isl_scheduler.c: rename node_update_vmap to isl_sched_node_update_vmap
[isl.git] / isl_polynomial.c
blob170cb9e7072c45fb25f462fd9567b6e6f6e61d37
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <stdlib.h>
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
16 #include <isl_seq.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
31 #undef EL_BASE
32 #define EL_BASE qpolynomial
34 #include <isl_list_templ.c>
36 #undef EL_BASE
37 #define EL_BASE pw_qpolynomial
39 #include <isl_list_templ.c>
41 static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type)
43 switch (type) {
44 case isl_dim_param: return 0;
45 case isl_dim_in: return space->nparam;
46 case isl_dim_out: return space->nparam + space->n_in;
47 default: return 0;
51 isl_bool isl_poly_is_cst(__isl_keep isl_poly *poly)
53 if (!poly)
54 return isl_bool_error;
56 return isl_bool_ok(poly->var < 0);
59 __isl_keep isl_poly_cst *isl_poly_as_cst(__isl_keep isl_poly *poly)
61 if (!poly)
62 return NULL;
64 isl_assert(poly->ctx, poly->var < 0, return NULL);
66 return (isl_poly_cst *) poly;
69 __isl_keep isl_poly_rec *isl_poly_as_rec(__isl_keep isl_poly *poly)
71 if (!poly)
72 return NULL;
74 isl_assert(poly->ctx, poly->var >= 0, return NULL);
76 return (isl_poly_rec *) poly;
79 /* Compare two polynomials.
81 * Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater"
82 * than "poly2" and 0 if they are equal.
84 static int isl_poly_plain_cmp(__isl_keep isl_poly *poly1,
85 __isl_keep isl_poly *poly2)
87 int i;
88 isl_bool is_cst1;
89 isl_poly_rec *rec1, *rec2;
91 if (poly1 == poly2)
92 return 0;
93 is_cst1 = isl_poly_is_cst(poly1);
94 if (is_cst1 < 0)
95 return -1;
96 if (!poly2)
97 return 1;
98 if (poly1->var != poly2->var)
99 return poly1->var - poly2->var;
101 if (is_cst1) {
102 isl_poly_cst *cst1, *cst2;
103 int cmp;
105 cst1 = isl_poly_as_cst(poly1);
106 cst2 = isl_poly_as_cst(poly2);
107 if (!cst1 || !cst2)
108 return 0;
109 cmp = isl_int_cmp(cst1->n, cst2->n);
110 if (cmp != 0)
111 return cmp;
112 return isl_int_cmp(cst1->d, cst2->d);
115 rec1 = isl_poly_as_rec(poly1);
116 rec2 = isl_poly_as_rec(poly2);
117 if (!rec1 || !rec2)
118 return 0;
120 if (rec1->n != rec2->n)
121 return rec1->n - rec2->n;
123 for (i = 0; i < rec1->n; ++i) {
124 int cmp = isl_poly_plain_cmp(rec1->p[i], rec2->p[i]);
125 if (cmp != 0)
126 return cmp;
129 return 0;
132 isl_bool isl_poly_is_equal(__isl_keep isl_poly *poly1,
133 __isl_keep isl_poly *poly2)
135 int i;
136 isl_bool is_cst1;
137 isl_poly_rec *rec1, *rec2;
139 is_cst1 = isl_poly_is_cst(poly1);
140 if (is_cst1 < 0 || !poly2)
141 return isl_bool_error;
142 if (poly1 == poly2)
143 return isl_bool_true;
144 if (poly1->var != poly2->var)
145 return isl_bool_false;
146 if (is_cst1) {
147 isl_poly_cst *cst1, *cst2;
148 int r;
149 cst1 = isl_poly_as_cst(poly1);
150 cst2 = isl_poly_as_cst(poly2);
151 if (!cst1 || !cst2)
152 return isl_bool_error;
153 r = isl_int_eq(cst1->n, cst2->n) &&
154 isl_int_eq(cst1->d, cst2->d);
155 return isl_bool_ok(r);
158 rec1 = isl_poly_as_rec(poly1);
159 rec2 = isl_poly_as_rec(poly2);
160 if (!rec1 || !rec2)
161 return isl_bool_error;
163 if (rec1->n != rec2->n)
164 return isl_bool_false;
166 for (i = 0; i < rec1->n; ++i) {
167 isl_bool eq = isl_poly_is_equal(rec1->p[i], rec2->p[i]);
168 if (eq < 0 || !eq)
169 return eq;
172 return isl_bool_true;
175 isl_bool isl_poly_is_zero(__isl_keep isl_poly *poly)
177 isl_bool is_cst;
178 isl_poly_cst *cst;
180 is_cst = isl_poly_is_cst(poly);
181 if (is_cst < 0 || !is_cst)
182 return is_cst;
184 cst = isl_poly_as_cst(poly);
185 if (!cst)
186 return isl_bool_error;
188 return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d));
191 int isl_poly_sgn(__isl_keep isl_poly *poly)
193 isl_bool is_cst;
194 isl_poly_cst *cst;
196 is_cst = isl_poly_is_cst(poly);
197 if (is_cst < 0 || !is_cst)
198 return 0;
200 cst = isl_poly_as_cst(poly);
201 if (!cst)
202 return 0;
204 return isl_int_sgn(cst->n);
207 isl_bool isl_poly_is_nan(__isl_keep isl_poly *poly)
209 isl_bool is_cst;
210 isl_poly_cst *cst;
212 is_cst = isl_poly_is_cst(poly);
213 if (is_cst < 0 || !is_cst)
214 return is_cst;
216 cst = isl_poly_as_cst(poly);
217 if (!cst)
218 return isl_bool_error;
220 return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d));
223 isl_bool isl_poly_is_infty(__isl_keep isl_poly *poly)
225 isl_bool is_cst;
226 isl_poly_cst *cst;
228 is_cst = isl_poly_is_cst(poly);
229 if (is_cst < 0 || !is_cst)
230 return is_cst;
232 cst = isl_poly_as_cst(poly);
233 if (!cst)
234 return isl_bool_error;
236 return isl_bool_ok(isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d));
239 isl_bool isl_poly_is_neginfty(__isl_keep isl_poly *poly)
241 isl_bool is_cst;
242 isl_poly_cst *cst;
244 is_cst = isl_poly_is_cst(poly);
245 if (is_cst < 0 || !is_cst)
246 return is_cst;
248 cst = isl_poly_as_cst(poly);
249 if (!cst)
250 return isl_bool_error;
252 return isl_bool_ok(isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d));
255 isl_bool isl_poly_is_one(__isl_keep isl_poly *poly)
257 isl_bool is_cst;
258 isl_poly_cst *cst;
259 int r;
261 is_cst = isl_poly_is_cst(poly);
262 if (is_cst < 0 || !is_cst)
263 return is_cst;
265 cst = isl_poly_as_cst(poly);
266 if (!cst)
267 return isl_bool_error;
269 r = isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
270 return isl_bool_ok(r);
273 isl_bool isl_poly_is_negone(__isl_keep isl_poly *poly)
275 isl_bool is_cst;
276 isl_poly_cst *cst;
278 is_cst = isl_poly_is_cst(poly);
279 if (is_cst < 0 || !is_cst)
280 return is_cst;
282 cst = isl_poly_as_cst(poly);
283 if (!cst)
284 return isl_bool_error;
286 return isl_bool_ok(isl_int_is_negone(cst->n) && isl_int_is_one(cst->d));
289 __isl_give isl_poly_cst *isl_poly_cst_alloc(isl_ctx *ctx)
291 isl_poly_cst *cst;
293 cst = isl_alloc_type(ctx, struct isl_poly_cst);
294 if (!cst)
295 return NULL;
297 cst->poly.ref = 1;
298 cst->poly.ctx = ctx;
299 isl_ctx_ref(ctx);
300 cst->poly.var = -1;
302 isl_int_init(cst->n);
303 isl_int_init(cst->d);
305 return cst;
308 __isl_give isl_poly *isl_poly_zero(isl_ctx *ctx)
310 isl_poly_cst *cst;
312 cst = isl_poly_cst_alloc(ctx);
313 if (!cst)
314 return NULL;
316 isl_int_set_si(cst->n, 0);
317 isl_int_set_si(cst->d, 1);
319 return &cst->poly;
322 __isl_give isl_poly *isl_poly_one(isl_ctx *ctx)
324 isl_poly_cst *cst;
326 cst = isl_poly_cst_alloc(ctx);
327 if (!cst)
328 return NULL;
330 isl_int_set_si(cst->n, 1);
331 isl_int_set_si(cst->d, 1);
333 return &cst->poly;
336 __isl_give isl_poly *isl_poly_infty(isl_ctx *ctx)
338 isl_poly_cst *cst;
340 cst = isl_poly_cst_alloc(ctx);
341 if (!cst)
342 return NULL;
344 isl_int_set_si(cst->n, 1);
345 isl_int_set_si(cst->d, 0);
347 return &cst->poly;
350 __isl_give isl_poly *isl_poly_neginfty(isl_ctx *ctx)
352 isl_poly_cst *cst;
354 cst = isl_poly_cst_alloc(ctx);
355 if (!cst)
356 return NULL;
358 isl_int_set_si(cst->n, -1);
359 isl_int_set_si(cst->d, 0);
361 return &cst->poly;
364 __isl_give isl_poly *isl_poly_nan(isl_ctx *ctx)
366 isl_poly_cst *cst;
368 cst = isl_poly_cst_alloc(ctx);
369 if (!cst)
370 return NULL;
372 isl_int_set_si(cst->n, 0);
373 isl_int_set_si(cst->d, 0);
375 return &cst->poly;
378 __isl_give isl_poly *isl_poly_rat_cst(isl_ctx *ctx, isl_int n, isl_int d)
380 isl_poly_cst *cst;
382 cst = isl_poly_cst_alloc(ctx);
383 if (!cst)
384 return NULL;
386 isl_int_set(cst->n, n);
387 isl_int_set(cst->d, d);
389 return &cst->poly;
392 __isl_give isl_poly_rec *isl_poly_alloc_rec(isl_ctx *ctx, int var, int size)
394 isl_poly_rec *rec;
396 isl_assert(ctx, var >= 0, return NULL);
397 isl_assert(ctx, size >= 0, return NULL);
398 rec = isl_calloc(ctx, struct isl_poly_rec,
399 sizeof(struct isl_poly_rec) +
400 size * sizeof(struct isl_poly *));
401 if (!rec)
402 return NULL;
404 rec->poly.ref = 1;
405 rec->poly.ctx = ctx;
406 isl_ctx_ref(ctx);
407 rec->poly.var = var;
409 rec->n = 0;
410 rec->size = size;
412 return rec;
415 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
416 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space)
418 qp = isl_qpolynomial_cow(qp);
419 if (!qp || !space)
420 goto error;
422 isl_space_free(qp->dim);
423 qp->dim = space;
425 return qp;
426 error:
427 isl_qpolynomial_free(qp);
428 isl_space_free(space);
429 return NULL;
432 /* Reset the space of "qp". This function is called from isl_pw_templ.c
433 * and doesn't know if the space of an element object is represented
434 * directly or through its domain. It therefore passes along both.
436 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
437 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
438 __isl_take isl_space *domain)
440 isl_space_free(space);
441 return isl_qpolynomial_reset_domain_space(qp, domain);
444 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
446 return qp ? qp->dim->ctx : NULL;
449 /* Return the domain space of "qp".
451 static __isl_keep isl_space *isl_qpolynomial_peek_domain_space(
452 __isl_keep isl_qpolynomial *qp)
454 return qp ? qp->dim : NULL;
457 /* Return a copy of the domain space of "qp".
459 __isl_give isl_space *isl_qpolynomial_get_domain_space(
460 __isl_keep isl_qpolynomial *qp)
462 return isl_space_copy(isl_qpolynomial_peek_domain_space(qp));
465 #undef TYPE
466 #define TYPE isl_qpolynomial
467 #undef PEEK_SPACE
468 #define PEEK_SPACE peek_domain_space
470 static
471 #include "isl_type_has_equal_space_bin_templ.c"
472 static
473 #include "isl_type_check_equal_space_templ.c"
475 #undef PEEK_SPACE
477 /* Return a copy of the local space on which "qp" is defined.
479 static __isl_give isl_local_space *isl_qpolynomial_get_domain_local_space(
480 __isl_keep isl_qpolynomial *qp)
482 isl_space *space;
484 if (!qp)
485 return NULL;
487 space = isl_qpolynomial_get_domain_space(qp);
488 return isl_local_space_alloc_div(space, isl_mat_copy(qp->div));
491 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
493 isl_space *space;
494 if (!qp)
495 return NULL;
496 space = isl_space_copy(qp->dim);
497 space = isl_space_from_domain(space);
498 space = isl_space_add_dims(space, isl_dim_out, 1);
499 return space;
502 /* Return the number of variables of the given type in the domain of "qp".
504 isl_size isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
505 enum isl_dim_type type)
507 isl_space *space;
508 isl_size dim;
510 space = isl_qpolynomial_peek_domain_space(qp);
512 if (!space)
513 return isl_size_error;
514 if (type == isl_dim_div)
515 return qp->div->n_row;
516 dim = isl_space_dim(space, type);
517 if (dim < 0)
518 return isl_size_error;
519 if (type == isl_dim_all) {
520 isl_size n_div;
522 n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
523 if (n_div < 0)
524 return isl_size_error;
525 dim += n_div;
527 return dim;
530 /* Given the type of a dimension of an isl_qpolynomial,
531 * return the type of the corresponding dimension in its domain.
532 * This function is only called for "type" equal to isl_dim_in or
533 * isl_dim_param.
535 static enum isl_dim_type domain_type(enum isl_dim_type type)
537 return type == isl_dim_in ? isl_dim_set : type;
540 /* Externally, an isl_qpolynomial has a map space, but internally, the
541 * ls field corresponds to the domain of that space.
543 isl_size isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
544 enum isl_dim_type type)
546 if (!qp)
547 return isl_size_error;
548 if (type == isl_dim_out)
549 return 1;
550 type = domain_type(type);
551 return isl_qpolynomial_domain_dim(qp, type);
554 /* Return the offset of the first variable of type "type" within
555 * the variables of the domain of "qp".
557 static isl_size isl_qpolynomial_domain_var_offset(
558 __isl_keep isl_qpolynomial *qp, enum isl_dim_type type)
560 isl_space *space;
562 space = isl_qpolynomial_peek_domain_space(qp);
563 if (!space)
564 return isl_size_error;
566 switch (type) {
567 case isl_dim_param:
568 case isl_dim_set: return isl_space_offset(space, type);
569 case isl_dim_div: return isl_space_dim(space, isl_dim_all);
570 case isl_dim_cst:
571 default:
572 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
573 "invalid dimension type", return isl_size_error);
577 /* Return the offset of the first coefficient of type "type" in
578 * the domain of "qp".
580 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
581 enum isl_dim_type type)
583 switch (type) {
584 case isl_dim_cst:
585 return 0;
586 case isl_dim_param:
587 case isl_dim_set:
588 case isl_dim_div:
589 return 1 + isl_qpolynomial_domain_var_offset(qp, type);
590 default:
591 return 0;
595 isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
597 return qp ? isl_poly_is_zero(qp->poly) : isl_bool_error;
600 isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
602 return qp ? isl_poly_is_one(qp->poly) : isl_bool_error;
605 isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
607 return qp ? isl_poly_is_nan(qp->poly) : isl_bool_error;
610 isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
612 return qp ? isl_poly_is_infty(qp->poly) : isl_bool_error;
615 isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
617 return qp ? isl_poly_is_neginfty(qp->poly) : isl_bool_error;
620 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
622 return qp ? isl_poly_sgn(qp->poly) : 0;
625 static void poly_free_cst(__isl_take isl_poly_cst *cst)
627 isl_int_clear(cst->n);
628 isl_int_clear(cst->d);
631 static void poly_free_rec(__isl_take isl_poly_rec *rec)
633 int i;
635 for (i = 0; i < rec->n; ++i)
636 isl_poly_free(rec->p[i]);
639 __isl_give isl_poly *isl_poly_copy(__isl_keep isl_poly *poly)
641 if (!poly)
642 return NULL;
644 poly->ref++;
645 return poly;
648 __isl_give isl_poly *isl_poly_dup_cst(__isl_keep isl_poly *poly)
650 isl_poly_cst *cst;
651 isl_poly_cst *dup;
653 cst = isl_poly_as_cst(poly);
654 if (!cst)
655 return NULL;
657 dup = isl_poly_as_cst(isl_poly_zero(poly->ctx));
658 if (!dup)
659 return NULL;
660 isl_int_set(dup->n, cst->n);
661 isl_int_set(dup->d, cst->d);
663 return &dup->poly;
666 __isl_give isl_poly *isl_poly_dup_rec(__isl_keep isl_poly *poly)
668 int i;
669 isl_poly_rec *rec;
670 isl_poly_rec *dup;
672 rec = isl_poly_as_rec(poly);
673 if (!rec)
674 return NULL;
676 dup = isl_poly_alloc_rec(poly->ctx, poly->var, rec->n);
677 if (!dup)
678 return NULL;
680 for (i = 0; i < rec->n; ++i) {
681 dup->p[i] = isl_poly_copy(rec->p[i]);
682 if (!dup->p[i])
683 goto error;
684 dup->n++;
687 return &dup->poly;
688 error:
689 isl_poly_free(&dup->poly);
690 return NULL;
693 __isl_give isl_poly *isl_poly_dup(__isl_keep isl_poly *poly)
695 isl_bool is_cst;
697 is_cst = isl_poly_is_cst(poly);
698 if (is_cst < 0)
699 return NULL;
700 if (is_cst)
701 return isl_poly_dup_cst(poly);
702 else
703 return isl_poly_dup_rec(poly);
706 __isl_give isl_poly *isl_poly_cow(__isl_take isl_poly *poly)
708 if (!poly)
709 return NULL;
711 if (poly->ref == 1)
712 return poly;
713 poly->ref--;
714 return isl_poly_dup(poly);
717 __isl_null isl_poly *isl_poly_free(__isl_take isl_poly *poly)
719 if (!poly)
720 return NULL;
722 if (--poly->ref > 0)
723 return NULL;
725 if (poly->var < 0)
726 poly_free_cst((isl_poly_cst *) poly);
727 else
728 poly_free_rec((isl_poly_rec *) poly);
730 isl_ctx_deref(poly->ctx);
731 free(poly);
732 return NULL;
735 static void isl_poly_cst_reduce(__isl_keep isl_poly_cst *cst)
737 isl_int gcd;
739 isl_int_init(gcd);
740 isl_int_gcd(gcd, cst->n, cst->d);
741 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
742 isl_int_divexact(cst->n, cst->n, gcd);
743 isl_int_divexact(cst->d, cst->d, gcd);
745 isl_int_clear(gcd);
748 __isl_give isl_poly *isl_poly_sum_cst(__isl_take isl_poly *poly1,
749 __isl_take isl_poly *poly2)
751 isl_poly_cst *cst1;
752 isl_poly_cst *cst2;
754 poly1 = isl_poly_cow(poly1);
755 if (!poly1 || !poly2)
756 goto error;
758 cst1 = isl_poly_as_cst(poly1);
759 cst2 = isl_poly_as_cst(poly2);
761 if (isl_int_eq(cst1->d, cst2->d))
762 isl_int_add(cst1->n, cst1->n, cst2->n);
763 else {
764 isl_int_mul(cst1->n, cst1->n, cst2->d);
765 isl_int_addmul(cst1->n, cst2->n, cst1->d);
766 isl_int_mul(cst1->d, cst1->d, cst2->d);
769 isl_poly_cst_reduce(cst1);
771 isl_poly_free(poly2);
772 return poly1;
773 error:
774 isl_poly_free(poly1);
775 isl_poly_free(poly2);
776 return NULL;
779 static __isl_give isl_poly *replace_by_zero(__isl_take isl_poly *poly)
781 struct isl_ctx *ctx;
783 if (!poly)
784 return NULL;
785 ctx = poly->ctx;
786 isl_poly_free(poly);
787 return isl_poly_zero(ctx);
790 static __isl_give isl_poly *replace_by_constant_term(__isl_take isl_poly *poly)
792 isl_poly_rec *rec;
793 isl_poly *cst;
795 if (!poly)
796 return NULL;
798 rec = isl_poly_as_rec(poly);
799 if (!rec)
800 goto error;
801 cst = isl_poly_copy(rec->p[0]);
802 isl_poly_free(poly);
803 return cst;
804 error:
805 isl_poly_free(poly);
806 return NULL;
809 __isl_give isl_poly *isl_poly_sum(__isl_take isl_poly *poly1,
810 __isl_take isl_poly *poly2)
812 int i;
813 isl_bool is_zero, is_nan, is_cst;
814 isl_poly_rec *rec1, *rec2;
816 if (!poly1 || !poly2)
817 goto error;
819 is_nan = isl_poly_is_nan(poly1);
820 if (is_nan < 0)
821 goto error;
822 if (is_nan) {
823 isl_poly_free(poly2);
824 return poly1;
827 is_nan = isl_poly_is_nan(poly2);
828 if (is_nan < 0)
829 goto error;
830 if (is_nan) {
831 isl_poly_free(poly1);
832 return poly2;
835 is_zero = isl_poly_is_zero(poly1);
836 if (is_zero < 0)
837 goto error;
838 if (is_zero) {
839 isl_poly_free(poly1);
840 return poly2;
843 is_zero = isl_poly_is_zero(poly2);
844 if (is_zero < 0)
845 goto error;
846 if (is_zero) {
847 isl_poly_free(poly2);
848 return poly1;
851 if (poly1->var < poly2->var)
852 return isl_poly_sum(poly2, poly1);
854 if (poly2->var < poly1->var) {
855 isl_poly_rec *rec;
856 isl_bool is_infty;
858 is_infty = isl_poly_is_infty(poly2);
859 if (is_infty >= 0 && !is_infty)
860 is_infty = isl_poly_is_neginfty(poly2);
861 if (is_infty < 0)
862 goto error;
863 if (is_infty) {
864 isl_poly_free(poly1);
865 return poly2;
867 poly1 = isl_poly_cow(poly1);
868 rec = isl_poly_as_rec(poly1);
869 if (!rec)
870 goto error;
871 rec->p[0] = isl_poly_sum(rec->p[0], poly2);
872 if (rec->n == 1)
873 poly1 = replace_by_constant_term(poly1);
874 return poly1;
877 is_cst = isl_poly_is_cst(poly1);
878 if (is_cst < 0)
879 goto error;
880 if (is_cst)
881 return isl_poly_sum_cst(poly1, poly2);
883 rec1 = isl_poly_as_rec(poly1);
884 rec2 = isl_poly_as_rec(poly2);
885 if (!rec1 || !rec2)
886 goto error;
888 if (rec1->n < rec2->n)
889 return isl_poly_sum(poly2, poly1);
891 poly1 = isl_poly_cow(poly1);
892 rec1 = isl_poly_as_rec(poly1);
893 if (!rec1)
894 goto error;
896 for (i = rec2->n - 1; i >= 0; --i) {
897 isl_bool is_zero;
899 rec1->p[i] = isl_poly_sum(rec1->p[i],
900 isl_poly_copy(rec2->p[i]));
901 if (!rec1->p[i])
902 goto error;
903 if (i != rec1->n - 1)
904 continue;
905 is_zero = isl_poly_is_zero(rec1->p[i]);
906 if (is_zero < 0)
907 goto error;
908 if (is_zero) {
909 isl_poly_free(rec1->p[i]);
910 rec1->n--;
914 if (rec1->n == 0)
915 poly1 = replace_by_zero(poly1);
916 else if (rec1->n == 1)
917 poly1 = replace_by_constant_term(poly1);
919 isl_poly_free(poly2);
921 return poly1;
922 error:
923 isl_poly_free(poly1);
924 isl_poly_free(poly2);
925 return NULL;
928 __isl_give isl_poly *isl_poly_cst_add_isl_int(__isl_take isl_poly *poly,
929 isl_int v)
931 isl_poly_cst *cst;
933 poly = isl_poly_cow(poly);
934 if (!poly)
935 return NULL;
937 cst = isl_poly_as_cst(poly);
939 isl_int_addmul(cst->n, cst->d, v);
941 return poly;
944 __isl_give isl_poly *isl_poly_add_isl_int(__isl_take isl_poly *poly, isl_int v)
946 isl_bool is_cst;
947 isl_poly_rec *rec;
949 is_cst = isl_poly_is_cst(poly);
950 if (is_cst < 0)
951 return isl_poly_free(poly);
952 if (is_cst)
953 return isl_poly_cst_add_isl_int(poly, v);
955 poly = isl_poly_cow(poly);
956 rec = isl_poly_as_rec(poly);
957 if (!rec)
958 goto error;
960 rec->p[0] = isl_poly_add_isl_int(rec->p[0], v);
961 if (!rec->p[0])
962 goto error;
964 return poly;
965 error:
966 isl_poly_free(poly);
967 return NULL;
970 __isl_give isl_poly *isl_poly_cst_mul_isl_int(__isl_take isl_poly *poly,
971 isl_int v)
973 isl_bool is_zero;
974 isl_poly_cst *cst;
976 is_zero = isl_poly_is_zero(poly);
977 if (is_zero < 0)
978 return isl_poly_free(poly);
979 if (is_zero)
980 return poly;
982 poly = isl_poly_cow(poly);
983 if (!poly)
984 return NULL;
986 cst = isl_poly_as_cst(poly);
988 isl_int_mul(cst->n, cst->n, v);
990 return poly;
993 __isl_give isl_poly *isl_poly_mul_isl_int(__isl_take isl_poly *poly, isl_int v)
995 int i;
996 isl_bool is_cst;
997 isl_poly_rec *rec;
999 is_cst = isl_poly_is_cst(poly);
1000 if (is_cst < 0)
1001 return isl_poly_free(poly);
1002 if (is_cst)
1003 return isl_poly_cst_mul_isl_int(poly, v);
1005 poly = isl_poly_cow(poly);
1006 rec = isl_poly_as_rec(poly);
1007 if (!rec)
1008 goto error;
1010 for (i = 0; i < rec->n; ++i) {
1011 rec->p[i] = isl_poly_mul_isl_int(rec->p[i], v);
1012 if (!rec->p[i])
1013 goto error;
1016 return poly;
1017 error:
1018 isl_poly_free(poly);
1019 return NULL;
1022 /* Multiply the constant polynomial "poly" by "v".
1024 static __isl_give isl_poly *isl_poly_cst_scale_val(__isl_take isl_poly *poly,
1025 __isl_keep isl_val *v)
1027 isl_bool is_zero;
1028 isl_poly_cst *cst;
1030 is_zero = isl_poly_is_zero(poly);
1031 if (is_zero < 0)
1032 return isl_poly_free(poly);
1033 if (is_zero)
1034 return poly;
1036 poly = isl_poly_cow(poly);
1037 if (!poly)
1038 return NULL;
1040 cst = isl_poly_as_cst(poly);
1042 isl_int_mul(cst->n, cst->n, v->n);
1043 isl_int_mul(cst->d, cst->d, v->d);
1044 isl_poly_cst_reduce(cst);
1046 return poly;
1049 /* Multiply the polynomial "poly" by "v".
1051 static __isl_give isl_poly *isl_poly_scale_val(__isl_take isl_poly *poly,
1052 __isl_keep isl_val *v)
1054 int i;
1055 isl_bool is_cst;
1056 isl_poly_rec *rec;
1058 is_cst = isl_poly_is_cst(poly);
1059 if (is_cst < 0)
1060 return isl_poly_free(poly);
1061 if (is_cst)
1062 return isl_poly_cst_scale_val(poly, v);
1064 poly = isl_poly_cow(poly);
1065 rec = isl_poly_as_rec(poly);
1066 if (!rec)
1067 goto error;
1069 for (i = 0; i < rec->n; ++i) {
1070 rec->p[i] = isl_poly_scale_val(rec->p[i], v);
1071 if (!rec->p[i])
1072 goto error;
1075 return poly;
1076 error:
1077 isl_poly_free(poly);
1078 return NULL;
1081 __isl_give isl_poly *isl_poly_mul_cst(__isl_take isl_poly *poly1,
1082 __isl_take isl_poly *poly2)
1084 isl_poly_cst *cst1;
1085 isl_poly_cst *cst2;
1087 poly1 = isl_poly_cow(poly1);
1088 if (!poly1 || !poly2)
1089 goto error;
1091 cst1 = isl_poly_as_cst(poly1);
1092 cst2 = isl_poly_as_cst(poly2);
1094 isl_int_mul(cst1->n, cst1->n, cst2->n);
1095 isl_int_mul(cst1->d, cst1->d, cst2->d);
1097 isl_poly_cst_reduce(cst1);
1099 isl_poly_free(poly2);
1100 return poly1;
1101 error:
1102 isl_poly_free(poly1);
1103 isl_poly_free(poly2);
1104 return NULL;
1107 __isl_give isl_poly *isl_poly_mul_rec(__isl_take isl_poly *poly1,
1108 __isl_take isl_poly *poly2)
1110 isl_poly_rec *rec1;
1111 isl_poly_rec *rec2;
1112 isl_poly_rec *res = NULL;
1113 int i, j;
1114 int size;
1116 rec1 = isl_poly_as_rec(poly1);
1117 rec2 = isl_poly_as_rec(poly2);
1118 if (!rec1 || !rec2)
1119 goto error;
1120 size = rec1->n + rec2->n - 1;
1121 res = isl_poly_alloc_rec(poly1->ctx, poly1->var, size);
1122 if (!res)
1123 goto error;
1125 for (i = 0; i < rec1->n; ++i) {
1126 res->p[i] = isl_poly_mul(isl_poly_copy(rec2->p[0]),
1127 isl_poly_copy(rec1->p[i]));
1128 if (!res->p[i])
1129 goto error;
1130 res->n++;
1132 for (; i < size; ++i) {
1133 res->p[i] = isl_poly_zero(poly1->ctx);
1134 if (!res->p[i])
1135 goto error;
1136 res->n++;
1138 for (i = 0; i < rec1->n; ++i) {
1139 for (j = 1; j < rec2->n; ++j) {
1140 isl_poly *poly;
1141 poly = isl_poly_mul(isl_poly_copy(rec2->p[j]),
1142 isl_poly_copy(rec1->p[i]));
1143 res->p[i + j] = isl_poly_sum(res->p[i + j], poly);
1144 if (!res->p[i + j])
1145 goto error;
1149 isl_poly_free(poly1);
1150 isl_poly_free(poly2);
1152 return &res->poly;
1153 error:
1154 isl_poly_free(poly1);
1155 isl_poly_free(poly2);
1156 isl_poly_free(&res->poly);
1157 return NULL;
1160 __isl_give isl_poly *isl_poly_mul(__isl_take isl_poly *poly1,
1161 __isl_take isl_poly *poly2)
1163 isl_bool is_zero, is_nan, is_one, is_cst;
1165 if (!poly1 || !poly2)
1166 goto error;
1168 is_nan = isl_poly_is_nan(poly1);
1169 if (is_nan < 0)
1170 goto error;
1171 if (is_nan) {
1172 isl_poly_free(poly2);
1173 return poly1;
1176 is_nan = isl_poly_is_nan(poly2);
1177 if (is_nan < 0)
1178 goto error;
1179 if (is_nan) {
1180 isl_poly_free(poly1);
1181 return poly2;
1184 is_zero = isl_poly_is_zero(poly1);
1185 if (is_zero < 0)
1186 goto error;
1187 if (is_zero) {
1188 isl_poly_free(poly2);
1189 return poly1;
1192 is_zero = isl_poly_is_zero(poly2);
1193 if (is_zero < 0)
1194 goto error;
1195 if (is_zero) {
1196 isl_poly_free(poly1);
1197 return poly2;
1200 is_one = isl_poly_is_one(poly1);
1201 if (is_one < 0)
1202 goto error;
1203 if (is_one) {
1204 isl_poly_free(poly1);
1205 return poly2;
1208 is_one = isl_poly_is_one(poly2);
1209 if (is_one < 0)
1210 goto error;
1211 if (is_one) {
1212 isl_poly_free(poly2);
1213 return poly1;
1216 if (poly1->var < poly2->var)
1217 return isl_poly_mul(poly2, poly1);
1219 if (poly2->var < poly1->var) {
1220 int i;
1221 isl_poly_rec *rec;
1222 isl_bool is_infty;
1224 is_infty = isl_poly_is_infty(poly2);
1225 if (is_infty >= 0 && !is_infty)
1226 is_infty = isl_poly_is_neginfty(poly2);
1227 if (is_infty < 0)
1228 goto error;
1229 if (is_infty) {
1230 isl_ctx *ctx = poly1->ctx;
1231 isl_poly_free(poly1);
1232 isl_poly_free(poly2);
1233 return isl_poly_nan(ctx);
1235 poly1 = isl_poly_cow(poly1);
1236 rec = isl_poly_as_rec(poly1);
1237 if (!rec)
1238 goto error;
1240 for (i = 0; i < rec->n; ++i) {
1241 rec->p[i] = isl_poly_mul(rec->p[i],
1242 isl_poly_copy(poly2));
1243 if (!rec->p[i])
1244 goto error;
1246 isl_poly_free(poly2);
1247 return poly1;
1250 is_cst = isl_poly_is_cst(poly1);
1251 if (is_cst < 0)
1252 goto error;
1253 if (is_cst)
1254 return isl_poly_mul_cst(poly1, poly2);
1256 return isl_poly_mul_rec(poly1, poly2);
1257 error:
1258 isl_poly_free(poly1);
1259 isl_poly_free(poly2);
1260 return NULL;
1263 __isl_give isl_poly *isl_poly_pow(__isl_take isl_poly *poly, unsigned power)
1265 isl_poly *res;
1267 if (!poly)
1268 return NULL;
1269 if (power == 1)
1270 return poly;
1272 if (power % 2)
1273 res = isl_poly_copy(poly);
1274 else
1275 res = isl_poly_one(poly->ctx);
1277 while (power >>= 1) {
1278 poly = isl_poly_mul(poly, isl_poly_copy(poly));
1279 if (power % 2)
1280 res = isl_poly_mul(res, isl_poly_copy(poly));
1283 isl_poly_free(poly);
1284 return res;
1287 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space,
1288 unsigned n_div, __isl_take isl_poly *poly)
1290 struct isl_qpolynomial *qp = NULL;
1291 isl_size total;
1293 total = isl_space_dim(space, isl_dim_all);
1294 if (total < 0 || !poly)
1295 goto error;
1297 if (!isl_space_is_set(space))
1298 isl_die(isl_space_get_ctx(space), isl_error_invalid,
1299 "domain of polynomial should be a set", goto error);
1301 qp = isl_calloc_type(space->ctx, struct isl_qpolynomial);
1302 if (!qp)
1303 goto error;
1305 qp->ref = 1;
1306 qp->div = isl_mat_alloc(space->ctx, n_div, 1 + 1 + total + n_div);
1307 if (!qp->div)
1308 goto error;
1310 qp->dim = space;
1311 qp->poly = poly;
1313 return qp;
1314 error:
1315 isl_space_free(space);
1316 isl_poly_free(poly);
1317 isl_qpolynomial_free(qp);
1318 return NULL;
1321 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1323 if (!qp)
1324 return NULL;
1326 qp->ref++;
1327 return qp;
1330 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1332 struct isl_qpolynomial *dup;
1334 if (!qp)
1335 return NULL;
1337 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1338 isl_poly_copy(qp->poly));
1339 if (!dup)
1340 return NULL;
1341 isl_mat_free(dup->div);
1342 dup->div = isl_mat_copy(qp->div);
1343 if (!dup->div)
1344 goto error;
1346 return dup;
1347 error:
1348 isl_qpolynomial_free(dup);
1349 return NULL;
1352 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1354 if (!qp)
1355 return NULL;
1357 if (qp->ref == 1)
1358 return qp;
1359 qp->ref--;
1360 return isl_qpolynomial_dup(qp);
1363 __isl_null isl_qpolynomial *isl_qpolynomial_free(
1364 __isl_take isl_qpolynomial *qp)
1366 if (!qp)
1367 return NULL;
1369 if (--qp->ref > 0)
1370 return NULL;
1372 isl_space_free(qp->dim);
1373 isl_mat_free(qp->div);
1374 isl_poly_free(qp->poly);
1376 free(qp);
1377 return NULL;
1380 __isl_give isl_poly *isl_poly_var_pow(isl_ctx *ctx, int pos, int power)
1382 int i;
1383 isl_poly_rec *rec;
1384 isl_poly_cst *cst;
1386 rec = isl_poly_alloc_rec(ctx, pos, 1 + power);
1387 if (!rec)
1388 return NULL;
1389 for (i = 0; i < 1 + power; ++i) {
1390 rec->p[i] = isl_poly_zero(ctx);
1391 if (!rec->p[i])
1392 goto error;
1393 rec->n++;
1395 cst = isl_poly_as_cst(rec->p[power]);
1396 isl_int_set_si(cst->n, 1);
1398 return &rec->poly;
1399 error:
1400 isl_poly_free(&rec->poly);
1401 return NULL;
1404 /* r array maps original positions to new positions.
1406 static __isl_give isl_poly *reorder(__isl_take isl_poly *poly, int *r)
1408 int i;
1409 isl_bool is_cst;
1410 isl_poly_rec *rec;
1411 isl_poly *base;
1412 isl_poly *res;
1414 is_cst = isl_poly_is_cst(poly);
1415 if (is_cst < 0)
1416 return isl_poly_free(poly);
1417 if (is_cst)
1418 return poly;
1420 rec = isl_poly_as_rec(poly);
1421 if (!rec)
1422 goto error;
1424 isl_assert(poly->ctx, rec->n >= 1, goto error);
1426 base = isl_poly_var_pow(poly->ctx, r[poly->var], 1);
1427 res = reorder(isl_poly_copy(rec->p[rec->n - 1]), r);
1429 for (i = rec->n - 2; i >= 0; --i) {
1430 res = isl_poly_mul(res, isl_poly_copy(base));
1431 res = isl_poly_sum(res, reorder(isl_poly_copy(rec->p[i]), r));
1434 isl_poly_free(base);
1435 isl_poly_free(poly);
1437 return res;
1438 error:
1439 isl_poly_free(poly);
1440 return NULL;
1443 static isl_bool compatible_divs(__isl_keep isl_mat *div1,
1444 __isl_keep isl_mat *div2)
1446 int n_row, n_col;
1447 isl_bool equal;
1449 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1450 div1->n_col >= div2->n_col,
1451 return isl_bool_error);
1453 if (div1->n_row == div2->n_row)
1454 return isl_mat_is_equal(div1, div2);
1456 n_row = div1->n_row;
1457 n_col = div1->n_col;
1458 div1->n_row = div2->n_row;
1459 div1->n_col = div2->n_col;
1461 equal = isl_mat_is_equal(div1, div2);
1463 div1->n_row = n_row;
1464 div1->n_col = n_col;
1466 return equal;
1469 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1471 int li, lj;
1473 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1474 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1476 if (li != lj)
1477 return li - lj;
1479 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1482 struct isl_div_sort_info {
1483 isl_mat *div;
1484 int row;
1487 static int div_sort_cmp(const void *p1, const void *p2)
1489 const struct isl_div_sort_info *i1, *i2;
1490 i1 = (const struct isl_div_sort_info *) p1;
1491 i2 = (const struct isl_div_sort_info *) p2;
1493 return cmp_row(i1->div, i1->row, i2->row);
1496 /* Sort divs and remove duplicates.
1498 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1500 int i;
1501 int skip;
1502 int len;
1503 struct isl_div_sort_info *array = NULL;
1504 int *pos = NULL, *at = NULL;
1505 int *reordering = NULL;
1506 isl_size div_pos;
1508 if (!qp)
1509 return NULL;
1510 if (qp->div->n_row <= 1)
1511 return qp;
1513 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
1514 if (div_pos < 0)
1515 return isl_qpolynomial_free(qp);
1517 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1518 qp->div->n_row);
1519 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1520 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1521 len = qp->div->n_col - 2;
1522 reordering = isl_alloc_array(qp->div->ctx, int, len);
1523 if (!array || !pos || !at || !reordering)
1524 goto error;
1526 for (i = 0; i < qp->div->n_row; ++i) {
1527 array[i].div = qp->div;
1528 array[i].row = i;
1529 pos[i] = i;
1530 at[i] = i;
1533 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1534 div_sort_cmp);
1536 for (i = 0; i < div_pos; ++i)
1537 reordering[i] = i;
1539 for (i = 0; i < qp->div->n_row; ++i) {
1540 if (pos[array[i].row] == i)
1541 continue;
1542 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1543 pos[at[i]] = pos[array[i].row];
1544 at[pos[array[i].row]] = at[i];
1545 at[i] = array[i].row;
1546 pos[array[i].row] = i;
1549 skip = 0;
1550 for (i = 0; i < len - div_pos; ++i) {
1551 if (i > 0 &&
1552 isl_seq_eq(qp->div->row[i - skip - 1],
1553 qp->div->row[i - skip], qp->div->n_col)) {
1554 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1555 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1556 2 + div_pos + i - skip);
1557 qp->div = isl_mat_drop_cols(qp->div,
1558 2 + div_pos + i - skip, 1);
1559 skip++;
1561 reordering[div_pos + array[i].row] = div_pos + i - skip;
1564 qp->poly = reorder(qp->poly, reordering);
1566 if (!qp->poly || !qp->div)
1567 goto error;
1569 free(at);
1570 free(pos);
1571 free(array);
1572 free(reordering);
1574 return qp;
1575 error:
1576 free(at);
1577 free(pos);
1578 free(array);
1579 free(reordering);
1580 isl_qpolynomial_free(qp);
1581 return NULL;
1584 static __isl_give isl_poly *expand(__isl_take isl_poly *poly, int *exp,
1585 int first)
1587 int i;
1588 isl_bool is_cst;
1589 isl_poly_rec *rec;
1591 is_cst = isl_poly_is_cst(poly);
1592 if (is_cst < 0)
1593 return isl_poly_free(poly);
1594 if (is_cst)
1595 return poly;
1597 if (poly->var < first)
1598 return poly;
1600 if (exp[poly->var - first] == poly->var - first)
1601 return poly;
1603 poly = isl_poly_cow(poly);
1604 if (!poly)
1605 goto error;
1607 poly->var = exp[poly->var - first] + first;
1609 rec = isl_poly_as_rec(poly);
1610 if (!rec)
1611 goto error;
1613 for (i = 0; i < rec->n; ++i) {
1614 rec->p[i] = expand(rec->p[i], exp, first);
1615 if (!rec->p[i])
1616 goto error;
1619 return poly;
1620 error:
1621 isl_poly_free(poly);
1622 return NULL;
1625 static __isl_give isl_qpolynomial *with_merged_divs(
1626 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1627 __isl_take isl_qpolynomial *qp2),
1628 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1630 int *exp1 = NULL;
1631 int *exp2 = NULL;
1632 isl_mat *div = NULL;
1633 int n_div1, n_div2;
1635 qp1 = isl_qpolynomial_cow(qp1);
1636 qp2 = isl_qpolynomial_cow(qp2);
1638 if (!qp1 || !qp2)
1639 goto error;
1641 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1642 qp1->div->n_col >= qp2->div->n_col, goto error);
1644 n_div1 = qp1->div->n_row;
1645 n_div2 = qp2->div->n_row;
1646 exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
1647 exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
1648 if ((n_div1 && !exp1) || (n_div2 && !exp2))
1649 goto error;
1651 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1652 if (!div)
1653 goto error;
1655 isl_mat_free(qp1->div);
1656 qp1->div = isl_mat_copy(div);
1657 isl_mat_free(qp2->div);
1658 qp2->div = isl_mat_copy(div);
1660 qp1->poly = expand(qp1->poly, exp1, div->n_col - div->n_row - 2);
1661 qp2->poly = expand(qp2->poly, exp2, div->n_col - div->n_row - 2);
1663 if (!qp1->poly || !qp2->poly)
1664 goto error;
1666 isl_mat_free(div);
1667 free(exp1);
1668 free(exp2);
1670 return fn(qp1, qp2);
1671 error:
1672 isl_mat_free(div);
1673 free(exp1);
1674 free(exp2);
1675 isl_qpolynomial_free(qp1);
1676 isl_qpolynomial_free(qp2);
1677 return NULL;
1680 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1681 __isl_take isl_qpolynomial *qp2)
1683 isl_bool compatible;
1685 qp1 = isl_qpolynomial_cow(qp1);
1687 if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
1688 goto error;
1690 if (qp1->div->n_row < qp2->div->n_row)
1691 return isl_qpolynomial_add(qp2, qp1);
1693 compatible = compatible_divs(qp1->div, qp2->div);
1694 if (compatible < 0)
1695 goto error;
1696 if (!compatible)
1697 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1699 qp1->poly = isl_poly_sum(qp1->poly, isl_poly_copy(qp2->poly));
1700 if (!qp1->poly)
1701 goto error;
1703 isl_qpolynomial_free(qp2);
1705 return qp1;
1706 error:
1707 isl_qpolynomial_free(qp1);
1708 isl_qpolynomial_free(qp2);
1709 return NULL;
1712 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1713 __isl_keep isl_set *dom,
1714 __isl_take isl_qpolynomial *qp1,
1715 __isl_take isl_qpolynomial *qp2)
1717 qp1 = isl_qpolynomial_add(qp1, qp2);
1718 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1719 return qp1;
1722 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1723 __isl_take isl_qpolynomial *qp2)
1725 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1728 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1729 __isl_take isl_qpolynomial *qp, isl_int v)
1731 if (isl_int_is_zero(v))
1732 return qp;
1734 qp = isl_qpolynomial_cow(qp);
1735 if (!qp)
1736 return NULL;
1738 qp->poly = isl_poly_add_isl_int(qp->poly, v);
1739 if (!qp->poly)
1740 goto error;
1742 return qp;
1743 error:
1744 isl_qpolynomial_free(qp);
1745 return NULL;
1749 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1751 if (!qp)
1752 return NULL;
1754 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1757 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1758 __isl_take isl_qpolynomial *qp, isl_int v)
1760 if (isl_int_is_one(v))
1761 return qp;
1763 if (qp && isl_int_is_zero(v)) {
1764 isl_qpolynomial *zero;
1765 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1766 isl_qpolynomial_free(qp);
1767 return zero;
1770 qp = isl_qpolynomial_cow(qp);
1771 if (!qp)
1772 return NULL;
1774 qp->poly = isl_poly_mul_isl_int(qp->poly, v);
1775 if (!qp->poly)
1776 goto error;
1778 return qp;
1779 error:
1780 isl_qpolynomial_free(qp);
1781 return NULL;
1784 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1785 __isl_take isl_qpolynomial *qp, isl_int v)
1787 return isl_qpolynomial_mul_isl_int(qp, v);
1790 /* Multiply "qp" by "v".
1792 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
1793 __isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1795 if (!qp || !v)
1796 goto error;
1798 if (!isl_val_is_rat(v))
1799 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1800 "expecting rational factor", goto error);
1802 if (isl_val_is_one(v)) {
1803 isl_val_free(v);
1804 return qp;
1807 if (isl_val_is_zero(v)) {
1808 isl_space *space;
1810 space = isl_qpolynomial_get_domain_space(qp);
1811 isl_qpolynomial_free(qp);
1812 isl_val_free(v);
1813 return isl_qpolynomial_zero_on_domain(space);
1816 qp = isl_qpolynomial_cow(qp);
1817 if (!qp)
1818 goto error;
1820 qp->poly = isl_poly_scale_val(qp->poly, v);
1821 if (!qp->poly)
1822 qp = isl_qpolynomial_free(qp);
1824 isl_val_free(v);
1825 return qp;
1826 error:
1827 isl_val_free(v);
1828 isl_qpolynomial_free(qp);
1829 return NULL;
1832 /* Divide "qp" by "v".
1834 __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
1835 __isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1837 if (!qp || !v)
1838 goto error;
1840 if (!isl_val_is_rat(v))
1841 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1842 "expecting rational factor", goto error);
1843 if (isl_val_is_zero(v))
1844 isl_die(isl_val_get_ctx(v), isl_error_invalid,
1845 "cannot scale down by zero", goto error);
1847 return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
1848 error:
1849 isl_val_free(v);
1850 isl_qpolynomial_free(qp);
1851 return NULL;
1854 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1855 __isl_take isl_qpolynomial *qp2)
1857 isl_bool compatible;
1859 qp1 = isl_qpolynomial_cow(qp1);
1861 if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
1862 goto error;
1864 if (qp1->div->n_row < qp2->div->n_row)
1865 return isl_qpolynomial_mul(qp2, qp1);
1867 compatible = compatible_divs(qp1->div, qp2->div);
1868 if (compatible < 0)
1869 goto error;
1870 if (!compatible)
1871 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1873 qp1->poly = isl_poly_mul(qp1->poly, isl_poly_copy(qp2->poly));
1874 if (!qp1->poly)
1875 goto error;
1877 isl_qpolynomial_free(qp2);
1879 return qp1;
1880 error:
1881 isl_qpolynomial_free(qp1);
1882 isl_qpolynomial_free(qp2);
1883 return NULL;
1886 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1887 unsigned power)
1889 qp = isl_qpolynomial_cow(qp);
1891 if (!qp)
1892 return NULL;
1894 qp->poly = isl_poly_pow(qp->poly, power);
1895 if (!qp->poly)
1896 goto error;
1898 return qp;
1899 error:
1900 isl_qpolynomial_free(qp);
1901 return NULL;
1904 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1905 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1907 int i;
1909 if (power == 1)
1910 return pwqp;
1912 pwqp = isl_pw_qpolynomial_cow(pwqp);
1913 if (!pwqp)
1914 return NULL;
1916 for (i = 0; i < pwqp->n; ++i) {
1917 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1918 if (!pwqp->p[i].qp)
1919 return isl_pw_qpolynomial_free(pwqp);
1922 return pwqp;
1925 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1926 __isl_take isl_space *domain)
1928 if (!domain)
1929 return NULL;
1930 return isl_qpolynomial_alloc(domain, 0, isl_poly_zero(domain->ctx));
1933 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1934 __isl_take isl_space *domain)
1936 if (!domain)
1937 return NULL;
1938 return isl_qpolynomial_alloc(domain, 0, isl_poly_one(domain->ctx));
1941 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1942 __isl_take isl_space *domain)
1944 if (!domain)
1945 return NULL;
1946 return isl_qpolynomial_alloc(domain, 0, isl_poly_infty(domain->ctx));
1949 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1950 __isl_take isl_space *domain)
1952 if (!domain)
1953 return NULL;
1954 return isl_qpolynomial_alloc(domain, 0, isl_poly_neginfty(domain->ctx));
1957 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1958 __isl_take isl_space *domain)
1960 if (!domain)
1961 return NULL;
1962 return isl_qpolynomial_alloc(domain, 0, isl_poly_nan(domain->ctx));
1965 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1966 __isl_take isl_space *domain,
1967 isl_int v)
1969 struct isl_qpolynomial *qp;
1970 isl_poly_cst *cst;
1972 qp = isl_qpolynomial_zero_on_domain(domain);
1973 if (!qp)
1974 return NULL;
1976 cst = isl_poly_as_cst(qp->poly);
1977 isl_int_set(cst->n, v);
1979 return qp;
1982 isl_bool isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1983 isl_int *n, isl_int *d)
1985 isl_bool is_cst;
1986 isl_poly_cst *cst;
1988 if (!qp)
1989 return isl_bool_error;
1991 is_cst = isl_poly_is_cst(qp->poly);
1992 if (is_cst < 0 || !is_cst)
1993 return is_cst;
1995 cst = isl_poly_as_cst(qp->poly);
1996 if (!cst)
1997 return isl_bool_error;
1999 if (n)
2000 isl_int_set(*n, cst->n);
2001 if (d)
2002 isl_int_set(*d, cst->d);
2004 return isl_bool_true;
2007 /* Return the constant term of "poly".
2009 static __isl_give isl_val *isl_poly_get_constant_val(__isl_keep isl_poly *poly)
2011 isl_bool is_cst;
2012 isl_poly_cst *cst;
2014 if (!poly)
2015 return NULL;
2017 while ((is_cst = isl_poly_is_cst(poly)) == isl_bool_false) {
2018 isl_poly_rec *rec;
2020 rec = isl_poly_as_rec(poly);
2021 if (!rec)
2022 return NULL;
2023 poly = rec->p[0];
2025 if (is_cst < 0)
2026 return NULL;
2028 cst = isl_poly_as_cst(poly);
2029 if (!cst)
2030 return NULL;
2031 return isl_val_rat_from_isl_int(cst->poly.ctx, cst->n, cst->d);
2034 /* Return the constant term of "qp".
2036 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2037 __isl_keep isl_qpolynomial *qp)
2039 if (!qp)
2040 return NULL;
2042 return isl_poly_get_constant_val(qp->poly);
2045 isl_bool isl_poly_is_affine(__isl_keep isl_poly *poly)
2047 isl_bool is_cst;
2048 isl_poly_rec *rec;
2050 if (!poly)
2051 return isl_bool_error;
2053 if (poly->var < 0)
2054 return isl_bool_true;
2056 rec = isl_poly_as_rec(poly);
2057 if (!rec)
2058 return isl_bool_error;
2060 if (rec->n > 2)
2061 return isl_bool_false;
2063 isl_assert(poly->ctx, rec->n > 1, return isl_bool_error);
2065 is_cst = isl_poly_is_cst(rec->p[1]);
2066 if (is_cst < 0 || !is_cst)
2067 return is_cst;
2069 return isl_poly_is_affine(rec->p[0]);
2072 isl_bool isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
2074 if (!qp)
2075 return isl_bool_error;
2077 if (qp->div->n_row > 0)
2078 return isl_bool_false;
2080 return isl_poly_is_affine(qp->poly);
2083 static void update_coeff(__isl_keep isl_vec *aff,
2084 __isl_keep isl_poly_cst *cst, int pos)
2086 isl_int gcd;
2087 isl_int f;
2089 if (isl_int_is_zero(cst->n))
2090 return;
2092 isl_int_init(gcd);
2093 isl_int_init(f);
2094 isl_int_gcd(gcd, cst->d, aff->el[0]);
2095 isl_int_divexact(f, cst->d, gcd);
2096 isl_int_divexact(gcd, aff->el[0], gcd);
2097 isl_seq_scale(aff->el, aff->el, f, aff->size);
2098 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
2099 isl_int_clear(gcd);
2100 isl_int_clear(f);
2103 int isl_poly_update_affine(__isl_keep isl_poly *poly, __isl_keep isl_vec *aff)
2105 isl_poly_cst *cst;
2106 isl_poly_rec *rec;
2108 if (!poly || !aff)
2109 return -1;
2111 if (poly->var < 0) {
2112 isl_poly_cst *cst;
2114 cst = isl_poly_as_cst(poly);
2115 if (!cst)
2116 return -1;
2117 update_coeff(aff, cst, 0);
2118 return 0;
2121 rec = isl_poly_as_rec(poly);
2122 if (!rec)
2123 return -1;
2124 isl_assert(poly->ctx, rec->n == 2, return -1);
2126 cst = isl_poly_as_cst(rec->p[1]);
2127 if (!cst)
2128 return -1;
2129 update_coeff(aff, cst, 1 + poly->var);
2131 return isl_poly_update_affine(rec->p[0], aff);
2134 __isl_give isl_vec *isl_qpolynomial_extract_affine(
2135 __isl_keep isl_qpolynomial *qp)
2137 isl_vec *aff;
2138 isl_size d;
2140 d = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2141 if (d < 0)
2142 return NULL;
2144 aff = isl_vec_alloc(qp->div->ctx, 2 + d);
2145 if (!aff)
2146 return NULL;
2148 isl_seq_clr(aff->el + 1, 1 + d);
2149 isl_int_set_si(aff->el[0], 1);
2151 if (isl_poly_update_affine(qp->poly, aff) < 0)
2152 goto error;
2154 return aff;
2155 error:
2156 isl_vec_free(aff);
2157 return NULL;
2160 /* Compare two quasi-polynomials.
2162 * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
2163 * than "qp2" and 0 if they are equal.
2165 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
2166 __isl_keep isl_qpolynomial *qp2)
2168 int cmp;
2170 if (qp1 == qp2)
2171 return 0;
2172 if (!qp1)
2173 return -1;
2174 if (!qp2)
2175 return 1;
2177 cmp = isl_space_cmp(qp1->dim, qp2->dim);
2178 if (cmp != 0)
2179 return cmp;
2181 cmp = isl_local_cmp(qp1->div, qp2->div);
2182 if (cmp != 0)
2183 return cmp;
2185 return isl_poly_plain_cmp(qp1->poly, qp2->poly);
2188 /* Is "qp1" obviously equal to "qp2"?
2190 * NaN is not equal to anything, not even to another NaN.
2192 isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
2193 __isl_keep isl_qpolynomial *qp2)
2195 isl_bool equal;
2197 if (!qp1 || !qp2)
2198 return isl_bool_error;
2200 if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
2201 return isl_bool_false;
2203 equal = isl_space_is_equal(qp1->dim, qp2->dim);
2204 if (equal < 0 || !equal)
2205 return equal;
2207 equal = isl_mat_is_equal(qp1->div, qp2->div);
2208 if (equal < 0 || !equal)
2209 return equal;
2211 return isl_poly_is_equal(qp1->poly, qp2->poly);
2214 static isl_stat poly_update_den(__isl_keep isl_poly *poly, isl_int *d)
2216 int i;
2217 isl_bool is_cst;
2218 isl_poly_rec *rec;
2220 is_cst = isl_poly_is_cst(poly);
2221 if (is_cst < 0)
2222 return isl_stat_error;
2223 if (is_cst) {
2224 isl_poly_cst *cst;
2225 cst = isl_poly_as_cst(poly);
2226 if (!cst)
2227 return isl_stat_error;
2228 isl_int_lcm(*d, *d, cst->d);
2229 return isl_stat_ok;
2232 rec = isl_poly_as_rec(poly);
2233 if (!rec)
2234 return isl_stat_error;
2236 for (i = 0; i < rec->n; ++i)
2237 poly_update_den(rec->p[i], d);
2239 return isl_stat_ok;
2242 __isl_give isl_val *isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp)
2244 isl_val *d;
2246 if (!qp)
2247 return NULL;
2248 d = isl_val_one(isl_qpolynomial_get_ctx(qp));
2249 if (!d)
2250 return NULL;
2251 if (poly_update_den(qp->poly, &d->n) < 0)
2252 return isl_val_free(d);
2253 return d;
2256 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
2257 __isl_take isl_space *domain, int pos, int power)
2259 struct isl_ctx *ctx;
2261 if (!domain)
2262 return NULL;
2264 ctx = domain->ctx;
2266 return isl_qpolynomial_alloc(domain, 0,
2267 isl_poly_var_pow(ctx, pos, power));
2270 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2271 __isl_take isl_space *domain, enum isl_dim_type type, unsigned pos)
2273 if (isl_space_check_is_set(domain ) < 0)
2274 goto error;
2275 if (isl_space_check_range(domain, type, pos, 1) < 0)
2276 goto error;
2278 pos += isl_space_offset(domain, type);
2280 return isl_qpolynomial_var_pow_on_domain(domain, pos, 1);
2281 error:
2282 isl_space_free(domain);
2283 return NULL;
2286 __isl_give isl_poly *isl_poly_subs(__isl_take isl_poly *poly,
2287 unsigned first, unsigned n, __isl_keep isl_poly **subs)
2289 int i;
2290 isl_bool is_cst;
2291 isl_poly_rec *rec;
2292 isl_poly *base, *res;
2294 is_cst = isl_poly_is_cst(poly);
2295 if (is_cst < 0)
2296 return isl_poly_free(poly);
2297 if (is_cst)
2298 return poly;
2300 if (poly->var < first)
2301 return poly;
2303 rec = isl_poly_as_rec(poly);
2304 if (!rec)
2305 goto error;
2307 isl_assert(poly->ctx, rec->n >= 1, goto error);
2309 if (poly->var >= first + n)
2310 base = isl_poly_var_pow(poly->ctx, poly->var, 1);
2311 else
2312 base = isl_poly_copy(subs[poly->var - first]);
2314 res = isl_poly_subs(isl_poly_copy(rec->p[rec->n - 1]), first, n, subs);
2315 for (i = rec->n - 2; i >= 0; --i) {
2316 isl_poly *t;
2317 t = isl_poly_subs(isl_poly_copy(rec->p[i]), first, n, subs);
2318 res = isl_poly_mul(res, isl_poly_copy(base));
2319 res = isl_poly_sum(res, t);
2322 isl_poly_free(base);
2323 isl_poly_free(poly);
2325 return res;
2326 error:
2327 isl_poly_free(poly);
2328 return NULL;
2331 __isl_give isl_poly *isl_poly_from_affine(isl_ctx *ctx, isl_int *f,
2332 isl_int denom, unsigned len)
2334 int i;
2335 isl_poly *poly;
2337 isl_assert(ctx, len >= 1, return NULL);
2339 poly = isl_poly_rat_cst(ctx, f[0], denom);
2340 for (i = 0; i < len - 1; ++i) {
2341 isl_poly *t;
2342 isl_poly *c;
2344 if (isl_int_is_zero(f[1 + i]))
2345 continue;
2347 c = isl_poly_rat_cst(ctx, f[1 + i], denom);
2348 t = isl_poly_var_pow(ctx, i, 1);
2349 t = isl_poly_mul(c, t);
2350 poly = isl_poly_sum(poly, t);
2353 return poly;
2356 /* Remove common factor of non-constant terms and denominator.
2358 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
2360 isl_ctx *ctx = qp->div->ctx;
2361 unsigned total = qp->div->n_col - 2;
2363 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
2364 isl_int_gcd(ctx->normalize_gcd,
2365 ctx->normalize_gcd, qp->div->row[div][0]);
2366 if (isl_int_is_one(ctx->normalize_gcd))
2367 return;
2369 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
2370 ctx->normalize_gcd, total);
2371 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
2372 ctx->normalize_gcd);
2373 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
2374 ctx->normalize_gcd);
2377 /* Replace the integer division identified by "div" by the polynomial "s".
2378 * The integer division is assumed not to appear in the definition
2379 * of any other integer divisions.
2381 static __isl_give isl_qpolynomial *substitute_div(
2382 __isl_take isl_qpolynomial *qp, int div, __isl_take isl_poly *s)
2384 int i;
2385 isl_size div_pos;
2386 int *reordering;
2387 isl_ctx *ctx;
2389 if (!qp || !s)
2390 goto error;
2392 qp = isl_qpolynomial_cow(qp);
2393 if (!qp)
2394 goto error;
2396 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2397 if (div_pos < 0)
2398 goto error;
2399 qp->poly = isl_poly_subs(qp->poly, div_pos + div, 1, &s);
2400 if (!qp->poly)
2401 goto error;
2403 ctx = isl_qpolynomial_get_ctx(qp);
2404 reordering = isl_alloc_array(ctx, int, div_pos + qp->div->n_row);
2405 if (!reordering)
2406 goto error;
2407 for (i = 0; i < div_pos + div; ++i)
2408 reordering[i] = i;
2409 for (i = div_pos + div + 1; i < div_pos + qp->div->n_row; ++i)
2410 reordering[i] = i - 1;
2411 qp->div = isl_mat_drop_rows(qp->div, div, 1);
2412 qp->div = isl_mat_drop_cols(qp->div, 2 + div_pos + div, 1);
2413 qp->poly = reorder(qp->poly, reordering);
2414 free(reordering);
2416 if (!qp->poly || !qp->div)
2417 goto error;
2419 isl_poly_free(s);
2420 return qp;
2421 error:
2422 isl_qpolynomial_free(qp);
2423 isl_poly_free(s);
2424 return NULL;
2427 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2428 * divisions because d is equal to 1 by their definition, i.e., e.
2430 static __isl_give isl_qpolynomial *substitute_non_divs(
2431 __isl_take isl_qpolynomial *qp)
2433 int i, j;
2434 isl_size div_pos;
2435 isl_poly *s;
2437 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2438 if (div_pos < 0)
2439 return isl_qpolynomial_free(qp);
2441 for (i = 0; qp && i < qp->div->n_row; ++i) {
2442 if (!isl_int_is_one(qp->div->row[i][0]))
2443 continue;
2444 for (j = i + 1; j < qp->div->n_row; ++j) {
2445 if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
2446 continue;
2447 isl_seq_combine(qp->div->row[j] + 1,
2448 qp->div->ctx->one, qp->div->row[j] + 1,
2449 qp->div->row[j][2 + div_pos + i],
2450 qp->div->row[i] + 1, 1 + div_pos + i);
2451 isl_int_set_si(qp->div->row[j][2 + div_pos + i], 0);
2452 normalize_div(qp, j);
2454 s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
2455 qp->div->row[i][0], qp->div->n_col - 1);
2456 qp = substitute_div(qp, i, s);
2457 --i;
2460 return qp;
2463 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2464 * with d the denominator. When replacing the coefficient e of x by
2465 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2466 * inside the division, so we need to add floor(e/d) * x outside.
2467 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2468 * to adjust the coefficient of x in each later div that depends on the
2469 * current div "div" and also in the affine expressions in the rows of "mat"
2470 * (if they too depend on "div").
2472 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
2473 __isl_keep isl_mat **mat)
2475 int i, j;
2476 isl_int v;
2477 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2479 isl_int_init(v);
2480 for (i = 0; i < 1 + total + div; ++i) {
2481 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2482 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2483 continue;
2484 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2485 isl_int_fdiv_r(qp->div->row[div][1 + i],
2486 qp->div->row[div][1 + i], qp->div->row[div][0]);
2487 *mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
2488 for (j = div + 1; j < qp->div->n_row; ++j) {
2489 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2490 continue;
2491 isl_int_addmul(qp->div->row[j][1 + i],
2492 v, qp->div->row[j][2 + total + div]);
2495 isl_int_clear(v);
2498 /* Check if the last non-zero coefficient is bigger that half of the
2499 * denominator. If so, we will invert the div to further reduce the number
2500 * of distinct divs that may appear.
2501 * If the last non-zero coefficient is exactly half the denominator,
2502 * then we continue looking for earlier coefficients that are bigger
2503 * than half the denominator.
2505 static int needs_invert(__isl_keep isl_mat *div, int row)
2507 int i;
2508 int cmp;
2510 for (i = div->n_col - 1; i >= 1; --i) {
2511 if (isl_int_is_zero(div->row[row][i]))
2512 continue;
2513 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2514 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2515 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2516 if (cmp)
2517 return cmp > 0;
2518 if (i == 1)
2519 return 1;
2522 return 0;
2525 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2526 * We only invert the coefficients of e (and the coefficient of q in
2527 * later divs and in the rows of "mat"). After calling this function, the
2528 * coefficients of e should be reduced again.
2530 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2531 __isl_keep isl_mat **mat)
2533 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2535 isl_seq_neg(qp->div->row[div] + 1,
2536 qp->div->row[div] + 1, qp->div->n_col - 1);
2537 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2538 isl_int_add(qp->div->row[div][1],
2539 qp->div->row[div][1], qp->div->row[div][0]);
2540 *mat = isl_mat_col_neg(*mat, 1 + total + div);
2541 isl_mat_col_mul(qp->div, 2 + total + div,
2542 qp->div->ctx->negone, 2 + total + div);
2545 /* Reduce all divs of "qp" to have coefficients
2546 * in the interval [0, d-1], with d the denominator and such that the
2547 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2548 * The modifications to the integer divisions need to be reflected
2549 * in the factors of the polynomial that refer to the original
2550 * integer divisions. To this end, the modifications are collected
2551 * as a set of affine expressions and then plugged into the polynomial.
2553 * After the reduction, some divs may have become redundant or identical,
2554 * so we call substitute_non_divs and sort_divs. If these functions
2555 * eliminate divs or merge two or more divs into one, the coefficients
2556 * of the enclosing divs may have to be reduced again, so we call
2557 * ourselves recursively if the number of divs decreases.
2559 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2561 int i;
2562 isl_ctx *ctx;
2563 isl_mat *mat;
2564 isl_poly **s;
2565 unsigned o_div;
2566 isl_size n_div, total, new_n_div;
2568 total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2569 n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2570 o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
2571 if (total < 0 || n_div < 0)
2572 return isl_qpolynomial_free(qp);
2573 ctx = isl_qpolynomial_get_ctx(qp);
2574 mat = isl_mat_zero(ctx, n_div, 1 + total);
2576 for (i = 0; i < n_div; ++i)
2577 mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
2579 for (i = 0; i < qp->div->n_row; ++i) {
2580 normalize_div(qp, i);
2581 reduce_div(qp, i, &mat);
2582 if (needs_invert(qp->div, i)) {
2583 invert_div(qp, i, &mat);
2584 reduce_div(qp, i, &mat);
2587 if (!mat)
2588 goto error;
2590 s = isl_alloc_array(ctx, struct isl_poly *, n_div);
2591 if (n_div && !s)
2592 goto error;
2593 for (i = 0; i < n_div; ++i)
2594 s[i] = isl_poly_from_affine(ctx, mat->row[i], ctx->one,
2595 1 + total);
2596 qp->poly = isl_poly_subs(qp->poly, o_div - 1, n_div, s);
2597 for (i = 0; i < n_div; ++i)
2598 isl_poly_free(s[i]);
2599 free(s);
2600 if (!qp->poly)
2601 goto error;
2603 isl_mat_free(mat);
2605 qp = substitute_non_divs(qp);
2606 qp = sort_divs(qp);
2607 new_n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2608 if (new_n_div < 0)
2609 return isl_qpolynomial_free(qp);
2610 if (new_n_div < n_div)
2611 return reduce_divs(qp);
2613 return qp;
2614 error:
2615 isl_qpolynomial_free(qp);
2616 isl_mat_free(mat);
2617 return NULL;
2620 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2621 __isl_take isl_space *domain, const isl_int n, const isl_int d)
2623 struct isl_qpolynomial *qp;
2624 isl_poly_cst *cst;
2626 qp = isl_qpolynomial_zero_on_domain(domain);
2627 if (!qp)
2628 return NULL;
2630 cst = isl_poly_as_cst(qp->poly);
2631 isl_int_set(cst->n, n);
2632 isl_int_set(cst->d, d);
2634 return qp;
2637 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2639 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2640 __isl_take isl_space *domain, __isl_take isl_val *val)
2642 isl_qpolynomial *qp;
2643 isl_poly_cst *cst;
2645 qp = isl_qpolynomial_zero_on_domain(domain);
2646 if (!qp || !val)
2647 goto error;
2649 cst = isl_poly_as_cst(qp->poly);
2650 isl_int_set(cst->n, val->n);
2651 isl_int_set(cst->d, val->d);
2653 isl_val_free(val);
2654 return qp;
2655 error:
2656 isl_val_free(val);
2657 isl_qpolynomial_free(qp);
2658 return NULL;
2661 static isl_stat poly_set_active(__isl_keep isl_poly *poly, int *active, int d)
2663 isl_bool is_cst;
2664 isl_poly_rec *rec;
2665 int i;
2667 is_cst = isl_poly_is_cst(poly);
2668 if (is_cst < 0)
2669 return isl_stat_error;
2670 if (is_cst)
2671 return isl_stat_ok;
2673 if (poly->var < d)
2674 active[poly->var] = 1;
2676 rec = isl_poly_as_rec(poly);
2677 for (i = 0; i < rec->n; ++i)
2678 if (poly_set_active(rec->p[i], active, d) < 0)
2679 return isl_stat_error;
2681 return isl_stat_ok;
2684 static isl_stat set_active(__isl_keep isl_qpolynomial *qp, int *active)
2686 int i, j;
2687 isl_size d;
2688 isl_space *space;
2690 space = isl_qpolynomial_peek_domain_space(qp);
2691 d = isl_space_dim(space, isl_dim_all);
2692 if (d < 0 || !active)
2693 return isl_stat_error;
2695 for (i = 0; i < d; ++i)
2696 for (j = 0; j < qp->div->n_row; ++j) {
2697 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2698 continue;
2699 active[i] = 1;
2700 break;
2703 return poly_set_active(qp->poly, active, d);
2706 #undef TYPE
2707 #define TYPE isl_qpolynomial
2708 static
2709 #include "check_type_range_templ.c"
2711 isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2712 enum isl_dim_type type, unsigned first, unsigned n)
2714 int i;
2715 int *active = NULL;
2716 isl_bool involves = isl_bool_false;
2717 isl_size offset;
2718 isl_size d;
2719 isl_space *space;
2721 if (!qp)
2722 return isl_bool_error;
2723 if (n == 0)
2724 return isl_bool_false;
2726 if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
2727 return isl_bool_error;
2728 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2729 type == isl_dim_in, return isl_bool_error);
2731 space = isl_qpolynomial_peek_domain_space(qp);
2732 d = isl_space_dim(space, isl_dim_all);
2733 if (d < 0)
2734 return isl_bool_error;
2735 active = isl_calloc_array(qp->dim->ctx, int, d);
2736 if (set_active(qp, active) < 0)
2737 goto error;
2739 offset = isl_qpolynomial_domain_var_offset(qp, domain_type(type));
2740 if (offset < 0)
2741 goto error;
2742 first += offset;
2743 for (i = 0; i < n; ++i)
2744 if (active[first + i]) {
2745 involves = isl_bool_true;
2746 break;
2749 free(active);
2751 return involves;
2752 error:
2753 free(active);
2754 return isl_bool_error;
2757 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2758 * of the divs that do appear in the quasi-polynomial.
2760 static __isl_give isl_qpolynomial *remove_redundant_divs(
2761 __isl_take isl_qpolynomial *qp)
2763 int i, j;
2764 isl_size div_pos;
2765 int len;
2766 int skip;
2767 int *active = NULL;
2768 int *reordering = NULL;
2769 int redundant = 0;
2770 int n_div;
2771 isl_ctx *ctx;
2773 if (!qp)
2774 return NULL;
2775 if (qp->div->n_row == 0)
2776 return qp;
2778 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2779 if (div_pos < 0)
2780 return isl_qpolynomial_free(qp);
2781 len = qp->div->n_col - 2;
2782 ctx = isl_qpolynomial_get_ctx(qp);
2783 active = isl_calloc_array(ctx, int, len);
2784 if (!active)
2785 goto error;
2787 if (poly_set_active(qp->poly, active, len) < 0)
2788 goto error;
2790 for (i = qp->div->n_row - 1; i >= 0; --i) {
2791 if (!active[div_pos + i]) {
2792 redundant = 1;
2793 continue;
2795 for (j = 0; j < i; ++j) {
2796 if (isl_int_is_zero(qp->div->row[i][2 + div_pos + j]))
2797 continue;
2798 active[div_pos + j] = 1;
2799 break;
2803 if (!redundant) {
2804 free(active);
2805 return qp;
2808 reordering = isl_alloc_array(qp->div->ctx, int, len);
2809 if (!reordering)
2810 goto error;
2812 for (i = 0; i < div_pos; ++i)
2813 reordering[i] = i;
2815 skip = 0;
2816 n_div = qp->div->n_row;
2817 for (i = 0; i < n_div; ++i) {
2818 if (!active[div_pos + i]) {
2819 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2820 qp->div = isl_mat_drop_cols(qp->div,
2821 2 + div_pos + i - skip, 1);
2822 skip++;
2824 reordering[div_pos + i] = div_pos + i - skip;
2827 qp->poly = reorder(qp->poly, reordering);
2829 if (!qp->poly || !qp->div)
2830 goto error;
2832 free(active);
2833 free(reordering);
2835 return qp;
2836 error:
2837 free(active);
2838 free(reordering);
2839 isl_qpolynomial_free(qp);
2840 return NULL;
2843 __isl_give isl_poly *isl_poly_drop(__isl_take isl_poly *poly,
2844 unsigned first, unsigned n)
2846 int i;
2847 isl_poly_rec *rec;
2849 if (!poly)
2850 return NULL;
2851 if (n == 0 || poly->var < 0 || poly->var < first)
2852 return poly;
2853 if (poly->var < first + n) {
2854 poly = replace_by_constant_term(poly);
2855 return isl_poly_drop(poly, first, n);
2857 poly = isl_poly_cow(poly);
2858 if (!poly)
2859 return NULL;
2860 poly->var -= n;
2861 rec = isl_poly_as_rec(poly);
2862 if (!rec)
2863 goto error;
2865 for (i = 0; i < rec->n; ++i) {
2866 rec->p[i] = isl_poly_drop(rec->p[i], first, n);
2867 if (!rec->p[i])
2868 goto error;
2871 return poly;
2872 error:
2873 isl_poly_free(poly);
2874 return NULL;
2877 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2878 __isl_take isl_qpolynomial *qp,
2879 enum isl_dim_type type, unsigned pos, const char *s)
2881 qp = isl_qpolynomial_cow(qp);
2882 if (!qp)
2883 return NULL;
2884 if (type == isl_dim_out)
2885 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2886 "cannot set name of output/set dimension",
2887 return isl_qpolynomial_free(qp));
2888 type = domain_type(type);
2889 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2890 if (!qp->dim)
2891 goto error;
2892 return qp;
2893 error:
2894 isl_qpolynomial_free(qp);
2895 return NULL;
2898 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2899 __isl_take isl_qpolynomial *qp,
2900 enum isl_dim_type type, unsigned first, unsigned n)
2902 isl_size offset;
2904 if (!qp)
2905 return NULL;
2906 if (type == isl_dim_out)
2907 isl_die(qp->dim->ctx, isl_error_invalid,
2908 "cannot drop output/set dimension",
2909 goto error);
2910 if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
2911 return isl_qpolynomial_free(qp);
2912 type = domain_type(type);
2913 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2914 return qp;
2916 qp = isl_qpolynomial_cow(qp);
2917 if (!qp)
2918 return NULL;
2920 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2921 type == isl_dim_set, goto error);
2923 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2924 if (!qp->dim)
2925 goto error;
2927 offset = isl_qpolynomial_domain_var_offset(qp, type);
2928 if (offset < 0)
2929 goto error;
2930 first += offset;
2932 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2933 if (!qp->div)
2934 goto error;
2936 qp->poly = isl_poly_drop(qp->poly, first, n);
2937 if (!qp->poly)
2938 goto error;
2940 return qp;
2941 error:
2942 isl_qpolynomial_free(qp);
2943 return NULL;
2946 /* Project the domain of the quasi-polynomial onto its parameter space.
2947 * The quasi-polynomial may not involve any of the domain dimensions.
2949 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2950 __isl_take isl_qpolynomial *qp)
2952 isl_space *space;
2953 isl_size n;
2954 isl_bool involves;
2956 n = isl_qpolynomial_dim(qp, isl_dim_in);
2957 if (n < 0)
2958 return isl_qpolynomial_free(qp);
2959 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2960 if (involves < 0)
2961 return isl_qpolynomial_free(qp);
2962 if (involves)
2963 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2964 "polynomial involves some of the domain dimensions",
2965 return isl_qpolynomial_free(qp));
2966 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2967 space = isl_qpolynomial_get_domain_space(qp);
2968 space = isl_space_params(space);
2969 qp = isl_qpolynomial_reset_domain_space(qp, space);
2970 return qp;
2973 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2974 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2976 int i, j, k;
2977 isl_int denom;
2978 unsigned total;
2979 unsigned n_div;
2980 isl_poly *poly;
2982 if (!eq)
2983 goto error;
2984 if (eq->n_eq == 0) {
2985 isl_basic_set_free(eq);
2986 return qp;
2989 qp = isl_qpolynomial_cow(qp);
2990 if (!qp)
2991 goto error;
2992 qp->div = isl_mat_cow(qp->div);
2993 if (!qp->div)
2994 goto error;
2996 total = isl_basic_set_offset(eq, isl_dim_div);
2997 n_div = eq->n_div;
2998 isl_int_init(denom);
2999 for (i = 0; i < eq->n_eq; ++i) {
3000 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
3001 if (j < 0 || j == 0 || j >= total)
3002 continue;
3004 for (k = 0; k < qp->div->n_row; ++k) {
3005 if (isl_int_is_zero(qp->div->row[k][1 + j]))
3006 continue;
3007 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
3008 &qp->div->row[k][0]);
3009 normalize_div(qp, k);
3012 if (isl_int_is_pos(eq->eq[i][j]))
3013 isl_seq_neg(eq->eq[i], eq->eq[i], total);
3014 isl_int_abs(denom, eq->eq[i][j]);
3015 isl_int_set_si(eq->eq[i][j], 0);
3017 poly = isl_poly_from_affine(qp->dim->ctx,
3018 eq->eq[i], denom, total);
3019 qp->poly = isl_poly_subs(qp->poly, j - 1, 1, &poly);
3020 isl_poly_free(poly);
3022 isl_int_clear(denom);
3024 if (!qp->poly)
3025 goto error;
3027 isl_basic_set_free(eq);
3029 qp = substitute_non_divs(qp);
3030 qp = sort_divs(qp);
3032 return qp;
3033 error:
3034 isl_basic_set_free(eq);
3035 isl_qpolynomial_free(qp);
3036 return NULL;
3039 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
3041 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
3042 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
3044 if (!qp || !eq)
3045 goto error;
3046 if (qp->div->n_row > 0)
3047 eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
3048 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
3049 error:
3050 isl_basic_set_free(eq);
3051 isl_qpolynomial_free(qp);
3052 return NULL;
3055 /* Look for equalities among the variables shared by context and qp
3056 * and the integer divisions of qp, if any.
3057 * The equalities are then used to eliminate variables and/or integer
3058 * divisions from qp.
3060 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3061 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
3063 isl_local_space *ls;
3064 isl_basic_set *aff;
3066 ls = isl_qpolynomial_get_domain_local_space(qp);
3067 context = isl_local_space_lift_set(ls, context);
3069 aff = isl_set_affine_hull(context);
3070 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
3073 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3074 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
3076 isl_space *space = isl_qpolynomial_get_domain_space(qp);
3077 isl_set *dom_context = isl_set_universe(space);
3078 dom_context = isl_set_intersect_params(dom_context, context);
3079 return isl_qpolynomial_gist(qp, dom_context);
3082 /* Return a zero isl_qpolynomial in the given space.
3084 * This is a helper function for isl_pw_*_as_* that ensures a uniform
3085 * interface over all piecewise types.
3087 static __isl_give isl_qpolynomial *isl_qpolynomial_zero_in_space(
3088 __isl_take isl_space *space)
3090 return isl_qpolynomial_zero_on_domain(isl_space_domain(space));
3093 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
3095 #undef PW
3096 #define PW isl_pw_qpolynomial
3097 #undef BASE
3098 #define BASE qpolynomial
3099 #undef EL_IS_ZERO
3100 #define EL_IS_ZERO is_zero
3101 #undef ZERO
3102 #define ZERO zero
3103 #undef IS_ZERO
3104 #define IS_ZERO is_zero
3105 #undef FIELD
3106 #define FIELD qp
3107 #undef DEFAULT_IS_ZERO
3108 #define DEFAULT_IS_ZERO 1
3110 #include <isl_pw_templ.c>
3111 #include <isl_pw_un_op_templ.c>
3112 #include <isl_pw_eval.c>
3113 #include <isl_pw_insert_dims_templ.c>
3114 #include <isl_pw_lift_templ.c>
3115 #include <isl_pw_morph_templ.c>
3116 #include <isl_pw_move_dims_templ.c>
3117 #include <isl_pw_neg_templ.c>
3118 #include <isl_pw_opt_templ.c>
3119 #include <isl_pw_sub_templ.c>
3121 #undef BASE
3122 #define BASE pw_qpolynomial
3124 #include <isl_union_single.c>
3125 #include <isl_union_eval.c>
3126 #include <isl_union_neg.c>
3128 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
3130 if (!pwqp)
3131 return -1;
3133 if (pwqp->n != -1)
3134 return 0;
3136 if (!isl_set_plain_is_universe(pwqp->p[0].set))
3137 return 0;
3139 return isl_qpolynomial_is_one(pwqp->p[0].qp);
3142 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3143 __isl_take isl_pw_qpolynomial *pwqp1,
3144 __isl_take isl_pw_qpolynomial *pwqp2)
3146 return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
3149 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3150 __isl_take isl_pw_qpolynomial *pwqp1,
3151 __isl_take isl_pw_qpolynomial *pwqp2)
3153 int i, j, n;
3154 struct isl_pw_qpolynomial *res;
3156 if (!pwqp1 || !pwqp2)
3157 goto error;
3159 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
3160 goto error);
3162 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
3163 isl_pw_qpolynomial_free(pwqp2);
3164 return pwqp1;
3167 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
3168 isl_pw_qpolynomial_free(pwqp1);
3169 return pwqp2;
3172 if (isl_pw_qpolynomial_is_one(pwqp1)) {
3173 isl_pw_qpolynomial_free(pwqp1);
3174 return pwqp2;
3177 if (isl_pw_qpolynomial_is_one(pwqp2)) {
3178 isl_pw_qpolynomial_free(pwqp2);
3179 return pwqp1;
3182 n = pwqp1->n * pwqp2->n;
3183 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
3185 for (i = 0; i < pwqp1->n; ++i) {
3186 for (j = 0; j < pwqp2->n; ++j) {
3187 struct isl_set *common;
3188 struct isl_qpolynomial *prod;
3189 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
3190 isl_set_copy(pwqp2->p[j].set));
3191 if (isl_set_plain_is_empty(common)) {
3192 isl_set_free(common);
3193 continue;
3196 prod = isl_qpolynomial_mul(
3197 isl_qpolynomial_copy(pwqp1->p[i].qp),
3198 isl_qpolynomial_copy(pwqp2->p[j].qp));
3200 res = isl_pw_qpolynomial_add_piece(res, common, prod);
3204 isl_pw_qpolynomial_free(pwqp1);
3205 isl_pw_qpolynomial_free(pwqp2);
3207 return res;
3208 error:
3209 isl_pw_qpolynomial_free(pwqp1);
3210 isl_pw_qpolynomial_free(pwqp2);
3211 return NULL;
3214 __isl_give isl_val *isl_poly_eval(__isl_take isl_poly *poly,
3215 __isl_take isl_vec *vec)
3217 int i;
3218 isl_bool is_cst;
3219 isl_poly_rec *rec;
3220 isl_val *res;
3221 isl_val *base;
3223 is_cst = isl_poly_is_cst(poly);
3224 if (is_cst < 0)
3225 goto error;
3226 if (is_cst) {
3227 isl_vec_free(vec);
3228 res = isl_poly_get_constant_val(poly);
3229 isl_poly_free(poly);
3230 return res;
3233 rec = isl_poly_as_rec(poly);
3234 if (!rec || !vec)
3235 goto error;
3237 isl_assert(poly->ctx, rec->n >= 1, goto error);
3239 base = isl_val_rat_from_isl_int(poly->ctx,
3240 vec->el[1 + poly->var], vec->el[0]);
3242 res = isl_poly_eval(isl_poly_copy(rec->p[rec->n - 1]),
3243 isl_vec_copy(vec));
3245 for (i = rec->n - 2; i >= 0; --i) {
3246 res = isl_val_mul(res, isl_val_copy(base));
3247 res = isl_val_add(res, isl_poly_eval(isl_poly_copy(rec->p[i]),
3248 isl_vec_copy(vec)));
3251 isl_val_free(base);
3252 isl_poly_free(poly);
3253 isl_vec_free(vec);
3254 return res;
3255 error:
3256 isl_poly_free(poly);
3257 isl_vec_free(vec);
3258 return NULL;
3261 /* Evaluate "qp" in the void point "pnt".
3262 * In particular, return the value NaN.
3264 static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
3265 __isl_take isl_point *pnt)
3267 isl_ctx *ctx;
3269 ctx = isl_point_get_ctx(pnt);
3270 isl_qpolynomial_free(qp);
3271 isl_point_free(pnt);
3272 return isl_val_nan(ctx);
3275 __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
3276 __isl_take isl_point *pnt)
3278 isl_bool is_void;
3279 isl_vec *ext;
3280 isl_val *v;
3282 if (!qp || !pnt)
3283 goto error;
3284 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
3285 is_void = isl_point_is_void(pnt);
3286 if (is_void < 0)
3287 goto error;
3288 if (is_void)
3289 return eval_void(qp, pnt);
3291 ext = isl_local_extend_point_vec(qp->div, isl_vec_copy(pnt->vec));
3293 v = isl_poly_eval(isl_poly_copy(qp->poly), ext);
3295 isl_qpolynomial_free(qp);
3296 isl_point_free(pnt);
3298 return v;
3299 error:
3300 isl_qpolynomial_free(qp);
3301 isl_point_free(pnt);
3302 return NULL;
3305 int isl_poly_cmp(__isl_keep isl_poly_cst *cst1, __isl_keep isl_poly_cst *cst2)
3307 int cmp;
3308 isl_int t;
3309 isl_int_init(t);
3310 isl_int_mul(t, cst1->n, cst2->d);
3311 isl_int_submul(t, cst2->n, cst1->d);
3312 cmp = isl_int_sgn(t);
3313 isl_int_clear(t);
3314 return cmp;
3317 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
3318 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
3319 unsigned first, unsigned n)
3321 unsigned total;
3322 unsigned g_pos;
3323 int *exp;
3325 if (!qp)
3326 return NULL;
3327 if (type == isl_dim_out)
3328 isl_die(qp->div->ctx, isl_error_invalid,
3329 "cannot insert output/set dimensions",
3330 goto error);
3331 if (isl_qpolynomial_check_range(qp, type, first, 0) < 0)
3332 return isl_qpolynomial_free(qp);
3333 type = domain_type(type);
3334 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3335 return qp;
3337 qp = isl_qpolynomial_cow(qp);
3338 if (!qp)
3339 return NULL;
3341 g_pos = pos(qp->dim, type) + first;
3343 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
3344 if (!qp->div)
3345 goto error;
3347 total = qp->div->n_col - 2;
3348 if (total > g_pos) {
3349 int i;
3350 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
3351 if (!exp)
3352 goto error;
3353 for (i = 0; i < total - g_pos; ++i)
3354 exp[i] = i + n;
3355 qp->poly = expand(qp->poly, exp, g_pos);
3356 free(exp);
3357 if (!qp->poly)
3358 goto error;
3361 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
3362 if (!qp->dim)
3363 goto error;
3365 return qp;
3366 error:
3367 isl_qpolynomial_free(qp);
3368 return NULL;
3371 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
3372 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
3374 isl_size pos;
3376 pos = isl_qpolynomial_dim(qp, type);
3377 if (pos < 0)
3378 return isl_qpolynomial_free(qp);
3380 return isl_qpolynomial_insert_dims(qp, type, pos, n);
3383 static int *reordering_move(isl_ctx *ctx,
3384 unsigned len, unsigned dst, unsigned src, unsigned n)
3386 int i;
3387 int *reordering;
3389 reordering = isl_alloc_array(ctx, int, len);
3390 if (!reordering)
3391 return NULL;
3393 if (dst <= src) {
3394 for (i = 0; i < dst; ++i)
3395 reordering[i] = i;
3396 for (i = 0; i < n; ++i)
3397 reordering[src + i] = dst + i;
3398 for (i = 0; i < src - dst; ++i)
3399 reordering[dst + i] = dst + n + i;
3400 for (i = 0; i < len - src - n; ++i)
3401 reordering[src + n + i] = src + n + i;
3402 } else {
3403 for (i = 0; i < src; ++i)
3404 reordering[i] = i;
3405 for (i = 0; i < n; ++i)
3406 reordering[src + i] = dst + i;
3407 for (i = 0; i < dst - src; ++i)
3408 reordering[src + n + i] = src + i;
3409 for (i = 0; i < len - dst - n; ++i)
3410 reordering[dst + n + i] = dst + n + i;
3413 return reordering;
3416 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
3417 __isl_take isl_qpolynomial *qp,
3418 enum isl_dim_type dst_type, unsigned dst_pos,
3419 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
3421 unsigned g_dst_pos;
3422 unsigned g_src_pos;
3423 int *reordering;
3425 if (!qp)
3426 return NULL;
3428 if (dst_type == isl_dim_out || src_type == isl_dim_out)
3429 isl_die(qp->dim->ctx, isl_error_invalid,
3430 "cannot move output/set dimension",
3431 goto error);
3432 if (isl_qpolynomial_check_range(qp, src_type, src_pos, n) < 0)
3433 return isl_qpolynomial_free(qp);
3434 if (dst_type == isl_dim_in)
3435 dst_type = isl_dim_set;
3436 if (src_type == isl_dim_in)
3437 src_type = isl_dim_set;
3439 if (n == 0 &&
3440 !isl_space_is_named_or_nested(qp->dim, src_type) &&
3441 !isl_space_is_named_or_nested(qp->dim, dst_type))
3442 return qp;
3444 qp = isl_qpolynomial_cow(qp);
3445 if (!qp)
3446 return NULL;
3448 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3449 g_src_pos = pos(qp->dim, src_type) + src_pos;
3450 if (dst_type > src_type)
3451 g_dst_pos -= n;
3453 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3454 if (!qp->div)
3455 goto error;
3456 qp = sort_divs(qp);
3457 if (!qp)
3458 goto error;
3460 reordering = reordering_move(qp->dim->ctx,
3461 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3462 if (!reordering)
3463 goto error;
3465 qp->poly = reorder(qp->poly, reordering);
3466 free(reordering);
3467 if (!qp->poly)
3468 goto error;
3470 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3471 if (!qp->dim)
3472 goto error;
3474 return qp;
3475 error:
3476 isl_qpolynomial_free(qp);
3477 return NULL;
3480 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(
3481 __isl_take isl_space *space, isl_int *f, isl_int denom)
3483 isl_size d;
3484 isl_poly *poly;
3486 space = isl_space_domain(space);
3487 if (!space)
3488 return NULL;
3490 d = isl_space_dim(space, isl_dim_all);
3491 poly = d < 0 ? NULL : isl_poly_from_affine(space->ctx, f, denom, 1 + d);
3493 return isl_qpolynomial_alloc(space, 0, poly);
3496 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3498 isl_ctx *ctx;
3499 isl_poly *poly;
3500 isl_qpolynomial *qp;
3502 if (!aff)
3503 return NULL;
3505 ctx = isl_aff_get_ctx(aff);
3506 poly = isl_poly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3507 aff->v->size - 1);
3509 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3510 aff->ls->div->n_row, poly);
3511 if (!qp)
3512 goto error;
3514 isl_mat_free(qp->div);
3515 qp->div = isl_mat_copy(aff->ls->div);
3516 qp->div = isl_mat_cow(qp->div);
3517 if (!qp->div)
3518 goto error;
3520 isl_aff_free(aff);
3521 qp = reduce_divs(qp);
3522 qp = remove_redundant_divs(qp);
3523 return qp;
3524 error:
3525 isl_aff_free(aff);
3526 return isl_qpolynomial_free(qp);
3529 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3530 __isl_take isl_pw_aff *pwaff)
3532 int i;
3533 isl_pw_qpolynomial *pwqp;
3535 if (!pwaff)
3536 return NULL;
3538 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3539 pwaff->n);
3541 for (i = 0; i < pwaff->n; ++i) {
3542 isl_set *dom;
3543 isl_qpolynomial *qp;
3545 dom = isl_set_copy(pwaff->p[i].set);
3546 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3547 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3550 isl_pw_aff_free(pwaff);
3551 return pwqp;
3554 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3555 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3557 isl_aff *aff;
3559 aff = isl_constraint_get_bound(c, type, pos);
3560 isl_constraint_free(c);
3561 return isl_qpolynomial_from_aff(aff);
3564 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3565 * in "qp" by subs[i].
3567 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3568 __isl_take isl_qpolynomial *qp,
3569 enum isl_dim_type type, unsigned first, unsigned n,
3570 __isl_keep isl_qpolynomial **subs)
3572 int i;
3573 isl_poly **polys;
3575 if (n == 0)
3576 return qp;
3578 qp = isl_qpolynomial_cow(qp);
3579 if (!qp)
3580 return NULL;
3582 if (type == isl_dim_out)
3583 isl_die(qp->dim->ctx, isl_error_invalid,
3584 "cannot substitute output/set dimension",
3585 goto error);
3586 if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
3587 return isl_qpolynomial_free(qp);
3588 type = domain_type(type);
3590 for (i = 0; i < n; ++i)
3591 if (!subs[i])
3592 goto error;
3594 for (i = 0; i < n; ++i)
3595 if (isl_qpolynomial_check_equal_space(qp, subs[i]) < 0)
3596 goto error;
3598 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3599 for (i = 0; i < n; ++i)
3600 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3602 first += pos(qp->dim, type);
3604 polys = isl_alloc_array(qp->dim->ctx, struct isl_poly *, n);
3605 if (!polys)
3606 goto error;
3607 for (i = 0; i < n; ++i)
3608 polys[i] = subs[i]->poly;
3610 qp->poly = isl_poly_subs(qp->poly, first, n, polys);
3612 free(polys);
3614 if (!qp->poly)
3615 goto error;
3617 return qp;
3618 error:
3619 isl_qpolynomial_free(qp);
3620 return NULL;
3623 /* Extend "bset" with extra set dimensions for each integer division
3624 * in "qp" and then call "fn" with the extended bset and the polynomial
3625 * that results from replacing each of the integer divisions by the
3626 * corresponding extra set dimension.
3628 isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3629 __isl_keep isl_basic_set *bset,
3630 isl_stat (*fn)(__isl_take isl_basic_set *bset,
3631 __isl_take isl_qpolynomial *poly, void *user), void *user)
3633 isl_space *space;
3634 isl_local_space *ls;
3635 isl_qpolynomial *poly;
3637 if (!qp || !bset)
3638 return isl_stat_error;
3639 if (qp->div->n_row == 0)
3640 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3641 user);
3643 space = isl_space_copy(qp->dim);
3644 space = isl_space_add_dims(space, isl_dim_set, qp->div->n_row);
3645 poly = isl_qpolynomial_alloc(space, 0, isl_poly_copy(qp->poly));
3646 bset = isl_basic_set_copy(bset);
3647 ls = isl_qpolynomial_get_domain_local_space(qp);
3648 bset = isl_local_space_lift_basic_set(ls, bset);
3650 return fn(bset, poly, user);
3653 /* Return total degree in variables first (inclusive) up to last (exclusive).
3655 int isl_poly_degree(__isl_keep isl_poly *poly, int first, int last)
3657 int deg = -1;
3658 int i;
3659 isl_bool is_zero, is_cst;
3660 isl_poly_rec *rec;
3662 is_zero = isl_poly_is_zero(poly);
3663 if (is_zero < 0)
3664 return -2;
3665 if (is_zero)
3666 return -1;
3667 is_cst = isl_poly_is_cst(poly);
3668 if (is_cst < 0)
3669 return -2;
3670 if (is_cst || poly->var < first)
3671 return 0;
3673 rec = isl_poly_as_rec(poly);
3674 if (!rec)
3675 return -2;
3677 for (i = 0; i < rec->n; ++i) {
3678 int d;
3680 is_zero = isl_poly_is_zero(rec->p[i]);
3681 if (is_zero < 0)
3682 return -2;
3683 if (is_zero)
3684 continue;
3685 d = isl_poly_degree(rec->p[i], first, last);
3686 if (poly->var < last)
3687 d += i;
3688 if (d > deg)
3689 deg = d;
3692 return deg;
3695 /* Return total degree in set variables.
3697 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3699 unsigned ovar;
3700 isl_size nvar;
3702 if (!poly)
3703 return -2;
3705 ovar = isl_space_offset(poly->dim, isl_dim_set);
3706 nvar = isl_space_dim(poly->dim, isl_dim_set);
3707 if (nvar < 0)
3708 return -2;
3709 return isl_poly_degree(poly->poly, ovar, ovar + nvar);
3712 __isl_give isl_poly *isl_poly_coeff(__isl_keep isl_poly *poly,
3713 unsigned pos, int deg)
3715 int i;
3716 isl_bool is_cst;
3717 isl_poly_rec *rec;
3719 is_cst = isl_poly_is_cst(poly);
3720 if (is_cst < 0)
3721 return NULL;
3722 if (is_cst || poly->var < pos) {
3723 if (deg == 0)
3724 return isl_poly_copy(poly);
3725 else
3726 return isl_poly_zero(poly->ctx);
3729 rec = isl_poly_as_rec(poly);
3730 if (!rec)
3731 return NULL;
3733 if (poly->var == pos) {
3734 if (deg < rec->n)
3735 return isl_poly_copy(rec->p[deg]);
3736 else
3737 return isl_poly_zero(poly->ctx);
3740 poly = isl_poly_copy(poly);
3741 poly = isl_poly_cow(poly);
3742 rec = isl_poly_as_rec(poly);
3743 if (!rec)
3744 goto error;
3746 for (i = 0; i < rec->n; ++i) {
3747 isl_poly *t;
3748 t = isl_poly_coeff(rec->p[i], pos, deg);
3749 if (!t)
3750 goto error;
3751 isl_poly_free(rec->p[i]);
3752 rec->p[i] = t;
3755 return poly;
3756 error:
3757 isl_poly_free(poly);
3758 return NULL;
3761 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3763 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3764 __isl_keep isl_qpolynomial *qp,
3765 enum isl_dim_type type, unsigned t_pos, int deg)
3767 unsigned g_pos;
3768 isl_poly *poly;
3769 isl_qpolynomial *c;
3771 if (!qp)
3772 return NULL;
3774 if (type == isl_dim_out)
3775 isl_die(qp->div->ctx, isl_error_invalid,
3776 "output/set dimension does not have a coefficient",
3777 return NULL);
3778 if (isl_qpolynomial_check_range(qp, type, t_pos, 1) < 0)
3779 return NULL;
3780 type = domain_type(type);
3782 g_pos = pos(qp->dim, type) + t_pos;
3783 poly = isl_poly_coeff(qp->poly, g_pos, deg);
3785 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim),
3786 qp->div->n_row, poly);
3787 if (!c)
3788 return NULL;
3789 isl_mat_free(c->div);
3790 c->div = isl_mat_copy(qp->div);
3791 if (!c->div)
3792 goto error;
3793 return c;
3794 error:
3795 isl_qpolynomial_free(c);
3796 return NULL;
3799 /* Homogenize the polynomial in the variables first (inclusive) up to
3800 * last (exclusive) by inserting powers of variable first.
3801 * Variable first is assumed not to appear in the input.
3803 __isl_give isl_poly *isl_poly_homogenize(__isl_take isl_poly *poly, int deg,
3804 int target, int first, int last)
3806 int i;
3807 isl_bool is_zero, is_cst;
3808 isl_poly_rec *rec;
3810 is_zero = isl_poly_is_zero(poly);
3811 if (is_zero < 0)
3812 return isl_poly_free(poly);
3813 if (is_zero)
3814 return poly;
3815 if (deg == target)
3816 return poly;
3817 is_cst = isl_poly_is_cst(poly);
3818 if (is_cst < 0)
3819 return isl_poly_free(poly);
3820 if (is_cst || poly->var < first) {
3821 isl_poly *hom;
3823 hom = isl_poly_var_pow(poly->ctx, first, target - deg);
3824 if (!hom)
3825 goto error;
3826 rec = isl_poly_as_rec(hom);
3827 rec->p[target - deg] = isl_poly_mul(rec->p[target - deg], poly);
3829 return hom;
3832 poly = isl_poly_cow(poly);
3833 rec = isl_poly_as_rec(poly);
3834 if (!rec)
3835 goto error;
3837 for (i = 0; i < rec->n; ++i) {
3838 is_zero = isl_poly_is_zero(rec->p[i]);
3839 if (is_zero < 0)
3840 return isl_poly_free(poly);
3841 if (is_zero)
3842 continue;
3843 rec->p[i] = isl_poly_homogenize(rec->p[i],
3844 poly->var < last ? deg + i : i, target,
3845 first, last);
3846 if (!rec->p[i])
3847 goto error;
3850 return poly;
3851 error:
3852 isl_poly_free(poly);
3853 return NULL;
3856 /* Homogenize the polynomial in the set variables by introducing
3857 * powers of an extra set variable at position 0.
3859 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3860 __isl_take isl_qpolynomial *poly)
3862 unsigned ovar;
3863 isl_size nvar;
3864 int deg = isl_qpolynomial_degree(poly);
3866 if (deg < -1)
3867 goto error;
3869 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3870 poly = isl_qpolynomial_cow(poly);
3871 if (!poly)
3872 goto error;
3874 ovar = isl_space_offset(poly->dim, isl_dim_set);
3875 nvar = isl_space_dim(poly->dim, isl_dim_set);
3876 if (nvar < 0)
3877 return isl_qpolynomial_free(poly);
3878 poly->poly = isl_poly_homogenize(poly->poly, 0, deg, ovar, ovar + nvar);
3879 if (!poly->poly)
3880 goto error;
3882 return poly;
3883 error:
3884 isl_qpolynomial_free(poly);
3885 return NULL;
3888 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *space,
3889 __isl_take isl_mat *div)
3891 isl_term *term;
3892 isl_size d;
3893 int n;
3895 d = isl_space_dim(space, isl_dim_all);
3896 if (d < 0 || !div)
3897 goto error;
3899 n = d + div->n_row;
3901 term = isl_calloc(space->ctx, struct isl_term,
3902 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3903 if (!term)
3904 goto error;
3906 term->ref = 1;
3907 term->dim = space;
3908 term->div = div;
3909 isl_int_init(term->n);
3910 isl_int_init(term->d);
3912 return term;
3913 error:
3914 isl_space_free(space);
3915 isl_mat_free(div);
3916 return NULL;
3919 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3921 if (!term)
3922 return NULL;
3924 term->ref++;
3925 return term;
3928 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3930 int i;
3931 isl_term *dup;
3932 isl_size total;
3934 total = isl_term_dim(term, isl_dim_all);
3935 if (total < 0)
3936 return NULL;
3938 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3939 if (!dup)
3940 return NULL;
3942 isl_int_set(dup->n, term->n);
3943 isl_int_set(dup->d, term->d);
3945 for (i = 0; i < total; ++i)
3946 dup->pow[i] = term->pow[i];
3948 return dup;
3951 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3953 if (!term)
3954 return NULL;
3956 if (term->ref == 1)
3957 return term;
3958 term->ref--;
3959 return isl_term_dup(term);
3962 __isl_null isl_term *isl_term_free(__isl_take isl_term *term)
3964 if (!term)
3965 return NULL;
3967 if (--term->ref > 0)
3968 return NULL;
3970 isl_space_free(term->dim);
3971 isl_mat_free(term->div);
3972 isl_int_clear(term->n);
3973 isl_int_clear(term->d);
3974 free(term);
3976 return NULL;
3979 isl_size isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3981 isl_size dim;
3983 if (!term)
3984 return isl_size_error;
3986 switch (type) {
3987 case isl_dim_param:
3988 case isl_dim_in:
3989 case isl_dim_out: return isl_space_dim(term->dim, type);
3990 case isl_dim_div: return term->div->n_row;
3991 case isl_dim_all: dim = isl_space_dim(term->dim, isl_dim_all);
3992 if (dim < 0)
3993 return isl_size_error;
3994 return dim + term->div->n_row;
3995 default: return isl_size_error;
3999 /* Return the space of "term".
4001 static __isl_keep isl_space *isl_term_peek_space(__isl_keep isl_term *term)
4003 return term ? term->dim : NULL;
4006 /* Return the offset of the first variable of type "type" within
4007 * the variables of "term".
4009 static isl_size isl_term_offset(__isl_keep isl_term *term,
4010 enum isl_dim_type type)
4012 isl_space *space;
4014 space = isl_term_peek_space(term);
4015 if (!space)
4016 return isl_size_error;
4018 switch (type) {
4019 case isl_dim_param:
4020 case isl_dim_set: return isl_space_offset(space, type);
4021 case isl_dim_div: return isl_space_dim(space, isl_dim_all);
4022 default:
4023 isl_die(isl_term_get_ctx(term), isl_error_invalid,
4024 "invalid dimension type", return isl_size_error);
4028 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
4030 return term ? term->dim->ctx : NULL;
4033 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
4035 if (!term)
4036 return;
4037 isl_int_set(*n, term->n);
4040 /* Return the coefficient of the term "term".
4042 __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
4044 if (!term)
4045 return NULL;
4047 return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
4048 term->n, term->d);
4051 #undef TYPE
4052 #define TYPE isl_term
4053 static
4054 #include "check_type_range_templ.c"
4056 isl_size isl_term_get_exp(__isl_keep isl_term *term,
4057 enum isl_dim_type type, unsigned pos)
4059 isl_size offset;
4061 if (isl_term_check_range(term, type, pos, 1) < 0)
4062 return isl_size_error;
4063 offset = isl_term_offset(term, type);
4064 if (offset < 0)
4065 return isl_size_error;
4067 return term->pow[offset + pos];
4070 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
4072 isl_local_space *ls;
4073 isl_aff *aff;
4075 if (isl_term_check_range(term, isl_dim_div, pos, 1) < 0)
4076 return NULL;
4078 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
4079 isl_mat_copy(term->div));
4080 aff = isl_aff_alloc(ls);
4081 if (!aff)
4082 return NULL;
4084 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
4086 aff = isl_aff_normalize(aff);
4088 return aff;
4091 __isl_give isl_term *isl_poly_foreach_term(__isl_keep isl_poly *poly,
4092 isl_stat (*fn)(__isl_take isl_term *term, void *user),
4093 __isl_take isl_term *term, void *user)
4095 int i;
4096 isl_bool is_zero, is_bad, is_cst;
4097 isl_poly_rec *rec;
4099 is_zero = isl_poly_is_zero(poly);
4100 if (is_zero < 0 || !term)
4101 goto error;
4103 if (is_zero)
4104 return term;
4106 is_cst = isl_poly_is_cst(poly);
4107 is_bad = isl_poly_is_nan(poly);
4108 if (is_bad >= 0 && !is_bad)
4109 is_bad = isl_poly_is_infty(poly);
4110 if (is_bad >= 0 && !is_bad)
4111 is_bad = isl_poly_is_neginfty(poly);
4112 if (is_cst < 0 || is_bad < 0)
4113 return isl_term_free(term);
4114 if (is_bad)
4115 isl_die(isl_term_get_ctx(term), isl_error_invalid,
4116 "cannot handle NaN/infty polynomial",
4117 return isl_term_free(term));
4119 if (is_cst) {
4120 isl_poly_cst *cst;
4121 cst = isl_poly_as_cst(poly);
4122 if (!cst)
4123 goto error;
4124 term = isl_term_cow(term);
4125 if (!term)
4126 goto error;
4127 isl_int_set(term->n, cst->n);
4128 isl_int_set(term->d, cst->d);
4129 if (fn(isl_term_copy(term), user) < 0)
4130 goto error;
4131 return term;
4134 rec = isl_poly_as_rec(poly);
4135 if (!rec)
4136 goto error;
4138 for (i = 0; i < rec->n; ++i) {
4139 term = isl_term_cow(term);
4140 if (!term)
4141 goto error;
4142 term->pow[poly->var] = i;
4143 term = isl_poly_foreach_term(rec->p[i], fn, term, user);
4144 if (!term)
4145 goto error;
4147 term = isl_term_cow(term);
4148 if (!term)
4149 return NULL;
4150 term->pow[poly->var] = 0;
4152 return term;
4153 error:
4154 isl_term_free(term);
4155 return NULL;
4158 isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
4159 isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
4161 isl_term *term;
4163 if (!qp)
4164 return isl_stat_error;
4166 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
4167 if (!term)
4168 return isl_stat_error;
4170 term = isl_poly_foreach_term(qp->poly, fn, term, user);
4172 isl_term_free(term);
4174 return term ? isl_stat_ok : isl_stat_error;
4177 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
4179 isl_poly *poly;
4180 isl_qpolynomial *qp;
4181 int i;
4182 isl_size n;
4184 n = isl_term_dim(term, isl_dim_all);
4185 if (n < 0)
4186 term = isl_term_free(term);
4187 if (!term)
4188 return NULL;
4190 poly = isl_poly_rat_cst(term->dim->ctx, term->n, term->d);
4191 for (i = 0; i < n; ++i) {
4192 if (!term->pow[i])
4193 continue;
4194 poly = isl_poly_mul(poly,
4195 isl_poly_var_pow(term->dim->ctx, i, term->pow[i]));
4198 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim),
4199 term->div->n_row, poly);
4200 if (!qp)
4201 goto error;
4202 isl_mat_free(qp->div);
4203 qp->div = isl_mat_copy(term->div);
4204 if (!qp->div)
4205 goto error;
4207 isl_term_free(term);
4208 return qp;
4209 error:
4210 isl_qpolynomial_free(qp);
4211 isl_term_free(term);
4212 return NULL;
4215 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
4216 __isl_take isl_space *space)
4218 int i;
4219 int extra;
4220 isl_size total, d_set, d_qp;
4222 if (!qp || !space)
4223 goto error;
4225 if (isl_space_is_equal(qp->dim, space)) {
4226 isl_space_free(space);
4227 return qp;
4230 qp = isl_qpolynomial_cow(qp);
4231 if (!qp)
4232 goto error;
4234 d_set = isl_space_dim(space, isl_dim_set);
4235 d_qp = isl_qpolynomial_domain_dim(qp, isl_dim_set);
4236 extra = d_set - d_qp;
4237 total = isl_space_dim(qp->dim, isl_dim_all);
4238 if (d_set < 0 || d_qp < 0 || total < 0)
4239 goto error;
4240 if (qp->div->n_row) {
4241 int *exp;
4243 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
4244 if (!exp)
4245 goto error;
4246 for (i = 0; i < qp->div->n_row; ++i)
4247 exp[i] = extra + i;
4248 qp->poly = expand(qp->poly, exp, total);
4249 free(exp);
4250 if (!qp->poly)
4251 goto error;
4253 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
4254 if (!qp->div)
4255 goto error;
4256 for (i = 0; i < qp->div->n_row; ++i)
4257 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
4259 isl_space_free(qp->dim);
4260 qp->dim = space;
4262 return qp;
4263 error:
4264 isl_space_free(space);
4265 isl_qpolynomial_free(qp);
4266 return NULL;
4269 /* For each parameter or variable that does not appear in qp,
4270 * first eliminate the variable from all constraints and then set it to zero.
4272 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
4273 __isl_keep isl_qpolynomial *qp)
4275 int *active = NULL;
4276 int i;
4277 isl_size d;
4278 isl_size nparam;
4279 isl_size nvar;
4281 d = isl_set_dim(set, isl_dim_all);
4282 if (d < 0 || !qp)
4283 goto error;
4285 active = isl_calloc_array(set->ctx, int, d);
4286 if (set_active(qp, active) < 0)
4287 goto error;
4289 for (i = 0; i < d; ++i)
4290 if (!active[i])
4291 break;
4293 if (i == d) {
4294 free(active);
4295 return set;
4298 nparam = isl_set_dim(set, isl_dim_param);
4299 nvar = isl_set_dim(set, isl_dim_set);
4300 if (nparam < 0 || nvar < 0)
4301 goto error;
4302 for (i = 0; i < nparam; ++i) {
4303 if (active[i])
4304 continue;
4305 set = isl_set_eliminate(set, isl_dim_param, i, 1);
4306 set = isl_set_fix_si(set, isl_dim_param, i, 0);
4308 for (i = 0; i < nvar; ++i) {
4309 if (active[nparam + i])
4310 continue;
4311 set = isl_set_eliminate(set, isl_dim_set, i, 1);
4312 set = isl_set_fix_si(set, isl_dim_set, i, 0);
4315 free(active);
4317 return set;
4318 error:
4319 free(active);
4320 isl_set_free(set);
4321 return NULL;
4324 struct isl_opt_data {
4325 isl_qpolynomial *qp;
4326 int first;
4327 isl_val *opt;
4328 int max;
4331 static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
4333 struct isl_opt_data *data = (struct isl_opt_data *)user;
4334 isl_val *val;
4336 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
4337 if (data->first) {
4338 data->first = 0;
4339 data->opt = val;
4340 } else if (data->max) {
4341 data->opt = isl_val_max(data->opt, val);
4342 } else {
4343 data->opt = isl_val_min(data->opt, val);
4346 return isl_stat_ok;
4349 __isl_give isl_val *isl_qpolynomial_opt_on_domain(
4350 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
4352 struct isl_opt_data data = { NULL, 1, NULL, max };
4353 isl_bool is_cst;
4355 if (!set || !qp)
4356 goto error;
4358 is_cst = isl_poly_is_cst(qp->poly);
4359 if (is_cst < 0)
4360 goto error;
4361 if (is_cst) {
4362 isl_set_free(set);
4363 data.opt = isl_qpolynomial_get_constant_val(qp);
4364 isl_qpolynomial_free(qp);
4365 return data.opt;
4368 set = fix_inactive(set, qp);
4370 data.qp = qp;
4371 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
4372 goto error;
4374 if (data.first)
4375 data.opt = isl_val_zero(isl_set_get_ctx(set));
4377 isl_set_free(set);
4378 isl_qpolynomial_free(qp);
4379 return data.opt;
4380 error:
4381 isl_set_free(set);
4382 isl_qpolynomial_free(qp);
4383 isl_val_free(data.opt);
4384 return NULL;
4387 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
4388 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
4390 int i;
4391 int n_sub;
4392 isl_ctx *ctx;
4393 isl_space *space;
4394 isl_poly **subs;
4395 isl_mat *mat, *diag;
4397 qp = isl_qpolynomial_cow(qp);
4399 space = isl_qpolynomial_peek_domain_space(qp);
4400 if (isl_morph_check_applies(morph, space) < 0)
4401 goto error;
4403 ctx = isl_qpolynomial_get_ctx(qp);
4404 n_sub = morph->inv->n_row - 1;
4405 if (morph->inv->n_row != morph->inv->n_col)
4406 n_sub += qp->div->n_row;
4407 subs = isl_calloc_array(ctx, struct isl_poly *, n_sub);
4408 if (n_sub && !subs)
4409 goto error;
4411 for (i = 0; 1 + i < morph->inv->n_row; ++i)
4412 subs[i] = isl_poly_from_affine(ctx, morph->inv->row[1 + i],
4413 morph->inv->row[0][0], morph->inv->n_col);
4414 if (morph->inv->n_row != morph->inv->n_col)
4415 for (i = 0; i < qp->div->n_row; ++i)
4416 subs[morph->inv->n_row - 1 + i] =
4417 isl_poly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
4419 qp->poly = isl_poly_subs(qp->poly, 0, n_sub, subs);
4421 for (i = 0; i < n_sub; ++i)
4422 isl_poly_free(subs[i]);
4423 free(subs);
4425 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
4426 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
4427 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
4428 mat = isl_mat_diagonal(mat, diag);
4429 qp->div = isl_mat_product(qp->div, mat);
4430 isl_space_free(qp->dim);
4431 qp->dim = isl_space_copy(morph->ran->dim);
4433 if (!qp->poly || !qp->div || !qp->dim)
4434 goto error;
4436 isl_morph_free(morph);
4438 return qp;
4439 error:
4440 isl_qpolynomial_free(qp);
4441 isl_morph_free(morph);
4442 return NULL;
4445 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4446 __isl_take isl_union_pw_qpolynomial *upwqp1,
4447 __isl_take isl_union_pw_qpolynomial *upwqp2)
4449 return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
4450 &isl_pw_qpolynomial_mul);
4453 /* Reorder the dimension of "qp" according to the given reordering.
4455 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4456 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4458 isl_space *space;
4460 qp = isl_qpolynomial_cow(qp);
4461 if (!qp)
4462 goto error;
4464 r = isl_reordering_extend(r, qp->div->n_row);
4465 if (!r)
4466 goto error;
4468 qp->div = isl_local_reorder(qp->div, isl_reordering_copy(r));
4469 if (!qp->div)
4470 goto error;
4472 qp->poly = reorder(qp->poly, r->pos);
4473 if (!qp->poly)
4474 goto error;
4476 space = isl_reordering_get_space(r);
4477 qp = isl_qpolynomial_reset_domain_space(qp, space);
4479 isl_reordering_free(r);
4480 return qp;
4481 error:
4482 isl_qpolynomial_free(qp);
4483 isl_reordering_free(r);
4484 return NULL;
4487 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4488 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4490 isl_bool equal_params;
4492 if (!qp || !model)
4493 goto error;
4495 equal_params = isl_space_has_equal_params(qp->dim, model);
4496 if (equal_params < 0)
4497 goto error;
4498 if (!equal_params) {
4499 isl_reordering *exp;
4501 exp = isl_parameter_alignment_reordering(qp->dim, model);
4502 exp = isl_reordering_extend_space(exp,
4503 isl_qpolynomial_get_domain_space(qp));
4504 qp = isl_qpolynomial_realign_domain(qp, exp);
4507 isl_space_free(model);
4508 return qp;
4509 error:
4510 isl_space_free(model);
4511 isl_qpolynomial_free(qp);
4512 return NULL;
4515 struct isl_split_periods_data {
4516 int max_periods;
4517 isl_pw_qpolynomial *res;
4520 /* Create a slice where the integer division "div" has the fixed value "v".
4521 * In particular, if "div" refers to floor(f/m), then create a slice
4523 * m v <= f <= m v + (m - 1)
4525 * or
4527 * f - m v >= 0
4528 * -f + m v + (m - 1) >= 0
4530 static __isl_give isl_set *set_div_slice(__isl_take isl_space *space,
4531 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4533 isl_size total;
4534 isl_basic_set *bset = NULL;
4535 int k;
4537 total = isl_space_dim(space, isl_dim_all);
4538 if (total < 0 || !qp)
4539 goto error;
4541 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, 0, 2);
4543 k = isl_basic_set_alloc_inequality(bset);
4544 if (k < 0)
4545 goto error;
4546 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4547 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4549 k = isl_basic_set_alloc_inequality(bset);
4550 if (k < 0)
4551 goto error;
4552 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4553 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4554 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4555 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4557 isl_space_free(space);
4558 return isl_set_from_basic_set(bset);
4559 error:
4560 isl_basic_set_free(bset);
4561 isl_space_free(space);
4562 return NULL;
4565 static isl_stat split_periods(__isl_take isl_set *set,
4566 __isl_take isl_qpolynomial *qp, void *user);
4568 /* Create a slice of the domain "set" such that integer division "div"
4569 * has the fixed value "v" and add the results to data->res,
4570 * replacing the integer division by "v" in "qp".
4572 static isl_stat set_div(__isl_take isl_set *set,
4573 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4574 struct isl_split_periods_data *data)
4576 int i;
4577 isl_size div_pos;
4578 isl_set *slice;
4579 isl_poly *cst;
4581 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4582 set = isl_set_intersect(set, slice);
4584 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
4585 if (div_pos < 0)
4586 goto error;
4588 for (i = div + 1; i < qp->div->n_row; ++i) {
4589 if (isl_int_is_zero(qp->div->row[i][2 + div_pos + div]))
4590 continue;
4591 isl_int_addmul(qp->div->row[i][1],
4592 qp->div->row[i][2 + div_pos + div], v);
4593 isl_int_set_si(qp->div->row[i][2 + div_pos + div], 0);
4596 cst = isl_poly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4597 qp = substitute_div(qp, div, cst);
4599 return split_periods(set, qp, data);
4600 error:
4601 isl_set_free(set);
4602 isl_qpolynomial_free(qp);
4603 return isl_stat_error;
4606 /* Split the domain "set" such that integer division "div"
4607 * has a fixed value (ranging from "min" to "max") on each slice
4608 * and add the results to data->res.
4610 static isl_stat split_div(__isl_take isl_set *set,
4611 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4612 struct isl_split_periods_data *data)
4614 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4615 isl_set *set_i = isl_set_copy(set);
4616 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4618 if (set_div(set_i, qp_i, div, min, data) < 0)
4619 goto error;
4621 isl_set_free(set);
4622 isl_qpolynomial_free(qp);
4623 return isl_stat_ok;
4624 error:
4625 isl_set_free(set);
4626 isl_qpolynomial_free(qp);
4627 return isl_stat_error;
4630 /* If "qp" refers to any integer division
4631 * that can only attain "max_periods" distinct values on "set"
4632 * then split the domain along those distinct values.
4633 * Add the results (or the original if no splitting occurs)
4634 * to data->res.
4636 static isl_stat split_periods(__isl_take isl_set *set,
4637 __isl_take isl_qpolynomial *qp, void *user)
4639 int i;
4640 isl_pw_qpolynomial *pwqp;
4641 struct isl_split_periods_data *data;
4642 isl_int min, max;
4643 isl_size div_pos;
4644 isl_stat r = isl_stat_ok;
4646 data = (struct isl_split_periods_data *)user;
4648 if (!set || !qp)
4649 goto error;
4651 if (qp->div->n_row == 0) {
4652 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4653 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4654 return isl_stat_ok;
4657 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
4658 if (div_pos < 0)
4659 goto error;
4661 isl_int_init(min);
4662 isl_int_init(max);
4663 for (i = 0; i < qp->div->n_row; ++i) {
4664 enum isl_lp_result lp_res;
4666 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + div_pos,
4667 qp->div->n_row) != -1)
4668 continue;
4670 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4671 set->ctx->one, &min, NULL, NULL);
4672 if (lp_res == isl_lp_error)
4673 goto error2;
4674 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4675 continue;
4676 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4678 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4679 set->ctx->one, &max, NULL, NULL);
4680 if (lp_res == isl_lp_error)
4681 goto error2;
4682 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4683 continue;
4684 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4686 isl_int_sub(max, max, min);
4687 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4688 isl_int_add(max, max, min);
4689 break;
4693 if (i < qp->div->n_row) {
4694 r = split_div(set, qp, i, min, max, data);
4695 } else {
4696 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4697 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4700 isl_int_clear(max);
4701 isl_int_clear(min);
4703 return r;
4704 error2:
4705 isl_int_clear(max);
4706 isl_int_clear(min);
4707 error:
4708 isl_set_free(set);
4709 isl_qpolynomial_free(qp);
4710 return isl_stat_error;
4713 /* If any quasi-polynomial in pwqp refers to any integer division
4714 * that can only attain "max_periods" distinct values on its domain
4715 * then split the domain along those distinct values.
4717 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4718 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4720 struct isl_split_periods_data data;
4722 data.max_periods = max_periods;
4723 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4725 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4726 goto error;
4728 isl_pw_qpolynomial_free(pwqp);
4730 return data.res;
4731 error:
4732 isl_pw_qpolynomial_free(data.res);
4733 isl_pw_qpolynomial_free(pwqp);
4734 return NULL;
4737 /* Construct a piecewise quasipolynomial that is constant on the given
4738 * domain. In particular, it is
4739 * 0 if cst == 0
4740 * 1 if cst == 1
4741 * infinity if cst == -1
4743 * If cst == -1, then explicitly check whether the domain is empty and,
4744 * if so, return 0 instead.
4746 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4747 __isl_take isl_basic_set *bset, int cst)
4749 isl_space *space;
4750 isl_qpolynomial *qp;
4752 if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true)
4753 cst = 0;
4754 if (!bset)
4755 return NULL;
4757 bset = isl_basic_set_params(bset);
4758 space = isl_basic_set_get_space(bset);
4759 if (cst < 0)
4760 qp = isl_qpolynomial_infty_on_domain(space);
4761 else if (cst == 0)
4762 qp = isl_qpolynomial_zero_on_domain(space);
4763 else
4764 qp = isl_qpolynomial_one_on_domain(space);
4765 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4768 /* Internal data structure for multiplicative_call_factor_pw_qpolynomial.
4769 * "fn" is the function that is called on each factor.
4770 * "pwpq" collects the results.
4772 struct isl_multiplicative_call_data_pw_qpolynomial {
4773 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset);
4774 isl_pw_qpolynomial *pwqp;
4777 /* Call "fn" on "bset" and return the result,
4778 * but first check if "bset" has any redundant constraints or
4779 * implicit equality constraints.
4780 * If so, there may be further opportunities for detecting factors or
4781 * removing equality constraints, so recursively call
4782 * the top-level isl_basic_set_multiplicative_call.
4784 static __isl_give isl_pw_qpolynomial *multiplicative_call_base(
4785 __isl_take isl_basic_set *bset,
4786 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4788 isl_size n1, n2, n_eq;
4790 n1 = isl_basic_set_n_constraint(bset);
4791 if (n1 < 0)
4792 bset = isl_basic_set_free(bset);
4793 bset = isl_basic_set_remove_redundancies(bset);
4794 bset = isl_basic_set_detect_equalities(bset);
4795 n2 = isl_basic_set_n_constraint(bset);
4796 n_eq = isl_basic_set_n_equality(bset);
4797 if (n2 < 0 || n_eq < 0)
4798 bset = isl_basic_set_free(bset);
4799 else if (n2 < n1 || n_eq > 0)
4800 return isl_basic_set_multiplicative_call(bset, fn);
4801 return fn(bset);
4804 /* isl_factorizer_every_factor_basic_set callback that applies
4805 * data->fn to the factor "bset" and multiplies in the result
4806 * in data->pwqp.
4808 static isl_bool multiplicative_call_factor_pw_qpolynomial(
4809 __isl_keep isl_basic_set *bset, void *user)
4811 struct isl_multiplicative_call_data_pw_qpolynomial *data = user;
4812 isl_pw_qpolynomial *res;
4814 bset = isl_basic_set_copy(bset);
4815 res = multiplicative_call_base(bset, data->fn);
4816 data->pwqp = isl_pw_qpolynomial_mul(data->pwqp, res);
4817 if (!data->pwqp)
4818 return isl_bool_error;
4820 return isl_bool_true;
4823 /* Factor bset, call fn on each of the factors and return the product.
4825 * If no factors can be found, simply call fn on the input.
4826 * Otherwise, construct the factors based on the factorizer,
4827 * call fn on each factor and compute the product.
4829 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4830 __isl_take isl_basic_set *bset,
4831 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4833 struct isl_multiplicative_call_data_pw_qpolynomial data = { fn };
4834 isl_space *space;
4835 isl_set *set;
4836 isl_factorizer *f;
4837 isl_qpolynomial *qp;
4838 isl_bool every;
4840 f = isl_basic_set_factorizer(bset);
4841 if (!f)
4842 goto error;
4843 if (f->n_group == 0) {
4844 isl_factorizer_free(f);
4845 return multiplicative_call_base(bset, fn);
4848 space = isl_basic_set_get_space(bset);
4849 space = isl_space_params(space);
4850 set = isl_set_universe(isl_space_copy(space));
4851 qp = isl_qpolynomial_one_on_domain(space);
4852 data.pwqp = isl_pw_qpolynomial_alloc(set, qp);
4854 every = isl_factorizer_every_factor_basic_set(f,
4855 &multiplicative_call_factor_pw_qpolynomial, &data);
4856 if (every < 0)
4857 data.pwqp = isl_pw_qpolynomial_free(data.pwqp);
4859 isl_basic_set_free(bset);
4860 isl_factorizer_free(f);
4862 return data.pwqp;
4863 error:
4864 isl_basic_set_free(bset);
4865 return NULL;
4868 /* Factor bset, call fn on each of the factors and return the product.
4869 * The function is assumed to evaluate to zero on empty domains,
4870 * to one on zero-dimensional domains and to infinity on unbounded domains
4871 * and will not be called explicitly on zero-dimensional or unbounded domains.
4873 * We first check for some special cases and remove all equalities.
4874 * Then we hand over control to compressed_multiplicative_call.
4876 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4877 __isl_take isl_basic_set *bset,
4878 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4880 isl_bool bounded;
4881 isl_size dim;
4882 isl_morph *morph;
4883 isl_pw_qpolynomial *pwqp;
4885 if (!bset)
4886 return NULL;
4888 if (isl_basic_set_plain_is_empty(bset))
4889 return constant_on_domain(bset, 0);
4891 dim = isl_basic_set_dim(bset, isl_dim_set);
4892 if (dim < 0)
4893 goto error;
4894 if (dim == 0)
4895 return constant_on_domain(bset, 1);
4897 bounded = isl_basic_set_is_bounded(bset);
4898 if (bounded < 0)
4899 goto error;
4900 if (!bounded)
4901 return constant_on_domain(bset, -1);
4903 if (bset->n_eq == 0)
4904 return compressed_multiplicative_call(bset, fn);
4906 morph = isl_basic_set_full_compression(bset);
4907 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4909 pwqp = compressed_multiplicative_call(bset, fn);
4911 morph = isl_morph_dom_params(morph);
4912 morph = isl_morph_ran_params(morph);
4913 morph = isl_morph_inverse(morph);
4915 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4917 return pwqp;
4918 error:
4919 isl_basic_set_free(bset);
4920 return NULL;
4923 /* Drop all floors in "qp", turning each integer division [a/m] into
4924 * a rational division a/m. If "down" is set, then the integer division
4925 * is replaced by (a-(m-1))/m instead.
4927 static __isl_give isl_qpolynomial *qp_drop_floors(
4928 __isl_take isl_qpolynomial *qp, int down)
4930 int i;
4931 isl_poly *s;
4933 if (!qp)
4934 return NULL;
4935 if (qp->div->n_row == 0)
4936 return qp;
4938 qp = isl_qpolynomial_cow(qp);
4939 if (!qp)
4940 return NULL;
4942 for (i = qp->div->n_row - 1; i >= 0; --i) {
4943 if (down) {
4944 isl_int_sub(qp->div->row[i][1],
4945 qp->div->row[i][1], qp->div->row[i][0]);
4946 isl_int_add_ui(qp->div->row[i][1],
4947 qp->div->row[i][1], 1);
4949 s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4950 qp->div->row[i][0], qp->div->n_col - 1);
4951 qp = substitute_div(qp, i, s);
4952 if (!qp)
4953 return NULL;
4956 return qp;
4959 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4960 * a rational division a/m.
4962 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4963 __isl_take isl_pw_qpolynomial *pwqp)
4965 int i;
4967 if (!pwqp)
4968 return NULL;
4970 if (isl_pw_qpolynomial_is_zero(pwqp))
4971 return pwqp;
4973 pwqp = isl_pw_qpolynomial_cow(pwqp);
4974 if (!pwqp)
4975 return NULL;
4977 for (i = 0; i < pwqp->n; ++i) {
4978 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4979 if (!pwqp->p[i].qp)
4980 goto error;
4983 return pwqp;
4984 error:
4985 isl_pw_qpolynomial_free(pwqp);
4986 return NULL;
4989 /* Adjust all the integer divisions in "qp" such that they are at least
4990 * one over the given orthant (identified by "signs"). This ensures
4991 * that they will still be non-negative even after subtracting (m-1)/m.
4993 * In particular, f is replaced by f' + v, changing f = [a/m]
4994 * to f' = [(a - m v)/m].
4995 * If the constant term k in a is smaller than m,
4996 * the constant term of v is set to floor(k/m) - 1.
4997 * For any other term, if the coefficient c and the variable x have
4998 * the same sign, then no changes are needed.
4999 * Otherwise, if the variable is positive (and c is negative),
5000 * then the coefficient of x in v is set to floor(c/m).
5001 * If the variable is negative (and c is positive),
5002 * then the coefficient of x in v is set to ceil(c/m).
5004 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
5005 int *signs)
5007 int i, j;
5008 isl_size div_pos;
5009 isl_vec *v = NULL;
5010 isl_poly *s;
5012 qp = isl_qpolynomial_cow(qp);
5013 div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
5014 if (div_pos < 0)
5015 return isl_qpolynomial_free(qp);
5016 qp->div = isl_mat_cow(qp->div);
5017 if (!qp->div)
5018 goto error;
5020 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
5022 for (i = 0; i < qp->div->n_row; ++i) {
5023 isl_int *row = qp->div->row[i];
5024 v = isl_vec_clr(v);
5025 if (!v)
5026 goto error;
5027 if (isl_int_lt(row[1], row[0])) {
5028 isl_int_fdiv_q(v->el[0], row[1], row[0]);
5029 isl_int_sub_ui(v->el[0], v->el[0], 1);
5030 isl_int_submul(row[1], row[0], v->el[0]);
5032 for (j = 0; j < div_pos; ++j) {
5033 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
5034 continue;
5035 if (signs[j] < 0)
5036 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
5037 else
5038 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
5039 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
5041 for (j = 0; j < i; ++j) {
5042 if (isl_int_sgn(row[2 + div_pos + j]) >= 0)
5043 continue;
5044 isl_int_fdiv_q(v->el[1 + div_pos + j],
5045 row[2 + div_pos + j], row[0]);
5046 isl_int_submul(row[2 + div_pos + j],
5047 row[0], v->el[1 + div_pos + j]);
5049 for (j = i + 1; j < qp->div->n_row; ++j) {
5050 if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
5051 continue;
5052 isl_seq_combine(qp->div->row[j] + 1,
5053 qp->div->ctx->one, qp->div->row[j] + 1,
5054 qp->div->row[j][2 + div_pos + i], v->el,
5055 v->size);
5057 isl_int_set_si(v->el[1 + div_pos + i], 1);
5058 s = isl_poly_from_affine(qp->dim->ctx, v->el,
5059 qp->div->ctx->one, v->size);
5060 qp->poly = isl_poly_subs(qp->poly, div_pos + i, 1, &s);
5061 isl_poly_free(s);
5062 if (!qp->poly)
5063 goto error;
5066 isl_vec_free(v);
5067 return qp;
5068 error:
5069 isl_vec_free(v);
5070 isl_qpolynomial_free(qp);
5071 return NULL;
5074 struct isl_to_poly_data {
5075 int sign;
5076 isl_pw_qpolynomial *res;
5077 isl_qpolynomial *qp;
5080 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
5081 * We first make all integer divisions positive and then split the
5082 * quasipolynomials into terms with sign data->sign (the direction
5083 * of the requested approximation) and terms with the opposite sign.
5084 * In the first set of terms, each integer division [a/m] is
5085 * overapproximated by a/m, while in the second it is underapproximated
5086 * by (a-(m-1))/m.
5088 static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant,
5089 int *signs, void *user)
5091 struct isl_to_poly_data *data = user;
5092 isl_pw_qpolynomial *t;
5093 isl_qpolynomial *qp, *up, *down;
5095 qp = isl_qpolynomial_copy(data->qp);
5096 qp = make_divs_pos(qp, signs);
5098 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
5099 up = qp_drop_floors(up, 0);
5100 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
5101 down = qp_drop_floors(down, 1);
5103 isl_qpolynomial_free(qp);
5104 qp = isl_qpolynomial_add(up, down);
5106 t = isl_pw_qpolynomial_alloc(orthant, qp);
5107 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
5109 return isl_stat_ok;
5112 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
5113 * the polynomial will be an overapproximation. If "sign" is negative,
5114 * it will be an underapproximation. If "sign" is zero, the approximation
5115 * will lie somewhere in between.
5117 * In particular, is sign == 0, we simply drop the floors, turning
5118 * the integer divisions into rational divisions.
5119 * Otherwise, we split the domains into orthants, make all integer divisions
5120 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
5121 * depending on the requested sign and the sign of the term in which
5122 * the integer division appears.
5124 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5125 __isl_take isl_pw_qpolynomial *pwqp, int sign)
5127 int i;
5128 struct isl_to_poly_data data;
5130 if (sign == 0)
5131 return pwqp_drop_floors(pwqp);
5133 if (!pwqp)
5134 return NULL;
5136 data.sign = sign;
5137 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
5139 for (i = 0; i < pwqp->n; ++i) {
5140 if (pwqp->p[i].qp->div->n_row == 0) {
5141 isl_pw_qpolynomial *t;
5142 t = isl_pw_qpolynomial_alloc(
5143 isl_set_copy(pwqp->p[i].set),
5144 isl_qpolynomial_copy(pwqp->p[i].qp));
5145 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
5146 continue;
5148 data.qp = pwqp->p[i].qp;
5149 if (isl_set_foreach_orthant(pwqp->p[i].set,
5150 &to_polynomial_on_orthant, &data) < 0)
5151 goto error;
5154 isl_pw_qpolynomial_free(pwqp);
5156 return data.res;
5157 error:
5158 isl_pw_qpolynomial_free(pwqp);
5159 isl_pw_qpolynomial_free(data.res);
5160 return NULL;
5163 static __isl_give isl_pw_qpolynomial *poly_entry(
5164 __isl_take isl_pw_qpolynomial *pwqp, void *user)
5166 int *sign = user;
5168 return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
5171 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
5172 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
5174 return isl_union_pw_qpolynomial_transform_inplace(upwqp,
5175 &poly_entry, &sign);
5178 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
5179 __isl_take isl_qpolynomial *qp)
5181 int i, k;
5182 isl_space *space;
5183 isl_vec *aff = NULL;
5184 isl_basic_map *bmap = NULL;
5185 isl_bool is_affine;
5186 unsigned pos;
5187 unsigned n_div;
5189 if (!qp)
5190 return NULL;
5191 is_affine = isl_poly_is_affine(qp->poly);
5192 if (is_affine < 0)
5193 goto error;
5194 if (!is_affine)
5195 isl_die(qp->dim->ctx, isl_error_invalid,
5196 "input quasi-polynomial not affine", goto error);
5197 aff = isl_qpolynomial_extract_affine(qp);
5198 if (!aff)
5199 goto error;
5200 space = isl_qpolynomial_get_space(qp);
5201 pos = 1 + isl_space_offset(space, isl_dim_out);
5202 n_div = qp->div->n_row;
5203 bmap = isl_basic_map_alloc_space(space, n_div, 1, 2 * n_div);
5205 for (i = 0; i < n_div; ++i) {
5206 k = isl_basic_map_alloc_div(bmap);
5207 if (k < 0)
5208 goto error;
5209 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
5210 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
5211 bmap = isl_basic_map_add_div_constraints(bmap, k);
5213 k = isl_basic_map_alloc_equality(bmap);
5214 if (k < 0)
5215 goto error;
5216 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
5217 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
5218 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
5220 isl_vec_free(aff);
5221 isl_qpolynomial_free(qp);
5222 bmap = isl_basic_map_finalize(bmap);
5223 return bmap;
5224 error:
5225 isl_vec_free(aff);
5226 isl_qpolynomial_free(qp);
5227 isl_basic_map_free(bmap);
5228 return NULL;