isl_scheduler: extract out shared add_constraints_dim_map
[isl.git] / isl_scheduler.c
blob366e7ef84221f1ee351b528a2f0353bf70a63f00
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
10 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
14 * CS 42112, 75589 Paris Cedex 12, France
17 #include <isl_ctx_private.h>
18 #include <isl_map_private.h>
19 #include <isl_space_private.h>
20 #include <isl_aff_private.h>
21 #include <isl/hash.h>
22 #include <isl/constraint.h>
23 #include <isl/schedule.h>
24 #include <isl_schedule_constraints.h>
25 #include <isl/schedule_node.h>
26 #include <isl_mat_private.h>
27 #include <isl_vec_private.h>
28 #include <isl/set.h>
29 #include <isl/union_set.h>
30 #include <isl_seq.h>
31 #include <isl_tab.h>
32 #include <isl_dim_map.h>
33 #include <isl/map_to_basic_set.h>
34 #include <isl_sort.h>
35 #include <isl_options_private.h>
36 #include <isl_tarjan.h>
37 #include <isl_morph.h>
38 #include <isl/ilp.h>
39 #include <isl_val_private.h>
42 * The scheduling algorithm implemented in this file was inspired by
43 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
44 * Parallelization and Locality Optimization in the Polyhedral Model".
48 /* Internal information about a node that is used during the construction
49 * of a schedule.
50 * space represents the original space in which the domain lives;
51 * that is, the space is not affected by compression
52 * sched is a matrix representation of the schedule being constructed
53 * for this node; if compressed is set, then this schedule is
54 * defined over the compressed domain space
55 * sched_map is an isl_map representation of the same (partial) schedule
56 * sched_map may be NULL; if compressed is set, then this map
57 * is defined over the uncompressed domain space
58 * rank is the number of linearly independent rows in the linear part
59 * of sched
60 * the columns of cmap represent a change of basis for the schedule
61 * coefficients; the first rank columns span the linear part of
62 * the schedule rows
63 * cinv is the inverse of cmap.
64 * ctrans is the transpose of cmap.
65 * start is the first variable in the LP problem in the sequences that
66 * represents the schedule coefficients of this node
67 * nvar is the dimension of the domain
68 * nparam is the number of parameters or 0 if we are not constructing
69 * a parametric schedule
71 * If compressed is set, then hull represents the constraints
72 * that were used to derive the compression, while compress and
73 * decompress map the original space to the compressed space and
74 * vice versa.
76 * scc is the index of SCC (or WCC) this node belongs to
78 * "cluster" is only used inside extract_clusters and identifies
79 * the cluster of SCCs that the node belongs to.
81 * coincident contains a boolean for each of the rows of the schedule,
82 * indicating whether the corresponding scheduling dimension satisfies
83 * the coincidence constraints in the sense that the corresponding
84 * dependence distances are zero.
86 * If the schedule_treat_coalescing option is set, then
87 * "sizes" contains the sizes of the (compressed) instance set
88 * in each direction. If there is no fixed size in a given direction,
89 * then the corresponding size value is set to infinity.
90 * If the schedule_treat_coalescing option or the schedule_max_coefficient
91 * option is set, then "max" contains the maximal values for
92 * schedule coefficients of the (compressed) variables. If no bound
93 * needs to be imposed on a particular variable, then the corresponding
94 * value is negative.
96 struct isl_sched_node {
97 isl_space *space;
98 int compressed;
99 isl_set *hull;
100 isl_multi_aff *compress;
101 isl_multi_aff *decompress;
102 isl_mat *sched;
103 isl_map *sched_map;
104 int rank;
105 isl_mat *cmap;
106 isl_mat *cinv;
107 isl_mat *ctrans;
108 int start;
109 int nvar;
110 int nparam;
112 int scc;
113 int cluster;
115 int *coincident;
117 isl_multi_val *sizes;
118 isl_vec *max;
121 static int node_has_space(const void *entry, const void *val)
123 struct isl_sched_node *node = (struct isl_sched_node *)entry;
124 isl_space *dim = (isl_space *)val;
126 return isl_space_is_equal(node->space, dim);
129 static int node_scc_exactly(struct isl_sched_node *node, int scc)
131 return node->scc == scc;
134 static int node_scc_at_most(struct isl_sched_node *node, int scc)
136 return node->scc <= scc;
139 static int node_scc_at_least(struct isl_sched_node *node, int scc)
141 return node->scc >= scc;
144 /* An edge in the dependence graph. An edge may be used to
145 * ensure validity of the generated schedule, to minimize the dependence
146 * distance or both
148 * map is the dependence relation, with i -> j in the map if j depends on i
149 * tagged_condition and tagged_validity contain the union of all tagged
150 * condition or conditional validity dependence relations that
151 * specialize the dependence relation "map"; that is,
152 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
153 * or "tagged_validity", then i -> j is an element of "map".
154 * If these fields are NULL, then they represent the empty relation.
155 * src is the source node
156 * dst is the sink node
158 * types is a bit vector containing the types of this edge.
159 * validity is set if the edge is used to ensure correctness
160 * coincidence is used to enforce zero dependence distances
161 * proximity is set if the edge is used to minimize dependence distances
162 * condition is set if the edge represents a condition
163 * for a conditional validity schedule constraint
164 * local can only be set for condition edges and indicates that
165 * the dependence distance over the edge should be zero
166 * conditional_validity is set if the edge is used to conditionally
167 * ensure correctness
169 * For validity edges, start and end mark the sequence of inequality
170 * constraints in the LP problem that encode the validity constraint
171 * corresponding to this edge.
173 * During clustering, an edge may be marked "no_merge" if it should
174 * not be used to merge clusters.
175 * The weight is also only used during clustering and it is
176 * an indication of how many schedule dimensions on either side
177 * of the schedule constraints can be aligned.
178 * If the weight is negative, then this means that this edge was postponed
179 * by has_bounded_distances or any_no_merge. The original weight can
180 * be retrieved by adding 1 + graph->max_weight, with "graph"
181 * the graph containing this edge.
183 struct isl_sched_edge {
184 isl_map *map;
185 isl_union_map *tagged_condition;
186 isl_union_map *tagged_validity;
188 struct isl_sched_node *src;
189 struct isl_sched_node *dst;
191 unsigned types;
193 int start;
194 int end;
196 int no_merge;
197 int weight;
200 /* Is "edge" marked as being of type "type"?
202 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
204 return ISL_FL_ISSET(edge->types, 1 << type);
207 /* Mark "edge" as being of type "type".
209 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
211 ISL_FL_SET(edge->types, 1 << type);
214 /* No longer mark "edge" as being of type "type"?
216 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
218 ISL_FL_CLR(edge->types, 1 << type);
221 /* Is "edge" marked as a validity edge?
223 static int is_validity(struct isl_sched_edge *edge)
225 return is_type(edge, isl_edge_validity);
228 /* Mark "edge" as a validity edge.
230 static void set_validity(struct isl_sched_edge *edge)
232 set_type(edge, isl_edge_validity);
235 /* Is "edge" marked as a proximity edge?
237 static int is_proximity(struct isl_sched_edge *edge)
239 return is_type(edge, isl_edge_proximity);
242 /* Is "edge" marked as a local edge?
244 static int is_local(struct isl_sched_edge *edge)
246 return is_type(edge, isl_edge_local);
249 /* Mark "edge" as a local edge.
251 static void set_local(struct isl_sched_edge *edge)
253 set_type(edge, isl_edge_local);
256 /* No longer mark "edge" as a local edge.
258 static void clear_local(struct isl_sched_edge *edge)
260 clear_type(edge, isl_edge_local);
263 /* Is "edge" marked as a coincidence edge?
265 static int is_coincidence(struct isl_sched_edge *edge)
267 return is_type(edge, isl_edge_coincidence);
270 /* Is "edge" marked as a condition edge?
272 static int is_condition(struct isl_sched_edge *edge)
274 return is_type(edge, isl_edge_condition);
277 /* Is "edge" marked as a conditional validity edge?
279 static int is_conditional_validity(struct isl_sched_edge *edge)
281 return is_type(edge, isl_edge_conditional_validity);
284 /* Internal information about the dependence graph used during
285 * the construction of the schedule.
287 * intra_hmap is a cache, mapping dependence relations to their dual,
288 * for dependences from a node to itself
289 * inter_hmap is a cache, mapping dependence relations to their dual,
290 * for dependences between distinct nodes
291 * if compression is involved then the key for these maps
292 * is the original, uncompressed dependence relation, while
293 * the value is the dual of the compressed dependence relation.
295 * n is the number of nodes
296 * node is the list of nodes
297 * maxvar is the maximal number of variables over all nodes
298 * max_row is the allocated number of rows in the schedule
299 * n_row is the current (maximal) number of linearly independent
300 * rows in the node schedules
301 * n_total_row is the current number of rows in the node schedules
302 * band_start is the starting row in the node schedules of the current band
303 * root is set if this graph is the original dependence graph,
304 * without any splitting
306 * sorted contains a list of node indices sorted according to the
307 * SCC to which a node belongs
309 * n_edge is the number of edges
310 * edge is the list of edges
311 * max_edge contains the maximal number of edges of each type;
312 * in particular, it contains the number of edges in the inital graph.
313 * edge_table contains pointers into the edge array, hashed on the source
314 * and sink spaces; there is one such table for each type;
315 * a given edge may be referenced from more than one table
316 * if the corresponding relation appears in more than one of the
317 * sets of dependences; however, for each type there is only
318 * a single edge between a given pair of source and sink space
319 * in the entire graph
321 * node_table contains pointers into the node array, hashed on the space
323 * region contains a list of variable sequences that should be non-trivial
325 * lp contains the (I)LP problem used to obtain new schedule rows
327 * src_scc and dst_scc are the source and sink SCCs of an edge with
328 * conflicting constraints
330 * scc represents the number of components
331 * weak is set if the components are weakly connected
333 * max_weight is used during clustering and represents the maximal
334 * weight of the relevant proximity edges.
336 struct isl_sched_graph {
337 isl_map_to_basic_set *intra_hmap;
338 isl_map_to_basic_set *inter_hmap;
340 struct isl_sched_node *node;
341 int n;
342 int maxvar;
343 int max_row;
344 int n_row;
346 int *sorted;
348 int n_total_row;
349 int band_start;
351 int root;
353 struct isl_sched_edge *edge;
354 int n_edge;
355 int max_edge[isl_edge_last + 1];
356 struct isl_hash_table *edge_table[isl_edge_last + 1];
358 struct isl_hash_table *node_table;
359 struct isl_region *region;
361 isl_basic_set *lp;
363 int src_scc;
364 int dst_scc;
366 int scc;
367 int weak;
369 int max_weight;
372 /* Initialize node_table based on the list of nodes.
374 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
376 int i;
378 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
379 if (!graph->node_table)
380 return -1;
382 for (i = 0; i < graph->n; ++i) {
383 struct isl_hash_table_entry *entry;
384 uint32_t hash;
386 hash = isl_space_get_hash(graph->node[i].space);
387 entry = isl_hash_table_find(ctx, graph->node_table, hash,
388 &node_has_space,
389 graph->node[i].space, 1);
390 if (!entry)
391 return -1;
392 entry->data = &graph->node[i];
395 return 0;
398 /* Return a pointer to the node that lives within the given space,
399 * or NULL if there is no such node.
401 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
402 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
404 struct isl_hash_table_entry *entry;
405 uint32_t hash;
407 hash = isl_space_get_hash(dim);
408 entry = isl_hash_table_find(ctx, graph->node_table, hash,
409 &node_has_space, dim, 0);
411 return entry ? entry->data : NULL;
414 static int edge_has_src_and_dst(const void *entry, const void *val)
416 const struct isl_sched_edge *edge = entry;
417 const struct isl_sched_edge *temp = val;
419 return edge->src == temp->src && edge->dst == temp->dst;
422 /* Add the given edge to graph->edge_table[type].
424 static isl_stat graph_edge_table_add(isl_ctx *ctx,
425 struct isl_sched_graph *graph, enum isl_edge_type type,
426 struct isl_sched_edge *edge)
428 struct isl_hash_table_entry *entry;
429 uint32_t hash;
431 hash = isl_hash_init();
432 hash = isl_hash_builtin(hash, edge->src);
433 hash = isl_hash_builtin(hash, edge->dst);
434 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
435 &edge_has_src_and_dst, edge, 1);
436 if (!entry)
437 return isl_stat_error;
438 entry->data = edge;
440 return isl_stat_ok;
443 /* Allocate the edge_tables based on the maximal number of edges of
444 * each type.
446 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
448 int i;
450 for (i = 0; i <= isl_edge_last; ++i) {
451 graph->edge_table[i] = isl_hash_table_alloc(ctx,
452 graph->max_edge[i]);
453 if (!graph->edge_table[i])
454 return -1;
457 return 0;
460 /* If graph->edge_table[type] contains an edge from the given source
461 * to the given destination, then return the hash table entry of this edge.
462 * Otherwise, return NULL.
464 static struct isl_hash_table_entry *graph_find_edge_entry(
465 struct isl_sched_graph *graph,
466 enum isl_edge_type type,
467 struct isl_sched_node *src, struct isl_sched_node *dst)
469 isl_ctx *ctx = isl_space_get_ctx(src->space);
470 uint32_t hash;
471 struct isl_sched_edge temp = { .src = src, .dst = dst };
473 hash = isl_hash_init();
474 hash = isl_hash_builtin(hash, temp.src);
475 hash = isl_hash_builtin(hash, temp.dst);
476 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
477 &edge_has_src_and_dst, &temp, 0);
481 /* If graph->edge_table[type] contains an edge from the given source
482 * to the given destination, then return this edge.
483 * Otherwise, return NULL.
485 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
486 enum isl_edge_type type,
487 struct isl_sched_node *src, struct isl_sched_node *dst)
489 struct isl_hash_table_entry *entry;
491 entry = graph_find_edge_entry(graph, type, src, dst);
492 if (!entry)
493 return NULL;
495 return entry->data;
498 /* Check whether the dependence graph has an edge of the given type
499 * between the given two nodes.
501 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
502 enum isl_edge_type type,
503 struct isl_sched_node *src, struct isl_sched_node *dst)
505 struct isl_sched_edge *edge;
506 isl_bool empty;
508 edge = graph_find_edge(graph, type, src, dst);
509 if (!edge)
510 return 0;
512 empty = isl_map_plain_is_empty(edge->map);
513 if (empty < 0)
514 return isl_bool_error;
516 return !empty;
519 /* Look for any edge with the same src, dst and map fields as "model".
521 * Return the matching edge if one can be found.
522 * Return "model" if no matching edge is found.
523 * Return NULL on error.
525 static struct isl_sched_edge *graph_find_matching_edge(
526 struct isl_sched_graph *graph, struct isl_sched_edge *model)
528 enum isl_edge_type i;
529 struct isl_sched_edge *edge;
531 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
532 int is_equal;
534 edge = graph_find_edge(graph, i, model->src, model->dst);
535 if (!edge)
536 continue;
537 is_equal = isl_map_plain_is_equal(model->map, edge->map);
538 if (is_equal < 0)
539 return NULL;
540 if (is_equal)
541 return edge;
544 return model;
547 /* Remove the given edge from all the edge_tables that refer to it.
549 static void graph_remove_edge(struct isl_sched_graph *graph,
550 struct isl_sched_edge *edge)
552 isl_ctx *ctx = isl_map_get_ctx(edge->map);
553 enum isl_edge_type i;
555 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
556 struct isl_hash_table_entry *entry;
558 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
559 if (!entry)
560 continue;
561 if (entry->data != edge)
562 continue;
563 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
567 /* Check whether the dependence graph has any edge
568 * between the given two nodes.
570 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
571 struct isl_sched_node *src, struct isl_sched_node *dst)
573 enum isl_edge_type i;
574 isl_bool r;
576 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
577 r = graph_has_edge(graph, i, src, dst);
578 if (r < 0 || r)
579 return r;
582 return r;
585 /* Check whether the dependence graph has a validity edge
586 * between the given two nodes.
588 * Conditional validity edges are essentially validity edges that
589 * can be ignored if the corresponding condition edges are iteration private.
590 * Here, we are only checking for the presence of validity
591 * edges, so we need to consider the conditional validity edges too.
592 * In particular, this function is used during the detection
593 * of strongly connected components and we cannot ignore
594 * conditional validity edges during this detection.
596 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
597 struct isl_sched_node *src, struct isl_sched_node *dst)
599 isl_bool r;
601 r = graph_has_edge(graph, isl_edge_validity, src, dst);
602 if (r < 0 || r)
603 return r;
605 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
608 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
609 int n_node, int n_edge)
611 int i;
613 graph->n = n_node;
614 graph->n_edge = n_edge;
615 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
616 graph->sorted = isl_calloc_array(ctx, int, graph->n);
617 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
618 graph->edge = isl_calloc_array(ctx,
619 struct isl_sched_edge, graph->n_edge);
621 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
622 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
624 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
625 !graph->sorted)
626 return -1;
628 for(i = 0; i < graph->n; ++i)
629 graph->sorted[i] = i;
631 return 0;
634 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
636 int i;
638 isl_map_to_basic_set_free(graph->intra_hmap);
639 isl_map_to_basic_set_free(graph->inter_hmap);
641 if (graph->node)
642 for (i = 0; i < graph->n; ++i) {
643 isl_space_free(graph->node[i].space);
644 isl_set_free(graph->node[i].hull);
645 isl_multi_aff_free(graph->node[i].compress);
646 isl_multi_aff_free(graph->node[i].decompress);
647 isl_mat_free(graph->node[i].sched);
648 isl_map_free(graph->node[i].sched_map);
649 isl_mat_free(graph->node[i].cmap);
650 isl_mat_free(graph->node[i].cinv);
651 isl_mat_free(graph->node[i].ctrans);
652 if (graph->root)
653 free(graph->node[i].coincident);
654 isl_multi_val_free(graph->node[i].sizes);
655 isl_vec_free(graph->node[i].max);
657 free(graph->node);
658 free(graph->sorted);
659 if (graph->edge)
660 for (i = 0; i < graph->n_edge; ++i) {
661 isl_map_free(graph->edge[i].map);
662 isl_union_map_free(graph->edge[i].tagged_condition);
663 isl_union_map_free(graph->edge[i].tagged_validity);
665 free(graph->edge);
666 free(graph->region);
667 for (i = 0; i <= isl_edge_last; ++i)
668 isl_hash_table_free(ctx, graph->edge_table[i]);
669 isl_hash_table_free(ctx, graph->node_table);
670 isl_basic_set_free(graph->lp);
673 /* For each "set" on which this function is called, increment
674 * graph->n by one and update graph->maxvar.
676 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
678 struct isl_sched_graph *graph = user;
679 int nvar = isl_set_dim(set, isl_dim_set);
681 graph->n++;
682 if (nvar > graph->maxvar)
683 graph->maxvar = nvar;
685 isl_set_free(set);
687 return isl_stat_ok;
690 /* Compute the number of rows that should be allocated for the schedule.
691 * In particular, we need one row for each variable or one row
692 * for each basic map in the dependences.
693 * Note that it is practically impossible to exhaust both
694 * the number of dependences and the number of variables.
696 static isl_stat compute_max_row(struct isl_sched_graph *graph,
697 __isl_keep isl_schedule_constraints *sc)
699 int n_edge;
700 isl_stat r;
701 isl_union_set *domain;
703 graph->n = 0;
704 graph->maxvar = 0;
705 domain = isl_schedule_constraints_get_domain(sc);
706 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
707 isl_union_set_free(domain);
708 if (r < 0)
709 return isl_stat_error;
710 n_edge = isl_schedule_constraints_n_basic_map(sc);
711 if (n_edge < 0)
712 return isl_stat_error;
713 graph->max_row = n_edge + graph->maxvar;
715 return isl_stat_ok;
718 /* Does "bset" have any defining equalities for its set variables?
720 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
722 int i, n;
724 if (!bset)
725 return isl_bool_error;
727 n = isl_basic_set_dim(bset, isl_dim_set);
728 for (i = 0; i < n; ++i) {
729 isl_bool has;
731 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
732 NULL);
733 if (has < 0 || has)
734 return has;
737 return isl_bool_false;
740 /* Set the entries of node->max to the value of the schedule_max_coefficient
741 * option, if set.
743 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
745 int max;
747 max = isl_options_get_schedule_max_coefficient(ctx);
748 if (max == -1)
749 return isl_stat_ok;
751 node->max = isl_vec_alloc(ctx, node->nvar);
752 node->max = isl_vec_set_si(node->max, max);
753 if (!node->max)
754 return isl_stat_error;
756 return isl_stat_ok;
759 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
760 * option (if set) and half of the minimum of the sizes in the other
761 * dimensions. If the minimum of the sizes is one, half of the size
762 * is zero and this value is reset to one.
763 * If the global minimum is unbounded (i.e., if both
764 * the schedule_max_coefficient is not set and the sizes in the other
765 * dimensions are unbounded), then store a negative value.
766 * If the schedule coefficient is close to the size of the instance set
767 * in another dimension, then the schedule may represent a loop
768 * coalescing transformation (especially if the coefficient
769 * in that other dimension is one). Forcing the coefficient to be
770 * smaller than or equal to half the minimal size should avoid this
771 * situation.
773 static isl_stat compute_max_coefficient(isl_ctx *ctx,
774 struct isl_sched_node *node)
776 int max;
777 int i, j;
778 isl_vec *v;
780 max = isl_options_get_schedule_max_coefficient(ctx);
781 v = isl_vec_alloc(ctx, node->nvar);
782 if (!v)
783 return isl_stat_error;
785 for (i = 0; i < node->nvar; ++i) {
786 isl_int_set_si(v->el[i], max);
787 isl_int_mul_si(v->el[i], v->el[i], 2);
790 for (i = 0; i < node->nvar; ++i) {
791 isl_val *size;
793 size = isl_multi_val_get_val(node->sizes, i);
794 if (!size)
795 goto error;
796 if (!isl_val_is_int(size)) {
797 isl_val_free(size);
798 continue;
800 for (j = 0; j < node->nvar; ++j) {
801 if (j == i)
802 continue;
803 if (isl_int_is_neg(v->el[j]) ||
804 isl_int_gt(v->el[j], size->n))
805 isl_int_set(v->el[j], size->n);
807 isl_val_free(size);
810 for (i = 0; i < node->nvar; ++i) {
811 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
812 if (isl_int_is_zero(v->el[i]))
813 isl_int_set_si(v->el[i], 1);
816 node->max = v;
817 return isl_stat_ok;
818 error:
819 isl_vec_free(v);
820 return isl_stat_error;
823 /* Compute and return the size of "set" in dimension "dim".
824 * The size is taken to be the difference in values for that variable
825 * for fixed values of the other variables.
826 * In particular, the variable is first isolated from the other variables
827 * in the range of a map
829 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
831 * and then duplicated
833 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
835 * The shared variables are then projected out and the maximal value
836 * of i_dim' - i_dim is computed.
838 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
840 isl_map *map;
841 isl_local_space *ls;
842 isl_aff *obj;
843 isl_val *v;
845 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
846 map = isl_map_project_out(map, isl_dim_in, dim, 1);
847 map = isl_map_range_product(map, isl_map_copy(map));
848 map = isl_set_unwrap(isl_map_range(map));
849 set = isl_map_deltas(map);
850 ls = isl_local_space_from_space(isl_set_get_space(set));
851 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
852 v = isl_set_max_val(set, obj);
853 isl_aff_free(obj);
854 isl_set_free(set);
856 return v;
859 /* Compute the size of the instance set "set" of "node", after compression,
860 * as well as bounds on the corresponding coefficients, if needed.
862 * The sizes are needed when the schedule_treat_coalescing option is set.
863 * The bounds are needed when the schedule_treat_coalescing option or
864 * the schedule_max_coefficient option is set.
866 * If the schedule_treat_coalescing option is not set, then at most
867 * the bounds need to be set and this is done in set_max_coefficient.
868 * Otherwise, compress the domain if needed, compute the size
869 * in each direction and store the results in node->size.
870 * Finally, set the bounds on the coefficients based on the sizes
871 * and the schedule_max_coefficient option in compute_max_coefficient.
873 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
874 __isl_take isl_set *set)
876 int j, n;
877 isl_multi_val *mv;
879 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
880 isl_set_free(set);
881 return set_max_coefficient(ctx, node);
884 if (node->compressed)
885 set = isl_set_preimage_multi_aff(set,
886 isl_multi_aff_copy(node->decompress));
887 mv = isl_multi_val_zero(isl_set_get_space(set));
888 n = isl_set_dim(set, isl_dim_set);
889 for (j = 0; j < n; ++j) {
890 isl_val *v;
892 v = compute_size(isl_set_copy(set), j);
893 mv = isl_multi_val_set_val(mv, j, v);
895 node->sizes = mv;
896 isl_set_free(set);
897 if (!node->sizes)
898 return isl_stat_error;
899 return compute_max_coefficient(ctx, node);
902 /* Add a new node to the graph representing the given instance set.
903 * "nvar" is the (possibly compressed) number of variables and
904 * may be smaller than then number of set variables in "set"
905 * if "compressed" is set.
906 * If "compressed" is set, then "hull" represents the constraints
907 * that were used to derive the compression, while "compress" and
908 * "decompress" map the original space to the compressed space and
909 * vice versa.
910 * If "compressed" is not set, then "hull", "compress" and "decompress"
911 * should be NULL.
913 * Compute the size of the instance set and bounds on the coefficients,
914 * if needed.
916 static isl_stat add_node(struct isl_sched_graph *graph,
917 __isl_take isl_set *set, int nvar, int compressed,
918 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
919 __isl_take isl_multi_aff *decompress)
921 int nparam;
922 isl_ctx *ctx;
923 isl_mat *sched;
924 isl_space *space;
925 int *coincident;
926 struct isl_sched_node *node;
928 if (!set)
929 return isl_stat_error;
931 ctx = isl_set_get_ctx(set);
932 nparam = isl_set_dim(set, isl_dim_param);
933 if (!ctx->opt->schedule_parametric)
934 nparam = 0;
935 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
936 node = &graph->node[graph->n];
937 graph->n++;
938 space = isl_set_get_space(set);
939 node->space = space;
940 node->nvar = nvar;
941 node->nparam = nparam;
942 node->sched = sched;
943 node->sched_map = NULL;
944 coincident = isl_calloc_array(ctx, int, graph->max_row);
945 node->coincident = coincident;
946 node->compressed = compressed;
947 node->hull = hull;
948 node->compress = compress;
949 node->decompress = decompress;
950 if (compute_sizes_and_max(ctx, node, set) < 0)
951 return isl_stat_error;
953 if (!space || !sched || (graph->max_row && !coincident))
954 return isl_stat_error;
955 if (compressed && (!hull || !compress || !decompress))
956 return isl_stat_error;
958 return isl_stat_ok;
961 /* Add a new node to the graph representing the given set.
963 * If any of the set variables is defined by an equality, then
964 * we perform variable compression such that we can perform
965 * the scheduling on the compressed domain.
967 static isl_stat extract_node(__isl_take isl_set *set, void *user)
969 int nvar;
970 isl_bool has_equality;
971 isl_basic_set *hull;
972 isl_set *hull_set;
973 isl_morph *morph;
974 isl_multi_aff *compress, *decompress;
975 struct isl_sched_graph *graph = user;
977 hull = isl_set_affine_hull(isl_set_copy(set));
978 hull = isl_basic_set_remove_divs(hull);
979 nvar = isl_set_dim(set, isl_dim_set);
980 has_equality = has_any_defining_equality(hull);
982 if (has_equality < 0)
983 goto error;
984 if (!has_equality) {
985 isl_basic_set_free(hull);
986 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
989 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
990 nvar = isl_morph_ran_dim(morph, isl_dim_set);
991 compress = isl_morph_get_var_multi_aff(morph);
992 morph = isl_morph_inverse(morph);
993 decompress = isl_morph_get_var_multi_aff(morph);
994 isl_morph_free(morph);
996 hull_set = isl_set_from_basic_set(hull);
997 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
998 error:
999 isl_basic_set_free(hull);
1000 isl_set_free(set);
1001 return isl_stat_error;
1004 struct isl_extract_edge_data {
1005 enum isl_edge_type type;
1006 struct isl_sched_graph *graph;
1009 /* Merge edge2 into edge1, freeing the contents of edge2.
1010 * Return 0 on success and -1 on failure.
1012 * edge1 and edge2 are assumed to have the same value for the map field.
1014 static int merge_edge(struct isl_sched_edge *edge1,
1015 struct isl_sched_edge *edge2)
1017 edge1->types |= edge2->types;
1018 isl_map_free(edge2->map);
1020 if (is_condition(edge2)) {
1021 if (!edge1->tagged_condition)
1022 edge1->tagged_condition = edge2->tagged_condition;
1023 else
1024 edge1->tagged_condition =
1025 isl_union_map_union(edge1->tagged_condition,
1026 edge2->tagged_condition);
1029 if (is_conditional_validity(edge2)) {
1030 if (!edge1->tagged_validity)
1031 edge1->tagged_validity = edge2->tagged_validity;
1032 else
1033 edge1->tagged_validity =
1034 isl_union_map_union(edge1->tagged_validity,
1035 edge2->tagged_validity);
1038 if (is_condition(edge2) && !edge1->tagged_condition)
1039 return -1;
1040 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1041 return -1;
1043 return 0;
1046 /* Insert dummy tags in domain and range of "map".
1048 * In particular, if "map" is of the form
1050 * A -> B
1052 * then return
1054 * [A -> dummy_tag] -> [B -> dummy_tag]
1056 * where the dummy_tags are identical and equal to any dummy tags
1057 * introduced by any other call to this function.
1059 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1061 static char dummy;
1062 isl_ctx *ctx;
1063 isl_id *id;
1064 isl_space *space;
1065 isl_set *domain, *range;
1067 ctx = isl_map_get_ctx(map);
1069 id = isl_id_alloc(ctx, NULL, &dummy);
1070 space = isl_space_params(isl_map_get_space(map));
1071 space = isl_space_set_from_params(space);
1072 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1073 space = isl_space_map_from_set(space);
1075 domain = isl_map_wrap(map);
1076 range = isl_map_wrap(isl_map_universe(space));
1077 map = isl_map_from_domain_and_range(domain, range);
1078 map = isl_map_zip(map);
1080 return map;
1083 /* Given that at least one of "src" or "dst" is compressed, return
1084 * a map between the spaces of these nodes restricted to the affine
1085 * hull that was used in the compression.
1087 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1088 struct isl_sched_node *dst)
1090 isl_set *dom, *ran;
1092 if (src->compressed)
1093 dom = isl_set_copy(src->hull);
1094 else
1095 dom = isl_set_universe(isl_space_copy(src->space));
1096 if (dst->compressed)
1097 ran = isl_set_copy(dst->hull);
1098 else
1099 ran = isl_set_universe(isl_space_copy(dst->space));
1101 return isl_map_from_domain_and_range(dom, ran);
1104 /* Intersect the domains of the nested relations in domain and range
1105 * of "tagged" with "map".
1107 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1108 __isl_keep isl_map *map)
1110 isl_set *set;
1112 tagged = isl_map_zip(tagged);
1113 set = isl_map_wrap(isl_map_copy(map));
1114 tagged = isl_map_intersect_domain(tagged, set);
1115 tagged = isl_map_zip(tagged);
1116 return tagged;
1119 /* Return a pointer to the node that lives in the domain space of "map"
1120 * or NULL if there is no such node.
1122 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1123 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1125 struct isl_sched_node *node;
1126 isl_space *space;
1128 space = isl_space_domain(isl_map_get_space(map));
1129 node = graph_find_node(ctx, graph, space);
1130 isl_space_free(space);
1132 return node;
1135 /* Return a pointer to the node that lives in the range space of "map"
1136 * or NULL if there is no such node.
1138 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1139 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1141 struct isl_sched_node *node;
1142 isl_space *space;
1144 space = isl_space_range(isl_map_get_space(map));
1145 node = graph_find_node(ctx, graph, space);
1146 isl_space_free(space);
1148 return node;
1151 /* Add a new edge to the graph based on the given map
1152 * and add it to data->graph->edge_table[data->type].
1153 * If a dependence relation of a given type happens to be identical
1154 * to one of the dependence relations of a type that was added before,
1155 * then we don't create a new edge, but instead mark the original edge
1156 * as also representing a dependence of the current type.
1158 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1159 * may be specified as "tagged" dependence relations. That is, "map"
1160 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1161 * the dependence on iterations and a and b are tags.
1162 * edge->map is set to the relation containing the elements i -> j,
1163 * while edge->tagged_condition and edge->tagged_validity contain
1164 * the union of all the "map" relations
1165 * for which extract_edge is called that result in the same edge->map.
1167 * If the source or the destination node is compressed, then
1168 * intersect both "map" and "tagged" with the constraints that
1169 * were used to construct the compression.
1170 * This ensures that there are no schedule constraints defined
1171 * outside of these domains, while the scheduler no longer has
1172 * any control over those outside parts.
1174 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1176 isl_ctx *ctx = isl_map_get_ctx(map);
1177 struct isl_extract_edge_data *data = user;
1178 struct isl_sched_graph *graph = data->graph;
1179 struct isl_sched_node *src, *dst;
1180 struct isl_sched_edge *edge;
1181 isl_map *tagged = NULL;
1183 if (data->type == isl_edge_condition ||
1184 data->type == isl_edge_conditional_validity) {
1185 if (isl_map_can_zip(map)) {
1186 tagged = isl_map_copy(map);
1187 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1188 } else {
1189 tagged = insert_dummy_tags(isl_map_copy(map));
1193 src = find_domain_node(ctx, graph, map);
1194 dst = find_range_node(ctx, graph, map);
1196 if (!src || !dst) {
1197 isl_map_free(map);
1198 isl_map_free(tagged);
1199 return isl_stat_ok;
1202 if (src->compressed || dst->compressed) {
1203 isl_map *hull;
1204 hull = extract_hull(src, dst);
1205 if (tagged)
1206 tagged = map_intersect_domains(tagged, hull);
1207 map = isl_map_intersect(map, hull);
1210 graph->edge[graph->n_edge].src = src;
1211 graph->edge[graph->n_edge].dst = dst;
1212 graph->edge[graph->n_edge].map = map;
1213 graph->edge[graph->n_edge].types = 0;
1214 graph->edge[graph->n_edge].tagged_condition = NULL;
1215 graph->edge[graph->n_edge].tagged_validity = NULL;
1216 set_type(&graph->edge[graph->n_edge], data->type);
1217 if (data->type == isl_edge_condition)
1218 graph->edge[graph->n_edge].tagged_condition =
1219 isl_union_map_from_map(tagged);
1220 if (data->type == isl_edge_conditional_validity)
1221 graph->edge[graph->n_edge].tagged_validity =
1222 isl_union_map_from_map(tagged);
1224 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1225 if (!edge) {
1226 graph->n_edge++;
1227 return isl_stat_error;
1229 if (edge == &graph->edge[graph->n_edge])
1230 return graph_edge_table_add(ctx, graph, data->type,
1231 &graph->edge[graph->n_edge++]);
1233 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1234 return -1;
1236 return graph_edge_table_add(ctx, graph, data->type, edge);
1239 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1241 * The context is included in the domain before the nodes of
1242 * the graphs are extracted in order to be able to exploit
1243 * any possible additional equalities.
1244 * Note that this intersection is only performed locally here.
1246 static isl_stat graph_init(struct isl_sched_graph *graph,
1247 __isl_keep isl_schedule_constraints *sc)
1249 isl_ctx *ctx;
1250 isl_union_set *domain;
1251 isl_union_map *c;
1252 struct isl_extract_edge_data data;
1253 enum isl_edge_type i;
1254 isl_stat r;
1256 if (!sc)
1257 return isl_stat_error;
1259 ctx = isl_schedule_constraints_get_ctx(sc);
1261 domain = isl_schedule_constraints_get_domain(sc);
1262 graph->n = isl_union_set_n_set(domain);
1263 isl_union_set_free(domain);
1265 if (graph_alloc(ctx, graph, graph->n,
1266 isl_schedule_constraints_n_map(sc)) < 0)
1267 return isl_stat_error;
1269 if (compute_max_row(graph, sc) < 0)
1270 return isl_stat_error;
1271 graph->root = 1;
1272 graph->n = 0;
1273 domain = isl_schedule_constraints_get_domain(sc);
1274 domain = isl_union_set_intersect_params(domain,
1275 isl_schedule_constraints_get_context(sc));
1276 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1277 isl_union_set_free(domain);
1278 if (r < 0)
1279 return isl_stat_error;
1280 if (graph_init_table(ctx, graph) < 0)
1281 return isl_stat_error;
1282 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1283 c = isl_schedule_constraints_get(sc, i);
1284 graph->max_edge[i] = isl_union_map_n_map(c);
1285 isl_union_map_free(c);
1286 if (!c)
1287 return isl_stat_error;
1289 if (graph_init_edge_tables(ctx, graph) < 0)
1290 return isl_stat_error;
1291 graph->n_edge = 0;
1292 data.graph = graph;
1293 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1294 isl_stat r;
1296 data.type = i;
1297 c = isl_schedule_constraints_get(sc, i);
1298 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1299 isl_union_map_free(c);
1300 if (r < 0)
1301 return isl_stat_error;
1304 return isl_stat_ok;
1307 /* Check whether there is any dependence from node[j] to node[i]
1308 * or from node[i] to node[j].
1310 static isl_bool node_follows_weak(int i, int j, void *user)
1312 isl_bool f;
1313 struct isl_sched_graph *graph = user;
1315 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1316 if (f < 0 || f)
1317 return f;
1318 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1321 /* Check whether there is a (conditional) validity dependence from node[j]
1322 * to node[i], forcing node[i] to follow node[j].
1324 static isl_bool node_follows_strong(int i, int j, void *user)
1326 struct isl_sched_graph *graph = user;
1328 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1331 /* Use Tarjan's algorithm for computing the strongly connected components
1332 * in the dependence graph only considering those edges defined by "follows".
1334 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1335 isl_bool (*follows)(int i, int j, void *user))
1337 int i, n;
1338 struct isl_tarjan_graph *g = NULL;
1340 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1341 if (!g)
1342 return -1;
1344 graph->scc = 0;
1345 i = 0;
1346 n = graph->n;
1347 while (n) {
1348 while (g->order[i] != -1) {
1349 graph->node[g->order[i]].scc = graph->scc;
1350 --n;
1351 ++i;
1353 ++i;
1354 graph->scc++;
1357 isl_tarjan_graph_free(g);
1359 return 0;
1362 /* Apply Tarjan's algorithm to detect the strongly connected components
1363 * in the dependence graph.
1364 * Only consider the (conditional) validity dependences and clear "weak".
1366 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1368 graph->weak = 0;
1369 return detect_ccs(ctx, graph, &node_follows_strong);
1372 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1373 * in the dependence graph.
1374 * Consider all dependences and set "weak".
1376 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1378 graph->weak = 1;
1379 return detect_ccs(ctx, graph, &node_follows_weak);
1382 static int cmp_scc(const void *a, const void *b, void *data)
1384 struct isl_sched_graph *graph = data;
1385 const int *i1 = a;
1386 const int *i2 = b;
1388 return graph->node[*i1].scc - graph->node[*i2].scc;
1391 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1393 static int sort_sccs(struct isl_sched_graph *graph)
1395 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1398 /* Given a dependence relation R from "node" to itself,
1399 * construct the set of coefficients of valid constraints for elements
1400 * in that dependence relation.
1401 * In particular, the result contains tuples of coefficients
1402 * c_0, c_n, c_x such that
1404 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1406 * or, equivalently,
1408 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1410 * We choose here to compute the dual of delta R.
1411 * Alternatively, we could have computed the dual of R, resulting
1412 * in a set of tuples c_0, c_n, c_x, c_y, and then
1413 * plugged in (c_0, c_n, c_x, -c_x).
1415 * If "node" has been compressed, then the dependence relation
1416 * is also compressed before the set of coefficients is computed.
1418 static __isl_give isl_basic_set *intra_coefficients(
1419 struct isl_sched_graph *graph, struct isl_sched_node *node,
1420 __isl_take isl_map *map)
1422 isl_set *delta;
1423 isl_map *key;
1424 isl_basic_set *coef;
1425 isl_maybe_isl_basic_set m;
1427 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1428 if (m.valid < 0 || m.valid) {
1429 isl_map_free(map);
1430 return m.value;
1433 key = isl_map_copy(map);
1434 if (node->compressed) {
1435 map = isl_map_preimage_domain_multi_aff(map,
1436 isl_multi_aff_copy(node->decompress));
1437 map = isl_map_preimage_range_multi_aff(map,
1438 isl_multi_aff_copy(node->decompress));
1440 delta = isl_set_remove_divs(isl_map_deltas(map));
1441 coef = isl_set_coefficients(delta);
1442 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1443 isl_basic_set_copy(coef));
1445 return coef;
1448 /* Given a dependence relation R, construct the set of coefficients
1449 * of valid constraints for elements in that dependence relation.
1450 * In particular, the result contains tuples of coefficients
1451 * c_0, c_n, c_x, c_y such that
1453 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1455 * If the source or destination nodes of "edge" have been compressed,
1456 * then the dependence relation is also compressed before
1457 * the set of coefficients is computed.
1459 static __isl_give isl_basic_set *inter_coefficients(
1460 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1461 __isl_take isl_map *map)
1463 isl_set *set;
1464 isl_map *key;
1465 isl_basic_set *coef;
1466 isl_maybe_isl_basic_set m;
1468 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1469 if (m.valid < 0 || m.valid) {
1470 isl_map_free(map);
1471 return m.value;
1474 key = isl_map_copy(map);
1475 if (edge->src->compressed)
1476 map = isl_map_preimage_domain_multi_aff(map,
1477 isl_multi_aff_copy(edge->src->decompress));
1478 if (edge->dst->compressed)
1479 map = isl_map_preimage_range_multi_aff(map,
1480 isl_multi_aff_copy(edge->dst->decompress));
1481 set = isl_map_wrap(isl_map_remove_divs(map));
1482 coef = isl_set_coefficients(set);
1483 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1484 isl_basic_set_copy(coef));
1486 return coef;
1489 /* Return the position of the coefficients of the variables in
1490 * the coefficients constraints "coef".
1492 * The space of "coef" is of the form
1494 * { coefficients[[cst, params] -> S] }
1496 * Return the position of S.
1498 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1500 int offset;
1501 isl_space *space;
1503 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1504 offset = isl_space_dim(space, isl_dim_in);
1505 isl_space_free(space);
1507 return offset;
1510 /* Return the offset of the coefficients of the variables of "node"
1511 * within the (I)LP.
1513 * Within each node, the coefficients have the following order:
1514 * - c_i_0
1515 * - c_i_n (if parametric)
1516 * - positive and negative parts of c_i_x
1518 static int node_var_coef_offset(struct isl_sched_node *node)
1520 return node->start + 1 + node->nparam;
1523 /* Construct an isl_dim_map for mapping constraints on coefficients
1524 * for "node" to the corresponding positions in graph->lp.
1525 * "offset" is the offset of the coefficients for the variables
1526 * in the input constraints.
1527 * "s" is the sign of the mapping.
1529 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1530 * The mapping produced by this function essentially plugs in
1531 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1532 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1533 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1535 * The caller can extend the mapping to also map the other coefficients
1536 * (and therefore not plug in 0).
1538 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1539 struct isl_sched_graph *graph, struct isl_sched_node *node,
1540 int offset, int s)
1542 int pos;
1543 unsigned total;
1544 isl_dim_map *dim_map;
1546 total = isl_basic_set_total_dim(graph->lp);
1547 pos = node_var_coef_offset(node);
1548 dim_map = isl_dim_map_alloc(ctx, total);
1549 isl_dim_map_range(dim_map, pos, 2, offset, 1, node->nvar, -s);
1550 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, node->nvar, s);
1552 return dim_map;
1555 /* Construct an isl_dim_map for mapping constraints on coefficients
1556 * for "src" (node i) and "dst" (node j) to the corresponding positions
1557 * in graph->lp.
1558 * "offset" is the offset of the coefficients for the variables of "src"
1559 * in the input constraints.
1560 * "s" is the sign of the mapping.
1562 * The input constraints are given in terms of the coefficients
1563 * (c_0, c_n, c_x, c_y).
1564 * The mapping produced by this function essentially plugs in
1565 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1566 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1567 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1568 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1569 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1571 * The caller can further extend the mapping.
1573 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1574 struct isl_sched_graph *graph, struct isl_sched_node *src,
1575 struct isl_sched_node *dst, int offset, int s)
1577 int pos;
1578 unsigned total;
1579 isl_dim_map *dim_map;
1581 total = isl_basic_set_total_dim(graph->lp);
1582 dim_map = isl_dim_map_alloc(ctx, total);
1584 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
1585 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
1586 pos = node_var_coef_offset(dst);
1587 isl_dim_map_range(dim_map, pos, 2, offset + src->nvar, 1,
1588 dst->nvar, -s);
1589 isl_dim_map_range(dim_map, pos + 1, 2, offset + src->nvar, 1,
1590 dst->nvar, s);
1592 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
1593 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
1594 pos = node_var_coef_offset(src);
1595 isl_dim_map_range(dim_map, pos, 2, offset, 1, src->nvar, s);
1596 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, src->nvar, -s);
1598 return dim_map;
1601 /* Add the constraints from "src" to "dst" using "dim_map",
1602 * after making sure there is enough room in "dst" for the extra constraints.
1604 static __isl_give isl_basic_set *add_constraints_dim_map(
1605 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1606 __isl_take isl_dim_map *dim_map)
1608 dst = isl_basic_set_extend_constraints(dst, src->n_eq, src->n_ineq);
1609 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1610 return dst;
1613 /* Add constraints to graph->lp that force validity for the given
1614 * dependence from a node i to itself.
1615 * That is, add constraints that enforce
1617 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1618 * = c_i_x (y - x) >= 0
1620 * for each (x,y) in R.
1621 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1622 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1623 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1624 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1626 * Actually, we do not construct constraints for the c_i_x themselves,
1627 * but for the coefficients of c_i_x written as a linear combination
1628 * of the columns in node->cmap.
1630 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1631 struct isl_sched_edge *edge)
1633 int offset;
1634 isl_map *map = isl_map_copy(edge->map);
1635 isl_ctx *ctx = isl_map_get_ctx(map);
1636 isl_dim_map *dim_map;
1637 isl_basic_set *coef;
1638 struct isl_sched_node *node = edge->src;
1640 coef = intra_coefficients(graph, node, map);
1642 offset = coef_var_offset(coef);
1644 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1645 offset, isl_mat_copy(node->cmap));
1646 if (!coef)
1647 return isl_stat_error;
1649 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1650 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1652 return isl_stat_ok;
1655 /* Add constraints to graph->lp that force validity for the given
1656 * dependence from node i to node j.
1657 * That is, add constraints that enforce
1659 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1661 * for each (x,y) in R.
1662 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1663 * of valid constraints for R and then plug in
1664 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1665 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1666 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1668 * Actually, we do not construct constraints for the c_*_x themselves,
1669 * but for the coefficients of c_*_x written as a linear combination
1670 * of the columns in node->cmap.
1672 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1673 struct isl_sched_edge *edge)
1675 int offset;
1676 isl_map *map;
1677 isl_ctx *ctx;
1678 isl_dim_map *dim_map;
1679 isl_basic_set *coef;
1680 struct isl_sched_node *src = edge->src;
1681 struct isl_sched_node *dst = edge->dst;
1683 if (!graph->lp)
1684 return isl_stat_error;
1686 map = isl_map_copy(edge->map);
1687 ctx = isl_map_get_ctx(map);
1688 coef = inter_coefficients(graph, edge, map);
1690 offset = coef_var_offset(coef);
1692 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1693 offset, isl_mat_copy(src->cmap));
1694 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1695 offset + src->nvar, isl_mat_copy(dst->cmap));
1696 if (!coef)
1697 return isl_stat_error;
1699 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1701 edge->start = graph->lp->n_ineq;
1702 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1703 if (!graph->lp)
1704 return isl_stat_error;
1705 edge->end = graph->lp->n_ineq;
1707 return isl_stat_ok;
1710 /* Add constraints to graph->lp that bound the dependence distance for the given
1711 * dependence from a node i to itself.
1712 * If s = 1, we add the constraint
1714 * c_i_x (y - x) <= m_0 + m_n n
1716 * or
1718 * -c_i_x (y - x) + m_0 + m_n n >= 0
1720 * for each (x,y) in R.
1721 * If s = -1, we add the constraint
1723 * -c_i_x (y - x) <= m_0 + m_n n
1725 * or
1727 * c_i_x (y - x) + m_0 + m_n n >= 0
1729 * for each (x,y) in R.
1730 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1731 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1732 * with each coefficient (except m_0) represented as a pair of non-negative
1733 * coefficients.
1735 * Actually, we do not construct constraints for the c_i_x themselves,
1736 * but for the coefficients of c_i_x written as a linear combination
1737 * of the columns in node->cmap.
1740 * If "local" is set, then we add constraints
1742 * c_i_x (y - x) <= 0
1744 * or
1746 * -c_i_x (y - x) <= 0
1748 * instead, forcing the dependence distance to be (less than or) equal to 0.
1749 * That is, we plug in (0, 0, -s * c_i_x),
1750 * Note that dependences marked local are treated as validity constraints
1751 * by add_all_validity_constraints and therefore also have
1752 * their distances bounded by 0 from below.
1754 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1755 struct isl_sched_edge *edge, int s, int local)
1757 int offset;
1758 unsigned nparam;
1759 isl_map *map = isl_map_copy(edge->map);
1760 isl_ctx *ctx = isl_map_get_ctx(map);
1761 isl_dim_map *dim_map;
1762 isl_basic_set *coef;
1763 struct isl_sched_node *node = edge->src;
1765 coef = intra_coefficients(graph, node, map);
1767 offset = coef_var_offset(coef);
1769 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1770 offset, isl_mat_copy(node->cmap));
1771 if (!coef)
1772 return isl_stat_error;
1774 nparam = isl_space_dim(node->space, isl_dim_param);
1775 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1777 if (!local) {
1778 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1779 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1780 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1782 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1784 return isl_stat_ok;
1787 /* Add constraints to graph->lp that bound the dependence distance for the given
1788 * dependence from node i to node j.
1789 * If s = 1, we add the constraint
1791 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1792 * <= m_0 + m_n n
1794 * or
1796 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1797 * m_0 + m_n n >= 0
1799 * for each (x,y) in R.
1800 * If s = -1, we add the constraint
1802 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1803 * <= m_0 + m_n n
1805 * or
1807 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1808 * m_0 + m_n n >= 0
1810 * for each (x,y) in R.
1811 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1812 * of valid constraints for R and then plug in
1813 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1814 * s*c_i_x, -s*c_j_x)
1815 * with each coefficient (except m_0, c_*_0 and c_*_n)
1816 * represented as a pair of non-negative coefficients.
1818 * Actually, we do not construct constraints for the c_*_x themselves,
1819 * but for the coefficients of c_*_x written as a linear combination
1820 * of the columns in node->cmap.
1823 * If "local" is set (and s = 1), then we add constraints
1825 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1827 * or
1829 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1831 * instead, forcing the dependence distance to be (less than or) equal to 0.
1832 * That is, we plug in
1833 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1834 * Note that dependences marked local are treated as validity constraints
1835 * by add_all_validity_constraints and therefore also have
1836 * their distances bounded by 0 from below.
1838 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1839 struct isl_sched_edge *edge, int s, int local)
1841 int offset;
1842 unsigned nparam;
1843 isl_map *map = isl_map_copy(edge->map);
1844 isl_ctx *ctx = isl_map_get_ctx(map);
1845 isl_dim_map *dim_map;
1846 isl_basic_set *coef;
1847 struct isl_sched_node *src = edge->src;
1848 struct isl_sched_node *dst = edge->dst;
1850 coef = inter_coefficients(graph, edge, map);
1852 offset = coef_var_offset(coef);
1854 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1855 offset, isl_mat_copy(src->cmap));
1856 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1857 offset + src->nvar, isl_mat_copy(dst->cmap));
1858 if (!coef)
1859 return isl_stat_error;
1861 nparam = isl_space_dim(src->space, isl_dim_param);
1862 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1864 if (!local) {
1865 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1866 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1867 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1870 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1872 return isl_stat_ok;
1875 /* Add all validity constraints to graph->lp.
1877 * An edge that is forced to be local needs to have its dependence
1878 * distances equal to zero. We take care of bounding them by 0 from below
1879 * here. add_all_proximity_constraints takes care of bounding them by 0
1880 * from above.
1882 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1883 * Otherwise, we ignore them.
1885 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1886 int use_coincidence)
1888 int i;
1890 for (i = 0; i < graph->n_edge; ++i) {
1891 struct isl_sched_edge *edge = &graph->edge[i];
1892 int local;
1894 local = is_local(edge) ||
1895 (is_coincidence(edge) && use_coincidence);
1896 if (!is_validity(edge) && !local)
1897 continue;
1898 if (edge->src != edge->dst)
1899 continue;
1900 if (add_intra_validity_constraints(graph, edge) < 0)
1901 return -1;
1904 for (i = 0; i < graph->n_edge; ++i) {
1905 struct isl_sched_edge *edge = &graph->edge[i];
1906 int local;
1908 local = is_local(edge) ||
1909 (is_coincidence(edge) && use_coincidence);
1910 if (!is_validity(edge) && !local)
1911 continue;
1912 if (edge->src == edge->dst)
1913 continue;
1914 if (add_inter_validity_constraints(graph, edge) < 0)
1915 return -1;
1918 return 0;
1921 /* Add constraints to graph->lp that bound the dependence distance
1922 * for all dependence relations.
1923 * If a given proximity dependence is identical to a validity
1924 * dependence, then the dependence distance is already bounded
1925 * from below (by zero), so we only need to bound the distance
1926 * from above. (This includes the case of "local" dependences
1927 * which are treated as validity dependence by add_all_validity_constraints.)
1928 * Otherwise, we need to bound the distance both from above and from below.
1930 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1931 * Otherwise, we ignore them.
1933 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1934 int use_coincidence)
1936 int i;
1938 for (i = 0; i < graph->n_edge; ++i) {
1939 struct isl_sched_edge *edge = &graph->edge[i];
1940 int local;
1942 local = is_local(edge) ||
1943 (is_coincidence(edge) && use_coincidence);
1944 if (!is_proximity(edge) && !local)
1945 continue;
1946 if (edge->src == edge->dst &&
1947 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1948 return -1;
1949 if (edge->src != edge->dst &&
1950 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1951 return -1;
1952 if (is_validity(edge) || local)
1953 continue;
1954 if (edge->src == edge->dst &&
1955 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1956 return -1;
1957 if (edge->src != edge->dst &&
1958 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1959 return -1;
1962 return 0;
1965 /* Compute a basis for the rows in the linear part of the schedule
1966 * and extend this basis to a full basis. The remaining rows
1967 * can then be used to force linear independence from the rows
1968 * in the schedule.
1970 * In particular, given the schedule rows S, we compute
1972 * S = H Q
1973 * S U = H
1975 * with H the Hermite normal form of S. That is, all but the
1976 * first rank columns of H are zero and so each row in S is
1977 * a linear combination of the first rank rows of Q.
1978 * The matrix Q is then transposed because we will write the
1979 * coefficients of the next schedule row as a column vector s
1980 * and express this s as a linear combination s = Q c of the
1981 * computed basis.
1982 * Similarly, the matrix U is transposed such that we can
1983 * compute the coefficients c = U s from a schedule row s.
1985 static int node_update_cmap(struct isl_sched_node *node)
1987 isl_mat *H, *U, *Q;
1988 int n_row = isl_mat_rows(node->sched);
1990 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1991 1 + node->nparam, node->nvar);
1993 H = isl_mat_left_hermite(H, 0, &U, &Q);
1994 isl_mat_free(node->cmap);
1995 isl_mat_free(node->cinv);
1996 isl_mat_free(node->ctrans);
1997 node->ctrans = isl_mat_copy(Q);
1998 node->cmap = isl_mat_transpose(Q);
1999 node->cinv = isl_mat_transpose(U);
2000 node->rank = isl_mat_initial_non_zero_cols(H);
2001 isl_mat_free(H);
2003 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2004 return -1;
2005 return 0;
2008 /* Is "edge" marked as a validity or a conditional validity edge?
2010 static int is_any_validity(struct isl_sched_edge *edge)
2012 return is_validity(edge) || is_conditional_validity(edge);
2015 /* How many times should we count the constraints in "edge"?
2017 * If carry is set, then we are counting the number of
2018 * (validity or conditional validity) constraints that will be added
2019 * in setup_carry_lp and we count each edge exactly once.
2021 * Otherwise, we count as follows
2022 * validity -> 1 (>= 0)
2023 * validity+proximity -> 2 (>= 0 and upper bound)
2024 * proximity -> 2 (lower and upper bound)
2025 * local(+any) -> 2 (>= 0 and <= 0)
2027 * If an edge is only marked conditional_validity then it counts
2028 * as zero since it is only checked afterwards.
2030 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2031 * Otherwise, we ignore them.
2033 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2034 int use_coincidence)
2036 if (carry)
2037 return 1;
2038 if (is_proximity(edge) || is_local(edge))
2039 return 2;
2040 if (use_coincidence && is_coincidence(edge))
2041 return 2;
2042 if (is_validity(edge))
2043 return 1;
2044 return 0;
2047 /* Count the number of equality and inequality constraints
2048 * that will be added for the given map.
2050 * "use_coincidence" is set if we should take into account coincidence edges.
2052 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2053 struct isl_sched_edge *edge, __isl_take isl_map *map,
2054 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2056 isl_basic_set *coef;
2057 int f = edge_multiplicity(edge, carry, use_coincidence);
2059 if (f == 0) {
2060 isl_map_free(map);
2061 return isl_stat_ok;
2064 if (edge->src == edge->dst)
2065 coef = intra_coefficients(graph, edge->src, map);
2066 else
2067 coef = inter_coefficients(graph, edge, map);
2068 if (!coef)
2069 return isl_stat_error;
2070 *n_eq += f * coef->n_eq;
2071 *n_ineq += f * coef->n_ineq;
2072 isl_basic_set_free(coef);
2074 return isl_stat_ok;
2077 /* Count the number of equality and inequality constraints
2078 * that will be added to the main lp problem.
2079 * We count as follows
2080 * validity -> 1 (>= 0)
2081 * validity+proximity -> 2 (>= 0 and upper bound)
2082 * proximity -> 2 (lower and upper bound)
2083 * local(+any) -> 2 (>= 0 and <= 0)
2085 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2086 * Otherwise, we ignore them.
2088 static int count_constraints(struct isl_sched_graph *graph,
2089 int *n_eq, int *n_ineq, int use_coincidence)
2091 int i;
2093 *n_eq = *n_ineq = 0;
2094 for (i = 0; i < graph->n_edge; ++i) {
2095 struct isl_sched_edge *edge = &graph->edge[i];
2096 isl_map *map = isl_map_copy(edge->map);
2098 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2099 0, use_coincidence) < 0)
2100 return -1;
2103 return 0;
2106 /* Count the number of constraints that will be added by
2107 * add_bound_constant_constraints to bound the values of the constant terms
2108 * and increment *n_eq and *n_ineq accordingly.
2110 * In practice, add_bound_constant_constraints only adds inequalities.
2112 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2113 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2115 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2116 return isl_stat_ok;
2118 *n_ineq += graph->n;
2120 return isl_stat_ok;
2123 /* Add constraints to bound the values of the constant terms in the schedule,
2124 * if requested by the user.
2126 * The maximal value of the constant terms is defined by the option
2127 * "schedule_max_constant_term".
2129 * Within each node, the coefficients have the following order:
2130 * - c_i_0
2131 * - c_i_n (if parametric)
2132 * - positive and negative parts of c_i_x
2134 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2135 struct isl_sched_graph *graph)
2137 int i, k;
2138 int max;
2139 int total;
2141 max = isl_options_get_schedule_max_constant_term(ctx);
2142 if (max == -1)
2143 return isl_stat_ok;
2145 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2147 for (i = 0; i < graph->n; ++i) {
2148 struct isl_sched_node *node = &graph->node[i];
2149 k = isl_basic_set_alloc_inequality(graph->lp);
2150 if (k < 0)
2151 return isl_stat_error;
2152 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2153 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2154 isl_int_set_si(graph->lp->ineq[k][0], max);
2157 return isl_stat_ok;
2160 /* Count the number of constraints that will be added by
2161 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2162 * accordingly.
2164 * In practice, add_bound_coefficient_constraints only adds inequalities.
2166 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2167 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2169 int i;
2171 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2172 !isl_options_get_schedule_treat_coalescing(ctx))
2173 return 0;
2175 for (i = 0; i < graph->n; ++i)
2176 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2178 return 0;
2181 /* Add constraints to graph->lp that bound the values of
2182 * the parameter schedule coefficients of "node" to "max" and
2183 * the variable schedule coefficients to the corresponding entry
2184 * in node->max.
2185 * In either case, a negative value means that no bound needs to be imposed.
2187 * For parameter coefficients, this amounts to adding a constraint
2189 * c_n <= max
2191 * i.e.,
2193 * -c_n + max >= 0
2195 * The variables coefficients are, however, not represented directly.
2196 * Instead, the variables coefficients c_x are written as a linear
2197 * combination c_x = cmap c_z of some other coefficients c_z,
2198 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2199 * Let a_j be the elements of row i of node->cmap, then
2201 * -max_i <= c_x_i <= max_i
2203 * is encoded as
2205 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2207 * or
2209 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2210 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2212 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2213 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2215 int i, j, k;
2216 int total;
2217 isl_vec *ineq;
2219 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2221 for (j = 0; j < node->nparam; ++j) {
2222 int dim;
2224 if (max < 0)
2225 continue;
2227 k = isl_basic_set_alloc_inequality(graph->lp);
2228 if (k < 0)
2229 return isl_stat_error;
2230 dim = 1 + node->start + 1 + j;
2231 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2232 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2233 isl_int_set_si(graph->lp->ineq[k][0], max);
2236 ineq = isl_vec_alloc(ctx, 1 + total);
2237 ineq = isl_vec_clr(ineq);
2238 if (!ineq)
2239 return isl_stat_error;
2240 for (i = 0; i < node->nvar; ++i) {
2241 int pos = 1 + node_var_coef_offset(node);
2243 if (isl_int_is_neg(node->max->el[i]))
2244 continue;
2246 for (j = 0; j < node->nvar; ++j) {
2247 isl_int_set(ineq->el[pos + 2 * j],
2248 node->cmap->row[i][j]);
2249 isl_int_neg(ineq->el[pos + 2 * j + 1],
2250 node->cmap->row[i][j]);
2252 isl_int_set(ineq->el[0], node->max->el[i]);
2254 k = isl_basic_set_alloc_inequality(graph->lp);
2255 if (k < 0)
2256 goto error;
2257 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2259 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2 * node->nvar);
2260 k = isl_basic_set_alloc_inequality(graph->lp);
2261 if (k < 0)
2262 goto error;
2263 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2265 isl_vec_free(ineq);
2267 return isl_stat_ok;
2268 error:
2269 isl_vec_free(ineq);
2270 return isl_stat_error;
2273 /* Add constraints that bound the values of the variable and parameter
2274 * coefficients of the schedule.
2276 * The maximal value of the coefficients is defined by the option
2277 * 'schedule_max_coefficient' and the entries in node->max.
2278 * These latter entries are only set if either the schedule_max_coefficient
2279 * option or the schedule_treat_coalescing option is set.
2281 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2282 struct isl_sched_graph *graph)
2284 int i;
2285 int max;
2287 max = isl_options_get_schedule_max_coefficient(ctx);
2289 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2290 return isl_stat_ok;
2292 for (i = 0; i < graph->n; ++i) {
2293 struct isl_sched_node *node = &graph->node[i];
2295 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2296 return isl_stat_error;
2299 return isl_stat_ok;
2302 /* Add a constraint to graph->lp that equates the value at position
2303 * "sum_pos" to the sum of the "n" values starting at "first".
2305 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2306 int sum_pos, int first, int n)
2308 int i, k;
2309 int total;
2311 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2313 k = isl_basic_set_alloc_equality(graph->lp);
2314 if (k < 0)
2315 return isl_stat_error;
2316 isl_seq_clr(graph->lp->eq[k], 1 + total);
2317 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2318 for (i = 0; i < n; ++i)
2319 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2321 return isl_stat_ok;
2324 /* Add a constraint to graph->lp that equates the value at position
2325 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2327 * Within each node, the coefficients have the following order:
2328 * - c_i_0
2329 * - c_i_n (if parametric)
2330 * - positive and negative parts of c_i_x
2332 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2333 int sum_pos)
2335 int i, j, k;
2336 int total;
2338 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2340 k = isl_basic_set_alloc_equality(graph->lp);
2341 if (k < 0)
2342 return isl_stat_error;
2343 isl_seq_clr(graph->lp->eq[k], 1 + total);
2344 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2345 for (i = 0; i < graph->n; ++i) {
2346 int pos = 1 + graph->node[i].start + 1;
2348 for (j = 0; j < graph->node[i].nparam; ++j)
2349 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2352 return isl_stat_ok;
2355 /* Add a constraint to graph->lp that equates the value at position
2356 * "sum_pos" to the sum of the variable coefficients of all nodes.
2358 * Within each node, the coefficients have the following order:
2359 * - c_i_0
2360 * - c_i_n (if parametric)
2361 * - positive and negative parts of c_i_x
2363 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2364 int sum_pos)
2366 int i, j, k;
2367 int total;
2369 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2371 k = isl_basic_set_alloc_equality(graph->lp);
2372 if (k < 0)
2373 return isl_stat_error;
2374 isl_seq_clr(graph->lp->eq[k], 1 + total);
2375 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2376 for (i = 0; i < graph->n; ++i) {
2377 struct isl_sched_node *node = &graph->node[i];
2378 int pos = 1 + node_var_coef_offset(node);
2380 for (j = 0; j < 2 * node->nvar; ++j)
2381 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2384 return isl_stat_ok;
2387 /* Construct an ILP problem for finding schedule coefficients
2388 * that result in non-negative, but small dependence distances
2389 * over all dependences.
2390 * In particular, the dependence distances over proximity edges
2391 * are bounded by m_0 + m_n n and we compute schedule coefficients
2392 * with small values (preferably zero) of m_n and m_0.
2394 * All variables of the ILP are non-negative. The actual coefficients
2395 * may be negative, so each coefficient is represented as the difference
2396 * of two non-negative variables. The negative part always appears
2397 * immediately before the positive part.
2398 * Other than that, the variables have the following order
2400 * - sum of positive and negative parts of m_n coefficients
2401 * - m_0
2402 * - sum of all c_n coefficients
2403 * (unconstrained when computing non-parametric schedules)
2404 * - sum of positive and negative parts of all c_x coefficients
2405 * - positive and negative parts of m_n coefficients
2406 * - for each node
2407 * - c_i_0
2408 * - c_i_n (if parametric)
2409 * - positive and negative parts of c_i_x
2411 * The c_i_x are not represented directly, but through the columns of
2412 * node->cmap. That is, the computed values are for variable t_i_x
2413 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2415 * The constraints are those from the edges plus two or three equalities
2416 * to express the sums.
2418 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2419 * Otherwise, we ignore them.
2421 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2422 int use_coincidence)
2424 int i;
2425 unsigned nparam;
2426 unsigned total;
2427 isl_space *space;
2428 int parametric;
2429 int param_pos;
2430 int n_eq, n_ineq;
2432 parametric = ctx->opt->schedule_parametric;
2433 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2434 param_pos = 4;
2435 total = param_pos + 2 * nparam;
2436 for (i = 0; i < graph->n; ++i) {
2437 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2438 if (node_update_cmap(node) < 0)
2439 return isl_stat_error;
2440 node->start = total;
2441 total += 1 + node->nparam + 2 * node->nvar;
2444 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2445 return isl_stat_error;
2446 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2447 return isl_stat_error;
2448 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2449 return isl_stat_error;
2451 space = isl_space_set_alloc(ctx, 0, total);
2452 isl_basic_set_free(graph->lp);
2453 n_eq += 2 + parametric;
2455 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2457 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2458 return isl_stat_error;
2459 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2460 return isl_stat_error;
2461 if (add_var_sum_constraint(graph, 3) < 0)
2462 return isl_stat_error;
2463 if (add_bound_constant_constraints(ctx, graph) < 0)
2464 return isl_stat_error;
2465 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2466 return isl_stat_error;
2467 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2468 return isl_stat_error;
2469 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2470 return isl_stat_error;
2472 return isl_stat_ok;
2475 /* Analyze the conflicting constraint found by
2476 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2477 * constraint of one of the edges between distinct nodes, living, moreover
2478 * in distinct SCCs, then record the source and sink SCC as this may
2479 * be a good place to cut between SCCs.
2481 static int check_conflict(int con, void *user)
2483 int i;
2484 struct isl_sched_graph *graph = user;
2486 if (graph->src_scc >= 0)
2487 return 0;
2489 con -= graph->lp->n_eq;
2491 if (con >= graph->lp->n_ineq)
2492 return 0;
2494 for (i = 0; i < graph->n_edge; ++i) {
2495 if (!is_validity(&graph->edge[i]))
2496 continue;
2497 if (graph->edge[i].src == graph->edge[i].dst)
2498 continue;
2499 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2500 continue;
2501 if (graph->edge[i].start > con)
2502 continue;
2503 if (graph->edge[i].end <= con)
2504 continue;
2505 graph->src_scc = graph->edge[i].src->scc;
2506 graph->dst_scc = graph->edge[i].dst->scc;
2509 return 0;
2512 /* Check whether the next schedule row of the given node needs to be
2513 * non-trivial. Lower-dimensional domains may have some trivial rows,
2514 * but as soon as the number of remaining required non-trivial rows
2515 * is as large as the number or remaining rows to be computed,
2516 * all remaining rows need to be non-trivial.
2518 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2520 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2523 /* Solve the ILP problem constructed in setup_lp.
2524 * For each node such that all the remaining rows of its schedule
2525 * need to be non-trivial, we construct a non-triviality region.
2526 * This region imposes that the next row is independent of previous rows.
2527 * In particular the coefficients c_i_x are represented by t_i_x
2528 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2529 * its first columns span the rows of the previously computed part
2530 * of the schedule. The non-triviality region enforces that at least
2531 * one of the remaining components of t_i_x is non-zero, i.e.,
2532 * that the new schedule row depends on at least one of the remaining
2533 * columns of Q.
2535 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2537 int i;
2538 isl_vec *sol;
2539 isl_basic_set *lp;
2541 for (i = 0; i < graph->n; ++i) {
2542 struct isl_sched_node *node = &graph->node[i];
2543 int skip = node->rank;
2544 graph->region[i].pos = node_var_coef_offset(node) + 2 * skip;
2545 if (needs_row(graph, node))
2546 graph->region[i].len = 2 * (node->nvar - skip);
2547 else
2548 graph->region[i].len = 0;
2550 lp = isl_basic_set_copy(graph->lp);
2551 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2552 graph->region, &check_conflict, graph);
2553 return sol;
2556 /* Extract the coefficients for the variables of "node" from "sol".
2558 * Within each node, the coefficients have the following order:
2559 * - c_i_0
2560 * - c_i_n (if parametric)
2561 * - positive and negative parts of c_i_x
2563 * The c_i_x^- appear before their c_i_x^+ counterpart.
2565 * Return c_i_x = c_i_x^+ - c_i_x^-
2567 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2568 __isl_keep isl_vec *sol)
2570 int i;
2571 int pos;
2572 isl_vec *csol;
2574 if (!sol)
2575 return NULL;
2576 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2577 if (!csol)
2578 return NULL;
2580 pos = 1 + node_var_coef_offset(node);
2581 for (i = 0; i < node->nvar; ++i)
2582 isl_int_sub(csol->el[i],
2583 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2585 return csol;
2588 /* Update the schedules of all nodes based on the given solution
2589 * of the LP problem.
2590 * The new row is added to the current band.
2591 * All possibly negative coefficients are encoded as a difference
2592 * of two non-negative variables, so we need to perform the subtraction
2593 * here. Moreover, if use_cmap is set, then the solution does
2594 * not refer to the actual coefficients c_i_x, but instead to variables
2595 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2596 * In this case, we then also need to perform this multiplication
2597 * to obtain the values of c_i_x.
2599 * If coincident is set, then the caller guarantees that the new
2600 * row satisfies the coincidence constraints.
2602 static int update_schedule(struct isl_sched_graph *graph,
2603 __isl_take isl_vec *sol, int use_cmap, int coincident)
2605 int i, j;
2606 isl_vec *csol = NULL;
2608 if (!sol)
2609 goto error;
2610 if (sol->size == 0)
2611 isl_die(sol->ctx, isl_error_internal,
2612 "no solution found", goto error);
2613 if (graph->n_total_row >= graph->max_row)
2614 isl_die(sol->ctx, isl_error_internal,
2615 "too many schedule rows", goto error);
2617 for (i = 0; i < graph->n; ++i) {
2618 struct isl_sched_node *node = &graph->node[i];
2619 int pos = node->start;
2620 int row = isl_mat_rows(node->sched);
2622 isl_vec_free(csol);
2623 csol = extract_var_coef(node, sol);
2624 if (!csol)
2625 goto error;
2627 isl_map_free(node->sched_map);
2628 node->sched_map = NULL;
2629 node->sched = isl_mat_add_rows(node->sched, 1);
2630 if (!node->sched)
2631 goto error;
2632 for (j = 0; j < 1 + node->nparam; ++j)
2633 node->sched = isl_mat_set_element(node->sched,
2634 row, j, sol->el[1 + pos + j]);
2635 if (use_cmap)
2636 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2637 csol);
2638 if (!csol)
2639 goto error;
2640 for (j = 0; j < node->nvar; ++j)
2641 node->sched = isl_mat_set_element(node->sched,
2642 row, 1 + node->nparam + j, csol->el[j]);
2643 node->coincident[graph->n_total_row] = coincident;
2645 isl_vec_free(sol);
2646 isl_vec_free(csol);
2648 graph->n_row++;
2649 graph->n_total_row++;
2651 return 0;
2652 error:
2653 isl_vec_free(sol);
2654 isl_vec_free(csol);
2655 return -1;
2658 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2659 * and return this isl_aff.
2661 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2662 struct isl_sched_node *node, int row)
2664 int j;
2665 isl_int v;
2666 isl_aff *aff;
2668 isl_int_init(v);
2670 aff = isl_aff_zero_on_domain(ls);
2671 isl_mat_get_element(node->sched, row, 0, &v);
2672 aff = isl_aff_set_constant(aff, v);
2673 for (j = 0; j < node->nparam; ++j) {
2674 isl_mat_get_element(node->sched, row, 1 + j, &v);
2675 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2677 for (j = 0; j < node->nvar; ++j) {
2678 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2679 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2682 isl_int_clear(v);
2684 return aff;
2687 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2688 * and return this multi_aff.
2690 * The result is defined over the uncompressed node domain.
2692 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2693 struct isl_sched_node *node, int first, int n)
2695 int i;
2696 isl_space *space;
2697 isl_local_space *ls;
2698 isl_aff *aff;
2699 isl_multi_aff *ma;
2700 int nrow;
2702 if (!node)
2703 return NULL;
2704 nrow = isl_mat_rows(node->sched);
2705 if (node->compressed)
2706 space = isl_multi_aff_get_domain_space(node->decompress);
2707 else
2708 space = isl_space_copy(node->space);
2709 ls = isl_local_space_from_space(isl_space_copy(space));
2710 space = isl_space_from_domain(space);
2711 space = isl_space_add_dims(space, isl_dim_out, n);
2712 ma = isl_multi_aff_zero(space);
2714 for (i = first; i < first + n; ++i) {
2715 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2716 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2719 isl_local_space_free(ls);
2721 if (node->compressed)
2722 ma = isl_multi_aff_pullback_multi_aff(ma,
2723 isl_multi_aff_copy(node->compress));
2725 return ma;
2728 /* Convert node->sched into a multi_aff and return this multi_aff.
2730 * The result is defined over the uncompressed node domain.
2732 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2733 struct isl_sched_node *node)
2735 int nrow;
2737 nrow = isl_mat_rows(node->sched);
2738 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2741 /* Convert node->sched into a map and return this map.
2743 * The result is cached in node->sched_map, which needs to be released
2744 * whenever node->sched is updated.
2745 * It is defined over the uncompressed node domain.
2747 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2749 if (!node->sched_map) {
2750 isl_multi_aff *ma;
2752 ma = node_extract_schedule_multi_aff(node);
2753 node->sched_map = isl_map_from_multi_aff(ma);
2756 return isl_map_copy(node->sched_map);
2759 /* Construct a map that can be used to update a dependence relation
2760 * based on the current schedule.
2761 * That is, construct a map expressing that source and sink
2762 * are executed within the same iteration of the current schedule.
2763 * This map can then be intersected with the dependence relation.
2764 * This is not the most efficient way, but this shouldn't be a critical
2765 * operation.
2767 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2768 struct isl_sched_node *dst)
2770 isl_map *src_sched, *dst_sched;
2772 src_sched = node_extract_schedule(src);
2773 dst_sched = node_extract_schedule(dst);
2774 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2777 /* Intersect the domains of the nested relations in domain and range
2778 * of "umap" with "map".
2780 static __isl_give isl_union_map *intersect_domains(
2781 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2783 isl_union_set *uset;
2785 umap = isl_union_map_zip(umap);
2786 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2787 umap = isl_union_map_intersect_domain(umap, uset);
2788 umap = isl_union_map_zip(umap);
2789 return umap;
2792 /* Update the dependence relation of the given edge based
2793 * on the current schedule.
2794 * If the dependence is carried completely by the current schedule, then
2795 * it is removed from the edge_tables. It is kept in the list of edges
2796 * as otherwise all edge_tables would have to be recomputed.
2798 static int update_edge(struct isl_sched_graph *graph,
2799 struct isl_sched_edge *edge)
2801 int empty;
2802 isl_map *id;
2804 id = specializer(edge->src, edge->dst);
2805 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2806 if (!edge->map)
2807 goto error;
2809 if (edge->tagged_condition) {
2810 edge->tagged_condition =
2811 intersect_domains(edge->tagged_condition, id);
2812 if (!edge->tagged_condition)
2813 goto error;
2815 if (edge->tagged_validity) {
2816 edge->tagged_validity =
2817 intersect_domains(edge->tagged_validity, id);
2818 if (!edge->tagged_validity)
2819 goto error;
2822 empty = isl_map_plain_is_empty(edge->map);
2823 if (empty < 0)
2824 goto error;
2825 if (empty)
2826 graph_remove_edge(graph, edge);
2828 isl_map_free(id);
2829 return 0;
2830 error:
2831 isl_map_free(id);
2832 return -1;
2835 /* Does the domain of "umap" intersect "uset"?
2837 static int domain_intersects(__isl_keep isl_union_map *umap,
2838 __isl_keep isl_union_set *uset)
2840 int empty;
2842 umap = isl_union_map_copy(umap);
2843 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2844 empty = isl_union_map_is_empty(umap);
2845 isl_union_map_free(umap);
2847 return empty < 0 ? -1 : !empty;
2850 /* Does the range of "umap" intersect "uset"?
2852 static int range_intersects(__isl_keep isl_union_map *umap,
2853 __isl_keep isl_union_set *uset)
2855 int empty;
2857 umap = isl_union_map_copy(umap);
2858 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2859 empty = isl_union_map_is_empty(umap);
2860 isl_union_map_free(umap);
2862 return empty < 0 ? -1 : !empty;
2865 /* Are the condition dependences of "edge" local with respect to
2866 * the current schedule?
2868 * That is, are domain and range of the condition dependences mapped
2869 * to the same point?
2871 * In other words, is the condition false?
2873 static int is_condition_false(struct isl_sched_edge *edge)
2875 isl_union_map *umap;
2876 isl_map *map, *sched, *test;
2877 int empty, local;
2879 empty = isl_union_map_is_empty(edge->tagged_condition);
2880 if (empty < 0 || empty)
2881 return empty;
2883 umap = isl_union_map_copy(edge->tagged_condition);
2884 umap = isl_union_map_zip(umap);
2885 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2886 map = isl_map_from_union_map(umap);
2888 sched = node_extract_schedule(edge->src);
2889 map = isl_map_apply_domain(map, sched);
2890 sched = node_extract_schedule(edge->dst);
2891 map = isl_map_apply_range(map, sched);
2893 test = isl_map_identity(isl_map_get_space(map));
2894 local = isl_map_is_subset(map, test);
2895 isl_map_free(map);
2896 isl_map_free(test);
2898 return local;
2901 /* For each conditional validity constraint that is adjacent
2902 * to a condition with domain in condition_source or range in condition_sink,
2903 * turn it into an unconditional validity constraint.
2905 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2906 __isl_take isl_union_set *condition_source,
2907 __isl_take isl_union_set *condition_sink)
2909 int i;
2911 condition_source = isl_union_set_coalesce(condition_source);
2912 condition_sink = isl_union_set_coalesce(condition_sink);
2914 for (i = 0; i < graph->n_edge; ++i) {
2915 int adjacent;
2916 isl_union_map *validity;
2918 if (!is_conditional_validity(&graph->edge[i]))
2919 continue;
2920 if (is_validity(&graph->edge[i]))
2921 continue;
2923 validity = graph->edge[i].tagged_validity;
2924 adjacent = domain_intersects(validity, condition_sink);
2925 if (adjacent >= 0 && !adjacent)
2926 adjacent = range_intersects(validity, condition_source);
2927 if (adjacent < 0)
2928 goto error;
2929 if (!adjacent)
2930 continue;
2932 set_validity(&graph->edge[i]);
2935 isl_union_set_free(condition_source);
2936 isl_union_set_free(condition_sink);
2937 return 0;
2938 error:
2939 isl_union_set_free(condition_source);
2940 isl_union_set_free(condition_sink);
2941 return -1;
2944 /* Update the dependence relations of all edges based on the current schedule
2945 * and enforce conditional validity constraints that are adjacent
2946 * to satisfied condition constraints.
2948 * First check if any of the condition constraints are satisfied
2949 * (i.e., not local to the outer schedule) and keep track of
2950 * their domain and range.
2951 * Then update all dependence relations (which removes the non-local
2952 * constraints).
2953 * Finally, if any condition constraints turned out to be satisfied,
2954 * then turn all adjacent conditional validity constraints into
2955 * unconditional validity constraints.
2957 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2959 int i;
2960 int any = 0;
2961 isl_union_set *source, *sink;
2963 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2964 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2965 for (i = 0; i < graph->n_edge; ++i) {
2966 int local;
2967 isl_union_set *uset;
2968 isl_union_map *umap;
2970 if (!is_condition(&graph->edge[i]))
2971 continue;
2972 if (is_local(&graph->edge[i]))
2973 continue;
2974 local = is_condition_false(&graph->edge[i]);
2975 if (local < 0)
2976 goto error;
2977 if (local)
2978 continue;
2980 any = 1;
2982 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2983 uset = isl_union_map_domain(umap);
2984 source = isl_union_set_union(source, uset);
2986 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2987 uset = isl_union_map_range(umap);
2988 sink = isl_union_set_union(sink, uset);
2991 for (i = graph->n_edge - 1; i >= 0; --i) {
2992 if (update_edge(graph, &graph->edge[i]) < 0)
2993 goto error;
2996 if (any)
2997 return unconditionalize_adjacent_validity(graph, source, sink);
2999 isl_union_set_free(source);
3000 isl_union_set_free(sink);
3001 return 0;
3002 error:
3003 isl_union_set_free(source);
3004 isl_union_set_free(sink);
3005 return -1;
3008 static void next_band(struct isl_sched_graph *graph)
3010 graph->band_start = graph->n_total_row;
3013 /* Return the union of the universe domains of the nodes in "graph"
3014 * that satisfy "pred".
3016 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3017 struct isl_sched_graph *graph,
3018 int (*pred)(struct isl_sched_node *node, int data), int data)
3020 int i;
3021 isl_set *set;
3022 isl_union_set *dom;
3024 for (i = 0; i < graph->n; ++i)
3025 if (pred(&graph->node[i], data))
3026 break;
3028 if (i >= graph->n)
3029 isl_die(ctx, isl_error_internal,
3030 "empty component", return NULL);
3032 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3033 dom = isl_union_set_from_set(set);
3035 for (i = i + 1; i < graph->n; ++i) {
3036 if (!pred(&graph->node[i], data))
3037 continue;
3038 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3039 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3042 return dom;
3045 /* Return a list of unions of universe domains, where each element
3046 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3048 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3049 struct isl_sched_graph *graph)
3051 int i;
3052 isl_union_set_list *filters;
3054 filters = isl_union_set_list_alloc(ctx, graph->scc);
3055 for (i = 0; i < graph->scc; ++i) {
3056 isl_union_set *dom;
3058 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3059 filters = isl_union_set_list_add(filters, dom);
3062 return filters;
3065 /* Return a list of two unions of universe domains, one for the SCCs up
3066 * to and including graph->src_scc and another for the other SCCs.
3068 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3069 struct isl_sched_graph *graph)
3071 isl_union_set *dom;
3072 isl_union_set_list *filters;
3074 filters = isl_union_set_list_alloc(ctx, 2);
3075 dom = isl_sched_graph_domain(ctx, graph,
3076 &node_scc_at_most, graph->src_scc);
3077 filters = isl_union_set_list_add(filters, dom);
3078 dom = isl_sched_graph_domain(ctx, graph,
3079 &node_scc_at_least, graph->src_scc + 1);
3080 filters = isl_union_set_list_add(filters, dom);
3082 return filters;
3085 /* Copy nodes that satisfy node_pred from the src dependence graph
3086 * to the dst dependence graph.
3088 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3089 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3091 int i;
3093 dst->n = 0;
3094 for (i = 0; i < src->n; ++i) {
3095 int j;
3097 if (!node_pred(&src->node[i], data))
3098 continue;
3100 j = dst->n;
3101 dst->node[j].space = isl_space_copy(src->node[i].space);
3102 dst->node[j].compressed = src->node[i].compressed;
3103 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3104 dst->node[j].compress =
3105 isl_multi_aff_copy(src->node[i].compress);
3106 dst->node[j].decompress =
3107 isl_multi_aff_copy(src->node[i].decompress);
3108 dst->node[j].nvar = src->node[i].nvar;
3109 dst->node[j].nparam = src->node[i].nparam;
3110 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3111 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3112 dst->node[j].coincident = src->node[i].coincident;
3113 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3114 dst->node[j].max = isl_vec_copy(src->node[i].max);
3115 dst->n++;
3117 if (!dst->node[j].space || !dst->node[j].sched)
3118 return -1;
3119 if (dst->node[j].compressed &&
3120 (!dst->node[j].hull || !dst->node[j].compress ||
3121 !dst->node[j].decompress))
3122 return -1;
3125 return 0;
3128 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3129 * to the dst dependence graph.
3130 * If the source or destination node of the edge is not in the destination
3131 * graph, then it must be a backward proximity edge and it should simply
3132 * be ignored.
3134 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3135 struct isl_sched_graph *src,
3136 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3138 int i;
3139 enum isl_edge_type t;
3141 dst->n_edge = 0;
3142 for (i = 0; i < src->n_edge; ++i) {
3143 struct isl_sched_edge *edge = &src->edge[i];
3144 isl_map *map;
3145 isl_union_map *tagged_condition;
3146 isl_union_map *tagged_validity;
3147 struct isl_sched_node *dst_src, *dst_dst;
3149 if (!edge_pred(edge, data))
3150 continue;
3152 if (isl_map_plain_is_empty(edge->map))
3153 continue;
3155 dst_src = graph_find_node(ctx, dst, edge->src->space);
3156 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3157 if (!dst_src || !dst_dst) {
3158 if (is_validity(edge) || is_conditional_validity(edge))
3159 isl_die(ctx, isl_error_internal,
3160 "backward (conditional) validity edge",
3161 return -1);
3162 continue;
3165 map = isl_map_copy(edge->map);
3166 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3167 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3169 dst->edge[dst->n_edge].src = dst_src;
3170 dst->edge[dst->n_edge].dst = dst_dst;
3171 dst->edge[dst->n_edge].map = map;
3172 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3173 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3174 dst->edge[dst->n_edge].types = edge->types;
3175 dst->n_edge++;
3177 if (edge->tagged_condition && !tagged_condition)
3178 return -1;
3179 if (edge->tagged_validity && !tagged_validity)
3180 return -1;
3182 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3183 if (edge !=
3184 graph_find_edge(src, t, edge->src, edge->dst))
3185 continue;
3186 if (graph_edge_table_add(ctx, dst, t,
3187 &dst->edge[dst->n_edge - 1]) < 0)
3188 return -1;
3192 return 0;
3195 /* Compute the maximal number of variables over all nodes.
3196 * This is the maximal number of linearly independent schedule
3197 * rows that we need to compute.
3198 * Just in case we end up in a part of the dependence graph
3199 * with only lower-dimensional domains, we make sure we will
3200 * compute the required amount of extra linearly independent rows.
3202 static int compute_maxvar(struct isl_sched_graph *graph)
3204 int i;
3206 graph->maxvar = 0;
3207 for (i = 0; i < graph->n; ++i) {
3208 struct isl_sched_node *node = &graph->node[i];
3209 int nvar;
3211 if (node_update_cmap(node) < 0)
3212 return -1;
3213 nvar = node->nvar + graph->n_row - node->rank;
3214 if (nvar > graph->maxvar)
3215 graph->maxvar = nvar;
3218 return 0;
3221 /* Extract the subgraph of "graph" that consists of the node satisfying
3222 * "node_pred" and the edges satisfying "edge_pred" and store
3223 * the result in "sub".
3225 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3226 int (*node_pred)(struct isl_sched_node *node, int data),
3227 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3228 int data, struct isl_sched_graph *sub)
3230 int i, n = 0, n_edge = 0;
3231 int t;
3233 for (i = 0; i < graph->n; ++i)
3234 if (node_pred(&graph->node[i], data))
3235 ++n;
3236 for (i = 0; i < graph->n_edge; ++i)
3237 if (edge_pred(&graph->edge[i], data))
3238 ++n_edge;
3239 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3240 return -1;
3241 if (copy_nodes(sub, graph, node_pred, data) < 0)
3242 return -1;
3243 if (graph_init_table(ctx, sub) < 0)
3244 return -1;
3245 for (t = 0; t <= isl_edge_last; ++t)
3246 sub->max_edge[t] = graph->max_edge[t];
3247 if (graph_init_edge_tables(ctx, sub) < 0)
3248 return -1;
3249 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3250 return -1;
3251 sub->n_row = graph->n_row;
3252 sub->max_row = graph->max_row;
3253 sub->n_total_row = graph->n_total_row;
3254 sub->band_start = graph->band_start;
3256 return 0;
3259 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3260 struct isl_sched_graph *graph);
3261 static __isl_give isl_schedule_node *compute_schedule_wcc(
3262 isl_schedule_node *node, struct isl_sched_graph *graph);
3264 /* Compute a schedule for a subgraph of "graph". In particular, for
3265 * the graph composed of nodes that satisfy node_pred and edges that
3266 * that satisfy edge_pred.
3267 * If the subgraph is known to consist of a single component, then wcc should
3268 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3269 * Otherwise, we call compute_schedule, which will check whether the subgraph
3270 * is connected.
3272 * The schedule is inserted at "node" and the updated schedule node
3273 * is returned.
3275 static __isl_give isl_schedule_node *compute_sub_schedule(
3276 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3277 struct isl_sched_graph *graph,
3278 int (*node_pred)(struct isl_sched_node *node, int data),
3279 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3280 int data, int wcc)
3282 struct isl_sched_graph split = { 0 };
3284 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3285 &split) < 0)
3286 goto error;
3288 if (wcc)
3289 node = compute_schedule_wcc(node, &split);
3290 else
3291 node = compute_schedule(node, &split);
3293 graph_free(ctx, &split);
3294 return node;
3295 error:
3296 graph_free(ctx, &split);
3297 return isl_schedule_node_free(node);
3300 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3302 return edge->src->scc == scc && edge->dst->scc == scc;
3305 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3307 return edge->dst->scc <= scc;
3310 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3312 return edge->src->scc >= scc;
3315 /* Reset the current band by dropping all its schedule rows.
3317 static int reset_band(struct isl_sched_graph *graph)
3319 int i;
3320 int drop;
3322 drop = graph->n_total_row - graph->band_start;
3323 graph->n_total_row -= drop;
3324 graph->n_row -= drop;
3326 for (i = 0; i < graph->n; ++i) {
3327 struct isl_sched_node *node = &graph->node[i];
3329 isl_map_free(node->sched_map);
3330 node->sched_map = NULL;
3332 node->sched = isl_mat_drop_rows(node->sched,
3333 graph->band_start, drop);
3335 if (!node->sched)
3336 return -1;
3339 return 0;
3342 /* Split the current graph into two parts and compute a schedule for each
3343 * part individually. In particular, one part consists of all SCCs up
3344 * to and including graph->src_scc, while the other part contains the other
3345 * SCCs. The split is enforced by a sequence node inserted at position "node"
3346 * in the schedule tree. Return the updated schedule node.
3347 * If either of these two parts consists of a sequence, then it is spliced
3348 * into the sequence containing the two parts.
3350 * The current band is reset. It would be possible to reuse
3351 * the previously computed rows as the first rows in the next
3352 * band, but recomputing them may result in better rows as we are looking
3353 * at a smaller part of the dependence graph.
3355 static __isl_give isl_schedule_node *compute_split_schedule(
3356 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3358 int is_seq;
3359 isl_ctx *ctx;
3360 isl_union_set_list *filters;
3362 if (!node)
3363 return NULL;
3365 if (reset_band(graph) < 0)
3366 return isl_schedule_node_free(node);
3368 next_band(graph);
3370 ctx = isl_schedule_node_get_ctx(node);
3371 filters = extract_split(ctx, graph);
3372 node = isl_schedule_node_insert_sequence(node, filters);
3373 node = isl_schedule_node_child(node, 1);
3374 node = isl_schedule_node_child(node, 0);
3376 node = compute_sub_schedule(node, ctx, graph,
3377 &node_scc_at_least, &edge_src_scc_at_least,
3378 graph->src_scc + 1, 0);
3379 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3380 node = isl_schedule_node_parent(node);
3381 node = isl_schedule_node_parent(node);
3382 if (is_seq)
3383 node = isl_schedule_node_sequence_splice_child(node, 1);
3384 node = isl_schedule_node_child(node, 0);
3385 node = isl_schedule_node_child(node, 0);
3386 node = compute_sub_schedule(node, ctx, graph,
3387 &node_scc_at_most, &edge_dst_scc_at_most,
3388 graph->src_scc, 0);
3389 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3390 node = isl_schedule_node_parent(node);
3391 node = isl_schedule_node_parent(node);
3392 if (is_seq)
3393 node = isl_schedule_node_sequence_splice_child(node, 0);
3395 return node;
3398 /* Insert a band node at position "node" in the schedule tree corresponding
3399 * to the current band in "graph". Mark the band node permutable
3400 * if "permutable" is set.
3401 * The partial schedules and the coincidence property are extracted
3402 * from the graph nodes.
3403 * Return the updated schedule node.
3405 static __isl_give isl_schedule_node *insert_current_band(
3406 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3407 int permutable)
3409 int i;
3410 int start, end, n;
3411 isl_multi_aff *ma;
3412 isl_multi_pw_aff *mpa;
3413 isl_multi_union_pw_aff *mupa;
3415 if (!node)
3416 return NULL;
3418 if (graph->n < 1)
3419 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3420 "graph should have at least one node",
3421 return isl_schedule_node_free(node));
3423 start = graph->band_start;
3424 end = graph->n_total_row;
3425 n = end - start;
3427 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3428 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3429 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3431 for (i = 1; i < graph->n; ++i) {
3432 isl_multi_union_pw_aff *mupa_i;
3434 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3435 start, n);
3436 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3437 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3438 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3440 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3442 for (i = 0; i < n; ++i)
3443 node = isl_schedule_node_band_member_set_coincident(node, i,
3444 graph->node[0].coincident[start + i]);
3445 node = isl_schedule_node_band_set_permutable(node, permutable);
3447 return node;
3450 /* Update the dependence relations based on the current schedule,
3451 * add the current band to "node" and then continue with the computation
3452 * of the next band.
3453 * Return the updated schedule node.
3455 static __isl_give isl_schedule_node *compute_next_band(
3456 __isl_take isl_schedule_node *node,
3457 struct isl_sched_graph *graph, int permutable)
3459 isl_ctx *ctx;
3461 if (!node)
3462 return NULL;
3464 ctx = isl_schedule_node_get_ctx(node);
3465 if (update_edges(ctx, graph) < 0)
3466 return isl_schedule_node_free(node);
3467 node = insert_current_band(node, graph, permutable);
3468 next_band(graph);
3470 node = isl_schedule_node_child(node, 0);
3471 node = compute_schedule(node, graph);
3472 node = isl_schedule_node_parent(node);
3474 return node;
3477 /* Add constraints to graph->lp that force the dependence "map" (which
3478 * is part of the dependence relation of "edge")
3479 * to be respected and attempt to carry it, where the edge is one from
3480 * a node j to itself. "pos" is the sequence number of the given map.
3481 * That is, add constraints that enforce
3483 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3484 * = c_j_x (y - x) >= e_i
3486 * for each (x,y) in R.
3487 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3488 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3489 * with each coefficient in c_j_x represented as a pair of non-negative
3490 * coefficients.
3492 static int add_intra_constraints(struct isl_sched_graph *graph,
3493 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3495 int offset;
3496 isl_ctx *ctx = isl_map_get_ctx(map);
3497 isl_dim_map *dim_map;
3498 isl_basic_set *coef;
3499 struct isl_sched_node *node = edge->src;
3501 coef = intra_coefficients(graph, node, map);
3502 if (!coef)
3503 return -1;
3505 offset = coef_var_offset(coef);
3506 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3507 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3508 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3510 return 0;
3513 /* Add constraints to graph->lp that force the dependence "map" (which
3514 * is part of the dependence relation of "edge")
3515 * to be respected and attempt to carry it, where the edge is one from
3516 * node j to node k. "pos" is the sequence number of the given map.
3517 * That is, add constraints that enforce
3519 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3521 * for each (x,y) in R.
3522 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
3523 * of valid constraints for R and then plug in
3524 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3525 * with each coefficient (except e_i, c_*_0 and c_*_n)
3526 * represented as a pair of non-negative coefficients.
3528 static int add_inter_constraints(struct isl_sched_graph *graph,
3529 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3531 int offset;
3532 isl_ctx *ctx = isl_map_get_ctx(map);
3533 isl_dim_map *dim_map;
3534 isl_basic_set *coef;
3535 struct isl_sched_node *src = edge->src;
3536 struct isl_sched_node *dst = edge->dst;
3538 coef = inter_coefficients(graph, edge, map);
3539 if (!coef)
3540 return -1;
3542 offset = coef_var_offset(coef);
3543 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3544 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3545 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3547 return 0;
3550 /* Add constraints to graph->lp that force all (conditional) validity
3551 * dependences to be respected and attempt to carry them.
3553 static isl_stat add_all_constraints(struct isl_sched_graph *graph)
3555 int i, j;
3556 int pos;
3558 pos = 0;
3559 for (i = 0; i < graph->n_edge; ++i) {
3560 struct isl_sched_edge *edge = &graph->edge[i];
3562 if (!is_any_validity(edge))
3563 continue;
3565 for (j = 0; j < edge->map->n; ++j) {
3566 isl_basic_map *bmap;
3567 isl_map *map;
3569 bmap = isl_basic_map_copy(edge->map->p[j]);
3570 map = isl_map_from_basic_map(bmap);
3572 if (edge->src == edge->dst &&
3573 add_intra_constraints(graph, edge, map, pos) < 0)
3574 return isl_stat_error;
3575 if (edge->src != edge->dst &&
3576 add_inter_constraints(graph, edge, map, pos) < 0)
3577 return isl_stat_error;
3578 ++pos;
3582 return isl_stat_ok;
3585 /* Count the number of equality and inequality constraints
3586 * that will be added to the carry_lp problem.
3587 * We count each edge exactly once.
3589 static isl_stat count_all_constraints(struct isl_sched_graph *graph,
3590 int *n_eq, int *n_ineq)
3592 int i, j;
3594 *n_eq = *n_ineq = 0;
3595 for (i = 0; i < graph->n_edge; ++i) {
3596 struct isl_sched_edge *edge = &graph->edge[i];
3598 if (!is_any_validity(edge))
3599 continue;
3601 for (j = 0; j < edge->map->n; ++j) {
3602 isl_basic_map *bmap;
3603 isl_map *map;
3605 bmap = isl_basic_map_copy(edge->map->p[j]);
3606 map = isl_map_from_basic_map(bmap);
3608 if (count_map_constraints(graph, edge, map,
3609 n_eq, n_ineq, 1, 0) < 0)
3610 return isl_stat_error;
3614 return isl_stat_ok;
3617 /* Return the total number of (validity) edges that carry_dependences will
3618 * attempt to carry.
3620 static int count_carry_edges(struct isl_sched_graph *graph)
3622 int i;
3623 int n_edge;
3625 n_edge = 0;
3626 for (i = 0; i < graph->n_edge; ++i) {
3627 struct isl_sched_edge *edge = &graph->edge[i];
3629 if (!is_any_validity(edge))
3630 continue;
3632 n_edge += isl_map_n_basic_map(edge->map);
3635 return n_edge;
3638 /* Construct an LP problem for finding schedule coefficients
3639 * such that the schedule carries as many validity dependences as possible.
3640 * In particular, for each dependence i, we bound the dependence distance
3641 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3642 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3643 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3644 * Note that if the dependence relation is a union of basic maps,
3645 * then we have to consider each basic map individually as it may only
3646 * be possible to carry the dependences expressed by some of those
3647 * basic maps and not all of them.
3648 * Below, we consider each of those basic maps as a separate "edge".
3649 * "n_edge" is the number of these edges.
3651 * All variables of the LP are non-negative. The actual coefficients
3652 * may be negative, so each coefficient is represented as the difference
3653 * of two non-negative variables. The negative part always appears
3654 * immediately before the positive part.
3655 * Other than that, the variables have the following order
3657 * - sum of (1 - e_i) over all edges
3658 * - sum of all c_n coefficients
3659 * (unconstrained when computing non-parametric schedules)
3660 * - sum of positive and negative parts of all c_x coefficients
3661 * - for each edge
3662 * - e_i
3663 * - for each node
3664 * - c_i_0
3665 * - c_i_n (if parametric)
3666 * - positive and negative parts of c_i_x
3668 * The constraints are those from the (validity) edges plus three equalities
3669 * to express the sums and n_edge inequalities to express e_i <= 1.
3671 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3672 int n_edge)
3674 int i;
3675 int k;
3676 isl_space *dim;
3677 unsigned total;
3678 int n_eq, n_ineq;
3680 total = 3 + n_edge;
3681 for (i = 0; i < graph->n; ++i) {
3682 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3683 node->start = total;
3684 total += 1 + node->nparam + 2 * node->nvar;
3687 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3688 return isl_stat_error;
3690 dim = isl_space_set_alloc(ctx, 0, total);
3691 isl_basic_set_free(graph->lp);
3692 n_eq += 3;
3693 n_ineq += n_edge;
3694 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3695 graph->lp = isl_basic_set_set_rational(graph->lp);
3697 k = isl_basic_set_alloc_equality(graph->lp);
3698 if (k < 0)
3699 return isl_stat_error;
3700 isl_seq_clr(graph->lp->eq[k], 1 + total);
3701 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3702 isl_int_set_si(graph->lp->eq[k][1], 1);
3703 for (i = 0; i < n_edge; ++i)
3704 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3706 if (add_param_sum_constraint(graph, 1) < 0)
3707 return isl_stat_error;
3708 if (add_var_sum_constraint(graph, 2) < 0)
3709 return isl_stat_error;
3711 for (i = 0; i < n_edge; ++i) {
3712 k = isl_basic_set_alloc_inequality(graph->lp);
3713 if (k < 0)
3714 return isl_stat_error;
3715 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3716 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3717 isl_int_set_si(graph->lp->ineq[k][0], 1);
3720 if (add_all_constraints(graph) < 0)
3721 return isl_stat_error;
3723 return isl_stat_ok;
3726 static __isl_give isl_schedule_node *compute_component_schedule(
3727 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3728 int wcc);
3730 /* Comparison function for sorting the statements based on
3731 * the corresponding value in "r".
3733 static int smaller_value(const void *a, const void *b, void *data)
3735 isl_vec *r = data;
3736 const int *i1 = a;
3737 const int *i2 = b;
3739 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3742 /* If the schedule_split_scaled option is set and if the linear
3743 * parts of the scheduling rows for all nodes in the graphs have
3744 * a non-trivial common divisor, then split off the remainder of the
3745 * constant term modulo this common divisor from the linear part.
3746 * Otherwise, insert a band node directly and continue with
3747 * the construction of the schedule.
3749 * If a non-trivial common divisor is found, then
3750 * the linear part is reduced and the remainder is enforced
3751 * by a sequence node with the children placed in the order
3752 * of this remainder.
3753 * In particular, we assign an scc index based on the remainder and
3754 * then rely on compute_component_schedule to insert the sequence and
3755 * to continue the schedule construction on each part.
3757 static __isl_give isl_schedule_node *split_scaled(
3758 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3760 int i;
3761 int row;
3762 int scc;
3763 isl_ctx *ctx;
3764 isl_int gcd, gcd_i;
3765 isl_vec *r;
3766 int *order;
3768 if (!node)
3769 return NULL;
3771 ctx = isl_schedule_node_get_ctx(node);
3772 if (!ctx->opt->schedule_split_scaled)
3773 return compute_next_band(node, graph, 0);
3774 if (graph->n <= 1)
3775 return compute_next_band(node, graph, 0);
3777 isl_int_init(gcd);
3778 isl_int_init(gcd_i);
3780 isl_int_set_si(gcd, 0);
3782 row = isl_mat_rows(graph->node[0].sched) - 1;
3784 for (i = 0; i < graph->n; ++i) {
3785 struct isl_sched_node *node = &graph->node[i];
3786 int cols = isl_mat_cols(node->sched);
3788 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3789 isl_int_gcd(gcd, gcd, gcd_i);
3792 isl_int_clear(gcd_i);
3794 if (isl_int_cmp_si(gcd, 1) <= 0) {
3795 isl_int_clear(gcd);
3796 return compute_next_band(node, graph, 0);
3799 r = isl_vec_alloc(ctx, graph->n);
3800 order = isl_calloc_array(ctx, int, graph->n);
3801 if (!r || !order)
3802 goto error;
3804 for (i = 0; i < graph->n; ++i) {
3805 struct isl_sched_node *node = &graph->node[i];
3807 order[i] = i;
3808 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3809 isl_int_fdiv_q(node->sched->row[row][0],
3810 node->sched->row[row][0], gcd);
3811 isl_int_mul(node->sched->row[row][0],
3812 node->sched->row[row][0], gcd);
3813 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3814 if (!node->sched)
3815 goto error;
3818 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3819 goto error;
3821 scc = 0;
3822 for (i = 0; i < graph->n; ++i) {
3823 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3824 ++scc;
3825 graph->node[order[i]].scc = scc;
3827 graph->scc = ++scc;
3828 graph->weak = 0;
3830 isl_int_clear(gcd);
3831 isl_vec_free(r);
3832 free(order);
3834 if (update_edges(ctx, graph) < 0)
3835 return isl_schedule_node_free(node);
3836 node = insert_current_band(node, graph, 0);
3837 next_band(graph);
3839 node = isl_schedule_node_child(node, 0);
3840 node = compute_component_schedule(node, graph, 0);
3841 node = isl_schedule_node_parent(node);
3843 return node;
3844 error:
3845 isl_vec_free(r);
3846 free(order);
3847 isl_int_clear(gcd);
3848 return isl_schedule_node_free(node);
3851 /* Is the schedule row "sol" trivial on node "node"?
3852 * That is, is the solution zero on the dimensions linearly independent of
3853 * the previously found solutions?
3854 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3856 * Each coefficient is represented as the difference between
3857 * two non-negative values in "sol". "sol" has been computed
3858 * in terms of the original iterators (i.e., without use of cmap).
3859 * We construct the schedule row s and write it as a linear
3860 * combination of (linear combinations of) previously computed schedule rows.
3861 * s = Q c or c = U s.
3862 * If the final entries of c are all zero, then the solution is trivial.
3864 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3866 int trivial;
3867 isl_vec *node_sol;
3869 if (!sol)
3870 return -1;
3871 if (node->nvar == node->rank)
3872 return 0;
3874 node_sol = extract_var_coef(node, sol);
3875 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3876 if (!node_sol)
3877 return -1;
3879 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3880 node->nvar - node->rank) == -1;
3882 isl_vec_free(node_sol);
3884 return trivial;
3887 /* Is the schedule row "sol" trivial on any node where it should
3888 * not be trivial?
3889 * "sol" has been computed in terms of the original iterators
3890 * (i.e., without use of cmap).
3891 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3893 static int is_any_trivial(struct isl_sched_graph *graph,
3894 __isl_keep isl_vec *sol)
3896 int i;
3898 for (i = 0; i < graph->n; ++i) {
3899 struct isl_sched_node *node = &graph->node[i];
3900 int trivial;
3902 if (!needs_row(graph, node))
3903 continue;
3904 trivial = is_trivial(node, sol);
3905 if (trivial < 0 || trivial)
3906 return trivial;
3909 return 0;
3912 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
3913 * If so, return the position of the coalesced dimension.
3914 * Otherwise, return node->nvar or -1 on error.
3916 * In particular, look for pairs of coefficients c_i and c_j such that
3917 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
3918 * If any such pair is found, then return i.
3919 * If size_i is infinity, then no check on c_i needs to be performed.
3921 static int find_node_coalescing(struct isl_sched_node *node,
3922 __isl_keep isl_vec *sol)
3924 int i, j;
3925 isl_int max;
3926 isl_vec *csol;
3928 if (node->nvar <= 1)
3929 return node->nvar;
3931 csol = extract_var_coef(node, sol);
3932 if (!csol)
3933 return -1;
3934 isl_int_init(max);
3935 for (i = 0; i < node->nvar; ++i) {
3936 isl_val *v;
3938 if (isl_int_is_zero(csol->el[i]))
3939 continue;
3940 v = isl_multi_val_get_val(node->sizes, i);
3941 if (!v)
3942 goto error;
3943 if (!isl_val_is_int(v)) {
3944 isl_val_free(v);
3945 continue;
3947 isl_int_mul(max, v->n, csol->el[i]);
3948 isl_val_free(v);
3950 for (j = 0; j < node->nvar; ++j) {
3951 if (j == i)
3952 continue;
3953 if (isl_int_abs_ge(csol->el[j], max))
3954 break;
3956 if (j < node->nvar)
3957 break;
3960 isl_int_clear(max);
3961 isl_vec_free(csol);
3962 return i;
3963 error:
3964 isl_int_clear(max);
3965 isl_vec_free(csol);
3966 return -1;
3969 /* Force the schedule coefficient at position "pos" of "node" to be zero
3970 * in "tl".
3971 * The coefficient is encoded as the difference between two non-negative
3972 * variables. Force these two variables to have the same value.
3974 static __isl_give isl_tab_lexmin *zero_out_node_coef(
3975 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
3977 int dim;
3978 isl_ctx *ctx;
3979 isl_vec *eq;
3981 ctx = isl_space_get_ctx(node->space);
3982 dim = isl_tab_lexmin_dim(tl);
3983 if (dim < 0)
3984 return isl_tab_lexmin_free(tl);
3985 eq = isl_vec_alloc(ctx, 1 + dim);
3986 eq = isl_vec_clr(eq);
3987 if (!eq)
3988 return isl_tab_lexmin_free(tl);
3990 pos = 1 + node_var_coef_offset(node) + 2 * pos;
3991 isl_int_set_si(eq->el[pos], 1);
3992 isl_int_set_si(eq->el[pos + 1], -1);
3993 tl = isl_tab_lexmin_add_eq(tl, eq->el);
3994 isl_vec_free(eq);
3996 return tl;
3999 /* Return the lexicographically smallest rational point in the basic set
4000 * from which "tl" was constructed, double checking that this input set
4001 * was not empty.
4003 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4005 isl_vec *sol;
4007 sol = isl_tab_lexmin_get_solution(tl);
4008 if (!sol)
4009 return NULL;
4010 if (sol->size == 0)
4011 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4012 "error in schedule construction",
4013 return isl_vec_free(sol));
4014 return sol;
4017 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4018 * carry any of the "n_edge" groups of dependences?
4019 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4020 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4021 * by the edge are carried by the solution.
4022 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4023 * one of those is carried.
4025 * Note that despite the fact that the problem is solved using a rational
4026 * solver, the solution is guaranteed to be integral.
4027 * Specifically, the dependence distance lower bounds e_i (and therefore
4028 * also their sum) are integers. See Lemma 5 of [1].
4030 * Any potential denominator of the sum is cleared by this function.
4031 * The denominator is not relevant for any of the other elements
4032 * in the solution.
4034 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4035 * Problem, Part II: Multi-Dimensional Time.
4036 * In Intl. Journal of Parallel Programming, 1992.
4038 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4040 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4041 isl_int_set_si(sol->el[0], 1);
4042 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4045 /* Return the lexicographically smallest rational point in "lp",
4046 * assuming that all variables are non-negative and performing some
4047 * additional sanity checks.
4048 * In particular, "lp" should not be empty by construction.
4049 * Double check that this is the case.
4050 * Also, check that dependences are carried for at least one of
4051 * the "n_edge" edges.
4053 * If the schedule_treat_coalescing option is set and
4054 * if the computed schedule performs loop coalescing on a given node,
4055 * i.e., if it is of the form
4057 * c_i i + c_j j + ...
4059 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4060 * to cut out this solution. Repeat this process until no more loop
4061 * coalescing occurs or until no more dependences can be carried.
4062 * In the latter case, revert to the previously computed solution.
4064 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4065 __isl_take isl_basic_set *lp, int n_edge)
4067 int i, pos;
4068 isl_ctx *ctx;
4069 isl_tab_lexmin *tl;
4070 isl_vec *sol, *prev = NULL;
4071 int treat_coalescing;
4073 if (!lp)
4074 return NULL;
4075 ctx = isl_basic_set_get_ctx(lp);
4076 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4077 tl = isl_tab_lexmin_from_basic_set(lp);
4079 do {
4080 sol = non_empty_solution(tl);
4081 if (!sol)
4082 goto error;
4084 if (!carries_dependences(sol, n_edge)) {
4085 if (!prev)
4086 isl_die(ctx, isl_error_unknown,
4087 "unable to carry dependences",
4088 goto error);
4089 isl_vec_free(sol);
4090 sol = prev;
4091 break;
4093 prev = isl_vec_free(prev);
4094 if (!treat_coalescing)
4095 break;
4096 for (i = 0; i < graph->n; ++i) {
4097 struct isl_sched_node *node = &graph->node[i];
4099 pos = find_node_coalescing(node, sol);
4100 if (pos < 0)
4101 goto error;
4102 if (pos < node->nvar)
4103 break;
4105 if (i < graph->n) {
4106 prev = sol;
4107 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4109 } while (i < graph->n);
4111 isl_tab_lexmin_free(tl);
4113 return sol;
4114 error:
4115 isl_tab_lexmin_free(tl);
4116 isl_vec_free(prev);
4117 isl_vec_free(sol);
4118 return NULL;
4121 /* Construct a schedule row for each node such that as many validity dependences
4122 * as possible are carried and then continue with the next band.
4124 * If there are no validity dependences, then no dependence can be carried and
4125 * the procedure is guaranteed to fail. If there is more than one component,
4126 * then try computing a schedule on each component separately
4127 * to prevent or at least postpone this failure.
4129 * If the computed schedule row turns out to be trivial on one or
4130 * more nodes where it should not be trivial, then we throw it away
4131 * and try again on each component separately.
4133 * If there is only one component, then we accept the schedule row anyway,
4134 * but we do not consider it as a complete row and therefore do not
4135 * increment graph->n_row. Note that the ranks of the nodes that
4136 * do get a non-trivial schedule part will get updated regardless and
4137 * graph->maxvar is computed based on these ranks. The test for
4138 * whether more schedule rows are required in compute_schedule_wcc
4139 * is therefore not affected.
4141 * Insert a band corresponding to the schedule row at position "node"
4142 * of the schedule tree and continue with the construction of the schedule.
4143 * This insertion and the continued construction is performed by split_scaled
4144 * after optionally checking for non-trivial common divisors.
4146 static __isl_give isl_schedule_node *carry_dependences(
4147 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4149 int n_edge;
4150 int trivial;
4151 isl_ctx *ctx;
4152 isl_vec *sol;
4153 isl_basic_set *lp;
4155 if (!node)
4156 return NULL;
4158 n_edge = count_carry_edges(graph);
4159 if (n_edge == 0 && graph->scc > 1)
4160 return compute_component_schedule(node, graph, 1);
4162 ctx = isl_schedule_node_get_ctx(node);
4163 if (setup_carry_lp(ctx, graph, n_edge) < 0)
4164 return isl_schedule_node_free(node);
4166 lp = isl_basic_set_copy(graph->lp);
4167 sol = non_neg_lexmin(graph, lp, n_edge);
4168 if (!sol)
4169 return isl_schedule_node_free(node);
4171 trivial = is_any_trivial(graph, sol);
4172 if (trivial < 0) {
4173 sol = isl_vec_free(sol);
4174 } else if (trivial && graph->scc > 1) {
4175 isl_vec_free(sol);
4176 return compute_component_schedule(node, graph, 1);
4179 if (update_schedule(graph, sol, 0, 0) < 0)
4180 return isl_schedule_node_free(node);
4181 if (trivial)
4182 graph->n_row--;
4184 return split_scaled(node, graph);
4187 /* Topologically sort statements mapped to the same schedule iteration
4188 * and add insert a sequence node in front of "node"
4189 * corresponding to this order.
4190 * If "initialized" is set, then it may be assumed that compute_maxvar
4191 * has been called on the current band. Otherwise, call
4192 * compute_maxvar if and before carry_dependences gets called.
4194 * If it turns out to be impossible to sort the statements apart,
4195 * because different dependences impose different orderings
4196 * on the statements, then we extend the schedule such that
4197 * it carries at least one more dependence.
4199 static __isl_give isl_schedule_node *sort_statements(
4200 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4201 int initialized)
4203 isl_ctx *ctx;
4204 isl_union_set_list *filters;
4206 if (!node)
4207 return NULL;
4209 ctx = isl_schedule_node_get_ctx(node);
4210 if (graph->n < 1)
4211 isl_die(ctx, isl_error_internal,
4212 "graph should have at least one node",
4213 return isl_schedule_node_free(node));
4215 if (graph->n == 1)
4216 return node;
4218 if (update_edges(ctx, graph) < 0)
4219 return isl_schedule_node_free(node);
4221 if (graph->n_edge == 0)
4222 return node;
4224 if (detect_sccs(ctx, graph) < 0)
4225 return isl_schedule_node_free(node);
4227 next_band(graph);
4228 if (graph->scc < graph->n) {
4229 if (!initialized && compute_maxvar(graph) < 0)
4230 return isl_schedule_node_free(node);
4231 return carry_dependences(node, graph);
4234 filters = extract_sccs(ctx, graph);
4235 node = isl_schedule_node_insert_sequence(node, filters);
4237 return node;
4240 /* Are there any (non-empty) (conditional) validity edges in the graph?
4242 static int has_validity_edges(struct isl_sched_graph *graph)
4244 int i;
4246 for (i = 0; i < graph->n_edge; ++i) {
4247 int empty;
4249 empty = isl_map_plain_is_empty(graph->edge[i].map);
4250 if (empty < 0)
4251 return -1;
4252 if (empty)
4253 continue;
4254 if (is_any_validity(&graph->edge[i]))
4255 return 1;
4258 return 0;
4261 /* Should we apply a Feautrier step?
4262 * That is, did the user request the Feautrier algorithm and are
4263 * there any validity dependences (left)?
4265 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4267 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4268 return 0;
4270 return has_validity_edges(graph);
4273 /* Compute a schedule for a connected dependence graph using Feautrier's
4274 * multi-dimensional scheduling algorithm and return the updated schedule node.
4276 * The original algorithm is described in [1].
4277 * The main idea is to minimize the number of scheduling dimensions, by
4278 * trying to satisfy as many dependences as possible per scheduling dimension.
4280 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4281 * Problem, Part II: Multi-Dimensional Time.
4282 * In Intl. Journal of Parallel Programming, 1992.
4284 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4285 isl_schedule_node *node, struct isl_sched_graph *graph)
4287 return carry_dependences(node, graph);
4290 /* Turn off the "local" bit on all (condition) edges.
4292 static void clear_local_edges(struct isl_sched_graph *graph)
4294 int i;
4296 for (i = 0; i < graph->n_edge; ++i)
4297 if (is_condition(&graph->edge[i]))
4298 clear_local(&graph->edge[i]);
4301 /* Does "graph" have both condition and conditional validity edges?
4303 static int need_condition_check(struct isl_sched_graph *graph)
4305 int i;
4306 int any_condition = 0;
4307 int any_conditional_validity = 0;
4309 for (i = 0; i < graph->n_edge; ++i) {
4310 if (is_condition(&graph->edge[i]))
4311 any_condition = 1;
4312 if (is_conditional_validity(&graph->edge[i]))
4313 any_conditional_validity = 1;
4316 return any_condition && any_conditional_validity;
4319 /* Does "graph" contain any coincidence edge?
4321 static int has_any_coincidence(struct isl_sched_graph *graph)
4323 int i;
4325 for (i = 0; i < graph->n_edge; ++i)
4326 if (is_coincidence(&graph->edge[i]))
4327 return 1;
4329 return 0;
4332 /* Extract the final schedule row as a map with the iteration domain
4333 * of "node" as domain.
4335 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4337 isl_multi_aff *ma;
4338 int row;
4340 row = isl_mat_rows(node->sched) - 1;
4341 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4342 return isl_map_from_multi_aff(ma);
4345 /* Is the conditional validity dependence in the edge with index "edge_index"
4346 * violated by the latest (i.e., final) row of the schedule?
4347 * That is, is i scheduled after j
4348 * for any conditional validity dependence i -> j?
4350 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4352 isl_map *src_sched, *dst_sched, *map;
4353 struct isl_sched_edge *edge = &graph->edge[edge_index];
4354 int empty;
4356 src_sched = final_row(edge->src);
4357 dst_sched = final_row(edge->dst);
4358 map = isl_map_copy(edge->map);
4359 map = isl_map_apply_domain(map, src_sched);
4360 map = isl_map_apply_range(map, dst_sched);
4361 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4362 empty = isl_map_is_empty(map);
4363 isl_map_free(map);
4365 if (empty < 0)
4366 return -1;
4368 return !empty;
4371 /* Does "graph" have any satisfied condition edges that
4372 * are adjacent to the conditional validity constraint with
4373 * domain "conditional_source" and range "conditional_sink"?
4375 * A satisfied condition is one that is not local.
4376 * If a condition was forced to be local already (i.e., marked as local)
4377 * then there is no need to check if it is in fact local.
4379 * Additionally, mark all adjacent condition edges found as local.
4381 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4382 __isl_keep isl_union_set *conditional_source,
4383 __isl_keep isl_union_set *conditional_sink)
4385 int i;
4386 int any = 0;
4388 for (i = 0; i < graph->n_edge; ++i) {
4389 int adjacent, local;
4390 isl_union_map *condition;
4392 if (!is_condition(&graph->edge[i]))
4393 continue;
4394 if (is_local(&graph->edge[i]))
4395 continue;
4397 condition = graph->edge[i].tagged_condition;
4398 adjacent = domain_intersects(condition, conditional_sink);
4399 if (adjacent >= 0 && !adjacent)
4400 adjacent = range_intersects(condition,
4401 conditional_source);
4402 if (adjacent < 0)
4403 return -1;
4404 if (!adjacent)
4405 continue;
4407 set_local(&graph->edge[i]);
4409 local = is_condition_false(&graph->edge[i]);
4410 if (local < 0)
4411 return -1;
4412 if (!local)
4413 any = 1;
4416 return any;
4419 /* Are there any violated conditional validity dependences with
4420 * adjacent condition dependences that are not local with respect
4421 * to the current schedule?
4422 * That is, is the conditional validity constraint violated?
4424 * Additionally, mark all those adjacent condition dependences as local.
4425 * We also mark those adjacent condition dependences that were not marked
4426 * as local before, but just happened to be local already. This ensures
4427 * that they remain local if the schedule is recomputed.
4429 * We first collect domain and range of all violated conditional validity
4430 * dependences and then check if there are any adjacent non-local
4431 * condition dependences.
4433 static int has_violated_conditional_constraint(isl_ctx *ctx,
4434 struct isl_sched_graph *graph)
4436 int i;
4437 int any = 0;
4438 isl_union_set *source, *sink;
4440 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4441 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4442 for (i = 0; i < graph->n_edge; ++i) {
4443 isl_union_set *uset;
4444 isl_union_map *umap;
4445 int violated;
4447 if (!is_conditional_validity(&graph->edge[i]))
4448 continue;
4450 violated = is_violated(graph, i);
4451 if (violated < 0)
4452 goto error;
4453 if (!violated)
4454 continue;
4456 any = 1;
4458 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4459 uset = isl_union_map_domain(umap);
4460 source = isl_union_set_union(source, uset);
4461 source = isl_union_set_coalesce(source);
4463 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4464 uset = isl_union_map_range(umap);
4465 sink = isl_union_set_union(sink, uset);
4466 sink = isl_union_set_coalesce(sink);
4469 if (any)
4470 any = has_adjacent_true_conditions(graph, source, sink);
4472 isl_union_set_free(source);
4473 isl_union_set_free(sink);
4474 return any;
4475 error:
4476 isl_union_set_free(source);
4477 isl_union_set_free(sink);
4478 return -1;
4481 /* Examine the current band (the rows between graph->band_start and
4482 * graph->n_total_row), deciding whether to drop it or add it to "node"
4483 * and then continue with the computation of the next band, if any.
4484 * If "initialized" is set, then it may be assumed that compute_maxvar
4485 * has been called on the current band. Otherwise, call
4486 * compute_maxvar if and before carry_dependences gets called.
4488 * The caller keeps looking for a new row as long as
4489 * graph->n_row < graph->maxvar. If the latest attempt to find
4490 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4491 * then we either
4492 * - split between SCCs and start over (assuming we found an interesting
4493 * pair of SCCs between which to split)
4494 * - continue with the next band (assuming the current band has at least
4495 * one row)
4496 * - try to carry as many dependences as possible and continue with the next
4497 * band
4498 * In each case, we first insert a band node in the schedule tree
4499 * if any rows have been computed.
4501 * If the caller managed to complete the schedule, we insert a band node
4502 * (if any schedule rows were computed) and we finish off by topologically
4503 * sorting the statements based on the remaining dependences.
4505 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4506 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4507 int initialized)
4509 int insert;
4511 if (!node)
4512 return NULL;
4514 if (graph->n_row < graph->maxvar) {
4515 isl_ctx *ctx;
4516 int empty = graph->n_total_row == graph->band_start;
4518 ctx = isl_schedule_node_get_ctx(node);
4519 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4520 return compute_next_band(node, graph, 1);
4521 if (graph->src_scc >= 0)
4522 return compute_split_schedule(node, graph);
4523 if (!empty)
4524 return compute_next_band(node, graph, 1);
4525 if (!initialized && compute_maxvar(graph) < 0)
4526 return isl_schedule_node_free(node);
4527 return carry_dependences(node, graph);
4530 insert = graph->n_total_row > graph->band_start;
4531 if (insert) {
4532 node = insert_current_band(node, graph, 1);
4533 node = isl_schedule_node_child(node, 0);
4535 node = sort_statements(node, graph, initialized);
4536 if (insert)
4537 node = isl_schedule_node_parent(node);
4539 return node;
4542 /* Construct a band of schedule rows for a connected dependence graph.
4543 * The caller is responsible for determining the strongly connected
4544 * components and calling compute_maxvar first.
4546 * We try to find a sequence of as many schedule rows as possible that result
4547 * in non-negative dependence distances (independent of the previous rows
4548 * in the sequence, i.e., such that the sequence is tilable), with as
4549 * many of the initial rows as possible satisfying the coincidence constraints.
4550 * The computation stops if we can't find any more rows or if we have found
4551 * all the rows we wanted to find.
4553 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4554 * outermost dimension to satisfy the coincidence constraints. If this
4555 * turns out to be impossible, we fall back on the general scheme above
4556 * and try to carry as many dependences as possible.
4558 * If "graph" contains both condition and conditional validity dependences,
4559 * then we need to check that that the conditional schedule constraint
4560 * is satisfied, i.e., there are no violated conditional validity dependences
4561 * that are adjacent to any non-local condition dependences.
4562 * If there are, then we mark all those adjacent condition dependences
4563 * as local and recompute the current band. Those dependences that
4564 * are marked local will then be forced to be local.
4565 * The initial computation is performed with no dependences marked as local.
4566 * If we are lucky, then there will be no violated conditional validity
4567 * dependences adjacent to any non-local condition dependences.
4568 * Otherwise, we mark some additional condition dependences as local and
4569 * recompute. We continue this process until there are no violations left or
4570 * until we are no longer able to compute a schedule.
4571 * Since there are only a finite number of dependences,
4572 * there will only be a finite number of iterations.
4574 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4575 struct isl_sched_graph *graph)
4577 int has_coincidence;
4578 int use_coincidence;
4579 int force_coincidence = 0;
4580 int check_conditional;
4582 if (sort_sccs(graph) < 0)
4583 return isl_stat_error;
4585 clear_local_edges(graph);
4586 check_conditional = need_condition_check(graph);
4587 has_coincidence = has_any_coincidence(graph);
4589 if (ctx->opt->schedule_outer_coincidence)
4590 force_coincidence = 1;
4592 use_coincidence = has_coincidence;
4593 while (graph->n_row < graph->maxvar) {
4594 isl_vec *sol;
4595 int violated;
4596 int coincident;
4598 graph->src_scc = -1;
4599 graph->dst_scc = -1;
4601 if (setup_lp(ctx, graph, use_coincidence) < 0)
4602 return isl_stat_error;
4603 sol = solve_lp(graph);
4604 if (!sol)
4605 return isl_stat_error;
4606 if (sol->size == 0) {
4607 int empty = graph->n_total_row == graph->band_start;
4609 isl_vec_free(sol);
4610 if (use_coincidence && (!force_coincidence || !empty)) {
4611 use_coincidence = 0;
4612 continue;
4614 return isl_stat_ok;
4616 coincident = !has_coincidence || use_coincidence;
4617 if (update_schedule(graph, sol, 1, coincident) < 0)
4618 return isl_stat_error;
4620 if (!check_conditional)
4621 continue;
4622 violated = has_violated_conditional_constraint(ctx, graph);
4623 if (violated < 0)
4624 return isl_stat_error;
4625 if (!violated)
4626 continue;
4627 if (reset_band(graph) < 0)
4628 return isl_stat_error;
4629 use_coincidence = has_coincidence;
4632 return isl_stat_ok;
4635 /* Compute a schedule for a connected dependence graph by considering
4636 * the graph as a whole and return the updated schedule node.
4638 * The actual schedule rows of the current band are computed by
4639 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4640 * care of integrating the band into "node" and continuing
4641 * the computation.
4643 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
4644 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4646 isl_ctx *ctx;
4648 if (!node)
4649 return NULL;
4651 ctx = isl_schedule_node_get_ctx(node);
4652 if (compute_schedule_wcc_band(ctx, graph) < 0)
4653 return isl_schedule_node_free(node);
4655 return compute_schedule_finish_band(node, graph, 1);
4658 /* Clustering information used by compute_schedule_wcc_clustering.
4660 * "n" is the number of SCCs in the original dependence graph
4661 * "scc" is an array of "n" elements, each representing an SCC
4662 * of the original dependence graph. All entries in the same cluster
4663 * have the same number of schedule rows.
4664 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4665 * where each cluster is represented by the index of the first SCC
4666 * in the cluster. Initially, each SCC belongs to a cluster containing
4667 * only that SCC.
4669 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4670 * track of which SCCs need to be merged.
4672 * "cluster" contains the merged clusters of SCCs after the clustering
4673 * has completed.
4675 * "scc_node" is a temporary data structure used inside copy_partial.
4676 * For each SCC, it keeps track of the number of nodes in the SCC
4677 * that have already been copied.
4679 struct isl_clustering {
4680 int n;
4681 struct isl_sched_graph *scc;
4682 struct isl_sched_graph *cluster;
4683 int *scc_cluster;
4684 int *scc_node;
4685 int *scc_in_merge;
4688 /* Initialize the clustering data structure "c" from "graph".
4690 * In particular, allocate memory, extract the SCCs from "graph"
4691 * into c->scc, initialize scc_cluster and construct
4692 * a band of schedule rows for each SCC.
4693 * Within each SCC, there is only one SCC by definition.
4694 * Each SCC initially belongs to a cluster containing only that SCC.
4696 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
4697 struct isl_sched_graph *graph)
4699 int i;
4701 c->n = graph->scc;
4702 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4703 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4704 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
4705 c->scc_node = isl_calloc_array(ctx, int, c->n);
4706 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
4707 if (!c->scc || !c->cluster ||
4708 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
4709 return isl_stat_error;
4711 for (i = 0; i < c->n; ++i) {
4712 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
4713 &edge_scc_exactly, i, &c->scc[i]) < 0)
4714 return isl_stat_error;
4715 c->scc[i].scc = 1;
4716 if (compute_maxvar(&c->scc[i]) < 0)
4717 return isl_stat_error;
4718 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
4719 return isl_stat_error;
4720 c->scc_cluster[i] = i;
4723 return isl_stat_ok;
4726 /* Free all memory allocated for "c".
4728 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
4730 int i;
4732 if (c->scc)
4733 for (i = 0; i < c->n; ++i)
4734 graph_free(ctx, &c->scc[i]);
4735 free(c->scc);
4736 if (c->cluster)
4737 for (i = 0; i < c->n; ++i)
4738 graph_free(ctx, &c->cluster[i]);
4739 free(c->cluster);
4740 free(c->scc_cluster);
4741 free(c->scc_node);
4742 free(c->scc_in_merge);
4745 /* Should we refrain from merging the cluster in "graph" with
4746 * any other cluster?
4747 * In particular, is its current schedule band empty and incomplete.
4749 static int bad_cluster(struct isl_sched_graph *graph)
4751 return graph->n_row < graph->maxvar &&
4752 graph->n_total_row == graph->band_start;
4755 /* Return the index of an edge in "graph" that can be used to merge
4756 * two clusters in "c".
4757 * Return graph->n_edge if no such edge can be found.
4758 * Return -1 on error.
4760 * In particular, return a proximity edge between two clusters
4761 * that is not marked "no_merge" and such that neither of the
4762 * two clusters has an incomplete, empty band.
4764 * If there are multiple such edges, then try and find the most
4765 * appropriate edge to use for merging. In particular, pick the edge
4766 * with the greatest weight. If there are multiple of those,
4767 * then pick one with the shortest distance between
4768 * the two cluster representatives.
4770 static int find_proximity(struct isl_sched_graph *graph,
4771 struct isl_clustering *c)
4773 int i, best = graph->n_edge, best_dist, best_weight;
4775 for (i = 0; i < graph->n_edge; ++i) {
4776 struct isl_sched_edge *edge = &graph->edge[i];
4777 int dist, weight;
4779 if (!is_proximity(edge))
4780 continue;
4781 if (edge->no_merge)
4782 continue;
4783 if (bad_cluster(&c->scc[edge->src->scc]) ||
4784 bad_cluster(&c->scc[edge->dst->scc]))
4785 continue;
4786 dist = c->scc_cluster[edge->dst->scc] -
4787 c->scc_cluster[edge->src->scc];
4788 if (dist == 0)
4789 continue;
4790 weight = edge->weight;
4791 if (best < graph->n_edge) {
4792 if (best_weight > weight)
4793 continue;
4794 if (best_weight == weight && best_dist <= dist)
4795 continue;
4797 best = i;
4798 best_dist = dist;
4799 best_weight = weight;
4802 return best;
4805 /* Internal data structure used in mark_merge_sccs.
4807 * "graph" is the dependence graph in which a strongly connected
4808 * component is constructed.
4809 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4810 * "src" and "dst" are the indices of the nodes that are being merged.
4812 struct isl_mark_merge_sccs_data {
4813 struct isl_sched_graph *graph;
4814 int *scc_cluster;
4815 int src;
4816 int dst;
4819 /* Check whether the cluster containing node "i" depends on the cluster
4820 * containing node "j". If "i" and "j" belong to the same cluster,
4821 * then they are taken to depend on each other to ensure that
4822 * the resulting strongly connected component consists of complete
4823 * clusters. Furthermore, if "i" and "j" are the two nodes that
4824 * are being merged, then they are taken to depend on each other as well.
4825 * Otherwise, check if there is a (conditional) validity dependence
4826 * from node[j] to node[i], forcing node[i] to follow node[j].
4828 static isl_bool cluster_follows(int i, int j, void *user)
4830 struct isl_mark_merge_sccs_data *data = user;
4831 struct isl_sched_graph *graph = data->graph;
4832 int *scc_cluster = data->scc_cluster;
4834 if (data->src == i && data->dst == j)
4835 return isl_bool_true;
4836 if (data->src == j && data->dst == i)
4837 return isl_bool_true;
4838 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
4839 return isl_bool_true;
4841 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
4844 /* Mark all SCCs that belong to either of the two clusters in "c"
4845 * connected by the edge in "graph" with index "edge", or to any
4846 * of the intermediate clusters.
4847 * The marking is recorded in c->scc_in_merge.
4849 * The given edge has been selected for merging two clusters,
4850 * meaning that there is at least a proximity edge between the two nodes.
4851 * However, there may also be (indirect) validity dependences
4852 * between the two nodes. When merging the two clusters, all clusters
4853 * containing one or more of the intermediate nodes along the
4854 * indirect validity dependences need to be merged in as well.
4856 * First collect all such nodes by computing the strongly connected
4857 * component (SCC) containing the two nodes connected by the edge, where
4858 * the two nodes are considered to depend on each other to make
4859 * sure they end up in the same SCC. Similarly, each node is considered
4860 * to depend on every other node in the same cluster to ensure
4861 * that the SCC consists of complete clusters.
4863 * Then the original SCCs that contain any of these nodes are marked
4864 * in c->scc_in_merge.
4866 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
4867 int edge, struct isl_clustering *c)
4869 struct isl_mark_merge_sccs_data data;
4870 struct isl_tarjan_graph *g;
4871 int i;
4873 for (i = 0; i < c->n; ++i)
4874 c->scc_in_merge[i] = 0;
4876 data.graph = graph;
4877 data.scc_cluster = c->scc_cluster;
4878 data.src = graph->edge[edge].src - graph->node;
4879 data.dst = graph->edge[edge].dst - graph->node;
4881 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
4882 &cluster_follows, &data);
4883 if (!g)
4884 goto error;
4886 i = g->op;
4887 if (i < 3)
4888 isl_die(ctx, isl_error_internal,
4889 "expecting at least two nodes in component",
4890 goto error);
4891 if (g->order[--i] != -1)
4892 isl_die(ctx, isl_error_internal,
4893 "expecting end of component marker", goto error);
4895 for (--i; i >= 0 && g->order[i] != -1; --i) {
4896 int scc = graph->node[g->order[i]].scc;
4897 c->scc_in_merge[scc] = 1;
4900 isl_tarjan_graph_free(g);
4901 return isl_stat_ok;
4902 error:
4903 isl_tarjan_graph_free(g);
4904 return isl_stat_error;
4907 /* Construct the identifier "cluster_i".
4909 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
4911 char name[40];
4913 snprintf(name, sizeof(name), "cluster_%d", i);
4914 return isl_id_alloc(ctx, name, NULL);
4917 /* Construct the space of the cluster with index "i" containing
4918 * the strongly connected component "scc".
4920 * In particular, construct a space called cluster_i with dimension equal
4921 * to the number of schedule rows in the current band of "scc".
4923 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
4925 int nvar;
4926 isl_space *space;
4927 isl_id *id;
4929 nvar = scc->n_total_row - scc->band_start;
4930 space = isl_space_copy(scc->node[0].space);
4931 space = isl_space_params(space);
4932 space = isl_space_set_from_params(space);
4933 space = isl_space_add_dims(space, isl_dim_set, nvar);
4934 id = cluster_id(isl_space_get_ctx(space), i);
4935 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4937 return space;
4940 /* Collect the domain of the graph for merging clusters.
4942 * In particular, for each cluster with first SCC "i", construct
4943 * a set in the space called cluster_i with dimension equal
4944 * to the number of schedule rows in the current band of the cluster.
4946 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
4947 struct isl_sched_graph *graph, struct isl_clustering *c)
4949 int i;
4950 isl_space *space;
4951 isl_union_set *domain;
4953 space = isl_space_params_alloc(ctx, 0);
4954 domain = isl_union_set_empty(space);
4956 for (i = 0; i < graph->scc; ++i) {
4957 isl_space *space;
4959 if (!c->scc_in_merge[i])
4960 continue;
4961 if (c->scc_cluster[i] != i)
4962 continue;
4963 space = cluster_space(&c->scc[i], i);
4964 domain = isl_union_set_add_set(domain, isl_set_universe(space));
4967 return domain;
4970 /* Construct a map from the original instances to the corresponding
4971 * cluster instance in the current bands of the clusters in "c".
4973 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
4974 struct isl_sched_graph *graph, struct isl_clustering *c)
4976 int i, j;
4977 isl_space *space;
4978 isl_union_map *cluster_map;
4980 space = isl_space_params_alloc(ctx, 0);
4981 cluster_map = isl_union_map_empty(space);
4982 for (i = 0; i < graph->scc; ++i) {
4983 int start, n;
4984 isl_id *id;
4986 if (!c->scc_in_merge[i])
4987 continue;
4989 id = cluster_id(ctx, c->scc_cluster[i]);
4990 start = c->scc[i].band_start;
4991 n = c->scc[i].n_total_row - start;
4992 for (j = 0; j < c->scc[i].n; ++j) {
4993 isl_multi_aff *ma;
4994 isl_map *map;
4995 struct isl_sched_node *node = &c->scc[i].node[j];
4997 ma = node_extract_partial_schedule_multi_aff(node,
4998 start, n);
4999 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5000 isl_id_copy(id));
5001 map = isl_map_from_multi_aff(ma);
5002 cluster_map = isl_union_map_add_map(cluster_map, map);
5004 isl_id_free(id);
5007 return cluster_map;
5010 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5011 * that are not isl_edge_condition or isl_edge_conditional_validity.
5013 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5014 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5015 __isl_take isl_schedule_constraints *sc)
5017 enum isl_edge_type t;
5019 if (!sc)
5020 return NULL;
5022 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5023 if (t == isl_edge_condition ||
5024 t == isl_edge_conditional_validity)
5025 continue;
5026 if (!is_type(edge, t))
5027 continue;
5028 sc = isl_schedule_constraints_add(sc, t,
5029 isl_union_map_copy(umap));
5032 return sc;
5035 /* Add schedule constraints of types isl_edge_condition and
5036 * isl_edge_conditional_validity to "sc" by applying "umap" to
5037 * the domains of the wrapped relations in domain and range
5038 * of the corresponding tagged constraints of "edge".
5040 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5041 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5042 __isl_take isl_schedule_constraints *sc)
5044 enum isl_edge_type t;
5045 isl_union_map *tagged;
5047 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5048 if (!is_type(edge, t))
5049 continue;
5050 if (t == isl_edge_condition)
5051 tagged = isl_union_map_copy(edge->tagged_condition);
5052 else
5053 tagged = isl_union_map_copy(edge->tagged_validity);
5054 tagged = isl_union_map_zip(tagged);
5055 tagged = isl_union_map_apply_domain(tagged,
5056 isl_union_map_copy(umap));
5057 tagged = isl_union_map_zip(tagged);
5058 sc = isl_schedule_constraints_add(sc, t, tagged);
5059 if (!sc)
5060 return NULL;
5063 return sc;
5066 /* Given a mapping "cluster_map" from the original instances to
5067 * the cluster instances, add schedule constraints on the clusters
5068 * to "sc" corresponding to the original constraints represented by "edge".
5070 * For non-tagged dependence constraints, the cluster constraints
5071 * are obtained by applying "cluster_map" to the edge->map.
5073 * For tagged dependence constraints, "cluster_map" needs to be applied
5074 * to the domains of the wrapped relations in domain and range
5075 * of the tagged dependence constraints. Pick out the mappings
5076 * from these domains from "cluster_map" and construct their product.
5077 * This mapping can then be applied to the pair of domains.
5079 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5080 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5081 __isl_take isl_schedule_constraints *sc)
5083 isl_union_map *umap;
5084 isl_space *space;
5085 isl_union_set *uset;
5086 isl_union_map *umap1, *umap2;
5088 if (!sc)
5089 return NULL;
5091 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5092 umap = isl_union_map_apply_domain(umap,
5093 isl_union_map_copy(cluster_map));
5094 umap = isl_union_map_apply_range(umap,
5095 isl_union_map_copy(cluster_map));
5096 sc = add_non_conditional_constraints(edge, umap, sc);
5097 isl_union_map_free(umap);
5099 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5100 return sc;
5102 space = isl_space_domain(isl_map_get_space(edge->map));
5103 uset = isl_union_set_from_set(isl_set_universe(space));
5104 umap1 = isl_union_map_copy(cluster_map);
5105 umap1 = isl_union_map_intersect_domain(umap1, uset);
5106 space = isl_space_range(isl_map_get_space(edge->map));
5107 uset = isl_union_set_from_set(isl_set_universe(space));
5108 umap2 = isl_union_map_copy(cluster_map);
5109 umap2 = isl_union_map_intersect_domain(umap2, uset);
5110 umap = isl_union_map_product(umap1, umap2);
5112 sc = add_conditional_constraints(edge, umap, sc);
5114 isl_union_map_free(umap);
5115 return sc;
5118 /* Given a mapping "cluster_map" from the original instances to
5119 * the cluster instances, add schedule constraints on the clusters
5120 * to "sc" corresponding to all edges in "graph" between nodes that
5121 * belong to SCCs that are marked for merging in "scc_in_merge".
5123 static __isl_give isl_schedule_constraints *collect_constraints(
5124 struct isl_sched_graph *graph, int *scc_in_merge,
5125 __isl_keep isl_union_map *cluster_map,
5126 __isl_take isl_schedule_constraints *sc)
5128 int i;
5130 for (i = 0; i < graph->n_edge; ++i) {
5131 struct isl_sched_edge *edge = &graph->edge[i];
5133 if (!scc_in_merge[edge->src->scc])
5134 continue;
5135 if (!scc_in_merge[edge->dst->scc])
5136 continue;
5137 sc = collect_edge_constraints(edge, cluster_map, sc);
5140 return sc;
5143 /* Construct a dependence graph for scheduling clusters with respect
5144 * to each other and store the result in "merge_graph".
5145 * In particular, the nodes of the graph correspond to the schedule
5146 * dimensions of the current bands of those clusters that have been
5147 * marked for merging in "c".
5149 * First construct an isl_schedule_constraints object for this domain
5150 * by transforming the edges in "graph" to the domain.
5151 * Then initialize a dependence graph for scheduling from these
5152 * constraints.
5154 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5155 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5157 isl_union_set *domain;
5158 isl_union_map *cluster_map;
5159 isl_schedule_constraints *sc;
5160 isl_stat r;
5162 domain = collect_domain(ctx, graph, c);
5163 sc = isl_schedule_constraints_on_domain(domain);
5164 if (!sc)
5165 return isl_stat_error;
5166 cluster_map = collect_cluster_map(ctx, graph, c);
5167 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5168 isl_union_map_free(cluster_map);
5170 r = graph_init(merge_graph, sc);
5172 isl_schedule_constraints_free(sc);
5174 return r;
5177 /* Compute the maximal number of remaining schedule rows that still need
5178 * to be computed for the nodes that belong to clusters with the maximal
5179 * dimension for the current band (i.e., the band that is to be merged).
5180 * Only clusters that are about to be merged are considered.
5181 * "maxvar" is the maximal dimension for the current band.
5182 * "c" contains information about the clusters.
5184 * Return the maximal number of remaining schedule rows or -1 on error.
5186 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5188 int i, j;
5189 int max_slack;
5191 max_slack = 0;
5192 for (i = 0; i < c->n; ++i) {
5193 int nvar;
5194 struct isl_sched_graph *scc;
5196 if (!c->scc_in_merge[i])
5197 continue;
5198 scc = &c->scc[i];
5199 nvar = scc->n_total_row - scc->band_start;
5200 if (nvar != maxvar)
5201 continue;
5202 for (j = 0; j < scc->n; ++j) {
5203 struct isl_sched_node *node = &scc->node[j];
5204 int slack;
5206 if (node_update_cmap(node) < 0)
5207 return -1;
5208 slack = node->nvar - node->rank;
5209 if (slack > max_slack)
5210 max_slack = slack;
5214 return max_slack;
5217 /* If there are any clusters where the dimension of the current band
5218 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5219 * if there are any nodes in such a cluster where the number
5220 * of remaining schedule rows that still need to be computed
5221 * is greater than "max_slack", then return the smallest current band
5222 * dimension of all these clusters. Otherwise return the original value
5223 * of "maxvar". Return -1 in case of any error.
5224 * Only clusters that are about to be merged are considered.
5225 * "c" contains information about the clusters.
5227 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5228 struct isl_clustering *c)
5230 int i, j;
5232 for (i = 0; i < c->n; ++i) {
5233 int nvar;
5234 struct isl_sched_graph *scc;
5236 if (!c->scc_in_merge[i])
5237 continue;
5238 scc = &c->scc[i];
5239 nvar = scc->n_total_row - scc->band_start;
5240 if (nvar >= maxvar)
5241 continue;
5242 for (j = 0; j < scc->n; ++j) {
5243 struct isl_sched_node *node = &scc->node[j];
5244 int slack;
5246 if (node_update_cmap(node) < 0)
5247 return -1;
5248 slack = node->nvar - node->rank;
5249 if (slack > max_slack) {
5250 maxvar = nvar;
5251 break;
5256 return maxvar;
5259 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5260 * that still need to be computed. In particular, if there is a node
5261 * in a cluster where the dimension of the current band is smaller
5262 * than merge_graph->maxvar, but the number of remaining schedule rows
5263 * is greater than that of any node in a cluster with the maximal
5264 * dimension for the current band (i.e., merge_graph->maxvar),
5265 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5266 * of those clusters. Without this adjustment, the total number of
5267 * schedule dimensions would be increased, resulting in a skewed view
5268 * of the number of coincident dimensions.
5269 * "c" contains information about the clusters.
5271 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5272 * then there is no point in attempting any merge since it will be rejected
5273 * anyway. Set merge_graph->maxvar to zero in such cases.
5275 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5276 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5278 int max_slack, maxvar;
5280 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5281 if (max_slack < 0)
5282 return isl_stat_error;
5283 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5284 if (maxvar < 0)
5285 return isl_stat_error;
5287 if (maxvar < merge_graph->maxvar) {
5288 if (isl_options_get_schedule_maximize_band_depth(ctx))
5289 merge_graph->maxvar = 0;
5290 else
5291 merge_graph->maxvar = maxvar;
5294 return isl_stat_ok;
5297 /* Return the number of coincident dimensions in the current band of "graph",
5298 * where the nodes of "graph" are assumed to be scheduled by a single band.
5300 static int get_n_coincident(struct isl_sched_graph *graph)
5302 int i;
5304 for (i = graph->band_start; i < graph->n_total_row; ++i)
5305 if (!graph->node[0].coincident[i])
5306 break;
5308 return i - graph->band_start;
5311 /* Should the clusters be merged based on the cluster schedule
5312 * in the current (and only) band of "merge_graph", given that
5313 * coincidence should be maximized?
5315 * If the number of coincident schedule dimensions in the merged band
5316 * would be less than the maximal number of coincident schedule dimensions
5317 * in any of the merged clusters, then the clusters should not be merged.
5319 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5320 struct isl_sched_graph *merge_graph)
5322 int i;
5323 int n_coincident;
5324 int max_coincident;
5326 max_coincident = 0;
5327 for (i = 0; i < c->n; ++i) {
5328 if (!c->scc_in_merge[i])
5329 continue;
5330 n_coincident = get_n_coincident(&c->scc[i]);
5331 if (n_coincident > max_coincident)
5332 max_coincident = n_coincident;
5335 n_coincident = get_n_coincident(merge_graph);
5337 return n_coincident >= max_coincident;
5340 /* Return the transformation on "node" expressed by the current (and only)
5341 * band of "merge_graph" applied to the clusters in "c".
5343 * First find the representation of "node" in its SCC in "c" and
5344 * extract the transformation expressed by the current band.
5345 * Then extract the transformation applied by "merge_graph"
5346 * to the cluster to which this SCC belongs.
5347 * Combine the two to obtain the complete transformation on the node.
5349 * Note that the range of the first transformation is an anonymous space,
5350 * while the domain of the second is named "cluster_X". The range
5351 * of the former therefore needs to be adjusted before the two
5352 * can be combined.
5354 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5355 struct isl_sched_node *node, struct isl_clustering *c,
5356 struct isl_sched_graph *merge_graph)
5358 struct isl_sched_node *scc_node, *cluster_node;
5359 int start, n;
5360 isl_id *id;
5361 isl_space *space;
5362 isl_multi_aff *ma, *ma2;
5364 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5365 start = c->scc[node->scc].band_start;
5366 n = c->scc[node->scc].n_total_row - start;
5367 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5368 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5369 cluster_node = graph_find_node(ctx, merge_graph, space);
5370 if (space && !cluster_node)
5371 isl_die(ctx, isl_error_internal, "unable to find cluster",
5372 space = isl_space_free(space));
5373 id = isl_space_get_tuple_id(space, isl_dim_set);
5374 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5375 isl_space_free(space);
5376 n = merge_graph->n_total_row;
5377 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5378 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5380 return isl_map_from_multi_aff(ma);
5383 /* Give a set of distances "set", are they bounded by a small constant
5384 * in direction "pos"?
5385 * In practice, check if they are bounded by 2 by checking that there
5386 * are no elements with a value greater than or equal to 3 or
5387 * smaller than or equal to -3.
5389 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5391 isl_bool bounded;
5392 isl_set *test;
5394 if (!set)
5395 return isl_bool_error;
5397 test = isl_set_copy(set);
5398 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5399 bounded = isl_set_is_empty(test);
5400 isl_set_free(test);
5402 if (bounded < 0 || !bounded)
5403 return bounded;
5405 test = isl_set_copy(set);
5406 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5407 bounded = isl_set_is_empty(test);
5408 isl_set_free(test);
5410 return bounded;
5413 /* Does the set "set" have a fixed (but possible parametric) value
5414 * at dimension "pos"?
5416 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5418 int n;
5419 isl_bool single;
5421 if (!set)
5422 return isl_bool_error;
5423 set = isl_set_copy(set);
5424 n = isl_set_dim(set, isl_dim_set);
5425 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5426 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5427 single = isl_set_is_singleton(set);
5428 isl_set_free(set);
5430 return single;
5433 /* Does "map" have a fixed (but possible parametric) value
5434 * at dimension "pos" of either its domain or its range?
5436 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5438 isl_set *set;
5439 isl_bool single;
5441 set = isl_map_domain(isl_map_copy(map));
5442 single = has_single_value(set, pos);
5443 isl_set_free(set);
5445 if (single < 0 || single)
5446 return single;
5448 set = isl_map_range(isl_map_copy(map));
5449 single = has_single_value(set, pos);
5450 isl_set_free(set);
5452 return single;
5455 /* Does the edge "edge" from "graph" have bounded dependence distances
5456 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5458 * Extract the complete transformations of the source and destination
5459 * nodes of the edge, apply them to the edge constraints and
5460 * compute the differences. Finally, check if these differences are bounded
5461 * in each direction.
5463 * If the dimension of the band is greater than the number of
5464 * dimensions that can be expected to be optimized by the edge
5465 * (based on its weight), then also allow the differences to be unbounded
5466 * in the remaining dimensions, but only if either the source or
5467 * the destination has a fixed value in that direction.
5468 * This allows a statement that produces values that are used by
5469 * several instances of another statement to be merged with that
5470 * other statement.
5471 * However, merging such clusters will introduce an inherently
5472 * large proximity distance inside the merged cluster, meaning
5473 * that proximity distances will no longer be optimized in
5474 * subsequent merges. These merges are therefore only allowed
5475 * after all other possible merges have been tried.
5476 * The first time such a merge is encountered, the weight of the edge
5477 * is replaced by a negative weight. The second time (i.e., after
5478 * all merges over edges with a non-negative weight have been tried),
5479 * the merge is allowed.
5481 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5482 struct isl_sched_graph *graph, struct isl_clustering *c,
5483 struct isl_sched_graph *merge_graph)
5485 int i, n, n_slack;
5486 isl_bool bounded;
5487 isl_map *map, *t;
5488 isl_set *dist;
5490 map = isl_map_copy(edge->map);
5491 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5492 map = isl_map_apply_domain(map, t);
5493 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5494 map = isl_map_apply_range(map, t);
5495 dist = isl_map_deltas(isl_map_copy(map));
5497 bounded = isl_bool_true;
5498 n = isl_set_dim(dist, isl_dim_set);
5499 n_slack = n - edge->weight;
5500 if (edge->weight < 0)
5501 n_slack -= graph->max_weight + 1;
5502 for (i = 0; i < n; ++i) {
5503 isl_bool bounded_i, singular_i;
5505 bounded_i = distance_is_bounded(dist, i);
5506 if (bounded_i < 0)
5507 goto error;
5508 if (bounded_i)
5509 continue;
5510 if (edge->weight >= 0)
5511 bounded = isl_bool_false;
5512 n_slack--;
5513 if (n_slack < 0)
5514 break;
5515 singular_i = has_singular_src_or_dst(map, i);
5516 if (singular_i < 0)
5517 goto error;
5518 if (singular_i)
5519 continue;
5520 bounded = isl_bool_false;
5521 break;
5523 if (!bounded && i >= n && edge->weight >= 0)
5524 edge->weight -= graph->max_weight + 1;
5525 isl_map_free(map);
5526 isl_set_free(dist);
5528 return bounded;
5529 error:
5530 isl_map_free(map);
5531 isl_set_free(dist);
5532 return isl_bool_error;
5535 /* Should the clusters be merged based on the cluster schedule
5536 * in the current (and only) band of "merge_graph"?
5537 * "graph" is the original dependence graph, while "c" records
5538 * which SCCs are involved in the latest merge.
5540 * In particular, is there at least one proximity constraint
5541 * that is optimized by the merge?
5543 * A proximity constraint is considered to be optimized
5544 * if the dependence distances are small.
5546 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5547 struct isl_sched_graph *graph, struct isl_clustering *c,
5548 struct isl_sched_graph *merge_graph)
5550 int i;
5552 for (i = 0; i < graph->n_edge; ++i) {
5553 struct isl_sched_edge *edge = &graph->edge[i];
5554 isl_bool bounded;
5556 if (!is_proximity(edge))
5557 continue;
5558 if (!c->scc_in_merge[edge->src->scc])
5559 continue;
5560 if (!c->scc_in_merge[edge->dst->scc])
5561 continue;
5562 if (c->scc_cluster[edge->dst->scc] ==
5563 c->scc_cluster[edge->src->scc])
5564 continue;
5565 bounded = has_bounded_distances(ctx, edge, graph, c,
5566 merge_graph);
5567 if (bounded < 0 || bounded)
5568 return bounded;
5571 return isl_bool_false;
5574 /* Should the clusters be merged based on the cluster schedule
5575 * in the current (and only) band of "merge_graph"?
5576 * "graph" is the original dependence graph, while "c" records
5577 * which SCCs are involved in the latest merge.
5579 * If the current band is empty, then the clusters should not be merged.
5581 * If the band depth should be maximized and the merge schedule
5582 * is incomplete (meaning that the dimension of some of the schedule
5583 * bands in the original schedule will be reduced), then the clusters
5584 * should not be merged.
5586 * If the schedule_maximize_coincidence option is set, then check that
5587 * the number of coincident schedule dimensions is not reduced.
5589 * Finally, only allow the merge if at least one proximity
5590 * constraint is optimized.
5592 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5593 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5595 if (merge_graph->n_total_row == merge_graph->band_start)
5596 return isl_bool_false;
5598 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
5599 merge_graph->n_total_row < merge_graph->maxvar)
5600 return isl_bool_false;
5602 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
5603 isl_bool ok;
5605 ok = ok_to_merge_coincident(c, merge_graph);
5606 if (ok < 0 || !ok)
5607 return ok;
5610 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
5613 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5614 * of the schedule in "node" and return the result.
5616 * That is, essentially compute
5618 * T * N(first:first+n-1)
5620 * taking into account the constant term and the parameter coefficients
5621 * in "t_node".
5623 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
5624 struct isl_sched_node *t_node, struct isl_sched_node *node,
5625 int first, int n)
5627 int i, j;
5628 isl_mat *t;
5629 int n_row, n_col, n_param, n_var;
5631 n_param = node->nparam;
5632 n_var = node->nvar;
5633 n_row = isl_mat_rows(t_node->sched);
5634 n_col = isl_mat_cols(node->sched);
5635 t = isl_mat_alloc(ctx, n_row, n_col);
5636 if (!t)
5637 return NULL;
5638 for (i = 0; i < n_row; ++i) {
5639 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
5640 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
5641 for (j = 0; j < n; ++j)
5642 isl_seq_addmul(t->row[i],
5643 t_node->sched->row[i][1 + n_param + j],
5644 node->sched->row[first + j],
5645 1 + n_param + n_var);
5647 return t;
5650 /* Apply the cluster schedule in "t_node" to the current band
5651 * schedule of the nodes in "graph".
5653 * In particular, replace the rows starting at band_start
5654 * by the result of applying the cluster schedule in "t_node"
5655 * to the original rows.
5657 * The coincidence of the schedule is determined by the coincidence
5658 * of the cluster schedule.
5660 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
5661 struct isl_sched_node *t_node)
5663 int i, j;
5664 int n_new;
5665 int start, n;
5667 start = graph->band_start;
5668 n = graph->n_total_row - start;
5670 n_new = isl_mat_rows(t_node->sched);
5671 for (i = 0; i < graph->n; ++i) {
5672 struct isl_sched_node *node = &graph->node[i];
5673 isl_mat *t;
5675 t = node_transformation(ctx, t_node, node, start, n);
5676 node->sched = isl_mat_drop_rows(node->sched, start, n);
5677 node->sched = isl_mat_concat(node->sched, t);
5678 node->sched_map = isl_map_free(node->sched_map);
5679 if (!node->sched)
5680 return isl_stat_error;
5681 for (j = 0; j < n_new; ++j)
5682 node->coincident[start + j] = t_node->coincident[j];
5684 graph->n_total_row -= n;
5685 graph->n_row -= n;
5686 graph->n_total_row += n_new;
5687 graph->n_row += n_new;
5689 return isl_stat_ok;
5692 /* Merge the clusters marked for merging in "c" into a single
5693 * cluster using the cluster schedule in the current band of "merge_graph".
5694 * The representative SCC for the new cluster is the SCC with
5695 * the smallest index.
5697 * The current band schedule of each SCC in the new cluster is obtained
5698 * by applying the schedule of the corresponding original cluster
5699 * to the original band schedule.
5700 * All SCCs in the new cluster have the same number of schedule rows.
5702 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
5703 struct isl_sched_graph *merge_graph)
5705 int i;
5706 int cluster = -1;
5707 isl_space *space;
5709 for (i = 0; i < c->n; ++i) {
5710 struct isl_sched_node *node;
5712 if (!c->scc_in_merge[i])
5713 continue;
5714 if (cluster < 0)
5715 cluster = i;
5716 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
5717 if (!space)
5718 return isl_stat_error;
5719 node = graph_find_node(ctx, merge_graph, space);
5720 isl_space_free(space);
5721 if (!node)
5722 isl_die(ctx, isl_error_internal,
5723 "unable to find cluster",
5724 return isl_stat_error);
5725 if (transform(ctx, &c->scc[i], node) < 0)
5726 return isl_stat_error;
5727 c->scc_cluster[i] = cluster;
5730 return isl_stat_ok;
5733 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5734 * by scheduling the current cluster bands with respect to each other.
5736 * Construct a dependence graph with a space for each cluster and
5737 * with the coordinates of each space corresponding to the schedule
5738 * dimensions of the current band of that cluster.
5739 * Construct a cluster schedule in this cluster dependence graph and
5740 * apply it to the current cluster bands if it is applicable
5741 * according to ok_to_merge.
5743 * If the number of remaining schedule dimensions in a cluster
5744 * with a non-maximal current schedule dimension is greater than
5745 * the number of remaining schedule dimensions in clusters
5746 * with a maximal current schedule dimension, then restrict
5747 * the number of rows to be computed in the cluster schedule
5748 * to the minimal such non-maximal current schedule dimension.
5749 * Do this by adjusting merge_graph.maxvar.
5751 * Return isl_bool_true if the clusters have effectively been merged
5752 * into a single cluster.
5754 * Note that since the standard scheduling algorithm minimizes the maximal
5755 * distance over proximity constraints, the proximity constraints between
5756 * the merged clusters may not be optimized any further than what is
5757 * sufficient to bring the distances within the limits of the internal
5758 * proximity constraints inside the individual clusters.
5759 * It may therefore make sense to perform an additional translation step
5760 * to bring the clusters closer to each other, while maintaining
5761 * the linear part of the merging schedule found using the standard
5762 * scheduling algorithm.
5764 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5765 struct isl_clustering *c)
5767 struct isl_sched_graph merge_graph = { 0 };
5768 isl_bool merged;
5770 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
5771 goto error;
5773 if (compute_maxvar(&merge_graph) < 0)
5774 goto error;
5775 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
5776 goto error;
5777 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
5778 goto error;
5779 merged = ok_to_merge(ctx, graph, c, &merge_graph);
5780 if (merged && merge(ctx, c, &merge_graph) < 0)
5781 goto error;
5783 graph_free(ctx, &merge_graph);
5784 return merged;
5785 error:
5786 graph_free(ctx, &merge_graph);
5787 return isl_bool_error;
5790 /* Is there any edge marked "no_merge" between two SCCs that are
5791 * about to be merged (i.e., that are set in "scc_in_merge")?
5792 * "merge_edge" is the proximity edge along which the clusters of SCCs
5793 * are going to be merged.
5795 * If there is any edge between two SCCs with a negative weight,
5796 * while the weight of "merge_edge" is non-negative, then this
5797 * means that the edge was postponed. "merge_edge" should then
5798 * also be postponed since merging along the edge with negative weight should
5799 * be postponed until all edges with non-negative weight have been tried.
5800 * Replace the weight of "merge_edge" by a negative weight as well and
5801 * tell the caller not to attempt a merge.
5803 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
5804 struct isl_sched_edge *merge_edge)
5806 int i;
5808 for (i = 0; i < graph->n_edge; ++i) {
5809 struct isl_sched_edge *edge = &graph->edge[i];
5811 if (!scc_in_merge[edge->src->scc])
5812 continue;
5813 if (!scc_in_merge[edge->dst->scc])
5814 continue;
5815 if (edge->no_merge)
5816 return 1;
5817 if (merge_edge->weight >= 0 && edge->weight < 0) {
5818 merge_edge->weight -= graph->max_weight + 1;
5819 return 1;
5823 return 0;
5826 /* Merge the two clusters in "c" connected by the edge in "graph"
5827 * with index "edge" into a single cluster.
5828 * If it turns out to be impossible to merge these two clusters,
5829 * then mark the edge as "no_merge" such that it will not be
5830 * considered again.
5832 * First mark all SCCs that need to be merged. This includes the SCCs
5833 * in the two clusters, but it may also include the SCCs
5834 * of intermediate clusters.
5835 * If there is already a no_merge edge between any pair of such SCCs,
5836 * then simply mark the current edge as no_merge as well.
5837 * Likewise, if any of those edges was postponed by has_bounded_distances,
5838 * then postpone the current edge as well.
5839 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5840 * if the clusters did not end up getting merged, unless the non-merge
5841 * is due to the fact that the edge was postponed. This postponement
5842 * can be recognized by a change in weight (from non-negative to negative).
5844 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
5845 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
5847 isl_bool merged;
5848 int edge_weight = graph->edge[edge].weight;
5850 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
5851 return isl_stat_error;
5853 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
5854 merged = isl_bool_false;
5855 else
5856 merged = try_merge(ctx, graph, c);
5857 if (merged < 0)
5858 return isl_stat_error;
5859 if (!merged && edge_weight == graph->edge[edge].weight)
5860 graph->edge[edge].no_merge = 1;
5862 return isl_stat_ok;
5865 /* Does "node" belong to the cluster identified by "cluster"?
5867 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
5869 return node->cluster == cluster;
5872 /* Does "edge" connect two nodes belonging to the cluster
5873 * identified by "cluster"?
5875 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
5877 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
5880 /* Swap the schedule of "node1" and "node2".
5881 * Both nodes have been derived from the same node in a common parent graph.
5882 * Since the "coincident" field is shared with that node
5883 * in the parent graph, there is no need to also swap this field.
5885 static void swap_sched(struct isl_sched_node *node1,
5886 struct isl_sched_node *node2)
5888 isl_mat *sched;
5889 isl_map *sched_map;
5891 sched = node1->sched;
5892 node1->sched = node2->sched;
5893 node2->sched = sched;
5895 sched_map = node1->sched_map;
5896 node1->sched_map = node2->sched_map;
5897 node2->sched_map = sched_map;
5900 /* Copy the current band schedule from the SCCs that form the cluster
5901 * with index "pos" to the actual cluster at position "pos".
5902 * By construction, the index of the first SCC that belongs to the cluster
5903 * is also "pos".
5905 * The order of the nodes inside both the SCCs and the cluster
5906 * is assumed to be same as the order in the original "graph".
5908 * Since the SCC graphs will no longer be used after this function,
5909 * the schedules are actually swapped rather than copied.
5911 static isl_stat copy_partial(struct isl_sched_graph *graph,
5912 struct isl_clustering *c, int pos)
5914 int i, j;
5916 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
5917 c->cluster[pos].n_row = c->scc[pos].n_row;
5918 c->cluster[pos].maxvar = c->scc[pos].maxvar;
5919 j = 0;
5920 for (i = 0; i < graph->n; ++i) {
5921 int k;
5922 int s;
5924 if (graph->node[i].cluster != pos)
5925 continue;
5926 s = graph->node[i].scc;
5927 k = c->scc_node[s]++;
5928 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
5929 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
5930 c->cluster[pos].maxvar = c->scc[s].maxvar;
5931 ++j;
5934 return isl_stat_ok;
5937 /* Is there a (conditional) validity dependence from node[j] to node[i],
5938 * forcing node[i] to follow node[j] or do the nodes belong to the same
5939 * cluster?
5941 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
5943 struct isl_sched_graph *graph = user;
5945 if (graph->node[i].cluster == graph->node[j].cluster)
5946 return isl_bool_true;
5947 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5950 /* Extract the merged clusters of SCCs in "graph", sort them, and
5951 * store them in c->clusters. Update c->scc_cluster accordingly.
5953 * First keep track of the cluster containing the SCC to which a node
5954 * belongs in the node itself.
5955 * Then extract the clusters into c->clusters, copying the current
5956 * band schedule from the SCCs that belong to the cluster.
5957 * Do this only once per cluster.
5959 * Finally, topologically sort the clusters and update c->scc_cluster
5960 * to match the new scc numbering. While the SCCs were originally
5961 * sorted already, some SCCs that depend on some other SCCs may
5962 * have been merged with SCCs that appear before these other SCCs.
5963 * A reordering may therefore be required.
5965 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
5966 struct isl_clustering *c)
5968 int i;
5970 for (i = 0; i < graph->n; ++i)
5971 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
5973 for (i = 0; i < graph->scc; ++i) {
5974 if (c->scc_cluster[i] != i)
5975 continue;
5976 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
5977 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
5978 return isl_stat_error;
5979 c->cluster[i].src_scc = -1;
5980 c->cluster[i].dst_scc = -1;
5981 if (copy_partial(graph, c, i) < 0)
5982 return isl_stat_error;
5985 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
5986 return isl_stat_error;
5987 for (i = 0; i < graph->n; ++i)
5988 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
5990 return isl_stat_ok;
5993 /* Compute weights on the proximity edges of "graph" that can
5994 * be used by find_proximity to find the most appropriate
5995 * proximity edge to use to merge two clusters in "c".
5996 * The weights are also used by has_bounded_distances to determine
5997 * whether the merge should be allowed.
5998 * Store the maximum of the computed weights in graph->max_weight.
6000 * The computed weight is a measure for the number of remaining schedule
6001 * dimensions that can still be completely aligned.
6002 * In particular, compute the number of equalities between
6003 * input dimensions and output dimensions in the proximity constraints.
6004 * The directions that are already handled by outer schedule bands
6005 * are projected out prior to determining this number.
6007 * Edges that will never be considered by find_proximity are ignored.
6009 static isl_stat compute_weights(struct isl_sched_graph *graph,
6010 struct isl_clustering *c)
6012 int i;
6014 graph->max_weight = 0;
6016 for (i = 0; i < graph->n_edge; ++i) {
6017 struct isl_sched_edge *edge = &graph->edge[i];
6018 struct isl_sched_node *src = edge->src;
6019 struct isl_sched_node *dst = edge->dst;
6020 isl_basic_map *hull;
6021 int n_in, n_out;
6023 if (!is_proximity(edge))
6024 continue;
6025 if (bad_cluster(&c->scc[edge->src->scc]) ||
6026 bad_cluster(&c->scc[edge->dst->scc]))
6027 continue;
6028 if (c->scc_cluster[edge->dst->scc] ==
6029 c->scc_cluster[edge->src->scc])
6030 continue;
6032 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6033 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6034 isl_mat_copy(src->ctrans));
6035 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6036 isl_mat_copy(dst->ctrans));
6037 hull = isl_basic_map_project_out(hull,
6038 isl_dim_in, 0, src->rank);
6039 hull = isl_basic_map_project_out(hull,
6040 isl_dim_out, 0, dst->rank);
6041 hull = isl_basic_map_remove_divs(hull);
6042 n_in = isl_basic_map_dim(hull, isl_dim_in);
6043 n_out = isl_basic_map_dim(hull, isl_dim_out);
6044 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6045 isl_dim_in, 0, n_in);
6046 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6047 isl_dim_out, 0, n_out);
6048 if (!hull)
6049 return isl_stat_error;
6050 edge->weight = isl_basic_map_n_equality(hull);
6051 isl_basic_map_free(hull);
6053 if (edge->weight > graph->max_weight)
6054 graph->max_weight = edge->weight;
6057 return isl_stat_ok;
6060 /* Call compute_schedule_finish_band on each of the clusters in "c"
6061 * in their topological order. This order is determined by the scc
6062 * fields of the nodes in "graph".
6063 * Combine the results in a sequence expressing the topological order.
6065 * If there is only one cluster left, then there is no need to introduce
6066 * a sequence node. Also, in this case, the cluster necessarily contains
6067 * the SCC at position 0 in the original graph and is therefore also
6068 * stored in the first cluster of "c".
6070 static __isl_give isl_schedule_node *finish_bands_clustering(
6071 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6072 struct isl_clustering *c)
6074 int i;
6075 isl_ctx *ctx;
6076 isl_union_set_list *filters;
6078 if (graph->scc == 1)
6079 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6081 ctx = isl_schedule_node_get_ctx(node);
6083 filters = extract_sccs(ctx, graph);
6084 node = isl_schedule_node_insert_sequence(node, filters);
6086 for (i = 0; i < graph->scc; ++i) {
6087 int j = c->scc_cluster[i];
6088 node = isl_schedule_node_child(node, i);
6089 node = isl_schedule_node_child(node, 0);
6090 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6091 node = isl_schedule_node_parent(node);
6092 node = isl_schedule_node_parent(node);
6095 return node;
6098 /* Compute a schedule for a connected dependence graph by first considering
6099 * each strongly connected component (SCC) in the graph separately and then
6100 * incrementally combining them into clusters.
6101 * Return the updated schedule node.
6103 * Initially, each cluster consists of a single SCC, each with its
6104 * own band schedule. The algorithm then tries to merge pairs
6105 * of clusters along a proximity edge until no more suitable
6106 * proximity edges can be found. During this merging, the schedule
6107 * is maintained in the individual SCCs.
6108 * After the merging is completed, the full resulting clusters
6109 * are extracted and in finish_bands_clustering,
6110 * compute_schedule_finish_band is called on each of them to integrate
6111 * the band into "node" and to continue the computation.
6113 * compute_weights initializes the weights that are used by find_proximity.
6115 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6116 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6118 isl_ctx *ctx;
6119 struct isl_clustering c;
6120 int i;
6122 ctx = isl_schedule_node_get_ctx(node);
6124 if (clustering_init(ctx, &c, graph) < 0)
6125 goto error;
6127 if (compute_weights(graph, &c) < 0)
6128 goto error;
6130 for (;;) {
6131 i = find_proximity(graph, &c);
6132 if (i < 0)
6133 goto error;
6134 if (i >= graph->n_edge)
6135 break;
6136 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6137 goto error;
6140 if (extract_clusters(ctx, graph, &c) < 0)
6141 goto error;
6143 node = finish_bands_clustering(node, graph, &c);
6145 clustering_free(ctx, &c);
6146 return node;
6147 error:
6148 clustering_free(ctx, &c);
6149 return isl_schedule_node_free(node);
6152 /* Compute a schedule for a connected dependence graph and return
6153 * the updated schedule node.
6155 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6156 * as many validity dependences as possible. When all validity dependences
6157 * are satisfied we extend the schedule to a full-dimensional schedule.
6159 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6160 * depending on whether the user has selected the option to try and
6161 * compute a schedule for the entire (weakly connected) component first.
6162 * If there is only a single strongly connected component (SCC), then
6163 * there is no point in trying to combine SCCs
6164 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6165 * is called instead.
6167 static __isl_give isl_schedule_node *compute_schedule_wcc(
6168 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6170 isl_ctx *ctx;
6172 if (!node)
6173 return NULL;
6175 ctx = isl_schedule_node_get_ctx(node);
6176 if (detect_sccs(ctx, graph) < 0)
6177 return isl_schedule_node_free(node);
6179 if (compute_maxvar(graph) < 0)
6180 return isl_schedule_node_free(node);
6182 if (need_feautrier_step(ctx, graph))
6183 return compute_schedule_wcc_feautrier(node, graph);
6185 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6186 return compute_schedule_wcc_whole(node, graph);
6187 else
6188 return compute_schedule_wcc_clustering(node, graph);
6191 /* Compute a schedule for each group of nodes identified by node->scc
6192 * separately and then combine them in a sequence node (or as set node
6193 * if graph->weak is set) inserted at position "node" of the schedule tree.
6194 * Return the updated schedule node.
6196 * If "wcc" is set then each of the groups belongs to a single
6197 * weakly connected component in the dependence graph so that
6198 * there is no need for compute_sub_schedule to look for weakly
6199 * connected components.
6201 static __isl_give isl_schedule_node *compute_component_schedule(
6202 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6203 int wcc)
6205 int component;
6206 isl_ctx *ctx;
6207 isl_union_set_list *filters;
6209 if (!node)
6210 return NULL;
6211 ctx = isl_schedule_node_get_ctx(node);
6213 filters = extract_sccs(ctx, graph);
6214 if (graph->weak)
6215 node = isl_schedule_node_insert_set(node, filters);
6216 else
6217 node = isl_schedule_node_insert_sequence(node, filters);
6219 for (component = 0; component < graph->scc; ++component) {
6220 node = isl_schedule_node_child(node, component);
6221 node = isl_schedule_node_child(node, 0);
6222 node = compute_sub_schedule(node, ctx, graph,
6223 &node_scc_exactly,
6224 &edge_scc_exactly, component, wcc);
6225 node = isl_schedule_node_parent(node);
6226 node = isl_schedule_node_parent(node);
6229 return node;
6232 /* Compute a schedule for the given dependence graph and insert it at "node".
6233 * Return the updated schedule node.
6235 * We first check if the graph is connected (through validity and conditional
6236 * validity dependences) and, if not, compute a schedule
6237 * for each component separately.
6238 * If the schedule_serialize_sccs option is set, then we check for strongly
6239 * connected components instead and compute a separate schedule for
6240 * each such strongly connected component.
6242 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6243 struct isl_sched_graph *graph)
6245 isl_ctx *ctx;
6247 if (!node)
6248 return NULL;
6250 ctx = isl_schedule_node_get_ctx(node);
6251 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6252 if (detect_sccs(ctx, graph) < 0)
6253 return isl_schedule_node_free(node);
6254 } else {
6255 if (detect_wccs(ctx, graph) < 0)
6256 return isl_schedule_node_free(node);
6259 if (graph->scc > 1)
6260 return compute_component_schedule(node, graph, 1);
6262 return compute_schedule_wcc(node, graph);
6265 /* Compute a schedule on sc->domain that respects the given schedule
6266 * constraints.
6268 * In particular, the schedule respects all the validity dependences.
6269 * If the default isl scheduling algorithm is used, it tries to minimize
6270 * the dependence distances over the proximity dependences.
6271 * If Feautrier's scheduling algorithm is used, the proximity dependence
6272 * distances are only minimized during the extension to a full-dimensional
6273 * schedule.
6275 * If there are any condition and conditional validity dependences,
6276 * then the conditional validity dependences may be violated inside
6277 * a tilable band, provided they have no adjacent non-local
6278 * condition dependences.
6280 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6281 __isl_take isl_schedule_constraints *sc)
6283 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6284 struct isl_sched_graph graph = { 0 };
6285 isl_schedule *sched;
6286 isl_schedule_node *node;
6287 isl_union_set *domain;
6289 sc = isl_schedule_constraints_align_params(sc);
6291 domain = isl_schedule_constraints_get_domain(sc);
6292 if (isl_union_set_n_set(domain) == 0) {
6293 isl_schedule_constraints_free(sc);
6294 return isl_schedule_from_domain(domain);
6297 if (graph_init(&graph, sc) < 0)
6298 domain = isl_union_set_free(domain);
6300 node = isl_schedule_node_from_domain(domain);
6301 node = isl_schedule_node_child(node, 0);
6302 if (graph.n > 0)
6303 node = compute_schedule(node, &graph);
6304 sched = isl_schedule_node_get_schedule(node);
6305 isl_schedule_node_free(node);
6307 graph_free(ctx, &graph);
6308 isl_schedule_constraints_free(sc);
6310 return sched;
6313 /* Compute a schedule for the given union of domains that respects
6314 * all the validity dependences and minimizes
6315 * the dependence distances over the proximity dependences.
6317 * This function is kept for backward compatibility.
6319 __isl_give isl_schedule *isl_union_set_compute_schedule(
6320 __isl_take isl_union_set *domain,
6321 __isl_take isl_union_map *validity,
6322 __isl_take isl_union_map *proximity)
6324 isl_schedule_constraints *sc;
6326 sc = isl_schedule_constraints_on_domain(domain);
6327 sc = isl_schedule_constraints_set_validity(sc, validity);
6328 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6330 return isl_schedule_constraints_compute_schedule(sc);