add isl_pw_qpolynomial_from_qpolynomial
[isl.git] / basis_reduction_templ.c
blob2e4034ff4e8b52b26806321f09b405f938e69ff9
1 /*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
13 #include <stdlib.h>
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include "isl_basis_reduction.h"
18 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
20 int i;
22 for (i = 0; i < n; ++i)
23 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
26 /* Compute a reduced basis for the set represented by the tableau "tab".
27 * tab->basis, which must be initialized by the calling function to an affine
28 * unimodular basis, is updated to reflect the reduced basis.
29 * The first tab->n_zero rows of the basis (ignoring the constant row)
30 * are assumed to correspond to equalities and are left untouched.
31 * tab->n_zero is updated to reflect any additional equalities that
32 * have been detected in the first rows of the new basis.
33 * The final tab->n_unbounded rows of the basis are assumed to correspond
34 * to unbounded directions and are also left untouched.
35 * In particular this means that the remaining rows are assumed to
36 * correspond to bounded directions.
38 * This function implements the algorithm described in
39 * "An Implementation of the Generalized Basis Reduction Algorithm
40 * for Integer Programming" of Cook el al. to compute a reduced basis.
41 * We use \epsilon = 1/4.
43 * If ctx->opt->gbr_only_first is set, the user is only interested
44 * in the first direction. In this case we stop the basis reduction when
45 * the width in the first direction becomes smaller than 2.
47 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
49 unsigned dim;
50 struct isl_ctx *ctx;
51 struct isl_mat *B;
52 int unbounded;
53 int i;
54 GBR_LP *lp = NULL;
55 GBR_type F_old, alpha, F_new;
56 int row;
57 isl_int tmp;
58 struct isl_vec *b_tmp;
59 GBR_type *F = NULL;
60 GBR_type *alpha_buffer[2] = { NULL, NULL };
61 GBR_type *alpha_saved;
62 GBR_type F_saved;
63 int use_saved = 0;
64 isl_int mu[2];
65 GBR_type mu_F[2];
66 GBR_type two;
67 GBR_type one;
68 int empty = 0;
69 int fixed = 0;
70 int fixed_saved = 0;
71 int mu_fixed[2];
72 int n_bounded;
73 int gbr_only_first;
75 if (!tab)
76 return NULL;
78 if (tab->empty)
79 return tab;
81 ctx = tab->mat->ctx;
82 gbr_only_first = ctx->opt->gbr_only_first;
83 dim = tab->n_var;
84 B = tab->basis;
85 if (!B)
86 return tab;
88 n_bounded = dim - tab->n_unbounded;
89 if (n_bounded <= tab->n_zero + 1)
90 return tab;
92 isl_int_init(tmp);
93 isl_int_init(mu[0]);
94 isl_int_init(mu[1]);
96 GBR_init(alpha);
97 GBR_init(F_old);
98 GBR_init(F_new);
99 GBR_init(F_saved);
100 GBR_init(mu_F[0]);
101 GBR_init(mu_F[1]);
102 GBR_init(two);
103 GBR_init(one);
105 b_tmp = isl_vec_alloc(ctx, dim);
106 if (!b_tmp)
107 goto error;
109 F = isl_alloc_array(ctx, GBR_type, n_bounded);
110 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
111 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
112 alpha_saved = alpha_buffer[0];
114 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
115 goto error;
117 for (i = 0; i < n_bounded; ++i) {
118 GBR_init(F[i]);
119 GBR_init(alpha_buffer[0][i]);
120 GBR_init(alpha_buffer[1][i]);
123 GBR_set_ui(two, 2);
124 GBR_set_ui(one, 1);
126 lp = GBR_lp_init(tab);
127 if (!lp)
128 goto error;
130 i = tab->n_zero;
132 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
133 ctx->stats->gbr_solved_lps++;
134 unbounded = GBR_lp_solve(lp);
135 isl_assert(ctx, !unbounded, goto error);
136 GBR_lp_get_obj_val(lp, &F[i]);
138 if (GBR_lt(F[i], one)) {
139 if (!GBR_is_zero(F[i])) {
140 empty = GBR_lp_cut(lp, B->row[1+i]+1);
141 if (empty)
142 goto done;
143 GBR_set_ui(F[i], 0);
145 tab->n_zero++;
148 do {
149 if (i+1 == tab->n_zero) {
150 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
151 ctx->stats->gbr_solved_lps++;
152 unbounded = GBR_lp_solve(lp);
153 isl_assert(ctx, !unbounded, goto error);
154 GBR_lp_get_obj_val(lp, &F_new);
155 fixed = GBR_lp_is_fixed(lp);
156 GBR_set_ui(alpha, 0);
157 } else
158 if (use_saved) {
159 row = GBR_lp_next_row(lp);
160 GBR_set(F_new, F_saved);
161 fixed = fixed_saved;
162 GBR_set(alpha, alpha_saved[i]);
163 } else {
164 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
165 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
166 ctx->stats->gbr_solved_lps++;
167 unbounded = GBR_lp_solve(lp);
168 isl_assert(ctx, !unbounded, goto error);
169 GBR_lp_get_obj_val(lp, &F_new);
170 fixed = GBR_lp_is_fixed(lp);
172 GBR_lp_get_alpha(lp, row, &alpha);
174 if (i > 0)
175 save_alpha(lp, row-i, i, alpha_saved);
177 if (GBR_lp_del_row(lp) < 0)
178 goto error;
180 GBR_set(F[i+1], F_new);
182 GBR_floor(mu[0], alpha);
183 GBR_ceil(mu[1], alpha);
185 if (isl_int_eq(mu[0], mu[1]))
186 isl_int_set(tmp, mu[0]);
187 else {
188 int j;
190 for (j = 0; j <= 1; ++j) {
191 isl_int_set(tmp, mu[j]);
192 isl_seq_combine(b_tmp->el,
193 ctx->one, B->row[1+i+1]+1,
194 tmp, B->row[1+i]+1, dim);
195 GBR_lp_set_obj(lp, b_tmp->el, dim);
196 ctx->stats->gbr_solved_lps++;
197 unbounded = GBR_lp_solve(lp);
198 isl_assert(ctx, !unbounded, goto error);
199 GBR_lp_get_obj_val(lp, &mu_F[j]);
200 mu_fixed[j] = GBR_lp_is_fixed(lp);
201 if (i > 0)
202 save_alpha(lp, row-i, i, alpha_buffer[j]);
205 if (GBR_lt(mu_F[0], mu_F[1]))
206 j = 0;
207 else
208 j = 1;
210 isl_int_set(tmp, mu[j]);
211 GBR_set(F_new, mu_F[j]);
212 fixed = mu_fixed[j];
213 alpha_saved = alpha_buffer[j];
215 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
216 tmp, B->row[1+i]+1, dim);
218 if (i+1 == tab->n_zero && fixed) {
219 if (!GBR_is_zero(F[i+1])) {
220 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
221 if (empty)
222 goto done;
223 GBR_set_ui(F[i+1], 0);
225 tab->n_zero++;
228 GBR_set(F_old, F[i]);
230 use_saved = 0;
231 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
232 GBR_set_ui(mu_F[0], 4);
233 GBR_mul(mu_F[0], mu_F[0], F_new);
234 GBR_set_ui(mu_F[1], 3);
235 GBR_mul(mu_F[1], mu_F[1], F_old);
236 if (GBR_lt(mu_F[0], mu_F[1])) {
237 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
238 if (i > tab->n_zero) {
239 use_saved = 1;
240 GBR_set(F_saved, F_new);
241 fixed_saved = fixed;
242 if (GBR_lp_del_row(lp) < 0)
243 goto error;
244 --i;
245 } else {
246 GBR_set(F[tab->n_zero], F_new);
247 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
248 break;
250 if (fixed) {
251 if (!GBR_is_zero(F[tab->n_zero])) {
252 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
253 if (empty)
254 goto done;
255 GBR_set_ui(F[tab->n_zero], 0);
257 tab->n_zero++;
260 } else {
261 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
262 ++i;
264 } while (i < n_bounded - 1);
266 if (0) {
267 done:
268 if (empty < 0) {
269 error:
270 isl_mat_free(B);
271 B = NULL;
275 GBR_lp_delete(lp);
277 if (alpha_buffer[1])
278 for (i = 0; i < n_bounded; ++i) {
279 GBR_clear(F[i]);
280 GBR_clear(alpha_buffer[0][i]);
281 GBR_clear(alpha_buffer[1][i]);
283 free(F);
284 free(alpha_buffer[0]);
285 free(alpha_buffer[1]);
287 isl_vec_free(b_tmp);
289 GBR_clear(alpha);
290 GBR_clear(F_old);
291 GBR_clear(F_new);
292 GBR_clear(F_saved);
293 GBR_clear(mu_F[0]);
294 GBR_clear(mu_F[1]);
295 GBR_clear(two);
296 GBR_clear(one);
298 isl_int_clear(tmp);
299 isl_int_clear(mu[0]);
300 isl_int_clear(mu[1]);
302 tab->basis = B;
304 return tab;
307 /* Compute an affine form of a reduced basis of the given basic
308 * non-parametric set, which is assumed to be bounded and not
309 * include any integer divisions.
310 * The first column and the first row correspond to the constant term.
312 * If the input contains any equalities, we first create an initial
313 * basis with the equalities first. Otherwise, we start off with
314 * the identity matrix.
316 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
318 struct isl_mat *basis;
319 struct isl_tab *tab;
321 if (!bset)
322 return NULL;
324 if (isl_basic_set_dim(bset, isl_dim_div) != 0)
325 isl_die(bset->ctx, isl_error_invalid,
326 "no integer division allowed", return NULL);
327 if (isl_basic_set_dim(bset, isl_dim_param) != 0)
328 isl_die(bset->ctx, isl_error_invalid,
329 "no parameters allowed", return NULL);
331 tab = isl_tab_from_basic_set(bset);
332 if (!tab)
333 return NULL;
335 if (bset->n_eq == 0)
336 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
337 else {
338 isl_mat *eq;
339 unsigned nvar = isl_basic_set_total_dim(bset);
340 eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
341 1, nvar);
342 eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
343 tab->basis = isl_mat_lin_to_aff(tab->basis);
344 tab->n_zero = bset->n_eq;
345 isl_mat_free(eq);
347 tab = isl_tab_compute_reduced_basis(tab);
348 if (!tab)
349 return NULL;
351 basis = isl_mat_copy(tab->basis);
353 isl_tab_free(tab);
355 return basis;