whether both C<isl_space_has_equal_params> and
1020 C<isl_space_has_equal_tuples> hold.
1022 It is often useful to create objects that live in the
1023 same space as some other object. This can be accomplished
1024 by creating the new objects
1025 (see L</"Creating New Sets and Relations"> or
1026 L</"Functions">) based on the space
1027 of the original object.
1029 #include <isl/set.h>
1030 __isl_give isl_space *isl_basic_set_get_space(
1031 __isl_keep isl_basic_set *bset);
1032 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
1034 #include <isl/union_set.h>
1035 __isl_give isl_space *isl_union_set_get_space(
1036 __isl_keep isl_union_set *uset);
1038 #include <isl/map.h>
1039 __isl_give isl_space *isl_basic_map_get_space(
1040 __isl_keep isl_basic_map *bmap);
1041 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
1043 #include <isl/union_map.h>
1044 __isl_give isl_space *isl_union_map_get_space(
1045 __isl_keep isl_union_map *umap);
1047 #include <isl/constraint.h>
1048 __isl_give isl_space *isl_constraint_get_space(
1049 __isl_keep isl_constraint *constraint);
1051 #include <isl/polynomial.h>
1052 __isl_give isl_space *isl_qpolynomial_get_domain_space(
1053 __isl_keep isl_qpolynomial *qp);
1054 __isl_give isl_space *isl_qpolynomial_get_space(
1055 __isl_keep isl_qpolynomial *qp);
1056 __isl_give isl_space *
1057 isl_qpolynomial_fold_get_domain_space(
1058 __isl_keep isl_qpolynomial_fold *fold);
1059 __isl_give isl_space *isl_qpolynomial_fold_get_space(
1060 __isl_keep isl_qpolynomial_fold *fold);
1061 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
1062 __isl_keep isl_pw_qpolynomial *pwqp);
1063 __isl_give isl_space *isl_pw_qpolynomial_get_space(
1064 __isl_keep isl_pw_qpolynomial *pwqp);
1065 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
1066 __isl_keep isl_pw_qpolynomial_fold *pwf);
1067 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
1068 __isl_keep isl_pw_qpolynomial_fold *pwf);
1069 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
1070 __isl_keep isl_union_pw_qpolynomial *upwqp);
1071 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
1072 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
1074 #include <isl/val.h>
1075 __isl_give isl_space *isl_multi_val_get_space(
1076 __isl_keep isl_multi_val *mv);
1078 #include <isl/aff.h>
1079 __isl_give isl_space *isl_aff_get_domain_space(
1080 __isl_keep isl_aff *aff);
1081 __isl_give isl_space *isl_aff_get_space(
1082 __isl_keep isl_aff *aff);
1083 __isl_give isl_space *isl_pw_aff_get_domain_space(
1084 __isl_keep isl_pw_aff *pwaff);
1085 __isl_give isl_space *isl_pw_aff_get_space(
1086 __isl_keep isl_pw_aff *pwaff);
1087 __isl_give isl_space *isl_multi_aff_get_domain_space(
1088 __isl_keep isl_multi_aff *maff);
1089 __isl_give isl_space *isl_multi_aff_get_space(
1090 __isl_keep isl_multi_aff *maff);
1091 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
1092 __isl_keep isl_pw_multi_aff *pma);
1093 __isl_give isl_space *isl_pw_multi_aff_get_space(
1094 __isl_keep isl_pw_multi_aff *pma);
1095 __isl_give isl_space *isl_union_pw_aff_get_space(
1096 __isl_keep isl_union_pw_aff *upa);
1097 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
1098 __isl_keep isl_union_pw_multi_aff *upma);
1099 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
1100 __isl_keep isl_multi_pw_aff *mpa);
1101 __isl_give isl_space *isl_multi_pw_aff_get_space(
1102 __isl_keep isl_multi_pw_aff *mpa);
1103 __isl_give isl_space *
1104 isl_multi_union_pw_aff_get_domain_space(
1105 __isl_keep isl_multi_union_pw_aff *mupa);
1106 __isl_give isl_space *
1107 isl_multi_union_pw_aff_get_space(
1108 __isl_keep isl_multi_union_pw_aff *mupa);
1110 #include <isl/point.h>
1111 __isl_give isl_space *isl_point_get_space(
1112 __isl_keep isl_point *pnt);
1114 The number of dimensions of a given type of space
1115 may be read off from a space or an object that lives
1116 in a space using the following functions.
1117 In case of C<isl_space_dim>, type may be
1118 C<isl_dim_param>, C<isl_dim_in> (only for relations),
1119 C<isl_dim_out> (only for relations), C<isl_dim_set>
1120 (only for sets) or C<isl_dim_all>.
1122 #include <isl/space.h>
1123 unsigned isl_space_dim(__isl_keep isl_space *space,
1124 enum isl_dim_type type);
1126 #include <isl/local_space.h>
1127 int isl_local_space_dim(__isl_keep isl_local_space *ls,
1128 enum isl_dim_type type);
1130 #include <isl/set.h>
1131 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1132 enum isl_dim_type type);
1133 unsigned isl_set_dim(__isl_keep isl_set *set,
1134 enum isl_dim_type type);
1136 #include <isl/union_set.h>
1137 unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
1138 enum isl_dim_type type);
1140 #include <isl/map.h>
1141 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1142 enum isl_dim_type type);
1143 unsigned isl_map_dim(__isl_keep isl_map *map,
1144 enum isl_dim_type type);
1146 #include <isl/union_map.h>
1147 unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
1148 enum isl_dim_type type);
1150 #include <isl/val.h>
1151 unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
1152 enum isl_dim_type type);
1154 #include <isl/aff.h>
1155 int isl_aff_dim(__isl_keep isl_aff *aff,
1156 enum isl_dim_type type);
1157 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
1158 enum isl_dim_type type);
1159 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
1160 enum isl_dim_type type);
1161 unsigned isl_pw_multi_aff_dim(
1162 __isl_keep isl_pw_multi_aff *pma,
1163 enum isl_dim_type type);
1164 unsigned isl_multi_pw_aff_dim(
1165 __isl_keep isl_multi_pw_aff *mpa,
1166 enum isl_dim_type type);
1167 unsigned isl_union_pw_aff_dim(
1168 __isl_keep isl_union_pw_aff *upa,
1169 enum isl_dim_type type);
1170 unsigned isl_union_pw_multi_aff_dim(
1171 __isl_keep isl_union_pw_multi_aff *upma,
1172 enum isl_dim_type type);
1173 unsigned isl_multi_union_pw_aff_dim(
1174 __isl_keep isl_multi_union_pw_aff *mupa,
1175 enum isl_dim_type type);
1177 #include <isl/polynomial.h>
1178 unsigned isl_union_pw_qpolynomial_dim(
1179 __isl_keep isl_union_pw_qpolynomial *upwqp,
1180 enum isl_dim_type type);
1181 unsigned isl_union_pw_qpolynomial_fold_dim(
1182 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1183 enum isl_dim_type type);
1185 Note that an C<isl_union_set>, an C<isl_union_map>,
1186 an C<isl_union_pw_multi_aff>,
1187 an C<isl_union_pw_qpolynomial> and
1188 an C<isl_union_pw_qpolynomial_fold>
1189 only have parameters.
1191 Additional parameters can be added to a space using the following function.
1193 #include <isl/space.h>
1194 __isl_give isl_space *isl_space_add_param_id(
1195 __isl_take isl_space *space,
1196 __isl_take isl_id *id);
1198 If a parameter with the given identifier already appears in the space,
1199 then it is not added again.
1201 The identifiers or names of the individual dimensions of spaces
1202 may be set or read off using the following functions on spaces
1203 or objects that live in spaces.
1204 These functions are mostly useful to obtain the identifiers, positions
1205 or names of the parameters. Identifiers of individual dimensions are
1206 essentially only useful for printing. They are ignored by all other
1207 operations and may not be preserved across those operations.
1209 #include <isl/space.h>
1210 __isl_give isl_space *isl_space_set_dim_id(
1211 __isl_take isl_space *space,
1212 enum isl_dim_type type, unsigned pos,
1213 __isl_take isl_id *id);
1214 isl_bool isl_space_has_dim_id(__isl_keep isl_space *space,
1215 enum isl_dim_type type, unsigned pos);
1216 __isl_give isl_id *isl_space_get_dim_id(
1217 __isl_keep isl_space *space,
1218 enum isl_dim_type type, unsigned pos);
1219 __isl_give isl_space *isl_space_set_dim_name(
1220 __isl_take isl_space *space,
1221 enum isl_dim_type type, unsigned pos,
1222 __isl_keep const char *name);
1223 isl_bool isl_space_has_dim_name(__isl_keep isl_space *space,
1224 enum isl_dim_type type, unsigned pos);
1225 __isl_keep const char *isl_space_get_dim_name(
1226 __isl_keep isl_space *space,
1227 enum isl_dim_type type, unsigned pos);
1229 #include <isl/local_space.h>
1230 __isl_give isl_local_space *isl_local_space_set_dim_id(
1231 __isl_take isl_local_space *ls,
1232 enum isl_dim_type type, unsigned pos,
1233 __isl_take isl_id *id);
1234 isl_bool isl_local_space_has_dim_id(
1235 __isl_keep isl_local_space *ls,
1236 enum isl_dim_type type, unsigned pos);
1237 __isl_give isl_id *isl_local_space_get_dim_id(
1238 __isl_keep isl_local_space *ls,
1239 enum isl_dim_type type, unsigned pos);
1240 __isl_give isl_local_space *isl_local_space_set_dim_name(
1241 __isl_take isl_local_space *ls,
1242 enum isl_dim_type type, unsigned pos, const char *s);
1243 isl_bool isl_local_space_has_dim_name(
1244 __isl_keep isl_local_space *ls,
1245 enum isl_dim_type type, unsigned pos)
1246 const char *isl_local_space_get_dim_name(
1247 __isl_keep isl_local_space *ls,
1248 enum isl_dim_type type, unsigned pos);
1250 #include <isl/constraint.h>
1251 const char *isl_constraint_get_dim_name(
1252 __isl_keep isl_constraint *constraint,
1253 enum isl_dim_type type, unsigned pos);
1255 #include <isl/set.h>
1256 __isl_give isl_id *isl_basic_set_get_dim_id(
1257 __isl_keep isl_basic_set *bset,
1258 enum isl_dim_type type, unsigned pos);
1259 __isl_give isl_set *isl_set_set_dim_id(
1260 __isl_take isl_set *set, enum isl_dim_type type,
1261 unsigned pos, __isl_take isl_id *id);
1262 isl_bool isl_set_has_dim_id(__isl_keep isl_set *set,
1263 enum isl_dim_type type, unsigned pos);
1264 __isl_give isl_id *isl_set_get_dim_id(
1265 __isl_keep isl_set *set, enum isl_dim_type type,
1267 const char *isl_basic_set_get_dim_name(
1268 __isl_keep isl_basic_set *bset,
1269 enum isl_dim_type type, unsigned pos);
1270 isl_bool isl_set_has_dim_name(__isl_keep isl_set *set,
1271 enum isl_dim_type type, unsigned pos);
1272 const char *isl_set_get_dim_name(
1273 __isl_keep isl_set *set,
1274 enum isl_dim_type type, unsigned pos);
1276 #include <isl/map.h>
1277 __isl_give isl_map *isl_map_set_dim_id(
1278 __isl_take isl_map *map, enum isl_dim_type type,
1279 unsigned pos, __isl_take isl_id *id);
1280 isl_bool isl_basic_map_has_dim_id(
1281 __isl_keep isl_basic_map *bmap,
1282 enum isl_dim_type type, unsigned pos);
1283 isl_bool isl_map_has_dim_id(__isl_keep isl_map *map,
1284 enum isl_dim_type type, unsigned pos);
1285 __isl_give isl_id *isl_map_get_dim_id(
1286 __isl_keep isl_map *map, enum isl_dim_type type,
1288 __isl_give isl_id *isl_union_map_get_dim_id(
1289 __isl_keep isl_union_map *umap,
1290 enum isl_dim_type type, unsigned pos);
1291 const char *isl_basic_map_get_dim_name(
1292 __isl_keep isl_basic_map *bmap,
1293 enum isl_dim_type type, unsigned pos);
1294 isl_bool isl_map_has_dim_name(__isl_keep isl_map *map,
1295 enum isl_dim_type type, unsigned pos);
1296 const char *isl_map_get_dim_name(
1297 __isl_keep isl_map *map,
1298 enum isl_dim_type type, unsigned pos);
1300 #include <isl/val.h>
1301 __isl_give isl_multi_val *isl_multi_val_set_dim_id(
1302 __isl_take isl_multi_val *mv,
1303 enum isl_dim_type type, unsigned pos,
1304 __isl_take isl_id *id);
1305 __isl_give isl_id *isl_multi_val_get_dim_id(
1306 __isl_keep isl_multi_val *mv,
1307 enum isl_dim_type type, unsigned pos);
1308 __isl_give isl_multi_val *isl_multi_val_set_dim_name(
1309 __isl_take isl_multi_val *mv,
1310 enum isl_dim_type type, unsigned pos, const char *s);
1312 #include <isl/aff.h>
1313 __isl_give isl_aff *isl_aff_set_dim_id(
1314 __isl_take isl_aff *aff, enum isl_dim_type type,
1315 unsigned pos, __isl_take isl_id *id);
1316 __isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
1317 __isl_take isl_multi_aff *maff,
1318 enum isl_dim_type type, unsigned pos,
1319 __isl_take isl_id *id);
1320 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
1321 __isl_take isl_pw_aff *pma,
1322 enum isl_dim_type type, unsigned pos,
1323 __isl_take isl_id *id);
1324 __isl_give isl_multi_pw_aff *
1325 isl_multi_pw_aff_set_dim_id(
1326 __isl_take isl_multi_pw_aff *mpa,
1327 enum isl_dim_type type, unsigned pos,
1328 __isl_take isl_id *id);
1329 __isl_give isl_multi_union_pw_aff *
1330 isl_multi_union_pw_aff_set_dim_id(
1331 __isl_take isl_multi_union_pw_aff *mupa,
1332 enum isl_dim_type type, unsigned pos,
1333 __isl_take isl_id *id);
1334 __isl_give isl_id *isl_multi_aff_get_dim_id(
1335 __isl_keep isl_multi_aff *ma,
1336 enum isl_dim_type type, unsigned pos);
1337 isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
1338 enum isl_dim_type type, unsigned pos);
1339 __isl_give isl_id *isl_pw_aff_get_dim_id(
1340 __isl_keep isl_pw_aff *pa,
1341 enum isl_dim_type type, unsigned pos);
1342 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
1343 __isl_keep isl_pw_multi_aff *pma,
1344 enum isl_dim_type type, unsigned pos);
1345 __isl_give isl_id *isl_multi_pw_aff_get_dim_id(
1346 __isl_keep isl_multi_pw_aff *mpa,
1347 enum isl_dim_type type, unsigned pos);
1348 __isl_give isl_id *isl_multi_union_pw_aff_get_dim_id(
1349 __isl_keep isl_multi_union_pw_aff *mupa,
1350 enum isl_dim_type type, unsigned pos);
1351 __isl_give isl_aff *isl_aff_set_dim_name(
1352 __isl_take isl_aff *aff, enum isl_dim_type type,
1353 unsigned pos, const char *s);
1354 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
1355 __isl_take isl_multi_aff *maff,
1356 enum isl_dim_type type, unsigned pos, const char *s);
1357 __isl_give isl_multi_pw_aff *
1358 isl_multi_pw_aff_set_dim_name(
1359 __isl_take isl_multi_pw_aff *mpa,
1360 enum isl_dim_type type, unsigned pos, const char *s);
1361 __isl_give isl_union_pw_aff *
1362 isl_union_pw_aff_set_dim_name(
1363 __isl_take isl_union_pw_aff *upa,
1364 enum isl_dim_type type, unsigned pos,
1366 __isl_give isl_union_pw_multi_aff *
1367 isl_union_pw_multi_aff_set_dim_name(
1368 __isl_take isl_union_pw_multi_aff *upma,
1369 enum isl_dim_type type, unsigned pos,
1371 __isl_give isl_multi_union_pw_aff *
1372 isl_multi_union_pw_aff_set_dim_name(
1373 __isl_take isl_multi_union_pw_aff *mupa,
1374 enum isl_dim_type type, unsigned pos,
1375 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
1376 enum isl_dim_type type, unsigned pos);
1377 const char *isl_pw_aff_get_dim_name(
1378 __isl_keep isl_pw_aff *pa,
1379 enum isl_dim_type type, unsigned pos);
1380 const char *isl_pw_multi_aff_get_dim_name(
1381 __isl_keep isl_pw_multi_aff *pma,
1382 enum isl_dim_type type, unsigned pos);
1384 #include <isl/polynomial.h>
1385 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1386 __isl_take isl_qpolynomial *qp,
1387 enum isl_dim_type type, unsigned pos,
1389 __isl_give isl_pw_qpolynomial *
1390 isl_pw_qpolynomial_set_dim_name(
1391 __isl_take isl_pw_qpolynomial *pwqp,
1392 enum isl_dim_type type, unsigned pos,
1394 __isl_give isl_pw_qpolynomial_fold *
1395 isl_pw_qpolynomial_fold_set_dim_name(
1396 __isl_take isl_pw_qpolynomial_fold *pwf,
1397 enum isl_dim_type type, unsigned pos,
1399 __isl_give isl_union_pw_qpolynomial *
1400 isl_union_pw_qpolynomial_set_dim_name(
1401 __isl_take isl_union_pw_qpolynomial *upwqp,
1402 enum isl_dim_type type, unsigned pos,
1404 __isl_give isl_union_pw_qpolynomial_fold *
1405 isl_union_pw_qpolynomial_fold_set_dim_name(
1406 __isl_take isl_union_pw_qpolynomial_fold *upwf,
1407 enum isl_dim_type type, unsigned pos,
1410 Note that C<isl_space_get_name> returns a pointer to some internal
1411 data structure, so the result can only be used while the
1412 corresponding C<isl_space> is alive.
1413 Also note that every function that operates on two sets or relations
1414 requires that both arguments have the same parameters. This also
1415 means that if one of the arguments has named parameters, then the
1416 other needs to have named parameters too and the names need to match.
1417 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
1418 arguments may have different parameters (as long as they are named),
1419 in which case the result will have as parameters the union of the parameters of
1422 Given the identifier or name of a dimension (typically a parameter),
1423 its position can be obtained from the following functions.
1425 #include <isl/space.h>
1426 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
1427 enum isl_dim_type type, __isl_keep isl_id *id);
1428 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
1429 enum isl_dim_type type, const char *name);
1431 #include <isl/local_space.h>
1432 int isl_local_space_find_dim_by_name(
1433 __isl_keep isl_local_space *ls,
1434 enum isl_dim_type type, const char *name);
1436 #include <isl/val.h>
1437 int isl_multi_val_find_dim_by_id(
1438 __isl_keep isl_multi_val *mv,
1439 enum isl_dim_type type, __isl_keep isl_id *id);
1440 int isl_multi_val_find_dim_by_name(
1441 __isl_keep isl_multi_val *mv,
1442 enum isl_dim_type type, const char *name);
1444 #include <isl/set.h>
1445 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1446 enum isl_dim_type type, __isl_keep isl_id *id);
1447 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1448 enum isl_dim_type type, const char *name);
1450 #include <isl/map.h>
1451 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1452 enum isl_dim_type type, __isl_keep isl_id *id);
1453 int isl_basic_map_find_dim_by_name(
1454 __isl_keep isl_basic_map *bmap,
1455 enum isl_dim_type type, const char *name);
1456 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1457 enum isl_dim_type type, const char *name);
1458 int isl_union_map_find_dim_by_name(
1459 __isl_keep isl_union_map *umap,
1460 enum isl_dim_type type, const char *name);
1462 #include <isl/aff.h>
1463 int isl_multi_aff_find_dim_by_id(
1464 __isl_keep isl_multi_aff *ma,
1465 enum isl_dim_type type, __isl_keep isl_id *id);
1466 int isl_multi_pw_aff_find_dim_by_id(
1467 __isl_keep isl_multi_pw_aff *mpa,
1468 enum isl_dim_type type, __isl_keep isl_id *id);
1469 int isl_multi_union_pw_aff_find_dim_by_id(
1470 __isl_keep isl_union_multi_pw_aff *mupa,
1471 enum isl_dim_type type, __isl_keep isl_id *id);
1472 int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
1473 enum isl_dim_type type, const char *name);
1474 int isl_multi_aff_find_dim_by_name(
1475 __isl_keep isl_multi_aff *ma,
1476 enum isl_dim_type type, const char *name);
1477 int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
1478 enum isl_dim_type type, const char *name);
1479 int isl_multi_pw_aff_find_dim_by_name(
1480 __isl_keep isl_multi_pw_aff *mpa,
1481 enum isl_dim_type type, const char *name);
1482 int isl_pw_multi_aff_find_dim_by_name(
1483 __isl_keep isl_pw_multi_aff *pma,
1484 enum isl_dim_type type, const char *name);
1485 int isl_union_pw_aff_find_dim_by_name(
1486 __isl_keep isl_union_pw_aff *upa,
1487 enum isl_dim_type type, const char *name);
1488 int isl_union_pw_multi_aff_find_dim_by_name(
1489 __isl_keep isl_union_pw_multi_aff *upma,
1490 enum isl_dim_type type, const char *name);
1491 int isl_multi_union_pw_aff_find_dim_by_name(
1492 __isl_keep isl_multi_union_pw_aff *mupa,
1493 enum isl_dim_type type, const char *name);
1495 #include <isl/polynomial.h>
1496 int isl_pw_qpolynomial_find_dim_by_name(
1497 __isl_keep isl_pw_qpolynomial *pwqp,
1498 enum isl_dim_type type, const char *name);
1499 int isl_pw_qpolynomial_fold_find_dim_by_name(
1500 __isl_keep isl_pw_qpolynomial_fold *pwf,
1501 enum isl_dim_type type, const char *name);
1502 int isl_union_pw_qpolynomial_find_dim_by_name(
1503 __isl_keep isl_union_pw_qpolynomial *upwqp,
1504 enum isl_dim_type type, const char *name);
1505 int isl_union_pw_qpolynomial_fold_find_dim_by_name(
1506 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
1507 enum isl_dim_type type, const char *name);
1509 The identifiers or names of entire spaces may be set or read off
1510 using the following functions.
1512 #include <isl/space.h>
1513 __isl_give isl_space *isl_space_set_tuple_id(
1514 __isl_take isl_space *space,
1515 enum isl_dim_type type, __isl_take isl_id *id);
1516 __isl_give isl_space *isl_space_reset_tuple_id(
1517 __isl_take isl_space *space, enum isl_dim_type type);
1518 isl_bool isl_space_has_tuple_id(
1519 __isl_keep isl_space *space,
1520 enum isl_dim_type type);
1521 __isl_give isl_id *isl_space_get_tuple_id(
1522 __isl_keep isl_space *space, enum isl_dim_type type);
1523 __isl_give isl_space *isl_space_set_tuple_name(
1524 __isl_take isl_space *space,
1525 enum isl_dim_type type, const char *s);
1526 isl_bool isl_space_has_tuple_name(
1527 __isl_keep isl_space *space,
1528 enum isl_dim_type type);
1529 __isl_keep const char *isl_space_get_tuple_name(
1530 __isl_keep isl_space *space,
1531 enum isl_dim_type type);
1533 #include <isl/local_space.h>
1534 __isl_give isl_local_space *isl_local_space_set_tuple_id(
1535 __isl_take isl_local_space *ls,
1536 enum isl_dim_type type, __isl_take isl_id *id);
1538 #include <isl/set.h>
1539 __isl_give isl_basic_set *isl_basic_set_set_tuple_id(
1540 __isl_take isl_basic_set *bset,
1541 __isl_take isl_id *id);
1542 __isl_give isl_set *isl_set_set_tuple_id(
1543 __isl_take isl_set *set, __isl_take isl_id *id);
1544 __isl_give isl_set *isl_set_reset_tuple_id(
1545 __isl_take isl_set *set);
1546 isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set);
1547 __isl_give isl_id *isl_set_get_tuple_id(
1548 __isl_keep isl_set *set);
1549 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1550 __isl_take isl_basic_set *set, const char *s);
1551 __isl_give isl_set *isl_set_set_tuple_name(
1552 __isl_take isl_set *set, const char *s);
1553 const char *isl_basic_set_get_tuple_name(
1554 __isl_keep isl_basic_set *bset);
1555 isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set);
1556 const char *isl_set_get_tuple_name(
1557 __isl_keep isl_set *set);
1559 #include <isl/map.h>
1560 __isl_give isl_basic_map *isl_basic_map_set_tuple_id(
1561 __isl_take isl_basic_map *bmap,
1562 enum isl_dim_type type, __isl_take isl_id *id);
1563 __isl_give isl_map *isl_map_set_tuple_id(
1564 __isl_take isl_map *map, enum isl_dim_type type,
1565 __isl_take isl_id *id);
1566 __isl_give isl_map *isl_map_reset_tuple_id(
1567 __isl_take isl_map *map, enum isl_dim_type type);
1568 isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map,
1569 enum isl_dim_type type);
1570 __isl_give isl_id *isl_map_get_tuple_id(
1571 __isl_keep isl_map *map, enum isl_dim_type type);
1572 __isl_give isl_map *isl_map_set_tuple_name(
1573 __isl_take isl_map *map,
1574 enum isl_dim_type type, const char *s);
1575 const char *isl_basic_map_get_tuple_name(
1576 __isl_keep isl_basic_map *bmap,
1577 enum isl_dim_type type);
1578 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1579 __isl_take isl_basic_map *bmap,
1580 enum isl_dim_type type, const char *s);
1581 isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map,
1582 enum isl_dim_type type);
1583 const char *isl_map_get_tuple_name(
1584 __isl_keep isl_map *map,
1585 enum isl_dim_type type);
1587 #include <isl/val.h>
1588 __isl_give isl_multi_val *isl_multi_val_set_tuple_id(
1589 __isl_take isl_multi_val *mv,
1590 enum isl_dim_type type, __isl_take isl_id *id);
1591 __isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
1592 __isl_take isl_multi_val *mv,
1593 enum isl_dim_type type);
1594 isl_bool isl_multi_val_has_tuple_id(
1595 __isl_keep isl_multi_val *mv,
1596 enum isl_dim_type type);
1597 __isl_give isl_id *isl_multi_val_get_tuple_id(
1598 __isl_keep isl_multi_val *mv,
1599 enum isl_dim_type type);
1600 __isl_give isl_multi_val *isl_multi_val_set_tuple_name(
1601 __isl_take isl_multi_val *mv,
1602 enum isl_dim_type type, const char *s);
1603 const char *isl_multi_val_get_tuple_name(
1604 __isl_keep isl_multi_val *mv,
1605 enum isl_dim_type type);
1607 #include <isl/aff.h>
1608 __isl_give isl_aff *isl_aff_set_tuple_id(
1609 __isl_take isl_aff *aff,
1610 enum isl_dim_type type, __isl_take isl_id *id);
1611 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
1612 __isl_take isl_multi_aff *maff,
1613 enum isl_dim_type type, __isl_take isl_id *id);
1614 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
1615 __isl_take isl_pw_aff *pwaff,
1616 enum isl_dim_type type, __isl_take isl_id *id);
1617 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
1618 __isl_take isl_pw_multi_aff *pma,
1619 enum isl_dim_type type, __isl_take isl_id *id);
1620 __isl_give isl_multi_union_pw_aff *
1621 isl_multi_union_pw_aff_set_tuple_id(
1622 __isl_take isl_multi_union_pw_aff *mupa,
1623 enum isl_dim_type type, __isl_take isl_id *id);
1624 __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
1625 __isl_take isl_multi_aff *ma,
1626 enum isl_dim_type type);
1627 __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
1628 __isl_take isl_pw_aff *pa,
1629 enum isl_dim_type type);
1630 __isl_give isl_multi_pw_aff *
1631 isl_multi_pw_aff_reset_tuple_id(
1632 __isl_take isl_multi_pw_aff *mpa,
1633 enum isl_dim_type type);
1634 __isl_give isl_pw_multi_aff *
1635 isl_pw_multi_aff_reset_tuple_id(
1636 __isl_take isl_pw_multi_aff *pma,
1637 enum isl_dim_type type);
1638 __isl_give isl_multi_union_pw_aff *
1639 isl_multi_union_pw_aff_reset_tuple_id(
1640 __isl_take isl_multi_union_pw_aff *mupa,
1641 enum isl_dim_type type);
1642 isl_bool isl_multi_aff_has_tuple_id(
1643 __isl_keep isl_multi_aff *ma,
1644 enum isl_dim_type type);
1645 __isl_give isl_id *isl_multi_aff_get_tuple_id(
1646 __isl_keep isl_multi_aff *ma,
1647 enum isl_dim_type type);
1648 isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
1649 enum isl_dim_type type);
1650 __isl_give isl_id *isl_pw_aff_get_tuple_id(
1651 __isl_keep isl_pw_aff *pa,
1652 enum isl_dim_type type);
1653 isl_bool isl_pw_multi_aff_has_tuple_id(
1654 __isl_keep isl_pw_multi_aff *pma,
1655 enum isl_dim_type type);
1656 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
1657 __isl_keep isl_pw_multi_aff *pma,
1658 enum isl_dim_type type);
1659 isl_bool isl_multi_pw_aff_has_tuple_id(
1660 __isl_keep isl_multi_pw_aff *mpa,
1661 enum isl_dim_type type);
1662 __isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
1663 __isl_keep isl_multi_pw_aff *mpa,
1664 enum isl_dim_type type);
1665 isl_bool isl_multi_union_pw_aff_has_tuple_id(
1666 __isl_keep isl_multi_union_pw_aff *mupa,
1667 enum isl_dim_type type);
1668 __isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id(
1669 __isl_keep isl_multi_union_pw_aff *mupa,
1670 enum isl_dim_type type);
1671 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
1672 __isl_take isl_multi_aff *maff,
1673 enum isl_dim_type type, const char *s);
1674 __isl_give isl_multi_pw_aff *
1675 isl_multi_pw_aff_set_tuple_name(
1676 __isl_take isl_multi_pw_aff *mpa,
1677 enum isl_dim_type type, const char *s);
1678 __isl_give isl_multi_union_pw_aff *
1679 isl_multi_union_pw_aff_set_tuple_name(
1680 __isl_take isl_multi_union_pw_aff *mupa,
1681 enum isl_dim_type type, const char *s);
1682 const char *isl_multi_aff_get_tuple_name(
1683 __isl_keep isl_multi_aff *multi,
1684 enum isl_dim_type type);
1685 isl_bool isl_pw_multi_aff_has_tuple_name(
1686 __isl_keep isl_pw_multi_aff *pma,
1687 enum isl_dim_type type);
1688 const char *isl_pw_multi_aff_get_tuple_name(
1689 __isl_keep isl_pw_multi_aff *pma,
1690 enum isl_dim_type type);
1691 const char *isl_multi_union_pw_aff_get_tuple_name(
1692 __isl_keep isl_multi_union_pw_aff *mupa,
1693 enum isl_dim_type type);
1695 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
1696 or C<isl_dim_set>. As with C<isl_space_get_name>,
1697 the C<isl_space_get_tuple_name> function returns a pointer to some internal
1699 Binary operations require the corresponding spaces of their arguments
1700 to have the same name.
1702 To keep the names of all parameters and tuples, but reset the user pointers
1703 of all the corresponding identifiers, use the following function.
1705 #include <isl/space.h>
1706 __isl_give isl_space *isl_space_reset_user(
1707 __isl_take isl_space *space);
1709 #include <isl/set.h>
1710 __isl_give isl_set *isl_set_reset_user(
1711 __isl_take isl_set *set);
1713 #include <isl/map.h>
1714 __isl_give isl_map *isl_map_reset_user(
1715 __isl_take isl_map *map);
1717 #include <isl/union_set.h>
1718 __isl_give isl_union_set *isl_union_set_reset_user(
1719 __isl_take isl_union_set *uset);
1721 #include <isl/union_map.h>
1722 __isl_give isl_union_map *isl_union_map_reset_user(
1723 __isl_take isl_union_map *umap);
1725 #include <isl/val.h>
1726 __isl_give isl_multi_val *isl_multi_val_reset_user(
1727 __isl_take isl_multi_val *mv);
1729 #include <isl/aff.h>
1730 __isl_give isl_multi_aff *isl_multi_aff_reset_user(
1731 __isl_take isl_multi_aff *ma);
1732 __isl_give isl_pw_aff *isl_pw_aff_reset_user(
1733 __isl_take isl_pw_aff *pa);
1734 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
1735 __isl_take isl_multi_pw_aff *mpa);
1736 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user(
1737 __isl_take isl_pw_multi_aff *pma);
1738 __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user(
1739 __isl_take isl_union_pw_aff *upa);
1740 __isl_give isl_multi_union_pw_aff *
1741 isl_multi_union_pw_aff_reset_user(
1742 __isl_take isl_multi_union_pw_aff *mupa);
1743 __isl_give isl_union_pw_multi_aff *
1744 isl_union_pw_multi_aff_reset_user(
1745 __isl_take isl_union_pw_multi_aff *upma);
1747 #include <isl/polynomial.h>
1748 __isl_give isl_pw_qpolynomial *
1749 isl_pw_qpolynomial_reset_user(
1750 __isl_take isl_pw_qpolynomial *pwqp);
1751 __isl_give isl_union_pw_qpolynomial *
1752 isl_union_pw_qpolynomial_reset_user(
1753 __isl_take isl_union_pw_qpolynomial *upwqp);
1754 __isl_give isl_pw_qpolynomial_fold *
1755 isl_pw_qpolynomial_fold_reset_user(
1756 __isl_take isl_pw_qpolynomial_fold *pwf);
1757 __isl_give isl_union_pw_qpolynomial_fold *
1758 isl_union_pw_qpolynomial_fold_reset_user(
1759 __isl_take isl_union_pw_qpolynomial_fold *upwf);
1761 Spaces can be nested. In particular, the domain of a set or
1762 the domain or range of a relation can be a nested relation.
1763 This process is also called I<wrapping>.
1764 The functions for detecting, constructing and deconstructing
1765 such nested spaces can be found in the wrapping properties
1766 of L</"Unary Properties">, the wrapping operations
1767 of L</"Unary Operations"> and the Cartesian product operations
1768 of L</"Basic Operations">.
1770 Spaces can be created from other spaces
1771 using the functions described in L</"Unary Operations">
1772 and L</"Binary Operations">.
1776 A local space is essentially a space with
1777 zero or more existentially quantified variables.
1778 The local space of various objects can be obtained
1779 using the following functions.
1781 #include <isl/constraint.h>
1782 __isl_give isl_local_space *isl_constraint_get_local_space(
1783 __isl_keep isl_constraint *constraint);
1785 #include <isl/set.h>
1786 __isl_give isl_local_space *isl_basic_set_get_local_space(
1787 __isl_keep isl_basic_set *bset);
1789 #include <isl/map.h>
1790 __isl_give isl_local_space *isl_basic_map_get_local_space(
1791 __isl_keep isl_basic_map *bmap);
1793 #include <isl/aff.h>
1794 __isl_give isl_local_space *isl_aff_get_domain_local_space(
1795 __isl_keep isl_aff *aff);
1796 __isl_give isl_local_space *isl_aff_get_local_space(
1797 __isl_keep isl_aff *aff);
1799 A new local space can be created from a space using
1801 #include <isl/local_space.h>
1802 __isl_give isl_local_space *isl_local_space_from_space(
1803 __isl_take isl_space *space);
1805 They can be inspected, modified, copied and freed using the following functions.
1807 #include <isl/local_space.h>
1808 isl_bool isl_local_space_is_params(
1809 __isl_keep isl_local_space *ls);
1810 isl_bool isl_local_space_is_set(
1811 __isl_keep isl_local_space *ls);
1812 __isl_give isl_space *isl_local_space_get_space(
1813 __isl_keep isl_local_space *ls);
1814 __isl_give isl_aff *isl_local_space_get_div(
1815 __isl_keep isl_local_space *ls, int pos);
1816 __isl_give isl_local_space *isl_local_space_copy(
1817 __isl_keep isl_local_space *ls);
1818 __isl_null isl_local_space *isl_local_space_free(
1819 __isl_take isl_local_space *ls);
1821 Note that C<isl_local_space_get_div> can only be used on local spaces
1824 Two local spaces can be compared using
1826 isl_bool isl_local_space_is_equal(
1827 __isl_keep isl_local_space *ls1,
1828 __isl_keep isl_local_space *ls2);
1830 Local spaces can be created from other local spaces
1831 using the functions described in L</"Unary Operations">
1832 and L</"Binary Operations">.
1834 =head2 Creating New Sets and Relations
1836 C<isl> has functions for creating some standard sets and relations.
1840 =item * Empty sets and relations
1842 __isl_give isl_basic_set *isl_basic_set_empty(
1843 __isl_take isl_space *space);
1844 __isl_give isl_basic_map *isl_basic_map_empty(
1845 __isl_take isl_space *space);
1846 __isl_give isl_set *isl_set_empty(
1847 __isl_take isl_space *space);
1848 __isl_give isl_map *isl_map_empty(
1849 __isl_take isl_space *space);
1850 __isl_give isl_union_set *isl_union_set_empty(
1851 __isl_take isl_space *space);
1852 __isl_give isl_union_map *isl_union_map_empty(
1853 __isl_take isl_space *space);
1855 For C<isl_union_set>s and C<isl_union_map>s, the space
1856 is only used to specify the parameters.
1858 =item * Universe sets and relations
1860 __isl_give isl_basic_set *isl_basic_set_universe(
1861 __isl_take isl_space *space);
1862 __isl_give isl_basic_map *isl_basic_map_universe(
1863 __isl_take isl_space *space);
1864 __isl_give isl_set *isl_set_universe(
1865 __isl_take isl_space *space);
1866 __isl_give isl_map *isl_map_universe(
1867 __isl_take isl_space *space);
1868 __isl_give isl_union_set *isl_union_set_universe(
1869 __isl_take isl_union_set *uset);
1870 __isl_give isl_union_map *isl_union_map_universe(
1871 __isl_take isl_union_map *umap);
1873 The sets and relations constructed by the functions above
1874 contain all integer values, while those constructed by the
1875 functions below only contain non-negative values.
1877 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1878 __isl_take isl_space *space);
1879 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1880 __isl_take isl_space *space);
1881 __isl_give isl_set *isl_set_nat_universe(
1882 __isl_take isl_space *space);
1883 __isl_give isl_map *isl_map_nat_universe(
1884 __isl_take isl_space *space);
1886 =item * Identity relations
1888 __isl_give isl_basic_map *isl_basic_map_identity(
1889 __isl_take isl_space *space);
1890 __isl_give isl_map *isl_map_identity(
1891 __isl_take isl_space *space);
1893 The number of input and output dimensions in C<space> needs
1896 =item * Lexicographic order
1898 __isl_give isl_map *isl_map_lex_lt(
1899 __isl_take isl_space *set_space);
1900 __isl_give isl_map *isl_map_lex_le(
1901 __isl_take isl_space *set_space);
1902 __isl_give isl_map *isl_map_lex_gt(
1903 __isl_take isl_space *set_space);
1904 __isl_give isl_map *isl_map_lex_ge(
1905 __isl_take isl_space *set_space);
1906 __isl_give isl_map *isl_map_lex_lt_first(
1907 __isl_take isl_space *space, unsigned n);
1908 __isl_give isl_map *isl_map_lex_le_first(
1909 __isl_take isl_space *space, unsigned n);
1910 __isl_give isl_map *isl_map_lex_gt_first(
1911 __isl_take isl_space *space, unsigned n);
1912 __isl_give isl_map *isl_map_lex_ge_first(
1913 __isl_take isl_space *space, unsigned n);
1915 The first four functions take a space for a B<set>
1916 and return relations that express that the elements in the domain
1917 are lexicographically less
1918 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1919 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1920 than the elements in the range.
1921 The last four functions take a space for a map
1922 and return relations that express that the first C<n> dimensions
1923 in the domain are lexicographically less
1924 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1925 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1926 than the first C<n> dimensions in the range.
1930 A basic set or relation can be converted to a set or relation
1931 using the following functions.
1933 __isl_give isl_set *isl_set_from_basic_set(
1934 __isl_take isl_basic_set *bset);
1935 __isl_give isl_map *isl_map_from_basic_map(
1936 __isl_take isl_basic_map *bmap);
1938 Sets and relations can be converted to union sets and relations
1939 using the following functions.
1941 __isl_give isl_union_set *isl_union_set_from_basic_set(
1942 __isl_take isl_basic_set *bset);
1943 __isl_give isl_union_map *isl_union_map_from_basic_map(
1944 __isl_take isl_basic_map *bmap);
1945 __isl_give isl_union_set *isl_union_set_from_set(
1946 __isl_take isl_set *set);
1947 __isl_give isl_union_map *isl_union_map_from_map(
1948 __isl_take isl_map *map);
1950 The inverse conversions below can only be used if the input
1951 union set or relation is known to contain elements in exactly one
1954 __isl_give isl_set *isl_set_from_union_set(
1955 __isl_take isl_union_set *uset);
1956 __isl_give isl_map *isl_map_from_union_map(
1957 __isl_take isl_union_map *umap);
1959 Sets and relations can be copied and freed again using the following
1962 __isl_give isl_basic_set *isl_basic_set_copy(
1963 __isl_keep isl_basic_set *bset);
1964 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1965 __isl_give isl_union_set *isl_union_set_copy(
1966 __isl_keep isl_union_set *uset);
1967 __isl_give isl_basic_map *isl_basic_map_copy(
1968 __isl_keep isl_basic_map *bmap);
1969 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1970 __isl_give isl_union_map *isl_union_map_copy(
1971 __isl_keep isl_union_map *umap);
1972 __isl_null isl_basic_set *isl_basic_set_free(
1973 __isl_take isl_basic_set *bset);
1974 __isl_null isl_set *isl_set_free(__isl_take isl_set *set);
1975 __isl_null isl_union_set *isl_union_set_free(
1976 __isl_take isl_union_set *uset);
1977 __isl_null isl_basic_map *isl_basic_map_free(
1978 __isl_take isl_basic_map *bmap);
1979 __isl_null isl_map *isl_map_free(__isl_take isl_map *map);
1980 __isl_null isl_union_map *isl_union_map_free(
1981 __isl_take isl_union_map *umap);
1983 Other sets and relations can be constructed by starting
1984 from a universe set or relation, adding equality and/or
1985 inequality constraints and then projecting out the
1986 existentially quantified variables, if any.
1987 Constraints can be constructed, manipulated and
1988 added to (or removed from) (basic) sets and relations
1989 using the following functions.
1991 #include <isl/constraint.h>
1992 __isl_give isl_constraint *isl_constraint_alloc_equality(
1993 __isl_take isl_local_space *ls);
1994 __isl_give isl_constraint *isl_constraint_alloc_inequality(
1995 __isl_take isl_local_space *ls);
1996 __isl_give isl_constraint *isl_constraint_set_constant_si(
1997 __isl_take isl_constraint *constraint, int v);
1998 __isl_give isl_constraint *isl_constraint_set_constant_val(
1999 __isl_take isl_constraint *constraint,
2000 __isl_take isl_val *v);
2001 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
2002 __isl_take isl_constraint *constraint,
2003 enum isl_dim_type type, int pos, int v);
2004 __isl_give isl_constraint *
2005 isl_constraint_set_coefficient_val(
2006 __isl_take isl_constraint *constraint,
2007 enum isl_dim_type type, int pos,
2008 __isl_take isl_val *v);
2009 __isl_give isl_basic_map *isl_basic_map_add_constraint(
2010 __isl_take isl_basic_map *bmap,
2011 __isl_take isl_constraint *constraint);
2012 __isl_give isl_basic_set *isl_basic_set_add_constraint(
2013 __isl_take isl_basic_set *bset,
2014 __isl_take isl_constraint *constraint);
2015 __isl_give isl_map *isl_map_add_constraint(
2016 __isl_take isl_map *map,
2017 __isl_take isl_constraint *constraint);
2018 __isl_give isl_set *isl_set_add_constraint(
2019 __isl_take isl_set *set,
2020 __isl_take isl_constraint *constraint);
2022 For example, to create a set containing the even integers
2023 between 10 and 42, you would use the following code.
2026 isl_local_space *ls;
2028 isl_basic_set *bset;
2030 space = isl_space_set_alloc(ctx, 0, 2);
2031 bset = isl_basic_set_universe(isl_space_copy(space));
2032 ls = isl_local_space_from_space(space);
2034 c = isl_constraint_alloc_equality(isl_local_space_copy(ls));
2035 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2036 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
2037 bset = isl_basic_set_add_constraint(bset, c);
2039 c = isl_constraint_alloc_inequality(isl_local_space_copy(ls));
2040 c = isl_constraint_set_constant_si(c, -10);
2041 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
2042 bset = isl_basic_set_add_constraint(bset, c);
2044 c = isl_constraint_alloc_inequality(ls);
2045 c = isl_constraint_set_constant_si(c, 42);
2046 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
2047 bset = isl_basic_set_add_constraint(bset, c);
2049 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
2053 isl_basic_set *bset;
2054 bset = isl_basic_set_read_from_str(ctx,
2055 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
2057 A basic set or relation can also be constructed from two matrices
2058 describing the equalities and the inequalities.
2060 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
2061 __isl_take isl_space *space,
2062 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2063 enum isl_dim_type c1,
2064 enum isl_dim_type c2, enum isl_dim_type c3,
2065 enum isl_dim_type c4);
2066 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
2067 __isl_take isl_space *space,
2068 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
2069 enum isl_dim_type c1,
2070 enum isl_dim_type c2, enum isl_dim_type c3,
2071 enum isl_dim_type c4, enum isl_dim_type c5);
2073 The C<isl_dim_type> arguments indicate the order in which
2074 different kinds of variables appear in the input matrices
2075 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
2076 C<isl_dim_set> and C<isl_dim_div> for sets and
2077 of C<isl_dim_cst>, C<isl_dim_param>,
2078 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
2080 A (basic or union) set or relation can also be constructed from a
2081 (union) (piecewise) (multiple) affine expression
2082 or a list of affine expressions
2083 (See L</"Functions">), provided these affine expressions do not
2086 __isl_give isl_basic_map *isl_basic_map_from_aff(
2087 __isl_take isl_aff *aff);
2088 __isl_give isl_map *isl_map_from_aff(
2089 __isl_take isl_aff *aff);
2090 __isl_give isl_set *isl_set_from_pw_aff(
2091 __isl_take isl_pw_aff *pwaff);
2092 __isl_give isl_map *isl_map_from_pw_aff(
2093 __isl_take isl_pw_aff *pwaff);
2094 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
2095 __isl_take isl_space *domain_space,
2096 __isl_take isl_aff_list *list);
2097 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
2098 __isl_take isl_multi_aff *maff)
2099 __isl_give isl_map *isl_map_from_multi_aff(
2100 __isl_take isl_multi_aff *maff)
2101 __isl_give isl_set *isl_set_from_pw_multi_aff(
2102 __isl_take isl_pw_multi_aff *pma);
2103 __isl_give isl_map *isl_map_from_pw_multi_aff(
2104 __isl_take isl_pw_multi_aff *pma);
2105 __isl_give isl_set *isl_set_from_multi_pw_aff(
2106 __isl_take isl_multi_pw_aff *mpa);
2107 __isl_give isl_map *isl_map_from_multi_pw_aff(
2108 __isl_take isl_multi_pw_aff *mpa);
2109 __isl_give isl_union_map *isl_union_map_from_union_pw_aff(
2110 __isl_take isl_union_pw_aff *upa);
2111 __isl_give isl_union_map *
2112 isl_union_map_from_union_pw_multi_aff(
2113 __isl_take isl_union_pw_multi_aff *upma);
2114 __isl_give isl_union_map *
2115 isl_union_map_from_multi_union_pw_aff(
2116 __isl_take isl_multi_union_pw_aff *mupa);
2118 The C<domain_space> argument describes the domain of the resulting
2119 basic relation. It is required because the C<list> may consist
2120 of zero affine expressions.
2121 The C<mupa> passed to C<isl_union_map_from_multi_union_pw_aff>
2122 is not allowed to be zero-dimensional. The domain of the result
2123 is the shared domain of the union piecewise affine elements.
2125 =head2 Inspecting Sets and Relations
2127 Usually, the user should not have to care about the actual constraints
2128 of the sets and maps, but should instead apply the abstract operations
2129 explained in the following sections.
2130 Occasionally, however, it may be required to inspect the individual
2131 coefficients of the constraints. This section explains how to do so.
2132 In these cases, it may also be useful to have C<isl> compute
2133 an explicit representation of the existentially quantified variables.
2135 __isl_give isl_set *isl_set_compute_divs(
2136 __isl_take isl_set *set);
2137 __isl_give isl_map *isl_map_compute_divs(
2138 __isl_take isl_map *map);
2139 __isl_give isl_union_set *isl_union_set_compute_divs(
2140 __isl_take isl_union_set *uset);
2141 __isl_give isl_union_map *isl_union_map_compute_divs(
2142 __isl_take isl_union_map *umap);
2144 This explicit representation defines the existentially quantified
2145 variables as integer divisions of the other variables, possibly
2146 including earlier existentially quantified variables.
2147 An explicitly represented existentially quantified variable therefore
2148 has a unique value when the values of the other variables are known.
2150 Alternatively, the existentially quantified variables can be removed
2151 using the following functions, which compute an overapproximation.
2153 #include <isl/set.h>
2154 __isl_give isl_basic_set *isl_basic_set_remove_divs(
2155 __isl_take isl_basic_set *bset);
2156 __isl_give isl_set *isl_set_remove_divs(
2157 __isl_take isl_set *set);
2159 #include <isl/map.h>
2160 __isl_give isl_basic_map *isl_basic_map_remove_divs(
2161 __isl_take isl_basic_map *bmap);
2162 __isl_give isl_map *isl_map_remove_divs(
2163 __isl_take isl_map *map);
2165 #include <isl/union_set.h>
2166 __isl_give isl_union_set *isl_union_set_remove_divs(
2167 __isl_take isl_union_set *bset);
2169 #include <isl/union_map.h>
2170 __isl_give isl_union_map *isl_union_map_remove_divs(
2171 __isl_take isl_union_map *bmap);
2173 It is also possible to only remove those divs that are defined
2174 in terms of a given range of dimensions or only those for which
2175 no explicit representation is known.
2177 __isl_give isl_basic_set *
2178 isl_basic_set_remove_divs_involving_dims(
2179 __isl_take isl_basic_set *bset,
2180 enum isl_dim_type type,
2181 unsigned first, unsigned n);
2182 __isl_give isl_basic_map *
2183 isl_basic_map_remove_divs_involving_dims(
2184 __isl_take isl_basic_map *bmap,
2185 enum isl_dim_type type,
2186 unsigned first, unsigned n);
2187 __isl_give isl_set *isl_set_remove_divs_involving_dims(
2188 __isl_take isl_set *set, enum isl_dim_type type,
2189 unsigned first, unsigned n);
2190 __isl_give isl_map *isl_map_remove_divs_involving_dims(
2191 __isl_take isl_map *map, enum isl_dim_type type,
2192 unsigned first, unsigned n);
2194 __isl_give isl_basic_set *
2195 isl_basic_set_remove_unknown_divs(
2196 __isl_take isl_basic_set *bset);
2197 __isl_give isl_set *isl_set_remove_unknown_divs(
2198 __isl_take isl_set *set);
2199 __isl_give isl_map *isl_map_remove_unknown_divs(
2200 __isl_take isl_map *map);
2202 To iterate over all the sets or maps in a union set or map, use
2204 #include <isl/union_set.h>
2205 isl_stat isl_union_set_foreach_set(
2206 __isl_keep isl_union_set *uset,
2207 isl_stat (*fn)(__isl_take isl_set *set, void *user),
2210 #include <isl/union_map.h>
2211 isl_stat isl_union_map_foreach_map(
2212 __isl_keep isl_union_map *umap,
2213 isl_stat (*fn)(__isl_take isl_map *map, void *user),
2215 isl_bool isl_union_map_every_map(
2216 __isl_keep isl_union_map *umap,
2217 isl_bool (*test)(__isl_keep isl_map *map,
2221 These functions call the callback function once for each
2222 (pair of) space(s) for which there are elements in the input.
2223 The argument to the callback contains all elements in the input
2224 with that (pair of) space(s).
2225 The C<isl_union_map_every_map> variant check whether each
2226 call to the callback returns true and stops checking as soon as one
2227 of these calls returns false.
2229 The number of sets or maps in a union set or map can be obtained
2232 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
2233 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
2235 To extract the set or map in a given space from a union, use
2237 __isl_give isl_set *isl_union_set_extract_set(
2238 __isl_keep isl_union_set *uset,
2239 __isl_take isl_space *space);
2240 __isl_give isl_map *isl_union_map_extract_map(
2241 __isl_keep isl_union_map *umap,
2242 __isl_take isl_space *space);
2244 To iterate over all the basic sets or maps in a set or map, use
2246 isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set,
2247 isl_stat (*fn)(__isl_take isl_basic_set *bset,
2250 isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map,
2251 isl_stat (*fn)(__isl_take isl_basic_map *bmap,
2255 The callback function C<fn> should return C<isl_stat_ok> if successful and
2256 C<isl_stat_error> if an error occurs. In the latter case, or if any other error
2257 occurs, the above functions will return C<isl_stat_error>.
2259 It should be noted that C<isl> does not guarantee that
2260 the basic sets or maps passed to C<fn> are disjoint.
2261 If this is required, then the user should call one of
2262 the following functions first.
2264 __isl_give isl_set *isl_set_make_disjoint(
2265 __isl_take isl_set *set);
2266 __isl_give isl_map *isl_map_make_disjoint(
2267 __isl_take isl_map *map);
2269 The number of basic sets in a set can be obtained
2270 or the number of basic maps in a map can be obtained
2273 #include <isl/set.h>
2274 int isl_set_n_basic_set(__isl_keep isl_set *set);
2276 #include <isl/map.h>
2277 int isl_map_n_basic_map(__isl_keep isl_map *map);
2279 It is also possible to obtain a list of basic sets from a set
2282 #include <isl/set.h>
2283 __isl_give isl_basic_set_list *isl_set_get_basic_set_list(
2284 __isl_keep isl_set *set);
2286 #include <isl/union_set.h>
2287 __isl_give isl_basic_set_list *
2288 isl_union_set_get_basic_set_list(
2289 __isl_keep isl_union_set *uset);
2291 The returned list can be manipulated using the functions in L<"Lists">.
2293 To iterate over the constraints of a basic set or map, use
2295 #include <isl/constraint.h>
2297 int isl_basic_set_n_constraint(
2298 __isl_keep isl_basic_set *bset);
2299 isl_stat isl_basic_set_foreach_constraint(
2300 __isl_keep isl_basic_set *bset,
2301 isl_stat (*fn)(__isl_take isl_constraint *c,
2304 int isl_basic_map_n_constraint(
2305 __isl_keep isl_basic_map *bmap);
2306 isl_stat isl_basic_map_foreach_constraint(
2307 __isl_keep isl_basic_map *bmap,
2308 isl_stat (*fn)(__isl_take isl_constraint *c,
2311 __isl_null isl_constraint *isl_constraint_free(
2312 __isl_take isl_constraint *c);
2314 Again, the callback function C<fn> should return C<isl_stat_ok>
2316 C<isl_stat_error> if an error occurs. In the latter case, or if any other error
2317 occurs, the above functions will return C<isl_stat_error>.
2318 The constraint C<c> represents either an equality or an inequality.
2319 Use the following function to find out whether a constraint
2320 represents an equality. If not, it represents an inequality.
2322 isl_bool isl_constraint_is_equality(
2323 __isl_keep isl_constraint *constraint);
2325 It is also possible to obtain a list of constraints from a basic
2328 #include <isl/constraint.h>
2329 __isl_give isl_constraint_list *
2330 isl_basic_map_get_constraint_list(
2331 __isl_keep isl_basic_map *bmap);
2332 __isl_give isl_constraint_list *
2333 isl_basic_set_get_constraint_list(
2334 __isl_keep isl_basic_set *bset);
2336 These functions require that all existentially quantified variables
2337 have an explicit representation.
2338 The returned list can be manipulated using the functions in L<"Lists">.
2340 The coefficients of the constraints can be inspected using
2341 the following functions.
2343 isl_bool isl_constraint_is_lower_bound(
2344 __isl_keep isl_constraint *constraint,
2345 enum isl_dim_type type, unsigned pos);
2346 isl_bool isl_constraint_is_upper_bound(
2347 __isl_keep isl_constraint *constraint,
2348 enum isl_dim_type type, unsigned pos);
2349 __isl_give isl_val *isl_constraint_get_constant_val(
2350 __isl_keep isl_constraint *constraint);
2351 __isl_give isl_val *isl_constraint_get_coefficient_val(
2352 __isl_keep isl_constraint *constraint,
2353 enum isl_dim_type type, int pos);
2355 The explicit representations of the existentially quantified
2356 variables can be inspected using the following function.
2357 Note that the user is only allowed to use this function
2358 if the inspected set or map is the result of a call
2359 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
2360 The existentially quantified variable is equal to the floor
2361 of the returned affine expression. The affine expression
2362 itself can be inspected using the functions in
2365 __isl_give isl_aff *isl_constraint_get_div(
2366 __isl_keep isl_constraint *constraint, int pos);
2368 To obtain the constraints of a basic set or map in matrix
2369 form, use the following functions.
2371 __isl_give isl_mat *isl_basic_set_equalities_matrix(
2372 __isl_keep isl_basic_set *bset,
2373 enum isl_dim_type c1, enum isl_dim_type c2,
2374 enum isl_dim_type c3, enum isl_dim_type c4);
2375 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
2376 __isl_keep isl_basic_set *bset,
2377 enum isl_dim_type c1, enum isl_dim_type c2,
2378 enum isl_dim_type c3, enum isl_dim_type c4);
2379 __isl_give isl_mat *isl_basic_map_equalities_matrix(
2380 __isl_keep isl_basic_map *bmap,
2381 enum isl_dim_type c1,
2382 enum isl_dim_type c2, enum isl_dim_type c3,
2383 enum isl_dim_type c4, enum isl_dim_type c5);
2384 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
2385 __isl_keep isl_basic_map *bmap,
2386 enum isl_dim_type c1,
2387 enum isl_dim_type c2, enum isl_dim_type c3,
2388 enum isl_dim_type c4, enum isl_dim_type c5);
2390 The C<isl_dim_type> arguments dictate the order in which
2391 different kinds of variables appear in the resulting matrix.
2392 For set inputs, they should be a permutation of
2393 C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
2394 For map inputs, they should be a permutation of
2395 C<isl_dim_cst>, C<isl_dim_param>,
2396 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
2400 Points are elements of a set. They can be used to construct
2401 simple sets (boxes) or they can be used to represent the
2402 individual elements of a set.
2403 The zero point (the origin) can be created using
2405 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2407 The coordinates of a point can be inspected, set and changed
2410 __isl_give isl_val *isl_point_get_coordinate_val(
2411 __isl_keep isl_point *pnt,
2412 enum isl_dim_type type, int pos);
2413 __isl_give isl_point *isl_point_set_coordinate_val(
2414 __isl_take isl_point *pnt,
2415 enum isl_dim_type type, int pos,
2416 __isl_take isl_val *v);
2418 __isl_give isl_point *isl_point_add_ui(
2419 __isl_take isl_point *pnt,
2420 enum isl_dim_type type, int pos, unsigned val);
2421 __isl_give isl_point *isl_point_sub_ui(
2422 __isl_take isl_point *pnt,
2423 enum isl_dim_type type, int pos, unsigned val);
2425 Points can be copied or freed using
2427 __isl_give isl_point *isl_point_copy(
2428 __isl_keep isl_point *pnt);
2429 __isl_null isl_point *isl_point_free(
2430 __isl_take isl_point *pnt);
2432 A singleton set can be created from a point using
2434 __isl_give isl_basic_set *isl_basic_set_from_point(
2435 __isl_take isl_point *pnt);
2436 __isl_give isl_set *isl_set_from_point(
2437 __isl_take isl_point *pnt);
2438 __isl_give isl_union_set *isl_union_set_from_point(
2439 __isl_take isl_point *pnt);
2441 and a box can be created from two opposite extremal points using
2443 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2444 __isl_take isl_point *pnt1,
2445 __isl_take isl_point *pnt2);
2446 __isl_give isl_set *isl_set_box_from_points(
2447 __isl_take isl_point *pnt1,
2448 __isl_take isl_point *pnt2);
2450 All elements of a B<bounded> (union) set can be enumerated using
2451 the following functions.
2453 isl_stat isl_set_foreach_point(__isl_keep isl_set *set,
2454 isl_stat (*fn)(__isl_take isl_point *pnt,
2457 isl_stat isl_union_set_foreach_point(
2458 __isl_keep isl_union_set *uset,
2459 isl_stat (*fn)(__isl_take isl_point *pnt,
2463 The function C<fn> is called for each integer point in
2464 C<set> with as second argument the last argument of
2465 the C<isl_set_foreach_point> call. The function C<fn>
2466 should return C<isl_stat_ok> on success and C<isl_stat_error> on failure.
2467 In the latter case, C<isl_set_foreach_point> will stop
2468 enumerating and return C<isl_stat_error> as well.
2469 If the enumeration is performed successfully and to completion,
2470 then C<isl_set_foreach_point> returns C<isl_stat_ok>.
2472 To obtain a single point of a (basic or union) set, use
2474 __isl_give isl_point *isl_basic_set_sample_point(
2475 __isl_take isl_basic_set *bset);
2476 __isl_give isl_point *isl_set_sample_point(
2477 __isl_take isl_set *set);
2478 __isl_give isl_point *isl_union_set_sample_point(
2479 __isl_take isl_union_set *uset);
2481 If C<set> does not contain any (integer) points, then the
2482 resulting point will be ``void'', a property that can be
2485 isl_bool isl_point_is_void(__isl_keep isl_point *pnt);
2489 Besides sets and relation, C<isl> also supports various types of functions.
2490 Each of these types is derived from the value type (see L</"Values">)
2491 or from one of two primitive function types
2492 through the application of zero or more type constructors.
2493 We first describe the primitive type and then we describe
2494 the types derived from these primitive types.
2496 =head3 Primitive Functions
2498 C<isl> support two primitive function types, quasi-affine
2499 expressions and quasipolynomials.
2500 A quasi-affine expression is defined either over a parameter
2501 space or over a set and is composed of integer constants,
2502 parameters and set variables, addition, subtraction and
2503 integer division by an integer constant.
2504 For example, the quasi-affine expression
2506 [n] -> { [x] -> [2*floor((4 n + x)/9)] }
2508 maps C<x> to C<2*floor((4 n + x)/9>.
2509 A quasipolynomial is a polynomial expression in quasi-affine
2510 expression. That is, it additionally allows for multiplication.
2511 Note, though, that it is not allowed to construct an integer
2512 division of an expression involving multiplications.
2513 Here is an example of a quasipolynomial that is not
2514 quasi-affine expression
2516 [n] -> { [x] -> (n*floor((4 n + x)/9)) }
2518 Note that the external representations of quasi-affine expressions
2519 and quasipolynomials are different. Quasi-affine expressions
2520 use a notation with square brackets just like binary relations,
2521 while quasipolynomials do not. This might change at some point.
2523 If a primitive function is defined over a parameter space,
2524 then the space of the function itself is that of a set.
2525 If it is defined over a set, then the space of the function
2526 is that of a relation. In both cases, the set space (or
2527 the output space) is single-dimensional, anonymous and unstructured.
2528 To create functions with multiple dimensions or with other kinds
2529 of set or output spaces, use multiple expressions
2530 (see L</"Multiple Expressions">).
2534 =item * Quasi-affine Expressions
2536 Besides the expressions described above, a quasi-affine
2537 expression can also be set to NaN. Such expressions
2538 typically represent a failure to represent a result
2539 as a quasi-affine expression.
2541 The zero quasi affine expression or the quasi affine expression
2542 that is equal to a given value, parameter or
2543 a specified dimension on a given domain can be created using
2545 #include <isl/aff.h>
2546 __isl_give isl_aff *isl_aff_zero_on_domain(
2547 __isl_take isl_local_space *ls);
2548 __isl_give isl_aff *isl_aff_val_on_domain(
2549 __isl_take isl_local_space *ls,
2550 __isl_take isl_val *val);
2551 __isl_give isl_aff *isl_aff_param_on_domain_space_id(
2552 __isl_take isl_space *space,
2553 __isl_take isl_id *id);
2554 __isl_give isl_aff *isl_aff_var_on_domain(
2555 __isl_take isl_local_space *ls,
2556 enum isl_dim_type type, unsigned pos);
2557 __isl_give isl_aff *isl_aff_nan_on_domain(
2558 __isl_take isl_local_space *ls);
2560 The space passed to C<isl_aff_param_on_domain_space_id>
2561 is required to have a parameter with the given identifier.
2563 Quasi affine expressions can be copied and freed using
2565 #include <isl/aff.h>
2566 __isl_give isl_aff *isl_aff_copy(
2567 __isl_keep isl_aff *aff);
2568 __isl_null isl_aff *isl_aff_free(
2569 __isl_take isl_aff *aff);
2571 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2572 using the following function. The constraint is required to have
2573 a non-zero coefficient for the specified dimension.
2575 #include <isl/constraint.h>
2576 __isl_give isl_aff *isl_constraint_get_bound(
2577 __isl_keep isl_constraint *constraint,
2578 enum isl_dim_type type, int pos);
2580 The entire affine expression of the constraint can also be extracted
2581 using the following function.
2583 #include <isl/constraint.h>
2584 __isl_give isl_aff *isl_constraint_get_aff(
2585 __isl_keep isl_constraint *constraint);
2587 Conversely, an equality constraint equating
2588 the affine expression to zero or an inequality constraint enforcing
2589 the affine expression to be non-negative, can be constructed using
2591 __isl_give isl_constraint *isl_equality_from_aff(
2592 __isl_take isl_aff *aff);
2593 __isl_give isl_constraint *isl_inequality_from_aff(
2594 __isl_take isl_aff *aff);
2596 The coefficients and the integer divisions of an affine expression
2597 can be inspected using the following functions.
2599 #include <isl/aff.h>
2600 __isl_give isl_val *isl_aff_get_constant_val(
2601 __isl_keep isl_aff *aff);
2602 __isl_give isl_val *isl_aff_get_coefficient_val(
2603 __isl_keep isl_aff *aff,
2604 enum isl_dim_type type, int pos);
2605 int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
2606 enum isl_dim_type type, int pos);
2607 __isl_give isl_val *isl_aff_get_denominator_val(
2608 __isl_keep isl_aff *aff);
2609 __isl_give isl_aff *isl_aff_get_div(
2610 __isl_keep isl_aff *aff, int pos);
2612 They can be modified using the following functions.
2614 #include <isl/aff.h>
2615 __isl_give isl_aff *isl_aff_set_constant_si(
2616 __isl_take isl_aff *aff, int v);
2617 __isl_give isl_aff *isl_aff_set_constant_val(
2618 __isl_take isl_aff *aff, __isl_take isl_val *v);
2619 __isl_give isl_aff *isl_aff_set_coefficient_si(
2620 __isl_take isl_aff *aff,
2621 enum isl_dim_type type, int pos, int v);
2622 __isl_give isl_aff *isl_aff_set_coefficient_val(
2623 __isl_take isl_aff *aff,
2624 enum isl_dim_type type, int pos,
2625 __isl_take isl_val *v);
2627 __isl_give isl_aff *isl_aff_add_constant_si(
2628 __isl_take isl_aff *aff, int v);
2629 __isl_give isl_aff *isl_aff_add_constant_val(
2630 __isl_take isl_aff *aff, __isl_take isl_val *v);
2631 __isl_give isl_aff *isl_aff_add_constant_num_si(
2632 __isl_take isl_aff *aff, int v);
2633 __isl_give isl_aff *isl_aff_add_coefficient_si(
2634 __isl_take isl_aff *aff,
2635 enum isl_dim_type type, int pos, int v);
2636 __isl_give isl_aff *isl_aff_add_coefficient_val(
2637 __isl_take isl_aff *aff,
2638 enum isl_dim_type type, int pos,
2639 __isl_take isl_val *v);
2641 Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
2642 set the I<numerator> of the constant or coefficient, while
2643 C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
2644 the constant or coefficient as a whole.
2645 The C<add_constant> and C<add_coefficient> functions add an integer
2646 or rational value to
2647 the possibly rational constant or coefficient.
2648 The C<add_constant_num> functions add an integer value to
2651 =item * Quasipolynomials
2653 Some simple quasipolynomials can be created using the following functions.
2655 #include <isl/polynomial.h>
2656 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
2657 __isl_take isl_space *domain);
2658 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
2659 __isl_take isl_space *domain);
2660 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
2661 __isl_take isl_space *domain);
2662 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
2663 __isl_take isl_space *domain);
2664 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
2665 __isl_take isl_space *domain);
2666 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2667 __isl_take isl_space *domain,
2668 __isl_take isl_val *val);
2669 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2670 __isl_take isl_space *domain,
2671 enum isl_dim_type type, unsigned pos);
2672 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2673 __isl_take isl_aff *aff);
2675 Recall that the space in which a quasipolynomial lives is a map space
2676 with a one-dimensional range. The C<domain> argument in some of
2677 the functions above corresponds to the domain of this map space.
2679 Quasipolynomials can be copied and freed again using the following
2682 #include <isl/polynomial.h>
2683 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2684 __isl_keep isl_qpolynomial *qp);
2685 __isl_null isl_qpolynomial *isl_qpolynomial_free(
2686 __isl_take isl_qpolynomial *qp);
2688 The constant term of a quasipolynomial can be extracted using
2690 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2691 __isl_keep isl_qpolynomial *qp);
2693 To iterate over all terms in a quasipolynomial,
2696 isl_stat isl_qpolynomial_foreach_term(
2697 __isl_keep isl_qpolynomial *qp,
2698 isl_stat (*fn)(__isl_take isl_term *term,
2699 void *user), void *user);
2701 The terms themselves can be inspected and freed using
2704 unsigned isl_term_dim(__isl_keep isl_term *term,
2705 enum isl_dim_type type);
2706 __isl_give isl_val *isl_term_get_coefficient_val(
2707 __isl_keep isl_term *term);
2708 int isl_term_get_exp(__isl_keep isl_term *term,
2709 enum isl_dim_type type, unsigned pos);
2710 __isl_give isl_aff *isl_term_get_div(
2711 __isl_keep isl_term *term, unsigned pos);
2712 void isl_term_free(__isl_take isl_term *term);
2714 Each term is a product of parameters, set variables and
2715 integer divisions. The function C<isl_term_get_exp>
2716 returns the exponent of a given dimensions in the given term.
2722 A reduction represents a maximum or a minimum of its
2724 The only reduction type defined by C<isl> is
2725 C<isl_qpolynomial_fold>.
2727 There are currently no functions to directly create such
2728 objects, but they do appear in the piecewise quasipolynomial
2729 reductions returned by the C<isl_pw_qpolynomial_bound> function.
2731 L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.
2733 Reductions can be copied and freed using
2734 the following functions.
2736 #include <isl/polynomial.h>
2737 __isl_give isl_qpolynomial_fold *
2738 isl_qpolynomial_fold_copy(
2739 __isl_keep isl_qpolynomial_fold *fold);
2740 void isl_qpolynomial_fold_free(
2741 __isl_take isl_qpolynomial_fold *fold);
2743 To iterate over all quasipolynomials in a reduction, use
2745 isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
2746 __isl_keep isl_qpolynomial_fold *fold,
2747 isl_stat (*fn)(__isl_take isl_qpolynomial *qp,
2748 void *user), void *user);
2750 =head3 Multiple Expressions
2752 A multiple expression represents a sequence of zero or
2753 more base expressions, all defined on the same domain space.
2754 The domain space of the multiple expression is the same
2755 as that of the base expressions, but the range space
2756 can be any space. In case the base expressions have
2757 a set space, the corresponding multiple expression
2758 also has a set space.
2759 Objects of the value type do not have an associated space.
2760 The space of a multiple value is therefore always a set space.
2761 Similarly, the space of a multiple union piecewise
2762 affine expression is always a set space.
2763 If the base expressions are not total, then
2764 a corresponding zero-dimensional multiple expression may
2765 have an explicit domain that keeps track of the domain
2766 outside of any base expressions.
2768 The multiple expression types defined by C<isl>
2769 are C<isl_multi_val>, C<isl_multi_aff>, C<isl_multi_pw_aff>,
2770 C<isl_multi_union_pw_aff>.
2772 A multiple expression with the value zero for
2773 each output (or set) dimension can be created
2774 using the following functions.
2776 #include <isl/val.h>
2777 __isl_give isl_multi_val *isl_multi_val_zero(
2778 __isl_take isl_space *space);
2780 #include <isl/aff.h>
2781 __isl_give isl_multi_aff *isl_multi_aff_zero(
2782 __isl_take isl_space *space);
2783 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
2784 __isl_take isl_space *space);
2785 __isl_give isl_multi_union_pw_aff *
2786 isl_multi_union_pw_aff_zero(
2787 __isl_take isl_space *space);
2789 Since there is no canonical way of representing a zero
2790 value of type C<isl_union_pw_aff>, the space passed
2791 to C<isl_multi_union_pw_aff_zero> needs to be zero-dimensional.
2793 An identity function can be created using the following
2794 functions. The space needs to be that of a relation
2795 with the same number of input and output dimensions.
2797 #include <isl/aff.h>
2798 __isl_give isl_multi_aff *isl_multi_aff_identity(
2799 __isl_take isl_space *space);
2800 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
2801 __isl_take isl_space *space);
2803 A function that performs a projection on a universe
2804 relation or set can be created using the following functions.
2805 See also the corresponding
2806 projection operations in L</"Unary Operations">.
2808 #include <isl/aff.h>
2809 __isl_give isl_multi_aff *isl_multi_aff_domain_map(
2810 __isl_take isl_space *space);
2811 __isl_give isl_multi_aff *isl_multi_aff_range_map(
2812 __isl_take isl_space *space);
2813 __isl_give isl_multi_aff *isl_multi_aff_project_out_map(
2814 __isl_take isl_space *space,
2815 enum isl_dim_type type,
2816 unsigned first, unsigned n);
2818 A multiple expression can be created from a single
2819 base expression using the following functions.
2820 The space of the created multiple expression is the same
2821 as that of the base expression, except for
2822 C<isl_multi_union_pw_aff_from_union_pw_aff> where the input
2823 lives in a parameter space and the output lives
2824 in a single-dimensional set space.
2826 #include <isl/aff.h>
2827 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
2828 __isl_take isl_aff *aff);
2829 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
2830 __isl_take isl_pw_aff *pa);
2831 __isl_give isl_multi_union_pw_aff *
2832 isl_multi_union_pw_aff_from_union_pw_aff(
2833 __isl_take isl_union_pw_aff *upa);
2835 A multiple expression can be created from a list
2836 of base expression in a specified space.
2837 The domain of this space needs to be the same
2838 as the domains of the base expressions in the list.
2839 If the base expressions have a set space (or no associated space),
2840 then this space also needs to be a set space.
2842 #include <isl/val.h>
2843 __isl_give isl_multi_val *isl_multi_val_from_val_list(
2844 __isl_take isl_space *space,
2845 __isl_take isl_val_list *list);
2847 #include <isl/aff.h>
2848 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
2849 __isl_take isl_space *space,
2850 __isl_take isl_aff_list *list);
2851 __isl_give isl_multi_pw_aff *
2852 isl_multi_pw_aff_from_pw_aff_list(
2853 __isl_take isl_space *space,
2854 __isl_take isl_pw_aff_list *list);
2855 __isl_give isl_multi_union_pw_aff *
2856 isl_multi_union_pw_aff_from_union_pw_aff_list(
2857 __isl_take isl_space *space,
2858 __isl_take isl_union_pw_aff_list *list);
2860 As a convenience, a multiple piecewise expression can
2861 also be created from a multiple expression.
2862 Each piecewise expression in the result has a single
2865 #include <isl/aff.h>
2866 __isl_give isl_multi_pw_aff *
2867 isl_multi_pw_aff_from_multi_aff(
2868 __isl_take isl_multi_aff *ma);
2870 Similarly, a multiple union expression can be
2871 created from a multiple expression.
2873 #include <isl/aff.h>
2874 __isl_give isl_multi_union_pw_aff *
2875 isl_multi_union_pw_aff_from_multi_aff(
2876 __isl_take isl_multi_aff *ma);
2877 __isl_give isl_multi_union_pw_aff *
2878 isl_multi_union_pw_aff_from_multi_pw_aff(
2879 __isl_take isl_multi_pw_aff *mpa);
2881 A multiple quasi-affine expression can be created from
2882 a multiple value with a given domain space using the following
2885 #include <isl/aff.h>
2886 __isl_give isl_multi_aff *
2887 isl_multi_aff_multi_val_on_space(
2888 __isl_take isl_space *space,
2889 __isl_take isl_multi_val *mv);
2892 a multiple union piecewise affine expression can be created from
2893 a multiple value with a given domain or
2894 a (piecewise) multiple affine expression with a given domain
2895 using the following functions.
2897 #include <isl/aff.h>
2898 __isl_give isl_multi_union_pw_aff *
2899 isl_multi_union_pw_aff_multi_val_on_domain(
2900 __isl_take isl_union_set *domain,
2901 __isl_take isl_multi_val *mv);
2902 __isl_give isl_multi_union_pw_aff *
2903 isl_multi_union_pw_aff_multi_aff_on_domain(
2904 __isl_take isl_union_set *domain,
2905 __isl_take isl_multi_aff *ma);
2906 __isl_give isl_multi_union_pw_aff *
2907 isl_multi_union_pw_aff_pw_multi_aff_on_domain(
2908 __isl_take isl_union_set *domain,
2909 __isl_take isl_pw_multi_aff *pma);
2911 Multiple expressions can be copied and freed using
2912 the following functions.
2914 #include <isl/val.h>
2915 __isl_give isl_multi_val *isl_multi_val_copy(
2916 __isl_keep isl_multi_val *mv);
2917 __isl_null isl_multi_val *isl_multi_val_free(
2918 __isl_take isl_multi_val *mv);
2920 #include <isl/aff.h>
2921 __isl_give isl_multi_aff *isl_multi_aff_copy(
2922 __isl_keep isl_multi_aff *maff);
2923 __isl_null isl_multi_aff *isl_multi_aff_free(
2924 __isl_take isl_multi_aff *maff);
2925 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
2926 __isl_keep isl_multi_pw_aff *mpa);
2927 __isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
2928 __isl_take isl_multi_pw_aff *mpa);
2929 __isl_give isl_multi_union_pw_aff *
2930 isl_multi_union_pw_aff_copy(
2931 __isl_keep isl_multi_union_pw_aff *mupa);
2932 __isl_null isl_multi_union_pw_aff *
2933 isl_multi_union_pw_aff_free(
2934 __isl_take isl_multi_union_pw_aff *mupa);
2936 The base expression at a given position of a multiple
2937 expression can be extracted using the following functions.
2939 #include <isl/val.h>
2940 __isl_give isl_val *isl_multi_val_get_val(
2941 __isl_keep isl_multi_val *mv, int pos);
2943 #include <isl/aff.h>
2944 __isl_give isl_aff *isl_multi_aff_get_aff(
2945 __isl_keep isl_multi_aff *multi, int pos);
2946 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
2947 __isl_keep isl_multi_pw_aff *mpa, int pos);
2948 __isl_give isl_union_pw_aff *
2949 isl_multi_union_pw_aff_get_union_pw_aff(
2950 __isl_keep isl_multi_union_pw_aff *mupa, int pos);
2952 It can be replaced using the following functions.
2954 #include <isl/val.h>
2955 __isl_give isl_multi_val *isl_multi_val_set_val(
2956 __isl_take isl_multi_val *mv, int pos,
2957 __isl_take isl_val *val);
2959 #include <isl/aff.h>
2960 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
2961 __isl_take isl_multi_aff *multi, int pos,
2962 __isl_take isl_aff *aff);
2963 __isl_give isl_multi_union_pw_aff *
2964 isl_multi_union_pw_aff_set_union_pw_aff(
2965 __isl_take isl_multi_union_pw_aff *mupa, int pos,
2966 __isl_take isl_union_pw_aff *upa);
2968 As a convenience, a sequence of base expressions that have
2969 their domains in a given space can be extracted from a sequence
2970 of union expressions using the following function.
2972 #include <isl/aff.h>
2973 __isl_give isl_multi_pw_aff *
2974 isl_multi_union_pw_aff_extract_multi_pw_aff(
2975 __isl_keep isl_multi_union_pw_aff *mupa,
2976 __isl_take isl_space *space);
2978 Note that there is a difference between C<isl_multi_union_pw_aff>
2979 and C<isl_union_pw_multi_aff> objects. The first is a sequence
2980 of unions of piecewise expressions, while the second is a union
2981 of piecewise sequences. In particular, multiple affine expressions
2982 in an C<isl_union_pw_multi_aff> may live in different spaces,
2983 while there is only a single multiple expression in
2984 an C<isl_multi_union_pw_aff>, which can therefore only live
2985 in a single space. This means that not every
2986 C<isl_union_pw_multi_aff> can be converted to
2987 an C<isl_multi_union_pw_aff>. Conversely, the elements
2988 of an C<isl_multi_union_pw_aff> may be defined over different domains,
2989 while each multiple expression inside an C<isl_union_pw_multi_aff>
2990 has a single domain. The conversion of an C<isl_union_pw_multi_aff>
2991 of dimension greater than one may therefore not be exact.
2992 The following functions can
2993 be used to perform these conversions when they are possible.
2995 #include <isl/aff.h>
2996 __isl_give isl_multi_union_pw_aff *
2997 isl_multi_union_pw_aff_from_union_pw_multi_aff(
2998 __isl_take isl_union_pw_multi_aff *upma);
2999 __isl_give isl_union_pw_multi_aff *
3000 isl_union_pw_multi_aff_from_multi_union_pw_aff(
3001 __isl_take isl_multi_union_pw_aff *mupa);
3003 =head3 Piecewise Expressions
3005 A piecewise expression is an expression that is described
3006 using zero or more base expression defined over the same
3007 number of cells in the domain space of the base expressions.
3008 All base expressions are defined over the same
3009 domain space and the cells are disjoint.
3010 The space of a piecewise expression is the same as
3011 that of the base expressions.
3012 If the union of the cells is a strict subset of the domain
3013 space, then the value of the piecewise expression outside
3014 this union is different for types derived from quasi-affine
3015 expressions and those derived from quasipolynomials.
3016 Piecewise expressions derived from quasi-affine expressions
3017 are considered to be undefined outside the union of their cells.
3018 Piecewise expressions derived from quasipolynomials
3019 are considered to be zero outside the union of their cells.
3021 Piecewise quasipolynomials are mainly used by the C<barvinok>
3022 library for representing the number of elements in a parametric set or map.
3023 For example, the piecewise quasipolynomial
3025 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3027 represents the number of points in the map
3029 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3031 The piecewise expression types defined by C<isl>
3032 are C<isl_pw_aff>, C<isl_pw_multi_aff>,
3033 C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.
3035 A piecewise expression with no cells can be created using
3036 the following functions.
3038 #include <isl/aff.h>
3039 __isl_give isl_pw_aff *isl_pw_aff_empty(
3040 __isl_take isl_space *space);
3041 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3042 __isl_take isl_space *space);
3044 A piecewise expression with a single universe cell can be
3045 created using the following functions.
3047 #include <isl/aff.h>
3048 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
3049 __isl_take isl_aff *aff);
3050 __isl_give isl_pw_multi_aff *
3051 isl_pw_multi_aff_from_multi_aff(
3052 __isl_take isl_multi_aff *ma);
3054 #include <isl/polynomial.h>
3055 __isl_give isl_pw_qpolynomial *
3056 isl_pw_qpolynomial_from_qpolynomial(
3057 __isl_take isl_qpolynomial *qp);
3059 A piecewise expression with a single specified cell can be
3060 created using the following functions.
3062 #include <isl/aff.h>
3063 __isl_give isl_pw_aff *isl_pw_aff_alloc(
3064 __isl_take isl_set *set, __isl_take isl_aff *aff);
3065 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3066 __isl_take isl_set *set,
3067 __isl_take isl_multi_aff *maff);
3069 #include <isl/polynomial.h>
3070 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3071 __isl_take isl_set *set,
3072 __isl_take isl_qpolynomial *qp);
3074 The following convenience functions first create a base expression and
3075 then create a piecewise expression over a universe domain.
3077 #include <isl/aff.h>
3078 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
3079 __isl_take isl_local_space *ls);
3080 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3081 __isl_take isl_local_space *ls,
3082 enum isl_dim_type type, unsigned pos);
3083 __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
3084 __isl_take isl_local_space *ls);
3085 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
3086 __isl_take isl_space *space);
3087 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
3088 __isl_take isl_space *space);
3089 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
3090 __isl_take isl_space *space);
3091 __isl_give isl_pw_multi_aff *
3092 isl_pw_multi_aff_project_out_map(
3093 __isl_take isl_space *space,
3094 enum isl_dim_type type,
3095 unsigned first, unsigned n);
3097 #include <isl/polynomial.h>
3098 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3099 __isl_take isl_space *space);
3101 The following convenience functions first create a base expression and
3102 then create a piecewise expression over a given domain.
3104 #include <isl/aff.h>
3105 __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
3106 __isl_take isl_set *domain,
3107 __isl_take isl_val *v);
3108 __isl_give isl_pw_multi_aff *
3109 isl_pw_multi_aff_multi_val_on_domain(
3110 __isl_take isl_set *domain,
3111 __isl_take isl_multi_val *mv);
3113 As a convenience, a piecewise multiple expression can
3114 also be created from a piecewise expression.
3115 Each multiple expression in the result is derived
3116 from the corresponding base expression.
3118 #include <isl/aff.h>
3119 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
3120 __isl_take isl_pw_aff *pa);
3122 Similarly, a piecewise quasipolynomial can be
3123 created from a piecewise quasi-affine expression using
3124 the following function.
3126 #include <isl/polynomial.h>
3127 __isl_give isl_pw_qpolynomial *
3128 isl_pw_qpolynomial_from_pw_aff(
3129 __isl_take isl_pw_aff *pwaff);
3131 Piecewise expressions can be copied and freed using the following functions.
3133 #include <isl/aff.h>
3134 __isl_give isl_pw_aff *isl_pw_aff_copy(
3135 __isl_keep isl_pw_aff *pwaff);
3136 __isl_null isl_pw_aff *isl_pw_aff_free(
3137 __isl_take isl_pw_aff *pwaff);
3138 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3139 __isl_keep isl_pw_multi_aff *pma);
3140 __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
3141 __isl_take isl_pw_multi_aff *pma);
3143 #include <isl/polynomial.h>
3144 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3145 __isl_keep isl_pw_qpolynomial *pwqp);
3146 __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
3147 __isl_take isl_pw_qpolynomial *pwqp);
3148 __isl_give isl_pw_qpolynomial_fold *
3149 isl_pw_qpolynomial_fold_copy(
3150 __isl_keep isl_pw_qpolynomial_fold *pwf);
3151 __isl_null isl_pw_qpolynomial_fold *
3152 isl_pw_qpolynomial_fold_free(
3153 __isl_take isl_pw_qpolynomial_fold *pwf);
3155 To iterate over the different cells of a piecewise expression,
3156 use the following functions.
3158 #include <isl/aff.h>
3159 isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3160 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3161 isl_stat isl_pw_aff_foreach_piece(
3162 __isl_keep isl_pw_aff *pwaff,
3163 isl_stat (*fn)(__isl_take isl_set *set,
3164 __isl_take isl_aff *aff,
3165 void *user), void *user);
3166 int isl_pw_multi_aff_n_piece(
3167 __isl_keep isl_pw_multi_aff *pma);
3168 isl_stat isl_pw_multi_aff_foreach_piece(
3169 __isl_keep isl_pw_multi_aff *pma,
3170 isl_stat (*fn)(__isl_take isl_set *set,
3171 __isl_take isl_multi_aff *maff,
3172 void *user), void *user);
3174 #include <isl/polynomial.h>
3175 int isl_pw_qpolynomial_n_piece(
3176 __isl_keep isl_pw_qpolynomial *pwqp);
3177 isl_stat isl_pw_qpolynomial_foreach_piece(
3178 __isl_keep isl_pw_qpolynomial *pwqp,
3179 isl_stat (*fn)(__isl_take isl_set *set,
3180 __isl_take isl_qpolynomial *qp,
3181 void *user), void *user);
3182 isl_stat isl_pw_qpolynomial_foreach_lifted_piece(
3183 __isl_keep isl_pw_qpolynomial *pwqp,
3184 isl_stat (*fn)(__isl_take isl_set *set,
3185 __isl_take isl_qpolynomial *qp,
3186 void *user), void *user);
3187 int isl_pw_qpolynomial_fold_n_piece(
3188 __isl_keep isl_pw_qpolynomial_fold *pwf);
3189 isl_stat isl_pw_qpolynomial_fold_foreach_piece(
3190 __isl_keep isl_pw_qpolynomial_fold *pwf,
3191 isl_stat (*fn)(__isl_take isl_set *set,
3192 __isl_take isl_qpolynomial_fold *fold,
3193 void *user), void *user);
3194 isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece(
3195 __isl_keep isl_pw_qpolynomial_fold *pwf,
3196 isl_stat (*fn)(__isl_take isl_set *set,
3197 __isl_take isl_qpolynomial_fold *fold,
3198 void *user), void *user);
3200 As usual, the function C<fn> should return C<isl_stat_ok> on success
3201 and C<isl_stat_error> on failure. The difference between
3202 C<isl_pw_qpolynomial_foreach_piece> and
3203 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3204 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3205 compute unique representations for all existentially quantified
3206 variables and then turn these existentially quantified variables
3207 into extra set variables, adapting the associated quasipolynomial
3208 accordingly. This means that the C<set> passed to C<fn>
3209 will not have any existentially quantified variables, but that
3210 the dimensions of the sets may be different for different
3211 invocations of C<fn>.
3212 Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
3213 and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.
3215 A piecewise expression consisting of the expressions at a given
3216 position of a piecewise multiple expression can be extracted
3217 using the following function.
3219 #include <isl/aff.h>
3220 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3221 __isl_keep isl_pw_multi_aff *pma, int pos);
3223 These expressions can be replaced using the following function.
3225 #include <isl/aff.h>
3226 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
3227 __isl_take isl_pw_multi_aff *pma, unsigned pos,
3228 __isl_take isl_pw_aff *pa);
3230 Note that there is a difference between C<isl_multi_pw_aff> and
3231 C<isl_pw_multi_aff> objects. The first is a sequence of piecewise
3232 affine expressions, while the second is a piecewise sequence
3233 of affine expressions. In particular, each of the piecewise
3234 affine expressions in an C<isl_multi_pw_aff> may have a different
3235 domain, while all multiple expressions associated to a cell
3236 in an C<isl_pw_multi_aff> have the same domain.
3237 It is possible to convert between the two, but when converting
3238 an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
3239 of the result is the intersection of the domains of the input.
3240 The reverse conversion is exact.
3242 #include <isl/aff.h>
3243 __isl_give isl_pw_multi_aff *
3244 isl_pw_multi_aff_from_multi_pw_aff(
3245 __isl_take isl_multi_pw_aff *mpa);
3246 __isl_give isl_multi_pw_aff *
3247 isl_multi_pw_aff_from_pw_multi_aff(
3248 __isl_take isl_pw_multi_aff *pma);
3250 =head3 Union Expressions
3252 A union expression collects base expressions defined
3253 over different domains. The space of a union expression
3254 is that of the shared parameter space.
3256 The union expression types defined by C<isl>
3257 are C<isl_union_pw_aff>, C<isl_union_pw_multi_aff>,
3258 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>.
3260 C<isl_union_pw_aff>,
3261 C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>,
3262 there can be at most one base expression for a given domain space.
3264 C<isl_union_pw_multi_aff>,
3265 there can be multiple such expressions for a given domain space,
3266 but the domains of these expressions need to be disjoint.
3268 An empty union expression can be created using the following functions.
3270 #include <isl/aff.h>
3271 __isl_give isl_union_pw_aff *isl_union_pw_aff_empty(
3272 __isl_take isl_space *space);
3273 __isl_give isl_union_pw_multi_aff *
3274 isl_union_pw_multi_aff_empty(
3275 __isl_take isl_space *space);
3277 #include <isl/polynomial.h>
3278 __isl_give isl_union_pw_qpolynomial *
3279 isl_union_pw_qpolynomial_zero(
3280 __isl_take isl_space *space);
3282 A union expression containing a single base expression
3283 can be created using the following functions.
3285 #include <isl/aff.h>
3286 __isl_give isl_union_pw_aff *
3287 isl_union_pw_aff_from_pw_aff(
3288 __isl_take isl_pw_aff *pa);
3289 __isl_give isl_union_pw_multi_aff *
3290 isl_union_pw_multi_aff_from_aff(
3291 __isl_take isl_aff *aff);
3292 __isl_give isl_union_pw_multi_aff *
3293 isl_union_pw_multi_aff_from_pw_multi_aff(
3294 __isl_take isl_pw_multi_aff *pma);
3296 #include <isl/polynomial.h>
3297 __isl_give isl_union_pw_qpolynomial *
3298 isl_union_pw_qpolynomial_from_pw_qpolynomial(
3299 __isl_take isl_pw_qpolynomial *pwqp);
3301 The following functions create a base expression on each
3302 of the sets in the union set and collect the results.
3304 #include <isl/aff.h>
3305 __isl_give isl_union_pw_multi_aff *
3306 isl_union_pw_multi_aff_from_union_pw_aff(
3307 __isl_take isl_union_pw_aff *upa);
3308 __isl_give isl_union_pw_aff *
3309 isl_union_pw_multi_aff_get_union_pw_aff(
3310 __isl_keep isl_union_pw_multi_aff *upma, int pos);
3311 __isl_give isl_union_pw_aff *
3312 isl_union_pw_aff_val_on_domain(
3313 __isl_take isl_union_set *domain,
3314 __isl_take isl_val *v);
3315 __isl_give isl_union_pw_multi_aff *
3316 isl_union_pw_multi_aff_multi_val_on_domain(
3317 __isl_take isl_union_set *domain,
3318 __isl_take isl_multi_val *mv);
3319 __isl_give isl_union_pw_aff *
3320 isl_union_pw_aff_param_on_domain_id(
3321 __isl_take isl_union_set *domain,
3322 __isl_take isl_id *id);
3324 The C<id> argument of C<isl_union_pw_aff_param_on_domain_id>
3325 is the identifier of a parameter that may or may not already
3326 be present in C<domain>.
3328 An C<isl_union_pw_aff> that is equal to a (parametric) affine
3330 expression on a given domain can be created using the following
3333 #include <isl/aff.h>
3334 __isl_give isl_union_pw_aff *
3335 isl_union_pw_aff_aff_on_domain(
3336 __isl_take isl_union_set *domain,
3337 __isl_take isl_aff *aff);
3338 __isl_give isl_union_pw_aff *
3339 isl_union_pw_aff_pw_aff_on_domain(
3340 __isl_take isl_union_set *domain,
3341 __isl_take isl_pw_aff *pa);
3343 A base expression can be added to a union expression using
3344 the following functions.
3346 #include <isl/aff.h>
3347 __isl_give isl_union_pw_aff *
3348 isl_union_pw_aff_add_pw_aff(
3349 __isl_take isl_union_pw_aff *upa,
3350 __isl_take isl_pw_aff *pa);
3351 __isl_give isl_union_pw_multi_aff *
3352 isl_union_pw_multi_aff_add_pw_multi_aff(
3353 __isl_take isl_union_pw_multi_aff *upma,
3354 __isl_take isl_pw_multi_aff *pma);
3356 #include <isl/polynomial.h>
3357 __isl_give isl_union_pw_qpolynomial *
3358 isl_union_pw_qpolynomial_add_pw_qpolynomial(
3359 __isl_take isl_union_pw_qpolynomial *upwqp,
3360 __isl_take isl_pw_qpolynomial *pwqp);
3362 Union expressions can be copied and freed using
3363 the following functions.
3365 #include <isl/aff.h>
3366 __isl_give isl_union_pw_aff *isl_union_pw_aff_copy(
3367 __isl_keep isl_union_pw_aff *upa);
3368 __isl_null isl_union_pw_aff *isl_union_pw_aff_free(
3369 __isl_take isl_union_pw_aff *upa);
3370 __isl_give isl_union_pw_multi_aff *
3371 isl_union_pw_multi_aff_copy(
3372 __isl_keep isl_union_pw_multi_aff *upma);
3373 __isl_null isl_union_pw_multi_aff *
3374 isl_union_pw_multi_aff_free(
3375 __isl_take isl_union_pw_multi_aff *upma);
3377 #include <isl/polynomial.h>
3378 __isl_give isl_union_pw_qpolynomial *
3379 isl_union_pw_qpolynomial_copy(
3380 __isl_keep isl_union_pw_qpolynomial *upwqp);
3381 __isl_null isl_union_pw_qpolynomial *
3382 isl_union_pw_qpolynomial_free(
3383 __isl_take isl_union_pw_qpolynomial *upwqp);
3384 __isl_give isl_union_pw_qpolynomial_fold *
3385 isl_union_pw_qpolynomial_fold_copy(
3386 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3387 __isl_null isl_union_pw_qpolynomial_fold *
3388 isl_union_pw_qpolynomial_fold_free(
3389 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3391 To iterate over the base expressions in a union expression,
3392 use the following functions.
3394 #include <isl/aff.h>
3395 int isl_union_pw_aff_n_pw_aff(
3396 __isl_keep isl_union_pw_aff *upa);
3397 isl_stat isl_union_pw_aff_foreach_pw_aff(
3398 __isl_keep isl_union_pw_aff *upa,
3399 isl_stat (*fn)(__isl_take isl_pw_aff *pa,
3400 void *user), void *user);
3401 int isl_union_pw_multi_aff_n_pw_multi_aff(
3402 __isl_keep isl_union_pw_multi_aff *upma);
3403 isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff(
3404 __isl_keep isl_union_pw_multi_aff *upma,
3405 isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma,
3406 void *user), void *user);
3408 #include <isl/polynomial.h>
3409 int isl_union_pw_qpolynomial_n_pw_qpolynomial(
3410 __isl_keep isl_union_pw_qpolynomial *upwqp);
3411 isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3412 __isl_keep isl_union_pw_qpolynomial *upwqp,
3413 isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
3414 void *user), void *user);
3415 int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold(
3416 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3417 isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3418 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3419 isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3420 void *user), void *user);
3422 To extract the base expression in a given space from a union, use
3423 the following functions.
3425 #include <isl/aff.h>
3426 __isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff(
3427 __isl_keep isl_union_pw_aff *upa,
3428 __isl_take isl_space *space);
3429 __isl_give isl_pw_multi_aff *
3430 isl_union_pw_multi_aff_extract_pw_multi_aff(
3431 __isl_keep isl_union_pw_multi_aff *upma,
3432 __isl_take isl_space *space);
3434 #include <isl/polynomial.h>
3435 __isl_give isl_pw_qpolynomial *
3436 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3437 __isl_keep isl_union_pw_qpolynomial *upwqp,
3438 __isl_take isl_space *space);
3440 =head2 Input and Output
3442 For set and relation,
3443 C<isl> supports its own input/output format, which is similar
3444 to the C<Omega> format, but also supports the C<PolyLib> format
3446 For other object types, typically only an C<isl> format is supported.
3448 =head3 C<isl> format
3450 The C<isl> format is similar to that of C<Omega>, but has a different
3451 syntax for describing the parameters and allows for the definition
3452 of an existentially quantified variable as the integer division
3453 of an affine expression.
3454 For example, the set of integers C<i> between C<0> and C<n>
3455 such that C<i % 10 <= 6> can be described as
3457 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
3460 A set or relation can have several disjuncts, separated
3461 by the keyword C<or>. Each disjunct is either a conjunction
3462 of constraints or a projection (C<exists>) of a conjunction
3463 of constraints. The constraints are separated by the keyword
3466 =head3 C<PolyLib> format
3468 If the represented set is a union, then the first line
3469 contains a single number representing the number of disjuncts.
3470 Otherwise, a line containing the number C<1> is optional.
3472 Each disjunct is represented by a matrix of constraints.
3473 The first line contains two numbers representing
3474 the number of rows and columns,
3475 where the number of rows is equal to the number of constraints
3476 and the number of columns is equal to two plus the number of variables.
3477 The following lines contain the actual rows of the constraint matrix.
3478 In each row, the first column indicates whether the constraint
3479 is an equality (C<0>) or inequality (C<1>). The final column
3480 corresponds to the constant term.
3482 If the set is parametric, then the coefficients of the parameters
3483 appear in the last columns before the constant column.
3484 The coefficients of any existentially quantified variables appear
3485 between those of the set variables and those of the parameters.
3487 =head3 Extended C<PolyLib> format
3489 The extended C<PolyLib> format is nearly identical to the
3490 C<PolyLib> format. The only difference is that the line
3491 containing the number of rows and columns of a constraint matrix
3492 also contains four additional numbers:
3493 the number of output dimensions, the number of input dimensions,
3494 the number of local dimensions (i.e., the number of existentially
3495 quantified variables) and the number of parameters.
3496 For sets, the number of ``output'' dimensions is equal
3497 to the number of set dimensions, while the number of ``input''
3502 Objects can be read from input using the following functions.
3504 #include <isl/val.h>
3505 __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
3507 __isl_give isl_multi_val *isl_multi_val_read_from_str(
3508 isl_ctx *ctx, const char *str);
3510 #include <isl/set.h>
3511 __isl_give isl_basic_set *isl_basic_set_read_from_file(
3512 isl_ctx *ctx, FILE *input);
3513 __isl_give isl_basic_set *isl_basic_set_read_from_str(
3514 isl_ctx *ctx, const char *str);
3515 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
3517 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
3520 #include <isl/map.h>
3521 __isl_give isl_basic_map *isl_basic_map_read_from_file(
3522 isl_ctx *ctx, FILE *input);
3523 __isl_give isl_basic_map *isl_basic_map_read_from_str(
3524 isl_ctx *ctx, const char *str);
3525 __isl_give isl_map *isl_map_read_from_file(
3526 isl_ctx *ctx, FILE *input);
3527 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
3530 #include <isl/union_set.h>
3531 __isl_give isl_union_set *isl_union_set_read_from_file(
3532 isl_ctx *ctx, FILE *input);
3533 __isl_give isl_union_set *isl_union_set_read_from_str(
3534 isl_ctx *ctx, const char *str);
3536 #include <isl/union_map.h>
3537 __isl_give isl_union_map *isl_union_map_read_from_file(
3538 isl_ctx *ctx, FILE *input);
3539 __isl_give isl_union_map *isl_union_map_read_from_str(
3540 isl_ctx *ctx, const char *str);
3542 #include <isl/aff.h>
3543 __isl_give isl_aff *isl_aff_read_from_str(
3544 isl_ctx *ctx, const char *str);
3545 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3546 isl_ctx *ctx, const char *str);
3547 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3548 isl_ctx *ctx, const char *str);
3549 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3550 isl_ctx *ctx, const char *str);
3551 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
3552 isl_ctx *ctx, const char *str);
3553 __isl_give isl_union_pw_aff *
3554 isl_union_pw_aff_read_from_str(
3555 isl_ctx *ctx, const char *str);
3556 __isl_give isl_union_pw_multi_aff *
3557 isl_union_pw_multi_aff_read_from_str(
3558 isl_ctx *ctx, const char *str);
3559 __isl_give isl_multi_union_pw_aff *
3560 isl_multi_union_pw_aff_read_from_str(
3561 isl_ctx *ctx, const char *str);
3563 #include <isl/polynomial.h>
3564 __isl_give isl_union_pw_qpolynomial *
3565 isl_union_pw_qpolynomial_read_from_str(
3566 isl_ctx *ctx, const char *str);
3568 For sets and relations,
3569 the input format is autodetected and may be either the C<PolyLib> format
3570 or the C<isl> format.
3574 Before anything can be printed, an C<isl_printer> needs to
3577 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
3579 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
3580 __isl_null isl_printer *isl_printer_free(
3581 __isl_take isl_printer *printer);
3583 C<isl_printer_to_file> prints to the given file, while
3584 C<isl_printer_to_str> prints to a string that can be extracted
3585 using the following function.
3587 #include <isl/printer.h>
3588 __isl_give char *isl_printer_get_str(
3589 __isl_keep isl_printer *printer);
3591 The printer can be inspected using the following functions.
3593 FILE *isl_printer_get_file(
3594 __isl_keep isl_printer *printer);
3595 int isl_printer_get_output_format(
3596 __isl_keep isl_printer *p);
3597 int isl_printer_get_yaml_style(__isl_keep isl_printer *p);
3599 The behavior of the printer can be modified in various ways
3601 __isl_give isl_printer *isl_printer_set_output_format(
3602 __isl_take isl_printer *p, int output_format);
3603 __isl_give isl_printer *isl_printer_set_indent(
3604 __isl_take isl_printer *p, int indent);
3605 __isl_give isl_printer *isl_printer_set_indent_prefix(
3606 __isl_take isl_printer *p, const char *prefix);
3607 __isl_give isl_printer *isl_printer_indent(
3608 __isl_take isl_printer *p, int indent);
3609 __isl_give isl_printer *isl_printer_set_prefix(
3610 __isl_take isl_printer *p, const char *prefix);
3611 __isl_give isl_printer *isl_printer_set_suffix(
3612 __isl_take isl_printer *p, const char *suffix);
3613 __isl_give isl_printer *isl_printer_set_yaml_style(
3614 __isl_take isl_printer *p, int yaml_style);
3616 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
3617 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
3618 and defaults to C<ISL_FORMAT_ISL>.
3619 Each line in the output is prefixed by C<indent_prefix>,
3620 indented by C<indent> (set by C<isl_printer_set_indent>) spaces
3621 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
3622 In the C<PolyLib> format output,
3623 the coefficients of the existentially quantified variables
3624 appear between those of the set variables and those
3626 The function C<isl_printer_indent> increases the indentation
3627 by the specified amount (which may be negative).
3628 The YAML style may be either C<ISL_YAML_STYLE_BLOCK> or
3629 C<ISL_YAML_STYLE_FLOW> and when we are printing something
3632 To actually print something, use
3634 #include <isl/printer.h>
3635 __isl_give isl_printer *isl_printer_print_double(
3636 __isl_take isl_printer *p, double d);
3638 #include <isl/val.h>
3639 __isl_give isl_printer *isl_printer_print_val(
3640 __isl_take isl_printer *p, __isl_keep isl_val *v);
3642 #include <isl/set.h>
3643 __isl_give isl_printer *isl_printer_print_basic_set(
3644 __isl_take isl_printer *printer,
3645 __isl_keep isl_basic_set *bset);
3646 __isl_give isl_printer *isl_printer_print_set(
3647 __isl_take isl_printer *printer,
3648 __isl_keep isl_set *set);
3650 #include <isl/map.h>
3651 __isl_give isl_printer *isl_printer_print_basic_map(
3652 __isl_take isl_printer *printer,
3653 __isl_keep isl_basic_map *bmap);
3654 __isl_give isl_printer *isl_printer_print_map(
3655 __isl_take isl_printer *printer,
3656 __isl_keep isl_map *map);
3658 #include <isl/union_set.h>
3659 __isl_give isl_printer *isl_printer_print_union_set(
3660 __isl_take isl_printer *p,
3661 __isl_keep isl_union_set *uset);
3663 #include <isl/union_map.h>
3664 __isl_give isl_printer *isl_printer_print_union_map(
3665 __isl_take isl_printer *p,
3666 __isl_keep isl_union_map *umap);
3668 #include <isl/val.h>
3669 __isl_give isl_printer *isl_printer_print_multi_val(
3670 __isl_take isl_printer *p,
3671 __isl_keep isl_multi_val *mv);
3673 #include <isl/aff.h>
3674 __isl_give isl_printer *isl_printer_print_aff(
3675 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3676 __isl_give isl_printer *isl_printer_print_multi_aff(
3677 __isl_take isl_printer *p,
3678 __isl_keep isl_multi_aff *maff);
3679 __isl_give isl_printer *isl_printer_print_pw_aff(
3680 __isl_take isl_printer *p,
3681 __isl_keep isl_pw_aff *pwaff);
3682 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3683 __isl_take isl_printer *p,
3684 __isl_keep isl_pw_multi_aff *pma);
3685 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
3686 __isl_take isl_printer *p,
3687 __isl_keep isl_multi_pw_aff *mpa);
3688 __isl_give isl_printer *isl_printer_print_union_pw_aff(
3689 __isl_take isl_printer *p,
3690 __isl_keep isl_union_pw_aff *upa);
3691 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3692 __isl_take isl_printer *p,
3693 __isl_keep isl_union_pw_multi_aff *upma);
3694 __isl_give isl_printer *
3695 isl_printer_print_multi_union_pw_aff(
3696 __isl_take isl_printer *p,
3697 __isl_keep isl_multi_union_pw_aff *mupa);
3699 #include <isl/polynomial.h>
3700 __isl_give isl_printer *isl_printer_print_qpolynomial(
3701 __isl_take isl_printer *p,
3702 __isl_keep isl_qpolynomial *qp);
3703 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3704 __isl_take isl_printer *p,
3705 __isl_keep isl_pw_qpolynomial *pwqp);
3706 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3707 __isl_take isl_printer *p,
3708 __isl_keep isl_union_pw_qpolynomial *upwqp);
3710 __isl_give isl_printer *
3711 isl_printer_print_pw_qpolynomial_fold(
3712 __isl_take isl_printer *p,
3713 __isl_keep isl_pw_qpolynomial_fold *pwf);
3714 __isl_give isl_printer *
3715 isl_printer_print_union_pw_qpolynomial_fold(
3716 __isl_take isl_printer *p,
3717 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3719 For C<isl_printer_print_qpolynomial>,
3720 C<isl_printer_print_pw_qpolynomial> and
3721 C<isl_printer_print_pw_qpolynomial_fold>,
3722 the output format of the printer
3723 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3724 For C<isl_printer_print_union_pw_qpolynomial> and
3725 C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
3727 In case of printing in C<ISL_FORMAT_C>, the user may want
3728 to set the names of all dimensions first.
3730 C<isl> also provides limited support for printing YAML documents,
3731 just enough for the internal use for printing such documents.
3733 #include <isl/printer.h>
3734 __isl_give isl_printer *isl_printer_yaml_start_mapping(
3735 __isl_take isl_printer *p);
3736 __isl_give isl_printer *isl_printer_yaml_end_mapping(
3737 __isl_take isl_printer *p);
3738 __isl_give isl_printer *isl_printer_yaml_start_sequence(
3739 __isl_take isl_printer *p);
3740 __isl_give isl_printer *isl_printer_yaml_end_sequence(
3741 __isl_take isl_printer *p);
3742 __isl_give isl_printer *isl_printer_yaml_next(
3743 __isl_take isl_printer *p);
3745 A document is started by a call to either
3746 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3747 Anything printed to the printer after such a call belong to the
3748 first key of the mapping or the first element in the sequence.
3749 The function C<isl_printer_yaml_next> moves to the value if
3750 we are currently printing a mapping key, the next key if we
3751 are printing a value or the next element if we are printing
3752 an element in a sequence.
3753 Nested mappings and sequences are initiated by the same
3754 C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
3755 Each call to these functions needs to have a corresponding call to
3756 C<isl_printer_yaml_end_mapping> or C<isl_printer_yaml_end_sequence>.
3758 When called on a file printer, the following function flushes
3759 the file. When called on a string printer, the buffer is cleared.
3761 __isl_give isl_printer *isl_printer_flush(
3762 __isl_take isl_printer *p);
3764 The following functions allow the user to attach
3765 notes to a printer in order to keep track of additional state.
3767 #include <isl/printer.h>
3768 isl_bool isl_printer_has_note(__isl_keep isl_printer *p,
3769 __isl_keep isl_id *id);
3770 __isl_give isl_id *isl_printer_get_note(
3771 __isl_keep isl_printer *p, __isl_take isl_id *id);
3772 __isl_give isl_printer *isl_printer_set_note(
3773 __isl_take isl_printer *p,
3774 __isl_take isl_id *id, __isl_take isl_id *note);
3776 C<isl_printer_set_note> associates the given note to the given
3777 identifier in the printer.
3778 C<isl_printer_get_note> retrieves a note associated to an
3780 C<isl_printer_has_note> checks if there is such a note.
3781 C<isl_printer_get_note> fails if the requested note does not exist.
3783 Alternatively, a string representation can be obtained
3784 directly using the following functions, which always print
3788 __isl_give char *isl_id_to_str(
3789 __isl_keep isl_id *id);
3791 #include <isl/space.h>
3792 __isl_give char *isl_space_to_str(
3793 __isl_keep isl_space *space);
3795 #include <isl/val.h>
3796 __isl_give char *isl_val_to_str(__isl_keep isl_val *v);
3797 __isl_give char *isl_multi_val_to_str(
3798 __isl_keep isl_multi_val *mv);
3800 #include <isl/set.h>
3801 __isl_give char *isl_basic_set_to_str(
3802 __isl_keep isl_basic_set *bset);
3803 __isl_give char *isl_set_to_str(
3804 __isl_keep isl_set *set);
3806 #include <isl/union_set.h>
3807 __isl_give char *isl_union_set_to_str(
3808 __isl_keep isl_union_set *uset);
3810 #include <isl/map.h>
3811 __isl_give char *isl_basic_map_to_str(
3812 __isl_keep isl_basic_map *bmap);
3813 __isl_give char *isl_map_to_str(
3814 __isl_keep isl_map *map);
3816 #include <isl/union_map.h>
3817 __isl_give char *isl_union_map_to_str(
3818 __isl_keep isl_union_map *umap);
3820 #include <isl/aff.h>
3821 __isl_give char *isl_aff_to_str(__isl_keep isl_aff *aff);
3822 __isl_give char *isl_pw_aff_to_str(
3823 __isl_keep isl_pw_aff *pa);
3824 __isl_give char *isl_multi_aff_to_str(
3825 __isl_keep isl_multi_aff *ma);
3826 __isl_give char *isl_pw_multi_aff_to_str(
3827 __isl_keep isl_pw_multi_aff *pma);
3828 __isl_give char *isl_multi_pw_aff_to_str(
3829 __isl_keep isl_multi_pw_aff *mpa);
3830 __isl_give char *isl_union_pw_aff_to_str(
3831 __isl_keep isl_union_pw_aff *upa);
3832 __isl_give char *isl_union_pw_multi_aff_to_str(
3833 __isl_keep isl_union_pw_multi_aff *upma);
3834 __isl_give char *isl_multi_union_pw_aff_to_str(
3835 __isl_keep isl_multi_union_pw_aff *mupa);
3837 #include <isl/point.h>
3838 __isl_give char *isl_point_to_str(
3839 __isl_keep isl_point *pnt);
3841 #include <isl/polynomial.h>
3842 __isl_give char *isl_pw_qpolynomial_to_str(
3843 __isl_keep isl_pw_qpolynomial *pwqp);
3844 __isl_give char *isl_union_pw_qpolynomial_to_str(
3845 __isl_keep isl_union_pw_qpolynomial *upwqp);
3849 =head3 Unary Properties
3855 The following functions test whether the given set or relation
3856 contains any integer points. The ``plain'' variants do not perform
3857 any computations, but simply check if the given set or relation
3858 is already known to be empty.
3860 #include <isl/set.h>
3861 isl_bool isl_basic_set_plain_is_empty(
3862 __isl_keep isl_basic_set *bset);
3863 isl_bool isl_basic_set_is_empty(
3864 __isl_keep isl_basic_set *bset);
3865 isl_bool isl_set_plain_is_empty(
3866 __isl_keep isl_set *set);
3867 isl_bool isl_set_is_empty(__isl_keep isl_set *set);
3869 #include <isl/union_set.h>
3870 isl_bool isl_union_set_is_empty(
3871 __isl_keep isl_union_set *uset);
3873 #include <isl/map.h>
3874 isl_bool isl_basic_map_plain_is_empty(
3875 __isl_keep isl_basic_map *bmap);
3876 isl_bool isl_basic_map_is_empty(
3877 __isl_keep isl_basic_map *bmap);
3878 isl_bool isl_map_plain_is_empty(
3879 __isl_keep isl_map *map);
3880 isl_bool isl_map_is_empty(__isl_keep isl_map *map);
3882 #include <isl/union_map.h>
3883 isl_bool isl_union_map_plain_is_empty(
3884 __isl_keep isl_union_map *umap);
3885 isl_bool isl_union_map_is_empty(
3886 __isl_keep isl_union_map *umap);
3888 =item * Universality
3890 isl_bool isl_basic_set_plain_is_universe(
3891 __isl_keep isl_basic_set *bset);
3892 isl_bool isl_basic_set_is_universe(
3893 __isl_keep isl_basic_set *bset);
3894 isl_bool isl_basic_map_plain_is_universe(
3895 __isl_keep isl_basic_map *bmap);
3896 isl_bool isl_basic_map_is_universe(
3897 __isl_keep isl_basic_map *bmap);
3898 isl_bool isl_set_plain_is_universe(
3899 __isl_keep isl_set *set);
3900 isl_bool isl_map_plain_is_universe(
3901 __isl_keep isl_map *map);
3903 =item * Single-valuedness
3905 #include <isl/set.h>
3906 isl_bool isl_set_is_singleton(__isl_keep isl_set *set);
3908 #include <isl/map.h>
3909 isl_bool isl_basic_map_is_single_valued(
3910 __isl_keep isl_basic_map *bmap);
3911 isl_bool isl_map_plain_is_single_valued(
3912 __isl_keep isl_map *map);
3913 isl_bool isl_map_is_single_valued(__isl_keep isl_map *map);
3915 #include <isl/union_map.h>
3916 isl_bool isl_union_map_is_single_valued(
3917 __isl_keep isl_union_map *umap);
3921 isl_bool isl_map_plain_is_injective(
3922 __isl_keep isl_map *map);
3923 isl_bool isl_map_is_injective(
3924 __isl_keep isl_map *map);
3925 isl_bool isl_union_map_plain_is_injective(
3926 __isl_keep isl_union_map *umap);
3927 isl_bool isl_union_map_is_injective(
3928 __isl_keep isl_union_map *umap);
3932 isl_bool isl_map_is_bijective(
3933 __isl_keep isl_map *map);
3934 isl_bool isl_union_map_is_bijective(
3935 __isl_keep isl_union_map *umap);
3939 The following functions test whether the given relation
3940 only maps elements to themselves.
3942 #include <isl/map.h>
3943 isl_bool isl_map_is_identity(
3944 __isl_keep isl_map *map);
3946 #include <isl/union_map.h>
3947 isl_bool isl_union_map_is_identity(
3948 __isl_keep isl_union_map *umap);
3952 __isl_give isl_val *
3953 isl_basic_map_plain_get_val_if_fixed(
3954 __isl_keep isl_basic_map *bmap,
3955 enum isl_dim_type type, unsigned pos);
3956 __isl_give isl_val *isl_set_plain_get_val_if_fixed(
3957 __isl_keep isl_set *set,
3958 enum isl_dim_type type, unsigned pos);
3959 __isl_give isl_val *isl_map_plain_get_val_if_fixed(
3960 __isl_keep isl_map *map,
3961 enum isl_dim_type type, unsigned pos);
3963 If the set or relation obviously lies on a hyperplane where the given dimension
3964 has a fixed value, then return that value.
3965 Otherwise return NaN.
3969 isl_stat isl_set_dim_residue_class_val(
3970 __isl_keep isl_set *set,
3971 int pos, __isl_give isl_val **modulo,
3972 __isl_give isl_val **residue);
3974 Check if the values of the given set dimension are equal to a fixed
3975 value modulo some integer value. If so, assign the modulo to C<*modulo>
3976 and the fixed value to C<*residue>. If the given dimension attains only
3977 a single value, then assign C<0> to C<*modulo> and the fixed value to
3979 If the dimension does not attain only a single value and if no modulo
3980 can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
3982 #include <isl/set.h>
3983 __isl_give isl_stride_info *isl_set_get_stride_info(
3984 __isl_keep isl_set *set, int pos);
3985 __isl_give isl_val *isl_set_get_stride(
3986 __isl_keep isl_set *set, int pos);
3988 Check if the values of the given set dimension are equal to
3989 some affine expression of the other dimensions (the offset)
3990 modulo some integer stride.
3991 If no more specific information can be found, then the stride
3992 is taken to be one and the offset is taken to be the zero expression.
3993 The function C<isl_set_get_stride_info> performs the same
3994 computation but only returns the stride.
3996 the stride and offset can be extracted from the returned object
3997 using the following functions.
3999 #include <isl/set.h>
4000 __isl_give isl_val *isl_stride_info_get_stride(
4001 __isl_keep isl_stride_info *si);
4002 __isl_give isl_aff *isl_stride_info_get_offset(
4003 __isl_keep isl_stride_info *si);
4005 The stride info object can be released using the following function.
4007 #include <isl/set.h>
4008 __isl_null isl_stride_info *isl_stride_info_free(
4009 __isl_take isl_stride_info *si);
4013 To check whether the description of a set, relation or function depends
4014 on one or more given dimensions,
4015 the following functions can be used.
4017 #include <isl/constraint.h>
4018 isl_bool isl_constraint_involves_dims(
4019 __isl_keep isl_constraint *constraint,
4020 enum isl_dim_type type, unsigned first, unsigned n);
4022 #include <isl/set.h>
4023 isl_bool isl_basic_set_involves_dims(
4024 __isl_keep isl_basic_set *bset,
4025 enum isl_dim_type type, unsigned first, unsigned n);
4026 isl_bool isl_set_involves_dims(__isl_keep isl_set *set,
4027 enum isl_dim_type type, unsigned first, unsigned n);
4029 #include <isl/map.h>
4030 isl_bool isl_basic_map_involves_dims(
4031 __isl_keep isl_basic_map *bmap,
4032 enum isl_dim_type type, unsigned first, unsigned n);
4033 isl_bool isl_map_involves_dims(__isl_keep isl_map *map,
4034 enum isl_dim_type type, unsigned first, unsigned n);
4036 #include <isl/union_map.h>
4037 isl_bool isl_union_map_involves_dims(
4038 __isl_keep isl_union_map *umap,
4039 enum isl_dim_type type, unsigned first, unsigned n);
4041 #include <isl/aff.h>
4042 isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
4043 enum isl_dim_type type, unsigned first, unsigned n);
4044 isl_bool isl_pw_aff_involves_dims(
4045 __isl_keep isl_pw_aff *pwaff,
4046 enum isl_dim_type type, unsigned first, unsigned n);
4047 isl_bool isl_multi_aff_involves_dims(
4048 __isl_keep isl_multi_aff *ma,
4049 enum isl_dim_type type, unsigned first, unsigned n);
4050 isl_bool isl_multi_pw_aff_involves_dims(
4051 __isl_keep isl_multi_pw_aff *mpa,
4052 enum isl_dim_type type, unsigned first, unsigned n);
4054 #include <isl/polynomial.h>
4055 isl_bool isl_qpolynomial_involves_dims(
4056 __isl_keep isl_qpolynomial *qp,
4057 enum isl_dim_type type, unsigned first, unsigned n);
4059 Similarly, the following functions can be used to check whether
4060 a given dimension is involved in any lower or upper bound.
4062 #include <isl/set.h>
4063 isl_bool isl_set_dim_has_any_lower_bound(
4064 __isl_keep isl_set *set,
4065 enum isl_dim_type type, unsigned pos);
4066 isl_bool isl_set_dim_has_any_upper_bound(
4067 __isl_keep isl_set *set,
4068 enum isl_dim_type type, unsigned pos);
4070 Note that these functions return true even if there is a bound on
4071 the dimension on only some of the basic sets of C<set>.
4072 To check if they have a bound for all of the basic sets in C<set>,
4073 use the following functions instead.
4075 #include <isl/set.h>
4076 isl_bool isl_set_dim_has_lower_bound(
4077 __isl_keep isl_set *set,
4078 enum isl_dim_type type, unsigned pos);
4079 isl_bool isl_set_dim_has_upper_bound(
4080 __isl_keep isl_set *set,
4081 enum isl_dim_type type, unsigned pos);
4085 To check whether a set is a parameter domain, use this function:
4087 isl_bool isl_set_is_params(__isl_keep isl_set *set);
4088 isl_bool isl_union_set_is_params(
4089 __isl_keep isl_union_set *uset);
4093 The following functions check whether the space of the given
4094 (basic) set or relation domain and/or range is a wrapped relation.
4096 #include <isl/space.h>
4097 isl_bool isl_space_is_wrapping(
4098 __isl_keep isl_space *space);
4099 isl_bool isl_space_domain_is_wrapping(
4100 __isl_keep isl_space *space);
4101 isl_bool isl_space_range_is_wrapping(
4102 __isl_keep isl_space *space);
4103 isl_bool isl_space_is_product(
4104 __isl_keep isl_space *space);
4106 #include <isl/set.h>
4107 isl_bool isl_basic_set_is_wrapping(
4108 __isl_keep isl_basic_set *bset);
4109 isl_bool isl_set_is_wrapping(__isl_keep isl_set *set);
4111 #include <isl/map.h>
4112 isl_bool isl_map_domain_is_wrapping(
4113 __isl_keep isl_map *map);
4114 isl_bool isl_map_range_is_wrapping(
4115 __isl_keep isl_map *map);
4116 isl_bool isl_map_is_product(__isl_keep isl_map *map);
4118 #include <isl/val.h>
4119 isl_bool isl_multi_val_range_is_wrapping(
4120 __isl_keep isl_multi_val *mv);
4122 #include <isl/aff.h>
4123 isl_bool isl_multi_aff_range_is_wrapping(
4124 __isl_keep isl_multi_aff *ma);
4125 isl_bool isl_multi_pw_aff_range_is_wrapping(
4126 __isl_keep isl_multi_pw_aff *mpa);
4127 isl_bool isl_multi_union_pw_aff_range_is_wrapping(
4128 __isl_keep isl_multi_union_pw_aff *mupa);
4130 The input to C<isl_space_is_wrapping> should
4131 be the space of a set, while that of
4132 C<isl_space_domain_is_wrapping> and
4133 C<isl_space_range_is_wrapping> should be the space of a relation.
4134 The input to C<isl_space_is_product> can be either the space
4135 of a set or that of a binary relation.
4136 In case the input is the space of a binary relation, it checks
4137 whether both domain and range are wrapping.
4139 =item * Internal Product
4141 isl_bool isl_basic_map_can_zip(
4142 __isl_keep isl_basic_map *bmap);
4143 isl_bool isl_map_can_zip(__isl_keep isl_map *map);
4145 Check whether the product of domain and range of the given relation
4147 i.e., whether both domain and range are nested relations.
4151 #include <isl/space.h>
4152 isl_bool isl_space_can_curry(
4153 __isl_keep isl_space *space);
4155 #include <isl/map.h>
4156 isl_bool isl_basic_map_can_curry(
4157 __isl_keep isl_basic_map *bmap);
4158 isl_bool isl_map_can_curry(__isl_keep isl_map *map);
4160 Check whether the domain of the (basic) relation is a wrapped relation.
4162 #include <isl/space.h>
4163 __isl_give isl_space *isl_space_uncurry(
4164 __isl_take isl_space *space);
4166 #include <isl/map.h>
4167 isl_bool isl_basic_map_can_uncurry(
4168 __isl_keep isl_basic_map *bmap);
4169 isl_bool isl_map_can_uncurry(__isl_keep isl_map *map);
4171 Check whether the range of the (basic) relation is a wrapped relation.
4173 #include <isl/space.h>
4174 isl_bool isl_space_can_range_curry(
4175 __isl_keep isl_space *space);
4177 #include <isl/map.h>
4178 isl_bool isl_map_can_range_curry(
4179 __isl_keep isl_map *map);
4181 Check whether the domain of the relation wrapped in the range of
4182 the input is itself a wrapped relation.
4184 =item * Special Values
4186 #include <isl/aff.h>
4187 isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff);
4188 isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
4189 isl_bool isl_multi_pw_aff_is_cst(
4190 __isl_keep isl_multi_pw_aff *mpa);
4192 Check whether the given expression is a constant.
4194 #include <isl/val.h>
4195 isl_bool isl_multi_val_involves_nan(
4196 __isl_keep isl_multi_val *mv);
4198 #include <isl/aff.h>
4199 isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff);
4200 isl_bool isl_multi_aff_involves_nan(
4201 __isl_keep isl_multi_aff *ma);
4202 isl_bool isl_pw_aff_involves_nan(
4203 __isl_keep isl_pw_aff *pa);
4204 isl_bool isl_pw_multi_aff_involves_nan(
4205 __isl_keep isl_pw_multi_aff *pma);
4206 isl_bool isl_multi_pw_aff_involves_nan(
4207 __isl_keep isl_multi_pw_aff *mpa);
4208 isl_bool isl_union_pw_aff_involves_nan(
4209 __isl_keep isl_union_pw_aff *upa);
4210 isl_bool isl_union_pw_multi_aff_involves_nan(
4211 __isl_keep isl_union_pw_multi_aff *upma);
4212 isl_bool isl_multi_union_pw_aff_involves_nan(
4213 __isl_keep isl_multi_union_pw_aff *mupa);
4215 #include <isl/polynomial.h>
4216 isl_bool isl_qpolynomial_is_nan(
4217 __isl_keep isl_qpolynomial *qp);
4218 isl_bool isl_qpolynomial_fold_is_nan(
4219 __isl_keep isl_qpolynomial_fold *fold);
4220 isl_bool isl_pw_qpolynomial_involves_nan(
4221 __isl_keep isl_pw_qpolynomial *pwqp);
4222 isl_bool isl_pw_qpolynomial_fold_involves_nan(
4223 __isl_keep isl_pw_qpolynomial_fold *pwf);
4224 isl_bool isl_union_pw_qpolynomial_involves_nan(
4225 __isl_keep isl_union_pw_qpolynomial *upwqp);
4226 isl_bool isl_union_pw_qpolynomial_fold_involves_nan(
4227 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4229 Check whether the given expression is equal to or involves NaN.
4231 #include <isl/aff.h>
4232 isl_bool isl_aff_plain_is_zero(
4233 __isl_keep isl_aff *aff);
4235 Check whether the affine expression is obviously zero.
4239 =head3 Binary Properties
4245 The following functions check whether two objects
4246 represent the same set, relation or function.
4247 The C<plain> variants only return true if the objects
4248 are obviously the same. That is, they may return false
4249 even if the objects are the same, but they will never
4250 return true if the objects are not the same.
4252 #include <isl/set.h>
4253 isl_bool isl_basic_set_plain_is_equal(
4254 __isl_keep isl_basic_set *bset1,
4255 __isl_keep isl_basic_set *bset2);
4256 isl_bool isl_basic_set_is_equal(
4257 __isl_keep isl_basic_set *bset1,
4258 __isl_keep isl_basic_set *bset2);
4259 isl_bool isl_set_plain_is_equal(
4260 __isl_keep isl_set *set1,
4261 __isl_keep isl_set *set2);
4262 isl_bool isl_set_is_equal(__isl_keep isl_set *set1,
4263 __isl_keep isl_set *set2);
4265 #include <isl/map.h>
4266 isl_bool isl_basic_map_is_equal(
4267 __isl_keep isl_basic_map *bmap1,
4268 __isl_keep isl_basic_map *bmap2);
4269 isl_bool isl_map_is_equal(__isl_keep isl_map *map1,
4270 __isl_keep isl_map *map2);
4271 isl_bool isl_map_plain_is_equal(
4272 __isl_keep isl_map *map1,
4273 __isl_keep isl_map *map2);
4275 #include <isl/union_set.h>
4276 isl_bool isl_union_set_is_equal(
4277 __isl_keep isl_union_set *uset1,
4278 __isl_keep isl_union_set *uset2);
4280 #include <isl/union_map.h>
4281 isl_bool isl_union_map_is_equal(
4282 __isl_keep isl_union_map *umap1,
4283 __isl_keep isl_union_map *umap2);
4285 #include <isl/aff.h>
4286 isl_bool isl_aff_plain_is_equal(
4287 __isl_keep isl_aff *aff1,
4288 __isl_keep isl_aff *aff2);
4289 isl_bool isl_multi_aff_plain_is_equal(
4290 __isl_keep isl_multi_aff *maff1,
4291 __isl_keep isl_multi_aff *maff2);
4292 isl_bool isl_pw_aff_plain_is_equal(
4293 __isl_keep isl_pw_aff *pwaff1,
4294 __isl_keep isl_pw_aff *pwaff2);
4295 isl_bool isl_pw_aff_is_equal(
4296 __isl_keep isl_pw_aff *pa1,
4297 __isl_keep isl_pw_aff *pa2);
4298 isl_bool isl_pw_multi_aff_plain_is_equal(
4299 __isl_keep isl_pw_multi_aff *pma1,
4300 __isl_keep isl_pw_multi_aff *pma2);
4301 isl_bool isl_pw_multi_aff_is_equal(
4302 __isl_keep isl_pw_multi_aff *pma1,
4303 __isl_keep isl_pw_multi_aff *pma2);
4304 isl_bool isl_multi_pw_aff_plain_is_equal(
4305 __isl_keep isl_multi_pw_aff *mpa1,
4306 __isl_keep isl_multi_pw_aff *mpa2);
4307 isl_bool isl_multi_pw_aff_is_equal(
4308 __isl_keep isl_multi_pw_aff *mpa1,
4309 __isl_keep isl_multi_pw_aff *mpa2);
4310 isl_bool isl_union_pw_aff_plain_is_equal(
4311 __isl_keep isl_union_pw_aff *upa1,
4312 __isl_keep isl_union_pw_aff *upa2);
4313 isl_bool isl_union_pw_multi_aff_plain_is_equal(
4314 __isl_keep isl_union_pw_multi_aff *upma1,
4315 __isl_keep isl_union_pw_multi_aff *upma2);
4316 isl_bool isl_multi_union_pw_aff_plain_is_equal(
4317 __isl_keep isl_multi_union_pw_aff *mupa1,
4318 __isl_keep isl_multi_union_pw_aff *mupa2);
4320 #include <isl/polynomial.h>
4321 isl_bool isl_union_pw_qpolynomial_plain_is_equal(
4322 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4323 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4324 isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal(
4325 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4326 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4328 =item * Disjointness
4330 #include <isl/set.h>
4331 isl_bool isl_basic_set_is_disjoint(
4332 __isl_keep isl_basic_set *bset1,
4333 __isl_keep isl_basic_set *bset2);
4334 isl_bool isl_set_plain_is_disjoint(
4335 __isl_keep isl_set *set1,
4336 __isl_keep isl_set *set2);
4337 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1,
4338 __isl_keep isl_set *set2);
4340 #include <isl/map.h>
4341 isl_bool isl_basic_map_is_disjoint(
4342 __isl_keep isl_basic_map *bmap1,
4343 __isl_keep isl_basic_map *bmap2);
4344 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1,
4345 __isl_keep isl_map *map2);
4347 #include <isl/union_set.h>
4348 isl_bool isl_union_set_is_disjoint(
4349 __isl_keep isl_union_set *uset1,
4350 __isl_keep isl_union_set *uset2);
4352 #include <isl/union_map.h>
4353 isl_bool isl_union_map_is_disjoint(
4354 __isl_keep isl_union_map *umap1,
4355 __isl_keep isl_union_map *umap2);
4359 isl_bool isl_basic_set_is_subset(
4360 __isl_keep isl_basic_set *bset1,
4361 __isl_keep isl_basic_set *bset2);
4362 isl_bool isl_set_is_subset(__isl_keep isl_set *set1,
4363 __isl_keep isl_set *set2);
4364 isl_bool isl_set_is_strict_subset(
4365 __isl_keep isl_set *set1,
4366 __isl_keep isl_set *set2);
4367 isl_bool isl_union_set_is_subset(
4368 __isl_keep isl_union_set *uset1,
4369 __isl_keep isl_union_set *uset2);
4370 isl_bool isl_union_set_is_strict_subset(
4371 __isl_keep isl_union_set *uset1,
4372 __isl_keep isl_union_set *uset2);
4373 isl_bool isl_basic_map_is_subset(
4374 __isl_keep isl_basic_map *bmap1,
4375 __isl_keep isl_basic_map *bmap2);
4376 isl_bool isl_basic_map_is_strict_subset(
4377 __isl_keep isl_basic_map *bmap1,
4378 __isl_keep isl_basic_map *bmap2);
4379 isl_bool isl_map_is_subset(
4380 __isl_keep isl_map *map1,
4381 __isl_keep isl_map *map2);
4382 isl_bool isl_map_is_strict_subset(
4383 __isl_keep isl_map *map1,
4384 __isl_keep isl_map *map2);
4385 isl_bool isl_union_map_is_subset(
4386 __isl_keep isl_union_map *umap1,
4387 __isl_keep isl_union_map *umap2);
4388 isl_bool isl_union_map_is_strict_subset(
4389 __isl_keep isl_union_map *umap1,
4390 __isl_keep isl_union_map *umap2);
4392 Check whether the first argument is a (strict) subset of the
4397 Every comparison function returns a negative value if the first
4398 argument is considered smaller than the second, a positive value
4399 if the first argument is considered greater and zero if the two
4400 constraints are considered the same by the comparison criterion.
4402 #include <isl/constraint.h>
4403 int isl_constraint_plain_cmp(
4404 __isl_keep isl_constraint *c1,
4405 __isl_keep isl_constraint *c2);
4407 This function is useful for sorting C<isl_constraint>s.
4408 The order depends on the internal representation of the inputs.
4409 The order is fixed over different calls to the function (assuming
4410 the internal representation of the inputs has not changed), but may
4411 change over different versions of C<isl>.
4413 #include <isl/constraint.h>
4414 int isl_constraint_cmp_last_non_zero(
4415 __isl_keep isl_constraint *c1,
4416 __isl_keep isl_constraint *c2);
4418 This function can be used to sort constraints that live in the same
4419 local space. Constraints that involve ``earlier'' dimensions or
4420 that have a smaller coefficient for the shared latest dimension
4421 are considered smaller than other constraints.
4422 This function only defines a B<partial> order.
4424 #include <isl/set.h>
4425 int isl_set_plain_cmp(__isl_keep isl_set *set1,
4426 __isl_keep isl_set *set2);
4428 This function is useful for sorting C<isl_set>s.
4429 The order depends on the internal representation of the inputs.
4430 The order is fixed over different calls to the function (assuming
4431 the internal representation of the inputs has not changed), but may
4432 change over different versions of C<isl>.
4434 #include <isl/aff.h>
4435 int isl_multi_aff_plain_cmp(
4436 __isl_keep isl_multi_aff *ma1,
4437 __isl_keep isl_multi_aff *ma2);
4438 int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
4439 __isl_keep isl_pw_aff *pa2);
4441 The functions C<isl_multi_aff_plain_cmp> and
4442 C<isl_pw_aff_plain_cmp> can be used to sort C<isl_multi_aff>s and
4443 C<isl_pw_aff>s. The order is not strictly defined.
4444 The current order sorts expressions that only involve
4445 earlier dimensions before those that involve later dimensions.
4449 =head2 Unary Operations
4455 __isl_give isl_set *isl_set_complement(
4456 __isl_take isl_set *set);
4457 __isl_give isl_map *isl_map_complement(
4458 __isl_take isl_map *map);
4462 #include <isl/space.h>
4463 __isl_give isl_space *isl_space_reverse(
4464 __isl_take isl_space *space);
4466 #include <isl/map.h>
4467 __isl_give isl_basic_map *isl_basic_map_reverse(
4468 __isl_take isl_basic_map *bmap);
4469 __isl_give isl_map *isl_map_reverse(
4470 __isl_take isl_map *map);
4472 #include <isl/union_map.h>
4473 __isl_give isl_union_map *isl_union_map_reverse(
4474 __isl_take isl_union_map *umap);
4478 #include <isl/space.h>
4479 __isl_give isl_space *isl_space_domain(
4480 __isl_take isl_space *space);
4481 __isl_give isl_space *isl_space_range(
4482 __isl_take isl_space *space);
4483 __isl_give isl_space *isl_space_params(
4484 __isl_take isl_space *space);
4486 #include <isl/local_space.h>
4487 __isl_give isl_local_space *isl_local_space_domain(
4488 __isl_take isl_local_space *ls);
4489 __isl_give isl_local_space *isl_local_space_range(
4490 __isl_take isl_local_space *ls);
4492 #include <isl/set.h>
4493 __isl_give isl_basic_set *isl_basic_set_project_out(
4494 __isl_take isl_basic_set *bset,
4495 enum isl_dim_type type, unsigned first, unsigned n);
4496 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
4497 enum isl_dim_type type, unsigned first, unsigned n);
4498 __isl_give isl_map *isl_set_project_onto_map(
4499 __isl_take isl_set *set,
4500 enum isl_dim_type type, unsigned first,
4502 __isl_give isl_basic_set *isl_basic_set_params(
4503 __isl_take isl_basic_set *bset);
4504 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
4506 The function C<isl_set_project_onto_map> returns a relation
4507 that projects the input set onto the given set dimensions.
4509 #include <isl/map.h>
4510 __isl_give isl_basic_map *isl_basic_map_project_out(
4511 __isl_take isl_basic_map *bmap,
4512 enum isl_dim_type type, unsigned first, unsigned n);
4513 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
4514 enum isl_dim_type type, unsigned first, unsigned n);
4515 __isl_give isl_basic_set *isl_basic_map_domain(
4516 __isl_take isl_basic_map *bmap);
4517 __isl_give isl_basic_set *isl_basic_map_range(
4518 __isl_take isl_basic_map *bmap);
4519 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
4520 __isl_give isl_set *isl_map_domain(
4521 __isl_take isl_map *bmap);
4522 __isl_give isl_set *isl_map_range(
4523 __isl_take isl_map *map);
4525 #include <isl/union_set.h>
4526 __isl_give isl_union_set *isl_union_set_project_out(
4527 __isl_take isl_union_set *uset,
4528 enum isl_dim_type type,
4529 unsigned first, unsigned n);
4530 __isl_give isl_set *isl_union_set_params(
4531 __isl_take isl_union_set *uset);
4533 The function C<isl_union_set_project_out> can only project out
4536 #include <isl/union_map.h>
4537 __isl_give isl_union_map *isl_union_map_project_out(
4538 __isl_take isl_union_map *umap,
4539 enum isl_dim_type type, unsigned first, unsigned n);
4540 __isl_give isl_union_map *
4541 isl_union_map_project_out_all_params(
4542 __isl_take isl_union_map *umap);
4543 __isl_give isl_set *isl_union_map_params(
4544 __isl_take isl_union_map *umap);
4545 __isl_give isl_union_set *isl_union_map_domain(
4546 __isl_take isl_union_map *umap);
4547 __isl_give isl_union_set *isl_union_map_range(
4548 __isl_take isl_union_map *umap);
4550 The function C<isl_union_map_project_out> can only project out
4553 #include <isl/aff.h>
4554 __isl_give isl_aff *isl_aff_project_domain_on_params(
4555 __isl_take isl_aff *aff);
4556 __isl_give isl_multi_aff *
4557 isl_multi_aff_project_domain_on_params(
4558 __isl_take isl_multi_aff *ma);
4559 __isl_give isl_pw_aff *
4560 isl_pw_aff_project_domain_on_params(
4561 __isl_take isl_pw_aff *pa);
4562 __isl_give isl_multi_pw_aff *
4563 isl_multi_pw_aff_project_domain_on_params(
4564 __isl_take isl_multi_pw_aff *mpa);
4565 __isl_give isl_pw_multi_aff *
4566 isl_pw_multi_aff_project_domain_on_params(
4567 __isl_take isl_pw_multi_aff *pma);
4568 __isl_give isl_set *isl_pw_aff_domain(
4569 __isl_take isl_pw_aff *pwaff);
4570 __isl_give isl_set *isl_pw_multi_aff_domain(
4571 __isl_take isl_pw_multi_aff *pma);
4572 __isl_give isl_set *isl_multi_pw_aff_domain(
4573 __isl_take isl_multi_pw_aff *mpa);
4574 __isl_give isl_union_set *isl_union_pw_aff_domain(
4575 __isl_take isl_union_pw_aff *upa);
4576 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
4577 __isl_take isl_union_pw_multi_aff *upma);
4578 __isl_give isl_union_set *
4579 isl_multi_union_pw_aff_domain(
4580 __isl_take isl_multi_union_pw_aff *mupa);
4581 __isl_give isl_set *isl_pw_aff_params(
4582 __isl_take isl_pw_aff *pwa);
4584 If no explicit domain was set on a zero-dimensional input to
4585 C<isl_multi_union_pw_aff_domain>, then this function will
4586 return a parameter set.
4588 #include <isl/polynomial.h>
4589 __isl_give isl_qpolynomial *
4590 isl_qpolynomial_project_domain_on_params(
4591 __isl_take isl_qpolynomial *qp);
4592 __isl_give isl_pw_qpolynomial *
4593 isl_pw_qpolynomial_project_domain_on_params(
4594 __isl_take isl_pw_qpolynomial *pwqp);
4595 __isl_give isl_pw_qpolynomial_fold *
4596 isl_pw_qpolynomial_fold_project_domain_on_params(
4597 __isl_take isl_pw_qpolynomial_fold *pwf);
4598 __isl_give isl_set *isl_pw_qpolynomial_domain(
4599 __isl_take isl_pw_qpolynomial *pwqp);
4600 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4601 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4602 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4603 __isl_take isl_union_pw_qpolynomial *upwqp);
4605 #include <isl/space.h>
4606 __isl_give isl_space *isl_space_domain_map(
4607 __isl_take isl_space *space);
4608 __isl_give isl_space *isl_space_range_map(
4609 __isl_take isl_space *space);
4611 #include <isl/map.h>
4612 __isl_give isl_map *isl_set_wrapped_domain_map(
4613 __isl_take isl_set *set);
4614 __isl_give isl_basic_map *isl_basic_map_domain_map(
4615 __isl_take isl_basic_map *bmap);
4616 __isl_give isl_basic_map *isl_basic_map_range_map(
4617 __isl_take isl_basic_map *bmap);
4618 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
4619 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
4621 #include <isl/union_map.h>
4622 __isl_give isl_union_map *isl_union_map_domain_map(
4623 __isl_take isl_union_map *umap);
4624 __isl_give isl_union_pw_multi_aff *
4625 isl_union_map_domain_map_union_pw_multi_aff(
4626 __isl_take isl_union_map *umap);
4627 __isl_give isl_union_map *isl_union_map_range_map(
4628 __isl_take isl_union_map *umap);
4629 __isl_give isl_union_map *
4630 isl_union_set_wrapped_domain_map(
4631 __isl_take isl_union_set *uset);
4633 The functions above construct a (basic, regular or union) relation
4634 that maps (a wrapped version of) the input relation to its domain or range.
4635 C<isl_set_wrapped_domain_map> maps the input set to the domain
4636 of its wrapped relation.
4640 __isl_give isl_basic_set *isl_basic_set_eliminate(
4641 __isl_take isl_basic_set *bset,
4642 enum isl_dim_type type,
4643 unsigned first, unsigned n);
4644 __isl_give isl_set *isl_set_eliminate(
4645 __isl_take isl_set *set, enum isl_dim_type type,
4646 unsigned first, unsigned n);
4647 __isl_give isl_basic_map *isl_basic_map_eliminate(
4648 __isl_take isl_basic_map *bmap,
4649 enum isl_dim_type type,
4650 unsigned first, unsigned n);
4651 __isl_give isl_map *isl_map_eliminate(
4652 __isl_take isl_map *map, enum isl_dim_type type,
4653 unsigned first, unsigned n);
4655 Eliminate the coefficients for the given dimensions from the constraints,
4656 without removing the dimensions.
4658 =item * Constructing a set from a parameter domain
4660 A zero-dimensional (local) space or (basic) set can be constructed
4661 on a given parameter domain using the following functions.
4663 #include <isl/space.h>
4664 __isl_give isl_space *isl_space_set_from_params(
4665 __isl_take isl_space *space);
4667 #include <isl/local_space.h>
4668 __isl_give isl_local_space *
4669 isl_local_space_set_from_params(
4670 __isl_take isl_local_space *ls);
4672 #include <isl/set.h>
4673 __isl_give isl_basic_set *isl_basic_set_from_params(
4674 __isl_take isl_basic_set *bset);
4675 __isl_give isl_set *isl_set_from_params(
4676 __isl_take isl_set *set);
4678 =item * Constructing a relation from one or two sets
4680 Create a relation with the given set(s) as domain and/or range.
4681 If only the domain or the range is specified, then
4682 the range or domain of the created relation is a zero-dimensional
4683 flat anonymous space.
4685 #include <isl/space.h>
4686 __isl_give isl_space *isl_space_from_domain(
4687 __isl_take isl_space *space);
4688 __isl_give isl_space *isl_space_from_range(
4689 __isl_take isl_space *space);
4690 __isl_give isl_space *isl_space_map_from_set(
4691 __isl_take isl_space *space);
4692 __isl_give isl_space *isl_space_map_from_domain_and_range(
4693 __isl_take isl_space *domain,
4694 __isl_take isl_space *range);
4696 #include <isl/local_space.h>
4697 __isl_give isl_local_space *isl_local_space_from_domain(
4698 __isl_take isl_local_space *ls);
4700 #include <isl/map.h>
4701 __isl_give isl_map *isl_map_from_domain(
4702 __isl_take isl_set *set);
4703 __isl_give isl_map *isl_map_from_range(
4704 __isl_take isl_set *set);
4706 #include <isl/union_map.h>
4707 __isl_give isl_union_map *isl_union_map_from_domain(
4708 __isl_take isl_union_set *uset);
4709 __isl_give isl_union_map *isl_union_map_from_range(
4710 __isl_take isl_union_set *uset);
4711 __isl_give isl_union_map *
4712 isl_union_map_from_domain_and_range(
4713 __isl_take isl_union_set *domain,
4714 __isl_take isl_union_set *range);
4716 #include <isl/val.h>
4717 __isl_give isl_multi_val *isl_multi_val_from_range(
4718 __isl_take isl_multi_val *mv);
4720 #include <isl/aff.h>
4721 __isl_give isl_aff *isl_aff_from_range(
4722 __isl_take isl_aff *aff);
4723 __isl_give isl_multi_aff *isl_multi_aff_from_range(
4724 __isl_take isl_multi_aff *ma);
4725 __isl_give isl_pw_aff *isl_pw_aff_from_range(
4726 __isl_take isl_pw_aff *pwa);
4727 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
4728 __isl_take isl_multi_pw_aff *mpa);
4729 __isl_give isl_multi_union_pw_aff *
4730 isl_multi_union_pw_aff_from_range(
4731 __isl_take isl_multi_union_pw_aff *mupa);
4732 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4733 __isl_take isl_set *set);
4734 __isl_give isl_union_pw_multi_aff *
4735 isl_union_pw_multi_aff_from_domain(
4736 __isl_take isl_union_set *uset);
4738 #include <isl/polynomial.h>
4739 __isl_give isl_pw_qpolynomial *
4740 isl_pw_qpolynomial_from_range(
4741 __isl_take isl_pw_qpolynomial *pwqp);
4742 __isl_give isl_pw_qpolynomial_fold *
4743 isl_pw_qpolynomial_fold_from_range(
4744 __isl_take isl_pw_qpolynomial_fold *pwf);
4748 #include <isl/set.h>
4749 __isl_give isl_basic_set *isl_basic_set_fix_si(
4750 __isl_take isl_basic_set *bset,
4751 enum isl_dim_type type, unsigned pos, int value);
4752 __isl_give isl_basic_set *isl_basic_set_fix_val(
4753 __isl_take isl_basic_set *bset,
4754 enum isl_dim_type type, unsigned pos,
4755 __isl_take isl_val *v);
4756 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
4757 enum isl_dim_type type, unsigned pos, int value);
4758 __isl_give isl_set *isl_set_fix_val(
4759 __isl_take isl_set *set,
4760 enum isl_dim_type type, unsigned pos,
4761 __isl_take isl_val *v);
4763 #include <isl/map.h>
4764 __isl_give isl_basic_map *isl_basic_map_fix_si(
4765 __isl_take isl_basic_map *bmap,
4766 enum isl_dim_type type, unsigned pos, int value);
4767 __isl_give isl_basic_map *isl_basic_map_fix_val(
4768 __isl_take isl_basic_map *bmap,
4769 enum isl_dim_type type, unsigned pos,
4770 __isl_take isl_val *v);
4771 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
4772 enum isl_dim_type type, unsigned pos, int value);
4773 __isl_give isl_map *isl_map_fix_val(
4774 __isl_take isl_map *map,
4775 enum isl_dim_type type, unsigned pos,
4776 __isl_take isl_val *v);
4778 #include <isl/aff.h>
4779 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
4780 __isl_take isl_pw_multi_aff *pma,
4781 enum isl_dim_type type, unsigned pos, int value);
4783 #include <isl/polynomial.h>
4784 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
4785 __isl_take isl_pw_qpolynomial *pwqp,
4786 enum isl_dim_type type, unsigned n,
4787 __isl_take isl_val *v);
4788 __isl_give isl_pw_qpolynomial_fold *
4789 isl_pw_qpolynomial_fold_fix_val(
4790 __isl_take isl_pw_qpolynomial_fold *pwf,
4791 enum isl_dim_type type, unsigned n,
4792 __isl_take isl_val *v);
4794 Intersect the set, relation or function domain
4795 with the hyperplane where the given
4796 dimension has the fixed given value.
4798 #include <isl/set.h>
4799 __isl_give isl_basic_set *
4800 isl_basic_set_lower_bound_val(
4801 __isl_take isl_basic_set *bset,
4802 enum isl_dim_type type, unsigned pos,
4803 __isl_take isl_val *value);
4804 __isl_give isl_basic_set *
4805 isl_basic_set_upper_bound_val(
4806 __isl_take isl_basic_set *bset,
4807 enum isl_dim_type type, unsigned pos,
4808 __isl_take isl_val *value);
4809 __isl_give isl_set *isl_set_lower_bound_si(
4810 __isl_take isl_set *set,
4811 enum isl_dim_type type, unsigned pos, int value);
4812 __isl_give isl_set *isl_set_lower_bound_val(
4813 __isl_take isl_set *set,
4814 enum isl_dim_type type, unsigned pos,
4815 __isl_take isl_val *value);
4816 __isl_give isl_set *isl_set_upper_bound_si(
4817 __isl_take isl_set *set,
4818 enum isl_dim_type type, unsigned pos, int value);
4819 __isl_give isl_set *isl_set_upper_bound_val(
4820 __isl_take isl_set *set,
4821 enum isl_dim_type type, unsigned pos,
4822 __isl_take isl_val *value);
4824 #include <isl/map.h>
4825 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
4826 __isl_take isl_basic_map *bmap,
4827 enum isl_dim_type type, unsigned pos, int value);
4828 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
4829 __isl_take isl_basic_map *bmap,
4830 enum isl_dim_type type, unsigned pos, int value);
4831 __isl_give isl_map *isl_map_lower_bound_si(
4832 __isl_take isl_map *map,
4833 enum isl_dim_type type, unsigned pos, int value);
4834 __isl_give isl_map *isl_map_upper_bound_si(
4835 __isl_take isl_map *map,
4836 enum isl_dim_type type, unsigned pos, int value);
4838 Intersect the set or relation with the half-space where the given
4839 dimension has a value bounded by the fixed given integer value.
4841 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
4842 enum isl_dim_type type1, int pos1,
4843 enum isl_dim_type type2, int pos2);
4844 __isl_give isl_basic_map *isl_basic_map_equate(
4845 __isl_take isl_basic_map *bmap,
4846 enum isl_dim_type type1, int pos1,
4847 enum isl_dim_type type2, int pos2);
4848 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
4849 enum isl_dim_type type1, int pos1,
4850 enum isl_dim_type type2, int pos2);
4852 Intersect the set or relation with the hyperplane where the given
4853 dimensions are equal to each other.
4855 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
4856 enum isl_dim_type type1, int pos1,
4857 enum isl_dim_type type2, int pos2);
4859 Intersect the relation with the hyperplane where the given
4860 dimensions have opposite values.
4862 __isl_give isl_map *isl_map_order_le(
4863 __isl_take isl_map *map,
4864 enum isl_dim_type type1, int pos1,
4865 enum isl_dim_type type2, int pos2);
4866 __isl_give isl_basic_map *isl_basic_map_order_ge(
4867 __isl_take isl_basic_map *bmap,
4868 enum isl_dim_type type1, int pos1,
4869 enum isl_dim_type type2, int pos2);
4870 __isl_give isl_map *isl_map_order_ge(
4871 __isl_take isl_map *map,
4872 enum isl_dim_type type1, int pos1,
4873 enum isl_dim_type type2, int pos2);
4874 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
4875 enum isl_dim_type type1, int pos1,
4876 enum isl_dim_type type2, int pos2);
4877 __isl_give isl_basic_map *isl_basic_map_order_gt(
4878 __isl_take isl_basic_map *bmap,
4879 enum isl_dim_type type1, int pos1,
4880 enum isl_dim_type type2, int pos2);
4881 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
4882 enum isl_dim_type type1, int pos1,
4883 enum isl_dim_type type2, int pos2);
4885 Intersect the relation with the half-space where the given
4886 dimensions satisfy the given ordering.
4888 #include <isl/union_set.h>
4889 __isl_give isl_union_map *isl_union_map_remove_map_if(
4890 __isl_take isl_union_map *umap,
4891 isl_bool (*fn)(__isl_keep isl_map *map,
4892 void *user), void *user);
4894 This function calls the callback function once for each
4895 pair of spaces for which there are elements in the input.
4896 If the callback returns C<isl_bool_true>, then all those elements
4897 are removed from the result. The only remaining elements in the output
4898 are then those for which the callback returns C<isl_bool_false>.
4902 #include <isl/aff.h>
4903 __isl_give isl_basic_set *isl_aff_zero_basic_set(
4904 __isl_take isl_aff *aff);
4905 __isl_give isl_basic_set *isl_aff_neg_basic_set(
4906 __isl_take isl_aff *aff);
4907 __isl_give isl_set *isl_pw_aff_pos_set(
4908 __isl_take isl_pw_aff *pa);
4909 __isl_give isl_set *isl_pw_aff_nonneg_set(
4910 __isl_take isl_pw_aff *pwaff);
4911 __isl_give isl_set *isl_pw_aff_zero_set(
4912 __isl_take isl_pw_aff *pwaff);
4913 __isl_give isl_set *isl_pw_aff_non_zero_set(
4914 __isl_take isl_pw_aff *pwaff);
4915 __isl_give isl_union_set *
4916 isl_union_pw_aff_zero_union_set(
4917 __isl_take isl_union_pw_aff *upa);
4918 __isl_give isl_union_set *
4919 isl_multi_union_pw_aff_zero_union_set(
4920 __isl_take isl_multi_union_pw_aff *mupa);
4922 The function C<isl_aff_neg_basic_set> returns a basic set
4923 containing those elements in the domain space
4924 of C<aff> where C<aff> is negative.
4925 The function C<isl_pw_aff_nonneg_set> returns a set
4926 containing those elements in the domain
4927 of C<pwaff> where C<pwaff> is non-negative.
4928 The function C<isl_multi_union_pw_aff_zero_union_set>
4929 returns a union set containing those elements
4930 in the domains of its elements where they are all zero.
4934 __isl_give isl_map *isl_set_identity(
4935 __isl_take isl_set *set);
4936 __isl_give isl_union_map *isl_union_set_identity(
4937 __isl_take isl_union_set *uset);
4938 __isl_give isl_union_pw_multi_aff *
4939 isl_union_set_identity_union_pw_multi_aff(
4940 __isl_take isl_union_set *uset);
4942 Construct an identity relation on the given (union) set.
4944 =item * Function Extraction
4946 A piecewise quasi affine expression that is equal to 1 on a set
4947 and 0 outside the set can be created using the following function.
4949 #include <isl/aff.h>
4950 __isl_give isl_pw_aff *isl_set_indicator_function(
4951 __isl_take isl_set *set);
4953 A piecewise multiple quasi affine expression can be extracted
4954 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
4955 and the C<isl_map> is single-valued.
4956 In case of a conversion from an C<isl_union_map>
4957 to an C<isl_union_pw_multi_aff>, these properties need to hold
4958 in each domain space.
4959 A conversion to a C<isl_multi_union_pw_aff> additionally
4960 requires that the input is non-empty and involves only a single
4963 #include <isl/aff.h>
4964 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
4965 __isl_take isl_set *set);
4966 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
4967 __isl_take isl_map *map);
4969 __isl_give isl_union_pw_multi_aff *
4970 isl_union_pw_multi_aff_from_union_set(
4971 __isl_take isl_union_set *uset);
4972 __isl_give isl_union_pw_multi_aff *
4973 isl_union_pw_multi_aff_from_union_map(
4974 __isl_take isl_union_map *umap);
4976 __isl_give isl_multi_union_pw_aff *
4977 isl_multi_union_pw_aff_from_union_map(
4978 __isl_take isl_union_map *umap);
4982 __isl_give isl_basic_set *isl_basic_map_deltas(
4983 __isl_take isl_basic_map *bmap);
4984 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
4985 __isl_give isl_union_set *isl_union_map_deltas(
4986 __isl_take isl_union_map *umap);
4988 These functions return a (basic) set containing the differences
4989 between image elements and corresponding domain elements in the input.
4991 __isl_give isl_basic_map *isl_basic_map_deltas_map(
4992 __isl_take isl_basic_map *bmap);
4993 __isl_give isl_map *isl_map_deltas_map(
4994 __isl_take isl_map *map);
4995 __isl_give isl_union_map *isl_union_map_deltas_map(
4996 __isl_take isl_union_map *umap);
4998 The functions above construct a (basic, regular or union) relation
4999 that maps (a wrapped version of) the input relation to its delta set.
5003 Simplify the representation of a set, relation or functions by trying
5004 to combine pairs of basic sets or relations into a single
5005 basic set or relation.
5007 #include <isl/set.h>
5008 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
5010 #include <isl/map.h>
5011 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
5013 #include <isl/union_set.h>
5014 __isl_give isl_union_set *isl_union_set_coalesce(
5015 __isl_take isl_union_set *uset);
5017 #include <isl/union_map.h>
5018 __isl_give isl_union_map *isl_union_map_coalesce(
5019 __isl_take isl_union_map *umap);
5021 #include <isl/aff.h>
5022 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
5023 __isl_take isl_pw_aff *pwqp);
5024 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
5025 __isl_take isl_pw_multi_aff *pma);
5026 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
5027 __isl_take isl_multi_pw_aff *mpa);
5028 __isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce(
5029 __isl_take isl_union_pw_aff *upa);
5030 __isl_give isl_union_pw_multi_aff *
5031 isl_union_pw_multi_aff_coalesce(
5032 __isl_take isl_union_pw_multi_aff *upma);
5033 __isl_give isl_multi_union_pw_aff *
5034 isl_multi_union_pw_aff_coalesce(
5035 __isl_take isl_multi_union_pw_aff *aff);
5037 #include <isl/polynomial.h>
5038 __isl_give isl_pw_qpolynomial_fold *
5039 isl_pw_qpolynomial_fold_coalesce(
5040 __isl_take isl_pw_qpolynomial_fold *pwf);
5041 __isl_give isl_union_pw_qpolynomial *
5042 isl_union_pw_qpolynomial_coalesce(
5043 __isl_take isl_union_pw_qpolynomial *upwqp);
5044 __isl_give isl_union_pw_qpolynomial_fold *
5045 isl_union_pw_qpolynomial_fold_coalesce(
5046 __isl_take isl_union_pw_qpolynomial_fold *upwf);
5048 One of the methods for combining pairs of basic sets or relations
5049 can result in coefficients that are much larger than those that appear
5050 in the constraints of the input. By default, the coefficients are
5051 not allowed to grow larger, but this can be changed by unsetting
5052 the following option.
5054 isl_stat isl_options_set_coalesce_bounded_wrapping(
5055 isl_ctx *ctx, int val);
5056 int isl_options_get_coalesce_bounded_wrapping(
5059 =item * Detecting equalities
5061 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
5062 __isl_take isl_basic_set *bset);
5063 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
5064 __isl_take isl_basic_map *bmap);
5065 __isl_give isl_set *isl_set_detect_equalities(
5066 __isl_take isl_set *set);
5067 __isl_give isl_map *isl_map_detect_equalities(
5068 __isl_take isl_map *map);
5069 __isl_give isl_union_set *isl_union_set_detect_equalities(
5070 __isl_take isl_union_set *uset);
5071 __isl_give isl_union_map *isl_union_map_detect_equalities(
5072 __isl_take isl_union_map *umap);
5074 Simplify the representation of a set or relation by detecting implicit
5077 =item * Removing redundant constraints
5079 #include <isl/set.h>
5080 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
5081 __isl_take isl_basic_set *bset);
5082 __isl_give isl_set *isl_set_remove_redundancies(
5083 __isl_take isl_set *set);
5085 #include <isl/union_set.h>
5086 __isl_give isl_union_set *
5087 isl_union_set_remove_redundancies(
5088 __isl_take isl_union_set *uset);
5090 #include <isl/map.h>
5091 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
5092 __isl_take isl_basic_map *bmap);
5093 __isl_give isl_map *isl_map_remove_redundancies(
5094 __isl_take isl_map *map);
5096 #include <isl/union_map.h>
5097 __isl_give isl_union_map *
5098 isl_union_map_remove_redundancies(
5099 __isl_take isl_union_map *umap);
5103 __isl_give isl_basic_set *isl_set_convex_hull(
5104 __isl_take isl_set *set);
5105 __isl_give isl_basic_map *isl_map_convex_hull(
5106 __isl_take isl_map *map);
5108 If the input set or relation has any existentially quantified
5109 variables, then the result of these operations is currently undefined.
5113 #include <isl/set.h>
5114 __isl_give isl_basic_set *
5115 isl_set_unshifted_simple_hull(
5116 __isl_take isl_set *set);
5117 __isl_give isl_basic_set *isl_set_simple_hull(
5118 __isl_take isl_set *set);
5119 __isl_give isl_basic_set *
5120 isl_set_plain_unshifted_simple_hull(
5121 __isl_take isl_set *set);
5122 __isl_give isl_basic_set *
5123 isl_set_unshifted_simple_hull_from_set_list(
5124 __isl_take isl_set *set,
5125 __isl_take isl_set_list *list);
5127 #include <isl/map.h>
5128 __isl_give isl_basic_map *
5129 isl_map_unshifted_simple_hull(
5130 __isl_take isl_map *map);
5131 __isl_give isl_basic_map *isl_map_simple_hull(
5132 __isl_take isl_map *map);
5133 __isl_give isl_basic_map *
5134 isl_map_plain_unshifted_simple_hull(
5135 __isl_take isl_map *map);
5136 __isl_give isl_basic_map *
5137 isl_map_unshifted_simple_hull_from_map_list(
5138 __isl_take isl_map *map,
5139 __isl_take isl_map_list *list);
5141 #include <isl/union_map.h>
5142 __isl_give isl_union_map *isl_union_map_simple_hull(
5143 __isl_take isl_union_map *umap);
5145 These functions compute a single basic set or relation
5146 that contains the whole input set or relation.
5147 In particular, the output is described by translates
5148 of the constraints describing the basic sets or relations in the input.
5149 In case of C<isl_set_unshifted_simple_hull>, only the original
5150 constraints are used, without any translation.
5151 In case of C<isl_set_plain_unshifted_simple_hull> and
5152 C<isl_map_plain_unshifted_simple_hull>, the result is described
5153 by original constraints that are obviously satisfied
5154 by the entire input set or relation.
5155 In case of C<isl_set_unshifted_simple_hull_from_set_list> and
5156 C<isl_map_unshifted_simple_hull_from_map_list>, the
5157 constraints are taken from the elements of the second argument.
5161 (See \autoref{s:simple hull}.)
5167 __isl_give isl_basic_set *isl_basic_set_affine_hull(
5168 __isl_take isl_basic_set *bset);
5169 __isl_give isl_basic_set *isl_set_affine_hull(
5170 __isl_take isl_set *set);
5171 __isl_give isl_union_set *isl_union_set_affine_hull(
5172 __isl_take isl_union_set *uset);
5173 __isl_give isl_basic_map *isl_basic_map_affine_hull(
5174 __isl_take isl_basic_map *bmap);
5175 __isl_give isl_basic_map *isl_map_affine_hull(
5176 __isl_take isl_map *map);
5177 __isl_give isl_union_map *isl_union_map_affine_hull(
5178 __isl_take isl_union_map *umap);
5180 In case of union sets and relations, the affine hull is computed
5183 =item * Polyhedral hull
5185 __isl_give isl_basic_set *isl_set_polyhedral_hull(
5186 __isl_take isl_set *set);
5187 __isl_give isl_basic_map *isl_map_polyhedral_hull(
5188 __isl_take isl_map *map);
5189 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
5190 __isl_take isl_union_set *uset);
5191 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
5192 __isl_take isl_union_map *umap);
5194 These functions compute a single basic set or relation
5195 not involving any existentially quantified variables
5196 that contains the whole input set or relation.
5197 In case of union sets and relations, the polyhedral hull is computed
5200 =item * Other approximations
5202 #include <isl/set.h>
5203 __isl_give isl_basic_set *
5204 isl_basic_set_drop_constraints_involving_dims(
5205 __isl_take isl_basic_set *bset,
5206 enum isl_dim_type type,
5207 unsigned first, unsigned n);
5208 __isl_give isl_basic_set *
5209 isl_basic_set_drop_constraints_not_involving_dims(
5210 __isl_take isl_basic_set *bset,
5211 enum isl_dim_type type,
5212 unsigned first, unsigned n);
5213 __isl_give isl_set *
5214 isl_set_drop_constraints_involving_dims(
5215 __isl_take isl_set *set,
5216 enum isl_dim_type type,
5217 unsigned first, unsigned n);
5218 __isl_give isl_set *
5219 isl_set_drop_constraints_not_involving_dims(
5220 __isl_take isl_set *set,
5221 enum isl_dim_type type,
5222 unsigned first, unsigned n);
5224 #include <isl/map.h>
5225 __isl_give isl_basic_map *
5226 isl_basic_map_drop_constraints_involving_dims(
5227 __isl_take isl_basic_map *bmap,
5228 enum isl_dim_type type,
5229 unsigned first, unsigned n);
5230 __isl_give isl_basic_map *
5231 isl_basic_map_drop_constraints_not_involving_dims(
5232 __isl_take isl_basic_map *bmap,
5233 enum isl_dim_type type,
5234 unsigned first, unsigned n);
5235 __isl_give isl_map *
5236 isl_map_drop_constraints_involving_dims(
5237 __isl_take isl_map *map,
5238 enum isl_dim_type type,
5239 unsigned first, unsigned n);
5240 __isl_give isl_map *
5241 isl_map_drop_constraints_not_involving_dims(
5242 __isl_take isl_map *map,
5243 enum isl_dim_type type,
5244 unsigned first, unsigned n);
5246 These functions drop any constraints (not) involving the specified dimensions.
5247 Note that the result depends on the representation of the input.
5249 #include <isl/polynomial.h>
5250 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5251 __isl_take isl_pw_qpolynomial *pwqp, int sign);
5252 __isl_give isl_union_pw_qpolynomial *
5253 isl_union_pw_qpolynomial_to_polynomial(
5254 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
5256 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
5257 the polynomial will be an overapproximation. If C<sign> is negative,
5258 it will be an underapproximation. If C<sign> is zero, the approximation
5259 will lie somewhere in between.
5263 __isl_give isl_basic_set *isl_basic_set_sample(
5264 __isl_take isl_basic_set *bset);
5265 __isl_give isl_basic_set *isl_set_sample(
5266 __isl_take isl_set *set);
5267 __isl_give isl_basic_map *isl_basic_map_sample(
5268 __isl_take isl_basic_map *bmap);
5269 __isl_give isl_basic_map *isl_map_sample(
5270 __isl_take isl_map *map);
5272 If the input (basic) set or relation is non-empty, then return
5273 a singleton subset of the input. Otherwise, return an empty set.
5275 =item * Optimization
5277 #include <isl/ilp.h>
5278 __isl_give isl_val *isl_basic_set_max_val(
5279 __isl_keep isl_basic_set *bset,
5280 __isl_keep isl_aff *obj);
5281 __isl_give isl_val *isl_set_min_val(
5282 __isl_keep isl_set *set,
5283 __isl_keep isl_aff *obj);
5284 __isl_give isl_val *isl_set_max_val(
5285 __isl_keep isl_set *set,
5286 __isl_keep isl_aff *obj);
5287 __isl_give isl_multi_val *
5288 isl_union_set_min_multi_union_pw_aff(
5289 __isl_keep isl_union_set *set,
5290 __isl_keep isl_multi_union_pw_aff *obj);
5292 Compute the minimum or maximum of the integer affine expression C<obj>
5293 over the points in C<set>, returning the result in C<opt>.
5294 The result is C<NULL> in case of an error, the optimal value in case
5295 there is one, negative infinity or infinity if the problem is unbounded and
5296 NaN if the problem is empty.
5298 #include <isl/ilp.h>
5299 __isl_give isl_val *isl_basic_set_dim_max_val(
5300 __isl_take isl_basic_set *bset, int pos);
5302 Return the maximal value attained by the given set dimension,
5303 independently of the parameter values and of any other dimensions.
5304 The result is C<NULL> in case of an error, the optimal value in case
5305 there is one, infinity if the problem is unbounded and
5306 NaN if the input is empty.
5308 =item * Parametric optimization
5310 __isl_give isl_pw_aff *isl_set_dim_min(
5311 __isl_take isl_set *set, int pos);
5312 __isl_give isl_pw_aff *isl_set_dim_max(
5313 __isl_take isl_set *set, int pos);
5314 __isl_give isl_pw_aff *isl_map_dim_min(
5315 __isl_take isl_map *map, int pos);
5316 __isl_give isl_pw_aff *isl_map_dim_max(
5317 __isl_take isl_map *map, int pos);
5319 Compute the minimum or maximum of the given set or output dimension
5320 as a function of the parameters (and input dimensions), but independently
5321 of the other set or output dimensions.
5322 For lexicographic optimization, see L<"Lexicographic Optimization">.
5326 The following functions compute either the set of (rational) coefficient
5327 values of valid constraints for the given set or the set of (rational)
5328 values satisfying the constraints with coefficients from the given set.
5329 Internally, these two sets of functions perform essentially the
5330 same operations, except that the set of coefficients is assumed to
5331 be a cone, while the set of values may be any polyhedron.
5332 The current implementation is based on the Farkas lemma and
5333 Fourier-Motzkin elimination, but this may change or be made optional
5334 in future. In particular, future implementations may use different
5335 dualization algorithms or skip the elimination step.
5337 #include <isl/set.h>
5338 __isl_give isl_basic_set *isl_basic_set_coefficients(
5339 __isl_take isl_basic_set *bset);
5340 __isl_give isl_basic_set_list *
5341 isl_basic_set_list_coefficients(
5342 __isl_take isl_basic_set_list *list);
5343 __isl_give isl_basic_set *isl_set_coefficients(
5344 __isl_take isl_set *set);
5345 __isl_give isl_union_set *isl_union_set_coefficients(
5346 __isl_take isl_union_set *bset);
5347 __isl_give isl_basic_set *isl_basic_set_solutions(
5348 __isl_take isl_basic_set *bset);
5349 __isl_give isl_basic_set *isl_set_solutions(
5350 __isl_take isl_set *set);
5351 __isl_give isl_union_set *isl_union_set_solutions(
5352 __isl_take isl_union_set *bset);
5356 __isl_give isl_map *isl_map_fixed_power_val(
5357 __isl_take isl_map *map,
5358 __isl_take isl_val *exp);
5359 __isl_give isl_union_map *
5360 isl_union_map_fixed_power_val(
5361 __isl_take isl_union_map *umap,
5362 __isl_take isl_val *exp);
5364 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
5365 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
5366 of C<map> is computed.
5368 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
5370 __isl_give isl_union_map *isl_union_map_power(
5371 __isl_take isl_union_map *umap, int *exact);
5373 Compute a parametric representation for all positive powers I<k> of C<map>.
5374 The result maps I<k> to a nested relation corresponding to the
5375 I<k>th power of C<map>.
5376 The result may be an overapproximation. If the result is known to be exact,
5377 then C<*exact> is set to C<1>.
5379 =item * Transitive closure
5381 __isl_give isl_map *isl_map_transitive_closure(
5382 __isl_take isl_map *map, int *exact);
5383 __isl_give isl_union_map *isl_union_map_transitive_closure(
5384 __isl_take isl_union_map *umap, int *exact);
5386 Compute the transitive closure of C<map>.
5387 The result may be an overapproximation. If the result is known to be exact,
5388 then C<*exact> is set to C<1>.
5390 =item * Reaching path lengths
5392 __isl_give isl_map *isl_map_reaching_path_lengths(
5393 __isl_take isl_map *map, int *exact);
5395 Compute a relation that maps each element in the range of C<map>
5396 to the lengths of all paths composed of edges in C<map> that
5397 end up in the given element.
5398 The result may be an overapproximation. If the result is known to be exact,
5399 then C<*exact> is set to C<1>.
5400 To compute the I<maximal> path length, the resulting relation
5401 should be postprocessed by C<isl_map_lexmax>.
5402 In particular, if the input relation is a dependence relation
5403 (mapping sources to sinks), then the maximal path length corresponds
5404 to the free schedule.
5405 Note, however, that C<isl_map_lexmax> expects the maximum to be
5406 finite, so if the path lengths are unbounded (possibly due to
5407 the overapproximation), then you will get an error message.
5411 #include <isl/space.h>
5412 __isl_give isl_space *isl_space_wrap(
5413 __isl_take isl_space *space);
5414 __isl_give isl_space *isl_space_unwrap(
5415 __isl_take isl_space *space);
5417 #include <isl/local_space.h>
5418 __isl_give isl_local_space *isl_local_space_wrap(
5419 __isl_take isl_local_space *ls);
5421 #include <isl/set.h>
5422 __isl_give isl_basic_map *isl_basic_set_unwrap(
5423 __isl_take isl_basic_set *bset);
5424 __isl_give isl_map *isl_set_unwrap(
5425 __isl_take isl_set *set);
5427 #include <isl/map.h>
5428 __isl_give isl_basic_set *isl_basic_map_wrap(
5429 __isl_take isl_basic_map *bmap);
5430 __isl_give isl_set *isl_map_wrap(
5431 __isl_take isl_map *map);
5433 #include <isl/union_set.h>
5434 __isl_give isl_union_map *isl_union_set_unwrap(
5435 __isl_take isl_union_set *uset);
5437 #include <isl/union_map.h>
5438 __isl_give isl_union_set *isl_union_map_wrap(
5439 __isl_take isl_union_map *umap);
5441 The input to C<isl_space_unwrap> should
5442 be the space of a set, while that of
5443 C<isl_space_wrap> should be the space of a relation.
5444 Conversely, the output of C<isl_space_unwrap> is the space
5445 of a relation, while that of C<isl_space_wrap> is the space of a set.
5449 Remove any internal structure of domain (and range) of the given
5450 set or relation. If there is any such internal structure in the input,
5451 then the name of the space is also removed.
5453 #include <isl/space.h>
5454 __isl_give isl_space *isl_space_flatten_domain(
5455 __isl_take isl_space *space);
5456 __isl_give isl_space *isl_space_flatten_range(
5457 __isl_take isl_space *space);
5459 #include <isl/local_space.h>
5460 __isl_give isl_local_space *
5461 isl_local_space_flatten_domain(
5462 __isl_take isl_local_space *ls);
5463 __isl_give isl_local_space *
5464 isl_local_space_flatten_range(
5465 __isl_take isl_local_space *ls);
5467 #include <isl/set.h>
5468 __isl_give isl_basic_set *isl_basic_set_flatten(
5469 __isl_take isl_basic_set *bset);
5470 __isl_give isl_set *isl_set_flatten(
5471 __isl_take isl_set *set);
5473 #include <isl/map.h>
5474 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
5475 __isl_take isl_basic_map *bmap);
5476 __isl_give isl_basic_map *isl_basic_map_flatten_range(
5477 __isl_take isl_basic_map *bmap);
5478 __isl_give isl_map *isl_map_flatten_range(
5479 __isl_take isl_map *map);
5480 __isl_give isl_map *isl_map_flatten_domain(
5481 __isl_take isl_map *map);
5482 __isl_give isl_basic_map *isl_basic_map_flatten(
5483 __isl_take isl_basic_map *bmap);
5484 __isl_give isl_map *isl_map_flatten(
5485 __isl_take isl_map *map);
5487 #include <isl/val.h>
5488 __isl_give isl_multi_val *isl_multi_val_flatten_range(
5489 __isl_take isl_multi_val *mv);
5491 #include <isl/aff.h>
5492 __isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
5493 __isl_take isl_multi_aff *ma);
5494 __isl_give isl_multi_aff *isl_multi_aff_flatten_range(
5495 __isl_take isl_multi_aff *ma);
5496 __isl_give isl_multi_pw_aff *
5497 isl_multi_pw_aff_flatten_range(
5498 __isl_take isl_multi_pw_aff *mpa);
5499 __isl_give isl_multi_union_pw_aff *
5500 isl_multi_union_pw_aff_flatten_range(
5501 __isl_take isl_multi_union_pw_aff *mupa);
5503 #include <isl/map.h>
5504 __isl_give isl_map *isl_set_flatten_map(
5505 __isl_take isl_set *set);
5507 The function above constructs a relation
5508 that maps the input set to a flattened version of the set.
5512 Lift the input set to a space with extra dimensions corresponding
5513 to the existentially quantified variables in the input.
5514 In particular, the result lives in a wrapped map where the domain
5515 is the original space and the range corresponds to the original
5516 existentially quantified variables.
5518 #include <isl/set.h>
5519 __isl_give isl_basic_set *isl_basic_set_lift(
5520 __isl_take isl_basic_set *bset);
5521 __isl_give isl_set *isl_set_lift(
5522 __isl_take isl_set *set);
5523 __isl_give isl_union_set *isl_union_set_lift(
5524 __isl_take isl_union_set *uset);
5526 Given a local space that contains the existentially quantified
5527 variables of a set, a basic relation that, when applied to
5528 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
5529 can be constructed using the following function.
5531 #include <isl/local_space.h>
5532 __isl_give isl_basic_map *isl_local_space_lifting(
5533 __isl_take isl_local_space *ls);
5535 #include <isl/aff.h>
5536 __isl_give isl_multi_aff *isl_multi_aff_lift(
5537 __isl_take isl_multi_aff *maff,
5538 __isl_give isl_local_space **ls);
5540 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
5541 then it is assigned the local space that lies at the basis of
5542 the lifting applied.
5544 =item * Internal Product
5546 #include <isl/space.h>
5547 __isl_give isl_space *isl_space_zip(
5548 __isl_take isl_space *space);
5550 #include <isl/map.h>
5551 __isl_give isl_basic_map *isl_basic_map_zip(
5552 __isl_take isl_basic_map *bmap);
5553 __isl_give isl_map *isl_map_zip(
5554 __isl_take isl_map *map);
5556 #include <isl/union_map.h>
5557 __isl_give isl_union_map *isl_union_map_zip(
5558 __isl_take isl_union_map *umap);
5560 Given a relation with nested relations for domain and range,
5561 interchange the range of the domain with the domain of the range.
5565 #include <isl/space.h>
5566 __isl_give isl_space *isl_space_curry(
5567 __isl_take isl_space *space);
5568 __isl_give isl_space *isl_space_uncurry(
5569 __isl_take isl_space *space);
5571 #include <isl/map.h>
5572 __isl_give isl_basic_map *isl_basic_map_curry(
5573 __isl_take isl_basic_map *bmap);
5574 __isl_give isl_basic_map *isl_basic_map_uncurry(
5575 __isl_take isl_basic_map *bmap);
5576 __isl_give isl_map *isl_map_curry(
5577 __isl_take isl_map *map);
5578 __isl_give isl_map *isl_map_uncurry(
5579 __isl_take isl_map *map);
5581 #include <isl/union_map.h>
5582 __isl_give isl_union_map *isl_union_map_curry(
5583 __isl_take isl_union_map *umap);
5584 __isl_give isl_union_map *isl_union_map_uncurry(
5585 __isl_take isl_union_map *umap);
5587 Given a relation with a nested relation for domain,
5588 the C<curry> functions
5589 move the range of the nested relation out of the domain
5590 and use it as the domain of a nested relation in the range,
5591 with the original range as range of this nested relation.
5592 The C<uncurry> functions perform the inverse operation.
5594 #include <isl/space.h>
5595 __isl_give isl_space *isl_space_range_curry(
5596 __isl_take isl_space *space);
5598 #include <isl/map.h>
5599 __isl_give isl_map *isl_map_range_curry(
5600 __isl_take isl_map *map);
5602 #include <isl/union_map.h>
5603 __isl_give isl_union_map *isl_union_map_range_curry(
5604 __isl_take isl_union_map *umap);
5606 These functions apply the currying to the relation that
5607 is nested inside the range of the input.
5609 =item * Aligning parameters
5611 Change the order of the parameters of the given set, relation
5613 such that the first parameters match those of C<model>.
5614 This may involve the introduction of extra parameters.
5615 All parameters need to be named.
5617 #include <isl/space.h>
5618 __isl_give isl_space *isl_space_align_params(
5619 __isl_take isl_space *space1,
5620 __isl_take isl_space *space2)
5622 #include <isl/set.h>
5623 __isl_give isl_basic_set *isl_basic_set_align_params(
5624 __isl_take isl_basic_set *bset,
5625 __isl_take isl_space *model);
5626 __isl_give isl_set *isl_set_align_params(
5627 __isl_take isl_set *set,
5628 __isl_take isl_space *model);
5630 #include <isl/map.h>
5631 __isl_give isl_basic_map *isl_basic_map_align_params(
5632 __isl_take isl_basic_map *bmap,
5633 __isl_take isl_space *model);
5634 __isl_give isl_map *isl_map_align_params(
5635 __isl_take isl_map *map,
5636 __isl_take isl_space *model);
5638 #include <isl/val.h>
5639 __isl_give isl_multi_val *isl_multi_val_align_params(
5640 __isl_take isl_multi_val *mv,
5641 __isl_take isl_space *model);
5643 #include <isl/aff.h>
5644 __isl_give isl_aff *isl_aff_align_params(
5645 __isl_take isl_aff *aff,
5646 __isl_take isl_space *model);
5647 __isl_give isl_multi_aff *isl_multi_aff_align_params(
5648 __isl_take isl_multi_aff *multi,
5649 __isl_take isl_space *model);
5650 __isl_give isl_pw_aff *isl_pw_aff_align_params(
5651 __isl_take isl_pw_aff *pwaff,
5652 __isl_take isl_space *model);
5653 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
5654 __isl_take isl_pw_multi_aff *pma,
5655 __isl_take isl_space *model);
5656 __isl_give isl_union_pw_aff *
5657 isl_union_pw_aff_align_params(
5658 __isl_take isl_union_pw_aff *upa,
5659 __isl_take isl_space *model);
5660 __isl_give isl_union_pw_multi_aff *
5661 isl_union_pw_multi_aff_align_params(
5662 __isl_take isl_union_pw_multi_aff *upma,
5663 __isl_take isl_space *model);
5664 __isl_give isl_multi_union_pw_aff *
5665 isl_multi_union_pw_aff_align_params(
5666 __isl_take isl_multi_union_pw_aff *mupa,
5667 __isl_take isl_space *model);
5669 #include <isl/polynomial.h>
5670 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
5671 __isl_take isl_qpolynomial *qp,
5672 __isl_take isl_space *model);
5674 =item * Unary Arithmetic Operations
5676 #include <isl/set.h>
5677 __isl_give isl_set *isl_set_neg(
5678 __isl_take isl_set *set);
5679 #include <isl/map.h>
5680 __isl_give isl_map *isl_map_neg(
5681 __isl_take isl_map *map);
5683 C<isl_set_neg> constructs a set containing the opposites of
5684 the elements in its argument.
5685 The domain of the result of C<isl_map_neg> is the same
5686 as the domain of its argument. The corresponding range
5687 elements are the opposites of the corresponding range
5688 elements in the argument.
5690 #include <isl/val.h>
5691 __isl_give isl_multi_val *isl_multi_val_neg(
5692 __isl_take isl_multi_val *mv);
5694 #include <isl/aff.h>
5695 __isl_give isl_aff *isl_aff_neg(
5696 __isl_take isl_aff *aff);
5697 __isl_give isl_multi_aff *isl_multi_aff_neg(
5698 __isl_take isl_multi_aff *ma);
5699 __isl_give isl_pw_aff *isl_pw_aff_neg(
5700 __isl_take isl_pw_aff *pwaff);
5701 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg(
5702 __isl_take isl_pw_multi_aff *pma);
5703 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg(
5704 __isl_take isl_multi_pw_aff *mpa);
5705 __isl_give isl_union_pw_aff *isl_union_pw_aff_neg(
5706 __isl_take isl_union_pw_aff *upa);
5707 __isl_give isl_union_pw_multi_aff *
5708 isl_union_pw_multi_aff_neg(
5709 __isl_take isl_union_pw_multi_aff *upma);
5710 __isl_give isl_multi_union_pw_aff *
5711 isl_multi_union_pw_aff_neg(
5712 __isl_take isl_multi_union_pw_aff *mupa);
5713 __isl_give isl_aff *isl_aff_ceil(
5714 __isl_take isl_aff *aff);
5715 __isl_give isl_pw_aff *isl_pw_aff_ceil(
5716 __isl_take isl_pw_aff *pwaff);
5717 __isl_give isl_aff *isl_aff_floor(
5718 __isl_take isl_aff *aff);
5719 __isl_give isl_multi_aff *isl_multi_aff_floor(
5720 __isl_take isl_multi_aff *ma);
5721 __isl_give isl_pw_aff *isl_pw_aff_floor(
5722 __isl_take isl_pw_aff *pwaff);
5723 __isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
5724 __isl_take isl_union_pw_aff *upa);
5725 __isl_give isl_multi_union_pw_aff *
5726 isl_multi_union_pw_aff_floor(
5727 __isl_take isl_multi_union_pw_aff *mupa);
5729 #include <isl/aff.h>
5730 __isl_give isl_pw_aff *isl_pw_aff_list_min(
5731 __isl_take isl_pw_aff_list *list);
5732 __isl_give isl_pw_aff *isl_pw_aff_list_max(
5733 __isl_take isl_pw_aff_list *list);
5735 #include <isl/polynomial.h>
5736 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
5737 __isl_take isl_qpolynomial *qp);
5738 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
5739 __isl_take isl_pw_qpolynomial *pwqp);
5740 __isl_give isl_union_pw_qpolynomial *
5741 isl_union_pw_qpolynomial_neg(
5742 __isl_take isl_union_pw_qpolynomial *upwqp);
5743 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
5744 __isl_take isl_qpolynomial *qp,
5746 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
5747 __isl_take isl_pw_qpolynomial *pwqp,
5752 The following functions evaluate a function in a point.
5754 #include <isl/aff.h>
5755 __isl_give isl_val *isl_aff_eval(
5756 __isl_take isl_aff *aff,
5757 __isl_take isl_point *pnt);
5758 __isl_give isl_val *isl_pw_aff_eval(
5759 __isl_take isl_pw_aff *pa,
5760 __isl_take isl_point *pnt);
5762 #include <isl/polynomial.h>
5763 __isl_give isl_val *isl_pw_qpolynomial_eval(
5764 __isl_take isl_pw_qpolynomial *pwqp,
5765 __isl_take isl_point *pnt);
5766 __isl_give isl_val *isl_pw_qpolynomial_fold_eval(
5767 __isl_take isl_pw_qpolynomial_fold *pwf,
5768 __isl_take isl_point *pnt);
5769 __isl_give isl_val *isl_union_pw_qpolynomial_eval(
5770 __isl_take isl_union_pw_qpolynomial *upwqp,
5771 __isl_take isl_point *pnt);
5772 __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
5773 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5774 __isl_take isl_point *pnt);
5776 These functions return NaN when evaluated at a void point.
5777 Note that C<isl_pw_aff_eval> returns NaN when the function is evaluated outside
5778 its definition domain, while C<isl_pw_qpolynomial_eval> returns zero
5779 when the function is evaluated outside its explicit domain.
5781 =item * Dimension manipulation
5783 It is usually not advisable to directly change the (input or output)
5784 space of a set or a relation as this removes the name and the internal
5785 structure of the space. However, the functions below can be useful
5786 to add new parameters, assuming
5787 C<isl_set_align_params> and C<isl_map_align_params>
5790 #include <isl/space.h>
5791 __isl_give isl_space *isl_space_add_dims(
5792 __isl_take isl_space *space,
5793 enum isl_dim_type type, unsigned n);
5794 __isl_give isl_space *isl_space_insert_dims(
5795 __isl_take isl_space *space,
5796 enum isl_dim_type type, unsigned pos, unsigned n);
5797 __isl_give isl_space *isl_space_drop_dims(
5798 __isl_take isl_space *space,
5799 enum isl_dim_type type, unsigned first, unsigned n);
5800 __isl_give isl_space *isl_space_move_dims(
5801 __isl_take isl_space *space,
5802 enum isl_dim_type dst_type, unsigned dst_pos,
5803 enum isl_dim_type src_type, unsigned src_pos,
5806 #include <isl/local_space.h>
5807 __isl_give isl_local_space *isl_local_space_add_dims(
5808 __isl_take isl_local_space *ls,
5809 enum isl_dim_type type, unsigned n);
5810 __isl_give isl_local_space *isl_local_space_insert_dims(
5811 __isl_take isl_local_space *ls,
5812 enum isl_dim_type type, unsigned first, unsigned n);
5813 __isl_give isl_local_space *isl_local_space_drop_dims(
5814 __isl_take isl_local_space *ls,
5815 enum isl_dim_type type, unsigned first, unsigned n);
5817 #include <isl/set.h>
5818 __isl_give isl_basic_set *isl_basic_set_add_dims(
5819 __isl_take isl_basic_set *bset,
5820 enum isl_dim_type type, unsigned n);
5821 __isl_give isl_set *isl_set_add_dims(
5822 __isl_take isl_set *set,
5823 enum isl_dim_type type, unsigned n);
5824 __isl_give isl_basic_set *isl_basic_set_insert_dims(
5825 __isl_take isl_basic_set *bset,
5826 enum isl_dim_type type, unsigned pos,
5828 __isl_give isl_set *isl_set_insert_dims(
5829 __isl_take isl_set *set,
5830 enum isl_dim_type type, unsigned pos, unsigned n);
5831 __isl_give isl_basic_set *isl_basic_set_move_dims(
5832 __isl_take isl_basic_set *bset,
5833 enum isl_dim_type dst_type, unsigned dst_pos,
5834 enum isl_dim_type src_type, unsigned src_pos,
5836 __isl_give isl_set *isl_set_move_dims(
5837 __isl_take isl_set *set,
5838 enum isl_dim_type dst_type, unsigned dst_pos,
5839 enum isl_dim_type src_type, unsigned src_pos,
5842 #include <isl/map.h>
5843 __isl_give isl_basic_map *isl_basic_map_add_dims(
5844 __isl_take isl_basic_map *bmap,
5845 enum isl_dim_type type, unsigned n);
5846 __isl_give isl_map *isl_map_add_dims(
5847 __isl_take isl_map *map,
5848 enum isl_dim_type type, unsigned n);
5849 __isl_give isl_basic_map *isl_basic_map_insert_dims(
5850 __isl_take isl_basic_map *bmap,
5851 enum isl_dim_type type, unsigned pos,
5853 __isl_give isl_map *isl_map_insert_dims(
5854 __isl_take isl_map *map,
5855 enum isl_dim_type type, unsigned pos, unsigned n);
5856 __isl_give isl_basic_map *isl_basic_map_move_dims(
5857 __isl_take isl_basic_map *bmap,
5858 enum isl_dim_type dst_type, unsigned dst_pos,
5859 enum isl_dim_type src_type, unsigned src_pos,
5861 __isl_give isl_map *isl_map_move_dims(
5862 __isl_take isl_map *map,
5863 enum isl_dim_type dst_type, unsigned dst_pos,
5864 enum isl_dim_type src_type, unsigned src_pos,
5867 #include <isl/val.h>
5868 __isl_give isl_multi_val *isl_multi_val_insert_dims(
5869 __isl_take isl_multi_val *mv,
5870 enum isl_dim_type type, unsigned first, unsigned n);
5871 __isl_give isl_multi_val *isl_multi_val_add_dims(
5872 __isl_take isl_multi_val *mv,
5873 enum isl_dim_type type, unsigned n);
5874 __isl_give isl_multi_val *isl_multi_val_drop_dims(
5875 __isl_take isl_multi_val *mv,
5876 enum isl_dim_type type, unsigned first, unsigned n);
5878 #include <isl/aff.h>
5879 __isl_give isl_aff *isl_aff_insert_dims(
5880 __isl_take isl_aff *aff,
5881 enum isl_dim_type type, unsigned first, unsigned n);
5882 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
5883 __isl_take isl_multi_aff *ma,
5884 enum isl_dim_type type, unsigned first, unsigned n);
5885 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
5886 __isl_take isl_pw_aff *pwaff,
5887 enum isl_dim_type type, unsigned first, unsigned n);
5888 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
5889 __isl_take isl_multi_pw_aff *mpa,
5890 enum isl_dim_type type, unsigned first, unsigned n);
5891 __isl_give isl_aff *isl_aff_add_dims(
5892 __isl_take isl_aff *aff,
5893 enum isl_dim_type type, unsigned n);
5894 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
5895 __isl_take isl_multi_aff *ma,
5896 enum isl_dim_type type, unsigned n);
5897 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
5898 __isl_take isl_pw_aff *pwaff,
5899 enum isl_dim_type type, unsigned n);
5900 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
5901 __isl_take isl_multi_pw_aff *mpa,
5902 enum isl_dim_type type, unsigned n);
5903 __isl_give isl_aff *isl_aff_drop_dims(
5904 __isl_take isl_aff *aff,
5905 enum isl_dim_type type, unsigned first, unsigned n);
5906 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
5907 __isl_take isl_multi_aff *maff,
5908 enum isl_dim_type type, unsigned first, unsigned n);
5909 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
5910 __isl_take isl_pw_aff *pwaff,
5911 enum isl_dim_type type, unsigned first, unsigned n);
5912 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
5913 __isl_take isl_pw_multi_aff *pma,
5914 enum isl_dim_type type, unsigned first, unsigned n);
5915 __isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims(
5916 __isl_take isl_union_pw_aff *upa,
5917 enum isl_dim_type type, unsigned first, unsigned n);
5918 __isl_give isl_union_pw_multi_aff *
5919 isl_union_pw_multi_aff_drop_dims(
5920 __isl_take isl_union_pw_multi_aff *upma,
5921 enum isl_dim_type type,
5922 unsigned first, unsigned n);
5923 __isl_give isl_multi_union_pw_aff *
5924 isl_multi_union_pw_aff_drop_dims(
5925 __isl_take isl_multi_union_pw_aff *mupa,
5926 enum isl_dim_type type, unsigned first,
5928 __isl_give isl_aff *isl_aff_move_dims(
5929 __isl_take isl_aff *aff,
5930 enum isl_dim_type dst_type, unsigned dst_pos,
5931 enum isl_dim_type src_type, unsigned src_pos,
5933 __isl_give isl_multi_aff *isl_multi_aff_move_dims(
5934 __isl_take isl_multi_aff *ma,
5935 enum isl_dim_type dst_type, unsigned dst_pos,
5936 enum isl_dim_type src_type, unsigned src_pos,
5938 __isl_give isl_pw_aff *isl_pw_aff_move_dims(
5939 __isl_take isl_pw_aff *pa,
5940 enum isl_dim_type dst_type, unsigned dst_pos,
5941 enum isl_dim_type src_type, unsigned src_pos,
5943 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
5944 __isl_take isl_multi_pw_aff *pma,
5945 enum isl_dim_type dst_type, unsigned dst_pos,
5946 enum isl_dim_type src_type, unsigned src_pos,
5949 #include <isl/polynomial.h>
5950 __isl_give isl_union_pw_qpolynomial *
5951 isl_union_pw_qpolynomial_drop_dims(
5952 __isl_take isl_union_pw_qpolynomial *upwqp,
5953 enum isl_dim_type type,
5954 unsigned first, unsigned n);
5955 __isl_give isl_union_pw_qpolynomial_fold *
5956 isl_union_pw_qpolynomial_fold_drop_dims(
5957 __isl_take isl_union_pw_qpolynomial_fold *upwf,
5958 enum isl_dim_type type,
5959 unsigned first, unsigned n);
5961 The operations on union expressions can only manipulate parameters.
5965 =head2 Binary Operations
5967 The two arguments of a binary operation not only need to live
5968 in the same C<isl_ctx>, they currently also need to have
5969 the same (number of) parameters.
5971 =head3 Basic Operations
5975 =item * Intersection
5977 #include <isl/local_space.h>
5978 __isl_give isl_local_space *isl_local_space_intersect(
5979 __isl_take isl_local_space *ls1,
5980 __isl_take isl_local_space *ls2);
5982 #include <isl/set.h>
5983 __isl_give isl_basic_set *isl_basic_set_intersect_params(
5984 __isl_take isl_basic_set *bset1,
5985 __isl_take isl_basic_set *bset2);
5986 __isl_give isl_basic_set *isl_basic_set_intersect(
5987 __isl_take isl_basic_set *bset1,
5988 __isl_take isl_basic_set *bset2);
5989 __isl_give isl_basic_set *isl_basic_set_list_intersect(
5990 __isl_take struct isl_basic_set_list *list);
5991 __isl_give isl_set *isl_set_intersect_params(
5992 __isl_take isl_set *set,
5993 __isl_take isl_set *params);
5994 __isl_give isl_set *isl_set_intersect(
5995 __isl_take isl_set *set1,
5996 __isl_take isl_set *set2);
5998 #include <isl/map.h>
5999 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
6000 __isl_take isl_basic_map *bmap,
6001 __isl_take isl_basic_set *bset);
6002 __isl_give isl_basic_map *isl_basic_map_intersect_range(
6003 __isl_take isl_basic_map *bmap,
6004 __isl_take isl_basic_set *bset);
6005 __isl_give isl_basic_map *isl_basic_map_intersect(
6006 __isl_take isl_basic_map *bmap1,
6007 __isl_take isl_basic_map *bmap2);
6008 __isl_give isl_basic_map *isl_basic_map_list_intersect(
6009 __isl_take isl_basic_map_list *list);
6010 __isl_give isl_map *isl_map_intersect_params(
6011 __isl_take isl_map *map,
6012 __isl_take isl_set *params);
6013 __isl_give isl_map *isl_map_intersect_domain(
6014 __isl_take isl_map *map,
6015 __isl_take isl_set *set);
6016 __isl_give isl_map *isl_map_intersect_range(
6017 __isl_take isl_map *map,
6018 __isl_take isl_set *set);
6019 __isl_give isl_map *isl_map_intersect(
6020 __isl_take isl_map *map1,
6021 __isl_take isl_map *map2);
6022 __isl_give isl_map *
6023 isl_map_intersect_domain_factor_range(
6024 __isl_take isl_map *map,
6025 __isl_take isl_map *factor);
6026 __isl_give isl_map *
6027 isl_map_intersect_range_factor_range(
6028 __isl_take isl_map *map,
6029 __isl_take isl_map *factor);
6031 #include <isl/union_set.h>
6032 __isl_give isl_union_set *isl_union_set_intersect_params(
6033 __isl_take isl_union_set *uset,
6034 __isl_take isl_set *set);
6035 __isl_give isl_union_set *isl_union_set_intersect(
6036 __isl_take isl_union_set *uset1,
6037 __isl_take isl_union_set *uset2);
6039 #include <isl/union_map.h>
6040 __isl_give isl_union_map *isl_union_map_intersect_params(
6041 __isl_take isl_union_map *umap,
6042 __isl_take isl_set *set);
6043 __isl_give isl_union_map *isl_union_map_intersect_domain(
6044 __isl_take isl_union_map *umap,
6045 __isl_take isl_union_set *uset);
6046 __isl_give isl_union_map *isl_union_map_intersect_range(
6047 __isl_take isl_union_map *umap,
6048 __isl_take isl_union_set *uset);
6049 __isl_give isl_union_map *isl_union_map_intersect(
6050 __isl_take isl_union_map *umap1,
6051 __isl_take isl_union_map *umap2);
6052 __isl_give isl_union_map *
6053 isl_union_map_intersect_range_factor_range(
6054 __isl_take isl_union_map *umap,
6055 __isl_take isl_union_map *factor);
6057 #include <isl/aff.h>
6058 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
6059 __isl_take isl_pw_aff *pa,
6060 __isl_take isl_set *set);
6061 __isl_give isl_multi_pw_aff *
6062 isl_multi_pw_aff_intersect_domain(
6063 __isl_take isl_multi_pw_aff *mpa,
6064 __isl_take isl_set *domain);
6065 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
6066 __isl_take isl_pw_multi_aff *pma,
6067 __isl_take isl_set *set);
6068 __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain(
6069 __isl_take isl_union_pw_aff *upa,
6070 __isl_take isl_union_set *uset);
6071 __isl_give isl_union_pw_multi_aff *
6072 isl_union_pw_multi_aff_intersect_domain(
6073 __isl_take isl_union_pw_multi_aff *upma,
6074 __isl_take isl_union_set *uset);
6075 __isl_give isl_multi_union_pw_aff *
6076 isl_multi_union_pw_aff_intersect_domain(
6077 __isl_take isl_multi_union_pw_aff *mupa,
6078 __isl_take isl_union_set *uset);
6079 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
6080 __isl_take isl_pw_aff *pa,
6081 __isl_take isl_set *set);
6082 __isl_give isl_multi_pw_aff *
6083 isl_multi_pw_aff_intersect_params(
6084 __isl_take isl_multi_pw_aff *mpa,
6085 __isl_take isl_set *set);
6086 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
6087 __isl_take isl_pw_multi_aff *pma,
6088 __isl_take isl_set *set);
6089 __isl_give isl_union_pw_aff *
6090 isl_union_pw_aff_intersect_params(
6091 __isl_take isl_union_pw_aff *upa,
6092 __isl_give isl_union_pw_multi_aff *
6093 isl_union_pw_multi_aff_intersect_params(
6094 __isl_take isl_union_pw_multi_aff *upma,
6095 __isl_take isl_set *set);
6096 __isl_give isl_multi_union_pw_aff *
6097 isl_multi_union_pw_aff_intersect_params(
6098 __isl_take isl_multi_union_pw_aff *mupa,
6099 __isl_take isl_set *params);
6100 isl_multi_union_pw_aff_intersect_range(
6101 __isl_take isl_multi_union_pw_aff *mupa,
6102 __isl_take isl_set *set);
6104 #include <isl/polynomial.h>
6105 __isl_give isl_pw_qpolynomial *
6106 isl_pw_qpolynomial_intersect_domain(
6107 __isl_take isl_pw_qpolynomial *pwpq,
6108 __isl_take isl_set *set);
6109 __isl_give isl_union_pw_qpolynomial *
6110 isl_union_pw_qpolynomial_intersect_domain(
6111 __isl_take isl_union_pw_qpolynomial *upwpq,
6112 __isl_take isl_union_set *uset);
6113 __isl_give isl_union_pw_qpolynomial_fold *
6114 isl_union_pw_qpolynomial_fold_intersect_domain(
6115 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6116 __isl_take isl_union_set *uset);
6117 __isl_give isl_pw_qpolynomial *
6118 isl_pw_qpolynomial_intersect_params(
6119 __isl_take isl_pw_qpolynomial *pwpq,
6120 __isl_take isl_set *set);
6121 __isl_give isl_pw_qpolynomial_fold *
6122 isl_pw_qpolynomial_fold_intersect_params(
6123 __isl_take isl_pw_qpolynomial_fold *pwf,
6124 __isl_take isl_set *set);
6125 __isl_give isl_union_pw_qpolynomial *
6126 isl_union_pw_qpolynomial_intersect_params(
6127 __isl_take isl_union_pw_qpolynomial *upwpq,
6128 __isl_take isl_set *set);
6129 __isl_give isl_union_pw_qpolynomial_fold *
6130 isl_union_pw_qpolynomial_fold_intersect_params(
6131 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6132 __isl_take isl_set *set);
6134 The second argument to the C<_params> functions needs to be
6135 a parametric (basic) set. For the other functions, a parametric set
6136 for either argument is only allowed if the other argument is
6137 a parametric set as well.
6138 The list passed to C<isl_basic_set_list_intersect> needs to have
6139 at least one element and all elements need to live in the same space.
6140 The function C<isl_multi_union_pw_aff_intersect_range>
6141 restricts the input function to those shared domain elements
6142 that map to the specified range.
6146 #include <isl/set.h>
6147 __isl_give isl_set *isl_basic_set_union(
6148 __isl_take isl_basic_set *bset1,
6149 __isl_take isl_basic_set *bset2);
6150 __isl_give isl_set *isl_set_union(
6151 __isl_take isl_set *set1,
6152 __isl_take isl_set *set2);
6153 __isl_give isl_set *isl_set_list_union(
6154 __isl_take isl_set_list *list);
6156 #include <isl/map.h>
6157 __isl_give isl_map *isl_basic_map_union(
6158 __isl_take isl_basic_map *bmap1,
6159 __isl_take isl_basic_map *bmap2);
6160 __isl_give isl_map *isl_map_union(
6161 __isl_take isl_map *map1,
6162 __isl_take isl_map *map2);
6164 #include <isl/union_set.h>
6165 __isl_give isl_union_set *isl_union_set_union(
6166 __isl_take isl_union_set *uset1,
6167 __isl_take isl_union_set *uset2);
6168 __isl_give isl_union_set *isl_union_set_list_union(
6169 __isl_take isl_union_set_list *list);
6171 #include <isl/union_map.h>
6172 __isl_give isl_union_map *isl_union_map_union(
6173 __isl_take isl_union_map *umap1,
6174 __isl_take isl_union_map *umap2);
6176 The list passed to C<isl_set_list_union> needs to have
6177 at least one element and all elements need to live in the same space.
6179 =item * Set difference
6181 #include <isl/set.h>
6182 __isl_give isl_set *isl_set_subtract(
6183 __isl_take isl_set *set1,
6184 __isl_take isl_set *set2);
6186 #include <isl/map.h>
6187 __isl_give isl_map *isl_map_subtract(
6188 __isl_take isl_map *map1,
6189 __isl_take isl_map *map2);
6190 __isl_give isl_map *isl_map_subtract_domain(
6191 __isl_take isl_map *map,
6192 __isl_take isl_set *dom);
6193 __isl_give isl_map *isl_map_subtract_range(
6194 __isl_take isl_map *map,
6195 __isl_take isl_set *dom);
6197 #include <isl/union_set.h>
6198 __isl_give isl_union_set *isl_union_set_subtract(
6199 __isl_take isl_union_set *uset1,
6200 __isl_take isl_union_set *uset2);
6202 #include <isl/union_map.h>
6203 __isl_give isl_union_map *isl_union_map_subtract(
6204 __isl_take isl_union_map *umap1,
6205 __isl_take isl_union_map *umap2);
6206 __isl_give isl_union_map *isl_union_map_subtract_domain(
6207 __isl_take isl_union_map *umap,
6208 __isl_take isl_union_set *dom);
6209 __isl_give isl_union_map *isl_union_map_subtract_range(
6210 __isl_take isl_union_map *umap,
6211 __isl_take isl_union_set *dom);
6213 #include <isl/aff.h>
6214 __isl_give isl_pw_aff *isl_pw_aff_subtract_domain(
6215 __isl_take isl_pw_aff *pa,
6216 __isl_take isl_set *set);
6217 __isl_give isl_pw_multi_aff *
6218 isl_pw_multi_aff_subtract_domain(
6219 __isl_take isl_pw_multi_aff *pma,
6220 __isl_take isl_set *set);
6221 __isl_give isl_union_pw_aff *
6222 isl_union_pw_aff_subtract_domain(
6223 __isl_take isl_union_pw_aff *upa,
6224 __isl_take isl_union_set *uset);
6225 __isl_give isl_union_pw_multi_aff *
6226 isl_union_pw_multi_aff_subtract_domain(
6227 __isl_take isl_union_pw_multi_aff *upma,
6228 __isl_take isl_set *set);
6230 #include <isl/polynomial.h>
6231 __isl_give isl_pw_qpolynomial *
6232 isl_pw_qpolynomial_subtract_domain(
6233 __isl_take isl_pw_qpolynomial *pwpq,
6234 __isl_take isl_set *set);
6235 __isl_give isl_pw_qpolynomial_fold *
6236 isl_pw_qpolynomial_fold_subtract_domain(
6237 __isl_take isl_pw_qpolynomial_fold *pwf,
6238 __isl_take isl_set *set);
6239 __isl_give isl_union_pw_qpolynomial *
6240 isl_union_pw_qpolynomial_subtract_domain(
6241 __isl_take isl_union_pw_qpolynomial *upwpq,
6242 __isl_take isl_union_set *uset);
6243 __isl_give isl_union_pw_qpolynomial_fold *
6244 isl_union_pw_qpolynomial_fold_subtract_domain(
6245 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6246 __isl_take isl_union_set *uset);
6250 #include <isl/space.h>
6251 __isl_give isl_space *isl_space_join(
6252 __isl_take isl_space *left,
6253 __isl_take isl_space *right);
6255 #include <isl/map.h>
6256 __isl_give isl_basic_set *isl_basic_set_apply(
6257 __isl_take isl_basic_set *bset,
6258 __isl_take isl_basic_map *bmap);
6259 __isl_give isl_set *isl_set_apply(
6260 __isl_take isl_set *set,
6261 __isl_take isl_map *map);
6262 __isl_give isl_union_set *isl_union_set_apply(
6263 __isl_take isl_union_set *uset,
6264 __isl_take isl_union_map *umap);
6265 __isl_give isl_basic_map *isl_basic_map_apply_domain(
6266 __isl_take isl_basic_map *bmap1,
6267 __isl_take isl_basic_map *bmap2);
6268 __isl_give isl_basic_map *isl_basic_map_apply_range(
6269 __isl_take isl_basic_map *bmap1,
6270 __isl_take isl_basic_map *bmap2);
6271 __isl_give isl_map *isl_map_apply_domain(
6272 __isl_take isl_map *map1,
6273 __isl_take isl_map *map2);
6274 __isl_give isl_map *isl_map_apply_range(
6275 __isl_take isl_map *map1,
6276 __isl_take isl_map *map2);
6278 #include <isl/union_map.h>
6279 __isl_give isl_union_map *isl_union_map_apply_domain(
6280 __isl_take isl_union_map *umap1,
6281 __isl_take isl_union_map *umap2);
6282 __isl_give isl_union_map *isl_union_map_apply_range(
6283 __isl_take isl_union_map *umap1,
6284 __isl_take isl_union_map *umap2);
6286 #include <isl/aff.h>
6287 __isl_give isl_union_pw_aff *
6288 isl_multi_union_pw_aff_apply_aff(
6289 __isl_take isl_multi_union_pw_aff *mupa,
6290 __isl_take isl_aff *aff);
6291 __isl_give isl_union_pw_aff *
6292 isl_multi_union_pw_aff_apply_pw_aff(
6293 __isl_take isl_multi_union_pw_aff *mupa,
6294 __isl_take isl_pw_aff *pa);
6295 __isl_give isl_multi_union_pw_aff *
6296 isl_multi_union_pw_aff_apply_multi_aff(
6297 __isl_take isl_multi_union_pw_aff *mupa,
6298 __isl_take isl_multi_aff *ma);
6299 __isl_give isl_multi_union_pw_aff *
6300 isl_multi_union_pw_aff_apply_pw_multi_aff(
6301 __isl_take isl_multi_union_pw_aff *mupa,
6302 __isl_take isl_pw_multi_aff *pma);
6304 The result of C<isl_multi_union_pw_aff_apply_aff> is defined
6305 over the shared domain of the elements of the input. The dimension is
6306 required to be greater than zero.
6307 The C<isl_multi_union_pw_aff> argument of
6308 C<isl_multi_union_pw_aff_apply_multi_aff> is allowed to be zero-dimensional,
6309 but only if the range of the C<isl_multi_aff> argument
6310 is also zero-dimensional.
6311 Similarly for C<isl_multi_union_pw_aff_apply_pw_multi_aff>.
6313 #include <isl/polynomial.h>
6314 __isl_give isl_pw_qpolynomial_fold *
6315 isl_set_apply_pw_qpolynomial_fold(
6316 __isl_take isl_set *set,
6317 __isl_take isl_pw_qpolynomial_fold *pwf,
6319 __isl_give isl_pw_qpolynomial_fold *
6320 isl_map_apply_pw_qpolynomial_fold(
6321 __isl_take isl_map *map,
6322 __isl_take isl_pw_qpolynomial_fold *pwf,
6324 __isl_give isl_union_pw_qpolynomial_fold *
6325 isl_union_set_apply_union_pw_qpolynomial_fold(
6326 __isl_take isl_union_set *uset,
6327 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6329 __isl_give isl_union_pw_qpolynomial_fold *
6330 isl_union_map_apply_union_pw_qpolynomial_fold(
6331 __isl_take isl_union_map *umap,
6332 __isl_take isl_union_pw_qpolynomial_fold *upwf,
6335 The functions taking a map
6336 compose the given map with the given piecewise quasipolynomial reduction.
6337 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
6338 over all elements in the intersection of the range of the map
6339 and the domain of the piecewise quasipolynomial reduction
6340 as a function of an element in the domain of the map.
6341 The functions taking a set compute a bound over all elements in the
6342 intersection of the set and the domain of the
6343 piecewise quasipolynomial reduction.
6347 #include <isl/set.h>
6348 __isl_give isl_basic_set *
6349 isl_basic_set_preimage_multi_aff(
6350 __isl_take isl_basic_set *bset,
6351 __isl_take isl_multi_aff *ma);
6352 __isl_give isl_set *isl_set_preimage_multi_aff(
6353 __isl_take isl_set *set,
6354 __isl_take isl_multi_aff *ma);
6355 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
6356 __isl_take isl_set *set,
6357 __isl_take isl_pw_multi_aff *pma);
6358 __isl_give isl_set *isl_set_preimage_multi_pw_aff(
6359 __isl_take isl_set *set,
6360 __isl_take isl_multi_pw_aff *mpa);
6362 #include <isl/union_set.h>
6363 __isl_give isl_union_set *
6364 isl_union_set_preimage_multi_aff(
6365 __isl_take isl_union_set *uset,
6366 __isl_take isl_multi_aff *ma);
6367 __isl_give isl_union_set *
6368 isl_union_set_preimage_pw_multi_aff(
6369 __isl_take isl_union_set *uset,
6370 __isl_take isl_pw_multi_aff *pma);
6371 __isl_give isl_union_set *
6372 isl_union_set_preimage_union_pw_multi_aff(
6373 __isl_take isl_union_set *uset,
6374 __isl_take isl_union_pw_multi_aff *upma);
6376 #include <isl/map.h>
6377 __isl_give isl_basic_map *
6378 isl_basic_map_preimage_domain_multi_aff(
6379 __isl_take isl_basic_map *bmap,
6380 __isl_take isl_multi_aff *ma);
6381 __isl_give isl_map *isl_map_preimage_domain_multi_aff(
6382 __isl_take isl_map *map,
6383 __isl_take isl_multi_aff *ma);
6384 __isl_give isl_map *isl_map_preimage_range_multi_aff(
6385 __isl_take isl_map *map,
6386 __isl_take isl_multi_aff *ma);
6387 __isl_give isl_map *
6388 isl_map_preimage_domain_pw_multi_aff(
6389 __isl_take isl_map *map,
6390 __isl_take isl_pw_multi_aff *pma);
6391 __isl_give isl_map *
6392 isl_map_preimage_range_pw_multi_aff(
6393 __isl_take isl_map *map,
6394 __isl_take isl_pw_multi_aff *pma);
6395 __isl_give isl_map *
6396 isl_map_preimage_domain_multi_pw_aff(
6397 __isl_take isl_map *map,
6398 __isl_take isl_multi_pw_aff *mpa);
6399 __isl_give isl_basic_map *
6400 isl_basic_map_preimage_range_multi_aff(
6401 __isl_take isl_basic_map *bmap,
6402 __isl_take isl_multi_aff *ma);
6404 #include <isl/union_map.h>
6405 __isl_give isl_union_map *
6406 isl_union_map_preimage_domain_multi_aff(
6407 __isl_take isl_union_map *umap,
6408 __isl_take isl_multi_aff *ma);
6409 __isl_give isl_union_map *
6410 isl_union_map_preimage_range_multi_aff(
6411 __isl_take isl_union_map *umap,
6412 __isl_take isl_multi_aff *ma);
6413 __isl_give isl_union_map *
6414 isl_union_map_preimage_domain_pw_multi_aff(
6415 __isl_take isl_union_map *umap,
6416 __isl_take isl_pw_multi_aff *pma);
6417 __isl_give isl_union_map *
6418 isl_union_map_preimage_range_pw_multi_aff(
6419 __isl_take isl_union_map *umap,
6420 __isl_take isl_pw_multi_aff *pma);
6421 __isl_give isl_union_map *
6422 isl_union_map_preimage_domain_union_pw_multi_aff(
6423 __isl_take isl_union_map *umap,
6424 __isl_take isl_union_pw_multi_aff *upma);
6425 __isl_give isl_union_map *
6426 isl_union_map_preimage_range_union_pw_multi_aff(
6427 __isl_take isl_union_map *umap,
6428 __isl_take isl_union_pw_multi_aff *upma);
6430 These functions compute the preimage of the given set or map domain/range under
6431 the given function. In other words, the expression is plugged
6432 into the set description or into the domain/range of the map.
6436 #include <isl/aff.h>
6437 __isl_give isl_aff *isl_aff_pullback_aff(
6438 __isl_take isl_aff *aff1,
6439 __isl_take isl_aff *aff2);
6440 __isl_give isl_aff *isl_aff_pullback_multi_aff(
6441 __isl_take isl_aff *aff,
6442 __isl_take isl_multi_aff *ma);
6443 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
6444 __isl_take isl_pw_aff *pa,
6445 __isl_take isl_multi_aff *ma);
6446 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
6447 __isl_take isl_pw_aff *pa,
6448 __isl_take isl_pw_multi_aff *pma);
6449 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
6450 __isl_take isl_pw_aff *pa,
6451 __isl_take isl_multi_pw_aff *mpa);
6452 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
6453 __isl_take isl_multi_aff *ma1,
6454 __isl_take isl_multi_aff *ma2);
6455 __isl_give isl_pw_multi_aff *
6456 isl_pw_multi_aff_pullback_multi_aff(
6457 __isl_take isl_pw_multi_aff *pma,
6458 __isl_take isl_multi_aff *ma);
6459 __isl_give isl_multi_pw_aff *
6460 isl_multi_pw_aff_pullback_multi_aff(
6461 __isl_take isl_multi_pw_aff *mpa,
6462 __isl_take isl_multi_aff *ma);
6463 __isl_give isl_pw_multi_aff *
6464 isl_pw_multi_aff_pullback_pw_multi_aff(
6465 __isl_take isl_pw_multi_aff *pma1,
6466 __isl_take isl_pw_multi_aff *pma2);
6467 __isl_give isl_multi_pw_aff *
6468 isl_multi_pw_aff_pullback_pw_multi_aff(
6469 __isl_take isl_multi_pw_aff *mpa,
6470 __isl_take isl_pw_multi_aff *pma);
6471 __isl_give isl_multi_pw_aff *
6472 isl_multi_pw_aff_pullback_multi_pw_aff(
6473 __isl_take isl_multi_pw_aff *mpa1,
6474 __isl_take isl_multi_pw_aff *mpa2);
6475 __isl_give isl_union_pw_aff *
6476 isl_union_pw_aff_pullback_union_pw_multi_aff(
6477 __isl_take isl_union_pw_aff *upa,
6478 __isl_take isl_union_pw_multi_aff *upma);
6479 __isl_give isl_union_pw_multi_aff *
6480 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
6481 __isl_take isl_union_pw_multi_aff *upma1,
6482 __isl_take isl_union_pw_multi_aff *upma2);
6483 __isl_give isl_multi_union_pw_aff *
6484 isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
6485 __isl_take isl_multi_union_pw_aff *mupa,
6486 __isl_take isl_union_pw_multi_aff *upma);
6488 These functions precompose the first expression by the second function.
6489 In other words, the second function is plugged
6490 into the first expression.
6494 #include <isl/aff.h>
6495 __isl_give isl_basic_set *isl_aff_eq_basic_set(
6496 __isl_take isl_aff *aff1,
6497 __isl_take isl_aff *aff2);
6498 __isl_give isl_set *isl_aff_eq_set(
6499 __isl_take isl_aff *aff1,
6500 __isl_take isl_aff *aff2);
6501 __isl_give isl_set *isl_aff_ne_set(
6502 __isl_take isl_aff *aff1,
6503 __isl_take isl_aff *aff2);
6504 __isl_give isl_basic_set *isl_aff_le_basic_set(
6505 __isl_take isl_aff *aff1,
6506 __isl_take isl_aff *aff2);
6507 __isl_give isl_set *isl_aff_le_set(
6508 __isl_take isl_aff *aff1,
6509 __isl_take isl_aff *aff2);
6510 __isl_give isl_basic_set *isl_aff_lt_basic_set(
6511 __isl_take isl_aff *aff1,
6512 __isl_take isl_aff *aff2);
6513 __isl_give isl_set *isl_aff_lt_set(
6514 __isl_take isl_aff *aff1,
6515 __isl_take isl_aff *aff2);
6516 __isl_give isl_basic_set *isl_aff_ge_basic_set(
6517 __isl_take isl_aff *aff1,
6518 __isl_take isl_aff *aff2);
6519 __isl_give isl_set *isl_aff_ge_set(
6520 __isl_take isl_aff *aff1,
6521 __isl_take isl_aff *aff2);
6522 __isl_give isl_basic_set *isl_aff_gt_basic_set(
6523 __isl_take isl_aff *aff1,
6524 __isl_take isl_aff *aff2);
6525 __isl_give isl_set *isl_aff_gt_set(
6526 __isl_take isl_aff *aff1,
6527 __isl_take isl_aff *aff2);
6528 __isl_give isl_set *isl_pw_aff_eq_set(
6529 __isl_take isl_pw_aff *pwaff1,
6530 __isl_take isl_pw_aff *pwaff2);
6531 __isl_give isl_set *isl_pw_aff_ne_set(
6532 __isl_take isl_pw_aff *pwaff1,
6533 __isl_take isl_pw_aff *pwaff2);
6534 __isl_give isl_set *isl_pw_aff_le_set(
6535 __isl_take isl_pw_aff *pwaff1,
6536 __isl_take isl_pw_aff *pwaff2);
6537 __isl_give isl_set *isl_pw_aff_lt_set(
6538 __isl_take isl_pw_aff *pwaff1,
6539 __isl_take isl_pw_aff *pwaff2);
6540 __isl_give isl_set *isl_pw_aff_ge_set(
6541 __isl_take isl_pw_aff *pwaff1,
6542 __isl_take isl_pw_aff *pwaff2);
6543 __isl_give isl_set *isl_pw_aff_gt_set(
6544 __isl_take isl_pw_aff *pwaff1,
6545 __isl_take isl_pw_aff *pwaff2);
6547 __isl_give isl_set *isl_multi_aff_lex_le_set(
6548 __isl_take isl_multi_aff *ma1,
6549 __isl_take isl_multi_aff *ma2);
6550 __isl_give isl_set *isl_multi_aff_lex_lt_set(
6551 __isl_take isl_multi_aff *ma1,
6552 __isl_take isl_multi_aff *ma2);
6553 __isl_give isl_set *isl_multi_aff_lex_ge_set(
6554 __isl_take isl_multi_aff *ma1,
6555 __isl_take isl_multi_aff *ma2);
6556 __isl_give isl_set *isl_multi_aff_lex_gt_set(
6557 __isl_take isl_multi_aff *ma1,
6558 __isl_take isl_multi_aff *ma2);
6560 __isl_give isl_set *isl_pw_aff_list_eq_set(
6561 __isl_take isl_pw_aff_list *list1,
6562 __isl_take isl_pw_aff_list *list2);
6563 __isl_give isl_set *isl_pw_aff_list_ne_set(
6564 __isl_take isl_pw_aff_list *list1,
6565 __isl_take isl_pw_aff_list *list2);
6566 __isl_give isl_set *isl_pw_aff_list_le_set(
6567 __isl_take isl_pw_aff_list *list1,
6568 __isl_take isl_pw_aff_list *list2);
6569 __isl_give isl_set *isl_pw_aff_list_lt_set(
6570 __isl_take isl_pw_aff_list *list1,
6571 __isl_take isl_pw_aff_list *list2);
6572 __isl_give isl_set *isl_pw_aff_list_ge_set(
6573 __isl_take isl_pw_aff_list *list1,
6574 __isl_take isl_pw_aff_list *list2);
6575 __isl_give isl_set *isl_pw_aff_list_gt_set(
6576 __isl_take isl_pw_aff_list *list1,
6577 __isl_take isl_pw_aff_list *list2);
6579 The function C<isl_aff_ge_basic_set> returns a basic set
6580 containing those elements in the shared space
6581 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
6582 The function C<isl_pw_aff_ge_set> returns a set
6583 containing those elements in the shared domain
6584 of C<pwaff1> and C<pwaff2> where C<pwaff1> is
6585 greater than or equal to C<pwaff2>.
6586 The function C<isl_multi_aff_lex_le_set> returns a set
6587 containing those elements in the shared domain space
6588 where C<ma1> is lexicographically smaller than or
6590 The functions operating on C<isl_pw_aff_list> apply the corresponding
6591 C<isl_pw_aff> function to each pair of elements in the two lists.
6593 #include <isl/aff.h>
6594 __isl_give isl_map *isl_pw_aff_eq_map(
6595 __isl_take isl_pw_aff *pa1,
6596 __isl_take isl_pw_aff *pa2);
6597 __isl_give isl_map *isl_pw_aff_lt_map(
6598 __isl_take isl_pw_aff *pa1,
6599 __isl_take isl_pw_aff *pa2);
6600 __isl_give isl_map *isl_pw_aff_gt_map(
6601 __isl_take isl_pw_aff *pa1,
6602 __isl_take isl_pw_aff *pa2);
6604 __isl_give isl_map *isl_multi_pw_aff_eq_map(
6605 __isl_take isl_multi_pw_aff *mpa1,
6606 __isl_take isl_multi_pw_aff *mpa2);
6607 __isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
6608 __isl_take isl_multi_pw_aff *mpa1,
6609 __isl_take isl_multi_pw_aff *mpa2);
6610 __isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
6611 __isl_take isl_multi_pw_aff *mpa1,
6612 __isl_take isl_multi_pw_aff *mpa2);
6614 These functions return a map between domain elements of the arguments
6615 where the function values satisfy the given relation.
6617 #include <isl/union_map.h>
6618 __isl_give isl_union_map *
6619 isl_union_map_eq_at_multi_union_pw_aff(
6620 __isl_take isl_union_map *umap,
6621 __isl_take isl_multi_union_pw_aff *mupa);
6622 __isl_give isl_union_map *
6623 isl_union_map_lex_lt_at_multi_union_pw_aff(
6624 __isl_take isl_union_map *umap,
6625 __isl_take isl_multi_union_pw_aff *mupa);
6626 __isl_give isl_union_map *
6627 isl_union_map_lex_gt_at_multi_union_pw_aff(
6628 __isl_take isl_union_map *umap,
6629 __isl_take isl_multi_union_pw_aff *mupa);
6631 These functions select the subset of elements in the union map
6632 that have an equal or lexicographically smaller function value.
6634 =item * Cartesian Product
6636 #include <isl/space.h>
6637 __isl_give isl_space *isl_space_product(
6638 __isl_take isl_space *space1,
6639 __isl_take isl_space *space2);
6640 __isl_give isl_space *isl_space_domain_product(
6641 __isl_take isl_space *space1,
6642 __isl_take isl_space *space2);
6643 __isl_give isl_space *isl_space_range_product(
6644 __isl_take isl_space *space1,
6645 __isl_take isl_space *space2);
6648 C<isl_space_product>, C<isl_space_domain_product>
6649 and C<isl_space_range_product> take pairs or relation spaces and
6650 produce a single relations space, where either the domain, the range
6651 or both domain and range are wrapped spaces of relations between
6652 the domains and/or ranges of the input spaces.
6653 If the product is only constructed over the domain or the range
6654 then the ranges or the domains of the inputs should be the same.
6655 The function C<isl_space_product> also accepts a pair of set spaces,
6656 in which case it returns a wrapped space of a relation between the
6659 #include <isl/set.h>
6660 __isl_give isl_set *isl_set_product(
6661 __isl_take isl_set *set1,
6662 __isl_take isl_set *set2);
6664 #include <isl/map.h>
6665 __isl_give isl_basic_map *isl_basic_map_domain_product(
6666 __isl_take isl_basic_map *bmap1,
6667 __isl_take isl_basic_map *bmap2);
6668 __isl_give isl_basic_map *isl_basic_map_range_product(
6669 __isl_take isl_basic_map *bmap1,
6670 __isl_take isl_basic_map *bmap2);
6671 __isl_give isl_basic_map *isl_basic_map_product(
6672 __isl_take isl_basic_map *bmap1,
6673 __isl_take isl_basic_map *bmap2);
6674 __isl_give isl_map *isl_map_domain_product(
6675 __isl_take isl_map *map1,
6676 __isl_take isl_map *map2);
6677 __isl_give isl_map *isl_map_range_product(
6678 __isl_take isl_map *map1,
6679 __isl_take isl_map *map2);
6680 __isl_give isl_map *isl_map_product(
6681 __isl_take isl_map *map1,
6682 __isl_take isl_map *map2);
6684 #include <isl/union_set.h>
6685 __isl_give isl_union_set *isl_union_set_product(
6686 __isl_take isl_union_set *uset1,
6687 __isl_take isl_union_set *uset2);
6689 #include <isl/union_map.h>
6690 __isl_give isl_union_map *isl_union_map_domain_product(
6691 __isl_take isl_union_map *umap1,
6692 __isl_take isl_union_map *umap2);
6693 __isl_give isl_union_map *isl_union_map_range_product(
6694 __isl_take isl_union_map *umap1,
6695 __isl_take isl_union_map *umap2);
6696 __isl_give isl_union_map *isl_union_map_product(
6697 __isl_take isl_union_map *umap1,
6698 __isl_take isl_union_map *umap2);
6700 #include <isl/val.h>
6701 __isl_give isl_multi_val *isl_multi_val_range_product(
6702 __isl_take isl_multi_val *mv1,
6703 __isl_take isl_multi_val *mv2);
6704 __isl_give isl_multi_val *isl_multi_val_product(
6705 __isl_take isl_multi_val *mv1,
6706 __isl_take isl_multi_val *mv2);
6708 #include <isl/aff.h>
6709 __isl_give isl_multi_aff *isl_multi_aff_range_product(
6710 __isl_take isl_multi_aff *ma1,
6711 __isl_take isl_multi_aff *ma2);
6712 __isl_give isl_multi_aff *isl_multi_aff_product(
6713 __isl_take isl_multi_aff *ma1,
6714 __isl_take isl_multi_aff *ma2);
6715 __isl_give isl_multi_pw_aff *
6716 isl_multi_pw_aff_range_product(
6717 __isl_take isl_multi_pw_aff *mpa1,
6718 __isl_take isl_multi_pw_aff *mpa2);
6719 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
6720 __isl_take isl_multi_pw_aff *mpa1,
6721 __isl_take isl_multi_pw_aff *mpa2);
6722 __isl_give isl_pw_multi_aff *
6723 isl_pw_multi_aff_range_product(
6724 __isl_take isl_pw_multi_aff *pma1,
6725 __isl_take isl_pw_multi_aff *pma2);
6726 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
6727 __isl_take isl_pw_multi_aff *pma1,
6728 __isl_take isl_pw_multi_aff *pma2);
6729 __isl_give isl_multi_union_pw_aff *
6730 isl_multi_union_pw_aff_range_product(
6731 __isl_take isl_multi_union_pw_aff *mupa1,
6732 __isl_take isl_multi_union_pw_aff *mupa2);
6734 The above functions compute the cross product of the given
6735 sets, relations or functions. The domains and ranges of the results
6736 are wrapped maps between domains and ranges of the inputs.
6737 To obtain a ``flat'' product, use the following functions
6740 #include <isl/set.h>
6741 __isl_give isl_basic_set *isl_basic_set_flat_product(
6742 __isl_take isl_basic_set *bset1,
6743 __isl_take isl_basic_set *bset2);
6744 __isl_give isl_set *isl_set_flat_product(
6745 __isl_take isl_set *set1,
6746 __isl_take isl_set *set2);
6748 #include <isl/map.h>
6749 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
6750 __isl_take isl_basic_map *bmap1,
6751 __isl_take isl_basic_map *bmap2);
6752 __isl_give isl_map *isl_map_flat_domain_product(
6753 __isl_take isl_map *map1,
6754 __isl_take isl_map *map2);
6755 __isl_give isl_map *isl_map_flat_range_product(
6756 __isl_take isl_map *map1,
6757 __isl_take isl_map *map2);
6758 __isl_give isl_basic_map *isl_basic_map_flat_product(
6759 __isl_take isl_basic_map *bmap1,
6760 __isl_take isl_basic_map *bmap2);
6761 __isl_give isl_map *isl_map_flat_product(
6762 __isl_take isl_map *map1,
6763 __isl_take isl_map *map2);
6765 #include <isl/union_map.h>
6766 __isl_give isl_union_map *
6767 isl_union_map_flat_domain_product(
6768 __isl_take isl_union_map *umap1,
6769 __isl_take isl_union_map *umap2);
6770 __isl_give isl_union_map *
6771 isl_union_map_flat_range_product(
6772 __isl_take isl_union_map *umap1,
6773 __isl_take isl_union_map *umap2);
6775 #include <isl/val.h>
6776 __isl_give isl_multi_val *isl_multi_val_flat_range_product(
6777 __isl_take isl_multi_val *mv1,
6778 __isl_take isl_multi_aff *mv2);
6780 #include <isl/aff.h>
6781 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
6782 __isl_take isl_multi_aff *ma1,
6783 __isl_take isl_multi_aff *ma2);
6784 __isl_give isl_pw_multi_aff *
6785 isl_pw_multi_aff_flat_range_product(
6786 __isl_take isl_pw_multi_aff *pma1,
6787 __isl_take isl_pw_multi_aff *pma2);
6788 __isl_give isl_multi_pw_aff *
6789 isl_multi_pw_aff_flat_range_product(
6790 __isl_take isl_multi_pw_aff *mpa1,
6791 __isl_take isl_multi_pw_aff *mpa2);
6792 __isl_give isl_union_pw_multi_aff *
6793 isl_union_pw_multi_aff_flat_range_product(
6794 __isl_take isl_union_pw_multi_aff *upma1,
6795 __isl_take isl_union_pw_multi_aff *upma2);
6796 __isl_give isl_multi_union_pw_aff *
6797 isl_multi_union_pw_aff_flat_range_product(
6798 __isl_take isl_multi_union_pw_aff *mupa1,
6799 __isl_take isl_multi_union_pw_aff *mupa2);
6801 #include <isl/space.h>
6802 __isl_give isl_space *isl_space_factor_domain(
6803 __isl_take isl_space *space);
6804 __isl_give isl_space *isl_space_factor_range(
6805 __isl_take isl_space *space);
6806 __isl_give isl_space *isl_space_domain_factor_domain(
6807 __isl_take isl_space *space);
6808 __isl_give isl_space *isl_space_domain_factor_range(
6809 __isl_take isl_space *space);
6810 __isl_give isl_space *isl_space_range_factor_domain(
6811 __isl_take isl_space *space);
6812 __isl_give isl_space *isl_space_range_factor_range(
6813 __isl_take isl_space *space);
6815 The functions C<isl_space_range_factor_domain> and
6816 C<isl_space_range_factor_range> extract the two arguments from
6817 the result of a call to C<isl_space_range_product>.
6819 The arguments of a call to a product can be extracted
6820 from the result using the following functions.
6822 #include <isl/map.h>
6823 __isl_give isl_map *isl_map_factor_domain(
6824 __isl_take isl_map *map);
6825 __isl_give isl_map *isl_map_factor_range(
6826 __isl_take isl_map *map);
6827 __isl_give isl_map *isl_map_domain_factor_domain(
6828 __isl_take isl_map *map);
6829 __isl_give isl_map *isl_map_domain_factor_range(
6830 __isl_take isl_map *map);
6831 __isl_give isl_map *isl_map_range_factor_domain(
6832 __isl_take isl_map *map);
6833 __isl_give isl_map *isl_map_range_factor_range(
6834 __isl_take isl_map *map);
6836 #include <isl/union_map.h>
6837 __isl_give isl_union_map *isl_union_map_factor_domain(
6838 __isl_take isl_union_map *umap);
6839 __isl_give isl_union_map *isl_union_map_factor_range(
6840 __isl_take isl_union_map *umap);
6841 __isl_give isl_union_map *
6842 isl_union_map_domain_factor_domain(
6843 __isl_take isl_union_map *umap);
6844 __isl_give isl_union_map *
6845 isl_union_map_domain_factor_range(
6846 __isl_take isl_union_map *umap);
6847 __isl_give isl_union_map *
6848 isl_union_map_range_factor_domain(
6849 __isl_take isl_union_map *umap);
6850 __isl_give isl_union_map *
6851 isl_union_map_range_factor_range(
6852 __isl_take isl_union_map *umap);
6854 #include <isl/val.h>
6855 __isl_give isl_multi_val *isl_multi_val_factor_range(
6856 __isl_take isl_multi_val *mv);
6857 __isl_give isl_multi_val *
6858 isl_multi_val_range_factor_domain(
6859 __isl_take isl_multi_val *mv);
6860 __isl_give isl_multi_val *
6861 isl_multi_val_range_factor_range(
6862 __isl_take isl_multi_val *mv);
6864 #include <isl/aff.h>
6865 __isl_give isl_multi_aff *isl_multi_aff_factor_range(
6866 __isl_take isl_multi_aff *ma);
6867 __isl_give isl_multi_aff *
6868 isl_multi_aff_range_factor_domain(
6869 __isl_take isl_multi_aff *ma);
6870 __isl_give isl_multi_aff *
6871 isl_multi_aff_range_factor_range(
6872 __isl_take isl_multi_aff *ma);
6873 __isl_give isl_multi_pw_aff *
6874 isl_multi_pw_aff_factor_range(
6875 __isl_take isl_multi_pw_aff *mpa);
6876 __isl_give isl_multi_pw_aff *
6877 isl_multi_pw_aff_range_factor_domain(
6878 __isl_take isl_multi_pw_aff *mpa);
6879 __isl_give isl_multi_pw_aff *
6880 isl_multi_pw_aff_range_factor_range(
6881 __isl_take isl_multi_pw_aff *mpa);
6882 __isl_give isl_multi_union_pw_aff *
6883 isl_multi_union_pw_aff_factor_range(
6884 __isl_take isl_multi_union_pw_aff *mupa);
6885 __isl_give isl_multi_union_pw_aff *
6886 isl_multi_union_pw_aff_range_factor_domain(
6887 __isl_take isl_multi_union_pw_aff *mupa);
6888 __isl_give isl_multi_union_pw_aff *
6889 isl_multi_union_pw_aff_range_factor_range(
6890 __isl_take isl_multi_union_pw_aff *mupa);
6892 The splice functions are a generalization of the flat product functions,
6893 where the second argument may be inserted at any position inside
6894 the first argument rather than being placed at the end.
6895 The functions C<isl_multi_val_factor_range>,
6896 C<isl_multi_aff_factor_range>,
6897 C<isl_multi_pw_aff_factor_range> and
6898 C<isl_multi_union_pw_aff_factor_range>
6899 take functions that live in a set space.
6901 #include <isl/val.h>
6902 __isl_give isl_multi_val *isl_multi_val_range_splice(
6903 __isl_take isl_multi_val *mv1, unsigned pos,
6904 __isl_take isl_multi_val *mv2);
6906 #include <isl/aff.h>
6907 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
6908 __isl_take isl_multi_aff *ma1, unsigned pos,
6909 __isl_take isl_multi_aff *ma2);
6910 __isl_give isl_multi_aff *isl_multi_aff_splice(
6911 __isl_take isl_multi_aff *ma1,
6912 unsigned in_pos, unsigned out_pos,
6913 __isl_take isl_multi_aff *ma2);
6914 __isl_give isl_multi_pw_aff *
6915 isl_multi_pw_aff_range_splice(
6916 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
6917 __isl_take isl_multi_pw_aff *mpa2);
6918 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
6919 __isl_take isl_multi_pw_aff *mpa1,
6920 unsigned in_pos, unsigned out_pos,
6921 __isl_take isl_multi_pw_aff *mpa2);
6922 __isl_give isl_multi_union_pw_aff *
6923 isl_multi_union_pw_aff_range_splice(
6924 __isl_take isl_multi_union_pw_aff *mupa1,
6926 __isl_take isl_multi_union_pw_aff *mupa2);
6928 =item * Simplification
6930 When applied to a set or relation,
6931 the gist operation returns a set or relation that has the
6932 same intersection with the context as the input set or relation.
6933 Any implicit equality in the intersection is made explicit in the result,
6934 while all inequalities that are redundant with respect to the intersection
6936 In case of union sets and relations, the gist operation is performed
6939 When applied to a function,
6940 the gist operation applies the set gist operation to each of
6941 the cells in the domain of the input piecewise expression.
6942 The context is also exploited
6943 to simplify the expression associated to each cell.
6945 #include <isl/set.h>
6946 __isl_give isl_basic_set *isl_basic_set_gist(
6947 __isl_take isl_basic_set *bset,
6948 __isl_take isl_basic_set *context);
6949 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
6950 __isl_take isl_set *context);
6951 __isl_give isl_set *isl_set_gist_params(
6952 __isl_take isl_set *set,
6953 __isl_take isl_set *context);
6955 #include <isl/map.h>
6956 __isl_give isl_basic_map *isl_basic_map_gist(
6957 __isl_take isl_basic_map *bmap,
6958 __isl_take isl_basic_map *context);
6959 __isl_give isl_basic_map *isl_basic_map_gist_domain(
6960 __isl_take isl_basic_map *bmap,
6961 __isl_take isl_basic_set *context);
6962 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
6963 __isl_take isl_map *context);
6964 __isl_give isl_map *isl_map_gist_params(
6965 __isl_take isl_map *map,
6966 __isl_take isl_set *context);
6967 __isl_give isl_map *isl_map_gist_domain(
6968 __isl_take isl_map *map,
6969 __isl_take isl_set *context);
6970 __isl_give isl_map *isl_map_gist_range(
6971 __isl_take isl_map *map,
6972 __isl_take isl_set *context);
6974 #include <isl/union_set.h>
6975 __isl_give isl_union_set *isl_union_set_gist(
6976 __isl_take isl_union_set *uset,
6977 __isl_take isl_union_set *context);
6978 __isl_give isl_union_set *isl_union_set_gist_params(
6979 __isl_take isl_union_set *uset,
6980 __isl_take isl_set *set);
6982 #include <isl/union_map.h>
6983 __isl_give isl_union_map *isl_union_map_gist(
6984 __isl_take isl_union_map *umap,
6985 __isl_take isl_union_map *context);
6986 __isl_give isl_union_map *isl_union_map_gist_params(
6987 __isl_take isl_union_map *umap,
6988 __isl_take isl_set *set);
6989 __isl_give isl_union_map *isl_union_map_gist_domain(
6990 __isl_take isl_union_map *umap,
6991 __isl_take isl_union_set *uset);
6992 __isl_give isl_union_map *isl_union_map_gist_range(
6993 __isl_take isl_union_map *umap,
6994 __isl_take isl_union_set *uset);
6996 #include <isl/aff.h>
6997 __isl_give isl_aff *isl_aff_gist_params(
6998 __isl_take isl_aff *aff,
6999 __isl_take isl_set *context);
7000 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
7001 __isl_take isl_set *context);
7002 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
7003 __isl_take isl_multi_aff *maff,
7004 __isl_take isl_set *context);
7005 __isl_give isl_multi_aff *isl_multi_aff_gist(
7006 __isl_take isl_multi_aff *maff,
7007 __isl_take isl_set *context);
7008 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
7009 __isl_take isl_pw_aff *pwaff,
7010 __isl_take isl_set *context);
7011 __isl_give isl_pw_aff *isl_pw_aff_gist(
7012 __isl_take isl_pw_aff *pwaff,
7013 __isl_take isl_set *context);
7014 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
7015 __isl_take isl_pw_multi_aff *pma,
7016 __isl_take isl_set *set);
7017 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
7018 __isl_take isl_pw_multi_aff *pma,
7019 __isl_take isl_set *set);
7020 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
7021 __isl_take isl_multi_pw_aff *mpa,
7022 __isl_take isl_set *set);
7023 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
7024 __isl_take isl_multi_pw_aff *mpa,
7025 __isl_take isl_set *set);
7026 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist(
7027 __isl_take isl_union_pw_aff *upa,
7028 __isl_take isl_union_set *context);
7029 __isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params(
7030 __isl_take isl_union_pw_aff *upa,
7031 __isl_take isl_set *context);
7032 __isl_give isl_union_pw_multi_aff *
7033 isl_union_pw_multi_aff_gist_params(
7034 __isl_take isl_union_pw_multi_aff *upma,
7035 __isl_take isl_set *context);
7036 __isl_give isl_union_pw_multi_aff *
7037 isl_union_pw_multi_aff_gist(
7038 __isl_take isl_union_pw_multi_aff *upma,
7039 __isl_take isl_union_set *context);
7040 __isl_give isl_multi_union_pw_aff *
7041 isl_multi_union_pw_aff_gist_params(
7042 __isl_take isl_multi_union_pw_aff *aff,
7043 __isl_take isl_set *context);
7044 __isl_give isl_multi_union_pw_aff *
7045 isl_multi_union_pw_aff_gist(
7046 __isl_take isl_multi_union_pw_aff *aff,
7047 __isl_take isl_union_set *context);
7049 #include <isl/polynomial.h>
7050 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
7051 __isl_take isl_qpolynomial *qp,
7052 __isl_take isl_set *context);
7053 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
7054 __isl_take isl_qpolynomial *qp,
7055 __isl_take isl_set *context);
7056 __isl_give isl_qpolynomial_fold *
7057 isl_qpolynomial_fold_gist_params(
7058 __isl_take isl_qpolynomial_fold *fold,
7059 __isl_take isl_set *context);
7060 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
7061 __isl_take isl_qpolynomial_fold *fold,
7062 __isl_take isl_set *context);
7063 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
7064 __isl_take isl_pw_qpolynomial *pwqp,
7065 __isl_take isl_set *context);
7066 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
7067 __isl_take isl_pw_qpolynomial *pwqp,
7068 __isl_take isl_set *context);
7069 __isl_give isl_pw_qpolynomial_fold *
7070 isl_pw_qpolynomial_fold_gist(
7071 __isl_take isl_pw_qpolynomial_fold *pwf,
7072 __isl_take isl_set *context);
7073 __isl_give isl_pw_qpolynomial_fold *
7074 isl_pw_qpolynomial_fold_gist_params(
7075 __isl_take isl_pw_qpolynomial_fold *pwf,
7076 __isl_take isl_set *context);
7077 __isl_give isl_union_pw_qpolynomial *
7078 isl_union_pw_qpolynomial_gist_params(
7079 __isl_take isl_union_pw_qpolynomial *upwqp,
7080 __isl_take isl_set *context);
7081 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
7082 __isl_take isl_union_pw_qpolynomial *upwqp,
7083 __isl_take isl_union_set *context);
7084 __isl_give isl_union_pw_qpolynomial_fold *
7085 isl_union_pw_qpolynomial_fold_gist(
7086 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7087 __isl_take isl_union_set *context);
7088 __isl_give isl_union_pw_qpolynomial_fold *
7089 isl_union_pw_qpolynomial_fold_gist_params(
7090 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7091 __isl_take isl_set *context);
7093 =item * Binary Arithmetic Operations
7095 #include <isl/set.h>
7096 __isl_give isl_set *isl_set_sum(
7097 __isl_take isl_set *set1,
7098 __isl_take isl_set *set2);
7099 #include <isl/map.h>
7100 __isl_give isl_map *isl_map_sum(
7101 __isl_take isl_map *map1,
7102 __isl_take isl_map *map2);
7104 C<isl_set_sum> computes the Minkowski sum of its two arguments,
7105 i.e., the set containing the sums of pairs of elements from
7106 C<set1> and C<set2>.
7107 The domain of the result of C<isl_map_sum> is the intersection
7108 of the domains of its two arguments. The corresponding range
7109 elements are the sums of the corresponding range elements
7110 in the two arguments.
7112 #include <isl/val.h>
7113 __isl_give isl_multi_val *isl_multi_val_add(
7114 __isl_take isl_multi_val *mv1,
7115 __isl_take isl_multi_val *mv2);
7116 __isl_give isl_multi_val *isl_multi_val_sub(
7117 __isl_take isl_multi_val *mv1,
7118 __isl_take isl_multi_val *mv2);
7120 #include <isl/aff.h>
7121 __isl_give isl_aff *isl_aff_add(
7122 __isl_take isl_aff *aff1,
7123 __isl_take isl_aff *aff2);
7124 __isl_give isl_multi_aff *isl_multi_aff_add(
7125 __isl_take isl_multi_aff *maff1,
7126 __isl_take isl_multi_aff *maff2);
7127 __isl_give isl_pw_aff *isl_pw_aff_add(
7128 __isl_take isl_pw_aff *pwaff1,
7129 __isl_take isl_pw_aff *pwaff2);
7130 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add(
7131 __isl_take isl_multi_pw_aff *mpa1,
7132 __isl_take isl_multi_pw_aff *mpa2);
7133 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
7134 __isl_take isl_pw_multi_aff *pma1,
7135 __isl_take isl_pw_multi_aff *pma2);
7136 __isl_give isl_union_pw_aff *isl_union_pw_aff_add(
7137 __isl_take isl_union_pw_aff *upa1,
7138 __isl_take isl_union_pw_aff *upa2);
7139 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
7140 __isl_take isl_union_pw_multi_aff *upma1,
7141 __isl_take isl_union_pw_multi_aff *upma2);
7142 __isl_give isl_multi_union_pw_aff *
7143 isl_multi_union_pw_aff_add(
7144 __isl_take isl_multi_union_pw_aff *mupa1,
7145 __isl_take isl_multi_union_pw_aff *mupa2);
7146 __isl_give isl_pw_aff *isl_pw_aff_min(
7147 __isl_take isl_pw_aff *pwaff1,
7148 __isl_take isl_pw_aff *pwaff2);
7149 __isl_give isl_pw_aff *isl_pw_aff_max(
7150 __isl_take isl_pw_aff *pwaff1,
7151 __isl_take isl_pw_aff *pwaff2);
7152 __isl_give isl_aff *isl_aff_sub(
7153 __isl_take isl_aff *aff1,
7154 __isl_take isl_aff *aff2);
7155 __isl_give isl_multi_aff *isl_multi_aff_sub(
7156 __isl_take isl_multi_aff *ma1,
7157 __isl_take isl_multi_aff *ma2);
7158 __isl_give isl_pw_aff *isl_pw_aff_sub(
7159 __isl_take isl_pw_aff *pwaff1,
7160 __isl_take isl_pw_aff *pwaff2);
7161 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub(
7162 __isl_take isl_multi_pw_aff *mpa1,
7163 __isl_take isl_multi_pw_aff *mpa2);
7164 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
7165 __isl_take isl_pw_multi_aff *pma1,
7166 __isl_take isl_pw_multi_aff *pma2);
7167 __isl_give isl_union_pw_aff *isl_union_pw_aff_sub(
7168 __isl_take isl_union_pw_aff *upa1,
7169 __isl_take isl_union_pw_aff *upa2);
7170 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
7171 __isl_take isl_union_pw_multi_aff *upma1,
7172 __isl_take isl_union_pw_multi_aff *upma2);
7173 __isl_give isl_multi_union_pw_aff *
7174 isl_multi_union_pw_aff_sub(
7175 __isl_take isl_multi_union_pw_aff *mupa1,
7176 __isl_take isl_multi_union_pw_aff *mupa2);
7178 C<isl_aff_sub> subtracts the second argument from the first.
7180 #include <isl/polynomial.h>
7181 __isl_give isl_qpolynomial *isl_qpolynomial_add(
7182 __isl_take isl_qpolynomial *qp1,
7183 __isl_take isl_qpolynomial *qp2);
7184 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
7185 __isl_take isl_pw_qpolynomial *pwqp1,
7186 __isl_take isl_pw_qpolynomial *pwqp2);
7187 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
7188 __isl_take isl_pw_qpolynomial *pwqp1,
7189 __isl_take isl_pw_qpolynomial *pwqp2);
7190 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
7191 __isl_take isl_pw_qpolynomial_fold *pwf1,
7192 __isl_take isl_pw_qpolynomial_fold *pwf2);
7193 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
7194 __isl_take isl_union_pw_qpolynomial *upwqp1,
7195 __isl_take isl_union_pw_qpolynomial *upwqp2);
7196 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
7197 __isl_take isl_qpolynomial *qp1,
7198 __isl_take isl_qpolynomial *qp2);
7199 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
7200 __isl_take isl_pw_qpolynomial *pwqp1,
7201 __isl_take isl_pw_qpolynomial *pwqp2);
7202 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
7203 __isl_take isl_union_pw_qpolynomial *upwqp1,
7204 __isl_take isl_union_pw_qpolynomial *upwqp2);
7205 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
7206 __isl_take isl_pw_qpolynomial_fold *pwf1,
7207 __isl_take isl_pw_qpolynomial_fold *pwf2);
7208 __isl_give isl_union_pw_qpolynomial_fold *
7209 isl_union_pw_qpolynomial_fold_fold(
7210 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
7211 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
7213 #include <isl/aff.h>
7214 __isl_give isl_pw_aff *isl_pw_aff_union_add(
7215 __isl_take isl_pw_aff *pwaff1,
7216 __isl_take isl_pw_aff *pwaff2);
7217 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
7218 __isl_take isl_pw_multi_aff *pma1,
7219 __isl_take isl_pw_multi_aff *pma2);
7220 __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
7221 __isl_take isl_union_pw_aff *upa1,
7222 __isl_take isl_union_pw_aff *upa2);
7223 __isl_give isl_union_pw_multi_aff *
7224 isl_union_pw_multi_aff_union_add(
7225 __isl_take isl_union_pw_multi_aff *upma1,
7226 __isl_take isl_union_pw_multi_aff *upma2);
7227 __isl_give isl_multi_union_pw_aff *
7228 isl_multi_union_pw_aff_union_add(
7229 __isl_take isl_multi_union_pw_aff *mupa1,
7230 __isl_take isl_multi_union_pw_aff *mupa2);
7231 __isl_give isl_pw_aff *isl_pw_aff_union_min(
7232 __isl_take isl_pw_aff *pwaff1,
7233 __isl_take isl_pw_aff *pwaff2);
7234 __isl_give isl_pw_aff *isl_pw_aff_union_max(
7235 __isl_take isl_pw_aff *pwaff1,
7236 __isl_take isl_pw_aff *pwaff2);
7238 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
7239 expression with a domain that is the union of those of C<pwaff1> and
7240 C<pwaff2> and such that on each cell, the quasi-affine expression is
7241 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
7242 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
7243 associated expression is the defined one.
7244 This in contrast to the C<isl_pw_aff_max> function, which is
7245 only defined on the shared definition domain of the arguments.
7247 #include <isl/val.h>
7248 __isl_give isl_multi_val *isl_multi_val_add_val(
7249 __isl_take isl_multi_val *mv,
7250 __isl_take isl_val *v);
7251 __isl_give isl_multi_val *isl_multi_val_mod_val(
7252 __isl_take isl_multi_val *mv,
7253 __isl_take isl_val *v);
7254 __isl_give isl_multi_val *isl_multi_val_scale_val(
7255 __isl_take isl_multi_val *mv,
7256 __isl_take isl_val *v);
7257 __isl_give isl_multi_val *isl_multi_val_scale_down_val(
7258 __isl_take isl_multi_val *mv,
7259 __isl_take isl_val *v);
7261 #include <isl/aff.h>
7262 __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
7263 __isl_take isl_val *mod);
7264 __isl_give isl_pw_aff *isl_pw_aff_mod_val(
7265 __isl_take isl_pw_aff *pa,
7266 __isl_take isl_val *mod);
7267 __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
7268 __isl_take isl_union_pw_aff *upa,
7269 __isl_take isl_val *f);
7270 __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
7271 __isl_take isl_val *v);
7272 __isl_give isl_multi_aff *isl_multi_aff_scale_val(
7273 __isl_take isl_multi_aff *ma,
7274 __isl_take isl_val *v);
7275 __isl_give isl_pw_aff *isl_pw_aff_scale_val(
7276 __isl_take isl_pw_aff *pa, __isl_take isl_val *v);
7277 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
7278 __isl_take isl_multi_pw_aff *mpa,
7279 __isl_take isl_val *v);
7280 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
7281 __isl_take isl_pw_multi_aff *pma,
7282 __isl_take isl_val *v);
7283 __isl_give isl_union_pw_multi_aff *
7284 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val(
7285 __isl_take isl_union_pw_aff *upa,
7286 __isl_take isl_val *f);
7287 isl_union_pw_multi_aff_scale_val(
7288 __isl_take isl_union_pw_multi_aff *upma,
7289 __isl_take isl_val *val);
7290 __isl_give isl_multi_union_pw_aff *
7291 isl_multi_union_pw_aff_scale_val(
7292 __isl_take isl_multi_union_pw_aff *mupa,
7293 __isl_take isl_val *v);
7294 __isl_give isl_aff *isl_aff_scale_down_ui(
7295 __isl_take isl_aff *aff, unsigned f);
7296 __isl_give isl_aff *isl_aff_scale_down_val(
7297 __isl_take isl_aff *aff, __isl_take isl_val *v);
7298 __isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
7299 __isl_take isl_multi_aff *ma,
7300 __isl_take isl_val *v);
7301 __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
7302 __isl_take isl_pw_aff *pa,
7303 __isl_take isl_val *f);
7304 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
7305 __isl_take isl_multi_pw_aff *mpa,
7306 __isl_take isl_val *v);
7307 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
7308 __isl_take isl_pw_multi_aff *pma,
7309 __isl_take isl_val *v);
7310 __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val(
7311 __isl_take isl_union_pw_aff *upa,
7312 __isl_take isl_val *v);
7313 __isl_give isl_union_pw_multi_aff *
7314 isl_union_pw_multi_aff_scale_down_val(
7315 __isl_take isl_union_pw_multi_aff *upma,
7316 __isl_take isl_val *val);
7317 __isl_give isl_multi_union_pw_aff *
7318 isl_multi_union_pw_aff_scale_down_val(
7319 __isl_take isl_multi_union_pw_aff *mupa,
7320 __isl_take isl_val *v);
7322 #include <isl/polynomial.h>
7323 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
7324 __isl_take isl_qpolynomial *qp,
7325 __isl_take isl_val *v);
7326 __isl_give isl_qpolynomial_fold *
7327 isl_qpolynomial_fold_scale_val(
7328 __isl_take isl_qpolynomial_fold *fold,
7329 __isl_take isl_val *v);
7330 __isl_give isl_pw_qpolynomial *
7331 isl_pw_qpolynomial_scale_val(
7332 __isl_take isl_pw_qpolynomial *pwqp,
7333 __isl_take isl_val *v);
7334 __isl_give isl_pw_qpolynomial_fold *
7335 isl_pw_qpolynomial_fold_scale_val(
7336 __isl_take isl_pw_qpolynomial_fold *pwf,
7337 __isl_take isl_val *v);
7338 __isl_give isl_union_pw_qpolynomial *
7339 isl_union_pw_qpolynomial_scale_val(
7340 __isl_take isl_union_pw_qpolynomial *upwqp,
7341 __isl_take isl_val *v);
7342 __isl_give isl_union_pw_qpolynomial_fold *
7343 isl_union_pw_qpolynomial_fold_scale_val(
7344 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7345 __isl_take isl_val *v);
7346 __isl_give isl_qpolynomial *
7347 isl_qpolynomial_scale_down_val(
7348 __isl_take isl_qpolynomial *qp,
7349 __isl_take isl_val *v);
7350 __isl_give isl_qpolynomial_fold *
7351 isl_qpolynomial_fold_scale_down_val(
7352 __isl_take isl_qpolynomial_fold *fold,
7353 __isl_take isl_val *v);
7354 __isl_give isl_pw_qpolynomial *
7355 isl_pw_qpolynomial_scale_down_val(
7356 __isl_take isl_pw_qpolynomial *pwqp,
7357 __isl_take isl_val *v);
7358 __isl_give isl_pw_qpolynomial_fold *
7359 isl_pw_qpolynomial_fold_scale_down_val(
7360 __isl_take isl_pw_qpolynomial_fold *pwf,
7361 __isl_take isl_val *v);
7362 __isl_give isl_union_pw_qpolynomial *
7363 isl_union_pw_qpolynomial_scale_down_val(
7364 __isl_take isl_union_pw_qpolynomial *upwqp,
7365 __isl_take isl_val *v);
7366 __isl_give isl_union_pw_qpolynomial_fold *
7367 isl_union_pw_qpolynomial_fold_scale_down_val(
7368 __isl_take isl_union_pw_qpolynomial_fold *upwf,
7369 __isl_take isl_val *v);
7371 #include <isl/val.h>
7372 __isl_give isl_multi_val *isl_multi_val_mod_multi_val(
7373 __isl_take isl_multi_val *mv1,
7374 __isl_take isl_multi_val *mv2);
7375 __isl_give isl_multi_val *isl_multi_val_scale_multi_val(
7376 __isl_take isl_multi_val *mv1,
7377 __isl_take isl_multi_val *mv2);
7378 __isl_give isl_multi_val *
7379 isl_multi_val_scale_down_multi_val(
7380 __isl_take isl_multi_val *mv1,
7381 __isl_take isl_multi_val *mv2);
7383 #include <isl/aff.h>
7384 __isl_give isl_multi_aff *isl_multi_aff_mod_multi_val(
7385 __isl_take isl_multi_aff *ma,
7386 __isl_take isl_multi_val *mv);
7387 __isl_give isl_multi_union_pw_aff *
7388 isl_multi_union_pw_aff_mod_multi_val(
7389 __isl_take isl_multi_union_pw_aff *upma,
7390 __isl_take isl_multi_val *mv);
7391 __isl_give isl_multi_pw_aff *
7392 isl_multi_pw_aff_mod_multi_val(
7393 __isl_take isl_multi_pw_aff *mpa,
7394 __isl_take isl_multi_val *mv);
7395 __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
7396 __isl_take isl_multi_aff *ma,
7397 __isl_take isl_multi_val *mv);
7398 __isl_give isl_pw_multi_aff *
7399 isl_pw_multi_aff_scale_multi_val(
7400 __isl_take isl_pw_multi_aff *pma,
7401 __isl_take isl_multi_val *mv);
7402 __isl_give isl_multi_pw_aff *
7403 isl_multi_pw_aff_scale_multi_val(
7404 __isl_take isl_multi_pw_aff *mpa,
7405 __isl_take isl_multi_val *mv);
7406 __isl_give isl_multi_union_pw_aff *
7407 isl_multi_union_pw_aff_scale_multi_val(
7408 __isl_take isl_multi_union_pw_aff *mupa,
7409 __isl_take isl_multi_val *mv);
7410 __isl_give isl_union_pw_multi_aff *
7411 isl_union_pw_multi_aff_scale_multi_val(
7412 __isl_take isl_union_pw_multi_aff *upma,
7413 __isl_take isl_multi_val *mv);
7414 __isl_give isl_multi_aff *
7415 isl_multi_aff_scale_down_multi_val(
7416 __isl_take isl_multi_aff *ma,
7417 __isl_take isl_multi_val *mv);
7418 __isl_give isl_multi_pw_aff *
7419 isl_multi_pw_aff_scale_down_multi_val(
7420 __isl_take isl_multi_pw_aff *mpa,
7421 __isl_take isl_multi_val *mv);
7422 __isl_give isl_multi_union_pw_aff *
7423 isl_multi_union_pw_aff_scale_down_multi_val(
7424 __isl_take isl_multi_union_pw_aff *mupa,
7425 __isl_take isl_multi_val *mv);
7427 C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
7428 by the corresponding elements of C<mv>.
7430 #include <isl/aff.h>
7431 __isl_give isl_aff *isl_aff_mul(
7432 __isl_take isl_aff *aff1,
7433 __isl_take isl_aff *aff2);
7434 __isl_give isl_aff *isl_aff_div(
7435 __isl_take isl_aff *aff1,
7436 __isl_take isl_aff *aff2);
7437 __isl_give isl_pw_aff *isl_pw_aff_mul(
7438 __isl_take isl_pw_aff *pwaff1,
7439 __isl_take isl_pw_aff *pwaff2);
7440 __isl_give isl_pw_aff *isl_pw_aff_div(
7441 __isl_take isl_pw_aff *pa1,
7442 __isl_take isl_pw_aff *pa2);
7443 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
7444 __isl_take isl_pw_aff *pa1,
7445 __isl_take isl_pw_aff *pa2);
7446 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
7447 __isl_take isl_pw_aff *pa1,
7448 __isl_take isl_pw_aff *pa2);
7450 When multiplying two affine expressions, at least one of the two needs
7451 to be a constant. Similarly, when dividing an affine expression by another,
7452 the second expression needs to be a constant.
7453 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
7454 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
7457 #include <isl/polynomial.h>
7458 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
7459 __isl_take isl_qpolynomial *qp1,
7460 __isl_take isl_qpolynomial *qp2);
7461 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
7462 __isl_take isl_pw_qpolynomial *pwqp1,
7463 __isl_take isl_pw_qpolynomial *pwqp2);
7464 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
7465 __isl_take isl_union_pw_qpolynomial *upwqp1,
7466 __isl_take isl_union_pw_qpolynomial *upwqp2);
7470 =head3 Lexicographic Optimization
7472 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
7473 the following functions
7474 compute a set that contains the lexicographic minimum or maximum
7475 of the elements in C<set> (or C<bset>) for those values of the parameters
7476 that satisfy C<dom>.
7477 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7478 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
7480 In other words, the union of the parameter values
7481 for which the result is non-empty and of C<*empty>
7484 #include <isl/set.h>
7485 __isl_give isl_set *isl_basic_set_partial_lexmin(
7486 __isl_take isl_basic_set *bset,
7487 __isl_take isl_basic_set *dom,
7488 __isl_give isl_set **empty);
7489 __isl_give isl_set *isl_basic_set_partial_lexmax(
7490 __isl_take isl_basic_set *bset,
7491 __isl_take isl_basic_set *dom,
7492 __isl_give isl_set **empty);
7493 __isl_give isl_set *isl_set_partial_lexmin(
7494 __isl_take isl_set *set, __isl_take isl_set *dom,
7495 __isl_give isl_set **empty);
7496 __isl_give isl_set *isl_set_partial_lexmax(
7497 __isl_take isl_set *set, __isl_take isl_set *dom,
7498 __isl_give isl_set **empty);
7500 Given a (basic) set C<set> (or C<bset>), the following functions simply
7501 return a set containing the lexicographic minimum or maximum
7502 of the elements in C<set> (or C<bset>).
7503 In case of union sets, the optimum is computed per space.
7505 #include <isl/set.h>
7506 __isl_give isl_set *isl_basic_set_lexmin(
7507 __isl_take isl_basic_set *bset);
7508 __isl_give isl_set *isl_basic_set_lexmax(
7509 __isl_take isl_basic_set *bset);
7510 __isl_give isl_set *isl_set_lexmin(
7511 __isl_take isl_set *set);
7512 __isl_give isl_set *isl_set_lexmax(
7513 __isl_take isl_set *set);
7514 __isl_give isl_union_set *isl_union_set_lexmin(
7515 __isl_take isl_union_set *uset);
7516 __isl_give isl_union_set *isl_union_set_lexmax(
7517 __isl_take isl_union_set *uset);
7519 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
7520 the following functions
7521 compute a relation that maps each element of C<dom>
7522 to the single lexicographic minimum or maximum
7523 of the elements that are associated to that same
7524 element in C<map> (or C<bmap>).
7525 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
7526 that contains the elements in C<dom> that do not map
7527 to any elements in C<map> (or C<bmap>).
7528 In other words, the union of the domain of the result and of C<*empty>
7531 #include <isl/map.h>
7532 __isl_give isl_map *isl_basic_map_partial_lexmax(
7533 __isl_take isl_basic_map *bmap,
7534 __isl_take isl_basic_set *dom,
7535 __isl_give isl_set **empty);
7536 __isl_give isl_map *isl_basic_map_partial_lexmin(
7537 __isl_take isl_basic_map *bmap,
7538 __isl_take isl_basic_set *dom,
7539 __isl_give isl_set **empty);
7540 __isl_give isl_map *isl_map_partial_lexmax(
7541 __isl_take isl_map *map, __isl_take isl_set *dom,
7542 __isl_give isl_set **empty);
7543 __isl_give isl_map *isl_map_partial_lexmin(
7544 __isl_take isl_map *map, __isl_take isl_set *dom,
7545 __isl_give isl_set **empty);
7547 Given a (basic) map C<map> (or C<bmap>), the following functions simply
7548 return a map mapping each element in the domain of
7549 C<map> (or C<bmap>) to the lexicographic minimum or maximum
7550 of all elements associated to that element.
7551 In case of union relations, the optimum is computed per space.
7553 #include <isl/map.h>
7554 __isl_give isl_map *isl_basic_map_lexmin(
7555 __isl_take isl_basic_map *bmap);
7556 __isl_give isl_map *isl_basic_map_lexmax(
7557 __isl_take isl_basic_map *bmap);
7558 __isl_give isl_map *isl_map_lexmin(
7559 __isl_take isl_map *map);
7560 __isl_give isl_map *isl_map_lexmax(
7561 __isl_take isl_map *map);
7562 __isl_give isl_union_map *isl_union_map_lexmin(
7563 __isl_take isl_union_map *umap);
7564 __isl_give isl_union_map *isl_union_map_lexmax(
7565 __isl_take isl_union_map *umap);
7567 The following functions return their result in the form of
7568 a piecewise multi-affine expression,
7569 but are otherwise equivalent to the corresponding functions
7570 returning a basic set or relation.
7572 #include <isl/set.h>
7573 __isl_give isl_pw_multi_aff *
7574 isl_basic_set_partial_lexmin_pw_multi_aff(
7575 __isl_take isl_basic_set *bset,
7576 __isl_take isl_basic_set *dom,
7577 __isl_give isl_set **empty);
7578 __isl_give isl_pw_multi_aff *
7579 isl_basic_set_partial_lexmax_pw_multi_aff(
7580 __isl_take isl_basic_set *bset,
7581 __isl_take isl_basic_set *dom,
7582 __isl_give isl_set **empty);
7583 __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
7584 __isl_take isl_set *set);
7585 __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
7586 __isl_take isl_set *set);
7588 #include <isl/map.h>
7589 __isl_give isl_pw_multi_aff *
7590 isl_basic_map_lexmin_pw_multi_aff(
7591 __isl_take isl_basic_map *bmap);
7592 __isl_give isl_pw_multi_aff *
7593 isl_basic_map_partial_lexmin_pw_multi_aff(
7594 __isl_take isl_basic_map *bmap,
7595 __isl_take isl_basic_set *dom,
7596 __isl_give isl_set **empty);
7597 __isl_give isl_pw_multi_aff *
7598 isl_basic_map_partial_lexmax_pw_multi_aff(
7599 __isl_take isl_basic_map *bmap,
7600 __isl_take isl_basic_set *dom,
7601 __isl_give isl_set **empty);
7602 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
7603 __isl_take isl_map *map);
7604 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
7605 __isl_take isl_map *map);
7607 The following functions return the lexicographic minimum or maximum
7608 on the shared domain of the inputs and the single defined function
7609 on those parts of the domain where only a single function is defined.
7611 #include <isl/aff.h>
7612 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
7613 __isl_take isl_pw_multi_aff *pma1,
7614 __isl_take isl_pw_multi_aff *pma2);
7615 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
7616 __isl_take isl_pw_multi_aff *pma1,
7617 __isl_take isl_pw_multi_aff *pma2);
7619 If the input to a lexicographic optimization problem has
7620 multiple constraints with the same coefficients for the optimized
7621 variables, then, by default, this symmetry is exploited by
7622 replacing those constraints by a single constraint with
7623 an abstract bound, which is in turn bounded by the corresponding terms
7624 in the original constraints.
7625 Without this optimization, the solver would typically consider
7626 all possible orderings of those original bounds, resulting in a needless
7627 decomposition of the domain.
7628 However, the optimization can also result in slowdowns since
7629 an extra parameter is introduced that may get used in additional
7631 The following option determines whether symmetry detection is applied
7632 during lexicographic optimization.
7634 #include <isl/options.h>
7635 isl_stat isl_options_set_pip_symmetry(isl_ctx *ctx,
7637 int isl_options_get_pip_symmetry(isl_ctx *ctx);
7641 See also \autoref{s:offline}.
7645 =head2 Ternary Operations
7647 #include <isl/aff.h>
7648 __isl_give isl_pw_aff *isl_pw_aff_cond(
7649 __isl_take isl_pw_aff *cond,
7650 __isl_take isl_pw_aff *pwaff_true,
7651 __isl_take isl_pw_aff *pwaff_false);
7653 The function C<isl_pw_aff_cond> performs a conditional operator
7654 and returns an expression that is equal to C<pwaff_true>
7655 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
7656 where C<cond> is zero.
7660 Lists are defined over several element types, including
7661 C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_union_pw_aff>,
7662 C<isl_union_pw_multi_aff>, C<isl_constraint>,
7663 C<isl_basic_set>, C<isl_set>, C<isl_basic_map>, C<isl_map>, C<isl_union_set>,
7664 C<isl_union_map>, C<isl_ast_expr> and C<isl_ast_node>.
7665 Here we take lists of C<isl_set>s as an example.
7666 Lists can be created, copied, modified and freed using the following functions.
7668 #include <isl/set.h>
7669 __isl_give isl_set_list *isl_set_list_from_set(
7670 __isl_take isl_set *el);
7671 __isl_give isl_set_list *isl_set_list_alloc(
7672 isl_ctx *ctx, int n);
7673 __isl_give isl_set_list *isl_set_list_copy(
7674 __isl_keep isl_set_list *list);
7675 __isl_give isl_set_list *isl_set_list_insert(
7676 __isl_take isl_set_list *list, unsigned pos,
7677 __isl_take isl_set *el);
7678 __isl_give isl_set_list *isl_set_list_add(
7679 __isl_take isl_set_list *list,
7680 __isl_take isl_set *el);
7681 __isl_give isl_set_list *isl_set_list_drop(
7682 __isl_take isl_set_list *list,
7683 unsigned first, unsigned n);
7684 __isl_give isl_set_list *isl_set_list_set_set(
7685 __isl_take isl_set_list *list, int index,
7686 __isl_take isl_set *set);
7687 __isl_give isl_set_list *isl_set_list_concat(
7688 __isl_take isl_set_list *list1,
7689 __isl_take isl_set_list *list2);
7690 __isl_give isl_set_list *isl_set_list_map(
7691 __isl_take isl_set_list *list,
7692 __isl_give isl_set *(*fn)(__isl_take isl_set *el,
7695 __isl_give isl_set_list *isl_set_list_sort(
7696 __isl_take isl_set_list *list,
7697 int (*cmp)(__isl_keep isl_set *a,
7698 __isl_keep isl_set *b, void *user),
7700 __isl_null isl_set_list *isl_set_list_free(
7701 __isl_take isl_set_list *list);
7703 C<isl_set_list_alloc> creates an empty list with an initial capacity
7704 for C<n> elements. C<isl_set_list_insert> and C<isl_set_list_add>
7705 add elements to a list, increasing its capacity as needed.
7706 C<isl_set_list_from_set> creates a list with a single element.
7708 Lists can be inspected using the following functions.
7710 #include <isl/set.h>
7711 int isl_set_list_n_set(__isl_keep isl_set_list *list);
7712 __isl_give isl_set *isl_set_list_get_set(
7713 __isl_keep isl_set_list *list, int index);
7714 isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list,
7715 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7717 isl_stat isl_set_list_foreach_scc(
7718 __isl_keep isl_set_list *list,
7719 isl_bool (*follows)(__isl_keep isl_set *a,
7720 __isl_keep isl_set *b, void *user),
7722 isl_stat (*fn)(__isl_take isl_set *el, void *user),
7725 The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
7726 strongly connected components of the graph with as vertices the elements
7727 of C<list> and a directed edge from vertex C<b> to vertex C<a>
7728 iff C<follows(a, b)> returns C<isl_bool_true>. The callbacks C<follows> and
7729 C<fn> should return C<isl_bool_error> or C<isl_stat_error> on error.
7731 Lists can be printed using
7733 #include <isl/set.h>
7734 __isl_give isl_printer *isl_printer_print_set_list(
7735 __isl_take isl_printer *p,
7736 __isl_keep isl_set_list *list);
7738 =head2 Associative arrays
7740 Associative arrays map isl objects of a specific type to isl objects
7741 of some (other) specific type. They are defined for several pairs
7742 of types, including (C<isl_map>, C<isl_basic_set>),
7743 (C<isl_id>, C<isl_ast_expr>),
7744 (C<isl_id>, C<isl_id>) and
7745 (C<isl_id>, C<isl_pw_aff>).
7746 Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
7749 Associative arrays can be created, copied and freed using
7750 the following functions.
7752 #include <isl/id_to_ast_expr.h>
7753 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc(
7754 isl_ctx *ctx, int min_size);
7755 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy(
7756 __isl_keep isl_id_to_ast_expr *id2expr);
7757 __isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free(
7758 __isl_take isl_id_to_ast_expr *id2expr);
7760 The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
7761 to specify the expected size of the associative array.
7762 The associative array will be grown automatically as needed.
7764 Associative arrays can be inspected using the following functions.
7766 #include <isl/id_to_ast_expr.h>
7767 __isl_give isl_maybe_isl_ast_expr
7768 isl_id_to_ast_expr_try_get(
7769 __isl_keep isl_id_to_ast_expr *id2expr,
7770 __isl_keep isl_id *key);
7771 isl_bool isl_id_to_ast_expr_has(
7772 __isl_keep isl_id_to_ast_expr *id2expr,
7773 __isl_keep isl_id *key);
7774 __isl_give isl_ast_expr *isl_id_to_ast_expr_get(
7775 __isl_keep isl_id_to_ast_expr *id2expr,
7776 __isl_take isl_id *key);
7777 isl_stat isl_id_to_ast_expr_foreach(
7778 __isl_keep isl_id_to_ast_expr *id2expr,
7779 isl_stat (*fn)(__isl_take isl_id *key,
7780 __isl_take isl_ast_expr *val, void *user),
7783 The function C<isl_id_to_ast_expr_try_get> returns a structure
7784 containing two elements, C<valid> and C<value>.
7785 If there is a value associated to the key, then C<valid>
7786 is set to C<isl_bool_true> and C<value> contains a copy of
7787 the associated value. Otherwise C<value> is C<NULL> and
7788 C<valid> may be C<isl_bool_error> or C<isl_bool_false> depending
7789 on whether some error has occurred or there simply is no associated value.
7790 The function C<isl_id_to_ast_expr_has> returns the C<valid> field
7791 in the structure and
7792 the function C<isl_id_to_ast_expr_get> returns the C<value> field.
7794 Associative arrays can be modified using the following functions.
7796 #include <isl/id_to_ast_expr.h>
7797 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set(
7798 __isl_take isl_id_to_ast_expr *id2expr,
7799 __isl_take isl_id *key,
7800 __isl_take isl_ast_expr *val);
7801 __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop(
7802 __isl_take isl_id_to_ast_expr *id2expr,
7803 __isl_take isl_id *key);
7805 Associative arrays can be printed using the following function.
7807 #include <isl/id_to_ast_expr.h>
7808 __isl_give isl_printer *isl_printer_print_id_to_ast_expr(
7809 __isl_take isl_printer *p,
7810 __isl_keep isl_id_to_ast_expr *id2expr);
7814 Vectors can be created, copied and freed using the following functions.
7816 #include <isl/vec.h>
7817 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
7819 __isl_give isl_vec *isl_vec_zero(isl_ctx *ctx,
7821 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
7822 __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);
7824 Note that the elements of a vector created by C<isl_vec_alloc>
7825 may have arbitrary values.
7826 A vector created by C<isl_vec_zero> has elements with value zero.
7827 The elements can be changed and inspected using the following functions.
7829 int isl_vec_size(__isl_keep isl_vec *vec);
7830 __isl_give isl_val *isl_vec_get_element_val(
7831 __isl_keep isl_vec *vec, int pos);
7832 __isl_give isl_vec *isl_vec_set_element_si(
7833 __isl_take isl_vec *vec, int pos, int v);
7834 __isl_give isl_vec *isl_vec_set_element_val(
7835 __isl_take isl_vec *vec, int pos,
7836 __isl_take isl_val *v);
7837 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
7839 __isl_give isl_vec *isl_vec_set_val(
7840 __isl_take isl_vec *vec, __isl_take isl_val *v);
7841 int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
7842 __isl_keep isl_vec *vec2, int pos);
7844 C<isl_vec_get_element> will return a negative value if anything went wrong.
7845 In that case, the value of C<*v> is undefined.
7847 The following function can be used to concatenate two vectors.
7849 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
7850 __isl_take isl_vec *vec2);
7854 Matrices can be created, copied and freed using the following functions.
7856 #include <isl/mat.h>
7857 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
7858 unsigned n_row, unsigned n_col);
7859 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
7860 __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);
7862 Note that the elements of a newly created matrix may have arbitrary values.
7863 The elements can be changed and inspected using the following functions.
7865 int isl_mat_rows(__isl_keep isl_mat *mat);
7866 int isl_mat_cols(__isl_keep isl_mat *mat);
7867 __isl_give isl_val *isl_mat_get_element_val(
7868 __isl_keep isl_mat *mat, int row, int col);
7869 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
7870 int row, int col, int v);
7871 __isl_give isl_mat *isl_mat_set_element_val(
7872 __isl_take isl_mat *mat, int row, int col,
7873 __isl_take isl_val *v);
7875 The following function computes the rank of a matrix.
7876 The return value may be -1 if some error occurred.
7878 #include <isl/mat.h>
7879 int isl_mat_rank(__isl_keep isl_mat *mat);
7881 The following function can be used to compute the (right) inverse
7882 of a matrix, i.e., a matrix such that the product of the original
7883 and the inverse (in that order) is a multiple of the identity matrix.
7884 The input matrix is assumed to be of full row-rank.
7886 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
7888 The following function can be used to compute the (right) kernel
7889 (or null space) of a matrix, i.e., a matrix such that the product of
7890 the original and the kernel (in that order) is the zero matrix.
7892 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
7894 The following function computes a basis for the space spanned
7895 by the rows of a matrix.
7897 __isl_give isl_mat *isl_mat_row_basis(
7898 __isl_take isl_mat *mat);
7900 The following function computes rows that extend a basis of C<mat1>
7901 to a basis that also covers C<mat2>.
7903 __isl_give isl_mat *isl_mat_row_basis_extension(
7904 __isl_take isl_mat *mat1,
7905 __isl_take isl_mat *mat2);
7907 The following function checks whether there is no linear dependence
7908 among the combined rows of "mat1" and "mat2" that is not already present
7909 in "mat1" or "mat2" individually.
7910 If "mat1" and "mat2" have linearly independent rows by themselves,
7911 then this means that there is no linear dependence among all rows together.
7913 isl_bool isl_mat_has_linearly_independent_rows(
7914 __isl_keep isl_mat *mat1,
7915 __isl_keep isl_mat *mat2);
7917 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
7919 The following functions determine
7920 an upper or lower bound on a quasipolynomial over its domain.
7922 __isl_give isl_pw_qpolynomial_fold *
7923 isl_pw_qpolynomial_bound(
7924 __isl_take isl_pw_qpolynomial *pwqp,
7925 enum isl_fold type, int *tight);
7927 __isl_give isl_union_pw_qpolynomial_fold *
7928 isl_union_pw_qpolynomial_bound(
7929 __isl_take isl_union_pw_qpolynomial *upwqp,
7930 enum isl_fold type, int *tight);
7932 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
7933 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
7934 is the returned bound is known be tight, i.e., for each value
7935 of the parameters there is at least
7936 one element in the domain that reaches the bound.
7937 If the domain of C<pwqp> is not wrapping, then the bound is computed
7938 over all elements in that domain and the result has a purely parametric
7939 domain. If the domain of C<pwqp> is wrapping, then the bound is
7940 computed over the range of the wrapped relation. The domain of the
7941 wrapped relation becomes the domain of the result.
7943 =head2 Parametric Vertex Enumeration
7945 The parametric vertex enumeration described in this section
7946 is mainly intended to be used internally and by the C<barvinok>
7949 #include <isl/vertices.h>
7950 __isl_give isl_vertices *isl_basic_set_compute_vertices(
7951 __isl_keep isl_basic_set *bset);
7953 The function C<isl_basic_set_compute_vertices> performs the
7954 actual computation of the parametric vertices and the chamber
7955 decomposition and stores the result in an C<isl_vertices> object.
7956 This information can be queried by either iterating over all
7957 the vertices or iterating over all the chambers or cells
7958 and then iterating over all vertices that are active on the chamber.
7960 isl_stat isl_vertices_foreach_vertex(
7961 __isl_keep isl_vertices *vertices,
7962 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7963 void *user), void *user);
7965 isl_stat isl_vertices_foreach_cell(
7966 __isl_keep isl_vertices *vertices,
7967 isl_stat (*fn)(__isl_take isl_cell *cell,
7968 void *user), void *user);
7969 isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
7970 isl_stat (*fn)(__isl_take isl_vertex *vertex,
7971 void *user), void *user);
7973 Other operations that can be performed on an C<isl_vertices> object are
7976 int isl_vertices_get_n_vertices(
7977 __isl_keep isl_vertices *vertices);
7978 __isl_null isl_vertices *isl_vertices_free(
7979 __isl_take isl_vertices *vertices);
7981 Vertices can be inspected and destroyed using the following functions.
7983 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
7984 __isl_give isl_basic_set *isl_vertex_get_domain(
7985 __isl_keep isl_vertex *vertex);
7986 __isl_give isl_multi_aff *isl_vertex_get_expr(
7987 __isl_keep isl_vertex *vertex);
7988 void isl_vertex_free(__isl_take isl_vertex *vertex);
7990 C<isl_vertex_get_expr> returns a multiple quasi-affine expression
7991 describing the vertex in terms of the parameters,
7992 while C<isl_vertex_get_domain> returns the activity domain
7995 Chambers can be inspected and destroyed using the following functions.
7997 __isl_give isl_basic_set *isl_cell_get_domain(
7998 __isl_keep isl_cell *cell);
7999 void isl_cell_free(__isl_take isl_cell *cell);
8001 =head1 Polyhedral Compilation Library
8003 This section collects functionality in C<isl> that has been specifically
8004 designed for use during polyhedral compilation.
8006 =head2 Schedule Trees
8008 A schedule tree is a structured representation of a schedule,
8009 assigning a relative order to a set of domain elements.
8010 The relative order expressed by the schedule tree is
8011 defined recursively. In particular, the order between
8012 two domain elements is determined by the node that is closest
8013 to the root that refers to both elements and that orders them apart.
8014 Each node in the tree is of one of several types.
8015 The root node is always of type C<isl_schedule_node_domain>
8016 (or C<isl_schedule_node_extension>)
8017 and it describes the (extra) domain elements to which the schedule applies.
8018 The other types of nodes are as follows.
8022 =item C<isl_schedule_node_band>
8024 A band of schedule dimensions. Each schedule dimension is represented
8025 by a union piecewise quasi-affine expression. If this expression
8026 assigns a different value to two domain elements, while all previous
8027 schedule dimensions in the same band assign them the same value,
8028 then the two domain elements are ordered according to these two
8030 Each expression is required to be total in the domain elements
8031 that reach the band node.
8033 =item C<isl_schedule_node_expansion>
8035 An expansion node maps each of the domain elements that reach the node
8036 to one or more domain elements. The image of this mapping forms
8037 the set of domain elements that reach the child of the expansion node.
8038 The function that maps each of the expanded domain elements
8039 to the original domain element from which it was expanded
8040 is called the contraction.
8042 =item C<isl_schedule_node_filter>
8044 A filter node does not impose any ordering, but rather intersects
8045 the set of domain elements that the current subtree refers to
8046 with a given union set. The subtree of the filter node only
8047 refers to domain elements in the intersection.
8048 A filter node is typically only used as a child of a sequence or
8051 =item C<isl_schedule_node_leaf>
8053 A leaf of the schedule tree. Leaf nodes do not impose any ordering.
8055 =item C<isl_schedule_node_mark>
8057 A mark node can be used to attach any kind of information to a subtree
8058 of the schedule tree.
8060 =item C<isl_schedule_node_sequence>
8062 A sequence node has one or more children, each of which is a filter node.
8063 The filters on these filter nodes form a partition of
8064 the domain elements that the current subtree refers to.
8065 If two domain elements appear in distinct filters then the sequence
8066 node orders them according to the child positions of the corresponding
8069 =item C<isl_schedule_node_set>
8071 A set node is similar to a sequence node, except that
8072 it expresses that domain elements appearing in distinct filters
8073 may have any order. The order of the children of a set node
8074 is therefore also immaterial.
8078 The following node types are only supported by the AST generator.
8082 =item C<isl_schedule_node_context>
8084 The context describes constraints on the parameters and
8085 the schedule dimensions of outer
8086 bands that the AST generator may assume to hold. It is also the only
8087 kind of node that may introduce additional parameters.
8088 The space of the context is that of the flat product of the outer
8089 band nodes. In particular, if there are no outer band nodes, then
8090 this space is the unnamed zero-dimensional space.
8091 Since a context node references the outer band nodes, any tree
8092 containing a context node is considered to be anchored.
8094 =item C<isl_schedule_node_extension>
8096 An extension node instructs the AST generator to add additional
8097 domain elements that need to be scheduled.
8098 The additional domain elements are described by the range of
8099 the extension map in terms of the outer schedule dimensions,
8100 i.e., the flat product of the outer band nodes.
8101 Note that domain elements are added whenever the AST generator
8102 reaches the extension node, meaning that there are still some
8103 active domain elements for which an AST needs to be generated.
8104 The conditions under which some domain elements are still active
8105 may however not be completely described by the outer AST nodes
8106 generated at that point.
8107 Since an extension node references the outer band nodes, any tree
8108 containing an extension node is considered to be anchored.
8110 An extension node may also appear as the root of a schedule tree,
8111 when it is intended to be inserted into another tree
8112 using C<isl_schedule_node_graft_before> or C<isl_schedule_node_graft_after>.
8113 In this case, the domain of the extension node should
8114 correspond to the flat product of the outer band nodes
8115 in this other schedule tree at the point where the extension tree
8118 =item C<isl_schedule_node_guard>
8120 The guard describes constraints on the parameters and
8121 the schedule dimensions of outer
8122 bands that need to be enforced by the outer nodes
8123 in the generated AST.
8124 That is, the part of the AST that is generated from descendants
8125 of the guard node can assume that these constraints are satisfied.
8126 The space of the guard is that of the flat product of the outer
8127 band nodes. In particular, if there are no outer band nodes, then
8128 this space is the unnamed zero-dimensional space.
8129 Since a guard node references the outer band nodes, any tree
8130 containing a guard node is considered to be anchored.
8134 Except for the C<isl_schedule_node_context> nodes,
8135 none of the nodes may introduce any parameters that were not
8136 already present in the root domain node.
8138 A schedule tree is encapsulated in an C<isl_schedule> object.
8139 The simplest such objects, those with a tree consisting of single domain node,
8140 can be created using the following functions with either an empty
8141 domain or a given domain.
8143 #include <isl/schedule.h>
8144 __isl_give isl_schedule *isl_schedule_empty(
8145 __isl_take isl_space *space);
8146 __isl_give isl_schedule *isl_schedule_from_domain(
8147 __isl_take isl_union_set *domain);
8149 The function C<isl_schedule_constraints_compute_schedule> described
8150 in L</"Scheduling"> can also be used to construct schedules.
8152 C<isl_schedule> objects may be copied and freed using the following functions.
8154 #include <isl/schedule.h>
8155 __isl_give isl_schedule *isl_schedule_copy(
8156 __isl_keep isl_schedule *sched);
8157 __isl_null isl_schedule *isl_schedule_free(
8158 __isl_take isl_schedule *sched);
8160 The following functions checks whether two C<isl_schedule> objects
8161 are obviously the same.
8163 #include <isl/schedule.h>
8164 isl_bool isl_schedule_plain_is_equal(
8165 __isl_keep isl_schedule *schedule1,
8166 __isl_keep isl_schedule *schedule2);
8168 The domain of the schedule, i.e., the domain described by the root node,
8169 can be obtained using the following function.
8171 #include <isl/schedule.h>
8172 __isl_give isl_union_set *isl_schedule_get_domain(
8173 __isl_keep isl_schedule *schedule);
8175 An extra top-level band node (right underneath the domain node) can
8176 be introduced into the schedule using the following function.
8177 The schedule tree is assumed not to have any anchored nodes.
8179 #include <isl/schedule.h>
8180 __isl_give isl_schedule *
8181 isl_schedule_insert_partial_schedule(
8182 __isl_take isl_schedule *schedule,
8183 __isl_take isl_multi_union_pw_aff *partial);
8185 A top-level context node (right underneath the domain node) can
8186 be introduced into the schedule using the following function.
8188 #include <isl/schedule.h>
8189 __isl_give isl_schedule *isl_schedule_insert_context(
8190 __isl_take isl_schedule *schedule,
8191 __isl_take isl_set *context)
8193 A top-level guard node (right underneath the domain node) can
8194 be introduced into the schedule using the following function.
8196 #include <isl/schedule.h>
8197 __isl_give isl_schedule *isl_schedule_insert_guard(
8198 __isl_take isl_schedule *schedule,
8199 __isl_take isl_set *guard)
8201 A schedule that combines two schedules either in the given
8202 order or in an arbitrary order, i.e., with an C<isl_schedule_node_sequence>
8203 or an C<isl_schedule_node_set> node,
8204 can be created using the following functions.
8206 #include <isl/schedule.h>
8207 __isl_give isl_schedule *isl_schedule_sequence(
8208 __isl_take isl_schedule *schedule1,
8209 __isl_take isl_schedule *schedule2);
8210 __isl_give isl_schedule *isl_schedule_set(
8211 __isl_take isl_schedule *schedule1,
8212 __isl_take isl_schedule *schedule2);
8214 The domains of the two input schedules need to be disjoint.
8216 The following function can be used to restrict the domain
8217 of a schedule with a domain node as root to be a subset of the given union set.
8218 This operation may remove nodes in the tree that have become
8221 #include <isl/schedule.h>
8222 __isl_give isl_schedule *isl_schedule_intersect_domain(
8223 __isl_take isl_schedule *schedule,
8224 __isl_take isl_union_set *domain);
8226 The following function can be used to simplify the domain
8227 of a schedule with a domain node as root with respect to the given
8230 #include <isl/schedule.h>
8231 __isl_give isl_schedule *isl_schedule_gist_domain_params(
8232 __isl_take isl_schedule *schedule,
8233 __isl_take isl_set *context);
8235 The following function resets the user pointers on all parameter
8236 and tuple identifiers referenced by the nodes of the given schedule.
8238 #include <isl/schedule.h>
8239 __isl_give isl_schedule *isl_schedule_reset_user(
8240 __isl_take isl_schedule *schedule);
8242 The following function aligns the parameters of all nodes
8243 in the given schedule to the given space.
8245 #include <isl/schedule.h>
8246 __isl_give isl_schedule *isl_schedule_align_params(
8247 __isl_take isl_schedule *schedule,
8248 __isl_take isl_space *space);
8250 The following function allows the user to plug in a given function
8251 in the iteration domains. The input schedule is not allowed to contain
8252 any expansion nodes.
8254 #include <isl/schedule.h>
8255 __isl_give isl_schedule *
8256 isl_schedule_pullback_union_pw_multi_aff(
8257 __isl_take isl_schedule *schedule,
8258 __isl_take isl_union_pw_multi_aff *upma);
8260 The following function can be used to plug in the schedule C<expansion>
8261 in the leaves of C<schedule>, where C<contraction> describes how
8262 the domain elements of C<expansion> map to the domain elements
8263 at the original leaves of C<schedule>.
8264 The resulting schedule will contain expansion nodes, unless
8265 C<contraction> is an identity function.
8267 #include <isl/schedule.h>
8268 __isl_give isl_schedule *isl_schedule_expand(
8269 __isl_take isl_schedule *schedule,
8270 __isl_take isl_union_pw_multi_aff *contraction,
8271 __isl_take isl_schedule *expansion);
8273 An C<isl_union_map> representation of the schedule can be obtained
8274 from an C<isl_schedule> using the following function.
8276 #include <isl/schedule.h>
8277 __isl_give isl_union_map *isl_schedule_get_map(
8278 __isl_keep isl_schedule *sched);
8280 The resulting relation encodes the same relative ordering as
8281 the schedule by mapping the domain elements to a common schedule space.
8282 If the schedule_separate_components option is set, then the order
8283 of the children of a set node is explicitly encoded in the result.
8284 If the tree contains any expansion nodes, then the relation
8285 is formulated in terms of the expanded domain elements.
8287 Schedules can be read from input using the following functions.
8289 #include <isl/schedule.h>
8290 __isl_give isl_schedule *isl_schedule_read_from_file(
8291 isl_ctx *ctx, FILE *input);
8292 __isl_give isl_schedule *isl_schedule_read_from_str(
8293 isl_ctx *ctx, const char *str);
8295 A representation of the schedule can be printed using
8297 #include <isl/schedule.h>
8298 __isl_give isl_printer *isl_printer_print_schedule(
8299 __isl_take isl_printer *p,
8300 __isl_keep isl_schedule *schedule);
8301 __isl_give char *isl_schedule_to_str(
8302 __isl_keep isl_schedule *schedule);
8304 C<isl_schedule_to_str> prints the schedule in flow format.
8306 The schedule tree can be traversed through the use of
8307 C<isl_schedule_node> objects that point to a particular
8308 position in the schedule tree. Whenever a C<isl_schedule_node>
8309 is used to modify a node in the schedule tree, the original schedule
8310 tree is left untouched and the modifications are performed to a copy
8311 of the tree. The returned C<isl_schedule_node> then points to
8312 this modified copy of the tree.
8314 The root of the schedule tree can be obtained using the following function.
8316 #include <isl/schedule.h>
8317 __isl_give isl_schedule_node *isl_schedule_get_root(
8318 __isl_keep isl_schedule *schedule);
8320 A pointer to a newly created schedule tree with a single domain
8321 node can be created using the following functions.
8323 #include <isl/schedule_node.h>
8324 __isl_give isl_schedule_node *
8325 isl_schedule_node_from_domain(
8326 __isl_take isl_union_set *domain);
8327 __isl_give isl_schedule_node *
8328 isl_schedule_node_from_extension(
8329 __isl_take isl_union_map *extension);
8331 C<isl_schedule_node_from_extension> creates a tree with an extension
8334 Schedule nodes can be copied and freed using the following functions.
8336 #include <isl/schedule_node.h>
8337 __isl_give isl_schedule_node *isl_schedule_node_copy(
8338 __isl_keep isl_schedule_node *node);
8339 __isl_null isl_schedule_node *isl_schedule_node_free(
8340 __isl_take isl_schedule_node *node);
8342 The following functions can be used to check if two schedule
8343 nodes point to the same position in the same schedule.
8345 #include <isl/schedule_node.h>
8346 isl_bool isl_schedule_node_is_equal(
8347 __isl_keep isl_schedule_node *node1,
8348 __isl_keep isl_schedule_node *node2);
8350 The following properties can be obtained from a schedule node.
8352 #include <isl/schedule_node.h>
8353 enum isl_schedule_node_type isl_schedule_node_get_type(
8354 __isl_keep isl_schedule_node *node);
8355 enum isl_schedule_node_type
8356 isl_schedule_node_get_parent_type(
8357 __isl_keep isl_schedule_node *node);
8358 __isl_give isl_schedule *isl_schedule_node_get_schedule(
8359 __isl_keep isl_schedule_node *node);
8361 The function C<isl_schedule_node_get_type> returns the type of
8362 the node, while C<isl_schedule_node_get_parent_type> returns
8363 type of the parent of the node, which is required to exist.
8364 The function C<isl_schedule_node_get_schedule> returns a copy
8365 to the schedule to which the node belongs.
8367 The following functions can be used to move the schedule node
8368 to a different position in the tree or to check if such a position
8371 #include <isl/schedule_node.h>
8372 isl_bool isl_schedule_node_has_parent(
8373 __isl_keep isl_schedule_node *node);
8374 __isl_give isl_schedule_node *isl_schedule_node_parent(
8375 __isl_take isl_schedule_node *node);
8376 __isl_give isl_schedule_node *isl_schedule_node_root(
8377 __isl_take isl_schedule_node *node);
8378 __isl_give isl_schedule_node *isl_schedule_node_ancestor(
8379 __isl_take isl_schedule_node *node,
8381 int isl_schedule_node_n_children(
8382 __isl_keep isl_schedule_node *node);
8383 __isl_give isl_schedule_node *isl_schedule_node_child(
8384 __isl_take isl_schedule_node *node, int pos);
8385 isl_bool isl_schedule_node_has_children(
8386 __isl_keep isl_schedule_node *node);
8387 __isl_give isl_schedule_node *isl_schedule_node_first_child(
8388 __isl_take isl_schedule_node *node);
8389 isl_bool isl_schedule_node_has_previous_sibling(
8390 __isl_keep isl_schedule_node *node);
8391 __isl_give isl_schedule_node *
8392 isl_schedule_node_previous_sibling(
8393 __isl_take isl_schedule_node *node);
8394 isl_bool isl_schedule_node_has_next_sibling(
8395 __isl_keep isl_schedule_node *node);
8396 __isl_give isl_schedule_node *
8397 isl_schedule_node_next_sibling(
8398 __isl_take isl_schedule_node *node);
8400 For C<isl_schedule_node_ancestor>, the ancestor of generation 0
8401 is the node itself, the ancestor of generation 1 is its parent and so on.
8403 It is also possible to query the number of ancestors of a node,
8404 the position of the current node
8405 within the children of its parent, the position of the subtree
8406 containing a node within the children of an ancestor
8407 or to obtain a copy of a given
8408 child without destroying the current node.
8409 Given two nodes that point to the same schedule, their closest
8410 shared ancestor can be obtained using
8411 C<isl_schedule_node_get_shared_ancestor>.
8413 #include <isl/schedule_node.h>
8414 int isl_schedule_node_get_tree_depth(
8415 __isl_keep isl_schedule_node *node);
8416 int isl_schedule_node_get_child_position(
8417 __isl_keep isl_schedule_node *node);
8418 int isl_schedule_node_get_ancestor_child_position(
8419 __isl_keep isl_schedule_node *node,
8420 __isl_keep isl_schedule_node *ancestor);
8421 __isl_give isl_schedule_node *isl_schedule_node_get_child(
8422 __isl_keep isl_schedule_node *node, int pos);
8423 __isl_give isl_schedule_node *
8424 isl_schedule_node_get_shared_ancestor(
8425 __isl_keep isl_schedule_node *node1,
8426 __isl_keep isl_schedule_node *node2);
8428 All nodes in a schedule tree or
8429 all descendants of a specific node (including the node) can be visited
8430 in depth-first pre-order using the following functions.
8432 #include <isl/schedule.h>
8433 isl_stat isl_schedule_foreach_schedule_node_top_down(
8434 __isl_keep isl_schedule *sched,
8435 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8436 void *user), void *user);
8438 #include <isl/schedule_node.h>
8439 isl_stat isl_schedule_node_foreach_descendant_top_down(
8440 __isl_keep isl_schedule_node *node,
8441 isl_bool (*fn)(__isl_keep isl_schedule_node *node,
8442 void *user), void *user);
8444 The callback function is slightly different from the usual
8445 callbacks in that it not only indicates success (non-negative result)
8446 or failure (negative result), but also indicates whether the children
8447 of the given node should be visited. In particular, if the callback
8448 returns a positive value, then the children are visited, but if
8449 the callback returns zero, then the children are not visited.
8451 The following functions checks whether
8452 all descendants of a specific node (including the node itself)
8453 satisfy a user-specified test.
8455 #include <isl/schedule_node.h>
8456 isl_bool isl_schedule_node_every_descendant(
8457 __isl_keep isl_schedule_node *node,
8458 isl_bool (*test)(__isl_keep isl_schedule_node *node,
8459 void *user), void *user)
8461 The ancestors of a node in a schedule tree can be visited from
8462 the root down to and including the parent of the node using
8463 the following function.
8465 #include <isl/schedule_node.h>
8466 isl_stat isl_schedule_node_foreach_ancestor_top_down(
8467 __isl_keep isl_schedule_node *node,
8468 isl_stat (*fn)(__isl_keep isl_schedule_node *node,
8469 void *user), void *user);
8471 The following functions allows for a depth-first post-order
8472 traversal of the nodes in a schedule tree or
8473 of the descendants of a specific node (including the node
8474 itself), where the user callback is allowed to modify the
8477 #include <isl/schedule.h>
8478 __isl_give isl_schedule *
8479 isl_schedule_map_schedule_node_bottom_up(
8480 __isl_take isl_schedule *schedule,
8481 __isl_give isl_schedule_node *(*fn)(
8482 __isl_take isl_schedule_node *node,
8483 void *user), void *user);
8485 #include <isl/schedule_node.h>
8486 __isl_give isl_schedule_node *
8487 isl_schedule_node_map_descendant_bottom_up(
8488 __isl_take isl_schedule_node *node,
8489 __isl_give isl_schedule_node *(*fn)(
8490 __isl_take isl_schedule_node *node,
8491 void *user), void *user);
8493 The traversal continues from the node returned by the callback function.
8494 It is the responsibility of the user to ensure that this does not
8495 lead to an infinite loop. It is safest to always return a pointer
8496 to the same position (same ancestors and child positions) as the input node.
8498 The following function removes a node (along with its descendants)
8499 from a schedule tree and returns a pointer to the leaf at the
8500 same position in the updated tree.
8501 It is not allowed to remove the root of a schedule tree or
8502 a child of a set or sequence node.
8504 #include <isl/schedule_node.h>
8505 __isl_give isl_schedule_node *isl_schedule_node_cut(
8506 __isl_take isl_schedule_node *node);
8508 The following function removes a single node
8509 from a schedule tree and returns a pointer to the child
8510 of the node, now located at the position of the original node
8511 or to a leaf node at that position if there was no child.
8512 It is not allowed to remove the root of a schedule tree,
8513 a set or sequence node, a child of a set or sequence node or
8514 a band node with an anchored subtree.
8516 #include <isl/schedule_node.h>
8517 __isl_give isl_schedule_node *isl_schedule_node_delete(
8518 __isl_take isl_schedule_node *node);
8520 Most nodes in a schedule tree only contain local information.
8521 In some cases, however, a node may also refer to the schedule dimensions
8522 of its outer band nodes.
8523 This means that the position of the node within the tree should
8524 not be changed, or at least that no changes are performed to the
8525 outer band nodes. The following function can be used to test
8526 whether the subtree rooted at a given node contains any such nodes.
8528 #include <isl/schedule_node.h>
8529 isl_bool isl_schedule_node_is_subtree_anchored(
8530 __isl_keep isl_schedule_node *node);
8532 The following function resets the user pointers on all parameter
8533 and tuple identifiers referenced by the given schedule node.
8535 #include <isl/schedule_node.h>
8536 __isl_give isl_schedule_node *isl_schedule_node_reset_user(
8537 __isl_take isl_schedule_node *node);
8539 The following function aligns the parameters of the given schedule
8540 node to the given space.
8542 #include <isl/schedule_node.h>
8543 __isl_give isl_schedule_node *
8544 isl_schedule_node_align_params(
8545 __isl_take isl_schedule_node *node,
8546 __isl_take isl_space *space);
8548 Several node types have their own functions for querying
8549 (and in some cases setting) some node type specific properties.
8551 #include <isl/schedule_node.h>
8552 __isl_give isl_space *isl_schedule_node_band_get_space(
8553 __isl_keep isl_schedule_node *node);
8554 __isl_give isl_multi_union_pw_aff *
8555 isl_schedule_node_band_get_partial_schedule(
8556 __isl_keep isl_schedule_node *node);
8557 __isl_give isl_union_map *
8558 isl_schedule_node_band_get_partial_schedule_union_map(
8559 __isl_keep isl_schedule_node *node);
8560 unsigned isl_schedule_node_band_n_member(
8561 __isl_keep isl_schedule_node *node);
8562 isl_bool isl_schedule_node_band_member_get_coincident(
8563 __isl_keep isl_schedule_node *node, int pos);
8564 __isl_give isl_schedule_node *
8565 isl_schedule_node_band_member_set_coincident(
8566 __isl_take isl_schedule_node *node, int pos,
8568 isl_bool isl_schedule_node_band_get_permutable(
8569 __isl_keep isl_schedule_node *node);
8570 __isl_give isl_schedule_node *
8571 isl_schedule_node_band_set_permutable(
8572 __isl_take isl_schedule_node *node, int permutable);
8573 enum isl_ast_loop_type
8574 isl_schedule_node_band_member_get_ast_loop_type(
8575 __isl_keep isl_schedule_node *node, int pos);
8576 __isl_give isl_schedule_node *
8577 isl_schedule_node_band_member_set_ast_loop_type(
8578 __isl_take isl_schedule_node *node, int pos,
8579 enum isl_ast_loop_type type);
8580 __isl_give isl_union_set *
8581 enum isl_ast_loop_type
8582 isl_schedule_node_band_member_get_isolate_ast_loop_type(
8583 __isl_keep isl_schedule_node *node, int pos);
8584 __isl_give isl_schedule_node *
8585 isl_schedule_node_band_member_set_isolate_ast_loop_type(
8586 __isl_take isl_schedule_node *node, int pos,
8587 enum isl_ast_loop_type type);
8588 isl_schedule_node_band_get_ast_build_options(
8589 __isl_keep isl_schedule_node *node);
8590 __isl_give isl_schedule_node *
8591 isl_schedule_node_band_set_ast_build_options(
8592 __isl_take isl_schedule_node *node,
8593 __isl_take isl_union_set *options);
8594 __isl_give isl_set *
8595 isl_schedule_node_band_get_ast_isolate_option(
8596 __isl_keep isl_schedule_node *node);
8598 The function C<isl_schedule_node_band_get_space> returns the space
8599 of the partial schedule of the band.
8600 The function C<isl_schedule_node_band_get_partial_schedule_union_map>
8601 returns a representation of the partial schedule of the band node
8602 in the form of an C<isl_union_map>.
8603 The coincident and permutable properties are set by
8604 C<isl_schedule_constraints_compute_schedule> on the schedule tree
8606 A scheduling dimension is considered to be ``coincident''
8607 if it satisfies the coincidence constraints within its band.
8608 That is, if the dependence distances of the coincidence
8609 constraints are all zero in that direction (for fixed
8610 iterations of outer bands).
8611 A band is marked permutable if it was produced using the Pluto-like scheduler.
8612 Note that the scheduler may have to resort to a Feautrier style scheduling
8613 step even if the default scheduler is used.
8614 An C<isl_ast_loop_type> is one of C<isl_ast_loop_default>,
8615 C<isl_ast_loop_atomic>, C<isl_ast_loop_unroll> or C<isl_ast_loop_separate>.
8616 For the meaning of these loop AST generation types and the difference
8617 between the regular loop AST generation type and the isolate
8618 loop AST generation type, see L</"AST Generation Options (Schedule Tree)">.
8619 The functions C<isl_schedule_node_band_member_get_ast_loop_type>
8620 and C<isl_schedule_node_band_member_get_isolate_ast_loop_type>
8621 may return C<isl_ast_loop_error> if an error occurs.
8622 The AST build options govern how an AST is generated for
8623 the individual schedule dimensions during AST generation.
8624 See L</"AST Generation Options (Schedule Tree)">.
8625 The isolate option for the given node can be extracted from these
8626 AST build options using the function
8627 C<isl_schedule_node_band_get_ast_isolate_option>.
8629 #include <isl/schedule_node.h>
8630 __isl_give isl_set *
8631 isl_schedule_node_context_get_context(
8632 __isl_keep isl_schedule_node *node);
8634 #include <isl/schedule_node.h>
8635 __isl_give isl_union_set *
8636 isl_schedule_node_domain_get_domain(
8637 __isl_keep isl_schedule_node *node);
8639 #include <isl/schedule_node.h>
8640 __isl_give isl_union_map *
8641 isl_schedule_node_expansion_get_expansion(
8642 __isl_keep isl_schedule_node *node);
8643 __isl_give isl_union_pw_multi_aff *
8644 isl_schedule_node_expansion_get_contraction(
8645 __isl_keep isl_schedule_node *node);
8647 #include <isl/schedule_node.h>
8648 __isl_give isl_union_map *
8649 isl_schedule_node_extension_get_extension(
8650 __isl_keep isl_schedule_node *node);
8652 #include <isl/schedule_node.h>
8653 __isl_give isl_union_set *
8654 isl_schedule_node_filter_get_filter(
8655 __isl_keep isl_schedule_node *node);
8657 #include <isl/schedule_node.h>
8658 __isl_give isl_set *isl_schedule_node_guard_get_guard(
8659 __isl_keep isl_schedule_node *node);
8661 #include <isl/schedule_node.h>
8662 __isl_give isl_id *isl_schedule_node_mark_get_id(
8663 __isl_keep isl_schedule_node *node);
8665 The following functions can be used to obtain an C<isl_multi_union_pw_aff>,
8666 an C<isl_union_pw_multi_aff> or C<isl_union_map> representation of
8667 partial schedules related to the node.
8669 #include <isl/schedule_node.h>
8670 __isl_give isl_multi_union_pw_aff *
8671 isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
8672 __isl_keep isl_schedule_node *node);
8673 __isl_give isl_union_pw_multi_aff *
8674 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
8675 __isl_keep isl_schedule_node *node);
8676 __isl_give isl_union_map *
8677 isl_schedule_node_get_prefix_schedule_union_map(
8678 __isl_keep isl_schedule_node *node);
8679 __isl_give isl_union_map *
8680 isl_schedule_node_get_prefix_schedule_relation(
8681 __isl_keep isl_schedule_node *node);
8682 __isl_give isl_union_map *
8683 isl_schedule_node_get_subtree_schedule_union_map(
8684 __isl_keep isl_schedule_node *node);
8686 In particular, the functions
8687 C<isl_schedule_node_get_prefix_schedule_multi_union_pw_aff>,
8688 C<isl_schedule_node_get_prefix_schedule_union_pw_multi_aff>
8689 and C<isl_schedule_node_get_prefix_schedule_union_map>
8690 return a relative ordering on the domain elements that reach the given
8691 node determined by its ancestors.
8692 The function C<isl_schedule_node_get_prefix_schedule_relation>
8693 additionally includes the domain constraints in the result.
8694 The function C<isl_schedule_node_get_subtree_schedule_union_map>
8695 returns a representation of the partial schedule defined by the
8696 subtree rooted at the given node.
8697 If the tree contains any expansion nodes, then the subtree schedule
8698 is formulated in terms of the expanded domain elements.
8699 The tree passed to functions returning a prefix schedule
8700 may only contain extension nodes if these would not affect
8701 the result of these functions. That is, if one of the ancestors
8702 is an extension node, then all of the domain elements that were
8703 added by the extension node need to have been filtered out
8704 by filter nodes between the extension node and the input node.
8705 The tree passed to C<isl_schedule_node_get_subtree_schedule_union_map>
8706 may not contain in extension nodes in the selected subtree.
8708 The expansion/contraction defined by an entire subtree, combining
8709 the expansions/contractions
8710 on the expansion nodes in the subtree, can be obtained using
8711 the following functions.
8713 #include <isl/schedule_node.h>
8714 __isl_give isl_union_map *
8715 isl_schedule_node_get_subtree_expansion(
8716 __isl_keep isl_schedule_node *node);
8717 __isl_give isl_union_pw_multi_aff *
8718 isl_schedule_node_get_subtree_contraction(
8719 __isl_keep isl_schedule_node *node);
8721 The total number of outer band members of given node, i.e.,
8722 the shared output dimension of the maps in the result
8723 of C<isl_schedule_node_get_prefix_schedule_union_map> can be obtained
8724 using the following function.
8726 #include <isl/schedule_node.h>
8727 int isl_schedule_node_get_schedule_depth(
8728 __isl_keep isl_schedule_node *node);
8730 The following functions return the elements that reach the given node
8731 or the union of universes in the spaces that contain these elements.
8733 #include <isl/schedule_node.h>
8734 __isl_give isl_union_set *
8735 isl_schedule_node_get_domain(
8736 __isl_keep isl_schedule_node *node);
8737 __isl_give isl_union_set *
8738 isl_schedule_node_get_universe_domain(
8739 __isl_keep isl_schedule_node *node);
8741 The input tree of C<isl_schedule_node_get_domain>
8742 may only contain extension nodes if these would not affect
8743 the result of this function. That is, if one of the ancestors
8744 is an extension node, then all of the domain elements that were
8745 added by the extension node need to have been filtered out
8746 by filter nodes between the extension node and the input node.
8748 The following functions can be used to introduce additional nodes
8749 in the schedule tree. The new node is introduced at the point
8750 in the tree where the C<isl_schedule_node> points to and
8751 the results points to the new node.
8753 #include <isl/schedule_node.h>
8754 __isl_give isl_schedule_node *
8755 isl_schedule_node_insert_partial_schedule(
8756 __isl_take isl_schedule_node *node,
8757 __isl_take isl_multi_union_pw_aff *schedule);
8759 This function inserts a new band node with (the greatest integer
8760 part of) the given partial schedule.
8761 The subtree rooted at the given node is assumed not to have
8764 #include <isl/schedule_node.h>
8765 __isl_give isl_schedule_node *
8766 isl_schedule_node_insert_context(
8767 __isl_take isl_schedule_node *node,
8768 __isl_take isl_set *context);
8770 This function inserts a new context node with the given context constraints.
8772 #include <isl/schedule_node.h>
8773 __isl_give isl_schedule_node *
8774 isl_schedule_node_insert_filter(
8775 __isl_take isl_schedule_node *node,
8776 __isl_take isl_union_set *filter);
8778 This function inserts a new filter node with the given filter.
8779 If the original node already pointed to a filter node, then the
8780 two filter nodes are merged into one.
8782 #include <isl/schedule_node.h>
8783 __isl_give isl_schedule_node *
8784 isl_schedule_node_insert_guard(
8785 __isl_take isl_schedule_node *node,
8786 __isl_take isl_set *guard);
8788 This function inserts a new guard node with the given guard constraints.
8790 #include <isl/schedule_node.h>
8791 __isl_give isl_schedule_node *
8792 isl_schedule_node_insert_mark(
8793 __isl_take isl_schedule_node *node,
8794 __isl_take isl_id *mark);
8796 This function inserts a new mark node with the give mark identifier.
8798 #include <isl/schedule_node.h>
8799 __isl_give isl_schedule_node *
8800 isl_schedule_node_insert_sequence(
8801 __isl_take isl_schedule_node *node,
8802 __isl_take isl_union_set_list *filters);
8803 __isl_give isl_schedule_node *
8804 isl_schedule_node_insert_set(
8805 __isl_take isl_schedule_node *node,
8806 __isl_take isl_union_set_list *filters);
8808 These functions insert a new sequence or set node with the given
8809 filters as children.
8811 #include <isl/schedule_node.h>
8812 __isl_give isl_schedule_node *isl_schedule_node_group(
8813 __isl_take isl_schedule_node *node,
8814 __isl_take isl_id *group_id);
8816 This function introduces an expansion node in between the current
8817 node and its parent that expands instances of a space with tuple
8818 identifier C<group_id> to the original domain elements that reach
8819 the node. The group instances are identified by the prefix schedule
8820 of those domain elements. The ancestors of the node are adjusted
8821 to refer to the group instances instead of the original domain
8822 elements. The return value points to the same node in the updated
8823 schedule tree as the input node, i.e., to the child of the newly
8824 introduced expansion node. Grouping instances of different statements
8825 ensures that they will be treated as a single statement by the
8826 AST generator up to the point of the expansion node.
8828 The following function can be used to flatten a nested
8831 #include <isl/schedule_node.h>
8832 __isl_give isl_schedule_node *
8833 isl_schedule_node_sequence_splice_child(
8834 __isl_take isl_schedule_node *node, int pos);
8836 That is, given a sequence node C<node> that has another sequence node
8837 in its child at position C<pos> (in particular, the child of that filter
8838 node is a sequence node), attach the children of that other sequence
8839 node as children of C<node>, replacing the original child at position
8842 The partial schedule of a band node can be scaled (down) or reduced using
8843 the following functions.
8845 #include <isl/schedule_node.h>
8846 __isl_give isl_schedule_node *
8847 isl_schedule_node_band_scale(
8848 __isl_take isl_schedule_node *node,
8849 __isl_take isl_multi_val *mv);
8850 __isl_give isl_schedule_node *
8851 isl_schedule_node_band_scale_down(
8852 __isl_take isl_schedule_node *node,
8853 __isl_take isl_multi_val *mv);
8854 __isl_give isl_schedule_node *
8855 isl_schedule_node_band_mod(
8856 __isl_take isl_schedule_node *node,
8857 __isl_take isl_multi_val *mv);
8859 The spaces of the two arguments need to match.
8860 After scaling, the partial schedule is replaced by its greatest
8861 integer part to ensure that the schedule remains integral.
8863 The partial schedule of a band node can be shifted by an
8864 C<isl_multi_union_pw_aff> with a domain that is a superset
8865 of the domain of the partial schedule using
8866 the following function.
8868 #include <isl/schedule_node.h>
8869 __isl_give isl_schedule_node *
8870 isl_schedule_node_band_shift(
8871 __isl_take isl_schedule_node *node,
8872 __isl_take isl_multi_union_pw_aff *shift);
8874 A band node can be tiled using the following function.
8876 #include <isl/schedule_node.h>
8877 __isl_give isl_schedule_node *isl_schedule_node_band_tile(
8878 __isl_take isl_schedule_node *node,
8879 __isl_take isl_multi_val *sizes);
8881 isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
8883 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
8884 isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
8886 int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
8888 The C<isl_schedule_node_band_tile> function tiles
8889 the band using the given tile sizes inside its schedule.
8890 A new child band node is created to represent the point loops and it is
8891 inserted between the modified band and its children.
8892 The subtree rooted at the given node is assumed not to have
8894 The C<tile_scale_tile_loops> option specifies whether the tile
8895 loops iterators should be scaled by the tile sizes.
8896 If the C<tile_shift_point_loops> option is set, then the point loops
8897 are shifted to start at zero.
8899 A band node can be split into two nested band nodes
8900 using the following function.
8902 #include <isl/schedule_node.h>
8903 __isl_give isl_schedule_node *isl_schedule_node_band_split(
8904 __isl_take isl_schedule_node *node, int pos);
8906 The resulting outer band node contains the first C<pos> dimensions of
8907 the schedule of C<node> while the inner band contains the remaining dimensions.
8908 The schedules of the two band nodes live in anonymous spaces.
8909 The loop AST generation type options and the isolate option
8910 are split over the two band nodes.
8912 A band node can be moved down to the leaves of the subtree rooted
8913 at the band node using the following function.
8915 #include <isl/schedule_node.h>
8916 __isl_give isl_schedule_node *isl_schedule_node_band_sink(
8917 __isl_take isl_schedule_node *node);
8919 The subtree rooted at the given node is assumed not to have
8921 The result points to the node in the resulting tree that is in the same
8922 position as the node pointed to by C<node> in the original tree.
8924 #include <isl/schedule_node.h>
8925 __isl_give isl_schedule_node *
8926 isl_schedule_node_order_before(
8927 __isl_take isl_schedule_node *node,
8928 __isl_take isl_union_set *filter);
8929 __isl_give isl_schedule_node *
8930 isl_schedule_node_order_after(
8931 __isl_take isl_schedule_node *node,
8932 __isl_take isl_union_set *filter);
8934 These functions split the domain elements that reach C<node>
8935 into those that satisfy C<filter> and those that do not and
8936 arranges for the elements that do satisfy the filter to be
8937 executed before (in case of C<isl_schedule_node_order_before>)
8938 or after (in case of C<isl_schedule_node_order_after>)
8939 those that do not. The order is imposed by
8940 a sequence node, possibly reusing the grandparent of C<node>
8941 on two copies of the subtree attached to the original C<node>.
8942 Both copies are simplified with respect to their filter.
8944 Return a pointer to the copy of the subtree that does not
8945 satisfy C<filter>. If there is no such copy (because all
8946 reaching domain elements satisfy the filter), then return
8947 the original pointer.
8949 #include <isl/schedule_node.h>
8950 __isl_give isl_schedule_node *
8951 isl_schedule_node_graft_before(
8952 __isl_take isl_schedule_node *node,
8953 __isl_take isl_schedule_node *graft);
8954 __isl_give isl_schedule_node *
8955 isl_schedule_node_graft_after(
8956 __isl_take isl_schedule_node *node,
8957 __isl_take isl_schedule_node *graft);
8959 This function inserts the C<graft> tree into the tree containing C<node>
8960 such that it is executed before (in case of C<isl_schedule_node_graft_before>)
8961 or after (in case of C<isl_schedule_node_graft_after>) C<node>.
8962 The root node of C<graft>
8963 should be an extension node where the domain of the extension
8964 is the flat product of all outer band nodes of C<node>.
8965 The root node may also be a domain node.
8966 The elements of the domain or the range of the extension may not
8967 intersect with the domain elements that reach "node".
8968 The schedule tree of C<graft> may not be anchored.
8970 The schedule tree of C<node> is modified to include an extension node
8971 corresponding to the root node of C<graft> as a child of the original
8972 parent of C<node>. The original node that C<node> points to and the
8973 child of the root node of C<graft> are attached to this extension node
8974 through a sequence, with appropriate filters and with the child
8975 of C<graft> appearing before or after the original C<node>.
8977 If C<node> already appears inside a sequence that is the child of
8978 an extension node and if the spaces of the new domain elements
8979 do not overlap with those of the original domain elements,
8980 then that extension node is extended with the new extension
8981 rather than introducing a new segment of extension and sequence nodes.
8983 Return a pointer to the same node in the modified tree that
8984 C<node> pointed to in the original tree.
8986 A representation of the schedule node can be printed using
8988 #include <isl/schedule_node.h>
8989 __isl_give isl_printer *isl_printer_print_schedule_node(
8990 __isl_take isl_printer *p,
8991 __isl_keep isl_schedule_node *node);
8992 __isl_give char *isl_schedule_node_to_str(
8993 __isl_keep isl_schedule_node *node);
8995 C<isl_schedule_node_to_str> prints the schedule node in block format.
8997 =head2 Dependence Analysis
8999 C<isl> contains specialized functionality for performing
9000 array dataflow analysis. That is, given a I<sink> access relation,
9001 a collection of possible I<source> accesses and
9002 a collection of I<kill> accesses,
9003 C<isl> can compute relations that describe
9004 for each iteration of the sink access, which iterations
9005 of which of the source access relations may have
9006 accessed the same data element before the given iteration
9007 of the sink access without any intermediate kill of that data element.
9008 The resulting dependence relations map source iterations
9009 to either the corresponding sink iterations or
9010 pairs of corresponding sink iterations and accessed data elements.
9011 To compute standard flow dependences, the sink should be
9012 a read, while the sources should be writes.
9013 If no kills are specified,
9014 then memory based dependence analysis is performed.
9015 If, on the other hand, all sources are also kills,
9016 then value based dependence analysis is performed.
9017 If any of the source accesses are marked as being I<must>
9018 accesses, then they are also treated as kills.
9019 Furthermore, the specification of must-sources results
9020 in the computation of must-dependences.
9021 Only dependences originating in a must access not coscheduled
9022 with any other access to the same element and without
9023 any may accesses between the must access and the sink access
9024 are considered to be must dependences.
9026 =head3 High-level Interface
9028 A high-level interface to dependence analysis is provided
9029 by the following function.
9031 #include <isl/flow.h>
9032 __isl_give isl_union_flow *
9033 isl_union_access_info_compute_flow(
9034 __isl_take isl_union_access_info *access);
9036 The input C<isl_union_access_info> object describes the sink
9037 access relations, the source access relations and a schedule,
9038 while the output C<isl_union_flow> object describes
9039 the resulting dependence relations and the subsets of the
9040 sink relations for which no source was found.
9042 An C<isl_union_access_info> is created, modified, copied and freed using
9043 the following functions.
9045 #include <isl/flow.h>
9046 __isl_give isl_union_access_info *
9047 isl_union_access_info_from_sink(
9048 __isl_take isl_union_map *sink);
9049 __isl_give isl_union_access_info *
9050 isl_union_access_info_set_kill(
9051 __isl_take isl_union_access_info *access,
9052 __isl_take isl_union_map *kill);
9053 __isl_give isl_union_access_info *
9054 isl_union_access_info_set_may_source(
9055 __isl_take isl_union_access_info *access,
9056 __isl_take isl_union_map *may_source);
9057 __isl_give isl_union_access_info *
9058 isl_union_access_info_set_must_source(
9059 __isl_take isl_union_access_info *access,
9060 __isl_take isl_union_map *must_source);
9061 __isl_give isl_union_access_info *
9062 isl_union_access_info_set_schedule(
9063 __isl_take isl_union_access_info *access,
9064 __isl_take isl_schedule *schedule);
9065 __isl_give isl_union_access_info *
9066 isl_union_access_info_set_schedule_map(
9067 __isl_take isl_union_access_info *access,
9068 __isl_take isl_union_map *schedule_map);
9069 __isl_give isl_union_access_info *
9070 isl_union_access_info_copy(
9071 __isl_keep isl_union_access_info *access);
9072 __isl_null isl_union_access_info *
9073 isl_union_access_info_free(
9074 __isl_take isl_union_access_info *access);
9076 The may sources set by C<isl_union_access_info_set_may_source>
9077 do not need to include the must sources set by
9078 C<isl_union_access_info_set_must_source> as a subset.
9079 The kills set by C<isl_union_access_info_set_kill> may overlap
9080 with the may-sources and/or must-sources.
9081 The user is free not to call one (or more) of these functions,
9082 in which case the corresponding set is kept to its empty default.
9083 Similarly, the default schedule initialized by
9084 C<isl_union_access_info_from_sink> is empty.
9085 The current schedule is determined by the last call to either
9086 C<isl_union_access_info_set_schedule> or
9087 C<isl_union_access_info_set_schedule_map>.
9088 The domain of the schedule corresponds to the domains of
9089 the access relations. In particular, the domains of the access
9090 relations are effectively intersected with the domain of the schedule
9091 and only the resulting accesses are considered by the dependence analysis.
9093 An C<isl_union_access_info> object can be read from input
9094 using the following function.
9096 #include <isl/flow.h>
9097 __isl_give isl_union_access_info *
9098 isl_union_access_info_read_from_file(isl_ctx *ctx,
9101 A representation of the information contained in an object
9102 of type C<isl_union_access_info> can be obtained using
9104 #include <isl/flow.h>
9105 __isl_give isl_printer *
9106 isl_printer_print_union_access_info(
9107 __isl_take isl_printer *p,
9108 __isl_keep isl_union_access_info *access);
9109 __isl_give char *isl_union_access_info_to_str(
9110 __isl_keep isl_union_access_info *access);
9112 C<isl_union_access_info_to_str> prints the information in flow format.
9114 The output of C<isl_union_access_info_compute_flow> can be examined,
9115 copied, and freed using the following functions.
9117 #include <isl/flow.h>
9118 __isl_give isl_union_map *isl_union_flow_get_must_dependence(
9119 __isl_keep isl_union_flow *flow);
9120 __isl_give isl_union_map *isl_union_flow_get_may_dependence(
9121 __isl_keep isl_union_flow *flow);
9122 __isl_give isl_union_map *
9123 isl_union_flow_get_full_must_dependence(
9124 __isl_keep isl_union_flow *flow);
9125 __isl_give isl_union_map *
9126 isl_union_flow_get_full_may_dependence(
9127 __isl_keep isl_union_flow *flow);
9128 __isl_give isl_union_map *isl_union_flow_get_must_no_source(
9129 __isl_keep isl_union_flow *flow);
9130 __isl_give isl_union_map *isl_union_flow_get_may_no_source(
9131 __isl_keep isl_union_flow *flow);
9132 __isl_give isl_union_flow *isl_union_flow_copy(
9133 __isl_keep isl_union_flow *flow);
9134 __isl_null isl_union_flow *isl_union_flow_free(
9135 __isl_take isl_union_flow *flow);
9137 The relation returned by C<isl_union_flow_get_must_dependence>
9138 relates domain elements of must sources to domain elements of the sink.
9139 The relation returned by C<isl_union_flow_get_may_dependence>
9140 relates domain elements of must or may sources to domain elements of the sink
9141 and includes the previous relation as a subset.
9142 The relation returned by C<isl_union_flow_get_full_must_dependence>
9143 relates domain elements of must sources to pairs of domain elements of the sink
9144 and accessed data elements.
9145 The relation returned by C<isl_union_flow_get_full_may_dependence>
9146 relates domain elements of must or may sources to pairs of
9147 domain elements of the sink and accessed data elements.
9148 This relation includes the previous relation as a subset.
9149 The relation returned by C<isl_union_flow_get_must_no_source> is the subset
9150 of the sink relation for which no dependences have been found.
9151 The relation returned by C<isl_union_flow_get_may_no_source> is the subset
9152 of the sink relation for which no definite dependences have been found.
9153 That is, it contains those sink access that do not contribute to any
9154 of the elements in the relation returned
9155 by C<isl_union_flow_get_must_dependence>.
9157 A representation of the information contained in an object
9158 of type C<isl_union_flow> can be obtained using
9160 #include <isl/flow.h>
9161 __isl_give isl_printer *isl_printer_print_union_flow(
9162 __isl_take isl_printer *p,
9163 __isl_keep isl_union_flow *flow);
9164 __isl_give char *isl_union_flow_to_str(
9165 __isl_keep isl_union_flow *flow);
9167 C<isl_union_flow_to_str> prints the information in flow format.
9169 =head3 Low-level Interface
9171 A lower-level interface is provided by the following functions.
9173 #include <isl/flow.h>
9175 typedef int (*isl_access_level_before)(void *first, void *second);
9177 __isl_give isl_access_info *isl_access_info_alloc(
9178 __isl_take isl_map *sink,
9179 void *sink_user, isl_access_level_before fn,
9181 __isl_give isl_access_info *isl_access_info_add_source(
9182 __isl_take isl_access_info *acc,
9183 __isl_take isl_map *source, int must,
9185 __isl_null isl_access_info *isl_access_info_free(
9186 __isl_take isl_access_info *acc);
9188 __isl_give isl_flow *isl_access_info_compute_flow(
9189 __isl_take isl_access_info *acc);
9191 isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
9192 isl_stat (*fn)(__isl_take isl_map *dep, int must,
9193 void *dep_user, void *user),
9195 __isl_give isl_map *isl_flow_get_no_source(
9196 __isl_keep isl_flow *deps, int must);
9197 void isl_flow_free(__isl_take isl_flow *deps);
9199 The function C<isl_access_info_compute_flow> performs the actual
9200 dependence analysis. The other functions are used to construct
9201 the input for this function or to read off the output.
9203 The input is collected in an C<isl_access_info>, which can
9204 be created through a call to C<isl_access_info_alloc>.
9205 The arguments to this functions are the sink access relation
9206 C<sink>, a token C<sink_user> used to identify the sink
9207 access to the user, a callback function for specifying the
9208 relative order of source and sink accesses, and the number
9209 of source access relations that will be added.
9211 The callback function has type C<int (*)(void *first, void *second)>.
9212 The function is called with two user supplied tokens identifying
9213 either a source or the sink and it should return the shared nesting
9214 level and the relative order of the two accesses.
9215 In particular, let I<n> be the number of loops shared by
9216 the two accesses. If C<first> precedes C<second> textually,
9217 then the function should return I<2 * n + 1>; otherwise,
9218 it should return I<2 * n>.
9219 The low-level interface assumes that no sources are coscheduled.
9220 If the information returned by the callback does not allow
9221 the relative order to be determined, then one of the sources
9222 is arbitrarily taken to be executed after the other(s).
9224 The sources can be added to the C<isl_access_info> object by performing
9225 (at most) C<max_source> calls to C<isl_access_info_add_source>.
9226 C<must> indicates whether the source is a I<must> access
9227 or a I<may> access. Note that a multi-valued access relation
9228 should only be marked I<must> if every iteration in the domain
9229 of the relation accesses I<all> elements in its image.
9230 The C<source_user> token is again used to identify
9231 the source access. The range of the source access relation
9232 C<source> should have the same dimension as the range
9233 of the sink access relation.
9234 The C<isl_access_info_free> function should usually not be
9235 called explicitly, because it is already called implicitly by
9236 C<isl_access_info_compute_flow>.
9238 The result of the dependence analysis is collected in an
9239 C<isl_flow>. There may be elements of
9240 the sink access for which no preceding source access could be
9241 found or for which all preceding sources are I<may> accesses.
9242 The relations containing these elements can be obtained through
9243 calls to C<isl_flow_get_no_source>, the first with C<must> set
9244 and the second with C<must> unset.
9245 In the case of standard flow dependence analysis,
9246 with the sink a read and the sources I<must> writes,
9247 the first relation corresponds to the reads from uninitialized
9248 array elements and the second relation is empty.
9249 The actual flow dependences can be extracted using
9250 C<isl_flow_foreach>. This function will call the user-specified
9251 callback function C<fn> for each B<non-empty> dependence between
9252 a source and the sink. The callback function is called
9253 with four arguments, the actual flow dependence relation
9254 mapping source iterations to sink iterations, a boolean that
9255 indicates whether it is a I<must> or I<may> dependence, a token
9256 identifying the source and an additional C<void *> with value
9257 equal to the third argument of the C<isl_flow_foreach> call.
9258 A dependence is marked I<must> if it originates from a I<must>
9259 source and if it is not followed by any I<may> sources.
9261 After finishing with an C<isl_flow>, the user should call
9262 C<isl_flow_free> to free all associated memory.
9264 =head3 Interaction with the Low-level Interface
9266 During the dependence analysis, we frequently need to perform
9267 the following operation. Given a relation between sink iterations
9268 and potential source iterations from a particular source domain,
9269 what is the last potential source iteration corresponding to each
9270 sink iteration. It can sometimes be convenient to adjust
9271 the set of potential source iterations before or after each such operation.
9272 The prototypical example is fuzzy array dataflow analysis,
9273 where we need to analyze if, based on data-dependent constraints,
9274 the sink iteration can ever be executed without one or more of
9275 the corresponding potential source iterations being executed.
9276 If so, we can introduce extra parameters and select an unknown
9277 but fixed source iteration from the potential source iterations.
9278 To be able to perform such manipulations, C<isl> provides the following
9281 #include <isl/flow.h>
9283 typedef __isl_give isl_restriction *(*isl_access_restrict)(
9284 __isl_keep isl_map *source_map,
9285 __isl_keep isl_set *sink, void *source_user,
9287 __isl_give isl_access_info *isl_access_info_set_restrict(
9288 __isl_take isl_access_info *acc,
9289 isl_access_restrict fn, void *user);
9291 The function C<isl_access_info_set_restrict> should be called
9292 before calling C<isl_access_info_compute_flow> and registers a callback function
9293 that will be called any time C<isl> is about to compute the last
9294 potential source. The first argument is the (reverse) proto-dependence,
9295 mapping sink iterations to potential source iterations.
9296 The second argument represents the sink iterations for which
9297 we want to compute the last source iteration.
9298 The third argument is the token corresponding to the source
9299 and the final argument is the token passed to C<isl_access_info_set_restrict>.
9300 The callback is expected to return a restriction on either the input or
9301 the output of the operation computing the last potential source.
9302 If the input needs to be restricted then restrictions are needed
9303 for both the source and the sink iterations. The sink iterations
9304 and the potential source iterations will be intersected with these sets.
9305 If the output needs to be restricted then only a restriction on the source
9306 iterations is required.
9307 If any error occurs, the callback should return C<NULL>.
9308 An C<isl_restriction> object can be created, freed and inspected
9309 using the following functions.
9311 #include <isl/flow.h>
9313 __isl_give isl_restriction *isl_restriction_input(
9314 __isl_take isl_set *source_restr,
9315 __isl_take isl_set *sink_restr);
9316 __isl_give isl_restriction *isl_restriction_output(
9317 __isl_take isl_set *source_restr);
9318 __isl_give isl_restriction *isl_restriction_none(
9319 __isl_take isl_map *source_map);
9320 __isl_give isl_restriction *isl_restriction_empty(
9321 __isl_take isl_map *source_map);
9322 __isl_null isl_restriction *isl_restriction_free(
9323 __isl_take isl_restriction *restr);
9325 C<isl_restriction_none> and C<isl_restriction_empty> are special
9326 cases of C<isl_restriction_input>. C<isl_restriction_none>
9327 is essentially equivalent to
9329 isl_restriction_input(isl_set_universe(
9330 isl_space_range(isl_map_get_space(source_map))),
9332 isl_space_domain(isl_map_get_space(source_map))));
9334 whereas C<isl_restriction_empty> is essentially equivalent to
9336 isl_restriction_input(isl_set_empty(
9337 isl_space_range(isl_map_get_space(source_map))),
9339 isl_space_domain(isl_map_get_space(source_map))));
9343 #include <isl/schedule.h>
9344 __isl_give isl_schedule *
9345 isl_schedule_constraints_compute_schedule(
9346 __isl_take isl_schedule_constraints *sc);
9348 The function C<isl_schedule_constraints_compute_schedule> can be
9349 used to compute a schedule that satisfies the given schedule constraints.
9350 These schedule constraints include the iteration domain for which
9351 a schedule should be computed and dependences between pairs of
9352 iterations. In particular, these dependences include
9353 I<validity> dependences and I<proximity> dependences.
9354 By default, the algorithm used to construct the schedule is similar
9355 to that of C<Pluto>.
9356 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
9358 The generated schedule respects all validity dependences.
9359 That is, all dependence distances over these dependences in the
9360 scheduled space are lexicographically positive.
9362 The default algorithm tries to ensure that the dependence distances
9363 over coincidence constraints are zero and to minimize the
9364 dependence distances over proximity dependences.
9365 Moreover, it tries to obtain sequences (bands) of schedule dimensions
9366 for groups of domains where the dependence distances over validity
9367 dependences have only non-negative values.
9368 Note that when minimizing the maximal dependence distance
9369 over proximity dependences, a single affine expression in the parameters
9370 is constructed that bounds all dependence distances. If no such expression
9371 exists, then the algorithm will fail and resort to an alternative
9372 scheduling algorithm. In particular, this means that adding proximity
9373 dependences may eliminate valid solutions. A typical example where this
9374 phenomenon may occur is when some subset of the proximity dependences
9375 has no restriction on some parameter, forcing the coefficient of that
9376 parameter to be zero, while some other subset forces the dependence
9377 distance to depend on that parameter, requiring the same coefficient
9379 When using Feautrier's algorithm, the coincidence and proximity constraints
9380 are only taken into account during the extension to a
9381 full-dimensional schedule.
9383 An C<isl_schedule_constraints> object can be constructed
9384 and manipulated using the following functions.
9386 #include <isl/schedule.h>
9387 __isl_give isl_schedule_constraints *
9388 isl_schedule_constraints_copy(
9389 __isl_keep isl_schedule_constraints *sc);
9390 __isl_give isl_schedule_constraints *
9391 isl_schedule_constraints_on_domain(
9392 __isl_take isl_union_set *domain);
9393 __isl_give isl_schedule_constraints *
9394 isl_schedule_constraints_set_context(
9395 __isl_take isl_schedule_constraints *sc,
9396 __isl_take isl_set *context);
9397 __isl_give isl_schedule_constraints *
9398 isl_schedule_constraints_set_validity(
9399 __isl_take isl_schedule_constraints *sc,
9400 __isl_take isl_union_map *validity);
9401 __isl_give isl_schedule_constraints *
9402 isl_schedule_constraints_set_coincidence(
9403 __isl_take isl_schedule_constraints *sc,
9404 __isl_take isl_union_map *coincidence);
9405 __isl_give isl_schedule_constraints *
9406 isl_schedule_constraints_set_proximity(
9407 __isl_take isl_schedule_constraints *sc,
9408 __isl_take isl_union_map *proximity);
9409 __isl_give isl_schedule_constraints *
9410 isl_schedule_constraints_set_conditional_validity(
9411 __isl_take isl_schedule_constraints *sc,
9412 __isl_take isl_union_map *condition,
9413 __isl_take isl_union_map *validity);
9414 __isl_give isl_schedule_constraints *
9415 isl_schedule_constraints_apply(
9416 __isl_take isl_schedule_constraints *sc,
9417 __isl_take isl_union_map *umap);
9418 __isl_null isl_schedule_constraints *
9419 isl_schedule_constraints_free(
9420 __isl_take isl_schedule_constraints *sc);
9422 The initial C<isl_schedule_constraints> object created by
9423 C<isl_schedule_constraints_on_domain> does not impose any constraints.
9424 That is, it has an empty set of dependences.
9425 The function C<isl_schedule_constraints_set_context> allows the user
9426 to specify additional constraints on the parameters that may
9427 be assumed to hold during the construction of the schedule.
9428 The function C<isl_schedule_constraints_set_validity> replaces the
9429 validity dependences, mapping domain elements I<i> to domain
9430 elements that should be scheduled after I<i>.
9431 The function C<isl_schedule_constraints_set_coincidence> replaces the
9432 coincidence dependences, mapping domain elements I<i> to domain
9433 elements that should be scheduled together with I<I>, if possible.
9434 The function C<isl_schedule_constraints_set_proximity> replaces the
9435 proximity dependences, mapping domain elements I<i> to domain
9436 elements that should be scheduled either before I<I>
9437 or as early as possible after I<i>.
9439 The function C<isl_schedule_constraints_set_conditional_validity>
9440 replaces the conditional validity constraints.
9441 A conditional validity constraint is only imposed when any of the corresponding
9442 conditions is satisfied, i.e., when any of them is non-zero.
9443 That is, the scheduler ensures that within each band if the dependence
9444 distances over the condition constraints are not all zero
9445 then all corresponding conditional validity constraints are respected.
9446 A conditional validity constraint corresponds to a condition
9447 if the two are adjacent, i.e., if the domain of one relation intersect
9448 the range of the other relation.
9449 The typical use case of conditional validity constraints is
9450 to allow order constraints between live ranges to be violated
9451 as long as the live ranges themselves are local to the band.
9452 To allow more fine-grained control over which conditions correspond
9453 to which conditional validity constraints, the domains and ranges
9454 of these relations may include I<tags>. That is, the domains and
9455 ranges of those relation may themselves be wrapped relations
9456 where the iteration domain appears in the domain of those wrapped relations
9457 and the range of the wrapped relations can be arbitrarily chosen
9458 by the user. Conditions and conditional validity constraints are only
9459 considered adjacent to each other if the entire wrapped relation matches.
9460 In particular, a relation with a tag will never be considered adjacent
9461 to a relation without a tag.
9463 The function C<isl_schedule_constraints_apply> takes
9464 schedule constraints that are defined on some set of domain elements
9465 and transforms them to schedule constraints on the elements
9466 to which these domain elements are mapped by the given transformation.
9468 An C<isl_schedule_constraints> object can be inspected
9469 using the following functions.
9471 #include <isl/schedule.h>
9472 __isl_give isl_union_set *
9473 isl_schedule_constraints_get_domain(
9474 __isl_keep isl_schedule_constraints *sc);
9475 __isl_give isl_set *isl_schedule_constraints_get_context(
9476 __isl_keep isl_schedule_constraints *sc);
9477 __isl_give isl_union_map *
9478 isl_schedule_constraints_get_validity(
9479 __isl_keep isl_schedule_constraints *sc);
9480 __isl_give isl_union_map *
9481 isl_schedule_constraints_get_coincidence(
9482 __isl_keep isl_schedule_constraints *sc);
9483 __isl_give isl_union_map *
9484 isl_schedule_constraints_get_proximity(
9485 __isl_keep isl_schedule_constraints *sc);
9486 __isl_give isl_union_map *
9487 isl_schedule_constraints_get_conditional_validity(
9488 __isl_keep isl_schedule_constraints *sc);
9489 __isl_give isl_union_map *
9490 isl_schedule_constraints_get_conditional_validity_condition(
9491 __isl_keep isl_schedule_constraints *sc);
9493 An C<isl_schedule_constraints> object can be read from input
9494 using the following functions.
9496 #include <isl/schedule.h>
9497 __isl_give isl_schedule_constraints *
9498 isl_schedule_constraints_read_from_str(isl_ctx *ctx,
9500 __isl_give isl_schedule_constraints *
9501 isl_schedule_constraints_read_from_file(isl_ctx *ctx,
9504 The contents of an C<isl_schedule_constraints> object can be printed
9505 using the following functions.
9507 #include <isl/schedule.h>
9508 __isl_give isl_printer *
9509 isl_printer_print_schedule_constraints(
9510 __isl_take isl_printer *p,
9511 __isl_keep isl_schedule_constraints *sc);
9512 __isl_give char *isl_schedule_constraints_to_str(
9513 __isl_keep isl_schedule_constraints *sc);
9515 The following function computes a schedule directly from
9516 an iteration domain and validity and proximity dependences
9517 and is implemented in terms of the functions described above.
9518 The use of C<isl_union_set_compute_schedule> is discouraged.
9520 #include <isl/schedule.h>
9521 __isl_give isl_schedule *isl_union_set_compute_schedule(
9522 __isl_take isl_union_set *domain,
9523 __isl_take isl_union_map *validity,
9524 __isl_take isl_union_map *proximity);
9526 The generated schedule represents a schedule tree.
9527 For more information on schedule trees, see
9528 L</"Schedule Trees">.
9532 #include <isl/schedule.h>
9533 isl_stat isl_options_set_schedule_max_coefficient(
9534 isl_ctx *ctx, int val);
9535 int isl_options_get_schedule_max_coefficient(
9537 isl_stat isl_options_set_schedule_max_constant_term(
9538 isl_ctx *ctx, int val);
9539 int isl_options_get_schedule_max_constant_term(
9541 isl_stat isl_options_set_schedule_serialize_sccs(
9542 isl_ctx *ctx, int val);
9543 int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx);
9544 isl_stat isl_options_set_schedule_whole_component(
9545 isl_ctx *ctx, int val);
9546 int isl_options_get_schedule_whole_component(
9548 isl_stat isl_options_set_schedule_maximize_band_depth(
9549 isl_ctx *ctx, int val);
9550 int isl_options_get_schedule_maximize_band_depth(
9552 isl_stat isl_options_set_schedule_maximize_coincidence(
9553 isl_ctx *ctx, int val);
9554 int isl_options_get_schedule_maximize_coincidence(
9556 isl_stat isl_options_set_schedule_outer_coincidence(
9557 isl_ctx *ctx, int val);
9558 int isl_options_get_schedule_outer_coincidence(
9560 isl_stat isl_options_set_schedule_split_scaled(
9561 isl_ctx *ctx, int val);
9562 int isl_options_get_schedule_split_scaled(
9564 isl_stat isl_options_set_schedule_treat_coalescing(
9565 isl_ctx *ctx, int val);
9566 int isl_options_get_schedule_treat_coalescing(
9568 isl_stat isl_options_set_schedule_algorithm(
9569 isl_ctx *ctx, int val);
9570 int isl_options_get_schedule_algorithm(
9572 isl_stat isl_options_set_schedule_carry_self_first(
9573 isl_ctx *ctx, int val);
9574 int isl_options_get_schedule_carry_self_first(
9576 isl_stat isl_options_set_schedule_separate_components(
9577 isl_ctx *ctx, int val);
9578 int isl_options_get_schedule_separate_components(
9583 =item * schedule_max_coefficient
9585 This option enforces that the coefficients for variable and parameter
9586 dimensions in the calculated schedule are not larger than the specified value.
9587 This option can significantly increase the speed of the scheduling calculation
9588 and may also prevent fusing of unrelated dimensions. A value of -1 means that
9589 this option does not introduce bounds on the variable or parameter
9592 =item * schedule_max_constant_term
9594 This option enforces that the constant coefficients in the calculated schedule
9595 are not larger than the maximal constant term. This option can significantly
9596 increase the speed of the scheduling calculation and may also prevent fusing of
9597 unrelated dimensions. A value of -1 means that this option does not introduce
9598 bounds on the constant coefficients.
9600 =item * schedule_serialize_sccs
9602 If this option is set, then all strongly connected components
9603 in the dependence graph are serialized as soon as they are detected.
9604 This means in particular that instances of statements will only
9605 appear in the same band node if these statements belong
9606 to the same strongly connected component at the point where
9607 the band node is constructed.
9609 =item * schedule_whole_component
9611 If this option is set, then entire (weakly) connected
9612 components in the dependence graph are scheduled together
9614 Otherwise, each strongly connected component within
9615 such a weakly connected component is first scheduled separately
9616 and then combined with other strongly connected components.
9617 This option has no effect if C<schedule_serialize_sccs> is set.
9619 =item * schedule_maximize_band_depth
9621 If this option is set, then the scheduler tries to maximize
9622 the width of the bands. Wider bands give more possibilities for tiling.
9623 In particular, if the C<schedule_whole_component> option is set,
9624 then bands are split if this might result in wider bands.
9625 Otherwise, the effect of this option is to only allow
9626 strongly connected components to be combined if this does
9627 not reduce the width of the bands.
9628 Note that if the C<schedule_serialize_sccs> options is set, then
9629 the C<schedule_maximize_band_depth> option therefore has no effect.
9631 =item * schedule_maximize_coincidence
9633 This option is only effective if the C<schedule_whole_component>
9634 option is turned off.
9635 If the C<schedule_maximize_coincidence> option is set, then (clusters of)
9636 strongly connected components are only combined with each other
9637 if this does not reduce the number of coincident band members.
9639 =item * schedule_outer_coincidence
9641 If this option is set, then we try to construct schedules
9642 where the outermost scheduling dimension in each band
9643 satisfies the coincidence constraints.
9645 =item * schedule_algorithm
9647 Selects the scheduling algorithm to be used.
9648 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
9649 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
9651 =item * schedule_split_scaled
9653 If this option is set, then we try to construct schedules in which the
9654 constant term is split off from the linear part if the linear parts of
9655 the scheduling rows for all nodes in the graph have a common non-trivial
9657 The constant term is then dropped and the linear
9659 This option is only effective when the Feautrier style scheduler is
9660 being used, either as the main scheduler or as a fallback for the
9661 Pluto-like scheduler.
9663 =item * schedule_treat_coalescing
9665 If this option is set, then the scheduler will try and avoid
9666 producing schedules that perform loop coalescing.
9667 In particular, for the Pluto-like scheduler, this option places
9668 bounds on the schedule coefficients based on the sizes of the instance sets.
9669 For the Feautrier style scheduler, this option detects potentially
9670 coalescing schedules and then tries to adjust the schedule to avoid
9673 =item * schedule_carry_self_first
9675 If this option is set, then the Feautrier style scheduler
9676 (when used as a fallback for the Pluto-like scheduler) will
9677 first try to only carry self-dependences.
9679 =item * schedule_separate_components
9681 If this option is set then the function C<isl_schedule_get_map>
9682 will treat set nodes in the same way as sequence nodes.
9686 =head2 AST Generation
9688 This section describes the C<isl> functionality for generating
9689 ASTs that visit all the elements
9690 in a domain in an order specified by a schedule tree or
9692 In case the schedule given as a C<isl_union_map>, an AST is generated
9693 that visits all the elements in the domain of the C<isl_union_map>
9694 according to the lexicographic order of the corresponding image
9695 element(s). If the range of the C<isl_union_map> consists of
9696 elements in more than one space, then each of these spaces is handled
9697 separately in an arbitrary order.
9698 It should be noted that the schedule tree or the image elements
9699 in a schedule map only specify the I<order>
9700 in which the corresponding domain elements should be visited.
9701 No direct relation between the partial schedule values
9702 or the image elements on the one hand and the loop iterators
9703 in the generated AST on the other hand should be assumed.
9705 Each AST is generated within a build. The initial build
9706 simply specifies the constraints on the parameters (if any)
9707 and can be created, inspected, copied and freed using the following functions.
9709 #include <isl/ast_build.h>
9710 __isl_give isl_ast_build *isl_ast_build_alloc(
9712 __isl_give isl_ast_build *isl_ast_build_from_context(
9713 __isl_take isl_set *set);
9714 __isl_give isl_ast_build *isl_ast_build_copy(
9715 __isl_keep isl_ast_build *build);
9716 __isl_null isl_ast_build *isl_ast_build_free(
9717 __isl_take isl_ast_build *build);
9719 The C<set> argument is usually a parameter set with zero or more parameters.
9720 In fact, when creating an AST using C<isl_ast_build_node_from_schedule>,
9721 this set is required to be a parameter set.
9722 An C<isl_ast_build> created using C<isl_ast_build_alloc> does not
9723 specify any parameter constraints.
9724 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
9725 and L</"Fine-grained Control over AST Generation">.
9726 Finally, the AST itself can be constructed using one of the following
9729 #include <isl/ast_build.h>
9730 __isl_give isl_ast_node *isl_ast_build_node_from_schedule(
9731 __isl_keep isl_ast_build *build,
9732 __isl_take isl_schedule *schedule);
9733 __isl_give isl_ast_node *
9734 isl_ast_build_node_from_schedule_map(
9735 __isl_keep isl_ast_build *build,
9736 __isl_take isl_union_map *schedule);
9738 =head3 Inspecting the AST
9740 The basic properties of an AST node can be obtained as follows.
9742 #include <isl/ast.h>
9743 enum isl_ast_node_type isl_ast_node_get_type(
9744 __isl_keep isl_ast_node *node);
9746 The type of an AST node is one of
9747 C<isl_ast_node_for>,
9749 C<isl_ast_node_block>,
9750 C<isl_ast_node_mark> or
9751 C<isl_ast_node_user>.
9752 An C<isl_ast_node_for> represents a for node.
9753 An C<isl_ast_node_if> represents an if node.
9754 An C<isl_ast_node_block> represents a compound node.
9755 An C<isl_ast_node_mark> introduces a mark in the AST.
9756 An C<isl_ast_node_user> represents an expression statement.
9757 An expression statement typically corresponds to a domain element, i.e.,
9758 one of the elements that is visited by the AST.
9760 Each type of node has its own additional properties.
9762 #include <isl/ast.h>
9763 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
9764 __isl_keep isl_ast_node *node);
9765 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
9766 __isl_keep isl_ast_node *node);
9767 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
9768 __isl_keep isl_ast_node *node);
9769 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
9770 __isl_keep isl_ast_node *node);
9771 __isl_give isl_ast_node *isl_ast_node_for_get_body(
9772 __isl_keep isl_ast_node *node);
9773 isl_bool isl_ast_node_for_is_degenerate(
9774 __isl_keep isl_ast_node *node);
9776 An C<isl_ast_for> is considered degenerate if it is known to execute
9779 #include <isl/ast.h>
9780 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
9781 __isl_keep isl_ast_node *node);
9782 __isl_give isl_ast_node *isl_ast_node_if_get_then(
9783 __isl_keep isl_ast_node *node);
9784 isl_bool isl_ast_node_if_has_else(
9785 __isl_keep isl_ast_node *node);
9786 __isl_give isl_ast_node *isl_ast_node_if_get_else(
9787 __isl_keep isl_ast_node *node);
9789 __isl_give isl_ast_node_list *
9790 isl_ast_node_block_get_children(
9791 __isl_keep isl_ast_node *node);
9793 __isl_give isl_id *isl_ast_node_mark_get_id(
9794 __isl_keep isl_ast_node *node);
9795 __isl_give isl_ast_node *isl_ast_node_mark_get_node(
9796 __isl_keep isl_ast_node *node);
9798 C<isl_ast_node_mark_get_id> returns the identifier of the mark.
9799 C<isl_ast_node_mark_get_node> returns the child node that is being marked.
9801 #include <isl/ast.h>
9802 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
9803 __isl_keep isl_ast_node *node);
9805 All descendants of a specific node in the AST (including the node itself)
9807 in depth-first pre-order using the following function.
9809 #include <isl/ast.h>
9810 isl_stat isl_ast_node_foreach_descendant_top_down(
9811 __isl_keep isl_ast_node *node,
9812 isl_bool (*fn)(__isl_keep isl_ast_node *node,
9813 void *user), void *user);
9815 The callback function should return C<isl_bool_true> if the children
9816 of the given node should be visited and C<isl_bool_false> if they should not.
9817 It should return C<isl_bool_error> in case of failure, in which case
9818 the entire traversal is aborted.
9820 Each of the returned C<isl_ast_expr>s can in turn be inspected using
9821 the following functions.
9823 #include <isl/ast.h>
9824 enum isl_ast_expr_type isl_ast_expr_get_type(
9825 __isl_keep isl_ast_expr *expr);
9827 The type of an AST expression is one of
9829 C<isl_ast_expr_id> or
9830 C<isl_ast_expr_int>.
9831 An C<isl_ast_expr_op> represents the result of an operation.
9832 An C<isl_ast_expr_id> represents an identifier.
9833 An C<isl_ast_expr_int> represents an integer value.
9835 Each type of expression has its own additional properties.
9837 #include <isl/ast.h>
9838 enum isl_ast_op_type isl_ast_expr_get_op_type(
9839 __isl_keep isl_ast_expr *expr);
9840 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
9841 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
9842 __isl_keep isl_ast_expr *expr, int pos);
9843 isl_stat isl_ast_expr_foreach_ast_op_type(
9844 __isl_keep isl_ast_expr *expr,
9845 isl_stat (*fn)(enum isl_ast_op_type type,
9846 void *user), void *user);
9847 isl_stat isl_ast_node_foreach_ast_op_type(
9848 __isl_keep isl_ast_node *node,
9849 isl_stat (*fn)(enum isl_ast_op_type type,
9850 void *user), void *user);
9852 C<isl_ast_expr_get_op_type> returns the type of the operation
9853 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
9854 arguments. C<isl_ast_expr_get_op_arg> returns the specified
9856 C<isl_ast_expr_foreach_ast_op_type> calls C<fn> for each distinct
9857 C<isl_ast_op_type> that appears in C<expr>.
9858 C<isl_ast_node_foreach_ast_op_type> does the same for each distinct
9859 C<isl_ast_op_type> that appears in C<node>.
9860 The operation type is one of the following.
9864 =item C<isl_ast_op_and>
9866 Logical I<and> of two arguments.
9867 Both arguments can be evaluated.
9869 =item C<isl_ast_op_and_then>
9871 Logical I<and> of two arguments.
9872 The second argument can only be evaluated if the first evaluates to true.
9874 =item C<isl_ast_op_or>
9876 Logical I<or> of two arguments.
9877 Both arguments can be evaluated.
9879 =item C<isl_ast_op_or_else>
9881 Logical I<or> of two arguments.
9882 The second argument can only be evaluated if the first evaluates to false.
9884 =item C<isl_ast_op_max>
9886 Maximum of two or more arguments.
9888 =item C<isl_ast_op_min>
9890 Minimum of two or more arguments.
9892 =item C<isl_ast_op_minus>
9896 =item C<isl_ast_op_add>
9898 Sum of two arguments.
9900 =item C<isl_ast_op_sub>
9902 Difference of two arguments.
9904 =item C<isl_ast_op_mul>
9906 Product of two arguments.
9908 =item C<isl_ast_op_div>
9910 Exact division. That is, the result is known to be an integer.
9912 =item C<isl_ast_op_fdiv_q>
9914 Result of integer division, rounded towards negative
9917 =item C<isl_ast_op_pdiv_q>
9919 Result of integer division, where dividend is known to be non-negative.
9921 =item C<isl_ast_op_pdiv_r>
9923 Remainder of integer division, where dividend is known to be non-negative.
9925 =item C<isl_ast_op_zdiv_r>
9927 Equal to zero iff the remainder on integer division is zero.
9929 =item C<isl_ast_op_cond>
9931 Conditional operator defined on three arguments.
9932 If the first argument evaluates to true, then the result
9933 is equal to the second argument. Otherwise, the result
9934 is equal to the third argument.
9935 The second and third argument may only be evaluated if
9936 the first argument evaluates to true and false, respectively.
9937 Corresponds to C<a ? b : c> in C.
9939 =item C<isl_ast_op_select>
9941 Conditional operator defined on three arguments.
9942 If the first argument evaluates to true, then the result
9943 is equal to the second argument. Otherwise, the result
9944 is equal to the third argument.
9945 The second and third argument may be evaluated independently
9946 of the value of the first argument.
9947 Corresponds to C<a * b + (1 - a) * c> in C.
9949 =item C<isl_ast_op_eq>
9953 =item C<isl_ast_op_le>
9955 Less than or equal relation.
9957 =item C<isl_ast_op_lt>
9961 =item C<isl_ast_op_ge>
9963 Greater than or equal relation.
9965 =item C<isl_ast_op_gt>
9967 Greater than relation.
9969 =item C<isl_ast_op_call>
9972 The number of arguments of the C<isl_ast_expr> is one more than
9973 the number of arguments in the function call, the first argument
9974 representing the function being called.
9976 =item C<isl_ast_op_access>
9979 The number of arguments of the C<isl_ast_expr> is one more than
9980 the number of index expressions in the array access, the first argument
9981 representing the array being accessed.
9983 =item C<isl_ast_op_member>
9986 This operation has two arguments, a structure and the name of
9987 the member of the structure being accessed.
9991 #include <isl/ast.h>
9992 __isl_give isl_id *isl_ast_expr_get_id(
9993 __isl_keep isl_ast_expr *expr);
9995 Return the identifier represented by the AST expression.
9997 #include <isl/ast.h>
9998 __isl_give isl_val *isl_ast_expr_get_val(
9999 __isl_keep isl_ast_expr *expr);
10001 Return the integer represented by the AST expression.
10003 =head3 Properties of ASTs
10005 #include <isl/ast.h>
10006 isl_bool isl_ast_expr_is_equal(
10007 __isl_keep isl_ast_expr *expr1,
10008 __isl_keep isl_ast_expr *expr2);
10010 Check if two C<isl_ast_expr>s are equal to each other.
10012 =head3 Manipulating and printing the AST
10014 AST nodes can be copied and freed using the following functions.
10016 #include <isl/ast.h>
10017 __isl_give isl_ast_node *isl_ast_node_copy(
10018 __isl_keep isl_ast_node *node);
10019 __isl_null isl_ast_node *isl_ast_node_free(
10020 __isl_take isl_ast_node *node);
10022 AST expressions can be copied and freed using the following functions.
10024 #include <isl/ast.h>
10025 __isl_give isl_ast_expr *isl_ast_expr_copy(
10026 __isl_keep isl_ast_expr *expr);
10027 __isl_null isl_ast_expr *isl_ast_expr_free(
10028 __isl_take isl_ast_expr *expr);
10030 New AST expressions can be created either directly or within
10031 the context of an C<isl_ast_build>.
10033 #include <isl/ast.h>
10034 __isl_give isl_ast_expr *isl_ast_expr_from_val(
10035 __isl_take isl_val *v);
10036 __isl_give isl_ast_expr *isl_ast_expr_from_id(
10037 __isl_take isl_id *id);
10038 __isl_give isl_ast_expr *isl_ast_expr_neg(
10039 __isl_take isl_ast_expr *expr);
10040 __isl_give isl_ast_expr *isl_ast_expr_address_of(
10041 __isl_take isl_ast_expr *expr);
10042 __isl_give isl_ast_expr *isl_ast_expr_add(
10043 __isl_take isl_ast_expr *expr1,
10044 __isl_take isl_ast_expr *expr2);
10045 __isl_give isl_ast_expr *isl_ast_expr_sub(
10046 __isl_take isl_ast_expr *expr1,
10047 __isl_take isl_ast_expr *expr2);
10048 __isl_give isl_ast_expr *isl_ast_expr_mul(
10049 __isl_take isl_ast_expr *expr1,
10050 __isl_take isl_ast_expr *expr2);
10051 __isl_give isl_ast_expr *isl_ast_expr_div(
10052 __isl_take isl_ast_expr *expr1,
10053 __isl_take isl_ast_expr *expr2);
10054 __isl_give isl_ast_expr *isl_ast_expr_pdiv_q(
10055 __isl_take isl_ast_expr *expr1,
10056 __isl_take isl_ast_expr *expr2);
10057 __isl_give isl_ast_expr *isl_ast_expr_pdiv_r(
10058 __isl_take isl_ast_expr *expr1,
10059 __isl_take isl_ast_expr *expr2);
10060 __isl_give isl_ast_expr *isl_ast_expr_and(
10061 __isl_take isl_ast_expr *expr1,
10062 __isl_take isl_ast_expr *expr2)
10063 __isl_give isl_ast_expr *isl_ast_expr_and_then(
10064 __isl_take isl_ast_expr *expr1,
10065 __isl_take isl_ast_expr *expr2)
10066 __isl_give isl_ast_expr *isl_ast_expr_or(
10067 __isl_take isl_ast_expr *expr1,
10068 __isl_take isl_ast_expr *expr2)
10069 __isl_give isl_ast_expr *isl_ast_expr_or_else(
10070 __isl_take isl_ast_expr *expr1,
10071 __isl_take isl_ast_expr *expr2)
10072 __isl_give isl_ast_expr *isl_ast_expr_eq(
10073 __isl_take isl_ast_expr *expr1,
10074 __isl_take isl_ast_expr *expr2);
10075 __isl_give isl_ast_expr *isl_ast_expr_le(
10076 __isl_take isl_ast_expr *expr1,
10077 __isl_take isl_ast_expr *expr2);
10078 __isl_give isl_ast_expr *isl_ast_expr_lt(
10079 __isl_take isl_ast_expr *expr1,
10080 __isl_take isl_ast_expr *expr2);
10081 __isl_give isl_ast_expr *isl_ast_expr_ge(
10082 __isl_take isl_ast_expr *expr1,
10083 __isl_take isl_ast_expr *expr2);
10084 __isl_give isl_ast_expr *isl_ast_expr_gt(
10085 __isl_take isl_ast_expr *expr1,
10086 __isl_take isl_ast_expr *expr2);
10087 __isl_give isl_ast_expr *isl_ast_expr_access(
10088 __isl_take isl_ast_expr *array,
10089 __isl_take isl_ast_expr_list *indices);
10090 __isl_give isl_ast_expr *isl_ast_expr_call(
10091 __isl_take isl_ast_expr *function,
10092 __isl_take isl_ast_expr_list *arguments);
10094 The function C<isl_ast_expr_address_of> can be applied to an
10095 C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
10096 to represent the address of the C<isl_ast_expr_access>. The function
10097 C<isl_ast_expr_and_then> as well as C<isl_ast_expr_or_else> are short-circuit
10098 versions of C<isl_ast_expr_and> and C<isl_ast_expr_or>, respectively.
10100 #include <isl/ast_build.h>
10101 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
10102 __isl_keep isl_ast_build *build,
10103 __isl_take isl_set *set);
10104 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
10105 __isl_keep isl_ast_build *build,
10106 __isl_take isl_pw_aff *pa);
10107 __isl_give isl_ast_expr *
10108 isl_ast_build_access_from_pw_multi_aff(
10109 __isl_keep isl_ast_build *build,
10110 __isl_take isl_pw_multi_aff *pma);
10111 __isl_give isl_ast_expr *
10112 isl_ast_build_access_from_multi_pw_aff(
10113 __isl_keep isl_ast_build *build,
10114 __isl_take isl_multi_pw_aff *mpa);
10115 __isl_give isl_ast_expr *
10116 isl_ast_build_call_from_pw_multi_aff(
10117 __isl_keep isl_ast_build *build,
10118 __isl_take isl_pw_multi_aff *pma);
10119 __isl_give isl_ast_expr *
10120 isl_ast_build_call_from_multi_pw_aff(
10121 __isl_keep isl_ast_build *build,
10122 __isl_take isl_multi_pw_aff *mpa);
10125 the domains of C<pa>, C<mpa> and C<pma> should correspond
10126 to the schedule space of C<build>.
10127 The tuple id of C<mpa> or C<pma> is used as the array being accessed or
10128 the function being called.
10129 If the accessed space is a nested relation, then it is taken
10130 to represent an access of the member specified by the range
10131 of this nested relation of the structure specified by the domain
10132 of the nested relation.
10134 The following functions can be used to modify an C<isl_ast_expr>.
10136 #include <isl/ast.h>
10137 __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
10138 __isl_take isl_ast_expr *expr, int pos,
10139 __isl_take isl_ast_expr *arg);
10141 Replace the argument of C<expr> at position C<pos> by C<arg>.
10143 #include <isl/ast.h>
10144 __isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
10145 __isl_take isl_ast_expr *expr,
10146 __isl_take isl_id_to_ast_expr *id2expr);
10148 The function C<isl_ast_expr_substitute_ids> replaces the
10149 subexpressions of C<expr> of type C<isl_ast_expr_id>
10150 by the corresponding expression in C<id2expr>, if there is any.
10153 User specified data can be attached to an C<isl_ast_node> and obtained
10154 from the same C<isl_ast_node> using the following functions.
10156 #include <isl/ast.h>
10157 __isl_give isl_ast_node *isl_ast_node_set_annotation(
10158 __isl_take isl_ast_node *node,
10159 __isl_take isl_id *annotation);
10160 __isl_give isl_id *isl_ast_node_get_annotation(
10161 __isl_keep isl_ast_node *node);
10163 Basic printing can be performed using the following functions.
10165 #include <isl/ast.h>
10166 __isl_give isl_printer *isl_printer_print_ast_expr(
10167 __isl_take isl_printer *p,
10168 __isl_keep isl_ast_expr *expr);
10169 __isl_give isl_printer *isl_printer_print_ast_node(
10170 __isl_take isl_printer *p,
10171 __isl_keep isl_ast_node *node);
10172 __isl_give char *isl_ast_expr_to_str(
10173 __isl_keep isl_ast_expr *expr);
10174 __isl_give char *isl_ast_node_to_str(
10175 __isl_keep isl_ast_node *node);
10176 __isl_give char *isl_ast_expr_to_C_str(
10177 __isl_keep isl_ast_expr *expr);
10178 __isl_give char *isl_ast_node_to_C_str(
10179 __isl_keep isl_ast_node *node);
10181 The functions C<isl_ast_expr_to_C_str> and
10182 C<isl_ast_node_to_C_str> are convenience functions
10183 that return a string representation of the input in C format.
10185 More advanced printing can be performed using the following functions.
10187 #include <isl/ast.h>
10188 __isl_give isl_printer *isl_ast_op_type_set_print_name(
10189 __isl_take isl_printer *p,
10190 enum isl_ast_op_type type,
10191 __isl_keep const char *name);
10192 isl_stat isl_options_set_ast_print_macro_once(
10193 isl_ctx *ctx, int val);
10194 int isl_options_get_ast_print_macro_once(isl_ctx *ctx);
10195 __isl_give isl_printer *isl_ast_op_type_print_macro(
10196 enum isl_ast_op_type type,
10197 __isl_take isl_printer *p);
10198 __isl_give isl_printer *isl_ast_expr_print_macros(
10199 __isl_keep isl_ast_expr *expr,
10200 __isl_take isl_printer *p);
10201 __isl_give isl_printer *isl_ast_node_print_macros(
10202 __isl_keep isl_ast_node *node,
10203 __isl_take isl_printer *p);
10204 __isl_give isl_printer *isl_ast_node_print(
10205 __isl_keep isl_ast_node *node,
10206 __isl_take isl_printer *p,
10207 __isl_take isl_ast_print_options *options);
10208 __isl_give isl_printer *isl_ast_node_for_print(
10209 __isl_keep isl_ast_node *node,
10210 __isl_take isl_printer *p,
10211 __isl_take isl_ast_print_options *options);
10212 __isl_give isl_printer *isl_ast_node_if_print(
10213 __isl_keep isl_ast_node *node,
10214 __isl_take isl_printer *p,
10215 __isl_take isl_ast_print_options *options);
10217 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
10218 C<isl> may print out an AST that makes use of macros such
10219 as C<floord>, C<min> and C<max>.
10220 The names of these macros may be modified by a call
10221 to C<isl_ast_op_type_set_print_name>. The user-specified
10222 names are associated to the printer object.
10223 C<isl_ast_op_type_print_macro> prints out the macro
10224 corresponding to a specific C<isl_ast_op_type>.
10225 If the print-macro-once option is set, then a given macro definition
10226 is only printed once to any given printer object.
10227 C<isl_ast_expr_print_macros> scans the C<isl_ast_expr>
10228 for subexpressions where these macros would be used and prints
10229 out the required macro definitions.
10230 Essentially, C<isl_ast_expr_print_macros> calls
10231 C<isl_ast_expr_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
10232 as function argument.
10233 C<isl_ast_node_print_macros> does the same
10234 for expressions in its C<isl_ast_node> argument.
10235 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
10236 C<isl_ast_node_if_print> print an C<isl_ast_node>
10237 in C<ISL_FORMAT_C>, but allow for some extra control
10238 through an C<isl_ast_print_options> object.
10239 This object can be created using the following functions.
10241 #include <isl/ast.h>
10242 __isl_give isl_ast_print_options *
10243 isl_ast_print_options_alloc(isl_ctx *ctx);
10244 __isl_give isl_ast_print_options *
10245 isl_ast_print_options_copy(
10246 __isl_keep isl_ast_print_options *options);
10247 __isl_null isl_ast_print_options *
10248 isl_ast_print_options_free(
10249 __isl_take isl_ast_print_options *options);
10251 __isl_give isl_ast_print_options *
10252 isl_ast_print_options_set_print_user(
10253 __isl_take isl_ast_print_options *options,
10254 __isl_give isl_printer *(*print_user)(
10255 __isl_take isl_printer *p,
10256 __isl_take isl_ast_print_options *options,
10257 __isl_keep isl_ast_node *node, void *user),
10259 __isl_give isl_ast_print_options *
10260 isl_ast_print_options_set_print_for(
10261 __isl_take isl_ast_print_options *options,
10262 __isl_give isl_printer *(*print_for)(
10263 __isl_take isl_printer *p,
10264 __isl_take isl_ast_print_options *options,
10265 __isl_keep isl_ast_node *node, void *user),
10268 The callback set by C<isl_ast_print_options_set_print_user>
10269 is called whenever a node of type C<isl_ast_node_user> needs to
10271 The callback set by C<isl_ast_print_options_set_print_for>
10272 is called whenever a node of type C<isl_ast_node_for> needs to
10274 Note that C<isl_ast_node_for_print> will I<not> call the
10275 callback set by C<isl_ast_print_options_set_print_for> on the node
10276 on which C<isl_ast_node_for_print> is called, but only on nested
10277 nodes of type C<isl_ast_node_for>. It is therefore safe to
10278 call C<isl_ast_node_for_print> from within the callback set by
10279 C<isl_ast_print_options_set_print_for>.
10281 The following option determines the type to be used for iterators
10282 while printing the AST.
10284 isl_stat isl_options_set_ast_iterator_type(
10285 isl_ctx *ctx, const char *val);
10286 const char *isl_options_get_ast_iterator_type(
10289 The AST printer only prints body nodes as blocks if these
10290 blocks cannot be safely omitted.
10291 For example, a C<for> node with one body node will not be
10292 surrounded with braces in C<ISL_FORMAT_C>.
10293 A block will always be printed by setting the following option.
10295 isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx,
10297 int isl_options_get_ast_always_print_block(isl_ctx *ctx);
10301 #include <isl/ast_build.h>
10302 isl_stat isl_options_set_ast_build_atomic_upper_bound(
10303 isl_ctx *ctx, int val);
10304 int isl_options_get_ast_build_atomic_upper_bound(
10306 isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
10308 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
10309 isl_stat isl_options_set_ast_build_detect_min_max(
10310 isl_ctx *ctx, int val);
10311 int isl_options_get_ast_build_detect_min_max(
10313 isl_stat isl_options_set_ast_build_exploit_nested_bounds(
10314 isl_ctx *ctx, int val);
10315 int isl_options_get_ast_build_exploit_nested_bounds(
10317 isl_stat isl_options_set_ast_build_group_coscheduled(
10318 isl_ctx *ctx, int val);
10319 int isl_options_get_ast_build_group_coscheduled(
10321 isl_stat isl_options_set_ast_build_scale_strides(
10322 isl_ctx *ctx, int val);
10323 int isl_options_get_ast_build_scale_strides(
10325 isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx,
10327 int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
10328 isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx,
10330 int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
10334 =item * ast_build_atomic_upper_bound
10336 Generate loop upper bounds that consist of the current loop iterator,
10337 an operator and an expression not involving the iterator.
10338 If this option is not set, then the current loop iterator may appear
10339 several times in the upper bound.
10340 For example, when this option is turned off, AST generation
10343 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
10347 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
10350 When the option is turned on, the following AST is generated
10352 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
10355 =item * ast_build_prefer_pdiv
10357 If this option is turned off, then the AST generation will
10358 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
10359 operators, but no C<isl_ast_op_pdiv_q> or
10360 C<isl_ast_op_pdiv_r> operators.
10361 If this option is turned on, then C<isl> will try to convert
10362 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
10363 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
10365 =item * ast_build_detect_min_max
10367 If this option is turned on, then C<isl> will try and detect
10368 min or max-expressions when building AST expressions from
10369 piecewise affine expressions.
10371 =item * ast_build_exploit_nested_bounds
10373 Simplify conditions based on bounds of nested for loops.
10374 In particular, remove conditions that are implied by the fact
10375 that one or more nested loops have at least one iteration,
10376 meaning that the upper bound is at least as large as the lower bound.
10377 For example, when this option is turned off, AST generation
10380 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
10386 for (int c0 = 0; c0 <= N; c0 += 1)
10387 for (int c1 = 0; c1 <= M; c1 += 1)
10390 When the option is turned on, the following AST is generated
10392 for (int c0 = 0; c0 <= N; c0 += 1)
10393 for (int c1 = 0; c1 <= M; c1 += 1)
10396 =item * ast_build_group_coscheduled
10398 If two domain elements are assigned the same schedule point, then
10399 they may be executed in any order and they may even appear in different
10400 loops. If this options is set, then the AST generator will make
10401 sure that coscheduled domain elements do not appear in separate parts
10402 of the AST. This is useful in case of nested AST generation
10403 if the outer AST generation is given only part of a schedule
10404 and the inner AST generation should handle the domains that are
10405 coscheduled by this initial part of the schedule together.
10406 For example if an AST is generated for a schedule
10408 { A[i] -> [0]; B[i] -> [0] }
10410 then the C<isl_ast_build_set_create_leaf> callback described
10411 below may get called twice, once for each domain.
10412 Setting this option ensures that the callback is only called once
10413 on both domains together.
10415 =item * ast_build_separation_bounds
10417 This option specifies which bounds to use during separation.
10418 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
10419 then all (possibly implicit) bounds on the current dimension will
10420 be used during separation.
10421 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
10422 then only those bounds that are explicitly available will
10423 be used during separation.
10425 =item * ast_build_scale_strides
10427 This option specifies whether the AST generator is allowed
10428 to scale down iterators of strided loops.
10430 =item * ast_build_allow_else
10432 This option specifies whether the AST generator is allowed
10433 to construct if statements with else branches.
10435 =item * ast_build_allow_or
10437 This option specifies whether the AST generator is allowed
10438 to construct if conditions with disjunctions.
10442 =head3 AST Generation Options (Schedule Tree)
10444 In case of AST construction from a schedule tree, the options
10445 that control how an AST is created from the individual schedule
10446 dimensions are stored in the band nodes of the tree
10447 (see L</"Schedule Trees">).
10449 In particular, a schedule dimension can be handled in four
10450 different ways, atomic, separate, unroll or the default.
10451 This loop AST generation type can be set using
10452 C<isl_schedule_node_band_member_set_ast_loop_type>.
10454 the first three can be selected by including a one-dimensional
10455 element with as value the position of the schedule dimension
10456 within the band and as name one of C<atomic>, C<separate>
10457 or C<unroll> in the options
10458 set by C<isl_schedule_node_band_set_ast_build_options>.
10459 Only one of these three may be specified for
10460 any given schedule dimension within a band node.
10461 If none of these is specified, then the default
10462 is used. The meaning of the options is as follows.
10468 When this option is specified, the AST generator will make
10469 sure that a given domains space only appears in a single
10470 loop at the specified level.
10472 For example, for the schedule tree
10474 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10476 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10477 options: "{ atomic[x] }"
10479 the following AST will be generated
10481 for (int c0 = 0; c0 <= 10; c0 += 1) {
10488 On the other hand, for the schedule tree
10490 domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
10492 schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
10493 options: "{ separate[x] }"
10495 the following AST will be generated
10499 for (int c0 = 1; c0 <= 9; c0 += 1) {
10506 If neither C<atomic> nor C<separate> is specified, then the AST generator
10507 may produce either of these two results or some intermediate form.
10511 When this option is specified, the AST generator will
10512 split the domain of the specified schedule dimension
10513 into pieces with a fixed set of statements for which
10514 instances need to be executed by the iterations in
10515 the schedule domain part. This option tends to avoid
10516 the generation of guards inside the corresponding loops.
10517 See also the C<atomic> option.
10521 When this option is specified, the AST generator will
10522 I<completely> unroll the corresponding schedule dimension.
10523 It is the responsibility of the user to ensure that such
10524 unrolling is possible.
10525 To obtain a partial unrolling, the user should apply an additional
10526 strip-mining to the schedule and fully unroll the inner schedule
10531 The C<isolate> option is a bit more involved. It allows the user
10532 to isolate a range of schedule dimension values from smaller and
10533 greater values. Additionally, the user may specify a different
10534 atomic/separate/unroll choice for the isolated part and the remaining
10535 parts. The typical use case of the C<isolate> option is to isolate
10536 full tiles from partial tiles.
10537 The part that needs to be isolated may depend on outer schedule dimensions.
10538 The option therefore needs to be able to reference those outer schedule
10539 dimensions. In particular, the space of the C<isolate> option is that
10540 of a wrapped map with as domain the flat product of all outer band nodes
10541 and as range the space of the current band node.
10542 The atomic/separate/unroll choice for the isolated part is determined
10543 by an option that lives in an unnamed wrapped space with as domain
10544 a zero-dimensional C<isolate> space and as range the regular
10545 C<atomic>, C<separate> or C<unroll> space.
10546 This option may also be set directly using
10547 C<isl_schedule_node_band_member_set_isolate_ast_loop_type>.
10548 The atomic/separate/unroll choice for the remaining part is determined
10549 by the regular C<atomic>, C<separate> or C<unroll> option.
10550 Since the C<isolate> option references outer schedule dimensions,
10551 its use in a band node causes any tree containing the node
10552 to be considered anchored.
10554 As an example, consider the isolation of full tiles from partial tiles
10555 in a tiling of a triangular domain. The original schedule is as follows.
10557 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10559 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10560 { A[i,j] -> [floor(j/10)] }, \
10561 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10565 for (int c0 = 0; c0 <= 10; c0 += 1)
10566 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10567 for (int c2 = 10 * c0;
10568 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10569 for (int c3 = 10 * c1;
10570 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10573 Isolating the full tiles, we have the following input
10575 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10577 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10578 { A[i,j] -> [floor(j/10)] }, \
10579 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10580 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10581 10a+9+10b+9 <= 100 }"
10586 for (int c0 = 0; c0 <= 8; c0 += 1) {
10587 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10588 for (int c2 = 10 * c0;
10589 c2 <= 10 * c0 + 9; c2 += 1)
10590 for (int c3 = 10 * c1;
10591 c3 <= 10 * c1 + 9; c3 += 1)
10593 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10594 for (int c2 = 10 * c0;
10595 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10596 for (int c3 = 10 * c1;
10597 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10600 for (int c0 = 9; c0 <= 10; c0 += 1)
10601 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10602 for (int c2 = 10 * c0;
10603 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10604 for (int c3 = 10 * c1;
10605 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10609 We may then additionally unroll the innermost loop of the isolated part
10611 domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
10613 schedule: "[{ A[i,j] -> [floor(i/10)] }, \
10614 { A[i,j] -> [floor(j/10)] }, \
10615 { A[i,j] -> [i] }, { A[i,j] -> [j] }]"
10616 options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10617 10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }"
10622 for (int c0 = 0; c0 <= 8; c0 += 1) {
10623 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10624 for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) {
10626 A(c2, 10 * c1 + 1);
10627 A(c2, 10 * c1 + 2);
10628 A(c2, 10 * c1 + 3);
10629 A(c2, 10 * c1 + 4);
10630 A(c2, 10 * c1 + 5);
10631 A(c2, 10 * c1 + 6);
10632 A(c2, 10 * c1 + 7);
10633 A(c2, 10 * c1 + 8);
10634 A(c2, 10 * c1 + 9);
10636 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10637 for (int c2 = 10 * c0;
10638 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10639 for (int c3 = 10 * c1;
10640 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10643 for (int c0 = 9; c0 <= 10; c0 += 1)
10644 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10645 for (int c2 = 10 * c0;
10646 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
10647 for (int c3 = 10 * c1;
10648 c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
10653 =head3 AST Generation Options (Schedule Map)
10655 In case of AST construction using
10656 C<isl_ast_build_node_from_schedule_map>, the options
10657 that control how an AST is created from the individual schedule
10658 dimensions are stored in the C<isl_ast_build>.
10659 They can be set using the following function.
10661 #include <isl/ast_build.h>
10662 __isl_give isl_ast_build *
10663 isl_ast_build_set_options(
10664 __isl_take isl_ast_build *build,
10665 __isl_take isl_union_map *options);
10667 The options are encoded in an C<isl_union_map>.
10668 The domain of this union relation refers to the schedule domain,
10669 i.e., the range of the schedule passed
10670 to C<isl_ast_build_node_from_schedule_map>.
10671 In the case of nested AST generation (see L</"Nested AST Generation">),
10672 the domain of C<options> should refer to the extra piece of the schedule.
10673 That is, it should be equal to the range of the wrapped relation in the
10674 range of the schedule.
10675 The range of the options can consist of elements in one or more spaces,
10676 the names of which determine the effect of the option.
10677 The values of the range typically also refer to the schedule dimension
10678 to which the option applies. In case of nested AST generation
10679 (see L</"Nested AST Generation">), these values refer to the position
10680 of the schedule dimension within the innermost AST generation.
10681 The constraints on the domain elements of
10682 the option should only refer to this dimension and earlier dimensions.
10683 We consider the following spaces.
10687 =item C<separation_class>
10689 B<This option has been deprecated. Use the isolate option on
10690 schedule trees instead.>
10692 This space is a wrapped relation between two one dimensional spaces.
10693 The input space represents the schedule dimension to which the option
10694 applies and the output space represents the separation class.
10695 While constructing a loop corresponding to the specified schedule
10696 dimension(s), the AST generator will try to generate separate loops
10697 for domain elements that are assigned different classes.
10698 If only some of the elements are assigned a class, then those elements
10699 that are not assigned any class will be treated as belonging to a class
10700 that is separate from the explicitly assigned classes.
10701 The typical use case for this option is to separate full tiles from
10703 The other options, described below, are applied after the separation
10706 As an example, consider the separation into full and partial tiles
10707 of a tiling of a triangular domain.
10708 Take, for example, the domain
10710 { A[i,j] : 0 <= i,j and i + j <= 100 }
10712 and a tiling into tiles of 10 by 10. The input to the AST generator
10713 is then the schedule
10715 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
10718 Without any options, the following AST is generated
10720 for (int c0 = 0; c0 <= 10; c0 += 1)
10721 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10722 for (int c2 = 10 * c0;
10723 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10725 for (int c3 = 10 * c1;
10726 c3 <= min(10 * c1 + 9, -c2 + 100);
10730 Separation into full and partial tiles can be obtained by assigning
10731 a class, say C<0>, to the full tiles. The full tiles are represented by those
10732 values of the first and second schedule dimensions for which there are
10733 values of the third and fourth dimensions to cover an entire tile.
10734 That is, we need to specify the following option
10736 { [a,b,c,d] -> separation_class[[0]->[0]] :
10737 exists b': 0 <= 10a,10b' and
10738 10a+9+10b'+9 <= 100;
10739 [a,b,c,d] -> separation_class[[1]->[0]] :
10740 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
10742 which simplifies to
10744 { [a, b, c, d] -> separation_class[[1] -> [0]] :
10745 a >= 0 and b >= 0 and b <= 8 - a;
10746 [a, b, c, d] -> separation_class[[0] -> [0]] :
10747 a >= 0 and a <= 8 }
10749 With this option, the generated AST is as follows
10752 for (int c0 = 0; c0 <= 8; c0 += 1) {
10753 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
10754 for (int c2 = 10 * c0;
10755 c2 <= 10 * c0 + 9; c2 += 1)
10756 for (int c3 = 10 * c1;
10757 c3 <= 10 * c1 + 9; c3 += 1)
10759 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
10760 for (int c2 = 10 * c0;
10761 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10763 for (int c3 = 10 * c1;
10764 c3 <= min(-c2 + 100, 10 * c1 + 9);
10768 for (int c0 = 9; c0 <= 10; c0 += 1)
10769 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
10770 for (int c2 = 10 * c0;
10771 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
10773 for (int c3 = 10 * c1;
10774 c3 <= min(10 * c1 + 9, -c2 + 100);
10781 This is a single-dimensional space representing the schedule dimension(s)
10782 to which ``separation'' should be applied. Separation tries to split
10783 a loop into several pieces if this can avoid the generation of guards
10785 See also the C<atomic> option.
10789 This is a single-dimensional space representing the schedule dimension(s)
10790 for which the domains should be considered ``atomic''. That is, the
10791 AST generator will make sure that any given domain space will only appear
10792 in a single loop at the specified level.
10794 Consider the following schedule
10796 { a[i] -> [i] : 0 <= i < 10;
10797 b[i] -> [i+1] : 0 <= i < 10 }
10799 If the following option is specified
10801 { [i] -> separate[x] }
10803 then the following AST will be generated
10807 for (int c0 = 1; c0 <= 9; c0 += 1) {
10814 If, on the other hand, the following option is specified
10816 { [i] -> atomic[x] }
10818 then the following AST will be generated
10820 for (int c0 = 0; c0 <= 10; c0 += 1) {
10827 If neither C<atomic> nor C<separate> is specified, then the AST generator
10828 may produce either of these two results or some intermediate form.
10832 This is a single-dimensional space representing the schedule dimension(s)
10833 that should be I<completely> unrolled.
10834 To obtain a partial unrolling, the user should apply an additional
10835 strip-mining to the schedule and fully unroll the inner loop.
10839 =head3 Fine-grained Control over AST Generation
10841 Besides specifying the constraints on the parameters,
10842 an C<isl_ast_build> object can be used to control
10843 various aspects of the AST generation process.
10844 In case of AST construction using
10845 C<isl_ast_build_node_from_schedule_map>,
10846 the most prominent way of control is through ``options'',
10847 as explained above.
10849 Additional control is available through the following functions.
10851 #include <isl/ast_build.h>
10852 __isl_give isl_ast_build *
10853 isl_ast_build_set_iterators(
10854 __isl_take isl_ast_build *build,
10855 __isl_take isl_id_list *iterators);
10857 The function C<isl_ast_build_set_iterators> allows the user to
10858 specify a list of iterator C<isl_id>s to be used as iterators.
10859 If the input schedule is injective, then
10860 the number of elements in this list should be as large as the dimension
10861 of the schedule space, but no direct correspondence should be assumed
10862 between dimensions and elements.
10863 If the input schedule is not injective, then an additional number
10864 of C<isl_id>s equal to the largest dimension of the input domains
10866 If the number of provided C<isl_id>s is insufficient, then additional
10867 names are automatically generated.
10869 #include <isl/ast_build.h>
10870 __isl_give isl_ast_build *
10871 isl_ast_build_set_create_leaf(
10872 __isl_take isl_ast_build *build,
10873 __isl_give isl_ast_node *(*fn)(
10874 __isl_take isl_ast_build *build,
10875 void *user), void *user);
10878 C<isl_ast_build_set_create_leaf> function allows for the
10879 specification of a callback that should be called whenever the AST
10880 generator arrives at an element of the schedule domain.
10881 The callback should return an AST node that should be inserted
10882 at the corresponding position of the AST. The default action (when
10883 the callback is not set) is to continue generating parts of the AST to scan
10884 all the domain elements associated to the schedule domain element
10885 and to insert user nodes, ``calling'' the domain element, for each of them.
10886 The C<build> argument contains the current state of the C<isl_ast_build>.
10887 To ease nested AST generation (see L</"Nested AST Generation">),
10888 all control information that is
10889 specific to the current AST generation such as the options and
10890 the callbacks has been removed from this C<isl_ast_build>.
10891 The callback would typically return the result of a nested
10892 AST generation or a
10893 user defined node created using the following function.
10895 #include <isl/ast.h>
10896 __isl_give isl_ast_node *isl_ast_node_alloc_user(
10897 __isl_take isl_ast_expr *expr);
10899 #include <isl/ast_build.h>
10900 __isl_give isl_ast_build *
10901 isl_ast_build_set_at_each_domain(
10902 __isl_take isl_ast_build *build,
10903 __isl_give isl_ast_node *(*fn)(
10904 __isl_take isl_ast_node *node,
10905 __isl_keep isl_ast_build *build,
10906 void *user), void *user);
10907 __isl_give isl_ast_build *
10908 isl_ast_build_set_before_each_for(
10909 __isl_take isl_ast_build *build,
10910 __isl_give isl_id *(*fn)(
10911 __isl_keep isl_ast_build *build,
10912 void *user), void *user);
10913 __isl_give isl_ast_build *
10914 isl_ast_build_set_after_each_for(
10915 __isl_take isl_ast_build *build,
10916 __isl_give isl_ast_node *(*fn)(
10917 __isl_take isl_ast_node *node,
10918 __isl_keep isl_ast_build *build,
10919 void *user), void *user);
10920 __isl_give isl_ast_build *
10921 isl_ast_build_set_before_each_mark(
10922 __isl_take isl_ast_build *build,
10923 isl_stat (*fn)(__isl_keep isl_id *mark,
10924 __isl_keep isl_ast_build *build,
10925 void *user), void *user);
10926 __isl_give isl_ast_build *
10927 isl_ast_build_set_after_each_mark(
10928 __isl_take isl_ast_build *build,
10929 __isl_give isl_ast_node *(*fn)(
10930 __isl_take isl_ast_node *node,
10931 __isl_keep isl_ast_build *build,
10932 void *user), void *user);
10934 The callback set by C<isl_ast_build_set_at_each_domain> will
10935 be called for each domain AST node.
10936 The callbacks set by C<isl_ast_build_set_before_each_for>
10937 and C<isl_ast_build_set_after_each_for> will be called
10938 for each for AST node. The first will be called in depth-first
10939 pre-order, while the second will be called in depth-first post-order.
10940 Since C<isl_ast_build_set_before_each_for> is called before the for
10941 node is actually constructed, it is only passed an C<isl_ast_build>.
10942 The returned C<isl_id> will be added as an annotation (using
10943 C<isl_ast_node_set_annotation>) to the constructed for node.
10944 In particular, if the user has also specified an C<after_each_for>
10945 callback, then the annotation can be retrieved from the node passed to
10946 that callback using C<isl_ast_node_get_annotation>.
10947 The callbacks set by C<isl_ast_build_set_before_each_mark>
10948 and C<isl_ast_build_set_after_each_mark> will be called for each
10949 mark AST node that is created, i.e., for each mark schedule node
10950 in the input schedule tree. The first will be called in depth-first
10951 pre-order, while the second will be called in depth-first post-order.
10952 Since the callback set by C<isl_ast_build_set_before_each_mark>
10953 is called before the mark AST node is actually constructed, it is passed
10954 the identifier of the mark node.
10955 All callbacks should C<NULL> (or C<isl_stat_error>) on failure.
10956 The given C<isl_ast_build> can be used to create new
10957 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
10958 or C<isl_ast_build_call_from_pw_multi_aff>.
10960 =head3 Nested AST Generation
10962 C<isl> allows the user to create an AST within the context
10963 of another AST. These nested ASTs are created using the
10964 same C<isl_ast_build_node_from_schedule_map> function that is used to create
10965 the outer AST. The C<build> argument should be an C<isl_ast_build>
10966 passed to a callback set by
10967 C<isl_ast_build_set_create_leaf>.
10968 The space of the range of the C<schedule> argument should refer
10969 to this build. In particular, the space should be a wrapped
10970 relation and the domain of this wrapped relation should be the
10971 same as that of the range of the schedule returned by
10972 C<isl_ast_build_get_schedule> below.
10973 In practice, the new schedule is typically
10974 created by calling C<isl_union_map_range_product> on the old schedule
10975 and some extra piece of the schedule.
10976 The space of the schedule domain is also available from
10977 the C<isl_ast_build>.
10979 #include <isl/ast_build.h>
10980 __isl_give isl_union_map *isl_ast_build_get_schedule(
10981 __isl_keep isl_ast_build *build);
10982 __isl_give isl_space *isl_ast_build_get_schedule_space(
10983 __isl_keep isl_ast_build *build);
10984 __isl_give isl_ast_build *isl_ast_build_restrict(
10985 __isl_take isl_ast_build *build,
10986 __isl_take isl_set *set);
10988 The C<isl_ast_build_get_schedule> function returns a (partial)
10989 schedule for the domains elements for which part of the AST still needs to
10990 be generated in the current build.
10991 In particular, the domain elements are mapped to those iterations of the loops
10992 enclosing the current point of the AST generation inside which
10993 the domain elements are executed.
10994 No direct correspondence between
10995 the input schedule and this schedule should be assumed.
10996 The space obtained from C<isl_ast_build_get_schedule_space> can be used
10997 to create a set for C<isl_ast_build_restrict> to intersect
10998 with the current build. In particular, the set passed to
10999 C<isl_ast_build_restrict> can have additional parameters.
11000 The ids of the set dimensions in the space returned by
11001 C<isl_ast_build_get_schedule_space> correspond to the
11002 iterators of the already generated loops.
11003 The user should not rely on the ids of the output dimensions
11004 of the relations in the union relation returned by
11005 C<isl_ast_build_get_schedule> having any particular value.
11007 =head1 Applications
11009 Although C<isl> is mainly meant to be used as a library,
11010 it also contains some basic applications that use some
11011 of the functionality of C<isl>.
11012 For applications that take one or more polytopes or polyhedra
11013 as input, this input may be specified in either the L<isl format>
11014 or the L<PolyLib format>.
11016 =head2 C<isl_polyhedron_sample>
11018 C<isl_polyhedron_sample> takes a polyhedron as input and prints
11019 an integer element of the polyhedron, if there is any.
11020 The first column in the output is the denominator and is always
11021 equal to 1. If the polyhedron contains no integer points,
11022 then a vector of length zero is printed.
11026 C<isl_pip> takes the same input as the C<example> program
11027 from the C<piplib> distribution, i.e., a set of constraints
11028 on the parameters, a line containing only -1 and finally a set
11029 of constraints on a parametric polyhedron.
11030 The coefficients of the parameters appear in the last columns
11031 (but before the final constant column).
11032 The output is the lexicographic minimum of the parametric polyhedron.
11033 As C<isl> currently does not have its own output format, the output
11034 is just a dump of the internal state.
11036 =head2 C<isl_polyhedron_minimize>
11038 C<isl_polyhedron_minimize> computes the minimum of some linear
11039 or affine objective function over the integer points in a polyhedron.
11040 If an affine objective function
11041 is given, then the constant should appear in the last column.
11043 =head2 C<isl_polytope_scan>
11045 Given a polytope, C<isl_polytope_scan> prints
11046 all integer points in the polytope.
11050 Given an C<isl_union_access_info> object as input,
11051 C<isl_flow> prints out the corresponding dependences,
11052 as computed by C<isl_union_access_info_compute_flow>.
11054 =head2 C<isl_codegen>
11056 Given either a schedule tree or a sequence consisting of
11057 a schedule map, a context set and an options relation,
11058 C<isl_codegen> prints out an AST that scans the domain elements
11059 of the schedule in the order of their image(s) taking into account
11060 the constraints in the context set.
11062 =head2 C<isl_schedule>
11064 Given an C<isl_schedule_constraints> object as input,
11065 C<isl_schedule> prints out a schedule that satisfies the given