2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_bernstein.h>
27 struct bernstein_data
{
29 isl_qpolynomial
*poly
;
34 isl_qpolynomial_fold
*fold
;
35 isl_qpolynomial_fold
*fold_tight
;
36 isl_pw_qpolynomial_fold
*pwf
;
37 isl_pw_qpolynomial_fold
*pwf_tight
;
40 static int vertex_is_integral(__isl_keep isl_basic_set
*vertex
)
46 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
47 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
48 for (i
= 0; i
< nvar
; ++i
) {
50 if (!isl_int_is_one(vertex
->eq
[r
][1 + nparam
+ i
]) &&
51 !isl_int_is_negone(vertex
->eq
[r
][1 + nparam
+ i
]))
58 static __isl_give isl_qpolynomial
*vertex_coordinate(
59 __isl_keep isl_basic_set
*vertex
, int i
, __isl_take isl_space
*dim
)
67 nvar
= isl_basic_set_dim(vertex
, isl_dim_set
);
68 nparam
= isl_basic_set_dim(vertex
, isl_dim_param
);
72 isl_int_set(denom
, vertex
->eq
[r
][1 + nparam
+ i
]);
73 isl_assert(vertex
->ctx
, !isl_int_is_zero(denom
), goto error
);
75 if (isl_int_is_pos(denom
))
76 isl_seq_neg(vertex
->eq
[r
], vertex
->eq
[r
],
77 1 + isl_basic_set_total_dim(vertex
));
79 isl_int_neg(denom
, denom
);
81 v
= isl_qpolynomial_from_affine(dim
, vertex
->eq
[r
], denom
);
91 /* Check whether the bound associated to the selection "k" is tight,
92 * which is the case if we select exactly one vertex and if that vertex
93 * is integral for all values of the parameters.
95 static int is_tight(int *k
, int n
, int d
, isl_cell
*cell
)
99 for (i
= 0; i
< n
; ++i
) {
106 v
= cell
->ids
[n
- 1 - i
];
107 return vertex_is_integral(cell
->vertices
->v
[v
].vertex
);
113 static void add_fold(__isl_take isl_qpolynomial
*b
, __isl_keep isl_set
*dom
,
114 int *k
, int n
, int d
, struct bernstein_data
*data
)
116 isl_qpolynomial_fold
*fold
;
118 fold
= isl_qpolynomial_fold_alloc(data
->type
, b
);
120 if (data
->check_tight
&& is_tight(k
, n
, d
, data
->cell
))
121 data
->fold_tight
= isl_qpolynomial_fold_fold_on_domain(dom
,
122 data
->fold_tight
, fold
);
124 data
->fold
= isl_qpolynomial_fold_fold_on_domain(dom
,
128 /* Extract the coefficients of the Bernstein base polynomials and store
129 * them in data->fold and data->fold_tight.
131 * In particular, the coefficient of each monomial
132 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
133 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
135 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
136 * multinom[i] contains the partial multinomial coefficient.
138 static void extract_coefficients(isl_qpolynomial
*poly
,
139 __isl_keep isl_set
*dom
, struct bernstein_data
*data
)
145 isl_qpolynomial
**c
= NULL
;
148 isl_vec
*multinom
= NULL
;
153 ctx
= isl_qpolynomial_get_ctx(poly
);
154 n
= isl_qpolynomial_dim(poly
, isl_dim_in
);
155 d
= isl_qpolynomial_degree(poly
);
156 isl_assert(ctx
, n
>= 2, return);
158 c
= isl_calloc_array(ctx
, isl_qpolynomial
*, n
);
159 k
= isl_alloc_array(ctx
, int, n
);
160 left
= isl_alloc_array(ctx
, int, n
);
161 multinom
= isl_vec_alloc(ctx
, n
);
162 if (!c
|| !k
|| !left
|| !multinom
)
165 isl_int_set_si(multinom
->el
[0], 1);
166 for (k
[0] = d
; k
[0] >= 0; --k
[0]) {
168 isl_qpolynomial_free(c
[0]);
169 c
[0] = isl_qpolynomial_coeff(poly
, isl_dim_in
, n
- 1, k
[0]);
172 isl_int_set(multinom
->el
[1], multinom
->el
[0]);
179 for (j
= 2; j
<= left
[i
- 1]; ++j
)
180 isl_int_divexact_ui(multinom
->el
[i
],
182 b
= isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
183 n
- 1 - i
, left
[i
- 1]);
184 b
= isl_qpolynomial_project_domain_on_params(b
);
185 dim
= isl_qpolynomial_get_domain_space(b
);
186 f
= isl_qpolynomial_rat_cst_on_domain(dim
, ctx
->one
,
188 b
= isl_qpolynomial_mul(b
, f
);
189 k
[n
- 1] = left
[n
- 2];
190 add_fold(b
, dom
, k
, n
, d
, data
);
194 if (k
[i
] >= left
[i
- 1]) {
200 isl_int_divexact_ui(multinom
->el
[i
],
201 multinom
->el
[i
], k
[i
]);
202 isl_qpolynomial_free(c
[i
]);
203 c
[i
] = isl_qpolynomial_coeff(c
[i
- 1], isl_dim_in
,
205 left
[i
] = left
[i
- 1] - k
[i
];
207 isl_int_set(multinom
->el
[i
+ 1], multinom
->el
[i
]);
210 isl_int_mul_ui(multinom
->el
[0], multinom
->el
[0], k
[0]);
213 for (i
= 0; i
< n
; ++i
)
214 isl_qpolynomial_free(c
[i
]);
216 isl_vec_free(multinom
);
222 isl_vec_free(multinom
);
226 for (i
= 0; i
< n
; ++i
)
227 isl_qpolynomial_free(c
[i
]);
232 /* Perform bernstein expansion on the parametric vertices that are active
235 * data->poly has been homogenized in the calling function.
237 * We plug in the barycentric coordinates for the set variables
239 * \vec x = \sum_i \alpha_i v_i(\vec p)
241 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
242 * Next, we extract the coefficients of the Bernstein base polynomials.
244 static int bernstein_coefficients_cell(__isl_take isl_cell
*cell
, void *user
)
247 struct bernstein_data
*data
= (struct bernstein_data
*)user
;
248 isl_space
*dim_param
;
250 isl_qpolynomial
*poly
= data
->poly
;
253 isl_qpolynomial
**subs
;
254 isl_pw_qpolynomial_fold
*pwf
;
261 nvar
= isl_qpolynomial_dim(poly
, isl_dim_in
) - 1;
262 n_vertices
= cell
->n_vertices
;
264 ctx
= isl_qpolynomial_get_ctx(poly
);
265 if (n_vertices
> nvar
+ 1 && ctx
->opt
->bernstein_triangulate
)
266 return isl_cell_foreach_simplex(cell
,
267 &bernstein_coefficients_cell
, user
);
269 subs
= isl_alloc_array(ctx
, isl_qpolynomial
*, 1 + nvar
);
273 dim_param
= isl_basic_set_get_space(cell
->dom
);
274 dim_dst
= isl_qpolynomial_get_domain_space(poly
);
275 dim_dst
= isl_space_add_dims(dim_dst
, isl_dim_set
, n_vertices
);
277 for (i
= 0; i
< 1 + nvar
; ++i
)
278 subs
[i
] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst
));
280 for (i
= 0; i
< n_vertices
; ++i
) {
282 c
= isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst
), isl_dim_set
,
284 for (j
= 0; j
< nvar
; ++j
) {
285 int k
= cell
->ids
[i
];
287 v
= vertex_coordinate(cell
->vertices
->v
[k
].vertex
, j
,
288 isl_space_copy(dim_param
));
289 v
= isl_qpolynomial_add_dims(v
, isl_dim_in
,
290 1 + nvar
+ n_vertices
);
291 v
= isl_qpolynomial_mul(v
, isl_qpolynomial_copy(c
));
292 subs
[1 + j
] = isl_qpolynomial_add(subs
[1 + j
], v
);
294 subs
[0] = isl_qpolynomial_add(subs
[0], c
);
296 isl_space_free(dim_dst
);
298 poly
= isl_qpolynomial_copy(poly
);
300 poly
= isl_qpolynomial_add_dims(poly
, isl_dim_in
, n_vertices
);
301 poly
= isl_qpolynomial_substitute(poly
, isl_dim_in
, 0, 1 + nvar
, subs
);
302 poly
= isl_qpolynomial_drop_dims(poly
, isl_dim_in
, 0, 1 + nvar
);
305 dom
= isl_set_from_basic_set(isl_basic_set_copy(cell
->dom
));
306 data
->fold
= isl_qpolynomial_fold_empty(data
->type
, isl_space_copy(dim_param
));
307 data
->fold_tight
= isl_qpolynomial_fold_empty(data
->type
, dim_param
);
308 extract_coefficients(poly
, dom
, data
);
310 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, isl_set_copy(dom
),
312 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, pwf
);
313 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, data
->fold_tight
);
314 data
->pwf_tight
= isl_pw_qpolynomial_fold_fold(data
->pwf_tight
, pwf
);
316 isl_qpolynomial_free(poly
);
318 for (i
= 0; i
< 1 + nvar
; ++i
)
319 isl_qpolynomial_free(subs
[i
]);
327 /* Base case of applying bernstein expansion.
329 * We compute the chamber decomposition of the parametric polytope "bset"
330 * and then perform bernstein expansion on the parametric vertices
331 * that are active on each chamber.
333 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_base(
334 __isl_take isl_basic_set
*bset
,
335 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
339 isl_pw_qpolynomial_fold
*pwf
;
340 isl_vertices
*vertices
;
343 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
346 isl_qpolynomial_fold
*fold
;
348 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
349 dom
= isl_set_from_basic_set(bset
);
352 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
353 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
356 if (isl_qpolynomial_is_zero(poly
)) {
358 isl_qpolynomial_fold
*fold
;
359 fold
= isl_qpolynomial_fold_alloc(data
->type
, poly
);
360 dom
= isl_set_from_basic_set(bset
);
361 pwf
= isl_pw_qpolynomial_fold_alloc(data
->type
, dom
, fold
);
364 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf
);
367 dim
= isl_basic_set_get_space(bset
);
368 dim
= isl_space_params(dim
);
369 dim
= isl_space_from_domain(dim
);
370 dim
= isl_space_add_dims(dim
, isl_dim_set
, 1);
371 data
->pwf
= isl_pw_qpolynomial_fold_zero(isl_space_copy(dim
), data
->type
);
372 data
->pwf_tight
= isl_pw_qpolynomial_fold_zero(dim
, data
->type
);
373 data
->poly
= isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly
));
374 vertices
= isl_basic_set_compute_vertices(bset
);
375 isl_vertices_foreach_disjoint_cell(vertices
,
376 &bernstein_coefficients_cell
, data
);
377 isl_vertices_free(vertices
);
378 isl_qpolynomial_free(data
->poly
);
380 isl_basic_set_free(bset
);
381 isl_qpolynomial_free(poly
);
383 covers
= isl_pw_qpolynomial_fold_covers(data
->pwf_tight
, data
->pwf
);
391 isl_pw_qpolynomial_fold_free(data
->pwf
);
392 return data
->pwf_tight
;
395 data
->pwf
= isl_pw_qpolynomial_fold_fold(data
->pwf
, data
->pwf_tight
);
399 isl_pw_qpolynomial_fold_free(data
->pwf_tight
);
400 isl_pw_qpolynomial_fold_free(data
->pwf
);
404 /* Apply bernstein expansion recursively by working in on len[i]
405 * set variables at a time, with i ranging from n_group - 1 to 0.
407 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_recursive(
408 __isl_take isl_pw_qpolynomial
*pwqp
,
409 int n_group
, int *len
, struct bernstein_data
*data
, int *tight
)
414 isl_pw_qpolynomial_fold
*pwf
;
419 nparam
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_param
);
420 nvar
= isl_pw_qpolynomial_dim(pwqp
, isl_dim_in
);
422 pwqp
= isl_pw_qpolynomial_move_dims(pwqp
, isl_dim_param
, nparam
,
423 isl_dim_in
, 0, nvar
- len
[n_group
- 1]);
424 pwf
= isl_pw_qpolynomial_bound(pwqp
, data
->type
, tight
);
426 for (i
= n_group
- 2; i
>= 0; --i
) {
427 nparam
= isl_pw_qpolynomial_fold_dim(pwf
, isl_dim_param
);
428 pwf
= isl_pw_qpolynomial_fold_move_dims(pwf
, isl_dim_in
, 0,
429 isl_dim_param
, nparam
- len
[i
], len
[i
]);
430 if (tight
&& !*tight
)
432 pwf
= isl_pw_qpolynomial_fold_bound(pwf
, tight
);
438 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_factors(
439 __isl_take isl_basic_set
*bset
,
440 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
444 isl_pw_qpolynomial
*pwqp
;
445 isl_pw_qpolynomial_fold
*pwf
;
447 f
= isl_basic_set_factorizer(bset
);
450 if (f
->n_group
== 0) {
451 isl_factorizer_free(f
);
452 return bernstein_coefficients_base(bset
, poly
, data
, tight
);
455 set
= isl_set_from_basic_set(bset
);
456 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
457 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, isl_morph_copy(f
->morph
));
459 pwf
= bernstein_coefficients_recursive(pwqp
, f
->n_group
, f
->len
, data
,
462 isl_factorizer_free(f
);
466 isl_basic_set_free(bset
);
467 isl_qpolynomial_free(poly
);
471 static __isl_give isl_pw_qpolynomial_fold
*bernstein_coefficients_full_recursive(
472 __isl_take isl_basic_set
*bset
,
473 __isl_take isl_qpolynomial
*poly
, struct bernstein_data
*data
, int *tight
)
478 isl_pw_qpolynomial_fold
*pwf
;
480 isl_pw_qpolynomial
*pwqp
;
485 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
487 len
= isl_alloc_array(bset
->ctx
, int, nvar
);
491 for (i
= 0; i
< nvar
; ++i
)
494 set
= isl_set_from_basic_set(bset
);
495 pwqp
= isl_pw_qpolynomial_alloc(set
, poly
);
497 pwf
= bernstein_coefficients_recursive(pwqp
, nvar
, len
, data
, tight
);
503 isl_basic_set_free(bset
);
504 isl_qpolynomial_free(poly
);
508 /* Compute a bound on the polynomial defined over the parametric polytope
509 * using bernstein expansion and store the result
510 * in bound->pwf and bound->pwf_tight.
512 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
513 * the polytope can be factorized and apply bernstein expansion recursively
515 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
516 * bernstein expansion recursively on each dimension.
517 * Otherwise, we apply bernstein expansion on the entire polytope.
519 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set
*bset
,
520 __isl_take isl_qpolynomial
*poly
, struct isl_bound
*bound
)
522 struct bernstein_data data
;
523 isl_pw_qpolynomial_fold
*pwf
;
526 int *tp
= bound
->check_tight
? &tight
: NULL
;
531 data
.type
= bound
->type
;
532 data
.check_tight
= bound
->check_tight
;
534 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
536 if (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_FACTORS
)
537 pwf
= bernstein_coefficients_factors(bset
, poly
, &data
, tp
);
539 (bset
->ctx
->opt
->bernstein_recurse
& ISL_BERNSTEIN_INTERVALS
))
540 pwf
= bernstein_coefficients_full_recursive(bset
, poly
, &data
, tp
);
542 pwf
= bernstein_coefficients_base(bset
, poly
, &data
, tp
);
545 bound
->pwf_tight
= isl_pw_qpolynomial_fold_fold(bound
->pwf_tight
, pwf
);
547 bound
->pwf
= isl_pw_qpolynomial_fold_fold(bound
->pwf
, pwf
);
551 isl_basic_set_free(bset
);
552 isl_qpolynomial_free(poly
);