2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
14 #include <isl_ast_build_expr.h>
15 #include <isl_ast_private.h>
16 #include <isl_ast_build_private.h>
18 /* Compute the "opposite" of the (numerator of the) argument of a div
19 * with denonimator "d".
21 * In particular, compute
25 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
26 __isl_take isl_val
*d
)
28 aff
= isl_aff_neg(aff
);
29 aff
= isl_aff_add_constant_val(aff
, d
);
30 aff
= isl_aff_add_constant_si(aff
, -1);
35 /* Internal data structure used inside isl_ast_expr_add_term.
36 * The domain of "build" is used to simplify the expressions.
37 * "build" needs to be set by the caller of isl_ast_expr_add_term.
38 * "cst" is the constant term of the expression in which the added term
39 * appears. It may be modified by isl_ast_expr_add_term.
41 * "v" is the coefficient of the term that is being constructed and
42 * is set internally by isl_ast_expr_add_term.
44 struct isl_ast_add_term_data
{
50 /* Given the numerator "aff" of the argument of an integer division
51 * with denominator "d", check if it can be made non-negative over
52 * data->build->domain by stealing part of the constant term of
53 * the expression in which the integer division appears.
55 * In particular, the outer expression is of the form
57 * v * floor(aff/d) + cst
59 * We already know that "aff" itself may attain negative values.
60 * Here we check if aff + d*floor(cst/v) is non-negative, such
61 * that we could rewrite the expression to
63 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
65 * Note that aff + d*floor(cst/v) can only possibly be non-negative
66 * if data->cst and data->v have the same sign.
67 * Similarly, if floor(cst/v) is zero, then there is no point in
70 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
71 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
78 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
81 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
82 shift
= isl_val_floor(shift
);
83 is_zero
= isl_val_is_zero(shift
);
84 if (is_zero
< 0 || is_zero
) {
86 return is_zero
< 0 ? -1 : 0;
88 shift
= isl_val_mul(shift
, isl_val_copy(d
));
89 shifted
= isl_aff_copy(aff
);
90 shifted
= isl_aff_add_constant_val(shifted
, shift
);
91 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
92 isl_aff_free(shifted
);
97 /* Given the numerator "aff' of the argument of an integer division
98 * with denominator "d", steal part of the constant term of
99 * the expression in which the integer division appears to make it
100 * non-negative over data->build->domain.
102 * In particular, the outer expression is of the form
104 * v * floor(aff/d) + cst
106 * We know that "aff" itself may attain negative values,
107 * but that aff + d*floor(cst/v) is non-negative.
108 * Find the minimal positive value that we need to add to "aff"
109 * to make it positive and adjust data->cst accordingly.
110 * That is, compute the minimal value "m" of "aff" over
111 * data->build->domain and take
119 * and rewrite the expression to
121 * v * floor((aff + s*d)/d) + (cst - v*s)
123 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
124 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
129 domain
= isl_ast_build_get_domain(data
->build
);
130 shift
= isl_set_min_val(domain
, aff
);
131 isl_set_free(domain
);
133 shift
= isl_val_neg(shift
);
134 shift
= isl_val_div(shift
, isl_val_copy(d
));
135 shift
= isl_val_ceil(shift
);
137 t
= isl_val_copy(shift
);
138 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
139 data
->cst
= isl_val_sub(data
->cst
, t
);
141 shift
= isl_val_mul(shift
, isl_val_copy(d
));
142 return isl_aff_add_constant_val(aff
, shift
);
145 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
146 * The result is simplified in terms of data->build->domain.
147 * This function may change (the sign of) data->v.
149 * "ls" is known to be non-NULL.
151 * Let the div be of the form floor(e/d).
152 * If the ast_build_prefer_pdiv option is set then we check if "e"
153 * is non-negative, so that we can generate
155 * (pdiv_q, expr(e), expr(d))
159 * (fdiv_q, expr(e), expr(d))
161 * If the ast_build_prefer_pdiv option is set and
162 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
163 * If so, we can rewrite
165 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
167 * and still use pdiv_q, while changing the sign of data->v.
169 * Otherwise, we check if
173 * is non-negative and if so, replace floor(e/d) by
175 * floor((e + s*d)/d) - s
177 * with s the minimal shift that makes the argument non-negative.
179 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
180 __isl_keep isl_local_space
*ls
, int pos
)
182 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
184 isl_ast_expr
*num
, *den
;
186 enum isl_ast_op_type type
;
188 aff
= isl_local_space_get_div(ls
, pos
);
189 d
= isl_aff_get_denominator_val(aff
);
190 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
191 den
= isl_ast_expr_from_val(isl_val_copy(d
));
193 type
= isl_ast_op_fdiv_q
;
194 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
195 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
196 if (non_neg
>= 0 && !non_neg
) {
197 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
199 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
200 if (non_neg
>= 0 && non_neg
) {
201 data
->v
= isl_val_neg(data
->v
);
207 if (non_neg
>= 0 && !non_neg
) {
208 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
209 if (non_neg
>= 0 && non_neg
)
210 aff
= steal_from_cst(aff
, d
, data
);
213 aff
= isl_aff_free(aff
);
215 type
= isl_ast_op_pdiv_q
;
219 num
= isl_ast_expr_from_aff(aff
, data
->build
);
220 return isl_ast_expr_alloc_binary(type
, num
, den
);
223 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
224 * The result is simplified in terms of data->build->domain.
225 * This function may change (the sign of) data->v.
227 * The isl_ast_expr is constructed based on the type of the dimension.
228 * - divs are constructed by var_div
229 * - set variables are constructed from the iterator isl_ids in data->build
230 * - parameters are constructed from the isl_ids in "ls"
232 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
233 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
235 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
238 if (type
== isl_dim_div
)
239 return var_div(data
, ls
, pos
);
241 if (type
== isl_dim_set
) {
242 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
243 return isl_ast_expr_from_id(id
);
246 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
247 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
249 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
250 return isl_ast_expr_from_id(id
);
253 /* Does "expr" represent the zero integer?
255 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
259 if (expr
->type
!= isl_ast_expr_int
)
261 return isl_val_is_zero(expr
->u
.v
);
264 /* Create an expression representing the sum of "expr1" and "expr2",
265 * provided neither of the two expressions is identically zero.
267 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
268 __isl_take isl_ast_expr
*expr2
)
270 if (!expr1
|| !expr2
)
273 if (ast_expr_is_zero(expr1
)) {
274 isl_ast_expr_free(expr1
);
278 if (ast_expr_is_zero(expr2
)) {
279 isl_ast_expr_free(expr2
);
283 return isl_ast_expr_add(expr1
, expr2
);
285 isl_ast_expr_free(expr1
);
286 isl_ast_expr_free(expr2
);
290 /* Subtract expr2 from expr1.
292 * If expr2 is zero, we simply return expr1.
293 * If expr1 is zero, we return
295 * (isl_ast_op_minus, expr2)
297 * Otherwise, we return
299 * (isl_ast_op_sub, expr1, expr2)
301 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
302 __isl_take isl_ast_expr
*expr2
)
304 if (!expr1
|| !expr2
)
307 if (ast_expr_is_zero(expr2
)) {
308 isl_ast_expr_free(expr2
);
312 if (ast_expr_is_zero(expr1
)) {
313 isl_ast_expr_free(expr1
);
314 return isl_ast_expr_neg(expr2
);
317 return isl_ast_expr_sub(expr1
, expr2
);
319 isl_ast_expr_free(expr1
);
320 isl_ast_expr_free(expr2
);
324 /* Return an isl_ast_expr that represents
328 * v is assumed to be non-negative.
329 * The result is simplified in terms of build->domain.
331 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
332 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
333 __isl_keep isl_ast_build
*build
)
342 ctx
= isl_aff_get_ctx(aff
);
343 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
345 c
= isl_ast_expr_from_val(isl_val_copy(d
));
346 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
348 if (!isl_val_is_one(v
)) {
349 c
= isl_ast_expr_from_val(isl_val_copy(v
));
350 expr
= isl_ast_expr_mul(c
, expr
);
356 /* Create an isl_ast_expr that scales "expr" by "v".
358 * If v is 1, we simply return expr.
359 * If v is -1, we return
361 * (isl_ast_op_minus, expr)
363 * Otherwise, we return
365 * (isl_ast_op_mul, expr(v), expr)
367 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
368 __isl_take isl_val
*v
)
374 if (isl_val_is_one(v
)) {
379 if (isl_val_is_negone(v
)) {
381 expr
= isl_ast_expr_neg(expr
);
383 c
= isl_ast_expr_from_val(v
);
384 expr
= isl_ast_expr_mul(c
, expr
);
390 isl_ast_expr_free(expr
);
394 /* Add an expression for "*v" times the specified dimension of "ls"
396 * If the dimension is an integer division, then this function
397 * may modify data->cst in order to make the numerator non-negative.
398 * The result is simplified in terms of data->build->domain.
400 * Let e be the expression for the specified dimension,
401 * multiplied by the absolute value of "*v".
402 * If "*v" is negative, we create
404 * (isl_ast_op_sub, expr, e)
406 * except when expr is trivially zero, in which case we create
408 * (isl_ast_op_minus, e)
412 * If "*v" is positive, we simply create
414 * (isl_ast_op_add, expr, e)
417 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
418 __isl_take isl_ast_expr
*expr
,
419 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
420 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
428 term
= var(data
, ls
, type
, pos
);
431 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
433 term
= scale(term
, v
);
434 return ast_expr_sub(expr
, term
);
436 term
= scale(term
, v
);
437 return ast_expr_add(expr
, term
);
441 /* Add an expression for "v" to expr.
443 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
444 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
447 isl_ast_expr
*expr_int
;
452 if (isl_val_is_zero(v
)) {
457 ctx
= isl_ast_expr_get_ctx(expr
);
458 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
460 expr_int
= isl_ast_expr_from_val(v
);
461 return ast_expr_sub(expr
, expr_int
);
463 expr_int
= isl_ast_expr_from_val(v
);
464 return ast_expr_add(expr
, expr_int
);
467 isl_ast_expr_free(expr
);
472 /* Internal data structure used inside extract_modulos.
474 * If any modulo expressions are detected in "aff", then the
475 * expression is removed from "aff" and added to either "pos" or "neg"
476 * depending on the sign of the coefficient of the modulo expression
479 * "add" is an expression that needs to be added to "aff" at the end of
480 * the computation. It is NULL as long as no modulos have been extracted.
482 * "i" is the position in "aff" of the div under investigation
483 * "v" is the coefficient in "aff" of the div
484 * "div" is the argument of the div, with the denominator removed
485 * "d" is the original denominator of the argument of the div
487 * "nonneg" is an affine expression that is non-negative over "build"
488 * and that can be used to extract a modulo expression from "div".
489 * In particular, if "sign" is 1, then the coefficients of "nonneg"
490 * are equal to those of "div" modulo "d". If "sign" is -1, then
491 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
492 * If "sign" is 0, then no such affine expression has been found (yet).
494 struct isl_extract_mod_data
{
495 isl_ast_build
*build
;
512 /* Given that data->v * div_i in data->aff is equal to
514 * f * (term - (arg mod d))
516 * with data->d * f = data->v, add
522 * abs(f) * (arg mod d)
524 * to data->neg or data->pos depending on the sign of -f.
526 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
527 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
532 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
533 s
= isl_val_sgn(data
->v
);
534 data
->v
= isl_val_abs(data
->v
);
535 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
538 data
->neg
= ast_expr_add(data
->neg
, expr
);
540 data
->pos
= ast_expr_add(data
->pos
, expr
);
541 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
542 isl_dim_div
, data
->i
, 0);
544 data
->v
= isl_val_neg(data
->v
);
545 term
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->v
));
550 data
->add
= isl_aff_add(data
->add
, term
);
557 /* Given that data->v * div_i in data->aff is of the form
559 * f * d * floor(div/d)
561 * with div nonnegative on data->build, rewrite it as
563 * f * (div - (div mod d)) = f * div - f * (div mod d)
571 * abs(f) * (div mod d)
573 * to data->neg or data->pos depending on the sign of -f.
575 static int extract_mod(struct isl_extract_mod_data
*data
)
577 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
578 isl_aff_copy(data
->div
));
581 /* Given that data->v * div_i in data->aff is of the form
583 * f * d * floor(div/d) (1)
585 * check if div is non-negative on data->build and, if so,
586 * extract the corresponding modulo from data->aff.
587 * If not, then check if
591 * is non-negative on data->build. If so, replace (1) by
593 * -f * d * floor((-div + d - 1)/d)
595 * and extract the corresponding modulo from data->aff.
597 * This function may modify data->div.
599 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
603 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
607 return extract_mod(data
);
609 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
610 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
614 data
->v
= isl_val_neg(data
->v
);
615 return extract_mod(data
);
620 data
->aff
= isl_aff_free(data
->aff
);
624 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
625 * for use in extracting a modulo expression?
627 * We currently only consider the constant term of the affine expression.
628 * In particular, we prefer the affine expression with the smallest constant
630 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
631 * then we would pick x >= 0
633 * More detailed heuristics could be used if it turns out that there is a need.
635 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
636 __isl_keep isl_constraint
*c
)
644 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
645 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
646 simpler
= isl_val_lt(v1
, v2
);
653 /* Check if the coefficients of "c" are either equal or opposite to those
654 * of data->div modulo data->d. If so, and if "c" is "simpler" than
655 * data->nonneg, then replace data->nonneg by the affine expression of "c"
656 * and set data->sign accordingly.
658 * Both "c" and data->div are assumed not to involve any integer divisions.
660 * Before we start the actual comparison, we first quickly check if
661 * "c" and data->div have the same non-zero coefficients.
662 * If not, then we assume that "c" is not of the desired form.
663 * Note that while the coefficients of data->div can be reasonably expected
664 * not to involve any coefficients that are multiples of d, "c" may
665 * very well involve such coefficients. This means that we may actually
668 static int check_parallel_or_opposite(__isl_take isl_constraint
*c
, void *user
)
670 struct isl_extract_mod_data
*data
= user
;
671 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
672 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
675 int parallel
= 1, opposite
= 1;
677 for (t
= 0; t
< 2; ++t
) {
678 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
679 for (i
= 0; i
< n
[t
]; ++i
) {
682 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
683 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
685 parallel
= opposite
= 0;
689 for (t
= 0; t
< 2; ++t
) {
690 for (i
= 0; i
< n
[t
]; ++i
) {
693 if (!parallel
&& !opposite
)
695 v1
= isl_constraint_get_coefficient_val(c
,
697 v2
= isl_aff_get_coefficient_val(data
->div
,
700 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
701 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
702 v1
= isl_val_add(v1
, isl_val_copy(v2
));
705 v1
= isl_val_add(v1
, isl_val_copy(v2
));
706 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
713 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
714 isl_aff_free(data
->nonneg
);
715 data
->nonneg
= isl_constraint_get_aff(c
);
716 data
->sign
= parallel
? 1 : -1;
719 isl_constraint_free(c
);
721 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
727 /* Given that data->v * div_i in data->aff is of the form
729 * f * d * floor(div/d) (1)
731 * see if we can find an expression div' that is non-negative over data->build
732 * and that is related to div through
738 * div' = -div + d - 1 + d * e
740 * with e some affine expression.
741 * If so, we write (1) as
743 * f * div + f * (div' mod d)
747 * -f * (-div + d - 1) - f * (div' mod d)
749 * exploiting (in the second case) the fact that
751 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
754 * We first try to find an appropriate expression for div'
755 * from the constraints of data->build->domain (which is therefore
756 * guaranteed to be non-negative on data->build), where we remove
757 * any integer divisions from the constraints and skip this step
758 * if "div" itself involves any integer divisions.
759 * If we cannot find an appropriate expression this way, then
760 * we pass control to extract_nonneg_mod where check
761 * if div or "-div + d -1" themselves happen to be
762 * non-negative on data->build.
764 * While looking for an appropriate constraint in data->build->domain,
765 * we ignore the constant term, so after finding such a constraint,
766 * we still need to fix up the constant term.
767 * In particular, if a is the constant term of "div"
768 * (or d - 1 - the constant term of "div" if data->sign < 0)
769 * and b is the constant term of the constraint, then we need to find
770 * a non-negative constant c such that
772 * b + c \equiv a mod d
778 * and add it to b to obtain the constant term of div'.
779 * If this constant term is "too negative", then we add an appropriate
780 * multiple of d to make it positive.
783 * Note that the above is a only a very simple heuristic for finding an
784 * appropriate expression. We could try a bit harder by also considering
785 * sums of constraints that involve disjoint sets of variables or
786 * we could consider arbitrary linear combinations of constraints,
787 * although that could potentially be much more expensive as it involves
788 * the solution of an LP problem.
790 * In particular, if v_i is a column vector representing constraint i,
791 * w represents div and e_i is the i-th unit vector, then we are looking
792 * for a solution of the constraints
794 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
796 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
797 * If we are not just interested in a non-negative expression, but
798 * also in one with a minimal range, then we don't just want
799 * c = \sum_i lambda_i v_i to be non-negative over the domain,
800 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
801 * that we want to minimize and we now also have to take into account
802 * the constant terms of the constraints.
803 * Alternatively, we could first compute the dual of the domain
804 * and plug in the constraints on the coefficients.
806 static int try_extract_mod(struct isl_extract_mod_data
*data
)
815 n
= isl_aff_dim(data
->div
, isl_dim_div
);
817 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
818 return extract_nonneg_mod(data
);
820 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
821 hull
= isl_basic_set_remove_divs(hull
);
824 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
826 isl_basic_set_free(hull
);
828 if (!data
->sign
|| r
< 0) {
829 isl_aff_free(data
->nonneg
);
832 return extract_nonneg_mod(data
);
835 v1
= isl_aff_get_constant_val(data
->div
);
836 v2
= isl_aff_get_constant_val(data
->nonneg
);
837 if (data
->sign
< 0) {
838 v1
= isl_val_neg(v1
);
839 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
840 v1
= isl_val_sub_ui(v1
, 1);
842 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
843 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
844 v1
= isl_val_add(v1
, v2
);
845 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
846 v2
= isl_val_ceil(v2
);
847 if (isl_val_is_neg(v2
)) {
848 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
849 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
851 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
854 if (data
->sign
< 0) {
855 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
856 data
->v
= isl_val_neg(data
->v
);
859 return extract_term_and_mod(data
,
860 isl_aff_copy(data
->div
), data
->nonneg
);
862 data
->aff
= isl_aff_free(data
->aff
);
866 /* Check if "data->aff" involves any (implicit) modulo computations based
868 * If so, remove them from aff and add expressions corresponding
869 * to those modulo computations to data->pos and/or data->neg.
871 * "aff" is assumed to be an integer affine expression.
873 * In particular, check if (v * div_j) is of the form
875 * f * m * floor(a / m)
877 * and, if so, rewrite it as
879 * f * (a - (a mod m)) = f * a - f * (a mod m)
881 * and extract out -f * (a mod m).
882 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
883 * If f < 0, we add ((-f) * (a mod m)) to *pos.
885 * Note that in order to represent "a mod m" as
887 * (isl_ast_op_pdiv_r, a, m)
889 * we need to make sure that a is non-negative.
890 * If not, we check if "-a + m - 1" is non-negative.
891 * If so, we can rewrite
893 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
895 * and still extract a modulo.
897 static int extract_modulo(struct isl_extract_mod_data
*data
)
899 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
900 data
->d
= isl_aff_get_denominator_val(data
->div
);
901 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
902 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
903 if (try_extract_mod(data
) < 0)
904 data
->aff
= isl_aff_free(data
->aff
);
906 isl_aff_free(data
->div
);
907 isl_val_free(data
->d
);
911 /* Check if "aff" involves any (implicit) modulo computations.
912 * If so, remove them from aff and add expressions corresponding
913 * to those modulo computations to *pos and/or *neg.
914 * We only do this if the option ast_build_prefer_pdiv is set.
916 * "aff" is assumed to be an integer affine expression.
918 * A modulo expression is of the form
920 * a mod m = a - m * floor(a / m)
922 * To detect them in aff, we look for terms of the form
924 * f * m * floor(a / m)
928 * f * (a - (a mod m)) = f * a - f * (a mod m)
930 * and extract out -f * (a mod m).
931 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
932 * If f < 0, we add ((-f) * (a mod m)) to *pos.
934 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
935 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
936 __isl_keep isl_ast_build
*build
)
938 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
945 ctx
= isl_aff_get_ctx(aff
);
946 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
949 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
950 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
951 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
952 isl_dim_div
, data
.i
);
954 return isl_aff_free(aff
);
955 if (isl_val_is_zero(data
.v
) ||
956 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
957 isl_val_free(data
.v
);
960 if (extract_modulo(&data
) < 0)
961 data
.aff
= isl_aff_free(data
.aff
);
962 isl_val_free(data
.v
);
968 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
975 /* Check if aff involves any non-integer coefficients.
976 * If so, split aff into
978 * aff = aff1 + (aff2 / d)
980 * with both aff1 and aff2 having only integer coefficients.
981 * Return aff1 and add (aff2 / d) to *expr.
983 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
984 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
988 isl_local_space
*ls
= NULL
;
989 isl_ast_expr
*rat_expr
;
991 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
992 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
996 d
= isl_aff_get_denominator_val(aff
);
999 if (isl_val_is_one(d
)) {
1004 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1006 ls
= isl_aff_get_domain_local_space(aff
);
1007 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1009 for (i
= 0; i
< 3; ++i
) {
1010 n
= isl_aff_dim(aff
, t
[i
]);
1011 for (j
= 0; j
< n
; ++j
) {
1014 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1017 if (isl_val_is_divisible_by(v
, d
)) {
1021 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1023 rat_j
= isl_aff_scale_val(rat_j
, v
);
1024 rat
= isl_aff_add(rat
, rat_j
);
1028 v
= isl_aff_get_constant_val(aff
);
1029 if (isl_val_is_divisible_by(v
, d
)) {
1034 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1035 rat
= isl_aff_add(rat
, rat_0
);
1038 isl_local_space_free(ls
);
1040 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1041 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1043 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1044 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1045 *expr
= ast_expr_add(*expr
, rat_expr
);
1050 isl_local_space_free(ls
);
1056 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1057 * The result is simplified in terms of build->domain.
1059 * We first extract hidden modulo computations from the affine expression
1060 * and then add terms for each variable with a non-zero coefficient.
1061 * Finally, if the affine expression has a non-trivial denominator,
1062 * we divide the resulting isl_ast_expr by this denominator.
1064 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1065 __isl_keep isl_ast_build
*build
)
1070 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1071 isl_ast_expr
*expr
, *expr_neg
;
1072 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1073 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1074 isl_local_space
*ls
;
1075 struct isl_ast_add_term_data data
;
1080 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1081 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1083 aff
= extract_rational(aff
, &expr
, build
);
1085 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1086 expr
= ast_expr_sub(expr
, expr_neg
);
1088 ls
= isl_aff_get_domain_local_space(aff
);
1091 data
.cst
= isl_aff_get_constant_val(aff
);
1092 for (i
= 0; i
< 3; ++i
) {
1093 n
= isl_aff_dim(aff
, t
[i
]);
1094 for (j
= 0; j
< n
; ++j
) {
1095 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1097 expr
= isl_ast_expr_free(expr
);
1098 if (isl_val_is_zero(v
)) {
1102 expr
= isl_ast_expr_add_term(expr
,
1103 ls
, l
[i
], j
, v
, &data
);
1107 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1109 isl_local_space_free(ls
);
1114 /* Add terms to "expr" for each variable in "aff" with a coefficient
1115 * with sign equal to "sign".
1116 * The result is simplified in terms of data->build->domain.
1118 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1119 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1123 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1124 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1125 isl_local_space
*ls
;
1127 ls
= isl_aff_get_domain_local_space(aff
);
1129 for (i
= 0; i
< 3; ++i
) {
1130 int n
= isl_aff_dim(aff
, t
[i
]);
1131 for (j
= 0; j
< n
; ++j
) {
1132 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1133 if (sign
* isl_val_sgn(v
) <= 0) {
1138 expr
= isl_ast_expr_add_term(expr
,
1139 ls
, l
[i
], j
, v
, data
);
1143 isl_local_space_free(ls
);
1148 /* Should the constant term "v" be considered positive?
1150 * A positive constant will be added to "pos" by the caller,
1151 * while a negative constant will be added to "neg".
1152 * If either "pos" or "neg" is exactly zero, then we prefer
1153 * to add the constant "v" to that side, irrespective of the sign of "v".
1154 * This results in slightly shorter expressions and may reduce the risk
1157 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1158 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1160 if (ast_expr_is_zero(pos
))
1162 if (ast_expr_is_zero(neg
))
1164 return isl_val_is_pos(v
);
1167 /* Check if the equality
1171 * represents a stride constraint on the integer division "pos".
1173 * In particular, if the integer division "pos" is equal to
1177 * then check if aff is equal to
1183 * If so, the equality is exactly
1187 * Note that in principle we could also accept
1191 * where e and e' differ by a constant.
1193 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1199 div
= isl_aff_get_div(aff
, pos
);
1200 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1201 d
= isl_aff_get_denominator_val(div
);
1202 eq
= isl_val_abs_eq(c
, d
);
1203 if (eq
>= 0 && eq
) {
1204 aff
= isl_aff_copy(aff
);
1205 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1206 div
= isl_aff_scale_val(div
, d
);
1207 if (isl_val_is_pos(c
))
1208 div
= isl_aff_neg(div
);
1209 eq
= isl_aff_plain_is_equal(div
, aff
);
1219 /* Are all coefficients of "aff" (zero or) negative?
1221 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1228 n
= isl_aff_dim(aff
, isl_dim_param
);
1229 for (i
= 0; i
< n
; ++i
)
1230 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1233 n
= isl_aff_dim(aff
, isl_dim_in
);
1234 for (i
= 0; i
< n
; ++i
)
1235 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1241 /* Give an equality of the form
1243 * aff = e - d floor(e/d) = 0
1247 * aff = -e + d floor(e/d) = 0
1249 * with the integer division "pos" equal to floor(e/d),
1250 * construct the AST expression
1252 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1254 * If e only has negative coefficients, then construct
1256 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1260 static __isl_give isl_ast_expr
*extract_stride_constraint(
1261 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1265 isl_ast_expr
*expr
, *cst
;
1270 ctx
= isl_aff_get_ctx(aff
);
1272 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1273 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1275 if (all_negative_coefficients(aff
))
1276 aff
= isl_aff_neg(aff
);
1278 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1279 expr
= isl_ast_expr_from_aff(aff
, build
);
1281 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1282 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1283 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1288 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1289 * The result is simplified in terms of build->domain.
1291 * We first check if the constraint is an equality of the form
1293 * e - d floor(e/d) = 0
1299 * If so, we convert it to
1301 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1303 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1304 * We first extract hidden modulo computations from "a"
1305 * and then collect all the terms with a positive coefficient in cons_pos
1306 * and the terms with a negative coefficient in cons_neg.
1308 * The result is then of the form
1310 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1314 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1316 * However, if the first expression is an integer constant (and the second
1317 * is not), then we swap the two expressions. This ensures that we construct,
1318 * e.g., "i <= 5" rather than "5 >= i".
1320 * Furthermore, is there are no terms with positive coefficients (or no terms
1321 * with negative coefficients), then the constant term is added to "pos"
1322 * (or "neg"), ignoring the sign of the constant term.
1324 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1325 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1329 isl_ast_expr
*expr_pos
;
1330 isl_ast_expr
*expr_neg
;
1334 enum isl_ast_op_type type
;
1335 struct isl_ast_add_term_data data
;
1340 aff
= isl_constraint_get_aff(constraint
);
1341 eq
= isl_constraint_is_equality(constraint
);
1342 isl_constraint_free(constraint
);
1344 n
= isl_aff_dim(aff
, isl_dim_div
);
1346 for (i
= 0; i
< n
; ++i
) {
1348 is_stride
= is_stride_constraint(aff
, i
);
1352 return extract_stride_constraint(aff
, i
, build
);
1355 ctx
= isl_aff_get_ctx(aff
);
1356 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1357 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1359 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1362 data
.cst
= isl_aff_get_constant_val(aff
);
1363 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1364 data
.cst
= isl_val_neg(data
.cst
);
1365 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1366 data
.cst
= isl_val_neg(data
.cst
);
1368 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1369 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1371 data
.cst
= isl_val_neg(data
.cst
);
1372 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1375 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1376 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1377 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1378 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1380 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1381 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1391 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1392 * as a callback to isl_constraint_list_sort.
1393 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1394 * apart, then use isl_constraint_plain_cmp instead.
1396 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1397 __isl_keep isl_constraint
*b
, void *user
)
1401 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1404 return isl_constraint_plain_cmp(a
, b
);
1407 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1408 * The result is simplified in terms of build->domain.
1410 * If "bset" is not bounded by any constraint, then we contruct
1411 * the expression "1", i.e., "true".
1413 * Otherwise, we sort the constraints, putting constraints that involve
1414 * integer divisions after those that do not, and construct an "and"
1415 * of the ast expressions of the individual constraints.
1417 * Each constraint is added to the generated constraints of the build
1418 * after it has been converted to an AST expression so that it can be used
1419 * to simplify the following constraints. This may change the truth value
1420 * of subsequent constraints that do not satisfy the earlier constraints,
1421 * but this does not affect the outcome of the conjunction as it is
1422 * only true if all the conjuncts are true (no matter in what order
1423 * they are evaluated). In particular, the constraints that do not
1424 * involve integer divisions may serve to simplify some constraints
1425 * that do involve integer divisions.
1427 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1428 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1432 isl_constraint_list
*list
;
1436 list
= isl_basic_set_get_constraint_list(bset
);
1437 isl_basic_set_free(bset
);
1438 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1441 n
= isl_constraint_list_n_constraint(list
);
1443 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
1444 isl_constraint_list_free(list
);
1445 return isl_ast_expr_alloc_int_si(ctx
, 1);
1448 build
= isl_ast_build_copy(build
);
1450 c
= isl_constraint_list_get_constraint(list
, 0);
1451 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1452 set
= isl_set_from_basic_set(bset
);
1453 res
= isl_ast_expr_from_constraint(c
, build
);
1454 build
= isl_ast_build_restrict_generated(build
, set
);
1456 for (i
= 1; i
< n
; ++i
) {
1459 c
= isl_constraint_list_get_constraint(list
, i
);
1460 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1461 set
= isl_set_from_basic_set(bset
);
1462 expr
= isl_ast_expr_from_constraint(c
, build
);
1463 build
= isl_ast_build_restrict_generated(build
, set
);
1464 res
= isl_ast_expr_and(res
, expr
);
1467 isl_constraint_list_free(list
);
1468 isl_ast_build_free(build
);
1472 struct isl_expr_from_set_data
{
1473 isl_ast_build
*build
;
1478 /* Construct an isl_ast_expr that evaluates the conditions defining "bset"
1479 * and add it to data->res.
1480 * The result is simplified in terms of data->build->domain.
1482 static int expr_from_set(__isl_take isl_basic_set
*bset
, void *user
)
1484 struct isl_expr_from_set_data
*data
= user
;
1487 expr
= isl_ast_build_expr_from_basic_set(data
->build
, bset
);
1491 data
->res
= isl_ast_expr_or(data
->res
, expr
);
1500 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1501 * The result is simplified in terms of build->domain.
1503 * If "set" is an (obviously) empty set, then return the expression "0".
1505 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1506 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1508 struct isl_expr_from_set_data data
= { build
, 1, NULL
};
1510 if (isl_set_foreach_basic_set(set
, &expr_from_set
, &data
) < 0)
1511 data
.res
= isl_ast_expr_free(data
.res
);
1512 else if (data
.first
) {
1513 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1514 data
.res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
1521 struct isl_from_pw_aff_data
{
1522 isl_ast_build
*build
;
1524 isl_ast_expr
**next
;
1528 /* This function is called during the construction of an isl_ast_expr
1529 * that evaluates an isl_pw_aff.
1530 * Adjust data->next to take into account this piece.
1532 * data->n is the number of pairs of set and aff to go.
1533 * data->dom is the domain of the entire isl_pw_aff.
1535 * If this is the last pair, then data->next is set to evaluate aff
1536 * and the domain is ignored.
1537 * Otherwise, data->next is set to a select operation that selects
1538 * an isl_ast_expr corresponding to "aff" on "set" and to an expression
1539 * that will be filled in by later calls otherwise.
1541 * In both cases, the constraints of "set" are added to the generated
1542 * constraints of the build such that they can be exploited to simplify
1543 * the AST expression constructed from "aff".
1545 static int ast_expr_from_pw_aff(__isl_take isl_set
*set
,
1546 __isl_take isl_aff
*aff
, void *user
)
1548 struct isl_from_pw_aff_data
*data
= user
;
1550 isl_ast_build
*build
;
1552 ctx
= isl_set_get_ctx(set
);
1555 build
= isl_ast_build_copy(data
->build
);
1556 build
= isl_ast_build_restrict_generated(build
, set
);
1557 *data
->next
= isl_ast_expr_from_aff(aff
, build
);
1558 isl_ast_build_free(build
);
1562 isl_ast_expr
*ternary
, *arg
;
1565 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1566 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1567 arg
= isl_ast_build_expr_from_set(data
->build
, gist
);
1568 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1569 build
= isl_ast_build_copy(data
->build
);
1570 build
= isl_ast_build_restrict_generated(build
, set
);
1571 arg
= isl_ast_expr_from_aff(aff
, build
);
1572 isl_ast_build_free(build
);
1573 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1577 *data
->next
= ternary
;
1578 data
->next
= &ternary
->u
.op
.args
[2];
1584 /* Construct an isl_ast_expr that evaluates "pa".
1585 * The result is simplified in terms of build->domain.
1587 * The domain of "pa" lives in the internal schedule space.
1589 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
1590 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1592 struct isl_from_pw_aff_data data
;
1593 isl_ast_expr
*res
= NULL
;
1595 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
1596 pa
= isl_pw_aff_coalesce(pa
);
1601 data
.n
= isl_pw_aff_n_piece(pa
);
1603 data
.dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1605 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) < 0)
1606 res
= isl_ast_expr_free(res
);
1608 isl_die(isl_pw_aff_get_ctx(pa
), isl_error_invalid
,
1609 "cannot handle void expression", res
= NULL
);
1611 isl_pw_aff_free(pa
);
1612 isl_set_free(data
.dom
);
1616 /* Construct an isl_ast_expr that evaluates "pa".
1617 * The result is simplified in terms of build->domain.
1619 * The domain of "pa" lives in the external schedule space.
1621 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
1622 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1626 if (isl_ast_build_need_schedule_map(build
)) {
1628 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1629 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
1631 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1635 /* Set the ids of the input dimensions of "mpa" to the iterator ids
1638 * The domain of "mpa" is assumed to live in the internal schedule domain.
1640 static __isl_give isl_multi_pw_aff
*set_iterator_names(
1641 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1645 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
1646 for (i
= 0; i
< n
; ++i
) {
1649 id
= isl_ast_build_get_iterator_id(build
, i
);
1650 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
1656 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
1657 * the remaining arguments derived from "mpa".
1658 * That is, construct a call or access expression that calls/accesses "arg0"
1659 * with arguments/indices specified by "mpa".
1661 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
1662 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1663 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
1669 ctx
= isl_ast_build_get_ctx(build
);
1671 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
1672 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
1673 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1674 for (i
= 0; i
< n
; ++i
) {
1678 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
1679 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1680 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
1683 isl_multi_pw_aff_free(mpa
);
1687 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1688 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1689 __isl_take isl_multi_pw_aff
*mpa
);
1691 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
1692 * The range of "mpa" is assumed to be wrapped relation.
1693 * The domain of this wrapped relation specifies the structure being
1694 * accessed, while the range of this wrapped relation spacifies the
1695 * member of the structure being accessed.
1697 * The domain of "mpa" is assumed to live in the internal schedule domain.
1699 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
1700 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1703 isl_multi_pw_aff
*domain
;
1704 isl_ast_expr
*domain_expr
, *expr
;
1705 enum isl_ast_op_type type
= isl_ast_op_access
;
1707 domain
= isl_multi_pw_aff_copy(mpa
);
1708 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1709 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
1711 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
1712 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1713 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1714 "missing field name", goto error
);
1715 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1716 expr
= isl_ast_expr_from_id(id
);
1717 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
1718 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1720 isl_multi_pw_aff_free(mpa
);
1724 /* Construct an isl_ast_expr of type "type" that calls or accesses
1725 * the element specified by "mpa".
1726 * The first argument is obtained from the output tuple name.
1727 * The remaining arguments are given by the piecewise affine expressions.
1729 * If the range of "mpa" is a mapped relation, then we assume it
1730 * represents an access to a member of a structure.
1732 * The domain of "mpa" is assumed to live in the internal schedule domain.
1734 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1735 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1736 __isl_take isl_multi_pw_aff
*mpa
)
1745 if (type
== isl_ast_op_access
&&
1746 isl_multi_pw_aff_range_is_wrapping(mpa
))
1747 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
1749 mpa
= set_iterator_names(build
, mpa
);
1753 ctx
= isl_ast_build_get_ctx(build
);
1755 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1756 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1758 id
= isl_id_alloc(ctx
, "", NULL
);
1760 expr
= isl_ast_expr_from_id(id
);
1761 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1763 isl_multi_pw_aff_free(mpa
);
1767 /* Construct an isl_ast_expr of type "type" that calls or accesses
1768 * the element specified by "pma".
1769 * The first argument is obtained from the output tuple name.
1770 * The remaining arguments are given by the piecewise affine expressions.
1772 * The domain of "pma" is assumed to live in the internal schedule domain.
1774 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
1775 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1776 __isl_take isl_pw_multi_aff
*pma
)
1778 isl_multi_pw_aff
*mpa
;
1780 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1781 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1784 /* Construct an isl_ast_expr of type "type" that calls or accesses
1785 * the element specified by "mpa".
1786 * The first argument is obtained from the output tuple name.
1787 * The remaining arguments are given by the piecewise affine expressions.
1789 * The domain of "mpa" is assumed to live in the external schedule domain.
1791 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
1792 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1793 __isl_take isl_multi_pw_aff
*mpa
)
1797 isl_space
*space_build
, *space_mpa
;
1799 space_build
= isl_ast_build_get_space(build
, 0);
1800 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
1801 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
1802 space_mpa
, isl_dim_in
);
1803 isl_space_free(space_build
);
1804 isl_space_free(space_mpa
);
1808 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1809 "spaces don't match", goto error
);
1811 if (isl_ast_build_need_schedule_map(build
)) {
1813 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1814 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
1817 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1820 isl_multi_pw_aff_free(mpa
);
1824 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
1825 * The name of the function is obtained from the output tuple name.
1826 * The arguments are given by the piecewise affine expressions.
1828 * The domain of "mpa" is assumed to live in the external schedule domain.
1830 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
1831 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1833 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
1836 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
1837 * The name of the array is obtained from the output tuple name.
1838 * The index expressions are given by the piecewise affine expressions.
1840 * The domain of "mpa" is assumed to live in the external schedule domain.
1842 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
1843 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1845 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
1848 /* Construct an isl_ast_expr of type "type" that calls or accesses
1849 * the element specified by "pma".
1850 * The first argument is obtained from the output tuple name.
1851 * The remaining arguments are given by the piecewise affine expressions.
1853 * The domain of "pma" is assumed to live in the external schedule domain.
1855 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
1856 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1857 __isl_take isl_pw_multi_aff
*pma
)
1859 isl_multi_pw_aff
*mpa
;
1861 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1862 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
1865 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
1866 * The name of the function is obtained from the output tuple name.
1867 * The arguments are given by the piecewise affine expressions.
1869 * The domain of "pma" is assumed to live in the external schedule domain.
1871 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
1872 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1874 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
1877 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
1878 * The name of the array is obtained from the output tuple name.
1879 * The index expressions are given by the piecewise affine expressions.
1881 * The domain of "pma" is assumed to live in the external schedule domain.
1883 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
1884 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1886 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
1889 /* Construct an isl_ast_expr that calls the domain element
1890 * specified by "executed".
1892 * "executed" is assumed to be single-valued, with a domain that lives
1893 * in the internal schedule space.
1895 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
1896 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
1898 isl_pw_multi_aff
*iteration
;
1901 iteration
= isl_pw_multi_aff_from_map(executed
);
1902 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
1903 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
1904 isl_ast_build_get_domain(build
));
1905 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
1907 return isl_ast_node_alloc_user(expr
);