add missing AUTHORS file
[isl.git] / isl_tab.c
blob348fd09208f39429608bcc7b2c4e42fadeb67801
1 #include "isl_mat.h"
2 #include "isl_map_private.h"
3 #include "isl_tab.h"
4 #include "isl_seq.h"
6 /*
7 * The implementation of tableaus in this file was inspired by Section 8
8 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
9 * prover for program checking".
12 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
13 unsigned n_row, unsigned n_var, unsigned M)
15 int i;
16 struct isl_tab *tab;
17 unsigned off = 2 + M;
19 tab = isl_calloc_type(ctx, struct isl_tab);
20 if (!tab)
21 return NULL;
22 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
23 if (!tab->mat)
24 goto error;
25 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
26 if (!tab->var)
27 goto error;
28 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
29 if (!tab->con)
30 goto error;
31 tab->col_var = isl_alloc_array(ctx, int, n_var);
32 if (!tab->col_var)
33 goto error;
34 tab->row_var = isl_alloc_array(ctx, int, n_row);
35 if (!tab->row_var)
36 goto error;
37 for (i = 0; i < n_var; ++i) {
38 tab->var[i].index = i;
39 tab->var[i].is_row = 0;
40 tab->var[i].is_nonneg = 0;
41 tab->var[i].is_zero = 0;
42 tab->var[i].is_redundant = 0;
43 tab->var[i].frozen = 0;
44 tab->var[i].negated = 0;
45 tab->col_var[i] = i;
47 tab->n_row = 0;
48 tab->n_con = 0;
49 tab->n_eq = 0;
50 tab->max_con = n_row;
51 tab->n_col = n_var;
52 tab->n_var = n_var;
53 tab->max_var = n_var;
54 tab->n_param = 0;
55 tab->n_div = 0;
56 tab->n_dead = 0;
57 tab->n_redundant = 0;
58 tab->need_undo = 0;
59 tab->rational = 0;
60 tab->empty = 0;
61 tab->in_undo = 0;
62 tab->M = M;
63 tab->cone = 0;
64 tab->bottom.type = isl_tab_undo_bottom;
65 tab->bottom.next = NULL;
66 tab->top = &tab->bottom;
68 tab->n_zero = 0;
69 tab->n_unbounded = 0;
70 tab->basis = NULL;
72 return tab;
73 error:
74 isl_tab_free(tab);
75 return NULL;
78 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
80 unsigned off = 2 + tab->M;
82 if (!tab)
83 return -1;
85 if (tab->max_con < tab->n_con + n_new) {
86 struct isl_tab_var *con;
88 con = isl_realloc_array(tab->mat->ctx, tab->con,
89 struct isl_tab_var, tab->max_con + n_new);
90 if (!con)
91 return -1;
92 tab->con = con;
93 tab->max_con += n_new;
95 if (tab->mat->n_row < tab->n_row + n_new) {
96 int *row_var;
98 tab->mat = isl_mat_extend(tab->mat,
99 tab->n_row + n_new, off + tab->n_col);
100 if (!tab->mat)
101 return -1;
102 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
103 int, tab->mat->n_row);
104 if (!row_var)
105 return -1;
106 tab->row_var = row_var;
107 if (tab->row_sign) {
108 enum isl_tab_row_sign *s;
109 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
110 enum isl_tab_row_sign, tab->mat->n_row);
111 if (!s)
112 return -1;
113 tab->row_sign = s;
116 return 0;
119 /* Make room for at least n_new extra variables.
120 * Return -1 if anything went wrong.
122 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
124 struct isl_tab_var *var;
125 unsigned off = 2 + tab->M;
127 if (tab->max_var < tab->n_var + n_new) {
128 var = isl_realloc_array(tab->mat->ctx, tab->var,
129 struct isl_tab_var, tab->n_var + n_new);
130 if (!var)
131 return -1;
132 tab->var = var;
133 tab->max_var += n_new;
136 if (tab->mat->n_col < off + tab->n_col + n_new) {
137 int *p;
139 tab->mat = isl_mat_extend(tab->mat,
140 tab->mat->n_row, off + tab->n_col + n_new);
141 if (!tab->mat)
142 return -1;
143 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
144 int, tab->n_col + n_new);
145 if (!p)
146 return -1;
147 tab->col_var = p;
150 return 0;
153 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
155 if (isl_tab_extend_cons(tab, n_new) >= 0)
156 return tab;
158 isl_tab_free(tab);
159 return NULL;
162 static void free_undo(struct isl_tab *tab)
164 struct isl_tab_undo *undo, *next;
166 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
167 next = undo->next;
168 free(undo);
170 tab->top = undo;
173 void isl_tab_free(struct isl_tab *tab)
175 if (!tab)
176 return;
177 free_undo(tab);
178 isl_mat_free(tab->mat);
179 isl_vec_free(tab->dual);
180 isl_basic_set_free(tab->bset);
181 free(tab->var);
182 free(tab->con);
183 free(tab->row_var);
184 free(tab->col_var);
185 free(tab->row_sign);
186 isl_mat_free(tab->samples);
187 free(tab->sample_index);
188 isl_mat_free(tab->basis);
189 free(tab);
192 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
194 int i;
195 struct isl_tab *dup;
196 unsigned off;
198 if (!tab)
199 return NULL;
201 off = 2 + tab->M;
202 dup = isl_calloc_type(tab->ctx, struct isl_tab);
203 if (!dup)
204 return NULL;
205 dup->mat = isl_mat_dup(tab->mat);
206 if (!dup->mat)
207 goto error;
208 dup->var = isl_alloc_array(tab->ctx, struct isl_tab_var, tab->max_var);
209 if (!dup->var)
210 goto error;
211 for (i = 0; i < tab->n_var; ++i)
212 dup->var[i] = tab->var[i];
213 dup->con = isl_alloc_array(tab->ctx, struct isl_tab_var, tab->max_con);
214 if (!dup->con)
215 goto error;
216 for (i = 0; i < tab->n_con; ++i)
217 dup->con[i] = tab->con[i];
218 dup->col_var = isl_alloc_array(tab->ctx, int, tab->mat->n_col - off);
219 if (!dup->col_var)
220 goto error;
221 for (i = 0; i < tab->n_col; ++i)
222 dup->col_var[i] = tab->col_var[i];
223 dup->row_var = isl_alloc_array(tab->ctx, int, tab->mat->n_row);
224 if (!dup->row_var)
225 goto error;
226 for (i = 0; i < tab->n_row; ++i)
227 dup->row_var[i] = tab->row_var[i];
228 if (tab->row_sign) {
229 dup->row_sign = isl_alloc_array(tab->ctx, enum isl_tab_row_sign,
230 tab->mat->n_row);
231 if (!dup->row_sign)
232 goto error;
233 for (i = 0; i < tab->n_row; ++i)
234 dup->row_sign[i] = tab->row_sign[i];
236 if (tab->samples) {
237 dup->samples = isl_mat_dup(tab->samples);
238 if (!dup->samples)
239 goto error;
240 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
241 tab->samples->n_row);
242 if (!dup->sample_index)
243 goto error;
244 dup->n_sample = tab->n_sample;
245 dup->n_outside = tab->n_outside;
247 dup->n_row = tab->n_row;
248 dup->n_con = tab->n_con;
249 dup->n_eq = tab->n_eq;
250 dup->max_con = tab->max_con;
251 dup->n_col = tab->n_col;
252 dup->n_var = tab->n_var;
253 dup->max_var = tab->max_var;
254 dup->n_param = tab->n_param;
255 dup->n_div = tab->n_div;
256 dup->n_dead = tab->n_dead;
257 dup->n_redundant = tab->n_redundant;
258 dup->rational = tab->rational;
259 dup->empty = tab->empty;
260 dup->need_undo = 0;
261 dup->in_undo = 0;
262 dup->M = tab->M;
263 tab->cone = tab->cone;
264 dup->bottom.type = isl_tab_undo_bottom;
265 dup->bottom.next = NULL;
266 dup->top = &dup->bottom;
268 dup->n_zero = tab->n_zero;
269 dup->n_unbounded = tab->n_unbounded;
270 dup->basis = isl_mat_dup(tab->basis);
272 return dup;
273 error:
274 isl_tab_free(dup);
275 return NULL;
278 /* Construct the coefficient matrix of the product tableau
279 * of two tableaus.
280 * mat{1,2} is the coefficient matrix of tableau {1,2}
281 * row{1,2} is the number of rows in tableau {1,2}
282 * col{1,2} is the number of columns in tableau {1,2}
283 * off is the offset to the coefficient column (skipping the
284 * denominator, the constant term and the big parameter if any)
285 * r{1,2} is the number of redundant rows in tableau {1,2}
286 * d{1,2} is the number of dead columns in tableau {1,2}
288 * The order of the rows and columns in the result is as explained
289 * in isl_tab_product.
291 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
292 struct isl_mat *mat2, unsigned row1, unsigned row2,
293 unsigned col1, unsigned col2,
294 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
296 int i;
297 struct isl_mat *prod;
298 unsigned n;
300 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
301 off + col1 + col2);
303 n = 0;
304 for (i = 0; i < r1; ++i) {
305 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
306 isl_seq_clr(prod->row[n + i] + off + d1, d2);
307 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
308 mat1->row[i] + off + d1, col1 - d1);
309 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
312 n += r1;
313 for (i = 0; i < r2; ++i) {
314 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
315 isl_seq_clr(prod->row[n + i] + off, d1);
316 isl_seq_cpy(prod->row[n + i] + off + d1,
317 mat2->row[i] + off, d2);
318 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
319 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
320 mat2->row[i] + off + d2, col2 - d2);
323 n += r2;
324 for (i = 0; i < row1 - r1; ++i) {
325 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
326 isl_seq_clr(prod->row[n + i] + off + d1, d2);
327 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
328 mat1->row[r1 + i] + off + d1, col1 - d1);
329 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
332 n += row1 - r1;
333 for (i = 0; i < row2 - r2; ++i) {
334 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
335 isl_seq_clr(prod->row[n + i] + off, d1);
336 isl_seq_cpy(prod->row[n + i] + off + d1,
337 mat2->row[r2 + i] + off, d2);
338 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
339 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
340 mat2->row[r2 + i] + off + d2, col2 - d2);
343 return prod;
346 /* Update the row or column index of a variable that corresponds
347 * to a variable in the first input tableau.
349 static void update_index1(struct isl_tab_var *var,
350 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
352 if (var->index == -1)
353 return;
354 if (var->is_row && var->index >= r1)
355 var->index += r2;
356 if (!var->is_row && var->index >= d1)
357 var->index += d2;
360 /* Update the row or column index of a variable that corresponds
361 * to a variable in the second input tableau.
363 static void update_index2(struct isl_tab_var *var,
364 unsigned row1, unsigned col1,
365 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
367 if (var->index == -1)
368 return;
369 if (var->is_row) {
370 if (var->index < r2)
371 var->index += r1;
372 else
373 var->index += row1;
374 } else {
375 if (var->index < d2)
376 var->index += d1;
377 else
378 var->index += col1;
382 /* Create a tableau that represents the Cartesian product of the sets
383 * represented by tableaus tab1 and tab2.
384 * The order of the rows in the product is
385 * - redundant rows of tab1
386 * - redundant rows of tab2
387 * - non-redundant rows of tab1
388 * - non-redundant rows of tab2
389 * The order of the columns is
390 * - denominator
391 * - constant term
392 * - coefficient of big parameter, if any
393 * - dead columns of tab1
394 * - dead columns of tab2
395 * - live columns of tab1
396 * - live columns of tab2
397 * The order of the variables and the constraints is a concatenation
398 * of order in the two input tableaus.
400 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
402 int i;
403 struct isl_tab *prod;
404 unsigned off;
405 unsigned r1, r2, d1, d2;
407 if (!tab1 || !tab2)
408 return NULL;
410 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
411 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
412 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
413 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
414 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
415 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
416 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
417 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
418 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
420 off = 2 + tab1->M;
421 r1 = tab1->n_redundant;
422 r2 = tab2->n_redundant;
423 d1 = tab1->n_dead;
424 d2 = tab2->n_dead;
425 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
426 if (!prod)
427 return NULL;
428 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
429 tab1->n_row, tab2->n_row,
430 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
431 if (!prod->mat)
432 goto error;
433 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
434 tab1->max_var + tab2->max_var);
435 if (!prod->var)
436 goto error;
437 for (i = 0; i < tab1->n_var; ++i) {
438 prod->var[i] = tab1->var[i];
439 update_index1(&prod->var[i], r1, r2, d1, d2);
441 for (i = 0; i < tab2->n_var; ++i) {
442 prod->var[tab1->n_var + i] = tab2->var[i];
443 update_index2(&prod->var[tab1->n_var + i],
444 tab1->n_row, tab1->n_col,
445 r1, r2, d1, d2);
447 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
448 tab1->max_con + tab2->max_con);
449 if (!prod->con)
450 goto error;
451 for (i = 0; i < tab1->n_con; ++i) {
452 prod->con[i] = tab1->con[i];
453 update_index1(&prod->con[i], r1, r2, d1, d2);
455 for (i = 0; i < tab2->n_con; ++i) {
456 prod->con[tab1->n_con + i] = tab2->con[i];
457 update_index2(&prod->con[tab1->n_con + i],
458 tab1->n_row, tab1->n_col,
459 r1, r2, d1, d2);
461 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
462 tab1->n_col + tab2->n_col);
463 if (!prod->col_var)
464 goto error;
465 for (i = 0; i < tab1->n_col; ++i) {
466 int pos = i < d1 ? i : i + d2;
467 prod->col_var[pos] = tab1->col_var[i];
469 for (i = 0; i < tab2->n_col; ++i) {
470 int pos = i < d2 ? d1 + i : tab1->n_col + i;
471 int t = tab2->col_var[i];
472 if (t >= 0)
473 t += tab1->n_var;
474 else
475 t -= tab1->n_con;
476 prod->col_var[pos] = t;
478 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
479 tab1->mat->n_row + tab2->mat->n_row);
480 if (!prod->row_var)
481 goto error;
482 for (i = 0; i < tab1->n_row; ++i) {
483 int pos = i < r1 ? i : i + r2;
484 prod->row_var[pos] = tab1->row_var[i];
486 for (i = 0; i < tab2->n_row; ++i) {
487 int pos = i < r2 ? r1 + i : tab1->n_row + i;
488 int t = tab2->row_var[i];
489 if (t >= 0)
490 t += tab1->n_var;
491 else
492 t -= tab1->n_con;
493 prod->row_var[pos] = t;
495 prod->samples = NULL;
496 prod->sample_index = NULL;
497 prod->n_row = tab1->n_row + tab2->n_row;
498 prod->n_con = tab1->n_con + tab2->n_con;
499 prod->n_eq = 0;
500 prod->max_con = tab1->max_con + tab2->max_con;
501 prod->n_col = tab1->n_col + tab2->n_col;
502 prod->n_var = tab1->n_var + tab2->n_var;
503 prod->max_var = tab1->max_var + tab2->max_var;
504 prod->n_param = 0;
505 prod->n_div = 0;
506 prod->n_dead = tab1->n_dead + tab2->n_dead;
507 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
508 prod->rational = tab1->rational;
509 prod->empty = tab1->empty || tab2->empty;
510 prod->need_undo = 0;
511 prod->in_undo = 0;
512 prod->M = tab1->M;
513 prod->cone = tab1->cone;
514 prod->bottom.type = isl_tab_undo_bottom;
515 prod->bottom.next = NULL;
516 prod->top = &prod->bottom;
518 prod->n_zero = 0;
519 prod->n_unbounded = 0;
520 prod->basis = NULL;
522 return prod;
523 error:
524 isl_tab_free(prod);
525 return NULL;
528 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
530 if (i >= 0)
531 return &tab->var[i];
532 else
533 return &tab->con[~i];
536 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
538 return var_from_index(tab, tab->row_var[i]);
541 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
543 return var_from_index(tab, tab->col_var[i]);
546 /* Check if there are any upper bounds on column variable "var",
547 * i.e., non-negative rows where var appears with a negative coefficient.
548 * Return 1 if there are no such bounds.
550 static int max_is_manifestly_unbounded(struct isl_tab *tab,
551 struct isl_tab_var *var)
553 int i;
554 unsigned off = 2 + tab->M;
556 if (var->is_row)
557 return 0;
558 for (i = tab->n_redundant; i < tab->n_row; ++i) {
559 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
560 continue;
561 if (isl_tab_var_from_row(tab, i)->is_nonneg)
562 return 0;
564 return 1;
567 /* Check if there are any lower bounds on column variable "var",
568 * i.e., non-negative rows where var appears with a positive coefficient.
569 * Return 1 if there are no such bounds.
571 static int min_is_manifestly_unbounded(struct isl_tab *tab,
572 struct isl_tab_var *var)
574 int i;
575 unsigned off = 2 + tab->M;
577 if (var->is_row)
578 return 0;
579 for (i = tab->n_redundant; i < tab->n_row; ++i) {
580 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
581 continue;
582 if (isl_tab_var_from_row(tab, i)->is_nonneg)
583 return 0;
585 return 1;
588 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
590 unsigned off = 2 + tab->M;
592 if (tab->M) {
593 int s;
594 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
595 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
596 s = isl_int_sgn(t);
597 if (s)
598 return s;
600 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
601 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
602 return isl_int_sgn(t);
605 /* Given the index of a column "c", return the index of a row
606 * that can be used to pivot the column in, with either an increase
607 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
608 * If "var" is not NULL, then the row returned will be different from
609 * the one associated with "var".
611 * Each row in the tableau is of the form
613 * x_r = a_r0 + \sum_i a_ri x_i
615 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
616 * impose any limit on the increase or decrease in the value of x_c
617 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
618 * for the row with the smallest (most stringent) such bound.
619 * Note that the common denominator of each row drops out of the fraction.
620 * To check if row j has a smaller bound than row r, i.e.,
621 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
622 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
623 * where -sign(a_jc) is equal to "sgn".
625 static int pivot_row(struct isl_tab *tab,
626 struct isl_tab_var *var, int sgn, int c)
628 int j, r, tsgn;
629 isl_int t;
630 unsigned off = 2 + tab->M;
632 isl_int_init(t);
633 r = -1;
634 for (j = tab->n_redundant; j < tab->n_row; ++j) {
635 if (var && j == var->index)
636 continue;
637 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
638 continue;
639 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
640 continue;
641 if (r < 0) {
642 r = j;
643 continue;
645 tsgn = sgn * row_cmp(tab, r, j, c, t);
646 if (tsgn < 0 || (tsgn == 0 &&
647 tab->row_var[j] < tab->row_var[r]))
648 r = j;
650 isl_int_clear(t);
651 return r;
654 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
655 * (sgn < 0) the value of row variable var.
656 * If not NULL, then skip_var is a row variable that should be ignored
657 * while looking for a pivot row. It is usually equal to var.
659 * As the given row in the tableau is of the form
661 * x_r = a_r0 + \sum_i a_ri x_i
663 * we need to find a column such that the sign of a_ri is equal to "sgn"
664 * (such that an increase in x_i will have the desired effect) or a
665 * column with a variable that may attain negative values.
666 * If a_ri is positive, then we need to move x_i in the same direction
667 * to obtain the desired effect. Otherwise, x_i has to move in the
668 * opposite direction.
670 static void find_pivot(struct isl_tab *tab,
671 struct isl_tab_var *var, struct isl_tab_var *skip_var,
672 int sgn, int *row, int *col)
674 int j, r, c;
675 isl_int *tr;
677 *row = *col = -1;
679 isl_assert(tab->mat->ctx, var->is_row, return);
680 tr = tab->mat->row[var->index] + 2 + tab->M;
682 c = -1;
683 for (j = tab->n_dead; j < tab->n_col; ++j) {
684 if (isl_int_is_zero(tr[j]))
685 continue;
686 if (isl_int_sgn(tr[j]) != sgn &&
687 var_from_col(tab, j)->is_nonneg)
688 continue;
689 if (c < 0 || tab->col_var[j] < tab->col_var[c])
690 c = j;
692 if (c < 0)
693 return;
695 sgn *= isl_int_sgn(tr[c]);
696 r = pivot_row(tab, skip_var, sgn, c);
697 *row = r < 0 ? var->index : r;
698 *col = c;
701 /* Return 1 if row "row" represents an obviously redundant inequality.
702 * This means
703 * - it represents an inequality or a variable
704 * - that is the sum of a non-negative sample value and a positive
705 * combination of zero or more non-negative constraints.
707 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
709 int i;
710 unsigned off = 2 + tab->M;
712 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
713 return 0;
715 if (isl_int_is_neg(tab->mat->row[row][1]))
716 return 0;
717 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
718 return 0;
720 for (i = tab->n_dead; i < tab->n_col; ++i) {
721 if (isl_int_is_zero(tab->mat->row[row][off + i]))
722 continue;
723 if (tab->col_var[i] >= 0)
724 return 0;
725 if (isl_int_is_neg(tab->mat->row[row][off + i]))
726 return 0;
727 if (!var_from_col(tab, i)->is_nonneg)
728 return 0;
730 return 1;
733 static void swap_rows(struct isl_tab *tab, int row1, int row2)
735 int t;
736 t = tab->row_var[row1];
737 tab->row_var[row1] = tab->row_var[row2];
738 tab->row_var[row2] = t;
739 isl_tab_var_from_row(tab, row1)->index = row1;
740 isl_tab_var_from_row(tab, row2)->index = row2;
741 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
743 if (!tab->row_sign)
744 return;
745 t = tab->row_sign[row1];
746 tab->row_sign[row1] = tab->row_sign[row2];
747 tab->row_sign[row2] = t;
750 static int push_union(struct isl_tab *tab,
751 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
752 static int push_union(struct isl_tab *tab,
753 enum isl_tab_undo_type type, union isl_tab_undo_val u)
755 struct isl_tab_undo *undo;
757 if (!tab->need_undo)
758 return 0;
760 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
761 if (!undo)
762 return -1;
763 undo->type = type;
764 undo->u = u;
765 undo->next = tab->top;
766 tab->top = undo;
768 return 0;
771 int isl_tab_push_var(struct isl_tab *tab,
772 enum isl_tab_undo_type type, struct isl_tab_var *var)
774 union isl_tab_undo_val u;
775 if (var->is_row)
776 u.var_index = tab->row_var[var->index];
777 else
778 u.var_index = tab->col_var[var->index];
779 return push_union(tab, type, u);
782 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
784 union isl_tab_undo_val u = { 0 };
785 return push_union(tab, type, u);
788 /* Push a record on the undo stack describing the current basic
789 * variables, so that the this state can be restored during rollback.
791 int isl_tab_push_basis(struct isl_tab *tab)
793 int i;
794 union isl_tab_undo_val u;
796 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
797 if (!u.col_var)
798 return -1;
799 for (i = 0; i < tab->n_col; ++i)
800 u.col_var[i] = tab->col_var[i];
801 return push_union(tab, isl_tab_undo_saved_basis, u);
804 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
806 union isl_tab_undo_val u;
807 u.callback = callback;
808 return push_union(tab, isl_tab_undo_callback, u);
811 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
813 if (!tab)
814 return NULL;
816 tab->n_sample = 0;
817 tab->n_outside = 0;
818 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
819 if (!tab->samples)
820 goto error;
821 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
822 if (!tab->sample_index)
823 goto error;
824 return tab;
825 error:
826 isl_tab_free(tab);
827 return NULL;
830 struct isl_tab *isl_tab_add_sample(struct isl_tab *tab,
831 __isl_take isl_vec *sample)
833 if (!tab || !sample)
834 goto error;
836 if (tab->n_sample + 1 > tab->samples->n_row) {
837 int *t = isl_realloc_array(tab->mat->ctx,
838 tab->sample_index, int, tab->n_sample + 1);
839 if (!t)
840 goto error;
841 tab->sample_index = t;
844 tab->samples = isl_mat_extend(tab->samples,
845 tab->n_sample + 1, tab->samples->n_col);
846 if (!tab->samples)
847 goto error;
849 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
850 isl_vec_free(sample);
851 tab->sample_index[tab->n_sample] = tab->n_sample;
852 tab->n_sample++;
854 return tab;
855 error:
856 isl_vec_free(sample);
857 isl_tab_free(tab);
858 return NULL;
861 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
863 if (s != tab->n_outside) {
864 int t = tab->sample_index[tab->n_outside];
865 tab->sample_index[tab->n_outside] = tab->sample_index[s];
866 tab->sample_index[s] = t;
867 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
869 tab->n_outside++;
870 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
871 isl_tab_free(tab);
872 return NULL;
875 return tab;
878 /* Record the current number of samples so that we can remove newer
879 * samples during a rollback.
881 int isl_tab_save_samples(struct isl_tab *tab)
883 union isl_tab_undo_val u;
885 if (!tab)
886 return -1;
888 u.n = tab->n_sample;
889 return push_union(tab, isl_tab_undo_saved_samples, u);
892 /* Mark row with index "row" as being redundant.
893 * If we may need to undo the operation or if the row represents
894 * a variable of the original problem, the row is kept,
895 * but no longer considered when looking for a pivot row.
896 * Otherwise, the row is simply removed.
898 * The row may be interchanged with some other row. If it
899 * is interchanged with a later row, return 1. Otherwise return 0.
900 * If the rows are checked in order in the calling function,
901 * then a return value of 1 means that the row with the given
902 * row number may now contain a different row that hasn't been checked yet.
904 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
906 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
907 var->is_redundant = 1;
908 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
909 if (tab->need_undo || tab->row_var[row] >= 0) {
910 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
911 var->is_nonneg = 1;
912 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
913 return -1;
915 if (row != tab->n_redundant)
916 swap_rows(tab, row, tab->n_redundant);
917 tab->n_redundant++;
918 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
919 } else {
920 if (row != tab->n_row - 1)
921 swap_rows(tab, row, tab->n_row - 1);
922 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
923 tab->n_row--;
924 return 1;
928 struct isl_tab *isl_tab_mark_empty(struct isl_tab *tab)
930 if (!tab)
931 return NULL;
932 if (!tab->empty && tab->need_undo)
933 if (isl_tab_push(tab, isl_tab_undo_empty) < 0) {
934 isl_tab_free(tab);
935 return NULL;
937 tab->empty = 1;
938 return tab;
941 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
942 * the original sign of the pivot element.
943 * We only keep track of row signs during PILP solving and in this case
944 * we only pivot a row with negative sign (meaning the value is always
945 * non-positive) using a positive pivot element.
947 * For each row j, the new value of the parametric constant is equal to
949 * a_j0 - a_jc a_r0/a_rc
951 * where a_j0 is the original parametric constant, a_rc is the pivot element,
952 * a_r0 is the parametric constant of the pivot row and a_jc is the
953 * pivot column entry of the row j.
954 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
955 * remains the same if a_jc has the same sign as the row j or if
956 * a_jc is zero. In all other cases, we reset the sign to "unknown".
958 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
960 int i;
961 struct isl_mat *mat = tab->mat;
962 unsigned off = 2 + tab->M;
964 if (!tab->row_sign)
965 return;
967 if (tab->row_sign[row] == 0)
968 return;
969 isl_assert(mat->ctx, row_sgn > 0, return);
970 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
971 tab->row_sign[row] = isl_tab_row_pos;
972 for (i = 0; i < tab->n_row; ++i) {
973 int s;
974 if (i == row)
975 continue;
976 s = isl_int_sgn(mat->row[i][off + col]);
977 if (!s)
978 continue;
979 if (!tab->row_sign[i])
980 continue;
981 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
982 continue;
983 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
984 continue;
985 tab->row_sign[i] = isl_tab_row_unknown;
989 /* Given a row number "row" and a column number "col", pivot the tableau
990 * such that the associated variables are interchanged.
991 * The given row in the tableau expresses
993 * x_r = a_r0 + \sum_i a_ri x_i
995 * or
997 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
999 * Substituting this equality into the other rows
1001 * x_j = a_j0 + \sum_i a_ji x_i
1003 * with a_jc \ne 0, we obtain
1005 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1007 * The tableau
1009 * n_rc/d_r n_ri/d_r
1010 * n_jc/d_j n_ji/d_j
1012 * where i is any other column and j is any other row,
1013 * is therefore transformed into
1015 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1016 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1018 * The transformation is performed along the following steps
1020 * d_r/n_rc n_ri/n_rc
1021 * n_jc/d_j n_ji/d_j
1023 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1024 * n_jc/d_j n_ji/d_j
1026 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1027 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1029 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1030 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1032 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1033 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1035 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1036 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1039 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1041 int i, j;
1042 int sgn;
1043 int t;
1044 struct isl_mat *mat = tab->mat;
1045 struct isl_tab_var *var;
1046 unsigned off = 2 + tab->M;
1048 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1049 sgn = isl_int_sgn(mat->row[row][0]);
1050 if (sgn < 0) {
1051 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1052 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1053 } else
1054 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1055 if (j == off - 1 + col)
1056 continue;
1057 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1059 if (!isl_int_is_one(mat->row[row][0]))
1060 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1061 for (i = 0; i < tab->n_row; ++i) {
1062 if (i == row)
1063 continue;
1064 if (isl_int_is_zero(mat->row[i][off + col]))
1065 continue;
1066 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1067 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1068 if (j == off - 1 + col)
1069 continue;
1070 isl_int_mul(mat->row[i][1 + j],
1071 mat->row[i][1 + j], mat->row[row][0]);
1072 isl_int_addmul(mat->row[i][1 + j],
1073 mat->row[i][off + col], mat->row[row][1 + j]);
1075 isl_int_mul(mat->row[i][off + col],
1076 mat->row[i][off + col], mat->row[row][off + col]);
1077 if (!isl_int_is_one(mat->row[i][0]))
1078 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1080 t = tab->row_var[row];
1081 tab->row_var[row] = tab->col_var[col];
1082 tab->col_var[col] = t;
1083 var = isl_tab_var_from_row(tab, row);
1084 var->is_row = 1;
1085 var->index = row;
1086 var = var_from_col(tab, col);
1087 var->is_row = 0;
1088 var->index = col;
1089 update_row_sign(tab, row, col, sgn);
1090 if (tab->in_undo)
1091 return 0;
1092 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1093 if (isl_int_is_zero(mat->row[i][off + col]))
1094 continue;
1095 if (!isl_tab_var_from_row(tab, i)->frozen &&
1096 isl_tab_row_is_redundant(tab, i)) {
1097 int redo = isl_tab_mark_redundant(tab, i);
1098 if (redo < 0)
1099 return -1;
1100 if (redo)
1101 --i;
1104 return 0;
1107 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1108 * or down (sgn < 0) to a row. The variable is assumed not to be
1109 * unbounded in the specified direction.
1110 * If sgn = 0, then the variable is unbounded in both directions,
1111 * and we pivot with any row we can find.
1113 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1114 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1116 int r;
1117 unsigned off = 2 + tab->M;
1119 if (var->is_row)
1120 return 0;
1122 if (sign == 0) {
1123 for (r = tab->n_redundant; r < tab->n_row; ++r)
1124 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1125 break;
1126 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1127 } else {
1128 r = pivot_row(tab, NULL, sign, var->index);
1129 isl_assert(tab->mat->ctx, r >= 0, return -1);
1132 return isl_tab_pivot(tab, r, var->index);
1135 static void check_table(struct isl_tab *tab)
1137 int i;
1139 if (tab->empty)
1140 return;
1141 for (i = 0; i < tab->n_row; ++i) {
1142 if (!isl_tab_var_from_row(tab, i)->is_nonneg)
1143 continue;
1144 assert(!isl_int_is_neg(tab->mat->row[i][1]));
1148 /* Return the sign of the maximal value of "var".
1149 * If the sign is not negative, then on return from this function,
1150 * the sample value will also be non-negative.
1152 * If "var" is manifestly unbounded wrt positive values, we are done.
1153 * Otherwise, we pivot the variable up to a row if needed
1154 * Then we continue pivoting down until either
1155 * - no more down pivots can be performed
1156 * - the sample value is positive
1157 * - the variable is pivoted into a manifestly unbounded column
1159 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1161 int row, col;
1163 if (max_is_manifestly_unbounded(tab, var))
1164 return 1;
1165 if (to_row(tab, var, 1) < 0)
1166 return -2;
1167 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1168 find_pivot(tab, var, var, 1, &row, &col);
1169 if (row == -1)
1170 return isl_int_sgn(tab->mat->row[var->index][1]);
1171 if (isl_tab_pivot(tab, row, col) < 0)
1172 return -2;
1173 if (!var->is_row) /* manifestly unbounded */
1174 return 1;
1176 return 1;
1179 static int row_is_neg(struct isl_tab *tab, int row)
1181 if (!tab->M)
1182 return isl_int_is_neg(tab->mat->row[row][1]);
1183 if (isl_int_is_pos(tab->mat->row[row][2]))
1184 return 0;
1185 if (isl_int_is_neg(tab->mat->row[row][2]))
1186 return 1;
1187 return isl_int_is_neg(tab->mat->row[row][1]);
1190 static int row_sgn(struct isl_tab *tab, int row)
1192 if (!tab->M)
1193 return isl_int_sgn(tab->mat->row[row][1]);
1194 if (!isl_int_is_zero(tab->mat->row[row][2]))
1195 return isl_int_sgn(tab->mat->row[row][2]);
1196 else
1197 return isl_int_sgn(tab->mat->row[row][1]);
1200 /* Perform pivots until the row variable "var" has a non-negative
1201 * sample value or until no more upward pivots can be performed.
1202 * Return the sign of the sample value after the pivots have been
1203 * performed.
1205 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1207 int row, col;
1209 while (row_is_neg(tab, var->index)) {
1210 find_pivot(tab, var, var, 1, &row, &col);
1211 if (row == -1)
1212 break;
1213 if (isl_tab_pivot(tab, row, col) < 0)
1214 return -2;
1215 if (!var->is_row) /* manifestly unbounded */
1216 return 1;
1218 return row_sgn(tab, var->index);
1221 /* Perform pivots until we are sure that the row variable "var"
1222 * can attain non-negative values. After return from this
1223 * function, "var" is still a row variable, but its sample
1224 * value may not be non-negative, even if the function returns 1.
1226 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1228 int row, col;
1230 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1231 find_pivot(tab, var, var, 1, &row, &col);
1232 if (row == -1)
1233 break;
1234 if (row == var->index) /* manifestly unbounded */
1235 return 1;
1236 if (isl_tab_pivot(tab, row, col) < 0)
1237 return -1;
1239 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1242 /* Return a negative value if "var" can attain negative values.
1243 * Return a non-negative value otherwise.
1245 * If "var" is manifestly unbounded wrt negative values, we are done.
1246 * Otherwise, if var is in a column, we can pivot it down to a row.
1247 * Then we continue pivoting down until either
1248 * - the pivot would result in a manifestly unbounded column
1249 * => we don't perform the pivot, but simply return -1
1250 * - no more down pivots can be performed
1251 * - the sample value is negative
1252 * If the sample value becomes negative and the variable is supposed
1253 * to be nonnegative, then we undo the last pivot.
1254 * However, if the last pivot has made the pivoting variable
1255 * obviously redundant, then it may have moved to another row.
1256 * In that case we look for upward pivots until we reach a non-negative
1257 * value again.
1259 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1261 int row, col;
1262 struct isl_tab_var *pivot_var = NULL;
1264 if (min_is_manifestly_unbounded(tab, var))
1265 return -1;
1266 if (!var->is_row) {
1267 col = var->index;
1268 row = pivot_row(tab, NULL, -1, col);
1269 pivot_var = var_from_col(tab, col);
1270 if (isl_tab_pivot(tab, row, col) < 0)
1271 return -2;
1272 if (var->is_redundant)
1273 return 0;
1274 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1275 if (var->is_nonneg) {
1276 if (!pivot_var->is_redundant &&
1277 pivot_var->index == row) {
1278 if (isl_tab_pivot(tab, row, col) < 0)
1279 return -2;
1280 } else
1281 if (restore_row(tab, var) < -1)
1282 return -2;
1284 return -1;
1287 if (var->is_redundant)
1288 return 0;
1289 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1290 find_pivot(tab, var, var, -1, &row, &col);
1291 if (row == var->index)
1292 return -1;
1293 if (row == -1)
1294 return isl_int_sgn(tab->mat->row[var->index][1]);
1295 pivot_var = var_from_col(tab, col);
1296 if (isl_tab_pivot(tab, row, col) < 0)
1297 return -2;
1298 if (var->is_redundant)
1299 return 0;
1301 if (pivot_var && var->is_nonneg) {
1302 /* pivot back to non-negative value */
1303 if (!pivot_var->is_redundant && pivot_var->index == row) {
1304 if (isl_tab_pivot(tab, row, col) < 0)
1305 return -2;
1306 } else
1307 if (restore_row(tab, var) < -1)
1308 return -2;
1310 return -1;
1313 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1315 if (tab->M) {
1316 if (isl_int_is_pos(tab->mat->row[row][2]))
1317 return 0;
1318 if (isl_int_is_neg(tab->mat->row[row][2]))
1319 return 1;
1321 return isl_int_is_neg(tab->mat->row[row][1]) &&
1322 isl_int_abs_ge(tab->mat->row[row][1],
1323 tab->mat->row[row][0]);
1326 /* Return 1 if "var" can attain values <= -1.
1327 * Return 0 otherwise.
1329 * The sample value of "var" is assumed to be non-negative when the
1330 * the function is called and will be made non-negative again before
1331 * the function returns.
1333 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1335 int row, col;
1336 struct isl_tab_var *pivot_var;
1338 if (min_is_manifestly_unbounded(tab, var))
1339 return 1;
1340 if (!var->is_row) {
1341 col = var->index;
1342 row = pivot_row(tab, NULL, -1, col);
1343 pivot_var = var_from_col(tab, col);
1344 if (isl_tab_pivot(tab, row, col) < 0)
1345 return -1;
1346 if (var->is_redundant)
1347 return 0;
1348 if (row_at_most_neg_one(tab, var->index)) {
1349 if (var->is_nonneg) {
1350 if (!pivot_var->is_redundant &&
1351 pivot_var->index == row) {
1352 if (isl_tab_pivot(tab, row, col) < 0)
1353 return -1;
1354 } else
1355 if (restore_row(tab, var) < -1)
1356 return -1;
1358 return 1;
1361 if (var->is_redundant)
1362 return 0;
1363 do {
1364 find_pivot(tab, var, var, -1, &row, &col);
1365 if (row == var->index)
1366 return 1;
1367 if (row == -1)
1368 return 0;
1369 pivot_var = var_from_col(tab, col);
1370 if (isl_tab_pivot(tab, row, col) < 0)
1371 return -1;
1372 if (var->is_redundant)
1373 return 0;
1374 } while (!row_at_most_neg_one(tab, var->index));
1375 if (var->is_nonneg) {
1376 /* pivot back to non-negative value */
1377 if (!pivot_var->is_redundant && pivot_var->index == row)
1378 if (isl_tab_pivot(tab, row, col) < 0)
1379 return -1;
1380 if (restore_row(tab, var) < -1)
1381 return -1;
1383 return 1;
1386 /* Return 1 if "var" can attain values >= 1.
1387 * Return 0 otherwise.
1389 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1391 int row, col;
1392 isl_int *r;
1394 if (max_is_manifestly_unbounded(tab, var))
1395 return 1;
1396 if (to_row(tab, var, 1) < 0)
1397 return -1;
1398 r = tab->mat->row[var->index];
1399 while (isl_int_lt(r[1], r[0])) {
1400 find_pivot(tab, var, var, 1, &row, &col);
1401 if (row == -1)
1402 return isl_int_ge(r[1], r[0]);
1403 if (row == var->index) /* manifestly unbounded */
1404 return 1;
1405 if (isl_tab_pivot(tab, row, col) < 0)
1406 return -1;
1408 return 1;
1411 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1413 int t;
1414 unsigned off = 2 + tab->M;
1415 t = tab->col_var[col1];
1416 tab->col_var[col1] = tab->col_var[col2];
1417 tab->col_var[col2] = t;
1418 var_from_col(tab, col1)->index = col1;
1419 var_from_col(tab, col2)->index = col2;
1420 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1423 /* Mark column with index "col" as representing a zero variable.
1424 * If we may need to undo the operation the column is kept,
1425 * but no longer considered.
1426 * Otherwise, the column is simply removed.
1428 * The column may be interchanged with some other column. If it
1429 * is interchanged with a later column, return 1. Otherwise return 0.
1430 * If the columns are checked in order in the calling function,
1431 * then a return value of 1 means that the column with the given
1432 * column number may now contain a different column that
1433 * hasn't been checked yet.
1435 int isl_tab_kill_col(struct isl_tab *tab, int col)
1437 var_from_col(tab, col)->is_zero = 1;
1438 if (tab->need_undo) {
1439 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1440 var_from_col(tab, col)) < 0)
1441 return -1;
1442 if (col != tab->n_dead)
1443 swap_cols(tab, col, tab->n_dead);
1444 tab->n_dead++;
1445 return 0;
1446 } else {
1447 if (col != tab->n_col - 1)
1448 swap_cols(tab, col, tab->n_col - 1);
1449 var_from_col(tab, tab->n_col - 1)->index = -1;
1450 tab->n_col--;
1451 return 1;
1455 /* Row variable "var" is non-negative and cannot attain any values
1456 * larger than zero. This means that the coefficients of the unrestricted
1457 * column variables are zero and that the coefficients of the non-negative
1458 * column variables are zero or negative.
1459 * Each of the non-negative variables with a negative coefficient can
1460 * then also be written as the negative sum of non-negative variables
1461 * and must therefore also be zero.
1463 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1464 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1466 int j;
1467 struct isl_mat *mat = tab->mat;
1468 unsigned off = 2 + tab->M;
1470 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1471 var->is_zero = 1;
1472 if (tab->need_undo)
1473 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1474 return -1;
1475 for (j = tab->n_dead; j < tab->n_col; ++j) {
1476 if (isl_int_is_zero(mat->row[var->index][off + j]))
1477 continue;
1478 isl_assert(tab->mat->ctx,
1479 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1480 if (isl_tab_kill_col(tab, j))
1481 --j;
1483 if (isl_tab_mark_redundant(tab, var->index) < 0)
1484 return -1;
1485 return 0;
1488 /* Add a constraint to the tableau and allocate a row for it.
1489 * Return the index into the constraint array "con".
1491 int isl_tab_allocate_con(struct isl_tab *tab)
1493 int r;
1495 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1496 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1498 r = tab->n_con;
1499 tab->con[r].index = tab->n_row;
1500 tab->con[r].is_row = 1;
1501 tab->con[r].is_nonneg = 0;
1502 tab->con[r].is_zero = 0;
1503 tab->con[r].is_redundant = 0;
1504 tab->con[r].frozen = 0;
1505 tab->con[r].negated = 0;
1506 tab->row_var[tab->n_row] = ~r;
1508 tab->n_row++;
1509 tab->n_con++;
1510 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1511 return -1;
1513 return r;
1516 /* Add a variable to the tableau and allocate a column for it.
1517 * Return the index into the variable array "var".
1519 int isl_tab_allocate_var(struct isl_tab *tab)
1521 int r;
1522 int i;
1523 unsigned off = 2 + tab->M;
1525 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1526 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1528 r = tab->n_var;
1529 tab->var[r].index = tab->n_col;
1530 tab->var[r].is_row = 0;
1531 tab->var[r].is_nonneg = 0;
1532 tab->var[r].is_zero = 0;
1533 tab->var[r].is_redundant = 0;
1534 tab->var[r].frozen = 0;
1535 tab->var[r].negated = 0;
1536 tab->col_var[tab->n_col] = r;
1538 for (i = 0; i < tab->n_row; ++i)
1539 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1541 tab->n_var++;
1542 tab->n_col++;
1543 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1544 return -1;
1546 return r;
1549 /* Add a row to the tableau. The row is given as an affine combination
1550 * of the original variables and needs to be expressed in terms of the
1551 * column variables.
1553 * We add each term in turn.
1554 * If r = n/d_r is the current sum and we need to add k x, then
1555 * if x is a column variable, we increase the numerator of
1556 * this column by k d_r
1557 * if x = f/d_x is a row variable, then the new representation of r is
1559 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1560 * --- + --- = ------------------- = -------------------
1561 * d_r d_r d_r d_x/g m
1563 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1565 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1567 int i;
1568 int r;
1569 isl_int *row;
1570 isl_int a, b;
1571 unsigned off = 2 + tab->M;
1573 r = isl_tab_allocate_con(tab);
1574 if (r < 0)
1575 return -1;
1577 isl_int_init(a);
1578 isl_int_init(b);
1579 row = tab->mat->row[tab->con[r].index];
1580 isl_int_set_si(row[0], 1);
1581 isl_int_set(row[1], line[0]);
1582 isl_seq_clr(row + 2, tab->M + tab->n_col);
1583 for (i = 0; i < tab->n_var; ++i) {
1584 if (tab->var[i].is_zero)
1585 continue;
1586 if (tab->var[i].is_row) {
1587 isl_int_lcm(a,
1588 row[0], tab->mat->row[tab->var[i].index][0]);
1589 isl_int_swap(a, row[0]);
1590 isl_int_divexact(a, row[0], a);
1591 isl_int_divexact(b,
1592 row[0], tab->mat->row[tab->var[i].index][0]);
1593 isl_int_mul(b, b, line[1 + i]);
1594 isl_seq_combine(row + 1, a, row + 1,
1595 b, tab->mat->row[tab->var[i].index] + 1,
1596 1 + tab->M + tab->n_col);
1597 } else
1598 isl_int_addmul(row[off + tab->var[i].index],
1599 line[1 + i], row[0]);
1600 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1601 isl_int_submul(row[2], line[1 + i], row[0]);
1603 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1604 isl_int_clear(a);
1605 isl_int_clear(b);
1607 if (tab->row_sign)
1608 tab->row_sign[tab->con[r].index] = 0;
1610 return r;
1613 static int drop_row(struct isl_tab *tab, int row)
1615 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1616 if (row != tab->n_row - 1)
1617 swap_rows(tab, row, tab->n_row - 1);
1618 tab->n_row--;
1619 tab->n_con--;
1620 return 0;
1623 static int drop_col(struct isl_tab *tab, int col)
1625 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1626 if (col != tab->n_col - 1)
1627 swap_cols(tab, col, tab->n_col - 1);
1628 tab->n_col--;
1629 tab->n_var--;
1630 return 0;
1633 /* Add inequality "ineq" and check if it conflicts with the
1634 * previously added constraints or if it is obviously redundant.
1636 struct isl_tab *isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1638 int r;
1639 int sgn;
1640 isl_int cst;
1642 if (!tab)
1643 return NULL;
1644 if (tab->bset) {
1645 struct isl_basic_set *bset = tab->bset;
1647 isl_assert(tab->mat->ctx, tab->n_eq == bset->n_eq, goto error);
1648 isl_assert(tab->mat->ctx,
1649 tab->n_con == bset->n_eq + bset->n_ineq, goto error);
1650 tab->bset = isl_basic_set_add_ineq(tab->bset, ineq);
1651 if (isl_tab_push(tab, isl_tab_undo_bset_ineq) < 0)
1652 goto error;
1653 if (!tab->bset)
1654 goto error;
1656 if (tab->cone) {
1657 isl_int_init(cst);
1658 isl_int_swap(ineq[0], cst);
1660 r = isl_tab_add_row(tab, ineq);
1661 if (tab->cone) {
1662 isl_int_swap(ineq[0], cst);
1663 isl_int_clear(cst);
1665 if (r < 0)
1666 goto error;
1667 tab->con[r].is_nonneg = 1;
1668 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1669 goto error;
1670 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1671 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1672 goto error;
1673 return tab;
1676 sgn = restore_row(tab, &tab->con[r]);
1677 if (sgn < -1)
1678 goto error;
1679 if (sgn < 0)
1680 return isl_tab_mark_empty(tab);
1681 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1682 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1683 goto error;
1684 return tab;
1685 error:
1686 isl_tab_free(tab);
1687 return NULL;
1690 /* Pivot a non-negative variable down until it reaches the value zero
1691 * and then pivot the variable into a column position.
1693 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1694 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1696 int i;
1697 int row, col;
1698 unsigned off = 2 + tab->M;
1700 if (!var->is_row)
1701 return 0;
1703 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1704 find_pivot(tab, var, NULL, -1, &row, &col);
1705 isl_assert(tab->mat->ctx, row != -1, return -1);
1706 if (isl_tab_pivot(tab, row, col) < 0)
1707 return -1;
1708 if (!var->is_row)
1709 return 0;
1712 for (i = tab->n_dead; i < tab->n_col; ++i)
1713 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1714 break;
1716 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1717 if (isl_tab_pivot(tab, var->index, i) < 0)
1718 return -1;
1720 return 0;
1723 /* We assume Gaussian elimination has been performed on the equalities.
1724 * The equalities can therefore never conflict.
1725 * Adding the equalities is currently only really useful for a later call
1726 * to isl_tab_ineq_type.
1728 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1730 int i;
1731 int r;
1733 if (!tab)
1734 return NULL;
1735 r = isl_tab_add_row(tab, eq);
1736 if (r < 0)
1737 goto error;
1739 r = tab->con[r].index;
1740 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1741 tab->n_col - tab->n_dead);
1742 isl_assert(tab->mat->ctx, i >= 0, goto error);
1743 i += tab->n_dead;
1744 if (isl_tab_pivot(tab, r, i) < 0)
1745 goto error;
1746 if (isl_tab_kill_col(tab, i) < 0)
1747 goto error;
1748 tab->n_eq++;
1750 return tab;
1751 error:
1752 isl_tab_free(tab);
1753 return NULL;
1756 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1758 unsigned off = 2 + tab->M;
1760 if (!isl_int_is_zero(tab->mat->row[row][1]))
1761 return 0;
1762 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1763 return 0;
1764 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1765 tab->n_col - tab->n_dead) == -1;
1768 /* Add an equality that is known to be valid for the given tableau.
1770 struct isl_tab *isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1772 struct isl_tab_var *var;
1773 int r;
1775 if (!tab)
1776 return NULL;
1777 r = isl_tab_add_row(tab, eq);
1778 if (r < 0)
1779 goto error;
1781 var = &tab->con[r];
1782 r = var->index;
1783 if (row_is_manifestly_zero(tab, r)) {
1784 var->is_zero = 1;
1785 if (isl_tab_mark_redundant(tab, r) < 0)
1786 goto error;
1787 return tab;
1790 if (isl_int_is_neg(tab->mat->row[r][1])) {
1791 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1792 1 + tab->n_col);
1793 var->negated = 1;
1795 var->is_nonneg = 1;
1796 if (to_col(tab, var) < 0)
1797 goto error;
1798 var->is_nonneg = 0;
1799 if (isl_tab_kill_col(tab, var->index) < 0)
1800 goto error;
1802 return tab;
1803 error:
1804 isl_tab_free(tab);
1805 return NULL;
1808 static int add_zero_row(struct isl_tab *tab)
1810 int r;
1811 isl_int *row;
1813 r = isl_tab_allocate_con(tab);
1814 if (r < 0)
1815 return -1;
1817 row = tab->mat->row[tab->con[r].index];
1818 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1819 isl_int_set_si(row[0], 1);
1821 return r;
1824 /* Add equality "eq" and check if it conflicts with the
1825 * previously added constraints or if it is obviously redundant.
1827 struct isl_tab *isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1829 struct isl_tab_undo *snap = NULL;
1830 struct isl_tab_var *var;
1831 int r;
1832 int row;
1833 int sgn;
1834 isl_int cst;
1836 if (!tab)
1837 return NULL;
1838 isl_assert(tab->mat->ctx, !tab->M, goto error);
1840 if (tab->need_undo)
1841 snap = isl_tab_snap(tab);
1843 if (tab->cone) {
1844 isl_int_init(cst);
1845 isl_int_swap(eq[0], cst);
1847 r = isl_tab_add_row(tab, eq);
1848 if (tab->cone) {
1849 isl_int_swap(eq[0], cst);
1850 isl_int_clear(cst);
1852 if (r < 0)
1853 goto error;
1855 var = &tab->con[r];
1856 row = var->index;
1857 if (row_is_manifestly_zero(tab, row)) {
1858 if (snap) {
1859 if (isl_tab_rollback(tab, snap) < 0)
1860 goto error;
1861 } else
1862 drop_row(tab, row);
1863 return tab;
1866 if (tab->bset) {
1867 tab->bset = isl_basic_set_add_ineq(tab->bset, eq);
1868 if (isl_tab_push(tab, isl_tab_undo_bset_ineq) < 0)
1869 goto error;
1870 isl_seq_neg(eq, eq, 1 + tab->n_var);
1871 tab->bset = isl_basic_set_add_ineq(tab->bset, eq);
1872 isl_seq_neg(eq, eq, 1 + tab->n_var);
1873 if (isl_tab_push(tab, isl_tab_undo_bset_ineq) < 0)
1874 goto error;
1875 if (!tab->bset)
1876 goto error;
1877 if (add_zero_row(tab) < 0)
1878 goto error;
1881 sgn = isl_int_sgn(tab->mat->row[row][1]);
1883 if (sgn > 0) {
1884 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
1885 1 + tab->n_col);
1886 var->negated = 1;
1887 sgn = -1;
1890 if (sgn < 0) {
1891 sgn = sign_of_max(tab, var);
1892 if (sgn < -1)
1893 goto error;
1894 if (sgn < 0)
1895 return isl_tab_mark_empty(tab);
1898 var->is_nonneg = 1;
1899 if (to_col(tab, var) < 0)
1900 goto error;
1901 var->is_nonneg = 0;
1902 if (isl_tab_kill_col(tab, var->index) < 0)
1903 goto error;
1905 return tab;
1906 error:
1907 isl_tab_free(tab);
1908 return NULL;
1911 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
1913 int i;
1914 struct isl_tab *tab;
1916 if (!bmap)
1917 return NULL;
1918 tab = isl_tab_alloc(bmap->ctx,
1919 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
1920 isl_basic_map_total_dim(bmap), 0);
1921 if (!tab)
1922 return NULL;
1923 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1924 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1925 return isl_tab_mark_empty(tab);
1926 for (i = 0; i < bmap->n_eq; ++i) {
1927 tab = add_eq(tab, bmap->eq[i]);
1928 if (!tab)
1929 return tab;
1931 for (i = 0; i < bmap->n_ineq; ++i) {
1932 tab = isl_tab_add_ineq(tab, bmap->ineq[i]);
1933 if (!tab || tab->empty)
1934 return tab;
1936 return tab;
1939 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
1941 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
1944 /* Construct a tableau corresponding to the recession cone of "bset".
1946 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_set *bset)
1948 isl_int cst;
1949 int i;
1950 struct isl_tab *tab;
1952 if (!bset)
1953 return NULL;
1954 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
1955 isl_basic_set_total_dim(bset), 0);
1956 if (!tab)
1957 return NULL;
1958 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
1959 tab->cone = 1;
1961 isl_int_init(cst);
1962 for (i = 0; i < bset->n_eq; ++i) {
1963 isl_int_swap(bset->eq[i][0], cst);
1964 tab = add_eq(tab, bset->eq[i]);
1965 isl_int_swap(bset->eq[i][0], cst);
1966 if (!tab)
1967 goto done;
1969 for (i = 0; i < bset->n_ineq; ++i) {
1970 int r;
1971 isl_int_swap(bset->ineq[i][0], cst);
1972 r = isl_tab_add_row(tab, bset->ineq[i]);
1973 isl_int_swap(bset->ineq[i][0], cst);
1974 if (r < 0)
1975 goto error;
1976 tab->con[r].is_nonneg = 1;
1977 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1978 goto error;
1980 done:
1981 isl_int_clear(cst);
1982 return tab;
1983 error:
1984 isl_int_clear(cst);
1985 isl_tab_free(tab);
1986 return NULL;
1989 /* Assuming "tab" is the tableau of a cone, check if the cone is
1990 * bounded, i.e., if it is empty or only contains the origin.
1992 int isl_tab_cone_is_bounded(struct isl_tab *tab)
1994 int i;
1996 if (!tab)
1997 return -1;
1998 if (tab->empty)
1999 return 1;
2000 if (tab->n_dead == tab->n_col)
2001 return 1;
2003 for (;;) {
2004 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2005 struct isl_tab_var *var;
2006 int sgn;
2007 var = isl_tab_var_from_row(tab, i);
2008 if (!var->is_nonneg)
2009 continue;
2010 sgn = sign_of_max(tab, var);
2011 if (sgn < -1)
2012 return -1;
2013 if (sgn != 0)
2014 return 0;
2015 if (close_row(tab, var) < 0)
2016 return -1;
2017 break;
2019 if (tab->n_dead == tab->n_col)
2020 return 1;
2021 if (i == tab->n_row)
2022 return 0;
2026 int isl_tab_sample_is_integer(struct isl_tab *tab)
2028 int i;
2030 if (!tab)
2031 return -1;
2033 for (i = 0; i < tab->n_var; ++i) {
2034 int row;
2035 if (!tab->var[i].is_row)
2036 continue;
2037 row = tab->var[i].index;
2038 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2039 tab->mat->row[row][0]))
2040 return 0;
2042 return 1;
2045 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2047 int i;
2048 struct isl_vec *vec;
2050 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2051 if (!vec)
2052 return NULL;
2054 isl_int_set_si(vec->block.data[0], 1);
2055 for (i = 0; i < tab->n_var; ++i) {
2056 if (!tab->var[i].is_row)
2057 isl_int_set_si(vec->block.data[1 + i], 0);
2058 else {
2059 int row = tab->var[i].index;
2060 isl_int_divexact(vec->block.data[1 + i],
2061 tab->mat->row[row][1], tab->mat->row[row][0]);
2065 return vec;
2068 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2070 int i;
2071 struct isl_vec *vec;
2072 isl_int m;
2074 if (!tab)
2075 return NULL;
2077 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2078 if (!vec)
2079 return NULL;
2081 isl_int_init(m);
2083 isl_int_set_si(vec->block.data[0], 1);
2084 for (i = 0; i < tab->n_var; ++i) {
2085 int row;
2086 if (!tab->var[i].is_row) {
2087 isl_int_set_si(vec->block.data[1 + i], 0);
2088 continue;
2090 row = tab->var[i].index;
2091 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2092 isl_int_divexact(m, tab->mat->row[row][0], m);
2093 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2094 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2095 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2097 vec = isl_vec_normalize(vec);
2099 isl_int_clear(m);
2100 return vec;
2103 /* Update "bmap" based on the results of the tableau "tab".
2104 * In particular, implicit equalities are made explicit, redundant constraints
2105 * are removed and if the sample value happens to be integer, it is stored
2106 * in "bmap" (unless "bmap" already had an integer sample).
2108 * The tableau is assumed to have been created from "bmap" using
2109 * isl_tab_from_basic_map.
2111 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2112 struct isl_tab *tab)
2114 int i;
2115 unsigned n_eq;
2117 if (!bmap)
2118 return NULL;
2119 if (!tab)
2120 return bmap;
2122 n_eq = tab->n_eq;
2123 if (tab->empty)
2124 bmap = isl_basic_map_set_to_empty(bmap);
2125 else
2126 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2127 if (isl_tab_is_equality(tab, n_eq + i))
2128 isl_basic_map_inequality_to_equality(bmap, i);
2129 else if (isl_tab_is_redundant(tab, n_eq + i))
2130 isl_basic_map_drop_inequality(bmap, i);
2132 if (!tab->rational &&
2133 !bmap->sample && isl_tab_sample_is_integer(tab))
2134 bmap->sample = extract_integer_sample(tab);
2135 return bmap;
2138 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2139 struct isl_tab *tab)
2141 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2142 (struct isl_basic_map *)bset, tab);
2145 /* Given a non-negative variable "var", add a new non-negative variable
2146 * that is the opposite of "var", ensuring that var can only attain the
2147 * value zero.
2148 * If var = n/d is a row variable, then the new variable = -n/d.
2149 * If var is a column variables, then the new variable = -var.
2150 * If the new variable cannot attain non-negative values, then
2151 * the resulting tableau is empty.
2152 * Otherwise, we know the value will be zero and we close the row.
2154 static struct isl_tab *cut_to_hyperplane(struct isl_tab *tab,
2155 struct isl_tab_var *var)
2157 unsigned r;
2158 isl_int *row;
2159 int sgn;
2160 unsigned off = 2 + tab->M;
2162 if (var->is_zero)
2163 return tab;
2164 isl_assert(tab->mat->ctx, !var->is_redundant, goto error);
2166 if (isl_tab_extend_cons(tab, 1) < 0)
2167 goto error;
2169 r = tab->n_con;
2170 tab->con[r].index = tab->n_row;
2171 tab->con[r].is_row = 1;
2172 tab->con[r].is_nonneg = 0;
2173 tab->con[r].is_zero = 0;
2174 tab->con[r].is_redundant = 0;
2175 tab->con[r].frozen = 0;
2176 tab->con[r].negated = 0;
2177 tab->row_var[tab->n_row] = ~r;
2178 row = tab->mat->row[tab->n_row];
2180 if (var->is_row) {
2181 isl_int_set(row[0], tab->mat->row[var->index][0]);
2182 isl_seq_neg(row + 1,
2183 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2184 } else {
2185 isl_int_set_si(row[0], 1);
2186 isl_seq_clr(row + 1, 1 + tab->n_col);
2187 isl_int_set_si(row[off + var->index], -1);
2190 tab->n_row++;
2191 tab->n_con++;
2192 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2193 goto error;
2195 sgn = sign_of_max(tab, &tab->con[r]);
2196 if (sgn < -1)
2197 goto error;
2198 if (sgn < 0)
2199 return isl_tab_mark_empty(tab);
2200 tab->con[r].is_nonneg = 1;
2201 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2202 goto error;
2203 /* sgn == 0 */
2204 if (close_row(tab, &tab->con[r]) < 0)
2205 goto error;
2207 return tab;
2208 error:
2209 isl_tab_free(tab);
2210 return NULL;
2213 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2214 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2215 * by r' = r + 1 >= 0.
2216 * If r is a row variable, we simply increase the constant term by one
2217 * (taking into account the denominator).
2218 * If r is a column variable, then we need to modify each row that
2219 * refers to r = r' - 1 by substituting this equality, effectively
2220 * subtracting the coefficient of the column from the constant.
2222 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
2224 struct isl_tab_var *var;
2225 unsigned off = 2 + tab->M;
2227 if (!tab)
2228 return NULL;
2230 var = &tab->con[con];
2232 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2233 if (to_row(tab, var, 1) < 0)
2234 goto error;
2236 if (var->is_row)
2237 isl_int_add(tab->mat->row[var->index][1],
2238 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2239 else {
2240 int i;
2242 for (i = 0; i < tab->n_row; ++i) {
2243 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2244 continue;
2245 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2246 tab->mat->row[i][off + var->index]);
2251 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2252 goto error;
2254 return tab;
2255 error:
2256 isl_tab_free(tab);
2257 return NULL;
2260 struct isl_tab *isl_tab_select_facet(struct isl_tab *tab, int con)
2262 if (!tab)
2263 return NULL;
2265 return cut_to_hyperplane(tab, &tab->con[con]);
2268 static int may_be_equality(struct isl_tab *tab, int row)
2270 unsigned off = 2 + tab->M;
2271 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2272 : isl_int_lt(tab->mat->row[row][1],
2273 tab->mat->row[row][0])) &&
2274 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2275 tab->n_col - tab->n_dead) != -1;
2278 /* Check for (near) equalities among the constraints.
2279 * A constraint is an equality if it is non-negative and if
2280 * its maximal value is either
2281 * - zero (in case of rational tableaus), or
2282 * - strictly less than 1 (in case of integer tableaus)
2284 * We first mark all non-redundant and non-dead variables that
2285 * are not frozen and not obviously not an equality.
2286 * Then we iterate over all marked variables if they can attain
2287 * any values larger than zero or at least one.
2288 * If the maximal value is zero, we mark any column variables
2289 * that appear in the row as being zero and mark the row as being redundant.
2290 * Otherwise, if the maximal value is strictly less than one (and the
2291 * tableau is integer), then we restrict the value to being zero
2292 * by adding an opposite non-negative variable.
2294 struct isl_tab *isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2296 int i;
2297 unsigned n_marked;
2299 if (!tab)
2300 return NULL;
2301 if (tab->empty)
2302 return tab;
2303 if (tab->n_dead == tab->n_col)
2304 return tab;
2306 n_marked = 0;
2307 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2308 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2309 var->marked = !var->frozen && var->is_nonneg &&
2310 may_be_equality(tab, i);
2311 if (var->marked)
2312 n_marked++;
2314 for (i = tab->n_dead; i < tab->n_col; ++i) {
2315 struct isl_tab_var *var = var_from_col(tab, i);
2316 var->marked = !var->frozen && var->is_nonneg;
2317 if (var->marked)
2318 n_marked++;
2320 while (n_marked) {
2321 struct isl_tab_var *var;
2322 int sgn;
2323 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2324 var = isl_tab_var_from_row(tab, i);
2325 if (var->marked)
2326 break;
2328 if (i == tab->n_row) {
2329 for (i = tab->n_dead; i < tab->n_col; ++i) {
2330 var = var_from_col(tab, i);
2331 if (var->marked)
2332 break;
2334 if (i == tab->n_col)
2335 break;
2337 var->marked = 0;
2338 n_marked--;
2339 sgn = sign_of_max(tab, var);
2340 if (sgn < 0)
2341 goto error;
2342 if (sgn == 0) {
2343 if (close_row(tab, var) < 0)
2344 goto error;
2345 } else if (!tab->rational && !at_least_one(tab, var)) {
2346 tab = cut_to_hyperplane(tab, var);
2347 return isl_tab_detect_implicit_equalities(tab);
2349 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2350 var = isl_tab_var_from_row(tab, i);
2351 if (!var->marked)
2352 continue;
2353 if (may_be_equality(tab, i))
2354 continue;
2355 var->marked = 0;
2356 n_marked--;
2360 return tab;
2361 error:
2362 isl_tab_free(tab);
2363 return NULL;
2366 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2368 if (!tab)
2369 return -1;
2370 if (tab->rational) {
2371 int sgn = sign_of_min(tab, var);
2372 if (sgn < -1)
2373 return -1;
2374 return sgn >= 0;
2375 } else {
2376 int irred = isl_tab_min_at_most_neg_one(tab, var);
2377 if (irred < 0)
2378 return -1;
2379 return !irred;
2383 /* Check for (near) redundant constraints.
2384 * A constraint is redundant if it is non-negative and if
2385 * its minimal value (temporarily ignoring the non-negativity) is either
2386 * - zero (in case of rational tableaus), or
2387 * - strictly larger than -1 (in case of integer tableaus)
2389 * We first mark all non-redundant and non-dead variables that
2390 * are not frozen and not obviously negatively unbounded.
2391 * Then we iterate over all marked variables if they can attain
2392 * any values smaller than zero or at most negative one.
2393 * If not, we mark the row as being redundant (assuming it hasn't
2394 * been detected as being obviously redundant in the mean time).
2396 struct isl_tab *isl_tab_detect_redundant(struct isl_tab *tab)
2398 int i;
2399 unsigned n_marked;
2401 if (!tab)
2402 return NULL;
2403 if (tab->empty)
2404 return tab;
2405 if (tab->n_redundant == tab->n_row)
2406 return tab;
2408 n_marked = 0;
2409 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2410 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2411 var->marked = !var->frozen && var->is_nonneg;
2412 if (var->marked)
2413 n_marked++;
2415 for (i = tab->n_dead; i < tab->n_col; ++i) {
2416 struct isl_tab_var *var = var_from_col(tab, i);
2417 var->marked = !var->frozen && var->is_nonneg &&
2418 !min_is_manifestly_unbounded(tab, var);
2419 if (var->marked)
2420 n_marked++;
2422 while (n_marked) {
2423 struct isl_tab_var *var;
2424 int red;
2425 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2426 var = isl_tab_var_from_row(tab, i);
2427 if (var->marked)
2428 break;
2430 if (i == tab->n_row) {
2431 for (i = tab->n_dead; i < tab->n_col; ++i) {
2432 var = var_from_col(tab, i);
2433 if (var->marked)
2434 break;
2436 if (i == tab->n_col)
2437 break;
2439 var->marked = 0;
2440 n_marked--;
2441 red = con_is_redundant(tab, var);
2442 if (red < 0)
2443 goto error;
2444 if (red && !var->is_redundant)
2445 if (isl_tab_mark_redundant(tab, var->index) < 0)
2446 goto error;
2447 for (i = tab->n_dead; i < tab->n_col; ++i) {
2448 var = var_from_col(tab, i);
2449 if (!var->marked)
2450 continue;
2451 if (!min_is_manifestly_unbounded(tab, var))
2452 continue;
2453 var->marked = 0;
2454 n_marked--;
2458 return tab;
2459 error:
2460 isl_tab_free(tab);
2461 return NULL;
2464 int isl_tab_is_equality(struct isl_tab *tab, int con)
2466 int row;
2467 unsigned off;
2469 if (!tab)
2470 return -1;
2471 if (tab->con[con].is_zero)
2472 return 1;
2473 if (tab->con[con].is_redundant)
2474 return 0;
2475 if (!tab->con[con].is_row)
2476 return tab->con[con].index < tab->n_dead;
2478 row = tab->con[con].index;
2480 off = 2 + tab->M;
2481 return isl_int_is_zero(tab->mat->row[row][1]) &&
2482 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
2483 tab->n_col - tab->n_dead) == -1;
2486 /* Return the minimial value of the affine expression "f" with denominator
2487 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2488 * the expression cannot attain arbitrarily small values.
2489 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2490 * The return value reflects the nature of the result (empty, unbounded,
2491 * minmimal value returned in *opt).
2493 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2494 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2495 unsigned flags)
2497 int r;
2498 enum isl_lp_result res = isl_lp_ok;
2499 struct isl_tab_var *var;
2500 struct isl_tab_undo *snap;
2502 if (tab->empty)
2503 return isl_lp_empty;
2505 snap = isl_tab_snap(tab);
2506 r = isl_tab_add_row(tab, f);
2507 if (r < 0)
2508 return isl_lp_error;
2509 var = &tab->con[r];
2510 isl_int_mul(tab->mat->row[var->index][0],
2511 tab->mat->row[var->index][0], denom);
2512 for (;;) {
2513 int row, col;
2514 find_pivot(tab, var, var, -1, &row, &col);
2515 if (row == var->index) {
2516 res = isl_lp_unbounded;
2517 break;
2519 if (row == -1)
2520 break;
2521 if (isl_tab_pivot(tab, row, col) < 0)
2522 return isl_lp_error;
2524 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2525 int i;
2527 isl_vec_free(tab->dual);
2528 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2529 if (!tab->dual)
2530 return isl_lp_error;
2531 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
2532 for (i = 0; i < tab->n_con; ++i) {
2533 int pos;
2534 if (tab->con[i].is_row) {
2535 isl_int_set_si(tab->dual->el[1 + i], 0);
2536 continue;
2538 pos = 2 + tab->M + tab->con[i].index;
2539 if (tab->con[i].negated)
2540 isl_int_neg(tab->dual->el[1 + i],
2541 tab->mat->row[var->index][pos]);
2542 else
2543 isl_int_set(tab->dual->el[1 + i],
2544 tab->mat->row[var->index][pos]);
2547 if (opt && res == isl_lp_ok) {
2548 if (opt_denom) {
2549 isl_int_set(*opt, tab->mat->row[var->index][1]);
2550 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
2551 } else
2552 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
2553 tab->mat->row[var->index][0]);
2555 if (isl_tab_rollback(tab, snap) < 0)
2556 return isl_lp_error;
2557 return res;
2560 int isl_tab_is_redundant(struct isl_tab *tab, int con)
2562 if (!tab)
2563 return -1;
2564 if (tab->con[con].is_zero)
2565 return 0;
2566 if (tab->con[con].is_redundant)
2567 return 1;
2568 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
2571 /* Take a snapshot of the tableau that can be restored by s call to
2572 * isl_tab_rollback.
2574 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
2576 if (!tab)
2577 return NULL;
2578 tab->need_undo = 1;
2579 return tab->top;
2582 /* Undo the operation performed by isl_tab_relax.
2584 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
2585 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
2587 unsigned off = 2 + tab->M;
2589 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2590 if (to_row(tab, var, 1) < 0)
2591 return -1;
2593 if (var->is_row)
2594 isl_int_sub(tab->mat->row[var->index][1],
2595 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2596 else {
2597 int i;
2599 for (i = 0; i < tab->n_row; ++i) {
2600 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2601 continue;
2602 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
2603 tab->mat->row[i][off + var->index]);
2608 return 0;
2611 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
2612 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
2614 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
2615 switch(undo->type) {
2616 case isl_tab_undo_nonneg:
2617 var->is_nonneg = 0;
2618 break;
2619 case isl_tab_undo_redundant:
2620 var->is_redundant = 0;
2621 tab->n_redundant--;
2622 break;
2623 case isl_tab_undo_zero:
2624 var->is_zero = 0;
2625 if (!var->is_row)
2626 tab->n_dead--;
2627 break;
2628 case isl_tab_undo_allocate:
2629 if (undo->u.var_index >= 0) {
2630 isl_assert(tab->mat->ctx, !var->is_row, return -1);
2631 drop_col(tab, var->index);
2632 break;
2634 if (!var->is_row) {
2635 if (!max_is_manifestly_unbounded(tab, var)) {
2636 if (to_row(tab, var, 1) < 0)
2637 return -1;
2638 } else if (!min_is_manifestly_unbounded(tab, var)) {
2639 if (to_row(tab, var, -1) < 0)
2640 return -1;
2641 } else
2642 if (to_row(tab, var, 0) < 0)
2643 return -1;
2645 drop_row(tab, var->index);
2646 break;
2647 case isl_tab_undo_relax:
2648 return unrelax(tab, var);
2651 return 0;
2654 /* Restore the tableau to the state where the basic variables
2655 * are those in "col_var".
2656 * We first construct a list of variables that are currently in
2657 * the basis, but shouldn't. Then we iterate over all variables
2658 * that should be in the basis and for each one that is currently
2659 * not in the basis, we exchange it with one of the elements of the
2660 * list constructed before.
2661 * We can always find an appropriate variable to pivot with because
2662 * the current basis is mapped to the old basis by a non-singular
2663 * matrix and so we can never end up with a zero row.
2665 static int restore_basis(struct isl_tab *tab, int *col_var)
2667 int i, j;
2668 int n_extra = 0;
2669 int *extra = NULL; /* current columns that contain bad stuff */
2670 unsigned off = 2 + tab->M;
2672 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
2673 if (!extra)
2674 goto error;
2675 for (i = 0; i < tab->n_col; ++i) {
2676 for (j = 0; j < tab->n_col; ++j)
2677 if (tab->col_var[i] == col_var[j])
2678 break;
2679 if (j < tab->n_col)
2680 continue;
2681 extra[n_extra++] = i;
2683 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
2684 struct isl_tab_var *var;
2685 int row;
2687 for (j = 0; j < tab->n_col; ++j)
2688 if (col_var[i] == tab->col_var[j])
2689 break;
2690 if (j < tab->n_col)
2691 continue;
2692 var = var_from_index(tab, col_var[i]);
2693 row = var->index;
2694 for (j = 0; j < n_extra; ++j)
2695 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
2696 break;
2697 isl_assert(tab->mat->ctx, j < n_extra, goto error);
2698 if (isl_tab_pivot(tab, row, extra[j]) < 0)
2699 goto error;
2700 extra[j] = extra[--n_extra];
2703 free(extra);
2704 free(col_var);
2705 return 0;
2706 error:
2707 free(extra);
2708 free(col_var);
2709 return -1;
2712 /* Remove all samples with index n or greater, i.e., those samples
2713 * that were added since we saved this number of samples in
2714 * isl_tab_save_samples.
2716 static void drop_samples_since(struct isl_tab *tab, int n)
2718 int i;
2720 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
2721 if (tab->sample_index[i] < n)
2722 continue;
2724 if (i != tab->n_sample - 1) {
2725 int t = tab->sample_index[tab->n_sample-1];
2726 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
2727 tab->sample_index[i] = t;
2728 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
2730 tab->n_sample--;
2734 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
2735 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
2737 switch (undo->type) {
2738 case isl_tab_undo_empty:
2739 tab->empty = 0;
2740 break;
2741 case isl_tab_undo_nonneg:
2742 case isl_tab_undo_redundant:
2743 case isl_tab_undo_zero:
2744 case isl_tab_undo_allocate:
2745 case isl_tab_undo_relax:
2746 return perform_undo_var(tab, undo);
2747 case isl_tab_undo_bset_eq:
2748 return isl_basic_set_free_equality(tab->bset, 1);
2749 case isl_tab_undo_bset_ineq:
2750 return isl_basic_set_free_inequality(tab->bset, 1);
2751 case isl_tab_undo_bset_div:
2752 if (isl_basic_set_free_div(tab->bset, 1) < 0)
2753 return -1;
2754 if (tab->samples)
2755 tab->samples->n_col--;
2756 break;
2757 case isl_tab_undo_saved_basis:
2758 if (restore_basis(tab, undo->u.col_var) < 0)
2759 return -1;
2760 break;
2761 case isl_tab_undo_drop_sample:
2762 tab->n_outside--;
2763 break;
2764 case isl_tab_undo_saved_samples:
2765 drop_samples_since(tab, undo->u.n);
2766 break;
2767 case isl_tab_undo_callback:
2768 return undo->u.callback->run(undo->u.callback);
2769 default:
2770 isl_assert(tab->mat->ctx, 0, return -1);
2772 return 0;
2775 /* Return the tableau to the state it was in when the snapshot "snap"
2776 * was taken.
2778 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
2780 struct isl_tab_undo *undo, *next;
2782 if (!tab)
2783 return -1;
2785 tab->in_undo = 1;
2786 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
2787 next = undo->next;
2788 if (undo == snap)
2789 break;
2790 if (perform_undo(tab, undo) < 0) {
2791 free_undo(tab);
2792 tab->in_undo = 0;
2793 return -1;
2795 free(undo);
2797 tab->in_undo = 0;
2798 tab->top = undo;
2799 if (!undo)
2800 return -1;
2801 return 0;
2804 /* The given row "row" represents an inequality violated by all
2805 * points in the tableau. Check for some special cases of such
2806 * separating constraints.
2807 * In particular, if the row has been reduced to the constant -1,
2808 * then we know the inequality is adjacent (but opposite) to
2809 * an equality in the tableau.
2810 * If the row has been reduced to r = -1 -r', with r' an inequality
2811 * of the tableau, then the inequality is adjacent (but opposite)
2812 * to the inequality r'.
2814 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
2816 int pos;
2817 unsigned off = 2 + tab->M;
2819 if (tab->rational)
2820 return isl_ineq_separate;
2822 if (!isl_int_is_one(tab->mat->row[row][0]))
2823 return isl_ineq_separate;
2824 if (!isl_int_is_negone(tab->mat->row[row][1]))
2825 return isl_ineq_separate;
2827 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2828 tab->n_col - tab->n_dead);
2829 if (pos == -1)
2830 return isl_ineq_adj_eq;
2832 if (!isl_int_is_negone(tab->mat->row[row][off + tab->n_dead + pos]))
2833 return isl_ineq_separate;
2835 pos = isl_seq_first_non_zero(
2836 tab->mat->row[row] + off + tab->n_dead + pos + 1,
2837 tab->n_col - tab->n_dead - pos - 1);
2839 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
2842 /* Check the effect of inequality "ineq" on the tableau "tab".
2843 * The result may be
2844 * isl_ineq_redundant: satisfied by all points in the tableau
2845 * isl_ineq_separate: satisfied by no point in the tableau
2846 * isl_ineq_cut: satisfied by some by not all points
2847 * isl_ineq_adj_eq: adjacent to an equality
2848 * isl_ineq_adj_ineq: adjacent to an inequality.
2850 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
2852 enum isl_ineq_type type = isl_ineq_error;
2853 struct isl_tab_undo *snap = NULL;
2854 int con;
2855 int row;
2857 if (!tab)
2858 return isl_ineq_error;
2860 if (isl_tab_extend_cons(tab, 1) < 0)
2861 return isl_ineq_error;
2863 snap = isl_tab_snap(tab);
2865 con = isl_tab_add_row(tab, ineq);
2866 if (con < 0)
2867 goto error;
2869 row = tab->con[con].index;
2870 if (isl_tab_row_is_redundant(tab, row))
2871 type = isl_ineq_redundant;
2872 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
2873 (tab->rational ||
2874 isl_int_abs_ge(tab->mat->row[row][1],
2875 tab->mat->row[row][0]))) {
2876 int nonneg = at_least_zero(tab, &tab->con[con]);
2877 if (nonneg < 0)
2878 goto error;
2879 if (nonneg)
2880 type = isl_ineq_cut;
2881 else
2882 type = separation_type(tab, row);
2883 } else {
2884 int red = con_is_redundant(tab, &tab->con[con]);
2885 if (red < 0)
2886 goto error;
2887 if (!red)
2888 type = isl_ineq_cut;
2889 else
2890 type = isl_ineq_redundant;
2893 if (isl_tab_rollback(tab, snap))
2894 return isl_ineq_error;
2895 return type;
2896 error:
2897 return isl_ineq_error;
2900 void isl_tab_dump(struct isl_tab *tab, FILE *out, int indent)
2902 unsigned r, c;
2903 int i;
2905 if (!tab) {
2906 fprintf(out, "%*snull tab\n", indent, "");
2907 return;
2909 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
2910 tab->n_redundant, tab->n_dead);
2911 if (tab->rational)
2912 fprintf(out, ", rational");
2913 if (tab->empty)
2914 fprintf(out, ", empty");
2915 fprintf(out, "\n");
2916 fprintf(out, "%*s[", indent, "");
2917 for (i = 0; i < tab->n_var; ++i) {
2918 if (i)
2919 fprintf(out, (i == tab->n_param ||
2920 i == tab->n_var - tab->n_div) ? "; "
2921 : ", ");
2922 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
2923 tab->var[i].index,
2924 tab->var[i].is_zero ? " [=0]" :
2925 tab->var[i].is_redundant ? " [R]" : "");
2927 fprintf(out, "]\n");
2928 fprintf(out, "%*s[", indent, "");
2929 for (i = 0; i < tab->n_con; ++i) {
2930 if (i)
2931 fprintf(out, ", ");
2932 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
2933 tab->con[i].index,
2934 tab->con[i].is_zero ? " [=0]" :
2935 tab->con[i].is_redundant ? " [R]" : "");
2937 fprintf(out, "]\n");
2938 fprintf(out, "%*s[", indent, "");
2939 for (i = 0; i < tab->n_row; ++i) {
2940 const char *sign = "";
2941 if (i)
2942 fprintf(out, ", ");
2943 if (tab->row_sign) {
2944 if (tab->row_sign[i] == isl_tab_row_unknown)
2945 sign = "?";
2946 else if (tab->row_sign[i] == isl_tab_row_neg)
2947 sign = "-";
2948 else if (tab->row_sign[i] == isl_tab_row_pos)
2949 sign = "+";
2950 else
2951 sign = "+-";
2953 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
2954 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
2956 fprintf(out, "]\n");
2957 fprintf(out, "%*s[", indent, "");
2958 for (i = 0; i < tab->n_col; ++i) {
2959 if (i)
2960 fprintf(out, ", ");
2961 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
2962 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
2964 fprintf(out, "]\n");
2965 r = tab->mat->n_row;
2966 tab->mat->n_row = tab->n_row;
2967 c = tab->mat->n_col;
2968 tab->mat->n_col = 2 + tab->M + tab->n_col;
2969 isl_mat_dump(tab->mat, out, indent);
2970 tab->mat->n_row = r;
2971 tab->mat->n_col = c;
2972 if (tab->bset)
2973 isl_basic_set_dump(tab->bset, out, indent);