isl_scheduler.c: non_neg_lexmin: improve documentation
[isl.git] / isl_scheduler.c
blobebd16c412ce61dc674ed1a58497915bb7e7cf24b
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
10 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
14 * CS 42112, 75589 Paris Cedex 12, France
17 #include <isl_ctx_private.h>
18 #include <isl_map_private.h>
19 #include <isl_space_private.h>
20 #include <isl_aff_private.h>
21 #include <isl/hash.h>
22 #include <isl/constraint.h>
23 #include <isl/schedule.h>
24 #include <isl_schedule_constraints.h>
25 #include <isl/schedule_node.h>
26 #include <isl_mat_private.h>
27 #include <isl_vec_private.h>
28 #include <isl/set.h>
29 #include <isl/union_set.h>
30 #include <isl_seq.h>
31 #include <isl_tab.h>
32 #include <isl_dim_map.h>
33 #include <isl/map_to_basic_set.h>
34 #include <isl_sort.h>
35 #include <isl_options_private.h>
36 #include <isl_tarjan.h>
37 #include <isl_morph.h>
38 #include <isl/ilp.h>
39 #include <isl_val_private.h>
42 * The scheduling algorithm implemented in this file was inspired by
43 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
44 * Parallelization and Locality Optimization in the Polyhedral Model".
48 /* Internal information about a node that is used during the construction
49 * of a schedule.
50 * space represents the original space in which the domain lives;
51 * that is, the space is not affected by compression
52 * sched is a matrix representation of the schedule being constructed
53 * for this node; if compressed is set, then this schedule is
54 * defined over the compressed domain space
55 * sched_map is an isl_map representation of the same (partial) schedule
56 * sched_map may be NULL; if compressed is set, then this map
57 * is defined over the uncompressed domain space
58 * rank is the number of linearly independent rows in the linear part
59 * of sched
60 * the columns of cmap represent a change of basis for the schedule
61 * coefficients; the first rank columns span the linear part of
62 * the schedule rows
63 * cinv is the inverse of cmap.
64 * ctrans is the transpose of cmap.
65 * start is the first variable in the LP problem in the sequences that
66 * represents the schedule coefficients of this node
67 * nvar is the dimension of the domain
68 * nparam is the number of parameters or 0 if we are not constructing
69 * a parametric schedule
71 * If compressed is set, then hull represents the constraints
72 * that were used to derive the compression, while compress and
73 * decompress map the original space to the compressed space and
74 * vice versa.
76 * scc is the index of SCC (or WCC) this node belongs to
78 * "cluster" is only used inside extract_clusters and identifies
79 * the cluster of SCCs that the node belongs to.
81 * coincident contains a boolean for each of the rows of the schedule,
82 * indicating whether the corresponding scheduling dimension satisfies
83 * the coincidence constraints in the sense that the corresponding
84 * dependence distances are zero.
86 * If the schedule_treat_coalescing option is set, then
87 * "sizes" contains the sizes of the (compressed) instance set
88 * in each direction. If there is no fixed size in a given direction,
89 * then the corresponding size value is set to infinity.
90 * If the schedule_treat_coalescing option or the schedule_max_coefficient
91 * option is set, then "max" contains the maximal values for
92 * schedule coefficients of the (compressed) variables. If no bound
93 * needs to be imposed on a particular variable, then the corresponding
94 * value is negative.
96 struct isl_sched_node {
97 isl_space *space;
98 int compressed;
99 isl_set *hull;
100 isl_multi_aff *compress;
101 isl_multi_aff *decompress;
102 isl_mat *sched;
103 isl_map *sched_map;
104 int rank;
105 isl_mat *cmap;
106 isl_mat *cinv;
107 isl_mat *ctrans;
108 int start;
109 int nvar;
110 int nparam;
112 int scc;
113 int cluster;
115 int *coincident;
117 isl_multi_val *sizes;
118 isl_vec *max;
121 static int node_has_space(const void *entry, const void *val)
123 struct isl_sched_node *node = (struct isl_sched_node *)entry;
124 isl_space *dim = (isl_space *)val;
126 return isl_space_is_equal(node->space, dim);
129 static int node_scc_exactly(struct isl_sched_node *node, int scc)
131 return node->scc == scc;
134 static int node_scc_at_most(struct isl_sched_node *node, int scc)
136 return node->scc <= scc;
139 static int node_scc_at_least(struct isl_sched_node *node, int scc)
141 return node->scc >= scc;
144 /* An edge in the dependence graph. An edge may be used to
145 * ensure validity of the generated schedule, to minimize the dependence
146 * distance or both
148 * map is the dependence relation, with i -> j in the map if j depends on i
149 * tagged_condition and tagged_validity contain the union of all tagged
150 * condition or conditional validity dependence relations that
151 * specialize the dependence relation "map"; that is,
152 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
153 * or "tagged_validity", then i -> j is an element of "map".
154 * If these fields are NULL, then they represent the empty relation.
155 * src is the source node
156 * dst is the sink node
158 * types is a bit vector containing the types of this edge.
159 * validity is set if the edge is used to ensure correctness
160 * coincidence is used to enforce zero dependence distances
161 * proximity is set if the edge is used to minimize dependence distances
162 * condition is set if the edge represents a condition
163 * for a conditional validity schedule constraint
164 * local can only be set for condition edges and indicates that
165 * the dependence distance over the edge should be zero
166 * conditional_validity is set if the edge is used to conditionally
167 * ensure correctness
169 * For validity edges, start and end mark the sequence of inequality
170 * constraints in the LP problem that encode the validity constraint
171 * corresponding to this edge.
173 * During clustering, an edge may be marked "no_merge" if it should
174 * not be used to merge clusters.
175 * The weight is also only used during clustering and it is
176 * an indication of how many schedule dimensions on either side
177 * of the schedule constraints can be aligned.
178 * If the weight is negative, then this means that this edge was postponed
179 * by has_bounded_distances or any_no_merge. The original weight can
180 * be retrieved by adding 1 + graph->max_weight, with "graph"
181 * the graph containing this edge.
183 struct isl_sched_edge {
184 isl_map *map;
185 isl_union_map *tagged_condition;
186 isl_union_map *tagged_validity;
188 struct isl_sched_node *src;
189 struct isl_sched_node *dst;
191 unsigned types;
193 int start;
194 int end;
196 int no_merge;
197 int weight;
200 /* Is "edge" marked as being of type "type"?
202 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
204 return ISL_FL_ISSET(edge->types, 1 << type);
207 /* Mark "edge" as being of type "type".
209 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
211 ISL_FL_SET(edge->types, 1 << type);
214 /* No longer mark "edge" as being of type "type"?
216 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
218 ISL_FL_CLR(edge->types, 1 << type);
221 /* Is "edge" marked as a validity edge?
223 static int is_validity(struct isl_sched_edge *edge)
225 return is_type(edge, isl_edge_validity);
228 /* Mark "edge" as a validity edge.
230 static void set_validity(struct isl_sched_edge *edge)
232 set_type(edge, isl_edge_validity);
235 /* Is "edge" marked as a proximity edge?
237 static int is_proximity(struct isl_sched_edge *edge)
239 return is_type(edge, isl_edge_proximity);
242 /* Is "edge" marked as a local edge?
244 static int is_local(struct isl_sched_edge *edge)
246 return is_type(edge, isl_edge_local);
249 /* Mark "edge" as a local edge.
251 static void set_local(struct isl_sched_edge *edge)
253 set_type(edge, isl_edge_local);
256 /* No longer mark "edge" as a local edge.
258 static void clear_local(struct isl_sched_edge *edge)
260 clear_type(edge, isl_edge_local);
263 /* Is "edge" marked as a coincidence edge?
265 static int is_coincidence(struct isl_sched_edge *edge)
267 return is_type(edge, isl_edge_coincidence);
270 /* Is "edge" marked as a condition edge?
272 static int is_condition(struct isl_sched_edge *edge)
274 return is_type(edge, isl_edge_condition);
277 /* Is "edge" marked as a conditional validity edge?
279 static int is_conditional_validity(struct isl_sched_edge *edge)
281 return is_type(edge, isl_edge_conditional_validity);
284 /* Internal information about the dependence graph used during
285 * the construction of the schedule.
287 * intra_hmap is a cache, mapping dependence relations to their dual,
288 * for dependences from a node to itself
289 * inter_hmap is a cache, mapping dependence relations to their dual,
290 * for dependences between distinct nodes
291 * if compression is involved then the key for these maps
292 * is the original, uncompressed dependence relation, while
293 * the value is the dual of the compressed dependence relation.
295 * n is the number of nodes
296 * node is the list of nodes
297 * maxvar is the maximal number of variables over all nodes
298 * max_row is the allocated number of rows in the schedule
299 * n_row is the current (maximal) number of linearly independent
300 * rows in the node schedules
301 * n_total_row is the current number of rows in the node schedules
302 * band_start is the starting row in the node schedules of the current band
303 * root is set if this graph is the original dependence graph,
304 * without any splitting
306 * sorted contains a list of node indices sorted according to the
307 * SCC to which a node belongs
309 * n_edge is the number of edges
310 * edge is the list of edges
311 * max_edge contains the maximal number of edges of each type;
312 * in particular, it contains the number of edges in the inital graph.
313 * edge_table contains pointers into the edge array, hashed on the source
314 * and sink spaces; there is one such table for each type;
315 * a given edge may be referenced from more than one table
316 * if the corresponding relation appears in more than one of the
317 * sets of dependences; however, for each type there is only
318 * a single edge between a given pair of source and sink space
319 * in the entire graph
321 * node_table contains pointers into the node array, hashed on the space
323 * region contains a list of variable sequences that should be non-trivial
325 * lp contains the (I)LP problem used to obtain new schedule rows
327 * src_scc and dst_scc are the source and sink SCCs of an edge with
328 * conflicting constraints
330 * scc represents the number of components
331 * weak is set if the components are weakly connected
333 * max_weight is used during clustering and represents the maximal
334 * weight of the relevant proximity edges.
336 struct isl_sched_graph {
337 isl_map_to_basic_set *intra_hmap;
338 isl_map_to_basic_set *inter_hmap;
340 struct isl_sched_node *node;
341 int n;
342 int maxvar;
343 int max_row;
344 int n_row;
346 int *sorted;
348 int n_total_row;
349 int band_start;
351 int root;
353 struct isl_sched_edge *edge;
354 int n_edge;
355 int max_edge[isl_edge_last + 1];
356 struct isl_hash_table *edge_table[isl_edge_last + 1];
358 struct isl_hash_table *node_table;
359 struct isl_region *region;
361 isl_basic_set *lp;
363 int src_scc;
364 int dst_scc;
366 int scc;
367 int weak;
369 int max_weight;
372 /* Initialize node_table based on the list of nodes.
374 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
376 int i;
378 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
379 if (!graph->node_table)
380 return -1;
382 for (i = 0; i < graph->n; ++i) {
383 struct isl_hash_table_entry *entry;
384 uint32_t hash;
386 hash = isl_space_get_hash(graph->node[i].space);
387 entry = isl_hash_table_find(ctx, graph->node_table, hash,
388 &node_has_space,
389 graph->node[i].space, 1);
390 if (!entry)
391 return -1;
392 entry->data = &graph->node[i];
395 return 0;
398 /* Return a pointer to the node that lives within the given space,
399 * or NULL if there is no such node.
401 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
402 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
404 struct isl_hash_table_entry *entry;
405 uint32_t hash;
407 hash = isl_space_get_hash(dim);
408 entry = isl_hash_table_find(ctx, graph->node_table, hash,
409 &node_has_space, dim, 0);
411 return entry ? entry->data : NULL;
414 static int edge_has_src_and_dst(const void *entry, const void *val)
416 const struct isl_sched_edge *edge = entry;
417 const struct isl_sched_edge *temp = val;
419 return edge->src == temp->src && edge->dst == temp->dst;
422 /* Add the given edge to graph->edge_table[type].
424 static isl_stat graph_edge_table_add(isl_ctx *ctx,
425 struct isl_sched_graph *graph, enum isl_edge_type type,
426 struct isl_sched_edge *edge)
428 struct isl_hash_table_entry *entry;
429 uint32_t hash;
431 hash = isl_hash_init();
432 hash = isl_hash_builtin(hash, edge->src);
433 hash = isl_hash_builtin(hash, edge->dst);
434 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
435 &edge_has_src_and_dst, edge, 1);
436 if (!entry)
437 return isl_stat_error;
438 entry->data = edge;
440 return isl_stat_ok;
443 /* Allocate the edge_tables based on the maximal number of edges of
444 * each type.
446 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
448 int i;
450 for (i = 0; i <= isl_edge_last; ++i) {
451 graph->edge_table[i] = isl_hash_table_alloc(ctx,
452 graph->max_edge[i]);
453 if (!graph->edge_table[i])
454 return -1;
457 return 0;
460 /* If graph->edge_table[type] contains an edge from the given source
461 * to the given destination, then return the hash table entry of this edge.
462 * Otherwise, return NULL.
464 static struct isl_hash_table_entry *graph_find_edge_entry(
465 struct isl_sched_graph *graph,
466 enum isl_edge_type type,
467 struct isl_sched_node *src, struct isl_sched_node *dst)
469 isl_ctx *ctx = isl_space_get_ctx(src->space);
470 uint32_t hash;
471 struct isl_sched_edge temp = { .src = src, .dst = dst };
473 hash = isl_hash_init();
474 hash = isl_hash_builtin(hash, temp.src);
475 hash = isl_hash_builtin(hash, temp.dst);
476 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
477 &edge_has_src_and_dst, &temp, 0);
481 /* If graph->edge_table[type] contains an edge from the given source
482 * to the given destination, then return this edge.
483 * Otherwise, return NULL.
485 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
486 enum isl_edge_type type,
487 struct isl_sched_node *src, struct isl_sched_node *dst)
489 struct isl_hash_table_entry *entry;
491 entry = graph_find_edge_entry(graph, type, src, dst);
492 if (!entry)
493 return NULL;
495 return entry->data;
498 /* Check whether the dependence graph has an edge of the given type
499 * between the given two nodes.
501 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
502 enum isl_edge_type type,
503 struct isl_sched_node *src, struct isl_sched_node *dst)
505 struct isl_sched_edge *edge;
506 isl_bool empty;
508 edge = graph_find_edge(graph, type, src, dst);
509 if (!edge)
510 return 0;
512 empty = isl_map_plain_is_empty(edge->map);
513 if (empty < 0)
514 return isl_bool_error;
516 return !empty;
519 /* Look for any edge with the same src, dst and map fields as "model".
521 * Return the matching edge if one can be found.
522 * Return "model" if no matching edge is found.
523 * Return NULL on error.
525 static struct isl_sched_edge *graph_find_matching_edge(
526 struct isl_sched_graph *graph, struct isl_sched_edge *model)
528 enum isl_edge_type i;
529 struct isl_sched_edge *edge;
531 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
532 int is_equal;
534 edge = graph_find_edge(graph, i, model->src, model->dst);
535 if (!edge)
536 continue;
537 is_equal = isl_map_plain_is_equal(model->map, edge->map);
538 if (is_equal < 0)
539 return NULL;
540 if (is_equal)
541 return edge;
544 return model;
547 /* Remove the given edge from all the edge_tables that refer to it.
549 static void graph_remove_edge(struct isl_sched_graph *graph,
550 struct isl_sched_edge *edge)
552 isl_ctx *ctx = isl_map_get_ctx(edge->map);
553 enum isl_edge_type i;
555 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
556 struct isl_hash_table_entry *entry;
558 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
559 if (!entry)
560 continue;
561 if (entry->data != edge)
562 continue;
563 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
567 /* Check whether the dependence graph has any edge
568 * between the given two nodes.
570 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
571 struct isl_sched_node *src, struct isl_sched_node *dst)
573 enum isl_edge_type i;
574 isl_bool r;
576 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
577 r = graph_has_edge(graph, i, src, dst);
578 if (r < 0 || r)
579 return r;
582 return r;
585 /* Check whether the dependence graph has a validity edge
586 * between the given two nodes.
588 * Conditional validity edges are essentially validity edges that
589 * can be ignored if the corresponding condition edges are iteration private.
590 * Here, we are only checking for the presence of validity
591 * edges, so we need to consider the conditional validity edges too.
592 * In particular, this function is used during the detection
593 * of strongly connected components and we cannot ignore
594 * conditional validity edges during this detection.
596 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
597 struct isl_sched_node *src, struct isl_sched_node *dst)
599 isl_bool r;
601 r = graph_has_edge(graph, isl_edge_validity, src, dst);
602 if (r < 0 || r)
603 return r;
605 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
608 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
609 int n_node, int n_edge)
611 int i;
613 graph->n = n_node;
614 graph->n_edge = n_edge;
615 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
616 graph->sorted = isl_calloc_array(ctx, int, graph->n);
617 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
618 graph->edge = isl_calloc_array(ctx,
619 struct isl_sched_edge, graph->n_edge);
621 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
622 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
624 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
625 !graph->sorted)
626 return -1;
628 for(i = 0; i < graph->n; ++i)
629 graph->sorted[i] = i;
631 return 0;
634 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
636 int i;
638 isl_map_to_basic_set_free(graph->intra_hmap);
639 isl_map_to_basic_set_free(graph->inter_hmap);
641 if (graph->node)
642 for (i = 0; i < graph->n; ++i) {
643 isl_space_free(graph->node[i].space);
644 isl_set_free(graph->node[i].hull);
645 isl_multi_aff_free(graph->node[i].compress);
646 isl_multi_aff_free(graph->node[i].decompress);
647 isl_mat_free(graph->node[i].sched);
648 isl_map_free(graph->node[i].sched_map);
649 isl_mat_free(graph->node[i].cmap);
650 isl_mat_free(graph->node[i].cinv);
651 isl_mat_free(graph->node[i].ctrans);
652 if (graph->root)
653 free(graph->node[i].coincident);
654 isl_multi_val_free(graph->node[i].sizes);
655 isl_vec_free(graph->node[i].max);
657 free(graph->node);
658 free(graph->sorted);
659 if (graph->edge)
660 for (i = 0; i < graph->n_edge; ++i) {
661 isl_map_free(graph->edge[i].map);
662 isl_union_map_free(graph->edge[i].tagged_condition);
663 isl_union_map_free(graph->edge[i].tagged_validity);
665 free(graph->edge);
666 free(graph->region);
667 for (i = 0; i <= isl_edge_last; ++i)
668 isl_hash_table_free(ctx, graph->edge_table[i]);
669 isl_hash_table_free(ctx, graph->node_table);
670 isl_basic_set_free(graph->lp);
673 /* For each "set" on which this function is called, increment
674 * graph->n by one and update graph->maxvar.
676 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
678 struct isl_sched_graph *graph = user;
679 int nvar = isl_set_dim(set, isl_dim_set);
681 graph->n++;
682 if (nvar > graph->maxvar)
683 graph->maxvar = nvar;
685 isl_set_free(set);
687 return isl_stat_ok;
690 /* Compute the number of rows that should be allocated for the schedule.
691 * In particular, we need one row for each variable or one row
692 * for each basic map in the dependences.
693 * Note that it is practically impossible to exhaust both
694 * the number of dependences and the number of variables.
696 static isl_stat compute_max_row(struct isl_sched_graph *graph,
697 __isl_keep isl_schedule_constraints *sc)
699 int n_edge;
700 isl_stat r;
701 isl_union_set *domain;
703 graph->n = 0;
704 graph->maxvar = 0;
705 domain = isl_schedule_constraints_get_domain(sc);
706 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
707 isl_union_set_free(domain);
708 if (r < 0)
709 return isl_stat_error;
710 n_edge = isl_schedule_constraints_n_basic_map(sc);
711 if (n_edge < 0)
712 return isl_stat_error;
713 graph->max_row = n_edge + graph->maxvar;
715 return isl_stat_ok;
718 /* Does "bset" have any defining equalities for its set variables?
720 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
722 int i, n;
724 if (!bset)
725 return isl_bool_error;
727 n = isl_basic_set_dim(bset, isl_dim_set);
728 for (i = 0; i < n; ++i) {
729 isl_bool has;
731 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
732 NULL);
733 if (has < 0 || has)
734 return has;
737 return isl_bool_false;
740 /* Set the entries of node->max to the value of the schedule_max_coefficient
741 * option, if set.
743 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
745 int max;
747 max = isl_options_get_schedule_max_coefficient(ctx);
748 if (max == -1)
749 return isl_stat_ok;
751 node->max = isl_vec_alloc(ctx, node->nvar);
752 node->max = isl_vec_set_si(node->max, max);
753 if (!node->max)
754 return isl_stat_error;
756 return isl_stat_ok;
759 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
760 * option (if set) and half of the minimum of the sizes in the other
761 * dimensions. If the minimum of the sizes is one, half of the size
762 * is zero and this value is reset to one.
763 * If the global minimum is unbounded (i.e., if both
764 * the schedule_max_coefficient is not set and the sizes in the other
765 * dimensions are unbounded), then store a negative value.
766 * If the schedule coefficient is close to the size of the instance set
767 * in another dimension, then the schedule may represent a loop
768 * coalescing transformation (especially if the coefficient
769 * in that other dimension is one). Forcing the coefficient to be
770 * smaller than or equal to half the minimal size should avoid this
771 * situation.
773 static isl_stat compute_max_coefficient(isl_ctx *ctx,
774 struct isl_sched_node *node)
776 int max;
777 int i, j;
778 isl_vec *v;
780 max = isl_options_get_schedule_max_coefficient(ctx);
781 v = isl_vec_alloc(ctx, node->nvar);
782 if (!v)
783 return isl_stat_error;
785 for (i = 0; i < node->nvar; ++i) {
786 isl_int_set_si(v->el[i], max);
787 isl_int_mul_si(v->el[i], v->el[i], 2);
790 for (i = 0; i < node->nvar; ++i) {
791 isl_val *size;
793 size = isl_multi_val_get_val(node->sizes, i);
794 if (!size)
795 goto error;
796 if (!isl_val_is_int(size)) {
797 isl_val_free(size);
798 continue;
800 for (j = 0; j < node->nvar; ++j) {
801 if (j == i)
802 continue;
803 if (isl_int_is_neg(v->el[j]) ||
804 isl_int_gt(v->el[j], size->n))
805 isl_int_set(v->el[j], size->n);
807 isl_val_free(size);
810 for (i = 0; i < node->nvar; ++i) {
811 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
812 if (isl_int_is_zero(v->el[i]))
813 isl_int_set_si(v->el[i], 1);
816 node->max = v;
817 return isl_stat_ok;
818 error:
819 isl_vec_free(v);
820 return isl_stat_error;
823 /* Compute and return the size of "set" in dimension "dim".
824 * The size is taken to be the difference in values for that variable
825 * for fixed values of the other variables.
826 * In particular, the variable is first isolated from the other variables
827 * in the range of a map
829 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
831 * and then duplicated
833 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
835 * The shared variables are then projected out and the maximal value
836 * of i_dim' - i_dim is computed.
838 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
840 isl_map *map;
841 isl_local_space *ls;
842 isl_aff *obj;
843 isl_val *v;
845 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
846 map = isl_map_project_out(map, isl_dim_in, dim, 1);
847 map = isl_map_range_product(map, isl_map_copy(map));
848 map = isl_set_unwrap(isl_map_range(map));
849 set = isl_map_deltas(map);
850 ls = isl_local_space_from_space(isl_set_get_space(set));
851 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
852 v = isl_set_max_val(set, obj);
853 isl_aff_free(obj);
854 isl_set_free(set);
856 return v;
859 /* Compute the size of the instance set "set" of "node", after compression,
860 * as well as bounds on the corresponding coefficients, if needed.
862 * The sizes are needed when the schedule_treat_coalescing option is set.
863 * The bounds are needed when the schedule_treat_coalescing option or
864 * the schedule_max_coefficient option is set.
866 * If the schedule_treat_coalescing option is not set, then at most
867 * the bounds need to be set and this is done in set_max_coefficient.
868 * Otherwise, compress the domain if needed, compute the size
869 * in each direction and store the results in node->size.
870 * Finally, set the bounds on the coefficients based on the sizes
871 * and the schedule_max_coefficient option in compute_max_coefficient.
873 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
874 __isl_take isl_set *set)
876 int j, n;
877 isl_multi_val *mv;
879 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
880 isl_set_free(set);
881 return set_max_coefficient(ctx, node);
884 if (node->compressed)
885 set = isl_set_preimage_multi_aff(set,
886 isl_multi_aff_copy(node->decompress));
887 mv = isl_multi_val_zero(isl_set_get_space(set));
888 n = isl_set_dim(set, isl_dim_set);
889 for (j = 0; j < n; ++j) {
890 isl_val *v;
892 v = compute_size(isl_set_copy(set), j);
893 mv = isl_multi_val_set_val(mv, j, v);
895 node->sizes = mv;
896 isl_set_free(set);
897 if (!node->sizes)
898 return isl_stat_error;
899 return compute_max_coefficient(ctx, node);
902 /* Add a new node to the graph representing the given instance set.
903 * "nvar" is the (possibly compressed) number of variables and
904 * may be smaller than then number of set variables in "set"
905 * if "compressed" is set.
906 * If "compressed" is set, then "hull" represents the constraints
907 * that were used to derive the compression, while "compress" and
908 * "decompress" map the original space to the compressed space and
909 * vice versa.
910 * If "compressed" is not set, then "hull", "compress" and "decompress"
911 * should be NULL.
913 * Compute the size of the instance set and bounds on the coefficients,
914 * if needed.
916 static isl_stat add_node(struct isl_sched_graph *graph,
917 __isl_take isl_set *set, int nvar, int compressed,
918 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
919 __isl_take isl_multi_aff *decompress)
921 int nparam;
922 isl_ctx *ctx;
923 isl_mat *sched;
924 isl_space *space;
925 int *coincident;
926 struct isl_sched_node *node;
928 if (!set)
929 return isl_stat_error;
931 ctx = isl_set_get_ctx(set);
932 nparam = isl_set_dim(set, isl_dim_param);
933 if (!ctx->opt->schedule_parametric)
934 nparam = 0;
935 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
936 node = &graph->node[graph->n];
937 graph->n++;
938 space = isl_set_get_space(set);
939 node->space = space;
940 node->nvar = nvar;
941 node->nparam = nparam;
942 node->sched = sched;
943 node->sched_map = NULL;
944 coincident = isl_calloc_array(ctx, int, graph->max_row);
945 node->coincident = coincident;
946 node->compressed = compressed;
947 node->hull = hull;
948 node->compress = compress;
949 node->decompress = decompress;
950 if (compute_sizes_and_max(ctx, node, set) < 0)
951 return isl_stat_error;
953 if (!space || !sched || (graph->max_row && !coincident))
954 return isl_stat_error;
955 if (compressed && (!hull || !compress || !decompress))
956 return isl_stat_error;
958 return isl_stat_ok;
961 /* Add a new node to the graph representing the given set.
963 * If any of the set variables is defined by an equality, then
964 * we perform variable compression such that we can perform
965 * the scheduling on the compressed domain.
967 static isl_stat extract_node(__isl_take isl_set *set, void *user)
969 int nvar;
970 isl_bool has_equality;
971 isl_basic_set *hull;
972 isl_set *hull_set;
973 isl_morph *morph;
974 isl_multi_aff *compress, *decompress;
975 struct isl_sched_graph *graph = user;
977 hull = isl_set_affine_hull(isl_set_copy(set));
978 hull = isl_basic_set_remove_divs(hull);
979 nvar = isl_set_dim(set, isl_dim_set);
980 has_equality = has_any_defining_equality(hull);
982 if (has_equality < 0)
983 goto error;
984 if (!has_equality) {
985 isl_basic_set_free(hull);
986 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
989 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
990 nvar = isl_morph_ran_dim(morph, isl_dim_set);
991 compress = isl_morph_get_var_multi_aff(morph);
992 morph = isl_morph_inverse(morph);
993 decompress = isl_morph_get_var_multi_aff(morph);
994 isl_morph_free(morph);
996 hull_set = isl_set_from_basic_set(hull);
997 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
998 error:
999 isl_basic_set_free(hull);
1000 isl_set_free(set);
1001 return isl_stat_error;
1004 struct isl_extract_edge_data {
1005 enum isl_edge_type type;
1006 struct isl_sched_graph *graph;
1009 /* Merge edge2 into edge1, freeing the contents of edge2.
1010 * Return 0 on success and -1 on failure.
1012 * edge1 and edge2 are assumed to have the same value for the map field.
1014 static int merge_edge(struct isl_sched_edge *edge1,
1015 struct isl_sched_edge *edge2)
1017 edge1->types |= edge2->types;
1018 isl_map_free(edge2->map);
1020 if (is_condition(edge2)) {
1021 if (!edge1->tagged_condition)
1022 edge1->tagged_condition = edge2->tagged_condition;
1023 else
1024 edge1->tagged_condition =
1025 isl_union_map_union(edge1->tagged_condition,
1026 edge2->tagged_condition);
1029 if (is_conditional_validity(edge2)) {
1030 if (!edge1->tagged_validity)
1031 edge1->tagged_validity = edge2->tagged_validity;
1032 else
1033 edge1->tagged_validity =
1034 isl_union_map_union(edge1->tagged_validity,
1035 edge2->tagged_validity);
1038 if (is_condition(edge2) && !edge1->tagged_condition)
1039 return -1;
1040 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1041 return -1;
1043 return 0;
1046 /* Insert dummy tags in domain and range of "map".
1048 * In particular, if "map" is of the form
1050 * A -> B
1052 * then return
1054 * [A -> dummy_tag] -> [B -> dummy_tag]
1056 * where the dummy_tags are identical and equal to any dummy tags
1057 * introduced by any other call to this function.
1059 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1061 static char dummy;
1062 isl_ctx *ctx;
1063 isl_id *id;
1064 isl_space *space;
1065 isl_set *domain, *range;
1067 ctx = isl_map_get_ctx(map);
1069 id = isl_id_alloc(ctx, NULL, &dummy);
1070 space = isl_space_params(isl_map_get_space(map));
1071 space = isl_space_set_from_params(space);
1072 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1073 space = isl_space_map_from_set(space);
1075 domain = isl_map_wrap(map);
1076 range = isl_map_wrap(isl_map_universe(space));
1077 map = isl_map_from_domain_and_range(domain, range);
1078 map = isl_map_zip(map);
1080 return map;
1083 /* Given that at least one of "src" or "dst" is compressed, return
1084 * a map between the spaces of these nodes restricted to the affine
1085 * hull that was used in the compression.
1087 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1088 struct isl_sched_node *dst)
1090 isl_set *dom, *ran;
1092 if (src->compressed)
1093 dom = isl_set_copy(src->hull);
1094 else
1095 dom = isl_set_universe(isl_space_copy(src->space));
1096 if (dst->compressed)
1097 ran = isl_set_copy(dst->hull);
1098 else
1099 ran = isl_set_universe(isl_space_copy(dst->space));
1101 return isl_map_from_domain_and_range(dom, ran);
1104 /* Intersect the domains of the nested relations in domain and range
1105 * of "tagged" with "map".
1107 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1108 __isl_keep isl_map *map)
1110 isl_set *set;
1112 tagged = isl_map_zip(tagged);
1113 set = isl_map_wrap(isl_map_copy(map));
1114 tagged = isl_map_intersect_domain(tagged, set);
1115 tagged = isl_map_zip(tagged);
1116 return tagged;
1119 /* Return a pointer to the node that lives in the domain space of "map"
1120 * or NULL if there is no such node.
1122 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1123 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1125 struct isl_sched_node *node;
1126 isl_space *space;
1128 space = isl_space_domain(isl_map_get_space(map));
1129 node = graph_find_node(ctx, graph, space);
1130 isl_space_free(space);
1132 return node;
1135 /* Return a pointer to the node that lives in the range space of "map"
1136 * or NULL if there is no such node.
1138 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1139 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1141 struct isl_sched_node *node;
1142 isl_space *space;
1144 space = isl_space_range(isl_map_get_space(map));
1145 node = graph_find_node(ctx, graph, space);
1146 isl_space_free(space);
1148 return node;
1151 /* Add a new edge to the graph based on the given map
1152 * and add it to data->graph->edge_table[data->type].
1153 * If a dependence relation of a given type happens to be identical
1154 * to one of the dependence relations of a type that was added before,
1155 * then we don't create a new edge, but instead mark the original edge
1156 * as also representing a dependence of the current type.
1158 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1159 * may be specified as "tagged" dependence relations. That is, "map"
1160 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1161 * the dependence on iterations and a and b are tags.
1162 * edge->map is set to the relation containing the elements i -> j,
1163 * while edge->tagged_condition and edge->tagged_validity contain
1164 * the union of all the "map" relations
1165 * for which extract_edge is called that result in the same edge->map.
1167 * If the source or the destination node is compressed, then
1168 * intersect both "map" and "tagged" with the constraints that
1169 * were used to construct the compression.
1170 * This ensures that there are no schedule constraints defined
1171 * outside of these domains, while the scheduler no longer has
1172 * any control over those outside parts.
1174 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1176 isl_ctx *ctx = isl_map_get_ctx(map);
1177 struct isl_extract_edge_data *data = user;
1178 struct isl_sched_graph *graph = data->graph;
1179 struct isl_sched_node *src, *dst;
1180 struct isl_sched_edge *edge;
1181 isl_map *tagged = NULL;
1183 if (data->type == isl_edge_condition ||
1184 data->type == isl_edge_conditional_validity) {
1185 if (isl_map_can_zip(map)) {
1186 tagged = isl_map_copy(map);
1187 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1188 } else {
1189 tagged = insert_dummy_tags(isl_map_copy(map));
1193 src = find_domain_node(ctx, graph, map);
1194 dst = find_range_node(ctx, graph, map);
1196 if (!src || !dst) {
1197 isl_map_free(map);
1198 isl_map_free(tagged);
1199 return isl_stat_ok;
1202 if (src->compressed || dst->compressed) {
1203 isl_map *hull;
1204 hull = extract_hull(src, dst);
1205 if (tagged)
1206 tagged = map_intersect_domains(tagged, hull);
1207 map = isl_map_intersect(map, hull);
1210 graph->edge[graph->n_edge].src = src;
1211 graph->edge[graph->n_edge].dst = dst;
1212 graph->edge[graph->n_edge].map = map;
1213 graph->edge[graph->n_edge].types = 0;
1214 graph->edge[graph->n_edge].tagged_condition = NULL;
1215 graph->edge[graph->n_edge].tagged_validity = NULL;
1216 set_type(&graph->edge[graph->n_edge], data->type);
1217 if (data->type == isl_edge_condition)
1218 graph->edge[graph->n_edge].tagged_condition =
1219 isl_union_map_from_map(tagged);
1220 if (data->type == isl_edge_conditional_validity)
1221 graph->edge[graph->n_edge].tagged_validity =
1222 isl_union_map_from_map(tagged);
1224 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1225 if (!edge) {
1226 graph->n_edge++;
1227 return isl_stat_error;
1229 if (edge == &graph->edge[graph->n_edge])
1230 return graph_edge_table_add(ctx, graph, data->type,
1231 &graph->edge[graph->n_edge++]);
1233 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1234 return -1;
1236 return graph_edge_table_add(ctx, graph, data->type, edge);
1239 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1241 * The context is included in the domain before the nodes of
1242 * the graphs are extracted in order to be able to exploit
1243 * any possible additional equalities.
1244 * Note that this intersection is only performed locally here.
1246 static isl_stat graph_init(struct isl_sched_graph *graph,
1247 __isl_keep isl_schedule_constraints *sc)
1249 isl_ctx *ctx;
1250 isl_union_set *domain;
1251 isl_union_map *c;
1252 struct isl_extract_edge_data data;
1253 enum isl_edge_type i;
1254 isl_stat r;
1256 if (!sc)
1257 return isl_stat_error;
1259 ctx = isl_schedule_constraints_get_ctx(sc);
1261 domain = isl_schedule_constraints_get_domain(sc);
1262 graph->n = isl_union_set_n_set(domain);
1263 isl_union_set_free(domain);
1265 if (graph_alloc(ctx, graph, graph->n,
1266 isl_schedule_constraints_n_map(sc)) < 0)
1267 return isl_stat_error;
1269 if (compute_max_row(graph, sc) < 0)
1270 return isl_stat_error;
1271 graph->root = 1;
1272 graph->n = 0;
1273 domain = isl_schedule_constraints_get_domain(sc);
1274 domain = isl_union_set_intersect_params(domain,
1275 isl_schedule_constraints_get_context(sc));
1276 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1277 isl_union_set_free(domain);
1278 if (r < 0)
1279 return isl_stat_error;
1280 if (graph_init_table(ctx, graph) < 0)
1281 return isl_stat_error;
1282 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1283 c = isl_schedule_constraints_get(sc, i);
1284 graph->max_edge[i] = isl_union_map_n_map(c);
1285 isl_union_map_free(c);
1286 if (!c)
1287 return isl_stat_error;
1289 if (graph_init_edge_tables(ctx, graph) < 0)
1290 return isl_stat_error;
1291 graph->n_edge = 0;
1292 data.graph = graph;
1293 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1294 isl_stat r;
1296 data.type = i;
1297 c = isl_schedule_constraints_get(sc, i);
1298 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1299 isl_union_map_free(c);
1300 if (r < 0)
1301 return isl_stat_error;
1304 return isl_stat_ok;
1307 /* Check whether there is any dependence from node[j] to node[i]
1308 * or from node[i] to node[j].
1310 static isl_bool node_follows_weak(int i, int j, void *user)
1312 isl_bool f;
1313 struct isl_sched_graph *graph = user;
1315 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1316 if (f < 0 || f)
1317 return f;
1318 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1321 /* Check whether there is a (conditional) validity dependence from node[j]
1322 * to node[i], forcing node[i] to follow node[j].
1324 static isl_bool node_follows_strong(int i, int j, void *user)
1326 struct isl_sched_graph *graph = user;
1328 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1331 /* Use Tarjan's algorithm for computing the strongly connected components
1332 * in the dependence graph only considering those edges defined by "follows".
1334 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1335 isl_bool (*follows)(int i, int j, void *user))
1337 int i, n;
1338 struct isl_tarjan_graph *g = NULL;
1340 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1341 if (!g)
1342 return -1;
1344 graph->scc = 0;
1345 i = 0;
1346 n = graph->n;
1347 while (n) {
1348 while (g->order[i] != -1) {
1349 graph->node[g->order[i]].scc = graph->scc;
1350 --n;
1351 ++i;
1353 ++i;
1354 graph->scc++;
1357 isl_tarjan_graph_free(g);
1359 return 0;
1362 /* Apply Tarjan's algorithm to detect the strongly connected components
1363 * in the dependence graph.
1364 * Only consider the (conditional) validity dependences and clear "weak".
1366 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1368 graph->weak = 0;
1369 return detect_ccs(ctx, graph, &node_follows_strong);
1372 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1373 * in the dependence graph.
1374 * Consider all dependences and set "weak".
1376 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1378 graph->weak = 1;
1379 return detect_ccs(ctx, graph, &node_follows_weak);
1382 static int cmp_scc(const void *a, const void *b, void *data)
1384 struct isl_sched_graph *graph = data;
1385 const int *i1 = a;
1386 const int *i2 = b;
1388 return graph->node[*i1].scc - graph->node[*i2].scc;
1391 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1393 static int sort_sccs(struct isl_sched_graph *graph)
1395 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1398 /* Given a dependence relation R from "node" to itself,
1399 * construct the set of coefficients of valid constraints for elements
1400 * in that dependence relation.
1401 * In particular, the result contains tuples of coefficients
1402 * c_0, c_n, c_x such that
1404 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1406 * or, equivalently,
1408 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1410 * We choose here to compute the dual of delta R.
1411 * Alternatively, we could have computed the dual of R, resulting
1412 * in a set of tuples c_0, c_n, c_x, c_y, and then
1413 * plugged in (c_0, c_n, c_x, -c_x).
1415 * If "node" has been compressed, then the dependence relation
1416 * is also compressed before the set of coefficients is computed.
1418 static __isl_give isl_basic_set *intra_coefficients(
1419 struct isl_sched_graph *graph, struct isl_sched_node *node,
1420 __isl_take isl_map *map)
1422 isl_set *delta;
1423 isl_map *key;
1424 isl_basic_set *coef;
1425 isl_maybe_isl_basic_set m;
1427 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1428 if (m.valid < 0 || m.valid) {
1429 isl_map_free(map);
1430 return m.value;
1433 key = isl_map_copy(map);
1434 if (node->compressed) {
1435 map = isl_map_preimage_domain_multi_aff(map,
1436 isl_multi_aff_copy(node->decompress));
1437 map = isl_map_preimage_range_multi_aff(map,
1438 isl_multi_aff_copy(node->decompress));
1440 delta = isl_set_remove_divs(isl_map_deltas(map));
1441 coef = isl_set_coefficients(delta);
1442 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1443 isl_basic_set_copy(coef));
1445 return coef;
1448 /* Given a dependence relation R, construct the set of coefficients
1449 * of valid constraints for elements in that dependence relation.
1450 * In particular, the result contains tuples of coefficients
1451 * c_0, c_n, c_x, c_y such that
1453 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1455 * If the source or destination nodes of "edge" have been compressed,
1456 * then the dependence relation is also compressed before
1457 * the set of coefficients is computed.
1459 static __isl_give isl_basic_set *inter_coefficients(
1460 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1461 __isl_take isl_map *map)
1463 isl_set *set;
1464 isl_map *key;
1465 isl_basic_set *coef;
1466 isl_maybe_isl_basic_set m;
1468 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1469 if (m.valid < 0 || m.valid) {
1470 isl_map_free(map);
1471 return m.value;
1474 key = isl_map_copy(map);
1475 if (edge->src->compressed)
1476 map = isl_map_preimage_domain_multi_aff(map,
1477 isl_multi_aff_copy(edge->src->decompress));
1478 if (edge->dst->compressed)
1479 map = isl_map_preimage_range_multi_aff(map,
1480 isl_multi_aff_copy(edge->dst->decompress));
1481 set = isl_map_wrap(isl_map_remove_divs(map));
1482 coef = isl_set_coefficients(set);
1483 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1484 isl_basic_set_copy(coef));
1486 return coef;
1489 /* Return the position of the coefficients of the variables in
1490 * the coefficients constraints "coef".
1492 * The space of "coef" is of the form
1494 * { coefficients[[cst, params] -> S] }
1496 * Return the position of S.
1498 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1500 int offset;
1501 isl_space *space;
1503 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1504 offset = isl_space_dim(space, isl_dim_in);
1505 isl_space_free(space);
1507 return offset;
1510 /* Return the offset of the coefficients of the variables of "node"
1511 * within the (I)LP.
1513 * Within each node, the coefficients have the following order:
1514 * - c_i_0
1515 * - c_i_n (if parametric)
1516 * - positive and negative parts of c_i_x
1518 static int node_var_coef_offset(struct isl_sched_node *node)
1520 return node->start + 1 + node->nparam;
1523 /* Construct an isl_dim_map for mapping constraints on coefficients
1524 * for "node" to the corresponding positions in graph->lp.
1525 * "offset" is the offset of the coefficients for the variables
1526 * in the input constraints.
1527 * "s" is the sign of the mapping.
1529 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1530 * The mapping produced by this function essentially plugs in
1531 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1532 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1533 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1535 * The caller can extend the mapping to also map the other coefficients
1536 * (and therefore not plug in 0).
1538 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1539 struct isl_sched_graph *graph, struct isl_sched_node *node,
1540 int offset, int s)
1542 int pos;
1543 unsigned total;
1544 isl_dim_map *dim_map;
1546 total = isl_basic_set_total_dim(graph->lp);
1547 pos = node_var_coef_offset(node);
1548 dim_map = isl_dim_map_alloc(ctx, total);
1549 isl_dim_map_range(dim_map, pos, 2, offset, 1, node->nvar, -s);
1550 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, node->nvar, s);
1552 return dim_map;
1555 /* Construct an isl_dim_map for mapping constraints on coefficients
1556 * for "src" (node i) and "dst" (node j) to the corresponding positions
1557 * in graph->lp.
1558 * "offset" is the offset of the coefficients for the variables of "src"
1559 * in the input constraints.
1560 * "s" is the sign of the mapping.
1562 * The input constraints are given in terms of the coefficients
1563 * (c_0, c_n, c_x, c_y).
1564 * The mapping produced by this function essentially plugs in
1565 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1566 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1567 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1568 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1569 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1571 * The caller can further extend the mapping.
1573 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1574 struct isl_sched_graph *graph, struct isl_sched_node *src,
1575 struct isl_sched_node *dst, int offset, int s)
1577 int pos;
1578 unsigned total;
1579 isl_dim_map *dim_map;
1581 total = isl_basic_set_total_dim(graph->lp);
1582 dim_map = isl_dim_map_alloc(ctx, total);
1584 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
1585 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
1586 pos = node_var_coef_offset(dst);
1587 isl_dim_map_range(dim_map, pos, 2, offset + src->nvar, 1,
1588 dst->nvar, -s);
1589 isl_dim_map_range(dim_map, pos + 1, 2, offset + src->nvar, 1,
1590 dst->nvar, s);
1592 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
1593 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
1594 pos = node_var_coef_offset(src);
1595 isl_dim_map_range(dim_map, pos, 2, offset, 1, src->nvar, s);
1596 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, src->nvar, -s);
1598 return dim_map;
1601 /* Add constraints to graph->lp that force validity for the given
1602 * dependence from a node i to itself.
1603 * That is, add constraints that enforce
1605 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1606 * = c_i_x (y - x) >= 0
1608 * for each (x,y) in R.
1609 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1610 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1611 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1612 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1614 * Actually, we do not construct constraints for the c_i_x themselves,
1615 * but for the coefficients of c_i_x written as a linear combination
1616 * of the columns in node->cmap.
1618 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1619 struct isl_sched_edge *edge)
1621 int offset;
1622 isl_map *map = isl_map_copy(edge->map);
1623 isl_ctx *ctx = isl_map_get_ctx(map);
1624 isl_dim_map *dim_map;
1625 isl_basic_set *coef;
1626 struct isl_sched_node *node = edge->src;
1628 coef = intra_coefficients(graph, node, map);
1630 offset = coef_var_offset(coef);
1632 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1633 offset, isl_mat_copy(node->cmap));
1634 if (!coef)
1635 return isl_stat_error;
1637 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1638 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1639 coef->n_eq, coef->n_ineq);
1640 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1641 coef, dim_map);
1643 return isl_stat_ok;
1646 /* Add constraints to graph->lp that force validity for the given
1647 * dependence from node i to node j.
1648 * That is, add constraints that enforce
1650 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1652 * for each (x,y) in R.
1653 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1654 * of valid constraints for R and then plug in
1655 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1656 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1657 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1659 * Actually, we do not construct constraints for the c_*_x themselves,
1660 * but for the coefficients of c_*_x written as a linear combination
1661 * of the columns in node->cmap.
1663 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1664 struct isl_sched_edge *edge)
1666 int offset;
1667 isl_map *map;
1668 isl_ctx *ctx;
1669 isl_dim_map *dim_map;
1670 isl_basic_set *coef;
1671 struct isl_sched_node *src = edge->src;
1672 struct isl_sched_node *dst = edge->dst;
1674 if (!graph->lp)
1675 return isl_stat_error;
1677 map = isl_map_copy(edge->map);
1678 ctx = isl_map_get_ctx(map);
1679 coef = inter_coefficients(graph, edge, map);
1681 offset = coef_var_offset(coef);
1683 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1684 offset, isl_mat_copy(src->cmap));
1685 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1686 offset + src->nvar, isl_mat_copy(dst->cmap));
1687 if (!coef)
1688 return isl_stat_error;
1690 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1692 edge->start = graph->lp->n_ineq;
1693 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1694 coef->n_eq, coef->n_ineq);
1695 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1696 coef, dim_map);
1697 if (!graph->lp)
1698 return isl_stat_error;
1699 edge->end = graph->lp->n_ineq;
1701 return isl_stat_ok;
1704 /* Add constraints to graph->lp that bound the dependence distance for the given
1705 * dependence from a node i to itself.
1706 * If s = 1, we add the constraint
1708 * c_i_x (y - x) <= m_0 + m_n n
1710 * or
1712 * -c_i_x (y - x) + m_0 + m_n n >= 0
1714 * for each (x,y) in R.
1715 * If s = -1, we add the constraint
1717 * -c_i_x (y - x) <= m_0 + m_n n
1719 * or
1721 * c_i_x (y - x) + m_0 + m_n n >= 0
1723 * for each (x,y) in R.
1724 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1725 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1726 * with each coefficient (except m_0) represented as a pair of non-negative
1727 * coefficients.
1729 * Actually, we do not construct constraints for the c_i_x themselves,
1730 * but for the coefficients of c_i_x written as a linear combination
1731 * of the columns in node->cmap.
1734 * If "local" is set, then we add constraints
1736 * c_i_x (y - x) <= 0
1738 * or
1740 * -c_i_x (y - x) <= 0
1742 * instead, forcing the dependence distance to be (less than or) equal to 0.
1743 * That is, we plug in (0, 0, -s * c_i_x),
1744 * Note that dependences marked local are treated as validity constraints
1745 * by add_all_validity_constraints and therefore also have
1746 * their distances bounded by 0 from below.
1748 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1749 struct isl_sched_edge *edge, int s, int local)
1751 int offset;
1752 unsigned nparam;
1753 isl_map *map = isl_map_copy(edge->map);
1754 isl_ctx *ctx = isl_map_get_ctx(map);
1755 isl_dim_map *dim_map;
1756 isl_basic_set *coef;
1757 struct isl_sched_node *node = edge->src;
1759 coef = intra_coefficients(graph, node, map);
1761 offset = coef_var_offset(coef);
1763 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1764 offset, isl_mat_copy(node->cmap));
1765 if (!coef)
1766 return isl_stat_error;
1768 nparam = isl_space_dim(node->space, isl_dim_param);
1769 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1771 if (!local) {
1772 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1773 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1774 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1776 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1777 coef->n_eq, coef->n_ineq);
1778 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1779 coef, dim_map);
1781 return isl_stat_ok;
1784 /* Add constraints to graph->lp that bound the dependence distance for the given
1785 * dependence from node i to node j.
1786 * If s = 1, we add the constraint
1788 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1789 * <= m_0 + m_n n
1791 * or
1793 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1794 * m_0 + m_n n >= 0
1796 * for each (x,y) in R.
1797 * If s = -1, we add the constraint
1799 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1800 * <= m_0 + m_n n
1802 * or
1804 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1805 * m_0 + m_n n >= 0
1807 * for each (x,y) in R.
1808 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1809 * of valid constraints for R and then plug in
1810 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1811 * s*c_i_x, -s*c_j_x)
1812 * with each coefficient (except m_0, c_*_0 and c_*_n)
1813 * represented as a pair of non-negative coefficients.
1815 * Actually, we do not construct constraints for the c_*_x themselves,
1816 * but for the coefficients of c_*_x written as a linear combination
1817 * of the columns in node->cmap.
1820 * If "local" is set (and s = 1), then we add constraints
1822 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1824 * or
1826 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1828 * instead, forcing the dependence distance to be (less than or) equal to 0.
1829 * That is, we plug in
1830 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1831 * Note that dependences marked local are treated as validity constraints
1832 * by add_all_validity_constraints and therefore also have
1833 * their distances bounded by 0 from below.
1835 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1836 struct isl_sched_edge *edge, int s, int local)
1838 int offset;
1839 unsigned nparam;
1840 isl_map *map = isl_map_copy(edge->map);
1841 isl_ctx *ctx = isl_map_get_ctx(map);
1842 isl_dim_map *dim_map;
1843 isl_basic_set *coef;
1844 struct isl_sched_node *src = edge->src;
1845 struct isl_sched_node *dst = edge->dst;
1847 coef = inter_coefficients(graph, edge, map);
1849 offset = coef_var_offset(coef);
1851 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1852 offset, isl_mat_copy(src->cmap));
1853 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1854 offset + src->nvar, isl_mat_copy(dst->cmap));
1855 if (!coef)
1856 return isl_stat_error;
1858 nparam = isl_space_dim(src->space, isl_dim_param);
1859 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1861 if (!local) {
1862 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1863 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1864 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1867 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1868 coef->n_eq, coef->n_ineq);
1869 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1870 coef, dim_map);
1872 return isl_stat_ok;
1875 /* Add all validity constraints to graph->lp.
1877 * An edge that is forced to be local needs to have its dependence
1878 * distances equal to zero. We take care of bounding them by 0 from below
1879 * here. add_all_proximity_constraints takes care of bounding them by 0
1880 * from above.
1882 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1883 * Otherwise, we ignore them.
1885 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1886 int use_coincidence)
1888 int i;
1890 for (i = 0; i < graph->n_edge; ++i) {
1891 struct isl_sched_edge *edge= &graph->edge[i];
1892 int local;
1894 local = is_local(edge) ||
1895 (is_coincidence(edge) && use_coincidence);
1896 if (!is_validity(edge) && !local)
1897 continue;
1898 if (edge->src != edge->dst)
1899 continue;
1900 if (add_intra_validity_constraints(graph, edge) < 0)
1901 return -1;
1904 for (i = 0; i < graph->n_edge; ++i) {
1905 struct isl_sched_edge *edge = &graph->edge[i];
1906 int local;
1908 local = is_local(edge) ||
1909 (is_coincidence(edge) && use_coincidence);
1910 if (!is_validity(edge) && !local)
1911 continue;
1912 if (edge->src == edge->dst)
1913 continue;
1914 if (add_inter_validity_constraints(graph, edge) < 0)
1915 return -1;
1918 return 0;
1921 /* Add constraints to graph->lp that bound the dependence distance
1922 * for all dependence relations.
1923 * If a given proximity dependence is identical to a validity
1924 * dependence, then the dependence distance is already bounded
1925 * from below (by zero), so we only need to bound the distance
1926 * from above. (This includes the case of "local" dependences
1927 * which are treated as validity dependence by add_all_validity_constraints.)
1928 * Otherwise, we need to bound the distance both from above and from below.
1930 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1931 * Otherwise, we ignore them.
1933 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1934 int use_coincidence)
1936 int i;
1938 for (i = 0; i < graph->n_edge; ++i) {
1939 struct isl_sched_edge *edge= &graph->edge[i];
1940 int local;
1942 local = is_local(edge) ||
1943 (is_coincidence(edge) && use_coincidence);
1944 if (!is_proximity(edge) && !local)
1945 continue;
1946 if (edge->src == edge->dst &&
1947 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1948 return -1;
1949 if (edge->src != edge->dst &&
1950 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1951 return -1;
1952 if (is_validity(edge) || local)
1953 continue;
1954 if (edge->src == edge->dst &&
1955 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1956 return -1;
1957 if (edge->src != edge->dst &&
1958 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1959 return -1;
1962 return 0;
1965 /* Compute a basis for the rows in the linear part of the schedule
1966 * and extend this basis to a full basis. The remaining rows
1967 * can then be used to force linear independence from the rows
1968 * in the schedule.
1970 * In particular, given the schedule rows S, we compute
1972 * S = H Q
1973 * S U = H
1975 * with H the Hermite normal form of S. That is, all but the
1976 * first rank columns of H are zero and so each row in S is
1977 * a linear combination of the first rank rows of Q.
1978 * The matrix Q is then transposed because we will write the
1979 * coefficients of the next schedule row as a column vector s
1980 * and express this s as a linear combination s = Q c of the
1981 * computed basis.
1982 * Similarly, the matrix U is transposed such that we can
1983 * compute the coefficients c = U s from a schedule row s.
1985 static int node_update_cmap(struct isl_sched_node *node)
1987 isl_mat *H, *U, *Q;
1988 int n_row = isl_mat_rows(node->sched);
1990 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1991 1 + node->nparam, node->nvar);
1993 H = isl_mat_left_hermite(H, 0, &U, &Q);
1994 isl_mat_free(node->cmap);
1995 isl_mat_free(node->cinv);
1996 isl_mat_free(node->ctrans);
1997 node->ctrans = isl_mat_copy(Q);
1998 node->cmap = isl_mat_transpose(Q);
1999 node->cinv = isl_mat_transpose(U);
2000 node->rank = isl_mat_initial_non_zero_cols(H);
2001 isl_mat_free(H);
2003 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2004 return -1;
2005 return 0;
2008 /* Is "edge" marked as a validity or a conditional validity edge?
2010 static int is_any_validity(struct isl_sched_edge *edge)
2012 return is_validity(edge) || is_conditional_validity(edge);
2015 /* How many times should we count the constraints in "edge"?
2017 * If carry is set, then we are counting the number of
2018 * (validity or conditional validity) constraints that will be added
2019 * in setup_carry_lp and we count each edge exactly once.
2021 * Otherwise, we count as follows
2022 * validity -> 1 (>= 0)
2023 * validity+proximity -> 2 (>= 0 and upper bound)
2024 * proximity -> 2 (lower and upper bound)
2025 * local(+any) -> 2 (>= 0 and <= 0)
2027 * If an edge is only marked conditional_validity then it counts
2028 * as zero since it is only checked afterwards.
2030 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2031 * Otherwise, we ignore them.
2033 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2034 int use_coincidence)
2036 if (carry)
2037 return 1;
2038 if (is_proximity(edge) || is_local(edge))
2039 return 2;
2040 if (use_coincidence && is_coincidence(edge))
2041 return 2;
2042 if (is_validity(edge))
2043 return 1;
2044 return 0;
2047 /* Count the number of equality and inequality constraints
2048 * that will be added for the given map.
2050 * "use_coincidence" is set if we should take into account coincidence edges.
2052 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2053 struct isl_sched_edge *edge, __isl_take isl_map *map,
2054 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2056 isl_basic_set *coef;
2057 int f = edge_multiplicity(edge, carry, use_coincidence);
2059 if (f == 0) {
2060 isl_map_free(map);
2061 return isl_stat_ok;
2064 if (edge->src == edge->dst)
2065 coef = intra_coefficients(graph, edge->src, map);
2066 else
2067 coef = inter_coefficients(graph, edge, map);
2068 if (!coef)
2069 return isl_stat_error;
2070 *n_eq += f * coef->n_eq;
2071 *n_ineq += f * coef->n_ineq;
2072 isl_basic_set_free(coef);
2074 return isl_stat_ok;
2077 /* Count the number of equality and inequality constraints
2078 * that will be added to the main lp problem.
2079 * We count as follows
2080 * validity -> 1 (>= 0)
2081 * validity+proximity -> 2 (>= 0 and upper bound)
2082 * proximity -> 2 (lower and upper bound)
2083 * local(+any) -> 2 (>= 0 and <= 0)
2085 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2086 * Otherwise, we ignore them.
2088 static int count_constraints(struct isl_sched_graph *graph,
2089 int *n_eq, int *n_ineq, int use_coincidence)
2091 int i;
2093 *n_eq = *n_ineq = 0;
2094 for (i = 0; i < graph->n_edge; ++i) {
2095 struct isl_sched_edge *edge= &graph->edge[i];
2096 isl_map *map = isl_map_copy(edge->map);
2098 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2099 0, use_coincidence) < 0)
2100 return -1;
2103 return 0;
2106 /* Count the number of constraints that will be added by
2107 * add_bound_constant_constraints to bound the values of the constant terms
2108 * and increment *n_eq and *n_ineq accordingly.
2110 * In practice, add_bound_constant_constraints only adds inequalities.
2112 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2113 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2115 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2116 return isl_stat_ok;
2118 *n_ineq += graph->n;
2120 return isl_stat_ok;
2123 /* Add constraints to bound the values of the constant terms in the schedule,
2124 * if requested by the user.
2126 * The maximal value of the constant terms is defined by the option
2127 * "schedule_max_constant_term".
2129 * Within each node, the coefficients have the following order:
2130 * - c_i_0
2131 * - c_i_n (if parametric)
2132 * - positive and negative parts of c_i_x
2134 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2135 struct isl_sched_graph *graph)
2137 int i, k;
2138 int max;
2139 int total;
2141 max = isl_options_get_schedule_max_constant_term(ctx);
2142 if (max == -1)
2143 return isl_stat_ok;
2145 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2147 for (i = 0; i < graph->n; ++i) {
2148 struct isl_sched_node *node = &graph->node[i];
2149 k = isl_basic_set_alloc_inequality(graph->lp);
2150 if (k < 0)
2151 return isl_stat_error;
2152 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2153 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2154 isl_int_set_si(graph->lp->ineq[k][0], max);
2157 return isl_stat_ok;
2160 /* Count the number of constraints that will be added by
2161 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2162 * accordingly.
2164 * In practice, add_bound_coefficient_constraints only adds inequalities.
2166 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2167 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2169 int i;
2171 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2172 !isl_options_get_schedule_treat_coalescing(ctx))
2173 return 0;
2175 for (i = 0; i < graph->n; ++i)
2176 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2178 return 0;
2181 /* Add constraints to graph->lp that bound the values of
2182 * the parameter schedule coefficients of "node" to "max" and
2183 * the variable schedule coefficients to the corresponding entry
2184 * in node->max.
2185 * In either case, a negative value means that no bound needs to be imposed.
2187 * For parameter coefficients, this amounts to adding a constraint
2189 * c_n <= max
2191 * i.e.,
2193 * -c_n + max >= 0
2195 * The variables coefficients are, however, not represented directly.
2196 * Instead, the variables coefficients c_x are written as a linear
2197 * combination c_x = cmap c_z of some other coefficients c_z,
2198 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2199 * Let a_j be the elements of row i of node->cmap, then
2201 * -max_i <= c_x_i <= max_i
2203 * is encoded as
2205 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2207 * or
2209 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2210 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2212 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2213 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2215 int i, j, k;
2216 int total;
2217 isl_vec *ineq;
2219 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2221 for (j = 0; j < node->nparam; ++j) {
2222 int dim;
2224 if (max < 0)
2225 continue;
2227 k = isl_basic_set_alloc_inequality(graph->lp);
2228 if (k < 0)
2229 return isl_stat_error;
2230 dim = 1 + node->start + 1 + j;
2231 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2232 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2233 isl_int_set_si(graph->lp->ineq[k][0], max);
2236 ineq = isl_vec_alloc(ctx, 1 + total);
2237 ineq = isl_vec_clr(ineq);
2238 if (!ineq)
2239 return isl_stat_error;
2240 for (i = 0; i < node->nvar; ++i) {
2241 int pos = 1 + node_var_coef_offset(node);
2243 if (isl_int_is_neg(node->max->el[i]))
2244 continue;
2246 for (j = 0; j < node->nvar; ++j) {
2247 isl_int_set(ineq->el[pos + 2 * j],
2248 node->cmap->row[i][j]);
2249 isl_int_neg(ineq->el[pos + 2 * j + 1],
2250 node->cmap->row[i][j]);
2252 isl_int_set(ineq->el[0], node->max->el[i]);
2254 k = isl_basic_set_alloc_inequality(graph->lp);
2255 if (k < 0)
2256 goto error;
2257 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2259 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2 * node->nvar);
2260 k = isl_basic_set_alloc_inequality(graph->lp);
2261 if (k < 0)
2262 goto error;
2263 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2265 isl_vec_free(ineq);
2267 return isl_stat_ok;
2268 error:
2269 isl_vec_free(ineq);
2270 return isl_stat_error;
2273 /* Add constraints that bound the values of the variable and parameter
2274 * coefficients of the schedule.
2276 * The maximal value of the coefficients is defined by the option
2277 * 'schedule_max_coefficient' and the entries in node->max.
2278 * These latter entries are only set if either the schedule_max_coefficient
2279 * option or the schedule_treat_coalescing option is set.
2281 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2282 struct isl_sched_graph *graph)
2284 int i;
2285 int max;
2287 max = isl_options_get_schedule_max_coefficient(ctx);
2289 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2290 return isl_stat_ok;
2292 for (i = 0; i < graph->n; ++i) {
2293 struct isl_sched_node *node = &graph->node[i];
2295 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2296 return isl_stat_error;
2299 return isl_stat_ok;
2302 /* Add a constraint to graph->lp that equates the value at position
2303 * "sum_pos" to the sum of the "n" values starting at "first".
2305 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2306 int sum_pos, int first, int n)
2308 int i, k;
2309 int total;
2311 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2313 k = isl_basic_set_alloc_equality(graph->lp);
2314 if (k < 0)
2315 return isl_stat_error;
2316 isl_seq_clr(graph->lp->eq[k], 1 + total);
2317 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2318 for (i = 0; i < n; ++i)
2319 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2321 return isl_stat_ok;
2324 /* Add a constraint to graph->lp that equates the value at position
2325 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2327 * Within each node, the coefficients have the following order:
2328 * - c_i_0
2329 * - c_i_n (if parametric)
2330 * - positive and negative parts of c_i_x
2332 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2333 int sum_pos)
2335 int i, j, k;
2336 int total;
2338 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2340 k = isl_basic_set_alloc_equality(graph->lp);
2341 if (k < 0)
2342 return isl_stat_error;
2343 isl_seq_clr(graph->lp->eq[k], 1 + total);
2344 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2345 for (i = 0; i < graph->n; ++i) {
2346 int pos = 1 + graph->node[i].start + 1;
2348 for (j = 0; j < graph->node[i].nparam; ++j)
2349 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2352 return isl_stat_ok;
2355 /* Add a constraint to graph->lp that equates the value at position
2356 * "sum_pos" to the sum of the variable coefficients of all nodes.
2358 * Within each node, the coefficients have the following order:
2359 * - c_i_0
2360 * - c_i_n (if parametric)
2361 * - positive and negative parts of c_i_x
2363 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2364 int sum_pos)
2366 int i, j, k;
2367 int total;
2369 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2371 k = isl_basic_set_alloc_equality(graph->lp);
2372 if (k < 0)
2373 return isl_stat_error;
2374 isl_seq_clr(graph->lp->eq[k], 1 + total);
2375 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2376 for (i = 0; i < graph->n; ++i) {
2377 struct isl_sched_node *node = &graph->node[i];
2378 int pos = 1 + node_var_coef_offset(node);
2380 for (j = 0; j < 2 * node->nvar; ++j)
2381 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2384 return isl_stat_ok;
2387 /* Construct an ILP problem for finding schedule coefficients
2388 * that result in non-negative, but small dependence distances
2389 * over all dependences.
2390 * In particular, the dependence distances over proximity edges
2391 * are bounded by m_0 + m_n n and we compute schedule coefficients
2392 * with small values (preferably zero) of m_n and m_0.
2394 * All variables of the ILP are non-negative. The actual coefficients
2395 * may be negative, so each coefficient is represented as the difference
2396 * of two non-negative variables. The negative part always appears
2397 * immediately before the positive part.
2398 * Other than that, the variables have the following order
2400 * - sum of positive and negative parts of m_n coefficients
2401 * - m_0
2402 * - sum of all c_n coefficients
2403 * (unconstrained when computing non-parametric schedules)
2404 * - sum of positive and negative parts of all c_x coefficients
2405 * - positive and negative parts of m_n coefficients
2406 * - for each node
2407 * - c_i_0
2408 * - c_i_n (if parametric)
2409 * - positive and negative parts of c_i_x
2411 * The c_i_x are not represented directly, but through the columns of
2412 * node->cmap. That is, the computed values are for variable t_i_x
2413 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2415 * The constraints are those from the edges plus two or three equalities
2416 * to express the sums.
2418 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2419 * Otherwise, we ignore them.
2421 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2422 int use_coincidence)
2424 int i;
2425 unsigned nparam;
2426 unsigned total;
2427 isl_space *space;
2428 int parametric;
2429 int param_pos;
2430 int n_eq, n_ineq;
2432 parametric = ctx->opt->schedule_parametric;
2433 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2434 param_pos = 4;
2435 total = param_pos + 2 * nparam;
2436 for (i = 0; i < graph->n; ++i) {
2437 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2438 if (node_update_cmap(node) < 0)
2439 return isl_stat_error;
2440 node->start = total;
2441 total += 1 + node->nparam + 2 * node->nvar;
2444 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2445 return isl_stat_error;
2446 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2447 return isl_stat_error;
2448 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2449 return isl_stat_error;
2451 space = isl_space_set_alloc(ctx, 0, total);
2452 isl_basic_set_free(graph->lp);
2453 n_eq += 2 + parametric;
2455 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2457 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2458 return isl_stat_error;
2459 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2460 return isl_stat_error;
2461 if (add_var_sum_constraint(graph, 3) < 0)
2462 return isl_stat_error;
2463 if (add_bound_constant_constraints(ctx, graph) < 0)
2464 return isl_stat_error;
2465 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2466 return isl_stat_error;
2467 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2468 return isl_stat_error;
2469 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2470 return isl_stat_error;
2472 return isl_stat_ok;
2475 /* Analyze the conflicting constraint found by
2476 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2477 * constraint of one of the edges between distinct nodes, living, moreover
2478 * in distinct SCCs, then record the source and sink SCC as this may
2479 * be a good place to cut between SCCs.
2481 static int check_conflict(int con, void *user)
2483 int i;
2484 struct isl_sched_graph *graph = user;
2486 if (graph->src_scc >= 0)
2487 return 0;
2489 con -= graph->lp->n_eq;
2491 if (con >= graph->lp->n_ineq)
2492 return 0;
2494 for (i = 0; i < graph->n_edge; ++i) {
2495 if (!is_validity(&graph->edge[i]))
2496 continue;
2497 if (graph->edge[i].src == graph->edge[i].dst)
2498 continue;
2499 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2500 continue;
2501 if (graph->edge[i].start > con)
2502 continue;
2503 if (graph->edge[i].end <= con)
2504 continue;
2505 graph->src_scc = graph->edge[i].src->scc;
2506 graph->dst_scc = graph->edge[i].dst->scc;
2509 return 0;
2512 /* Check whether the next schedule row of the given node needs to be
2513 * non-trivial. Lower-dimensional domains may have some trivial rows,
2514 * but as soon as the number of remaining required non-trivial rows
2515 * is as large as the number or remaining rows to be computed,
2516 * all remaining rows need to be non-trivial.
2518 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2520 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2523 /* Solve the ILP problem constructed in setup_lp.
2524 * For each node such that all the remaining rows of its schedule
2525 * need to be non-trivial, we construct a non-triviality region.
2526 * This region imposes that the next row is independent of previous rows.
2527 * In particular the coefficients c_i_x are represented by t_i_x
2528 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2529 * its first columns span the rows of the previously computed part
2530 * of the schedule. The non-triviality region enforces that at least
2531 * one of the remaining components of t_i_x is non-zero, i.e.,
2532 * that the new schedule row depends on at least one of the remaining
2533 * columns of Q.
2535 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2537 int i;
2538 isl_vec *sol;
2539 isl_basic_set *lp;
2541 for (i = 0; i < graph->n; ++i) {
2542 struct isl_sched_node *node = &graph->node[i];
2543 int skip = node->rank;
2544 graph->region[i].pos = node_var_coef_offset(node) + 2 * skip;
2545 if (needs_row(graph, node))
2546 graph->region[i].len = 2 * (node->nvar - skip);
2547 else
2548 graph->region[i].len = 0;
2550 lp = isl_basic_set_copy(graph->lp);
2551 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2552 graph->region, &check_conflict, graph);
2553 return sol;
2556 /* Extract the coefficients for the variables of "node" from "sol".
2558 * Within each node, the coefficients have the following order:
2559 * - c_i_0
2560 * - c_i_n (if parametric)
2561 * - positive and negative parts of c_i_x
2563 * The c_i_x^- appear before their c_i_x^+ counterpart.
2565 * Return c_i_x = c_i_x^+ - c_i_x^-
2567 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2568 __isl_keep isl_vec *sol)
2570 int i;
2571 int pos;
2572 isl_vec *csol;
2574 if (!sol)
2575 return NULL;
2576 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2577 if (!csol)
2578 return NULL;
2580 pos = 1 + node_var_coef_offset(node);
2581 for (i = 0; i < node->nvar; ++i)
2582 isl_int_sub(csol->el[i],
2583 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2585 return csol;
2588 /* Update the schedules of all nodes based on the given solution
2589 * of the LP problem.
2590 * The new row is added to the current band.
2591 * All possibly negative coefficients are encoded as a difference
2592 * of two non-negative variables, so we need to perform the subtraction
2593 * here. Moreover, if use_cmap is set, then the solution does
2594 * not refer to the actual coefficients c_i_x, but instead to variables
2595 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2596 * In this case, we then also need to perform this multiplication
2597 * to obtain the values of c_i_x.
2599 * If coincident is set, then the caller guarantees that the new
2600 * row satisfies the coincidence constraints.
2602 static int update_schedule(struct isl_sched_graph *graph,
2603 __isl_take isl_vec *sol, int use_cmap, int coincident)
2605 int i, j;
2606 isl_vec *csol = NULL;
2608 if (!sol)
2609 goto error;
2610 if (sol->size == 0)
2611 isl_die(sol->ctx, isl_error_internal,
2612 "no solution found", goto error);
2613 if (graph->n_total_row >= graph->max_row)
2614 isl_die(sol->ctx, isl_error_internal,
2615 "too many schedule rows", goto error);
2617 for (i = 0; i < graph->n; ++i) {
2618 struct isl_sched_node *node = &graph->node[i];
2619 int pos = node->start;
2620 int row = isl_mat_rows(node->sched);
2622 isl_vec_free(csol);
2623 csol = extract_var_coef(node, sol);
2624 if (!csol)
2625 goto error;
2627 isl_map_free(node->sched_map);
2628 node->sched_map = NULL;
2629 node->sched = isl_mat_add_rows(node->sched, 1);
2630 if (!node->sched)
2631 goto error;
2632 for (j = 0; j < 1 + node->nparam; ++j)
2633 node->sched = isl_mat_set_element(node->sched,
2634 row, j, sol->el[1 + pos + j]);
2635 if (use_cmap)
2636 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2637 csol);
2638 if (!csol)
2639 goto error;
2640 for (j = 0; j < node->nvar; ++j)
2641 node->sched = isl_mat_set_element(node->sched,
2642 row, 1 + node->nparam + j, csol->el[j]);
2643 node->coincident[graph->n_total_row] = coincident;
2645 isl_vec_free(sol);
2646 isl_vec_free(csol);
2648 graph->n_row++;
2649 graph->n_total_row++;
2651 return 0;
2652 error:
2653 isl_vec_free(sol);
2654 isl_vec_free(csol);
2655 return -1;
2658 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2659 * and return this isl_aff.
2661 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2662 struct isl_sched_node *node, int row)
2664 int j;
2665 isl_int v;
2666 isl_aff *aff;
2668 isl_int_init(v);
2670 aff = isl_aff_zero_on_domain(ls);
2671 isl_mat_get_element(node->sched, row, 0, &v);
2672 aff = isl_aff_set_constant(aff, v);
2673 for (j = 0; j < node->nparam; ++j) {
2674 isl_mat_get_element(node->sched, row, 1 + j, &v);
2675 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2677 for (j = 0; j < node->nvar; ++j) {
2678 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2679 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2682 isl_int_clear(v);
2684 return aff;
2687 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2688 * and return this multi_aff.
2690 * The result is defined over the uncompressed node domain.
2692 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2693 struct isl_sched_node *node, int first, int n)
2695 int i;
2696 isl_space *space;
2697 isl_local_space *ls;
2698 isl_aff *aff;
2699 isl_multi_aff *ma;
2700 int nrow;
2702 if (!node)
2703 return NULL;
2704 nrow = isl_mat_rows(node->sched);
2705 if (node->compressed)
2706 space = isl_multi_aff_get_domain_space(node->decompress);
2707 else
2708 space = isl_space_copy(node->space);
2709 ls = isl_local_space_from_space(isl_space_copy(space));
2710 space = isl_space_from_domain(space);
2711 space = isl_space_add_dims(space, isl_dim_out, n);
2712 ma = isl_multi_aff_zero(space);
2714 for (i = first; i < first + n; ++i) {
2715 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2716 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2719 isl_local_space_free(ls);
2721 if (node->compressed)
2722 ma = isl_multi_aff_pullback_multi_aff(ma,
2723 isl_multi_aff_copy(node->compress));
2725 return ma;
2728 /* Convert node->sched into a multi_aff and return this multi_aff.
2730 * The result is defined over the uncompressed node domain.
2732 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2733 struct isl_sched_node *node)
2735 int nrow;
2737 nrow = isl_mat_rows(node->sched);
2738 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2741 /* Convert node->sched into a map and return this map.
2743 * The result is cached in node->sched_map, which needs to be released
2744 * whenever node->sched is updated.
2745 * It is defined over the uncompressed node domain.
2747 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2749 if (!node->sched_map) {
2750 isl_multi_aff *ma;
2752 ma = node_extract_schedule_multi_aff(node);
2753 node->sched_map = isl_map_from_multi_aff(ma);
2756 return isl_map_copy(node->sched_map);
2759 /* Construct a map that can be used to update a dependence relation
2760 * based on the current schedule.
2761 * That is, construct a map expressing that source and sink
2762 * are executed within the same iteration of the current schedule.
2763 * This map can then be intersected with the dependence relation.
2764 * This is not the most efficient way, but this shouldn't be a critical
2765 * operation.
2767 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2768 struct isl_sched_node *dst)
2770 isl_map *src_sched, *dst_sched;
2772 src_sched = node_extract_schedule(src);
2773 dst_sched = node_extract_schedule(dst);
2774 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2777 /* Intersect the domains of the nested relations in domain and range
2778 * of "umap" with "map".
2780 static __isl_give isl_union_map *intersect_domains(
2781 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2783 isl_union_set *uset;
2785 umap = isl_union_map_zip(umap);
2786 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2787 umap = isl_union_map_intersect_domain(umap, uset);
2788 umap = isl_union_map_zip(umap);
2789 return umap;
2792 /* Update the dependence relation of the given edge based
2793 * on the current schedule.
2794 * If the dependence is carried completely by the current schedule, then
2795 * it is removed from the edge_tables. It is kept in the list of edges
2796 * as otherwise all edge_tables would have to be recomputed.
2798 static int update_edge(struct isl_sched_graph *graph,
2799 struct isl_sched_edge *edge)
2801 int empty;
2802 isl_map *id;
2804 id = specializer(edge->src, edge->dst);
2805 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2806 if (!edge->map)
2807 goto error;
2809 if (edge->tagged_condition) {
2810 edge->tagged_condition =
2811 intersect_domains(edge->tagged_condition, id);
2812 if (!edge->tagged_condition)
2813 goto error;
2815 if (edge->tagged_validity) {
2816 edge->tagged_validity =
2817 intersect_domains(edge->tagged_validity, id);
2818 if (!edge->tagged_validity)
2819 goto error;
2822 empty = isl_map_plain_is_empty(edge->map);
2823 if (empty < 0)
2824 goto error;
2825 if (empty)
2826 graph_remove_edge(graph, edge);
2828 isl_map_free(id);
2829 return 0;
2830 error:
2831 isl_map_free(id);
2832 return -1;
2835 /* Does the domain of "umap" intersect "uset"?
2837 static int domain_intersects(__isl_keep isl_union_map *umap,
2838 __isl_keep isl_union_set *uset)
2840 int empty;
2842 umap = isl_union_map_copy(umap);
2843 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2844 empty = isl_union_map_is_empty(umap);
2845 isl_union_map_free(umap);
2847 return empty < 0 ? -1 : !empty;
2850 /* Does the range of "umap" intersect "uset"?
2852 static int range_intersects(__isl_keep isl_union_map *umap,
2853 __isl_keep isl_union_set *uset)
2855 int empty;
2857 umap = isl_union_map_copy(umap);
2858 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2859 empty = isl_union_map_is_empty(umap);
2860 isl_union_map_free(umap);
2862 return empty < 0 ? -1 : !empty;
2865 /* Are the condition dependences of "edge" local with respect to
2866 * the current schedule?
2868 * That is, are domain and range of the condition dependences mapped
2869 * to the same point?
2871 * In other words, is the condition false?
2873 static int is_condition_false(struct isl_sched_edge *edge)
2875 isl_union_map *umap;
2876 isl_map *map, *sched, *test;
2877 int empty, local;
2879 empty = isl_union_map_is_empty(edge->tagged_condition);
2880 if (empty < 0 || empty)
2881 return empty;
2883 umap = isl_union_map_copy(edge->tagged_condition);
2884 umap = isl_union_map_zip(umap);
2885 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2886 map = isl_map_from_union_map(umap);
2888 sched = node_extract_schedule(edge->src);
2889 map = isl_map_apply_domain(map, sched);
2890 sched = node_extract_schedule(edge->dst);
2891 map = isl_map_apply_range(map, sched);
2893 test = isl_map_identity(isl_map_get_space(map));
2894 local = isl_map_is_subset(map, test);
2895 isl_map_free(map);
2896 isl_map_free(test);
2898 return local;
2901 /* For each conditional validity constraint that is adjacent
2902 * to a condition with domain in condition_source or range in condition_sink,
2903 * turn it into an unconditional validity constraint.
2905 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2906 __isl_take isl_union_set *condition_source,
2907 __isl_take isl_union_set *condition_sink)
2909 int i;
2911 condition_source = isl_union_set_coalesce(condition_source);
2912 condition_sink = isl_union_set_coalesce(condition_sink);
2914 for (i = 0; i < graph->n_edge; ++i) {
2915 int adjacent;
2916 isl_union_map *validity;
2918 if (!is_conditional_validity(&graph->edge[i]))
2919 continue;
2920 if (is_validity(&graph->edge[i]))
2921 continue;
2923 validity = graph->edge[i].tagged_validity;
2924 adjacent = domain_intersects(validity, condition_sink);
2925 if (adjacent >= 0 && !adjacent)
2926 adjacent = range_intersects(validity, condition_source);
2927 if (adjacent < 0)
2928 goto error;
2929 if (!adjacent)
2930 continue;
2932 set_validity(&graph->edge[i]);
2935 isl_union_set_free(condition_source);
2936 isl_union_set_free(condition_sink);
2937 return 0;
2938 error:
2939 isl_union_set_free(condition_source);
2940 isl_union_set_free(condition_sink);
2941 return -1;
2944 /* Update the dependence relations of all edges based on the current schedule
2945 * and enforce conditional validity constraints that are adjacent
2946 * to satisfied condition constraints.
2948 * First check if any of the condition constraints are satisfied
2949 * (i.e., not local to the outer schedule) and keep track of
2950 * their domain and range.
2951 * Then update all dependence relations (which removes the non-local
2952 * constraints).
2953 * Finally, if any condition constraints turned out to be satisfied,
2954 * then turn all adjacent conditional validity constraints into
2955 * unconditional validity constraints.
2957 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2959 int i;
2960 int any = 0;
2961 isl_union_set *source, *sink;
2963 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2964 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2965 for (i = 0; i < graph->n_edge; ++i) {
2966 int local;
2967 isl_union_set *uset;
2968 isl_union_map *umap;
2970 if (!is_condition(&graph->edge[i]))
2971 continue;
2972 if (is_local(&graph->edge[i]))
2973 continue;
2974 local = is_condition_false(&graph->edge[i]);
2975 if (local < 0)
2976 goto error;
2977 if (local)
2978 continue;
2980 any = 1;
2982 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2983 uset = isl_union_map_domain(umap);
2984 source = isl_union_set_union(source, uset);
2986 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2987 uset = isl_union_map_range(umap);
2988 sink = isl_union_set_union(sink, uset);
2991 for (i = graph->n_edge - 1; i >= 0; --i) {
2992 if (update_edge(graph, &graph->edge[i]) < 0)
2993 goto error;
2996 if (any)
2997 return unconditionalize_adjacent_validity(graph, source, sink);
2999 isl_union_set_free(source);
3000 isl_union_set_free(sink);
3001 return 0;
3002 error:
3003 isl_union_set_free(source);
3004 isl_union_set_free(sink);
3005 return -1;
3008 static void next_band(struct isl_sched_graph *graph)
3010 graph->band_start = graph->n_total_row;
3013 /* Return the union of the universe domains of the nodes in "graph"
3014 * that satisfy "pred".
3016 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3017 struct isl_sched_graph *graph,
3018 int (*pred)(struct isl_sched_node *node, int data), int data)
3020 int i;
3021 isl_set *set;
3022 isl_union_set *dom;
3024 for (i = 0; i < graph->n; ++i)
3025 if (pred(&graph->node[i], data))
3026 break;
3028 if (i >= graph->n)
3029 isl_die(ctx, isl_error_internal,
3030 "empty component", return NULL);
3032 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3033 dom = isl_union_set_from_set(set);
3035 for (i = i + 1; i < graph->n; ++i) {
3036 if (!pred(&graph->node[i], data))
3037 continue;
3038 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3039 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3042 return dom;
3045 /* Return a list of unions of universe domains, where each element
3046 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3048 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3049 struct isl_sched_graph *graph)
3051 int i;
3052 isl_union_set_list *filters;
3054 filters = isl_union_set_list_alloc(ctx, graph->scc);
3055 for (i = 0; i < graph->scc; ++i) {
3056 isl_union_set *dom;
3058 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3059 filters = isl_union_set_list_add(filters, dom);
3062 return filters;
3065 /* Return a list of two unions of universe domains, one for the SCCs up
3066 * to and including graph->src_scc and another for the other SCCs.
3068 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3069 struct isl_sched_graph *graph)
3071 isl_union_set *dom;
3072 isl_union_set_list *filters;
3074 filters = isl_union_set_list_alloc(ctx, 2);
3075 dom = isl_sched_graph_domain(ctx, graph,
3076 &node_scc_at_most, graph->src_scc);
3077 filters = isl_union_set_list_add(filters, dom);
3078 dom = isl_sched_graph_domain(ctx, graph,
3079 &node_scc_at_least, graph->src_scc + 1);
3080 filters = isl_union_set_list_add(filters, dom);
3082 return filters;
3085 /* Copy nodes that satisfy node_pred from the src dependence graph
3086 * to the dst dependence graph.
3088 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3089 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3091 int i;
3093 dst->n = 0;
3094 for (i = 0; i < src->n; ++i) {
3095 int j;
3097 if (!node_pred(&src->node[i], data))
3098 continue;
3100 j = dst->n;
3101 dst->node[j].space = isl_space_copy(src->node[i].space);
3102 dst->node[j].compressed = src->node[i].compressed;
3103 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3104 dst->node[j].compress =
3105 isl_multi_aff_copy(src->node[i].compress);
3106 dst->node[j].decompress =
3107 isl_multi_aff_copy(src->node[i].decompress);
3108 dst->node[j].nvar = src->node[i].nvar;
3109 dst->node[j].nparam = src->node[i].nparam;
3110 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3111 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3112 dst->node[j].coincident = src->node[i].coincident;
3113 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3114 dst->node[j].max = isl_vec_copy(src->node[i].max);
3115 dst->n++;
3117 if (!dst->node[j].space || !dst->node[j].sched)
3118 return -1;
3119 if (dst->node[j].compressed &&
3120 (!dst->node[j].hull || !dst->node[j].compress ||
3121 !dst->node[j].decompress))
3122 return -1;
3125 return 0;
3128 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3129 * to the dst dependence graph.
3130 * If the source or destination node of the edge is not in the destination
3131 * graph, then it must be a backward proximity edge and it should simply
3132 * be ignored.
3134 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3135 struct isl_sched_graph *src,
3136 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3138 int i;
3139 enum isl_edge_type t;
3141 dst->n_edge = 0;
3142 for (i = 0; i < src->n_edge; ++i) {
3143 struct isl_sched_edge *edge = &src->edge[i];
3144 isl_map *map;
3145 isl_union_map *tagged_condition;
3146 isl_union_map *tagged_validity;
3147 struct isl_sched_node *dst_src, *dst_dst;
3149 if (!edge_pred(edge, data))
3150 continue;
3152 if (isl_map_plain_is_empty(edge->map))
3153 continue;
3155 dst_src = graph_find_node(ctx, dst, edge->src->space);
3156 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3157 if (!dst_src || !dst_dst) {
3158 if (is_validity(edge) || is_conditional_validity(edge))
3159 isl_die(ctx, isl_error_internal,
3160 "backward (conditional) validity edge",
3161 return -1);
3162 continue;
3165 map = isl_map_copy(edge->map);
3166 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3167 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3169 dst->edge[dst->n_edge].src = dst_src;
3170 dst->edge[dst->n_edge].dst = dst_dst;
3171 dst->edge[dst->n_edge].map = map;
3172 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3173 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3174 dst->edge[dst->n_edge].types = edge->types;
3175 dst->n_edge++;
3177 if (edge->tagged_condition && !tagged_condition)
3178 return -1;
3179 if (edge->tagged_validity && !tagged_validity)
3180 return -1;
3182 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3183 if (edge !=
3184 graph_find_edge(src, t, edge->src, edge->dst))
3185 continue;
3186 if (graph_edge_table_add(ctx, dst, t,
3187 &dst->edge[dst->n_edge - 1]) < 0)
3188 return -1;
3192 return 0;
3195 /* Compute the maximal number of variables over all nodes.
3196 * This is the maximal number of linearly independent schedule
3197 * rows that we need to compute.
3198 * Just in case we end up in a part of the dependence graph
3199 * with only lower-dimensional domains, we make sure we will
3200 * compute the required amount of extra linearly independent rows.
3202 static int compute_maxvar(struct isl_sched_graph *graph)
3204 int i;
3206 graph->maxvar = 0;
3207 for (i = 0; i < graph->n; ++i) {
3208 struct isl_sched_node *node = &graph->node[i];
3209 int nvar;
3211 if (node_update_cmap(node) < 0)
3212 return -1;
3213 nvar = node->nvar + graph->n_row - node->rank;
3214 if (nvar > graph->maxvar)
3215 graph->maxvar = nvar;
3218 return 0;
3221 /* Extract the subgraph of "graph" that consists of the node satisfying
3222 * "node_pred" and the edges satisfying "edge_pred" and store
3223 * the result in "sub".
3225 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3226 int (*node_pred)(struct isl_sched_node *node, int data),
3227 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3228 int data, struct isl_sched_graph *sub)
3230 int i, n = 0, n_edge = 0;
3231 int t;
3233 for (i = 0; i < graph->n; ++i)
3234 if (node_pred(&graph->node[i], data))
3235 ++n;
3236 for (i = 0; i < graph->n_edge; ++i)
3237 if (edge_pred(&graph->edge[i], data))
3238 ++n_edge;
3239 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3240 return -1;
3241 if (copy_nodes(sub, graph, node_pred, data) < 0)
3242 return -1;
3243 if (graph_init_table(ctx, sub) < 0)
3244 return -1;
3245 for (t = 0; t <= isl_edge_last; ++t)
3246 sub->max_edge[t] = graph->max_edge[t];
3247 if (graph_init_edge_tables(ctx, sub) < 0)
3248 return -1;
3249 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3250 return -1;
3251 sub->n_row = graph->n_row;
3252 sub->max_row = graph->max_row;
3253 sub->n_total_row = graph->n_total_row;
3254 sub->band_start = graph->band_start;
3256 return 0;
3259 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3260 struct isl_sched_graph *graph);
3261 static __isl_give isl_schedule_node *compute_schedule_wcc(
3262 isl_schedule_node *node, struct isl_sched_graph *graph);
3264 /* Compute a schedule for a subgraph of "graph". In particular, for
3265 * the graph composed of nodes that satisfy node_pred and edges that
3266 * that satisfy edge_pred.
3267 * If the subgraph is known to consist of a single component, then wcc should
3268 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3269 * Otherwise, we call compute_schedule, which will check whether the subgraph
3270 * is connected.
3272 * The schedule is inserted at "node" and the updated schedule node
3273 * is returned.
3275 static __isl_give isl_schedule_node *compute_sub_schedule(
3276 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3277 struct isl_sched_graph *graph,
3278 int (*node_pred)(struct isl_sched_node *node, int data),
3279 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3280 int data, int wcc)
3282 struct isl_sched_graph split = { 0 };
3284 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3285 &split) < 0)
3286 goto error;
3288 if (wcc)
3289 node = compute_schedule_wcc(node, &split);
3290 else
3291 node = compute_schedule(node, &split);
3293 graph_free(ctx, &split);
3294 return node;
3295 error:
3296 graph_free(ctx, &split);
3297 return isl_schedule_node_free(node);
3300 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3302 return edge->src->scc == scc && edge->dst->scc == scc;
3305 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3307 return edge->dst->scc <= scc;
3310 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3312 return edge->src->scc >= scc;
3315 /* Reset the current band by dropping all its schedule rows.
3317 static int reset_band(struct isl_sched_graph *graph)
3319 int i;
3320 int drop;
3322 drop = graph->n_total_row - graph->band_start;
3323 graph->n_total_row -= drop;
3324 graph->n_row -= drop;
3326 for (i = 0; i < graph->n; ++i) {
3327 struct isl_sched_node *node = &graph->node[i];
3329 isl_map_free(node->sched_map);
3330 node->sched_map = NULL;
3332 node->sched = isl_mat_drop_rows(node->sched,
3333 graph->band_start, drop);
3335 if (!node->sched)
3336 return -1;
3339 return 0;
3342 /* Split the current graph into two parts and compute a schedule for each
3343 * part individually. In particular, one part consists of all SCCs up
3344 * to and including graph->src_scc, while the other part contains the other
3345 * SCCs. The split is enforced by a sequence node inserted at position "node"
3346 * in the schedule tree. Return the updated schedule node.
3347 * If either of these two parts consists of a sequence, then it is spliced
3348 * into the sequence containing the two parts.
3350 * The current band is reset. It would be possible to reuse
3351 * the previously computed rows as the first rows in the next
3352 * band, but recomputing them may result in better rows as we are looking
3353 * at a smaller part of the dependence graph.
3355 static __isl_give isl_schedule_node *compute_split_schedule(
3356 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3358 int is_seq;
3359 isl_ctx *ctx;
3360 isl_union_set_list *filters;
3362 if (!node)
3363 return NULL;
3365 if (reset_band(graph) < 0)
3366 return isl_schedule_node_free(node);
3368 next_band(graph);
3370 ctx = isl_schedule_node_get_ctx(node);
3371 filters = extract_split(ctx, graph);
3372 node = isl_schedule_node_insert_sequence(node, filters);
3373 node = isl_schedule_node_child(node, 1);
3374 node = isl_schedule_node_child(node, 0);
3376 node = compute_sub_schedule(node, ctx, graph,
3377 &node_scc_at_least, &edge_src_scc_at_least,
3378 graph->src_scc + 1, 0);
3379 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3380 node = isl_schedule_node_parent(node);
3381 node = isl_schedule_node_parent(node);
3382 if (is_seq)
3383 node = isl_schedule_node_sequence_splice_child(node, 1);
3384 node = isl_schedule_node_child(node, 0);
3385 node = isl_schedule_node_child(node, 0);
3386 node = compute_sub_schedule(node, ctx, graph,
3387 &node_scc_at_most, &edge_dst_scc_at_most,
3388 graph->src_scc, 0);
3389 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3390 node = isl_schedule_node_parent(node);
3391 node = isl_schedule_node_parent(node);
3392 if (is_seq)
3393 node = isl_schedule_node_sequence_splice_child(node, 0);
3395 return node;
3398 /* Insert a band node at position "node" in the schedule tree corresponding
3399 * to the current band in "graph". Mark the band node permutable
3400 * if "permutable" is set.
3401 * The partial schedules and the coincidence property are extracted
3402 * from the graph nodes.
3403 * Return the updated schedule node.
3405 static __isl_give isl_schedule_node *insert_current_band(
3406 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3407 int permutable)
3409 int i;
3410 int start, end, n;
3411 isl_multi_aff *ma;
3412 isl_multi_pw_aff *mpa;
3413 isl_multi_union_pw_aff *mupa;
3415 if (!node)
3416 return NULL;
3418 if (graph->n < 1)
3419 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3420 "graph should have at least one node",
3421 return isl_schedule_node_free(node));
3423 start = graph->band_start;
3424 end = graph->n_total_row;
3425 n = end - start;
3427 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3428 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3429 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3431 for (i = 1; i < graph->n; ++i) {
3432 isl_multi_union_pw_aff *mupa_i;
3434 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3435 start, n);
3436 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3437 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3438 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3440 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3442 for (i = 0; i < n; ++i)
3443 node = isl_schedule_node_band_member_set_coincident(node, i,
3444 graph->node[0].coincident[start + i]);
3445 node = isl_schedule_node_band_set_permutable(node, permutable);
3447 return node;
3450 /* Update the dependence relations based on the current schedule,
3451 * add the current band to "node" and then continue with the computation
3452 * of the next band.
3453 * Return the updated schedule node.
3455 static __isl_give isl_schedule_node *compute_next_band(
3456 __isl_take isl_schedule_node *node,
3457 struct isl_sched_graph *graph, int permutable)
3459 isl_ctx *ctx;
3461 if (!node)
3462 return NULL;
3464 ctx = isl_schedule_node_get_ctx(node);
3465 if (update_edges(ctx, graph) < 0)
3466 return isl_schedule_node_free(node);
3467 node = insert_current_band(node, graph, permutable);
3468 next_band(graph);
3470 node = isl_schedule_node_child(node, 0);
3471 node = compute_schedule(node, graph);
3472 node = isl_schedule_node_parent(node);
3474 return node;
3477 /* Add constraints to graph->lp that force the dependence "map" (which
3478 * is part of the dependence relation of "edge")
3479 * to be respected and attempt to carry it, where the edge is one from
3480 * a node j to itself. "pos" is the sequence number of the given map.
3481 * That is, add constraints that enforce
3483 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3484 * = c_j_x (y - x) >= e_i
3486 * for each (x,y) in R.
3487 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3488 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3489 * with each coefficient in c_j_x represented as a pair of non-negative
3490 * coefficients.
3492 static int add_intra_constraints(struct isl_sched_graph *graph,
3493 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3495 int offset;
3496 isl_ctx *ctx = isl_map_get_ctx(map);
3497 isl_dim_map *dim_map;
3498 isl_basic_set *coef;
3499 struct isl_sched_node *node = edge->src;
3501 coef = intra_coefficients(graph, node, map);
3502 if (!coef)
3503 return -1;
3505 offset = coef_var_offset(coef);
3506 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3507 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3508 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3509 coef->n_eq, coef->n_ineq);
3510 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3511 coef, dim_map);
3513 return 0;
3516 /* Add constraints to graph->lp that force the dependence "map" (which
3517 * is part of the dependence relation of "edge")
3518 * to be respected and attempt to carry it, where the edge is one from
3519 * node j to node k. "pos" is the sequence number of the given map.
3520 * That is, add constraints that enforce
3522 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3524 * for each (x,y) in R.
3525 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
3526 * of valid constraints for R and then plug in
3527 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3528 * with each coefficient (except e_i, c_*_0 and c_*_n)
3529 * represented as a pair of non-negative coefficients.
3531 static int add_inter_constraints(struct isl_sched_graph *graph,
3532 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3534 int offset;
3535 isl_ctx *ctx = isl_map_get_ctx(map);
3536 isl_dim_map *dim_map;
3537 isl_basic_set *coef;
3538 struct isl_sched_node *src = edge->src;
3539 struct isl_sched_node *dst = edge->dst;
3541 coef = inter_coefficients(graph, edge, map);
3542 if (!coef)
3543 return -1;
3545 offset = coef_var_offset(coef);
3546 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3547 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3548 graph->lp = isl_basic_set_extend_constraints(graph->lp,
3549 coef->n_eq, coef->n_ineq);
3550 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
3551 coef, dim_map);
3553 return 0;
3556 /* Add constraints to graph->lp that force all (conditional) validity
3557 * dependences to be respected and attempt to carry them.
3559 static isl_stat add_all_constraints(struct isl_sched_graph *graph)
3561 int i, j;
3562 int pos;
3564 pos = 0;
3565 for (i = 0; i < graph->n_edge; ++i) {
3566 struct isl_sched_edge *edge= &graph->edge[i];
3568 if (!is_any_validity(edge))
3569 continue;
3571 for (j = 0; j < edge->map->n; ++j) {
3572 isl_basic_map *bmap;
3573 isl_map *map;
3575 bmap = isl_basic_map_copy(edge->map->p[j]);
3576 map = isl_map_from_basic_map(bmap);
3578 if (edge->src == edge->dst &&
3579 add_intra_constraints(graph, edge, map, pos) < 0)
3580 return isl_stat_error;
3581 if (edge->src != edge->dst &&
3582 add_inter_constraints(graph, edge, map, pos) < 0)
3583 return isl_stat_error;
3584 ++pos;
3588 return isl_stat_ok;
3591 /* Count the number of equality and inequality constraints
3592 * that will be added to the carry_lp problem.
3593 * We count each edge exactly once.
3595 static isl_stat count_all_constraints(struct isl_sched_graph *graph,
3596 int *n_eq, int *n_ineq)
3598 int i, j;
3600 *n_eq = *n_ineq = 0;
3601 for (i = 0; i < graph->n_edge; ++i) {
3602 struct isl_sched_edge *edge= &graph->edge[i];
3604 if (!is_any_validity(edge))
3605 continue;
3607 for (j = 0; j < edge->map->n; ++j) {
3608 isl_basic_map *bmap;
3609 isl_map *map;
3611 bmap = isl_basic_map_copy(edge->map->p[j]);
3612 map = isl_map_from_basic_map(bmap);
3614 if (count_map_constraints(graph, edge, map,
3615 n_eq, n_ineq, 1, 0) < 0)
3616 return isl_stat_error;
3620 return isl_stat_ok;
3623 /* Return the total number of (validity) edges that carry_dependences will
3624 * attempt to carry.
3626 static int count_carry_edges(struct isl_sched_graph *graph)
3628 int i;
3629 int n_edge;
3631 n_edge = 0;
3632 for (i = 0; i < graph->n_edge; ++i) {
3633 struct isl_sched_edge *edge = &graph->edge[i];
3635 if (!is_any_validity(edge))
3636 continue;
3638 n_edge += isl_map_n_basic_map(edge->map);
3641 return n_edge;
3644 /* Construct an LP problem for finding schedule coefficients
3645 * such that the schedule carries as many validity dependences as possible.
3646 * In particular, for each dependence i, we bound the dependence distance
3647 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3648 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3649 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3650 * Note that if the dependence relation is a union of basic maps,
3651 * then we have to consider each basic map individually as it may only
3652 * be possible to carry the dependences expressed by some of those
3653 * basic maps and not all of them.
3654 * Below, we consider each of those basic maps as a separate "edge".
3655 * "n_edge" is the number of these edges.
3657 * All variables of the LP are non-negative. The actual coefficients
3658 * may be negative, so each coefficient is represented as the difference
3659 * of two non-negative variables. The negative part always appears
3660 * immediately before the positive part.
3661 * Other than that, the variables have the following order
3663 * - sum of (1 - e_i) over all edges
3664 * - sum of all c_n coefficients
3665 * (unconstrained when computing non-parametric schedules)
3666 * - sum of positive and negative parts of all c_x coefficients
3667 * - for each edge
3668 * - e_i
3669 * - for each node
3670 * - c_i_0
3671 * - c_i_n (if parametric)
3672 * - positive and negative parts of c_i_x
3674 * The constraints are those from the (validity) edges plus three equalities
3675 * to express the sums and n_edge inequalities to express e_i <= 1.
3677 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3678 int n_edge)
3680 int i;
3681 int k;
3682 isl_space *dim;
3683 unsigned total;
3684 int n_eq, n_ineq;
3686 total = 3 + n_edge;
3687 for (i = 0; i < graph->n; ++i) {
3688 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3689 node->start = total;
3690 total += 1 + node->nparam + 2 * node->nvar;
3693 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3694 return isl_stat_error;
3696 dim = isl_space_set_alloc(ctx, 0, total);
3697 isl_basic_set_free(graph->lp);
3698 n_eq += 3;
3699 n_ineq += n_edge;
3700 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3701 graph->lp = isl_basic_set_set_rational(graph->lp);
3703 k = isl_basic_set_alloc_equality(graph->lp);
3704 if (k < 0)
3705 return isl_stat_error;
3706 isl_seq_clr(graph->lp->eq[k], 1 + total);
3707 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3708 isl_int_set_si(graph->lp->eq[k][1], 1);
3709 for (i = 0; i < n_edge; ++i)
3710 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3712 if (add_param_sum_constraint(graph, 1) < 0)
3713 return isl_stat_error;
3714 if (add_var_sum_constraint(graph, 2) < 0)
3715 return isl_stat_error;
3717 for (i = 0; i < n_edge; ++i) {
3718 k = isl_basic_set_alloc_inequality(graph->lp);
3719 if (k < 0)
3720 return isl_stat_error;
3721 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3722 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3723 isl_int_set_si(graph->lp->ineq[k][0], 1);
3726 if (add_all_constraints(graph) < 0)
3727 return isl_stat_error;
3729 return isl_stat_ok;
3732 static __isl_give isl_schedule_node *compute_component_schedule(
3733 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3734 int wcc);
3736 /* Comparison function for sorting the statements based on
3737 * the corresponding value in "r".
3739 static int smaller_value(const void *a, const void *b, void *data)
3741 isl_vec *r = data;
3742 const int *i1 = a;
3743 const int *i2 = b;
3745 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3748 /* If the schedule_split_scaled option is set and if the linear
3749 * parts of the scheduling rows for all nodes in the graphs have
3750 * a non-trivial common divisor, then split off the remainder of the
3751 * constant term modulo this common divisor from the linear part.
3752 * Otherwise, insert a band node directly and continue with
3753 * the construction of the schedule.
3755 * If a non-trivial common divisor is found, then
3756 * the linear part is reduced and the remainder is enforced
3757 * by a sequence node with the children placed in the order
3758 * of this remainder.
3759 * In particular, we assign an scc index based on the remainder and
3760 * then rely on compute_component_schedule to insert the sequence and
3761 * to continue the schedule construction on each part.
3763 static __isl_give isl_schedule_node *split_scaled(
3764 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3766 int i;
3767 int row;
3768 int scc;
3769 isl_ctx *ctx;
3770 isl_int gcd, gcd_i;
3771 isl_vec *r;
3772 int *order;
3774 if (!node)
3775 return NULL;
3777 ctx = isl_schedule_node_get_ctx(node);
3778 if (!ctx->opt->schedule_split_scaled)
3779 return compute_next_band(node, graph, 0);
3780 if (graph->n <= 1)
3781 return compute_next_band(node, graph, 0);
3783 isl_int_init(gcd);
3784 isl_int_init(gcd_i);
3786 isl_int_set_si(gcd, 0);
3788 row = isl_mat_rows(graph->node[0].sched) - 1;
3790 for (i = 0; i < graph->n; ++i) {
3791 struct isl_sched_node *node = &graph->node[i];
3792 int cols = isl_mat_cols(node->sched);
3794 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3795 isl_int_gcd(gcd, gcd, gcd_i);
3798 isl_int_clear(gcd_i);
3800 if (isl_int_cmp_si(gcd, 1) <= 0) {
3801 isl_int_clear(gcd);
3802 return compute_next_band(node, graph, 0);
3805 r = isl_vec_alloc(ctx, graph->n);
3806 order = isl_calloc_array(ctx, int, graph->n);
3807 if (!r || !order)
3808 goto error;
3810 for (i = 0; i < graph->n; ++i) {
3811 struct isl_sched_node *node = &graph->node[i];
3813 order[i] = i;
3814 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3815 isl_int_fdiv_q(node->sched->row[row][0],
3816 node->sched->row[row][0], gcd);
3817 isl_int_mul(node->sched->row[row][0],
3818 node->sched->row[row][0], gcd);
3819 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3820 if (!node->sched)
3821 goto error;
3824 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3825 goto error;
3827 scc = 0;
3828 for (i = 0; i < graph->n; ++i) {
3829 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3830 ++scc;
3831 graph->node[order[i]].scc = scc;
3833 graph->scc = ++scc;
3834 graph->weak = 0;
3836 isl_int_clear(gcd);
3837 isl_vec_free(r);
3838 free(order);
3840 if (update_edges(ctx, graph) < 0)
3841 return isl_schedule_node_free(node);
3842 node = insert_current_band(node, graph, 0);
3843 next_band(graph);
3845 node = isl_schedule_node_child(node, 0);
3846 node = compute_component_schedule(node, graph, 0);
3847 node = isl_schedule_node_parent(node);
3849 return node;
3850 error:
3851 isl_vec_free(r);
3852 free(order);
3853 isl_int_clear(gcd);
3854 return isl_schedule_node_free(node);
3857 /* Is the schedule row "sol" trivial on node "node"?
3858 * That is, is the solution zero on the dimensions linearly independent of
3859 * the previously found solutions?
3860 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3862 * Each coefficient is represented as the difference between
3863 * two non-negative values in "sol". "sol" has been computed
3864 * in terms of the original iterators (i.e., without use of cmap).
3865 * We construct the schedule row s and write it as a linear
3866 * combination of (linear combinations of) previously computed schedule rows.
3867 * s = Q c or c = U s.
3868 * If the final entries of c are all zero, then the solution is trivial.
3870 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3872 int trivial;
3873 isl_vec *node_sol;
3875 if (!sol)
3876 return -1;
3877 if (node->nvar == node->rank)
3878 return 0;
3880 node_sol = extract_var_coef(node, sol);
3881 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3882 if (!node_sol)
3883 return -1;
3885 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3886 node->nvar - node->rank) == -1;
3888 isl_vec_free(node_sol);
3890 return trivial;
3893 /* Is the schedule row "sol" trivial on any node where it should
3894 * not be trivial?
3895 * "sol" has been computed in terms of the original iterators
3896 * (i.e., without use of cmap).
3897 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3899 static int is_any_trivial(struct isl_sched_graph *graph,
3900 __isl_keep isl_vec *sol)
3902 int i;
3904 for (i = 0; i < graph->n; ++i) {
3905 struct isl_sched_node *node = &graph->node[i];
3906 int trivial;
3908 if (!needs_row(graph, node))
3909 continue;
3910 trivial = is_trivial(node, sol);
3911 if (trivial < 0 || trivial)
3912 return trivial;
3915 return 0;
3918 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
3919 * If so, return the position of the coalesced dimension.
3920 * Otherwise, return node->nvar or -1 on error.
3922 * In particular, look for pairs of coefficients c_i and c_j such that
3923 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
3924 * If any such pair is found, then return i.
3925 * If size_i is infinity, then no check on c_i needs to be performed.
3927 static int find_node_coalescing(struct isl_sched_node *node,
3928 __isl_keep isl_vec *sol)
3930 int i, j;
3931 isl_int max;
3932 isl_vec *csol;
3934 if (node->nvar <= 1)
3935 return node->nvar;
3937 csol = extract_var_coef(node, sol);
3938 if (!csol)
3939 return -1;
3940 isl_int_init(max);
3941 for (i = 0; i < node->nvar; ++i) {
3942 isl_val *v;
3944 if (isl_int_is_zero(csol->el[i]))
3945 continue;
3946 v = isl_multi_val_get_val(node->sizes, i);
3947 if (!v)
3948 goto error;
3949 if (!isl_val_is_int(v)) {
3950 isl_val_free(v);
3951 continue;
3953 isl_int_mul(max, v->n, csol->el[i]);
3954 isl_val_free(v);
3956 for (j = 0; j < node->nvar; ++j) {
3957 if (j == i)
3958 continue;
3959 if (isl_int_abs_ge(csol->el[j], max))
3960 break;
3962 if (j < node->nvar)
3963 break;
3966 isl_int_clear(max);
3967 isl_vec_free(csol);
3968 return i;
3969 error:
3970 isl_int_clear(max);
3971 isl_vec_free(csol);
3972 return -1;
3975 /* Force the schedule coefficient at position "pos" of "node" to be zero
3976 * in "tl".
3977 * The coefficient is encoded as the difference between two non-negative
3978 * variables. Force these two variables to have the same value.
3980 static __isl_give isl_tab_lexmin *zero_out_node_coef(
3981 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
3983 int dim;
3984 isl_ctx *ctx;
3985 isl_vec *eq;
3987 ctx = isl_space_get_ctx(node->space);
3988 dim = isl_tab_lexmin_dim(tl);
3989 if (dim < 0)
3990 return isl_tab_lexmin_free(tl);
3991 eq = isl_vec_alloc(ctx, 1 + dim);
3992 eq = isl_vec_clr(eq);
3993 if (!eq)
3994 return isl_tab_lexmin_free(tl);
3996 pos = 1 + node_var_coef_offset(node) + 2 * pos;
3997 isl_int_set_si(eq->el[pos], 1);
3998 isl_int_set_si(eq->el[pos + 1], -1);
3999 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4000 isl_vec_free(eq);
4002 return tl;
4005 /* Return the lexicographically smallest rational point in the basic set
4006 * from which "tl" was constructed, double checking that this input set
4007 * was not empty.
4009 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4011 isl_vec *sol;
4013 sol = isl_tab_lexmin_get_solution(tl);
4014 if (!sol)
4015 return NULL;
4016 if (sol->size == 0)
4017 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4018 "error in schedule construction",
4019 return isl_vec_free(sol));
4020 return sol;
4023 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4024 * carry any of the "n_edge" groups of dependences?
4025 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4026 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4027 * by the edge are carried by the solution.
4028 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4029 * one of those is carried.
4031 * Note that despite the fact that the problem is solved using a rational
4032 * solver, the solution is guaranteed to be integral.
4033 * Specifically, the dependence distance lower bounds e_i (and therefore
4034 * also their sum) are integers. See Lemma 5 of [1].
4036 * Any potential denominator of the sum is cleared by this function.
4037 * The denominator is not relevant for any of the other elements
4038 * in the solution.
4040 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4041 * Problem, Part II: Multi-Dimensional Time.
4042 * In Intl. Journal of Parallel Programming, 1992.
4044 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4046 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4047 isl_int_set_si(sol->el[0], 1);
4048 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4051 /* Return the lexicographically smallest rational point in "lp",
4052 * assuming that all variables are non-negative and performing some
4053 * additional sanity checks.
4054 * In particular, "lp" should not be empty by construction.
4055 * Double check that this is the case.
4056 * Also, check that dependences are carried for at least one of
4057 * the "n_edge" edges.
4059 * If the schedule_treat_coalescing option is set and
4060 * if the computed schedule performs loop coalescing on a given node,
4061 * i.e., if it is of the form
4063 * c_i i + c_j j + ...
4065 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4066 * to cut out this solution. Repeat this process until no more loop
4067 * coalescing occurs or until no more dependences can be carried.
4068 * In the latter case, revert to the previously computed solution.
4070 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4071 __isl_take isl_basic_set *lp, int n_edge)
4073 int i, pos;
4074 isl_ctx *ctx;
4075 isl_tab_lexmin *tl;
4076 isl_vec *sol, *prev = NULL;
4077 int treat_coalescing;
4079 if (!lp)
4080 return NULL;
4081 ctx = isl_basic_set_get_ctx(lp);
4082 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4083 tl = isl_tab_lexmin_from_basic_set(lp);
4085 do {
4086 sol = non_empty_solution(tl);
4087 if (!sol)
4088 goto error;
4090 if (!carries_dependences(sol, n_edge)) {
4091 if (!prev)
4092 isl_die(ctx, isl_error_unknown,
4093 "unable to carry dependences",
4094 goto error);
4095 isl_vec_free(sol);
4096 sol = prev;
4097 break;
4099 prev = isl_vec_free(prev);
4100 if (!treat_coalescing)
4101 break;
4102 for (i = 0; i < graph->n; ++i) {
4103 struct isl_sched_node *node = &graph->node[i];
4105 pos = find_node_coalescing(node, sol);
4106 if (pos < 0)
4107 goto error;
4108 if (pos < node->nvar)
4109 break;
4111 if (i < graph->n) {
4112 prev = sol;
4113 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4115 } while (i < graph->n);
4117 isl_tab_lexmin_free(tl);
4119 return sol;
4120 error:
4121 isl_tab_lexmin_free(tl);
4122 isl_vec_free(prev);
4123 isl_vec_free(sol);
4124 return NULL;
4127 /* Construct a schedule row for each node such that as many validity dependences
4128 * as possible are carried and then continue with the next band.
4130 * If there are no validity dependences, then no dependence can be carried and
4131 * the procedure is guaranteed to fail. If there is more than one component,
4132 * then try computing a schedule on each component separately
4133 * to prevent or at least postpone this failure.
4135 * If the computed schedule row turns out to be trivial on one or
4136 * more nodes where it should not be trivial, then we throw it away
4137 * and try again on each component separately.
4139 * If there is only one component, then we accept the schedule row anyway,
4140 * but we do not consider it as a complete row and therefore do not
4141 * increment graph->n_row. Note that the ranks of the nodes that
4142 * do get a non-trivial schedule part will get updated regardless and
4143 * graph->maxvar is computed based on these ranks. The test for
4144 * whether more schedule rows are required in compute_schedule_wcc
4145 * is therefore not affected.
4147 * Insert a band corresponding to the schedule row at position "node"
4148 * of the schedule tree and continue with the construction of the schedule.
4149 * This insertion and the continued construction is performed by split_scaled
4150 * after optionally checking for non-trivial common divisors.
4152 static __isl_give isl_schedule_node *carry_dependences(
4153 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4155 int n_edge;
4156 int trivial;
4157 isl_ctx *ctx;
4158 isl_vec *sol;
4159 isl_basic_set *lp;
4161 if (!node)
4162 return NULL;
4164 n_edge = count_carry_edges(graph);
4165 if (n_edge == 0 && graph->scc > 1)
4166 return compute_component_schedule(node, graph, 1);
4168 ctx = isl_schedule_node_get_ctx(node);
4169 if (setup_carry_lp(ctx, graph, n_edge) < 0)
4170 return isl_schedule_node_free(node);
4172 lp = isl_basic_set_copy(graph->lp);
4173 sol = non_neg_lexmin(graph, lp, n_edge);
4174 if (!sol)
4175 return isl_schedule_node_free(node);
4177 trivial = is_any_trivial(graph, sol);
4178 if (trivial < 0) {
4179 sol = isl_vec_free(sol);
4180 } else if (trivial && graph->scc > 1) {
4181 isl_vec_free(sol);
4182 return compute_component_schedule(node, graph, 1);
4185 if (update_schedule(graph, sol, 0, 0) < 0)
4186 return isl_schedule_node_free(node);
4187 if (trivial)
4188 graph->n_row--;
4190 return split_scaled(node, graph);
4193 /* Topologically sort statements mapped to the same schedule iteration
4194 * and add insert a sequence node in front of "node"
4195 * corresponding to this order.
4196 * If "initialized" is set, then it may be assumed that compute_maxvar
4197 * has been called on the current band. Otherwise, call
4198 * compute_maxvar if and before carry_dependences gets called.
4200 * If it turns out to be impossible to sort the statements apart,
4201 * because different dependences impose different orderings
4202 * on the statements, then we extend the schedule such that
4203 * it carries at least one more dependence.
4205 static __isl_give isl_schedule_node *sort_statements(
4206 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4207 int initialized)
4209 isl_ctx *ctx;
4210 isl_union_set_list *filters;
4212 if (!node)
4213 return NULL;
4215 ctx = isl_schedule_node_get_ctx(node);
4216 if (graph->n < 1)
4217 isl_die(ctx, isl_error_internal,
4218 "graph should have at least one node",
4219 return isl_schedule_node_free(node));
4221 if (graph->n == 1)
4222 return node;
4224 if (update_edges(ctx, graph) < 0)
4225 return isl_schedule_node_free(node);
4227 if (graph->n_edge == 0)
4228 return node;
4230 if (detect_sccs(ctx, graph) < 0)
4231 return isl_schedule_node_free(node);
4233 next_band(graph);
4234 if (graph->scc < graph->n) {
4235 if (!initialized && compute_maxvar(graph) < 0)
4236 return isl_schedule_node_free(node);
4237 return carry_dependences(node, graph);
4240 filters = extract_sccs(ctx, graph);
4241 node = isl_schedule_node_insert_sequence(node, filters);
4243 return node;
4246 /* Are there any (non-empty) (conditional) validity edges in the graph?
4248 static int has_validity_edges(struct isl_sched_graph *graph)
4250 int i;
4252 for (i = 0; i < graph->n_edge; ++i) {
4253 int empty;
4255 empty = isl_map_plain_is_empty(graph->edge[i].map);
4256 if (empty < 0)
4257 return -1;
4258 if (empty)
4259 continue;
4260 if (is_any_validity(&graph->edge[i]))
4261 return 1;
4264 return 0;
4267 /* Should we apply a Feautrier step?
4268 * That is, did the user request the Feautrier algorithm and are
4269 * there any validity dependences (left)?
4271 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4273 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4274 return 0;
4276 return has_validity_edges(graph);
4279 /* Compute a schedule for a connected dependence graph using Feautrier's
4280 * multi-dimensional scheduling algorithm and return the updated schedule node.
4282 * The original algorithm is described in [1].
4283 * The main idea is to minimize the number of scheduling dimensions, by
4284 * trying to satisfy as many dependences as possible per scheduling dimension.
4286 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4287 * Problem, Part II: Multi-Dimensional Time.
4288 * In Intl. Journal of Parallel Programming, 1992.
4290 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4291 isl_schedule_node *node, struct isl_sched_graph *graph)
4293 return carry_dependences(node, graph);
4296 /* Turn off the "local" bit on all (condition) edges.
4298 static void clear_local_edges(struct isl_sched_graph *graph)
4300 int i;
4302 for (i = 0; i < graph->n_edge; ++i)
4303 if (is_condition(&graph->edge[i]))
4304 clear_local(&graph->edge[i]);
4307 /* Does "graph" have both condition and conditional validity edges?
4309 static int need_condition_check(struct isl_sched_graph *graph)
4311 int i;
4312 int any_condition = 0;
4313 int any_conditional_validity = 0;
4315 for (i = 0; i < graph->n_edge; ++i) {
4316 if (is_condition(&graph->edge[i]))
4317 any_condition = 1;
4318 if (is_conditional_validity(&graph->edge[i]))
4319 any_conditional_validity = 1;
4322 return any_condition && any_conditional_validity;
4325 /* Does "graph" contain any coincidence edge?
4327 static int has_any_coincidence(struct isl_sched_graph *graph)
4329 int i;
4331 for (i = 0; i < graph->n_edge; ++i)
4332 if (is_coincidence(&graph->edge[i]))
4333 return 1;
4335 return 0;
4338 /* Extract the final schedule row as a map with the iteration domain
4339 * of "node" as domain.
4341 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4343 isl_multi_aff *ma;
4344 int row;
4346 row = isl_mat_rows(node->sched) - 1;
4347 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4348 return isl_map_from_multi_aff(ma);
4351 /* Is the conditional validity dependence in the edge with index "edge_index"
4352 * violated by the latest (i.e., final) row of the schedule?
4353 * That is, is i scheduled after j
4354 * for any conditional validity dependence i -> j?
4356 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4358 isl_map *src_sched, *dst_sched, *map;
4359 struct isl_sched_edge *edge = &graph->edge[edge_index];
4360 int empty;
4362 src_sched = final_row(edge->src);
4363 dst_sched = final_row(edge->dst);
4364 map = isl_map_copy(edge->map);
4365 map = isl_map_apply_domain(map, src_sched);
4366 map = isl_map_apply_range(map, dst_sched);
4367 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4368 empty = isl_map_is_empty(map);
4369 isl_map_free(map);
4371 if (empty < 0)
4372 return -1;
4374 return !empty;
4377 /* Does "graph" have any satisfied condition edges that
4378 * are adjacent to the conditional validity constraint with
4379 * domain "conditional_source" and range "conditional_sink"?
4381 * A satisfied condition is one that is not local.
4382 * If a condition was forced to be local already (i.e., marked as local)
4383 * then there is no need to check if it is in fact local.
4385 * Additionally, mark all adjacent condition edges found as local.
4387 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4388 __isl_keep isl_union_set *conditional_source,
4389 __isl_keep isl_union_set *conditional_sink)
4391 int i;
4392 int any = 0;
4394 for (i = 0; i < graph->n_edge; ++i) {
4395 int adjacent, local;
4396 isl_union_map *condition;
4398 if (!is_condition(&graph->edge[i]))
4399 continue;
4400 if (is_local(&graph->edge[i]))
4401 continue;
4403 condition = graph->edge[i].tagged_condition;
4404 adjacent = domain_intersects(condition, conditional_sink);
4405 if (adjacent >= 0 && !adjacent)
4406 adjacent = range_intersects(condition,
4407 conditional_source);
4408 if (adjacent < 0)
4409 return -1;
4410 if (!adjacent)
4411 continue;
4413 set_local(&graph->edge[i]);
4415 local = is_condition_false(&graph->edge[i]);
4416 if (local < 0)
4417 return -1;
4418 if (!local)
4419 any = 1;
4422 return any;
4425 /* Are there any violated conditional validity dependences with
4426 * adjacent condition dependences that are not local with respect
4427 * to the current schedule?
4428 * That is, is the conditional validity constraint violated?
4430 * Additionally, mark all those adjacent condition dependences as local.
4431 * We also mark those adjacent condition dependences that were not marked
4432 * as local before, but just happened to be local already. This ensures
4433 * that they remain local if the schedule is recomputed.
4435 * We first collect domain and range of all violated conditional validity
4436 * dependences and then check if there are any adjacent non-local
4437 * condition dependences.
4439 static int has_violated_conditional_constraint(isl_ctx *ctx,
4440 struct isl_sched_graph *graph)
4442 int i;
4443 int any = 0;
4444 isl_union_set *source, *sink;
4446 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4447 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4448 for (i = 0; i < graph->n_edge; ++i) {
4449 isl_union_set *uset;
4450 isl_union_map *umap;
4451 int violated;
4453 if (!is_conditional_validity(&graph->edge[i]))
4454 continue;
4456 violated = is_violated(graph, i);
4457 if (violated < 0)
4458 goto error;
4459 if (!violated)
4460 continue;
4462 any = 1;
4464 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4465 uset = isl_union_map_domain(umap);
4466 source = isl_union_set_union(source, uset);
4467 source = isl_union_set_coalesce(source);
4469 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4470 uset = isl_union_map_range(umap);
4471 sink = isl_union_set_union(sink, uset);
4472 sink = isl_union_set_coalesce(sink);
4475 if (any)
4476 any = has_adjacent_true_conditions(graph, source, sink);
4478 isl_union_set_free(source);
4479 isl_union_set_free(sink);
4480 return any;
4481 error:
4482 isl_union_set_free(source);
4483 isl_union_set_free(sink);
4484 return -1;
4487 /* Examine the current band (the rows between graph->band_start and
4488 * graph->n_total_row), deciding whether to drop it or add it to "node"
4489 * and then continue with the computation of the next band, if any.
4490 * If "initialized" is set, then it may be assumed that compute_maxvar
4491 * has been called on the current band. Otherwise, call
4492 * compute_maxvar if and before carry_dependences gets called.
4494 * The caller keeps looking for a new row as long as
4495 * graph->n_row < graph->maxvar. If the latest attempt to find
4496 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4497 * then we either
4498 * - split between SCCs and start over (assuming we found an interesting
4499 * pair of SCCs between which to split)
4500 * - continue with the next band (assuming the current band has at least
4501 * one row)
4502 * - try to carry as many dependences as possible and continue with the next
4503 * band
4504 * In each case, we first insert a band node in the schedule tree
4505 * if any rows have been computed.
4507 * If the caller managed to complete the schedule, we insert a band node
4508 * (if any schedule rows were computed) and we finish off by topologically
4509 * sorting the statements based on the remaining dependences.
4511 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4512 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4513 int initialized)
4515 int insert;
4517 if (!node)
4518 return NULL;
4520 if (graph->n_row < graph->maxvar) {
4521 isl_ctx *ctx;
4522 int empty = graph->n_total_row == graph->band_start;
4524 ctx = isl_schedule_node_get_ctx(node);
4525 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4526 return compute_next_band(node, graph, 1);
4527 if (graph->src_scc >= 0)
4528 return compute_split_schedule(node, graph);
4529 if (!empty)
4530 return compute_next_band(node, graph, 1);
4531 if (!initialized && compute_maxvar(graph) < 0)
4532 return isl_schedule_node_free(node);
4533 return carry_dependences(node, graph);
4536 insert = graph->n_total_row > graph->band_start;
4537 if (insert) {
4538 node = insert_current_band(node, graph, 1);
4539 node = isl_schedule_node_child(node, 0);
4541 node = sort_statements(node, graph, initialized);
4542 if (insert)
4543 node = isl_schedule_node_parent(node);
4545 return node;
4548 /* Construct a band of schedule rows for a connected dependence graph.
4549 * The caller is responsible for determining the strongly connected
4550 * components and calling compute_maxvar first.
4552 * We try to find a sequence of as many schedule rows as possible that result
4553 * in non-negative dependence distances (independent of the previous rows
4554 * in the sequence, i.e., such that the sequence is tilable), with as
4555 * many of the initial rows as possible satisfying the coincidence constraints.
4556 * The computation stops if we can't find any more rows or if we have found
4557 * all the rows we wanted to find.
4559 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4560 * outermost dimension to satisfy the coincidence constraints. If this
4561 * turns out to be impossible, we fall back on the general scheme above
4562 * and try to carry as many dependences as possible.
4564 * If "graph" contains both condition and conditional validity dependences,
4565 * then we need to check that that the conditional schedule constraint
4566 * is satisfied, i.e., there are no violated conditional validity dependences
4567 * that are adjacent to any non-local condition dependences.
4568 * If there are, then we mark all those adjacent condition dependences
4569 * as local and recompute the current band. Those dependences that
4570 * are marked local will then be forced to be local.
4571 * The initial computation is performed with no dependences marked as local.
4572 * If we are lucky, then there will be no violated conditional validity
4573 * dependences adjacent to any non-local condition dependences.
4574 * Otherwise, we mark some additional condition dependences as local and
4575 * recompute. We continue this process until there are no violations left or
4576 * until we are no longer able to compute a schedule.
4577 * Since there are only a finite number of dependences,
4578 * there will only be a finite number of iterations.
4580 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4581 struct isl_sched_graph *graph)
4583 int has_coincidence;
4584 int use_coincidence;
4585 int force_coincidence = 0;
4586 int check_conditional;
4588 if (sort_sccs(graph) < 0)
4589 return isl_stat_error;
4591 clear_local_edges(graph);
4592 check_conditional = need_condition_check(graph);
4593 has_coincidence = has_any_coincidence(graph);
4595 if (ctx->opt->schedule_outer_coincidence)
4596 force_coincidence = 1;
4598 use_coincidence = has_coincidence;
4599 while (graph->n_row < graph->maxvar) {
4600 isl_vec *sol;
4601 int violated;
4602 int coincident;
4604 graph->src_scc = -1;
4605 graph->dst_scc = -1;
4607 if (setup_lp(ctx, graph, use_coincidence) < 0)
4608 return isl_stat_error;
4609 sol = solve_lp(graph);
4610 if (!sol)
4611 return isl_stat_error;
4612 if (sol->size == 0) {
4613 int empty = graph->n_total_row == graph->band_start;
4615 isl_vec_free(sol);
4616 if (use_coincidence && (!force_coincidence || !empty)) {
4617 use_coincidence = 0;
4618 continue;
4620 return isl_stat_ok;
4622 coincident = !has_coincidence || use_coincidence;
4623 if (update_schedule(graph, sol, 1, coincident) < 0)
4624 return isl_stat_error;
4626 if (!check_conditional)
4627 continue;
4628 violated = has_violated_conditional_constraint(ctx, graph);
4629 if (violated < 0)
4630 return isl_stat_error;
4631 if (!violated)
4632 continue;
4633 if (reset_band(graph) < 0)
4634 return isl_stat_error;
4635 use_coincidence = has_coincidence;
4638 return isl_stat_ok;
4641 /* Compute a schedule for a connected dependence graph by considering
4642 * the graph as a whole and return the updated schedule node.
4644 * The actual schedule rows of the current band are computed by
4645 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4646 * care of integrating the band into "node" and continuing
4647 * the computation.
4649 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
4650 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4652 isl_ctx *ctx;
4654 if (!node)
4655 return NULL;
4657 ctx = isl_schedule_node_get_ctx(node);
4658 if (compute_schedule_wcc_band(ctx, graph) < 0)
4659 return isl_schedule_node_free(node);
4661 return compute_schedule_finish_band(node, graph, 1);
4664 /* Clustering information used by compute_schedule_wcc_clustering.
4666 * "n" is the number of SCCs in the original dependence graph
4667 * "scc" is an array of "n" elements, each representing an SCC
4668 * of the original dependence graph. All entries in the same cluster
4669 * have the same number of schedule rows.
4670 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4671 * where each cluster is represented by the index of the first SCC
4672 * in the cluster. Initially, each SCC belongs to a cluster containing
4673 * only that SCC.
4675 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4676 * track of which SCCs need to be merged.
4678 * "cluster" contains the merged clusters of SCCs after the clustering
4679 * has completed.
4681 * "scc_node" is a temporary data structure used inside copy_partial.
4682 * For each SCC, it keeps track of the number of nodes in the SCC
4683 * that have already been copied.
4685 struct isl_clustering {
4686 int n;
4687 struct isl_sched_graph *scc;
4688 struct isl_sched_graph *cluster;
4689 int *scc_cluster;
4690 int *scc_node;
4691 int *scc_in_merge;
4694 /* Initialize the clustering data structure "c" from "graph".
4696 * In particular, allocate memory, extract the SCCs from "graph"
4697 * into c->scc, initialize scc_cluster and construct
4698 * a band of schedule rows for each SCC.
4699 * Within each SCC, there is only one SCC by definition.
4700 * Each SCC initially belongs to a cluster containing only that SCC.
4702 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
4703 struct isl_sched_graph *graph)
4705 int i;
4707 c->n = graph->scc;
4708 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4709 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4710 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
4711 c->scc_node = isl_calloc_array(ctx, int, c->n);
4712 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
4713 if (!c->scc || !c->cluster ||
4714 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
4715 return isl_stat_error;
4717 for (i = 0; i < c->n; ++i) {
4718 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
4719 &edge_scc_exactly, i, &c->scc[i]) < 0)
4720 return isl_stat_error;
4721 c->scc[i].scc = 1;
4722 if (compute_maxvar(&c->scc[i]) < 0)
4723 return isl_stat_error;
4724 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
4725 return isl_stat_error;
4726 c->scc_cluster[i] = i;
4729 return isl_stat_ok;
4732 /* Free all memory allocated for "c".
4734 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
4736 int i;
4738 if (c->scc)
4739 for (i = 0; i < c->n; ++i)
4740 graph_free(ctx, &c->scc[i]);
4741 free(c->scc);
4742 if (c->cluster)
4743 for (i = 0; i < c->n; ++i)
4744 graph_free(ctx, &c->cluster[i]);
4745 free(c->cluster);
4746 free(c->scc_cluster);
4747 free(c->scc_node);
4748 free(c->scc_in_merge);
4751 /* Should we refrain from merging the cluster in "graph" with
4752 * any other cluster?
4753 * In particular, is its current schedule band empty and incomplete.
4755 static int bad_cluster(struct isl_sched_graph *graph)
4757 return graph->n_row < graph->maxvar &&
4758 graph->n_total_row == graph->band_start;
4761 /* Return the index of an edge in "graph" that can be used to merge
4762 * two clusters in "c".
4763 * Return graph->n_edge if no such edge can be found.
4764 * Return -1 on error.
4766 * In particular, return a proximity edge between two clusters
4767 * that is not marked "no_merge" and such that neither of the
4768 * two clusters has an incomplete, empty band.
4770 * If there are multiple such edges, then try and find the most
4771 * appropriate edge to use for merging. In particular, pick the edge
4772 * with the greatest weight. If there are multiple of those,
4773 * then pick one with the shortest distance between
4774 * the two cluster representatives.
4776 static int find_proximity(struct isl_sched_graph *graph,
4777 struct isl_clustering *c)
4779 int i, best = graph->n_edge, best_dist, best_weight;
4781 for (i = 0; i < graph->n_edge; ++i) {
4782 struct isl_sched_edge *edge = &graph->edge[i];
4783 int dist, weight;
4785 if (!is_proximity(edge))
4786 continue;
4787 if (edge->no_merge)
4788 continue;
4789 if (bad_cluster(&c->scc[edge->src->scc]) ||
4790 bad_cluster(&c->scc[edge->dst->scc]))
4791 continue;
4792 dist = c->scc_cluster[edge->dst->scc] -
4793 c->scc_cluster[edge->src->scc];
4794 if (dist == 0)
4795 continue;
4796 weight = edge->weight;
4797 if (best < graph->n_edge) {
4798 if (best_weight > weight)
4799 continue;
4800 if (best_weight == weight && best_dist <= dist)
4801 continue;
4803 best = i;
4804 best_dist = dist;
4805 best_weight = weight;
4808 return best;
4811 /* Internal data structure used in mark_merge_sccs.
4813 * "graph" is the dependence graph in which a strongly connected
4814 * component is constructed.
4815 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4816 * "src" and "dst" are the indices of the nodes that are being merged.
4818 struct isl_mark_merge_sccs_data {
4819 struct isl_sched_graph *graph;
4820 int *scc_cluster;
4821 int src;
4822 int dst;
4825 /* Check whether the cluster containing node "i" depends on the cluster
4826 * containing node "j". If "i" and "j" belong to the same cluster,
4827 * then they are taken to depend on each other to ensure that
4828 * the resulting strongly connected component consists of complete
4829 * clusters. Furthermore, if "i" and "j" are the two nodes that
4830 * are being merged, then they are taken to depend on each other as well.
4831 * Otherwise, check if there is a (conditional) validity dependence
4832 * from node[j] to node[i], forcing node[i] to follow node[j].
4834 static isl_bool cluster_follows(int i, int j, void *user)
4836 struct isl_mark_merge_sccs_data *data = user;
4837 struct isl_sched_graph *graph = data->graph;
4838 int *scc_cluster = data->scc_cluster;
4840 if (data->src == i && data->dst == j)
4841 return isl_bool_true;
4842 if (data->src == j && data->dst == i)
4843 return isl_bool_true;
4844 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
4845 return isl_bool_true;
4847 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
4850 /* Mark all SCCs that belong to either of the two clusters in "c"
4851 * connected by the edge in "graph" with index "edge", or to any
4852 * of the intermediate clusters.
4853 * The marking is recorded in c->scc_in_merge.
4855 * The given edge has been selected for merging two clusters,
4856 * meaning that there is at least a proximity edge between the two nodes.
4857 * However, there may also be (indirect) validity dependences
4858 * between the two nodes. When merging the two clusters, all clusters
4859 * containing one or more of the intermediate nodes along the
4860 * indirect validity dependences need to be merged in as well.
4862 * First collect all such nodes by computing the strongly connected
4863 * component (SCC) containing the two nodes connected by the edge, where
4864 * the two nodes are considered to depend on each other to make
4865 * sure they end up in the same SCC. Similarly, each node is considered
4866 * to depend on every other node in the same cluster to ensure
4867 * that the SCC consists of complete clusters.
4869 * Then the original SCCs that contain any of these nodes are marked
4870 * in c->scc_in_merge.
4872 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
4873 int edge, struct isl_clustering *c)
4875 struct isl_mark_merge_sccs_data data;
4876 struct isl_tarjan_graph *g;
4877 int i;
4879 for (i = 0; i < c->n; ++i)
4880 c->scc_in_merge[i] = 0;
4882 data.graph = graph;
4883 data.scc_cluster = c->scc_cluster;
4884 data.src = graph->edge[edge].src - graph->node;
4885 data.dst = graph->edge[edge].dst - graph->node;
4887 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
4888 &cluster_follows, &data);
4889 if (!g)
4890 goto error;
4892 i = g->op;
4893 if (i < 3)
4894 isl_die(ctx, isl_error_internal,
4895 "expecting at least two nodes in component",
4896 goto error);
4897 if (g->order[--i] != -1)
4898 isl_die(ctx, isl_error_internal,
4899 "expecting end of component marker", goto error);
4901 for (--i; i >= 0 && g->order[i] != -1; --i) {
4902 int scc = graph->node[g->order[i]].scc;
4903 c->scc_in_merge[scc] = 1;
4906 isl_tarjan_graph_free(g);
4907 return isl_stat_ok;
4908 error:
4909 isl_tarjan_graph_free(g);
4910 return isl_stat_error;
4913 /* Construct the identifier "cluster_i".
4915 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
4917 char name[40];
4919 snprintf(name, sizeof(name), "cluster_%d", i);
4920 return isl_id_alloc(ctx, name, NULL);
4923 /* Construct the space of the cluster with index "i" containing
4924 * the strongly connected component "scc".
4926 * In particular, construct a space called cluster_i with dimension equal
4927 * to the number of schedule rows in the current band of "scc".
4929 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
4931 int nvar;
4932 isl_space *space;
4933 isl_id *id;
4935 nvar = scc->n_total_row - scc->band_start;
4936 space = isl_space_copy(scc->node[0].space);
4937 space = isl_space_params(space);
4938 space = isl_space_set_from_params(space);
4939 space = isl_space_add_dims(space, isl_dim_set, nvar);
4940 id = cluster_id(isl_space_get_ctx(space), i);
4941 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4943 return space;
4946 /* Collect the domain of the graph for merging clusters.
4948 * In particular, for each cluster with first SCC "i", construct
4949 * a set in the space called cluster_i with dimension equal
4950 * to the number of schedule rows in the current band of the cluster.
4952 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
4953 struct isl_sched_graph *graph, struct isl_clustering *c)
4955 int i;
4956 isl_space *space;
4957 isl_union_set *domain;
4959 space = isl_space_params_alloc(ctx, 0);
4960 domain = isl_union_set_empty(space);
4962 for (i = 0; i < graph->scc; ++i) {
4963 isl_space *space;
4965 if (!c->scc_in_merge[i])
4966 continue;
4967 if (c->scc_cluster[i] != i)
4968 continue;
4969 space = cluster_space(&c->scc[i], i);
4970 domain = isl_union_set_add_set(domain, isl_set_universe(space));
4973 return domain;
4976 /* Construct a map from the original instances to the corresponding
4977 * cluster instance in the current bands of the clusters in "c".
4979 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
4980 struct isl_sched_graph *graph, struct isl_clustering *c)
4982 int i, j;
4983 isl_space *space;
4984 isl_union_map *cluster_map;
4986 space = isl_space_params_alloc(ctx, 0);
4987 cluster_map = isl_union_map_empty(space);
4988 for (i = 0; i < graph->scc; ++i) {
4989 int start, n;
4990 isl_id *id;
4992 if (!c->scc_in_merge[i])
4993 continue;
4995 id = cluster_id(ctx, c->scc_cluster[i]);
4996 start = c->scc[i].band_start;
4997 n = c->scc[i].n_total_row - start;
4998 for (j = 0; j < c->scc[i].n; ++j) {
4999 isl_multi_aff *ma;
5000 isl_map *map;
5001 struct isl_sched_node *node = &c->scc[i].node[j];
5003 ma = node_extract_partial_schedule_multi_aff(node,
5004 start, n);
5005 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5006 isl_id_copy(id));
5007 map = isl_map_from_multi_aff(ma);
5008 cluster_map = isl_union_map_add_map(cluster_map, map);
5010 isl_id_free(id);
5013 return cluster_map;
5016 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5017 * that are not isl_edge_condition or isl_edge_conditional_validity.
5019 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5020 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5021 __isl_take isl_schedule_constraints *sc)
5023 enum isl_edge_type t;
5025 if (!sc)
5026 return NULL;
5028 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5029 if (t == isl_edge_condition ||
5030 t == isl_edge_conditional_validity)
5031 continue;
5032 if (!is_type(edge, t))
5033 continue;
5034 sc = isl_schedule_constraints_add(sc, t,
5035 isl_union_map_copy(umap));
5038 return sc;
5041 /* Add schedule constraints of types isl_edge_condition and
5042 * isl_edge_conditional_validity to "sc" by applying "umap" to
5043 * the domains of the wrapped relations in domain and range
5044 * of the corresponding tagged constraints of "edge".
5046 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5047 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5048 __isl_take isl_schedule_constraints *sc)
5050 enum isl_edge_type t;
5051 isl_union_map *tagged;
5053 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5054 if (!is_type(edge, t))
5055 continue;
5056 if (t == isl_edge_condition)
5057 tagged = isl_union_map_copy(edge->tagged_condition);
5058 else
5059 tagged = isl_union_map_copy(edge->tagged_validity);
5060 tagged = isl_union_map_zip(tagged);
5061 tagged = isl_union_map_apply_domain(tagged,
5062 isl_union_map_copy(umap));
5063 tagged = isl_union_map_zip(tagged);
5064 sc = isl_schedule_constraints_add(sc, t, tagged);
5065 if (!sc)
5066 return NULL;
5069 return sc;
5072 /* Given a mapping "cluster_map" from the original instances to
5073 * the cluster instances, add schedule constraints on the clusters
5074 * to "sc" corresponding to the original constraints represented by "edge".
5076 * For non-tagged dependence constraints, the cluster constraints
5077 * are obtained by applying "cluster_map" to the edge->map.
5079 * For tagged dependence constraints, "cluster_map" needs to be applied
5080 * to the domains of the wrapped relations in domain and range
5081 * of the tagged dependence constraints. Pick out the mappings
5082 * from these domains from "cluster_map" and construct their product.
5083 * This mapping can then be applied to the pair of domains.
5085 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5086 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5087 __isl_take isl_schedule_constraints *sc)
5089 isl_union_map *umap;
5090 isl_space *space;
5091 isl_union_set *uset;
5092 isl_union_map *umap1, *umap2;
5094 if (!sc)
5095 return NULL;
5097 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5098 umap = isl_union_map_apply_domain(umap,
5099 isl_union_map_copy(cluster_map));
5100 umap = isl_union_map_apply_range(umap,
5101 isl_union_map_copy(cluster_map));
5102 sc = add_non_conditional_constraints(edge, umap, sc);
5103 isl_union_map_free(umap);
5105 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5106 return sc;
5108 space = isl_space_domain(isl_map_get_space(edge->map));
5109 uset = isl_union_set_from_set(isl_set_universe(space));
5110 umap1 = isl_union_map_copy(cluster_map);
5111 umap1 = isl_union_map_intersect_domain(umap1, uset);
5112 space = isl_space_range(isl_map_get_space(edge->map));
5113 uset = isl_union_set_from_set(isl_set_universe(space));
5114 umap2 = isl_union_map_copy(cluster_map);
5115 umap2 = isl_union_map_intersect_domain(umap2, uset);
5116 umap = isl_union_map_product(umap1, umap2);
5118 sc = add_conditional_constraints(edge, umap, sc);
5120 isl_union_map_free(umap);
5121 return sc;
5124 /* Given a mapping "cluster_map" from the original instances to
5125 * the cluster instances, add schedule constraints on the clusters
5126 * to "sc" corresponding to all edges in "graph" between nodes that
5127 * belong to SCCs that are marked for merging in "scc_in_merge".
5129 static __isl_give isl_schedule_constraints *collect_constraints(
5130 struct isl_sched_graph *graph, int *scc_in_merge,
5131 __isl_keep isl_union_map *cluster_map,
5132 __isl_take isl_schedule_constraints *sc)
5134 int i;
5136 for (i = 0; i < graph->n_edge; ++i) {
5137 struct isl_sched_edge *edge = &graph->edge[i];
5139 if (!scc_in_merge[edge->src->scc])
5140 continue;
5141 if (!scc_in_merge[edge->dst->scc])
5142 continue;
5143 sc = collect_edge_constraints(edge, cluster_map, sc);
5146 return sc;
5149 /* Construct a dependence graph for scheduling clusters with respect
5150 * to each other and store the result in "merge_graph".
5151 * In particular, the nodes of the graph correspond to the schedule
5152 * dimensions of the current bands of those clusters that have been
5153 * marked for merging in "c".
5155 * First construct an isl_schedule_constraints object for this domain
5156 * by transforming the edges in "graph" to the domain.
5157 * Then initialize a dependence graph for scheduling from these
5158 * constraints.
5160 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5161 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5163 isl_union_set *domain;
5164 isl_union_map *cluster_map;
5165 isl_schedule_constraints *sc;
5166 isl_stat r;
5168 domain = collect_domain(ctx, graph, c);
5169 sc = isl_schedule_constraints_on_domain(domain);
5170 if (!sc)
5171 return isl_stat_error;
5172 cluster_map = collect_cluster_map(ctx, graph, c);
5173 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5174 isl_union_map_free(cluster_map);
5176 r = graph_init(merge_graph, sc);
5178 isl_schedule_constraints_free(sc);
5180 return r;
5183 /* Compute the maximal number of remaining schedule rows that still need
5184 * to be computed for the nodes that belong to clusters with the maximal
5185 * dimension for the current band (i.e., the band that is to be merged).
5186 * Only clusters that are about to be merged are considered.
5187 * "maxvar" is the maximal dimension for the current band.
5188 * "c" contains information about the clusters.
5190 * Return the maximal number of remaining schedule rows or -1 on error.
5192 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5194 int i, j;
5195 int max_slack;
5197 max_slack = 0;
5198 for (i = 0; i < c->n; ++i) {
5199 int nvar;
5200 struct isl_sched_graph *scc;
5202 if (!c->scc_in_merge[i])
5203 continue;
5204 scc = &c->scc[i];
5205 nvar = scc->n_total_row - scc->band_start;
5206 if (nvar != maxvar)
5207 continue;
5208 for (j = 0; j < scc->n; ++j) {
5209 struct isl_sched_node *node = &scc->node[j];
5210 int slack;
5212 if (node_update_cmap(node) < 0)
5213 return -1;
5214 slack = node->nvar - node->rank;
5215 if (slack > max_slack)
5216 max_slack = slack;
5220 return max_slack;
5223 /* If there are any clusters where the dimension of the current band
5224 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5225 * if there are any nodes in such a cluster where the number
5226 * of remaining schedule rows that still need to be computed
5227 * is greater than "max_slack", then return the smallest current band
5228 * dimension of all these clusters. Otherwise return the original value
5229 * of "maxvar". Return -1 in case of any error.
5230 * Only clusters that are about to be merged are considered.
5231 * "c" contains information about the clusters.
5233 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5234 struct isl_clustering *c)
5236 int i, j;
5238 for (i = 0; i < c->n; ++i) {
5239 int nvar;
5240 struct isl_sched_graph *scc;
5242 if (!c->scc_in_merge[i])
5243 continue;
5244 scc = &c->scc[i];
5245 nvar = scc->n_total_row - scc->band_start;
5246 if (nvar >= maxvar)
5247 continue;
5248 for (j = 0; j < scc->n; ++j) {
5249 struct isl_sched_node *node = &scc->node[j];
5250 int slack;
5252 if (node_update_cmap(node) < 0)
5253 return -1;
5254 slack = node->nvar - node->rank;
5255 if (slack > max_slack) {
5256 maxvar = nvar;
5257 break;
5262 return maxvar;
5265 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5266 * that still need to be computed. In particular, if there is a node
5267 * in a cluster where the dimension of the current band is smaller
5268 * than merge_graph->maxvar, but the number of remaining schedule rows
5269 * is greater than that of any node in a cluster with the maximal
5270 * dimension for the current band (i.e., merge_graph->maxvar),
5271 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5272 * of those clusters. Without this adjustment, the total number of
5273 * schedule dimensions would be increased, resulting in a skewed view
5274 * of the number of coincident dimensions.
5275 * "c" contains information about the clusters.
5277 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5278 * then there is no point in attempting any merge since it will be rejected
5279 * anyway. Set merge_graph->maxvar to zero in such cases.
5281 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5282 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5284 int max_slack, maxvar;
5286 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5287 if (max_slack < 0)
5288 return isl_stat_error;
5289 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5290 if (maxvar < 0)
5291 return isl_stat_error;
5293 if (maxvar < merge_graph->maxvar) {
5294 if (isl_options_get_schedule_maximize_band_depth(ctx))
5295 merge_graph->maxvar = 0;
5296 else
5297 merge_graph->maxvar = maxvar;
5300 return isl_stat_ok;
5303 /* Return the number of coincident dimensions in the current band of "graph",
5304 * where the nodes of "graph" are assumed to be scheduled by a single band.
5306 static int get_n_coincident(struct isl_sched_graph *graph)
5308 int i;
5310 for (i = graph->band_start; i < graph->n_total_row; ++i)
5311 if (!graph->node[0].coincident[i])
5312 break;
5314 return i - graph->band_start;
5317 /* Should the clusters be merged based on the cluster schedule
5318 * in the current (and only) band of "merge_graph", given that
5319 * coincidence should be maximized?
5321 * If the number of coincident schedule dimensions in the merged band
5322 * would be less than the maximal number of coincident schedule dimensions
5323 * in any of the merged clusters, then the clusters should not be merged.
5325 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5326 struct isl_sched_graph *merge_graph)
5328 int i;
5329 int n_coincident;
5330 int max_coincident;
5332 max_coincident = 0;
5333 for (i = 0; i < c->n; ++i) {
5334 if (!c->scc_in_merge[i])
5335 continue;
5336 n_coincident = get_n_coincident(&c->scc[i]);
5337 if (n_coincident > max_coincident)
5338 max_coincident = n_coincident;
5341 n_coincident = get_n_coincident(merge_graph);
5343 return n_coincident >= max_coincident;
5346 /* Return the transformation on "node" expressed by the current (and only)
5347 * band of "merge_graph" applied to the clusters in "c".
5349 * First find the representation of "node" in its SCC in "c" and
5350 * extract the transformation expressed by the current band.
5351 * Then extract the transformation applied by "merge_graph"
5352 * to the cluster to which this SCC belongs.
5353 * Combine the two to obtain the complete transformation on the node.
5355 * Note that the range of the first transformation is an anonymous space,
5356 * while the domain of the second is named "cluster_X". The range
5357 * of the former therefore needs to be adjusted before the two
5358 * can be combined.
5360 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5361 struct isl_sched_node *node, struct isl_clustering *c,
5362 struct isl_sched_graph *merge_graph)
5364 struct isl_sched_node *scc_node, *cluster_node;
5365 int start, n;
5366 isl_id *id;
5367 isl_space *space;
5368 isl_multi_aff *ma, *ma2;
5370 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5371 start = c->scc[node->scc].band_start;
5372 n = c->scc[node->scc].n_total_row - start;
5373 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5374 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5375 cluster_node = graph_find_node(ctx, merge_graph, space);
5376 if (space && !cluster_node)
5377 isl_die(ctx, isl_error_internal, "unable to find cluster",
5378 space = isl_space_free(space));
5379 id = isl_space_get_tuple_id(space, isl_dim_set);
5380 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5381 isl_space_free(space);
5382 n = merge_graph->n_total_row;
5383 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5384 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5386 return isl_map_from_multi_aff(ma);
5389 /* Give a set of distances "set", are they bounded by a small constant
5390 * in direction "pos"?
5391 * In practice, check if they are bounded by 2 by checking that there
5392 * are no elements with a value greater than or equal to 3 or
5393 * smaller than or equal to -3.
5395 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5397 isl_bool bounded;
5398 isl_set *test;
5400 if (!set)
5401 return isl_bool_error;
5403 test = isl_set_copy(set);
5404 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5405 bounded = isl_set_is_empty(test);
5406 isl_set_free(test);
5408 if (bounded < 0 || !bounded)
5409 return bounded;
5411 test = isl_set_copy(set);
5412 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5413 bounded = isl_set_is_empty(test);
5414 isl_set_free(test);
5416 return bounded;
5419 /* Does the set "set" have a fixed (but possible parametric) value
5420 * at dimension "pos"?
5422 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5424 int n;
5425 isl_bool single;
5427 if (!set)
5428 return isl_bool_error;
5429 set = isl_set_copy(set);
5430 n = isl_set_dim(set, isl_dim_set);
5431 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5432 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5433 single = isl_set_is_singleton(set);
5434 isl_set_free(set);
5436 return single;
5439 /* Does "map" have a fixed (but possible parametric) value
5440 * at dimension "pos" of either its domain or its range?
5442 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5444 isl_set *set;
5445 isl_bool single;
5447 set = isl_map_domain(isl_map_copy(map));
5448 single = has_single_value(set, pos);
5449 isl_set_free(set);
5451 if (single < 0 || single)
5452 return single;
5454 set = isl_map_range(isl_map_copy(map));
5455 single = has_single_value(set, pos);
5456 isl_set_free(set);
5458 return single;
5461 /* Does the edge "edge" from "graph" have bounded dependence distances
5462 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5464 * Extract the complete transformations of the source and destination
5465 * nodes of the edge, apply them to the edge constraints and
5466 * compute the differences. Finally, check if these differences are bounded
5467 * in each direction.
5469 * If the dimension of the band is greater than the number of
5470 * dimensions that can be expected to be optimized by the edge
5471 * (based on its weight), then also allow the differences to be unbounded
5472 * in the remaining dimensions, but only if either the source or
5473 * the destination has a fixed value in that direction.
5474 * This allows a statement that produces values that are used by
5475 * several instances of another statement to be merged with that
5476 * other statement.
5477 * However, merging such clusters will introduce an inherently
5478 * large proximity distance inside the merged cluster, meaning
5479 * that proximity distances will no longer be optimized in
5480 * subsequent merges. These merges are therefore only allowed
5481 * after all other possible merges have been tried.
5482 * The first time such a merge is encountered, the weight of the edge
5483 * is replaced by a negative weight. The second time (i.e., after
5484 * all merges over edges with a non-negative weight have been tried),
5485 * the merge is allowed.
5487 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5488 struct isl_sched_graph *graph, struct isl_clustering *c,
5489 struct isl_sched_graph *merge_graph)
5491 int i, n, n_slack;
5492 isl_bool bounded;
5493 isl_map *map, *t;
5494 isl_set *dist;
5496 map = isl_map_copy(edge->map);
5497 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5498 map = isl_map_apply_domain(map, t);
5499 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5500 map = isl_map_apply_range(map, t);
5501 dist = isl_map_deltas(isl_map_copy(map));
5503 bounded = isl_bool_true;
5504 n = isl_set_dim(dist, isl_dim_set);
5505 n_slack = n - edge->weight;
5506 if (edge->weight < 0)
5507 n_slack -= graph->max_weight + 1;
5508 for (i = 0; i < n; ++i) {
5509 isl_bool bounded_i, singular_i;
5511 bounded_i = distance_is_bounded(dist, i);
5512 if (bounded_i < 0)
5513 goto error;
5514 if (bounded_i)
5515 continue;
5516 if (edge->weight >= 0)
5517 bounded = isl_bool_false;
5518 n_slack--;
5519 if (n_slack < 0)
5520 break;
5521 singular_i = has_singular_src_or_dst(map, i);
5522 if (singular_i < 0)
5523 goto error;
5524 if (singular_i)
5525 continue;
5526 bounded = isl_bool_false;
5527 break;
5529 if (!bounded && i >= n && edge->weight >= 0)
5530 edge->weight -= graph->max_weight + 1;
5531 isl_map_free(map);
5532 isl_set_free(dist);
5534 return bounded;
5535 error:
5536 isl_map_free(map);
5537 isl_set_free(dist);
5538 return isl_bool_error;
5541 /* Should the clusters be merged based on the cluster schedule
5542 * in the current (and only) band of "merge_graph"?
5543 * "graph" is the original dependence graph, while "c" records
5544 * which SCCs are involved in the latest merge.
5546 * In particular, is there at least one proximity constraint
5547 * that is optimized by the merge?
5549 * A proximity constraint is considered to be optimized
5550 * if the dependence distances are small.
5552 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5553 struct isl_sched_graph *graph, struct isl_clustering *c,
5554 struct isl_sched_graph *merge_graph)
5556 int i;
5558 for (i = 0; i < graph->n_edge; ++i) {
5559 struct isl_sched_edge *edge = &graph->edge[i];
5560 isl_bool bounded;
5562 if (!is_proximity(edge))
5563 continue;
5564 if (!c->scc_in_merge[edge->src->scc])
5565 continue;
5566 if (!c->scc_in_merge[edge->dst->scc])
5567 continue;
5568 if (c->scc_cluster[edge->dst->scc] ==
5569 c->scc_cluster[edge->src->scc])
5570 continue;
5571 bounded = has_bounded_distances(ctx, edge, graph, c,
5572 merge_graph);
5573 if (bounded < 0 || bounded)
5574 return bounded;
5577 return isl_bool_false;
5580 /* Should the clusters be merged based on the cluster schedule
5581 * in the current (and only) band of "merge_graph"?
5582 * "graph" is the original dependence graph, while "c" records
5583 * which SCCs are involved in the latest merge.
5585 * If the current band is empty, then the clusters should not be merged.
5587 * If the band depth should be maximized and the merge schedule
5588 * is incomplete (meaning that the dimension of some of the schedule
5589 * bands in the original schedule will be reduced), then the clusters
5590 * should not be merged.
5592 * If the schedule_maximize_coincidence option is set, then check that
5593 * the number of coincident schedule dimensions is not reduced.
5595 * Finally, only allow the merge if at least one proximity
5596 * constraint is optimized.
5598 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5599 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5601 if (merge_graph->n_total_row == merge_graph->band_start)
5602 return isl_bool_false;
5604 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
5605 merge_graph->n_total_row < merge_graph->maxvar)
5606 return isl_bool_false;
5608 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
5609 isl_bool ok;
5611 ok = ok_to_merge_coincident(c, merge_graph);
5612 if (ok < 0 || !ok)
5613 return ok;
5616 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
5619 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5620 * of the schedule in "node" and return the result.
5622 * That is, essentially compute
5624 * T * N(first:first+n-1)
5626 * taking into account the constant term and the parameter coefficients
5627 * in "t_node".
5629 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
5630 struct isl_sched_node *t_node, struct isl_sched_node *node,
5631 int first, int n)
5633 int i, j;
5634 isl_mat *t;
5635 int n_row, n_col, n_param, n_var;
5637 n_param = node->nparam;
5638 n_var = node->nvar;
5639 n_row = isl_mat_rows(t_node->sched);
5640 n_col = isl_mat_cols(node->sched);
5641 t = isl_mat_alloc(ctx, n_row, n_col);
5642 if (!t)
5643 return NULL;
5644 for (i = 0; i < n_row; ++i) {
5645 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
5646 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
5647 for (j = 0; j < n; ++j)
5648 isl_seq_addmul(t->row[i],
5649 t_node->sched->row[i][1 + n_param + j],
5650 node->sched->row[first + j],
5651 1 + n_param + n_var);
5653 return t;
5656 /* Apply the cluster schedule in "t_node" to the current band
5657 * schedule of the nodes in "graph".
5659 * In particular, replace the rows starting at band_start
5660 * by the result of applying the cluster schedule in "t_node"
5661 * to the original rows.
5663 * The coincidence of the schedule is determined by the coincidence
5664 * of the cluster schedule.
5666 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
5667 struct isl_sched_node *t_node)
5669 int i, j;
5670 int n_new;
5671 int start, n;
5673 start = graph->band_start;
5674 n = graph->n_total_row - start;
5676 n_new = isl_mat_rows(t_node->sched);
5677 for (i = 0; i < graph->n; ++i) {
5678 struct isl_sched_node *node = &graph->node[i];
5679 isl_mat *t;
5681 t = node_transformation(ctx, t_node, node, start, n);
5682 node->sched = isl_mat_drop_rows(node->sched, start, n);
5683 node->sched = isl_mat_concat(node->sched, t);
5684 node->sched_map = isl_map_free(node->sched_map);
5685 if (!node->sched)
5686 return isl_stat_error;
5687 for (j = 0; j < n_new; ++j)
5688 node->coincident[start + j] = t_node->coincident[j];
5690 graph->n_total_row -= n;
5691 graph->n_row -= n;
5692 graph->n_total_row += n_new;
5693 graph->n_row += n_new;
5695 return isl_stat_ok;
5698 /* Merge the clusters marked for merging in "c" into a single
5699 * cluster using the cluster schedule in the current band of "merge_graph".
5700 * The representative SCC for the new cluster is the SCC with
5701 * the smallest index.
5703 * The current band schedule of each SCC in the new cluster is obtained
5704 * by applying the schedule of the corresponding original cluster
5705 * to the original band schedule.
5706 * All SCCs in the new cluster have the same number of schedule rows.
5708 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
5709 struct isl_sched_graph *merge_graph)
5711 int i;
5712 int cluster = -1;
5713 isl_space *space;
5715 for (i = 0; i < c->n; ++i) {
5716 struct isl_sched_node *node;
5718 if (!c->scc_in_merge[i])
5719 continue;
5720 if (cluster < 0)
5721 cluster = i;
5722 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
5723 if (!space)
5724 return isl_stat_error;
5725 node = graph_find_node(ctx, merge_graph, space);
5726 isl_space_free(space);
5727 if (!node)
5728 isl_die(ctx, isl_error_internal,
5729 "unable to find cluster",
5730 return isl_stat_error);
5731 if (transform(ctx, &c->scc[i], node) < 0)
5732 return isl_stat_error;
5733 c->scc_cluster[i] = cluster;
5736 return isl_stat_ok;
5739 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5740 * by scheduling the current cluster bands with respect to each other.
5742 * Construct a dependence graph with a space for each cluster and
5743 * with the coordinates of each space corresponding to the schedule
5744 * dimensions of the current band of that cluster.
5745 * Construct a cluster schedule in this cluster dependence graph and
5746 * apply it to the current cluster bands if it is applicable
5747 * according to ok_to_merge.
5749 * If the number of remaining schedule dimensions in a cluster
5750 * with a non-maximal current schedule dimension is greater than
5751 * the number of remaining schedule dimensions in clusters
5752 * with a maximal current schedule dimension, then restrict
5753 * the number of rows to be computed in the cluster schedule
5754 * to the minimal such non-maximal current schedule dimension.
5755 * Do this by adjusting merge_graph.maxvar.
5757 * Return isl_bool_true if the clusters have effectively been merged
5758 * into a single cluster.
5760 * Note that since the standard scheduling algorithm minimizes the maximal
5761 * distance over proximity constraints, the proximity constraints between
5762 * the merged clusters may not be optimized any further than what is
5763 * sufficient to bring the distances within the limits of the internal
5764 * proximity constraints inside the individual clusters.
5765 * It may therefore make sense to perform an additional translation step
5766 * to bring the clusters closer to each other, while maintaining
5767 * the linear part of the merging schedule found using the standard
5768 * scheduling algorithm.
5770 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5771 struct isl_clustering *c)
5773 struct isl_sched_graph merge_graph = { 0 };
5774 isl_bool merged;
5776 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
5777 goto error;
5779 if (compute_maxvar(&merge_graph) < 0)
5780 goto error;
5781 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
5782 goto error;
5783 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
5784 goto error;
5785 merged = ok_to_merge(ctx, graph, c, &merge_graph);
5786 if (merged && merge(ctx, c, &merge_graph) < 0)
5787 goto error;
5789 graph_free(ctx, &merge_graph);
5790 return merged;
5791 error:
5792 graph_free(ctx, &merge_graph);
5793 return isl_bool_error;
5796 /* Is there any edge marked "no_merge" between two SCCs that are
5797 * about to be merged (i.e., that are set in "scc_in_merge")?
5798 * "merge_edge" is the proximity edge along which the clusters of SCCs
5799 * are going to be merged.
5801 * If there is any edge between two SCCs with a negative weight,
5802 * while the weight of "merge_edge" is non-negative, then this
5803 * means that the edge was postponed. "merge_edge" should then
5804 * also be postponed since merging along the edge with negative weight should
5805 * be postponed until all edges with non-negative weight have been tried.
5806 * Replace the weight of "merge_edge" by a negative weight as well and
5807 * tell the caller not to attempt a merge.
5809 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
5810 struct isl_sched_edge *merge_edge)
5812 int i;
5814 for (i = 0; i < graph->n_edge; ++i) {
5815 struct isl_sched_edge *edge = &graph->edge[i];
5817 if (!scc_in_merge[edge->src->scc])
5818 continue;
5819 if (!scc_in_merge[edge->dst->scc])
5820 continue;
5821 if (edge->no_merge)
5822 return 1;
5823 if (merge_edge->weight >= 0 && edge->weight < 0) {
5824 merge_edge->weight -= graph->max_weight + 1;
5825 return 1;
5829 return 0;
5832 /* Merge the two clusters in "c" connected by the edge in "graph"
5833 * with index "edge" into a single cluster.
5834 * If it turns out to be impossible to merge these two clusters,
5835 * then mark the edge as "no_merge" such that it will not be
5836 * considered again.
5838 * First mark all SCCs that need to be merged. This includes the SCCs
5839 * in the two clusters, but it may also include the SCCs
5840 * of intermediate clusters.
5841 * If there is already a no_merge edge between any pair of such SCCs,
5842 * then simply mark the current edge as no_merge as well.
5843 * Likewise, if any of those edges was postponed by has_bounded_distances,
5844 * then postpone the current edge as well.
5845 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5846 * if the clusters did not end up getting merged, unless the non-merge
5847 * is due to the fact that the edge was postponed. This postponement
5848 * can be recognized by a change in weight (from non-negative to negative).
5850 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
5851 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
5853 isl_bool merged;
5854 int edge_weight = graph->edge[edge].weight;
5856 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
5857 return isl_stat_error;
5859 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
5860 merged = isl_bool_false;
5861 else
5862 merged = try_merge(ctx, graph, c);
5863 if (merged < 0)
5864 return isl_stat_error;
5865 if (!merged && edge_weight == graph->edge[edge].weight)
5866 graph->edge[edge].no_merge = 1;
5868 return isl_stat_ok;
5871 /* Does "node" belong to the cluster identified by "cluster"?
5873 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
5875 return node->cluster == cluster;
5878 /* Does "edge" connect two nodes belonging to the cluster
5879 * identified by "cluster"?
5881 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
5883 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
5886 /* Swap the schedule of "node1" and "node2".
5887 * Both nodes have been derived from the same node in a common parent graph.
5888 * Since the "coincident" field is shared with that node
5889 * in the parent graph, there is no need to also swap this field.
5891 static void swap_sched(struct isl_sched_node *node1,
5892 struct isl_sched_node *node2)
5894 isl_mat *sched;
5895 isl_map *sched_map;
5897 sched = node1->sched;
5898 node1->sched = node2->sched;
5899 node2->sched = sched;
5901 sched_map = node1->sched_map;
5902 node1->sched_map = node2->sched_map;
5903 node2->sched_map = sched_map;
5906 /* Copy the current band schedule from the SCCs that form the cluster
5907 * with index "pos" to the actual cluster at position "pos".
5908 * By construction, the index of the first SCC that belongs to the cluster
5909 * is also "pos".
5911 * The order of the nodes inside both the SCCs and the cluster
5912 * is assumed to be same as the order in the original "graph".
5914 * Since the SCC graphs will no longer be used after this function,
5915 * the schedules are actually swapped rather than copied.
5917 static isl_stat copy_partial(struct isl_sched_graph *graph,
5918 struct isl_clustering *c, int pos)
5920 int i, j;
5922 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
5923 c->cluster[pos].n_row = c->scc[pos].n_row;
5924 c->cluster[pos].maxvar = c->scc[pos].maxvar;
5925 j = 0;
5926 for (i = 0; i < graph->n; ++i) {
5927 int k;
5928 int s;
5930 if (graph->node[i].cluster != pos)
5931 continue;
5932 s = graph->node[i].scc;
5933 k = c->scc_node[s]++;
5934 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
5935 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
5936 c->cluster[pos].maxvar = c->scc[s].maxvar;
5937 ++j;
5940 return isl_stat_ok;
5943 /* Is there a (conditional) validity dependence from node[j] to node[i],
5944 * forcing node[i] to follow node[j] or do the nodes belong to the same
5945 * cluster?
5947 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
5949 struct isl_sched_graph *graph = user;
5951 if (graph->node[i].cluster == graph->node[j].cluster)
5952 return isl_bool_true;
5953 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5956 /* Extract the merged clusters of SCCs in "graph", sort them, and
5957 * store them in c->clusters. Update c->scc_cluster accordingly.
5959 * First keep track of the cluster containing the SCC to which a node
5960 * belongs in the node itself.
5961 * Then extract the clusters into c->clusters, copying the current
5962 * band schedule from the SCCs that belong to the cluster.
5963 * Do this only once per cluster.
5965 * Finally, topologically sort the clusters and update c->scc_cluster
5966 * to match the new scc numbering. While the SCCs were originally
5967 * sorted already, some SCCs that depend on some other SCCs may
5968 * have been merged with SCCs that appear before these other SCCs.
5969 * A reordering may therefore be required.
5971 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
5972 struct isl_clustering *c)
5974 int i;
5976 for (i = 0; i < graph->n; ++i)
5977 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
5979 for (i = 0; i < graph->scc; ++i) {
5980 if (c->scc_cluster[i] != i)
5981 continue;
5982 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
5983 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
5984 return isl_stat_error;
5985 c->cluster[i].src_scc = -1;
5986 c->cluster[i].dst_scc = -1;
5987 if (copy_partial(graph, c, i) < 0)
5988 return isl_stat_error;
5991 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
5992 return isl_stat_error;
5993 for (i = 0; i < graph->n; ++i)
5994 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
5996 return isl_stat_ok;
5999 /* Compute weights on the proximity edges of "graph" that can
6000 * be used by find_proximity to find the most appropriate
6001 * proximity edge to use to merge two clusters in "c".
6002 * The weights are also used by has_bounded_distances to determine
6003 * whether the merge should be allowed.
6004 * Store the maximum of the computed weights in graph->max_weight.
6006 * The computed weight is a measure for the number of remaining schedule
6007 * dimensions that can still be completely aligned.
6008 * In particular, compute the number of equalities between
6009 * input dimensions and output dimensions in the proximity constraints.
6010 * The directions that are already handled by outer schedule bands
6011 * are projected out prior to determining this number.
6013 * Edges that will never be considered by find_proximity are ignored.
6015 static isl_stat compute_weights(struct isl_sched_graph *graph,
6016 struct isl_clustering *c)
6018 int i;
6020 graph->max_weight = 0;
6022 for (i = 0; i < graph->n_edge; ++i) {
6023 struct isl_sched_edge *edge = &graph->edge[i];
6024 struct isl_sched_node *src = edge->src;
6025 struct isl_sched_node *dst = edge->dst;
6026 isl_basic_map *hull;
6027 int n_in, n_out;
6029 if (!is_proximity(edge))
6030 continue;
6031 if (bad_cluster(&c->scc[edge->src->scc]) ||
6032 bad_cluster(&c->scc[edge->dst->scc]))
6033 continue;
6034 if (c->scc_cluster[edge->dst->scc] ==
6035 c->scc_cluster[edge->src->scc])
6036 continue;
6038 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6039 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6040 isl_mat_copy(src->ctrans));
6041 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6042 isl_mat_copy(dst->ctrans));
6043 hull = isl_basic_map_project_out(hull,
6044 isl_dim_in, 0, src->rank);
6045 hull = isl_basic_map_project_out(hull,
6046 isl_dim_out, 0, dst->rank);
6047 hull = isl_basic_map_remove_divs(hull);
6048 n_in = isl_basic_map_dim(hull, isl_dim_in);
6049 n_out = isl_basic_map_dim(hull, isl_dim_out);
6050 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6051 isl_dim_in, 0, n_in);
6052 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6053 isl_dim_out, 0, n_out);
6054 if (!hull)
6055 return isl_stat_error;
6056 edge->weight = hull->n_eq;
6057 isl_basic_map_free(hull);
6059 if (edge->weight > graph->max_weight)
6060 graph->max_weight = edge->weight;
6063 return isl_stat_ok;
6066 /* Call compute_schedule_finish_band on each of the clusters in "c"
6067 * in their topological order. This order is determined by the scc
6068 * fields of the nodes in "graph".
6069 * Combine the results in a sequence expressing the topological order.
6071 * If there is only one cluster left, then there is no need to introduce
6072 * a sequence node. Also, in this case, the cluster necessarily contains
6073 * the SCC at position 0 in the original graph and is therefore also
6074 * stored in the first cluster of "c".
6076 static __isl_give isl_schedule_node *finish_bands_clustering(
6077 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6078 struct isl_clustering *c)
6080 int i;
6081 isl_ctx *ctx;
6082 isl_union_set_list *filters;
6084 if (graph->scc == 1)
6085 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6087 ctx = isl_schedule_node_get_ctx(node);
6089 filters = extract_sccs(ctx, graph);
6090 node = isl_schedule_node_insert_sequence(node, filters);
6092 for (i = 0; i < graph->scc; ++i) {
6093 int j = c->scc_cluster[i];
6094 node = isl_schedule_node_child(node, i);
6095 node = isl_schedule_node_child(node, 0);
6096 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6097 node = isl_schedule_node_parent(node);
6098 node = isl_schedule_node_parent(node);
6101 return node;
6104 /* Compute a schedule for a connected dependence graph by first considering
6105 * each strongly connected component (SCC) in the graph separately and then
6106 * incrementally combining them into clusters.
6107 * Return the updated schedule node.
6109 * Initially, each cluster consists of a single SCC, each with its
6110 * own band schedule. The algorithm then tries to merge pairs
6111 * of clusters along a proximity edge until no more suitable
6112 * proximity edges can be found. During this merging, the schedule
6113 * is maintained in the individual SCCs.
6114 * After the merging is completed, the full resulting clusters
6115 * are extracted and in finish_bands_clustering,
6116 * compute_schedule_finish_band is called on each of them to integrate
6117 * the band into "node" and to continue the computation.
6119 * compute_weights initializes the weights that are used by find_proximity.
6121 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6122 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6124 isl_ctx *ctx;
6125 struct isl_clustering c;
6126 int i;
6128 ctx = isl_schedule_node_get_ctx(node);
6130 if (clustering_init(ctx, &c, graph) < 0)
6131 goto error;
6133 if (compute_weights(graph, &c) < 0)
6134 goto error;
6136 for (;;) {
6137 i = find_proximity(graph, &c);
6138 if (i < 0)
6139 goto error;
6140 if (i >= graph->n_edge)
6141 break;
6142 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6143 goto error;
6146 if (extract_clusters(ctx, graph, &c) < 0)
6147 goto error;
6149 node = finish_bands_clustering(node, graph, &c);
6151 clustering_free(ctx, &c);
6152 return node;
6153 error:
6154 clustering_free(ctx, &c);
6155 return isl_schedule_node_free(node);
6158 /* Compute a schedule for a connected dependence graph and return
6159 * the updated schedule node.
6161 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6162 * as many validity dependences as possible. When all validity dependences
6163 * are satisfied we extend the schedule to a full-dimensional schedule.
6165 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6166 * depending on whether the user has selected the option to try and
6167 * compute a schedule for the entire (weakly connected) component first.
6168 * If there is only a single strongly connected component (SCC), then
6169 * there is no point in trying to combine SCCs
6170 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6171 * is called instead.
6173 static __isl_give isl_schedule_node *compute_schedule_wcc(
6174 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6176 isl_ctx *ctx;
6178 if (!node)
6179 return NULL;
6181 ctx = isl_schedule_node_get_ctx(node);
6182 if (detect_sccs(ctx, graph) < 0)
6183 return isl_schedule_node_free(node);
6185 if (compute_maxvar(graph) < 0)
6186 return isl_schedule_node_free(node);
6188 if (need_feautrier_step(ctx, graph))
6189 return compute_schedule_wcc_feautrier(node, graph);
6191 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6192 return compute_schedule_wcc_whole(node, graph);
6193 else
6194 return compute_schedule_wcc_clustering(node, graph);
6197 /* Compute a schedule for each group of nodes identified by node->scc
6198 * separately and then combine them in a sequence node (or as set node
6199 * if graph->weak is set) inserted at position "node" of the schedule tree.
6200 * Return the updated schedule node.
6202 * If "wcc" is set then each of the groups belongs to a single
6203 * weakly connected component in the dependence graph so that
6204 * there is no need for compute_sub_schedule to look for weakly
6205 * connected components.
6207 static __isl_give isl_schedule_node *compute_component_schedule(
6208 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6209 int wcc)
6211 int component;
6212 isl_ctx *ctx;
6213 isl_union_set_list *filters;
6215 if (!node)
6216 return NULL;
6217 ctx = isl_schedule_node_get_ctx(node);
6219 filters = extract_sccs(ctx, graph);
6220 if (graph->weak)
6221 node = isl_schedule_node_insert_set(node, filters);
6222 else
6223 node = isl_schedule_node_insert_sequence(node, filters);
6225 for (component = 0; component < graph->scc; ++component) {
6226 node = isl_schedule_node_child(node, component);
6227 node = isl_schedule_node_child(node, 0);
6228 node = compute_sub_schedule(node, ctx, graph,
6229 &node_scc_exactly,
6230 &edge_scc_exactly, component, wcc);
6231 node = isl_schedule_node_parent(node);
6232 node = isl_schedule_node_parent(node);
6235 return node;
6238 /* Compute a schedule for the given dependence graph and insert it at "node".
6239 * Return the updated schedule node.
6241 * We first check if the graph is connected (through validity and conditional
6242 * validity dependences) and, if not, compute a schedule
6243 * for each component separately.
6244 * If the schedule_serialize_sccs option is set, then we check for strongly
6245 * connected components instead and compute a separate schedule for
6246 * each such strongly connected component.
6248 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6249 struct isl_sched_graph *graph)
6251 isl_ctx *ctx;
6253 if (!node)
6254 return NULL;
6256 ctx = isl_schedule_node_get_ctx(node);
6257 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6258 if (detect_sccs(ctx, graph) < 0)
6259 return isl_schedule_node_free(node);
6260 } else {
6261 if (detect_wccs(ctx, graph) < 0)
6262 return isl_schedule_node_free(node);
6265 if (graph->scc > 1)
6266 return compute_component_schedule(node, graph, 1);
6268 return compute_schedule_wcc(node, graph);
6271 /* Compute a schedule on sc->domain that respects the given schedule
6272 * constraints.
6274 * In particular, the schedule respects all the validity dependences.
6275 * If the default isl scheduling algorithm is used, it tries to minimize
6276 * the dependence distances over the proximity dependences.
6277 * If Feautrier's scheduling algorithm is used, the proximity dependence
6278 * distances are only minimized during the extension to a full-dimensional
6279 * schedule.
6281 * If there are any condition and conditional validity dependences,
6282 * then the conditional validity dependences may be violated inside
6283 * a tilable band, provided they have no adjacent non-local
6284 * condition dependences.
6286 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6287 __isl_take isl_schedule_constraints *sc)
6289 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6290 struct isl_sched_graph graph = { 0 };
6291 isl_schedule *sched;
6292 isl_schedule_node *node;
6293 isl_union_set *domain;
6295 sc = isl_schedule_constraints_align_params(sc);
6297 domain = isl_schedule_constraints_get_domain(sc);
6298 if (isl_union_set_n_set(domain) == 0) {
6299 isl_schedule_constraints_free(sc);
6300 return isl_schedule_from_domain(domain);
6303 if (graph_init(&graph, sc) < 0)
6304 domain = isl_union_set_free(domain);
6306 node = isl_schedule_node_from_domain(domain);
6307 node = isl_schedule_node_child(node, 0);
6308 if (graph.n > 0)
6309 node = compute_schedule(node, &graph);
6310 sched = isl_schedule_node_get_schedule(node);
6311 isl_schedule_node_free(node);
6313 graph_free(ctx, &graph);
6314 isl_schedule_constraints_free(sc);
6316 return sched;
6319 /* Compute a schedule for the given union of domains that respects
6320 * all the validity dependences and minimizes
6321 * the dependence distances over the proximity dependences.
6323 * This function is kept for backward compatibility.
6325 __isl_give isl_schedule *isl_union_set_compute_schedule(
6326 __isl_take isl_union_set *domain,
6327 __isl_take isl_union_map *validity,
6328 __isl_take isl_union_map *proximity)
6330 isl_schedule_constraints *sc;
6332 sc = isl_schedule_constraints_on_domain(domain);
6333 sc = isl_schedule_constraints_set_validity(sc, validity);
6334 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6336 return isl_schedule_constraints_compute_schedule(sc);