add isl_schedule_node_gist
[isl.git] / isl_ast_build_expr.c
blob2042ac8fe87213db99f45f5680bd0258ac6218a2
1 /*
2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/ilp.h>
14 #include <isl_ast_build_expr.h>
15 #include <isl_ast_private.h>
16 #include <isl_ast_build_private.h>
18 /* Compute the "opposite" of the (numerator of the) argument of a div
19 * with denonimator "d".
21 * In particular, compute
23 * -aff + (d - 1)
25 static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
26 __isl_take isl_val *d)
28 aff = isl_aff_neg(aff);
29 aff = isl_aff_add_constant_val(aff, d);
30 aff = isl_aff_add_constant_si(aff, -1);
32 return aff;
35 /* Internal data structure used inside isl_ast_expr_add_term.
36 * The domain of "build" is used to simplify the expressions.
37 * "build" needs to be set by the caller of isl_ast_expr_add_term.
38 * "cst" is the constant term of the expression in which the added term
39 * appears. It may be modified by isl_ast_expr_add_term.
41 * "v" is the coefficient of the term that is being constructed and
42 * is set internally by isl_ast_expr_add_term.
44 struct isl_ast_add_term_data {
45 isl_ast_build *build;
46 isl_val *cst;
47 isl_val *v;
50 /* Given the numerator "aff" of the argument of an integer division
51 * with denominator "d", check if it can be made non-negative over
52 * data->build->domain by stealing part of the constant term of
53 * the expression in which the integer division appears.
55 * In particular, the outer expression is of the form
57 * v * floor(aff/d) + cst
59 * We already know that "aff" itself may attain negative values.
60 * Here we check if aff + d*floor(cst/v) is non-negative, such
61 * that we could rewrite the expression to
63 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
65 * Note that aff + d*floor(cst/v) can only possibly be non-negative
66 * if data->cst and data->v have the same sign.
67 * Similarly, if floor(cst/v) is zero, then there is no point in
68 * checking again.
70 static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
71 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
73 isl_aff *shifted;
74 isl_val *shift;
75 int is_zero;
76 int non_neg;
78 if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
79 return 0;
81 shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
82 shift = isl_val_floor(shift);
83 is_zero = isl_val_is_zero(shift);
84 if (is_zero < 0 || is_zero) {
85 isl_val_free(shift);
86 return is_zero < 0 ? -1 : 0;
88 shift = isl_val_mul(shift, isl_val_copy(d));
89 shifted = isl_aff_copy(aff);
90 shifted = isl_aff_add_constant_val(shifted, shift);
91 non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
92 isl_aff_free(shifted);
94 return non_neg;
97 /* Given the numerator "aff' of the argument of an integer division
98 * with denominator "d", steal part of the constant term of
99 * the expression in which the integer division appears to make it
100 * non-negative over data->build->domain.
102 * In particular, the outer expression is of the form
104 * v * floor(aff/d) + cst
106 * We know that "aff" itself may attain negative values,
107 * but that aff + d*floor(cst/v) is non-negative.
108 * Find the minimal positive value that we need to add to "aff"
109 * to make it positive and adjust data->cst accordingly.
110 * That is, compute the minimal value "m" of "aff" over
111 * data->build->domain and take
113 * s = ceil(m/d)
115 * such that
117 * aff + d * s >= 0
119 * and rewrite the expression to
121 * v * floor((aff + s*d)/d) + (cst - v*s)
123 static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
124 __isl_keep isl_val *d, struct isl_ast_add_term_data *data)
126 isl_set *domain;
127 isl_val *shift, *t;
129 domain = isl_ast_build_get_domain(data->build);
130 shift = isl_set_min_val(domain, aff);
131 isl_set_free(domain);
133 shift = isl_val_neg(shift);
134 shift = isl_val_div(shift, isl_val_copy(d));
135 shift = isl_val_ceil(shift);
137 t = isl_val_copy(shift);
138 t = isl_val_mul(t, isl_val_copy(data->v));
139 data->cst = isl_val_sub(data->cst, t);
141 shift = isl_val_mul(shift, isl_val_copy(d));
142 return isl_aff_add_constant_val(aff, shift);
145 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
146 * The result is simplified in terms of data->build->domain.
147 * This function may change (the sign of) data->v.
149 * "ls" is known to be non-NULL.
151 * Let the div be of the form floor(e/d).
152 * If the ast_build_prefer_pdiv option is set then we check if "e"
153 * is non-negative, so that we can generate
155 * (pdiv_q, expr(e), expr(d))
157 * instead of
159 * (fdiv_q, expr(e), expr(d))
161 * If the ast_build_prefer_pdiv option is set and
162 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
163 * If so, we can rewrite
165 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
167 * and still use pdiv_q, while changing the sign of data->v.
169 * Otherwise, we check if
171 * e + d*floor(cst/v)
173 * is non-negative and if so, replace floor(e/d) by
175 * floor((e + s*d)/d) - s
177 * with s the minimal shift that makes the argument non-negative.
179 static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
180 __isl_keep isl_local_space *ls, int pos)
182 isl_ctx *ctx = isl_local_space_get_ctx(ls);
183 isl_aff *aff;
184 isl_ast_expr *num, *den;
185 isl_val *d;
186 enum isl_ast_op_type type;
188 aff = isl_local_space_get_div(ls, pos);
189 d = isl_aff_get_denominator_val(aff);
190 aff = isl_aff_scale_val(aff, isl_val_copy(d));
191 den = isl_ast_expr_from_val(isl_val_copy(d));
193 type = isl_ast_op_fdiv_q;
194 if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
195 int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
196 if (non_neg >= 0 && !non_neg) {
197 isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
198 isl_val_copy(d));
199 non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
200 if (non_neg >= 0 && non_neg) {
201 data->v = isl_val_neg(data->v);
202 isl_aff_free(aff);
203 aff = opp;
204 } else
205 isl_aff_free(opp);
207 if (non_neg >= 0 && !non_neg) {
208 non_neg = is_non_neg_after_stealing(aff, d, data);
209 if (non_neg >= 0 && non_neg)
210 aff = steal_from_cst(aff, d, data);
212 if (non_neg < 0)
213 aff = isl_aff_free(aff);
214 else if (non_neg)
215 type = isl_ast_op_pdiv_q;
218 isl_val_free(d);
219 num = isl_ast_expr_from_aff(aff, data->build);
220 return isl_ast_expr_alloc_binary(type, num, den);
223 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
224 * The result is simplified in terms of data->build->domain.
225 * This function may change (the sign of) data->v.
227 * The isl_ast_expr is constructed based on the type of the dimension.
228 * - divs are constructed by var_div
229 * - set variables are constructed from the iterator isl_ids in data->build
230 * - parameters are constructed from the isl_ids in "ls"
232 static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
233 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
235 isl_ctx *ctx = isl_local_space_get_ctx(ls);
236 isl_id *id;
238 if (type == isl_dim_div)
239 return var_div(data, ls, pos);
241 if (type == isl_dim_set) {
242 id = isl_ast_build_get_iterator_id(data->build, pos);
243 return isl_ast_expr_from_id(id);
246 if (!isl_local_space_has_dim_id(ls, type, pos))
247 isl_die(ctx, isl_error_internal, "unnamed dimension",
248 return NULL);
249 id = isl_local_space_get_dim_id(ls, type, pos);
250 return isl_ast_expr_from_id(id);
253 /* Does "expr" represent the zero integer?
255 static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
257 if (!expr)
258 return -1;
259 if (expr->type != isl_ast_expr_int)
260 return 0;
261 return isl_val_is_zero(expr->u.v);
264 /* Create an expression representing the sum of "expr1" and "expr2",
265 * provided neither of the two expressions is identically zero.
267 static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
268 __isl_take isl_ast_expr *expr2)
270 if (!expr1 || !expr2)
271 goto error;
273 if (ast_expr_is_zero(expr1)) {
274 isl_ast_expr_free(expr1);
275 return expr2;
278 if (ast_expr_is_zero(expr2)) {
279 isl_ast_expr_free(expr2);
280 return expr1;
283 return isl_ast_expr_add(expr1, expr2);
284 error:
285 isl_ast_expr_free(expr1);
286 isl_ast_expr_free(expr2);
287 return NULL;
290 /* Subtract expr2 from expr1.
292 * If expr2 is zero, we simply return expr1.
293 * If expr1 is zero, we return
295 * (isl_ast_op_minus, expr2)
297 * Otherwise, we return
299 * (isl_ast_op_sub, expr1, expr2)
301 static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
302 __isl_take isl_ast_expr *expr2)
304 if (!expr1 || !expr2)
305 goto error;
307 if (ast_expr_is_zero(expr2)) {
308 isl_ast_expr_free(expr2);
309 return expr1;
312 if (ast_expr_is_zero(expr1)) {
313 isl_ast_expr_free(expr1);
314 return isl_ast_expr_neg(expr2);
317 return isl_ast_expr_sub(expr1, expr2);
318 error:
319 isl_ast_expr_free(expr1);
320 isl_ast_expr_free(expr2);
321 return NULL;
324 /* Return an isl_ast_expr that represents
326 * v * (aff mod d)
328 * v is assumed to be non-negative.
329 * The result is simplified in terms of build->domain.
331 static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
332 __isl_keep isl_aff *aff, __isl_keep isl_val *d,
333 __isl_keep isl_ast_build *build)
335 isl_ctx *ctx;
336 isl_ast_expr *expr;
337 isl_ast_expr *c;
339 if (!aff)
340 return NULL;
342 ctx = isl_aff_get_ctx(aff);
343 expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
345 c = isl_ast_expr_from_val(isl_val_copy(d));
346 expr = isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r, expr, c);
348 if (!isl_val_is_one(v)) {
349 c = isl_ast_expr_from_val(isl_val_copy(v));
350 expr = isl_ast_expr_mul(c, expr);
353 return expr;
356 /* Create an isl_ast_expr that scales "expr" by "v".
358 * If v is 1, we simply return expr.
359 * If v is -1, we return
361 * (isl_ast_op_minus, expr)
363 * Otherwise, we return
365 * (isl_ast_op_mul, expr(v), expr)
367 static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
368 __isl_take isl_val *v)
370 isl_ast_expr *c;
372 if (!expr || !v)
373 goto error;
374 if (isl_val_is_one(v)) {
375 isl_val_free(v);
376 return expr;
379 if (isl_val_is_negone(v)) {
380 isl_val_free(v);
381 expr = isl_ast_expr_neg(expr);
382 } else {
383 c = isl_ast_expr_from_val(v);
384 expr = isl_ast_expr_mul(c, expr);
387 return expr;
388 error:
389 isl_val_free(v);
390 isl_ast_expr_free(expr);
391 return NULL;
394 /* Add an expression for "*v" times the specified dimension of "ls"
395 * to expr.
396 * If the dimension is an integer division, then this function
397 * may modify data->cst in order to make the numerator non-negative.
398 * The result is simplified in terms of data->build->domain.
400 * Let e be the expression for the specified dimension,
401 * multiplied by the absolute value of "*v".
402 * If "*v" is negative, we create
404 * (isl_ast_op_sub, expr, e)
406 * except when expr is trivially zero, in which case we create
408 * (isl_ast_op_minus, e)
410 * instead.
412 * If "*v" is positive, we simply create
414 * (isl_ast_op_add, expr, e)
417 static __isl_give isl_ast_expr *isl_ast_expr_add_term(
418 __isl_take isl_ast_expr *expr,
419 __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
420 __isl_take isl_val *v, struct isl_ast_add_term_data *data)
422 isl_ast_expr *term;
424 if (!expr)
425 return NULL;
427 data->v = v;
428 term = var(data, ls, type, pos);
429 v = data->v;
431 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
432 v = isl_val_neg(v);
433 term = scale(term, v);
434 return ast_expr_sub(expr, term);
435 } else {
436 term = scale(term, v);
437 return ast_expr_add(expr, term);
441 /* Add an expression for "v" to expr.
443 static __isl_give isl_ast_expr *isl_ast_expr_add_int(
444 __isl_take isl_ast_expr *expr, __isl_take isl_val *v)
446 isl_ctx *ctx;
447 isl_ast_expr *expr_int;
449 if (!expr || !v)
450 goto error;
452 if (isl_val_is_zero(v)) {
453 isl_val_free(v);
454 return expr;
457 ctx = isl_ast_expr_get_ctx(expr);
458 if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
459 v = isl_val_neg(v);
460 expr_int = isl_ast_expr_from_val(v);
461 return ast_expr_sub(expr, expr_int);
462 } else {
463 expr_int = isl_ast_expr_from_val(v);
464 return ast_expr_add(expr, expr_int);
466 error:
467 isl_ast_expr_free(expr);
468 isl_val_free(v);
469 return NULL;
472 /* Internal data structure used inside extract_modulos.
474 * If any modulo expressions are detected in "aff", then the
475 * expression is removed from "aff" and added to either "pos" or "neg"
476 * depending on the sign of the coefficient of the modulo expression
477 * inside "aff".
479 * "add" is an expression that needs to be added to "aff" at the end of
480 * the computation. It is NULL as long as no modulos have been extracted.
482 * "i" is the position in "aff" of the div under investigation
483 * "v" is the coefficient in "aff" of the div
484 * "div" is the argument of the div, with the denominator removed
485 * "d" is the original denominator of the argument of the div
487 * "nonneg" is an affine expression that is non-negative over "build"
488 * and that can be used to extract a modulo expression from "div".
489 * In particular, if "sign" is 1, then the coefficients of "nonneg"
490 * are equal to those of "div" modulo "d". If "sign" is -1, then
491 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
492 * If "sign" is 0, then no such affine expression has been found (yet).
494 struct isl_extract_mod_data {
495 isl_ast_build *build;
496 isl_aff *aff;
498 isl_ast_expr *pos;
499 isl_ast_expr *neg;
501 isl_aff *add;
503 int i;
504 isl_val *v;
505 isl_val *d;
506 isl_aff *div;
508 isl_aff *nonneg;
509 int sign;
512 /* Given that data->v * div_i in data->aff is equal to
514 * f * (term - (arg mod d))
516 * with data->d * f = data->v, add
518 * f * term
520 * to data->add and
522 * abs(f) * (arg mod d)
524 * to data->neg or data->pos depending on the sign of -f.
526 static int extract_term_and_mod(struct isl_extract_mod_data *data,
527 __isl_take isl_aff *term, __isl_take isl_aff *arg)
529 isl_ast_expr *expr;
530 int s;
532 data->v = isl_val_div(data->v, isl_val_copy(data->d));
533 s = isl_val_sgn(data->v);
534 data->v = isl_val_abs(data->v);
535 expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
536 isl_aff_free(arg);
537 if (s > 0)
538 data->neg = ast_expr_add(data->neg, expr);
539 else
540 data->pos = ast_expr_add(data->pos, expr);
541 data->aff = isl_aff_set_coefficient_si(data->aff,
542 isl_dim_div, data->i, 0);
543 if (s < 0)
544 data->v = isl_val_neg(data->v);
545 term = isl_aff_scale_val(data->div, isl_val_copy(data->v));
547 if (!data->add)
548 data->add = term;
549 else
550 data->add = isl_aff_add(data->add, term);
551 if (!data->add)
552 return -1;
554 return 0;
557 /* Given that data->v * div_i in data->aff is of the form
559 * f * d * floor(div/d)
561 * with div nonnegative on data->build, rewrite it as
563 * f * (div - (div mod d)) = f * div - f * (div mod d)
565 * and add
567 * f * div
569 * to data->add and
571 * abs(f) * (div mod d)
573 * to data->neg or data->pos depending on the sign of -f.
575 static int extract_mod(struct isl_extract_mod_data *data)
577 return extract_term_and_mod(data, isl_aff_copy(data->div),
578 isl_aff_copy(data->div));
581 /* Given that data->v * div_i in data->aff is of the form
583 * f * d * floor(div/d) (1)
585 * check if div is non-negative on data->build and, if so,
586 * extract the corresponding modulo from data->aff.
587 * If not, then check if
589 * -div + d - 1
591 * is non-negative on data->build. If so, replace (1) by
593 * -f * d * floor((-div + d - 1)/d)
595 * and extract the corresponding modulo from data->aff.
597 * This function may modify data->div.
599 static int extract_nonneg_mod(struct isl_extract_mod_data *data)
601 int mod;
603 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
604 if (mod < 0)
605 goto error;
606 if (mod)
607 return extract_mod(data);
609 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
610 mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
611 if (mod < 0)
612 goto error;
613 if (mod) {
614 data->v = isl_val_neg(data->v);
615 return extract_mod(data);
618 return 0;
619 error:
620 data->aff = isl_aff_free(data->aff);
621 return -1;
624 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
625 * for use in extracting a modulo expression?
627 * We currently only consider the constant term of the affine expression.
628 * In particular, we prefer the affine expression with the smallest constant
629 * term.
630 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
631 * then we would pick x >= 0
633 * More detailed heuristics could be used if it turns out that there is a need.
635 static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
636 __isl_keep isl_constraint *c)
638 isl_val *v1, *v2;
639 int simpler;
641 if (!data->nonneg)
642 return 1;
644 v1 = isl_val_abs(isl_constraint_get_constant_val(c));
645 v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
646 simpler = isl_val_lt(v1, v2);
647 isl_val_free(v1);
648 isl_val_free(v2);
650 return simpler;
653 /* Check if the coefficients of "c" are either equal or opposite to those
654 * of data->div modulo data->d. If so, and if "c" is "simpler" than
655 * data->nonneg, then replace data->nonneg by the affine expression of "c"
656 * and set data->sign accordingly.
658 * Both "c" and data->div are assumed not to involve any integer divisions.
660 * Before we start the actual comparison, we first quickly check if
661 * "c" and data->div have the same non-zero coefficients.
662 * If not, then we assume that "c" is not of the desired form.
663 * Note that while the coefficients of data->div can be reasonably expected
664 * not to involve any coefficients that are multiples of d, "c" may
665 * very well involve such coefficients. This means that we may actually
666 * miss some cases.
668 static int check_parallel_or_opposite(__isl_take isl_constraint *c, void *user)
670 struct isl_extract_mod_data *data = user;
671 enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
672 enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
673 int i, t;
674 int n[2];
675 int parallel = 1, opposite = 1;
677 for (t = 0; t < 2; ++t) {
678 n[t] = isl_constraint_dim(c, c_type[t]);
679 for (i = 0; i < n[t]; ++i) {
680 int a, b;
682 a = isl_constraint_involves_dims(c, c_type[t], i, 1);
683 b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
684 if (a != b)
685 parallel = opposite = 0;
689 for (t = 0; t < 2; ++t) {
690 for (i = 0; i < n[t]; ++i) {
691 isl_val *v1, *v2;
693 if (!parallel && !opposite)
694 break;
695 v1 = isl_constraint_get_coefficient_val(c,
696 c_type[t], i);
697 v2 = isl_aff_get_coefficient_val(data->div,
698 a_type[t], i);
699 if (parallel) {
700 v1 = isl_val_sub(v1, isl_val_copy(v2));
701 parallel = isl_val_is_divisible_by(v1, data->d);
702 v1 = isl_val_add(v1, isl_val_copy(v2));
704 if (opposite) {
705 v1 = isl_val_add(v1, isl_val_copy(v2));
706 opposite = isl_val_is_divisible_by(v1, data->d);
708 isl_val_free(v1);
709 isl_val_free(v2);
713 if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
714 isl_aff_free(data->nonneg);
715 data->nonneg = isl_constraint_get_aff(c);
716 data->sign = parallel ? 1 : -1;
719 isl_constraint_free(c);
721 if (data->sign != 0 && data->nonneg == NULL)
722 return -1;
724 return 0;
727 /* Given that data->v * div_i in data->aff is of the form
729 * f * d * floor(div/d) (1)
731 * see if we can find an expression div' that is non-negative over data->build
732 * and that is related to div through
734 * div' = div + d * e
736 * or
738 * div' = -div + d - 1 + d * e
740 * with e some affine expression.
741 * If so, we write (1) as
743 * f * div + f * (div' mod d)
745 * or
747 * -f * (-div + d - 1) - f * (div' mod d)
749 * exploiting (in the second case) the fact that
751 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
754 * We first try to find an appropriate expression for div'
755 * from the constraints of data->build->domain (which is therefore
756 * guaranteed to be non-negative on data->build), where we remove
757 * any integer divisions from the constraints and skip this step
758 * if "div" itself involves any integer divisions.
759 * If we cannot find an appropriate expression this way, then
760 * we pass control to extract_nonneg_mod where check
761 * if div or "-div + d -1" themselves happen to be
762 * non-negative on data->build.
764 * While looking for an appropriate constraint in data->build->domain,
765 * we ignore the constant term, so after finding such a constraint,
766 * we still need to fix up the constant term.
767 * In particular, if a is the constant term of "div"
768 * (or d - 1 - the constant term of "div" if data->sign < 0)
769 * and b is the constant term of the constraint, then we need to find
770 * a non-negative constant c such that
772 * b + c \equiv a mod d
774 * We therefore take
776 * c = (a - b) mod d
778 * and add it to b to obtain the constant term of div'.
779 * If this constant term is "too negative", then we add an appropriate
780 * multiple of d to make it positive.
783 * Note that the above is a only a very simple heuristic for finding an
784 * appropriate expression. We could try a bit harder by also considering
785 * sums of constraints that involve disjoint sets of variables or
786 * we could consider arbitrary linear combinations of constraints,
787 * although that could potentially be much more expensive as it involves
788 * the solution of an LP problem.
790 * In particular, if v_i is a column vector representing constraint i,
791 * w represents div and e_i is the i-th unit vector, then we are looking
792 * for a solution of the constraints
794 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
796 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
797 * If we are not just interested in a non-negative expression, but
798 * also in one with a minimal range, then we don't just want
799 * c = \sum_i lambda_i v_i to be non-negative over the domain,
800 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
801 * that we want to minimize and we now also have to take into account
802 * the constant terms of the constraints.
803 * Alternatively, we could first compute the dual of the domain
804 * and plug in the constraints on the coefficients.
806 static int try_extract_mod(struct isl_extract_mod_data *data)
808 isl_basic_set *hull;
809 isl_val *v1, *v2;
810 int r, n;
812 if (!data->build)
813 goto error;
815 n = isl_aff_dim(data->div, isl_dim_div);
817 if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
818 return extract_nonneg_mod(data);
820 hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
821 hull = isl_basic_set_remove_divs(hull);
822 data->sign = 0;
823 data->nonneg = NULL;
824 r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
825 data);
826 isl_basic_set_free(hull);
828 if (!data->sign || r < 0) {
829 isl_aff_free(data->nonneg);
830 if (r < 0)
831 goto error;
832 return extract_nonneg_mod(data);
835 v1 = isl_aff_get_constant_val(data->div);
836 v2 = isl_aff_get_constant_val(data->nonneg);
837 if (data->sign < 0) {
838 v1 = isl_val_neg(v1);
839 v1 = isl_val_add(v1, isl_val_copy(data->d));
840 v1 = isl_val_sub_ui(v1, 1);
842 v1 = isl_val_sub(v1, isl_val_copy(v2));
843 v1 = isl_val_mod(v1, isl_val_copy(data->d));
844 v1 = isl_val_add(v1, v2);
845 v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
846 v2 = isl_val_ceil(v2);
847 if (isl_val_is_neg(v2)) {
848 v2 = isl_val_mul(v2, isl_val_copy(data->d));
849 v1 = isl_val_sub(v1, isl_val_copy(v2));
851 data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
852 isl_val_free(v2);
854 if (data->sign < 0) {
855 data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
856 data->v = isl_val_neg(data->v);
859 return extract_term_and_mod(data,
860 isl_aff_copy(data->div), data->nonneg);
861 error:
862 data->aff = isl_aff_free(data->aff);
863 return -1;
866 /* Check if "data->aff" involves any (implicit) modulo computations based
867 * on div "data->i".
868 * If so, remove them from aff and add expressions corresponding
869 * to those modulo computations to data->pos and/or data->neg.
871 * "aff" is assumed to be an integer affine expression.
873 * In particular, check if (v * div_j) is of the form
875 * f * m * floor(a / m)
877 * and, if so, rewrite it as
879 * f * (a - (a mod m)) = f * a - f * (a mod m)
881 * and extract out -f * (a mod m).
882 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
883 * If f < 0, we add ((-f) * (a mod m)) to *pos.
885 * Note that in order to represent "a mod m" as
887 * (isl_ast_op_pdiv_r, a, m)
889 * we need to make sure that a is non-negative.
890 * If not, we check if "-a + m - 1" is non-negative.
891 * If so, we can rewrite
893 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
895 * and still extract a modulo.
897 static int extract_modulo(struct isl_extract_mod_data *data)
899 data->div = isl_aff_get_div(data->aff, data->i);
900 data->d = isl_aff_get_denominator_val(data->div);
901 if (isl_val_is_divisible_by(data->v, data->d)) {
902 data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
903 if (try_extract_mod(data) < 0)
904 data->aff = isl_aff_free(data->aff);
906 isl_aff_free(data->div);
907 isl_val_free(data->d);
908 return 0;
911 /* Check if "aff" involves any (implicit) modulo computations.
912 * If so, remove them from aff and add expressions corresponding
913 * to those modulo computations to *pos and/or *neg.
914 * We only do this if the option ast_build_prefer_pdiv is set.
916 * "aff" is assumed to be an integer affine expression.
918 * A modulo expression is of the form
920 * a mod m = a - m * floor(a / m)
922 * To detect them in aff, we look for terms of the form
924 * f * m * floor(a / m)
926 * rewrite them as
928 * f * (a - (a mod m)) = f * a - f * (a mod m)
930 * and extract out -f * (a mod m).
931 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
932 * If f < 0, we add ((-f) * (a mod m)) to *pos.
934 static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
935 __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
936 __isl_keep isl_ast_build *build)
938 struct isl_extract_mod_data data = { build, aff, *pos, *neg };
939 isl_ctx *ctx;
940 int n;
942 if (!aff)
943 return NULL;
945 ctx = isl_aff_get_ctx(aff);
946 if (!isl_options_get_ast_build_prefer_pdiv(ctx))
947 return aff;
949 n = isl_aff_dim(data.aff, isl_dim_div);
950 for (data.i = 0; data.i < n; ++data.i) {
951 data.v = isl_aff_get_coefficient_val(data.aff,
952 isl_dim_div, data.i);
953 if (!data.v)
954 return isl_aff_free(aff);
955 if (isl_val_is_zero(data.v) ||
956 isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
957 isl_val_free(data.v);
958 continue;
960 if (extract_modulo(&data) < 0)
961 data.aff = isl_aff_free(data.aff);
962 isl_val_free(data.v);
963 if (!data.aff)
964 break;
967 if (data.add)
968 data.aff = isl_aff_add(data.aff, data.add);
970 *pos = data.pos;
971 *neg = data.neg;
972 return data.aff;
975 /* Check if aff involves any non-integer coefficients.
976 * If so, split aff into
978 * aff = aff1 + (aff2 / d)
980 * with both aff1 and aff2 having only integer coefficients.
981 * Return aff1 and add (aff2 / d) to *expr.
983 static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
984 __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
986 int i, j, n;
987 isl_aff *rat = NULL;
988 isl_local_space *ls = NULL;
989 isl_ast_expr *rat_expr;
990 isl_val *v, *d;
991 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
992 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
994 if (!aff)
995 return NULL;
996 d = isl_aff_get_denominator_val(aff);
997 if (!d)
998 goto error;
999 if (isl_val_is_one(d)) {
1000 isl_val_free(d);
1001 return aff;
1004 aff = isl_aff_scale_val(aff, isl_val_copy(d));
1006 ls = isl_aff_get_domain_local_space(aff);
1007 rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1009 for (i = 0; i < 3; ++i) {
1010 n = isl_aff_dim(aff, t[i]);
1011 for (j = 0; j < n; ++j) {
1012 isl_aff *rat_j;
1014 v = isl_aff_get_coefficient_val(aff, t[i], j);
1015 if (!v)
1016 goto error;
1017 if (isl_val_is_divisible_by(v, d)) {
1018 isl_val_free(v);
1019 continue;
1021 rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
1022 l[i], j);
1023 rat_j = isl_aff_scale_val(rat_j, v);
1024 rat = isl_aff_add(rat, rat_j);
1028 v = isl_aff_get_constant_val(aff);
1029 if (isl_val_is_divisible_by(v, d)) {
1030 isl_val_free(v);
1031 } else {
1032 isl_aff *rat_0;
1034 rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
1035 rat = isl_aff_add(rat, rat_0);
1038 isl_local_space_free(ls);
1040 aff = isl_aff_sub(aff, isl_aff_copy(rat));
1041 aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
1043 rat_expr = isl_ast_expr_from_aff(rat, build);
1044 rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
1045 *expr = ast_expr_add(*expr, rat_expr);
1047 return aff;
1048 error:
1049 isl_aff_free(rat);
1050 isl_local_space_free(ls);
1051 isl_aff_free(aff);
1052 isl_val_free(d);
1053 return NULL;
1056 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1057 * The result is simplified in terms of build->domain.
1059 * We first extract hidden modulo computations from the affine expression
1060 * and then add terms for each variable with a non-zero coefficient.
1061 * Finally, if the affine expression has a non-trivial denominator,
1062 * we divide the resulting isl_ast_expr by this denominator.
1064 __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
1065 __isl_keep isl_ast_build *build)
1067 int i, j;
1068 int n;
1069 isl_val *v;
1070 isl_ctx *ctx = isl_aff_get_ctx(aff);
1071 isl_ast_expr *expr, *expr_neg;
1072 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1073 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1074 isl_local_space *ls;
1075 struct isl_ast_add_term_data data;
1077 if (!aff)
1078 return NULL;
1080 expr = isl_ast_expr_alloc_int_si(ctx, 0);
1081 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1083 aff = extract_rational(aff, &expr, build);
1085 aff = extract_modulos(aff, &expr, &expr_neg, build);
1086 expr = ast_expr_sub(expr, expr_neg);
1088 ls = isl_aff_get_domain_local_space(aff);
1090 data.build = build;
1091 data.cst = isl_aff_get_constant_val(aff);
1092 for (i = 0; i < 3; ++i) {
1093 n = isl_aff_dim(aff, t[i]);
1094 for (j = 0; j < n; ++j) {
1095 v = isl_aff_get_coefficient_val(aff, t[i], j);
1096 if (!v)
1097 expr = isl_ast_expr_free(expr);
1098 if (isl_val_is_zero(v)) {
1099 isl_val_free(v);
1100 continue;
1102 expr = isl_ast_expr_add_term(expr,
1103 ls, l[i], j, v, &data);
1107 expr = isl_ast_expr_add_int(expr, data.cst);
1109 isl_local_space_free(ls);
1110 isl_aff_free(aff);
1111 return expr;
1114 /* Add terms to "expr" for each variable in "aff" with a coefficient
1115 * with sign equal to "sign".
1116 * The result is simplified in terms of data->build->domain.
1118 static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
1119 __isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
1121 int i, j;
1122 isl_val *v;
1123 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
1124 enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
1125 isl_local_space *ls;
1127 ls = isl_aff_get_domain_local_space(aff);
1129 for (i = 0; i < 3; ++i) {
1130 int n = isl_aff_dim(aff, t[i]);
1131 for (j = 0; j < n; ++j) {
1132 v = isl_aff_get_coefficient_val(aff, t[i], j);
1133 if (sign * isl_val_sgn(v) <= 0) {
1134 isl_val_free(v);
1135 continue;
1137 v = isl_val_abs(v);
1138 expr = isl_ast_expr_add_term(expr,
1139 ls, l[i], j, v, data);
1143 isl_local_space_free(ls);
1145 return expr;
1148 /* Should the constant term "v" be considered positive?
1150 * A positive constant will be added to "pos" by the caller,
1151 * while a negative constant will be added to "neg".
1152 * If either "pos" or "neg" is exactly zero, then we prefer
1153 * to add the constant "v" to that side, irrespective of the sign of "v".
1154 * This results in slightly shorter expressions and may reduce the risk
1155 * of overflows.
1157 static int constant_is_considered_positive(__isl_keep isl_val *v,
1158 __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
1160 if (ast_expr_is_zero(pos))
1161 return 1;
1162 if (ast_expr_is_zero(neg))
1163 return 0;
1164 return isl_val_is_pos(v);
1167 /* Check if the equality
1169 * aff = 0
1171 * represents a stride constraint on the integer division "pos".
1173 * In particular, if the integer division "pos" is equal to
1175 * floor(e/d)
1177 * then check if aff is equal to
1179 * e - d floor(e/d)
1181 * or its opposite.
1183 * If so, the equality is exactly
1185 * e mod d = 0
1187 * Note that in principle we could also accept
1189 * e - d floor(e'/d)
1191 * where e and e' differ by a constant.
1193 static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
1195 isl_aff *div;
1196 isl_val *c, *d;
1197 int eq;
1199 div = isl_aff_get_div(aff, pos);
1200 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1201 d = isl_aff_get_denominator_val(div);
1202 eq = isl_val_abs_eq(c, d);
1203 if (eq >= 0 && eq) {
1204 aff = isl_aff_copy(aff);
1205 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1206 div = isl_aff_scale_val(div, d);
1207 if (isl_val_is_pos(c))
1208 div = isl_aff_neg(div);
1209 eq = isl_aff_plain_is_equal(div, aff);
1210 isl_aff_free(aff);
1211 } else
1212 isl_val_free(d);
1213 isl_val_free(c);
1214 isl_aff_free(div);
1216 return eq;
1219 /* Are all coefficients of "aff" (zero or) negative?
1221 static int all_negative_coefficients(__isl_keep isl_aff *aff)
1223 int i, n;
1225 if (!aff)
1226 return 0;
1228 n = isl_aff_dim(aff, isl_dim_param);
1229 for (i = 0; i < n; ++i)
1230 if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
1231 return 0;
1233 n = isl_aff_dim(aff, isl_dim_in);
1234 for (i = 0; i < n; ++i)
1235 if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
1236 return 0;
1238 return 1;
1241 /* Give an equality of the form
1243 * aff = e - d floor(e/d) = 0
1245 * or
1247 * aff = -e + d floor(e/d) = 0
1249 * with the integer division "pos" equal to floor(e/d),
1250 * construct the AST expression
1252 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1254 * If e only has negative coefficients, then construct
1256 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1258 * instead.
1260 static __isl_give isl_ast_expr *extract_stride_constraint(
1261 __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
1263 isl_ctx *ctx;
1264 isl_val *c;
1265 isl_ast_expr *expr, *cst;
1267 if (!aff)
1268 return NULL;
1270 ctx = isl_aff_get_ctx(aff);
1272 c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
1273 aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
1275 if (all_negative_coefficients(aff))
1276 aff = isl_aff_neg(aff);
1278 cst = isl_ast_expr_from_val(isl_val_abs(c));
1279 expr = isl_ast_expr_from_aff(aff, build);
1281 expr = isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r, expr, cst);
1282 cst = isl_ast_expr_alloc_int_si(ctx, 0);
1283 expr = isl_ast_expr_alloc_binary(isl_ast_op_eq, expr, cst);
1285 return expr;
1288 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1289 * The result is simplified in terms of build->domain.
1291 * We first check if the constraint is an equality of the form
1293 * e - d floor(e/d) = 0
1295 * i.e.,
1297 * e mod d = 0
1299 * If so, we convert it to
1301 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1303 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1304 * We first extract hidden modulo computations from "a"
1305 * and then collect all the terms with a positive coefficient in cons_pos
1306 * and the terms with a negative coefficient in cons_neg.
1308 * The result is then of the form
1310 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1312 * or
1314 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1316 * However, if the first expression is an integer constant (and the second
1317 * is not), then we swap the two expressions. This ensures that we construct,
1318 * e.g., "i <= 5" rather than "5 >= i".
1320 * Furthermore, is there are no terms with positive coefficients (or no terms
1321 * with negative coefficients), then the constant term is added to "pos"
1322 * (or "neg"), ignoring the sign of the constant term.
1324 static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
1325 __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
1327 int i, n;
1328 isl_ctx *ctx;
1329 isl_ast_expr *expr_pos;
1330 isl_ast_expr *expr_neg;
1331 isl_ast_expr *expr;
1332 isl_aff *aff;
1333 int eq;
1334 enum isl_ast_op_type type;
1335 struct isl_ast_add_term_data data;
1337 if (!constraint)
1338 return NULL;
1340 aff = isl_constraint_get_aff(constraint);
1341 eq = isl_constraint_is_equality(constraint);
1342 isl_constraint_free(constraint);
1344 n = isl_aff_dim(aff, isl_dim_div);
1345 if (eq && n > 0)
1346 for (i = 0; i < n; ++i) {
1347 int is_stride;
1348 is_stride = is_stride_constraint(aff, i);
1349 if (is_stride < 0)
1350 goto error;
1351 if (is_stride)
1352 return extract_stride_constraint(aff, i, build);
1355 ctx = isl_aff_get_ctx(aff);
1356 expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
1357 expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
1359 aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
1361 data.build = build;
1362 data.cst = isl_aff_get_constant_val(aff);
1363 expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
1364 data.cst = isl_val_neg(data.cst);
1365 expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
1366 data.cst = isl_val_neg(data.cst);
1368 if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
1369 expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
1370 } else {
1371 data.cst = isl_val_neg(data.cst);
1372 expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
1375 if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
1376 isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
1377 type = eq ? isl_ast_op_eq : isl_ast_op_le;
1378 expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
1379 } else {
1380 type = eq ? isl_ast_op_eq : isl_ast_op_ge;
1381 expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
1384 isl_aff_free(aff);
1385 return expr;
1386 error:
1387 isl_aff_free(aff);
1388 return NULL;
1391 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1392 * as a callback to isl_constraint_list_sort.
1393 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1394 * apart, then use isl_constraint_plain_cmp instead.
1396 static int cmp_constraint(__isl_keep isl_constraint *a,
1397 __isl_keep isl_constraint *b, void *user)
1399 int cmp;
1401 cmp = isl_constraint_cmp_last_non_zero(a, b);
1402 if (cmp != 0)
1403 return cmp;
1404 return isl_constraint_plain_cmp(a, b);
1407 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1408 * The result is simplified in terms of build->domain.
1410 * If "bset" is not bounded by any constraint, then we contruct
1411 * the expression "1", i.e., "true".
1413 * Otherwise, we sort the constraints, putting constraints that involve
1414 * integer divisions after those that do not, and construct an "and"
1415 * of the ast expressions of the individual constraints.
1417 * Each constraint is added to the generated constraints of the build
1418 * after it has been converted to an AST expression so that it can be used
1419 * to simplify the following constraints. This may change the truth value
1420 * of subsequent constraints that do not satisfy the earlier constraints,
1421 * but this does not affect the outcome of the conjunction as it is
1422 * only true if all the conjuncts are true (no matter in what order
1423 * they are evaluated). In particular, the constraints that do not
1424 * involve integer divisions may serve to simplify some constraints
1425 * that do involve integer divisions.
1427 __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
1428 __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
1430 int i, n;
1431 isl_constraint *c;
1432 isl_constraint_list *list;
1433 isl_ast_expr *res;
1434 isl_set *set;
1436 list = isl_basic_set_get_constraint_list(bset);
1437 isl_basic_set_free(bset);
1438 list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
1439 if (!list)
1440 return NULL;
1441 n = isl_constraint_list_n_constraint(list);
1442 if (n == 0) {
1443 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
1444 isl_constraint_list_free(list);
1445 return isl_ast_expr_alloc_int_si(ctx, 1);
1448 build = isl_ast_build_copy(build);
1450 c = isl_constraint_list_get_constraint(list, 0);
1451 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1452 set = isl_set_from_basic_set(bset);
1453 res = isl_ast_expr_from_constraint(c, build);
1454 build = isl_ast_build_restrict_generated(build, set);
1456 for (i = 1; i < n; ++i) {
1457 isl_ast_expr *expr;
1459 c = isl_constraint_list_get_constraint(list, i);
1460 bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
1461 set = isl_set_from_basic_set(bset);
1462 expr = isl_ast_expr_from_constraint(c, build);
1463 build = isl_ast_build_restrict_generated(build, set);
1464 res = isl_ast_expr_and(res, expr);
1467 isl_constraint_list_free(list);
1468 isl_ast_build_free(build);
1469 return res;
1472 struct isl_expr_from_set_data {
1473 isl_ast_build *build;
1474 int first;
1475 isl_ast_expr *res;
1478 /* Construct an isl_ast_expr that evaluates the conditions defining "bset"
1479 * and add it to data->res.
1480 * The result is simplified in terms of data->build->domain.
1482 static int expr_from_set(__isl_take isl_basic_set *bset, void *user)
1484 struct isl_expr_from_set_data *data = user;
1485 isl_ast_expr *expr;
1487 expr = isl_ast_build_expr_from_basic_set(data->build, bset);
1488 if (data->first)
1489 data->res = expr;
1490 else
1491 data->res = isl_ast_expr_or(data->res, expr);
1493 data->first = 0;
1495 if (!data->res)
1496 return -1;
1497 return 0;
1500 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1501 * The result is simplified in terms of build->domain.
1503 * If "set" is an (obviously) empty set, then return the expression "0".
1505 __isl_give isl_ast_expr *isl_ast_build_expr_from_set(
1506 __isl_keep isl_ast_build *build, __isl_take isl_set *set)
1508 struct isl_expr_from_set_data data = { build, 1, NULL };
1510 if (isl_set_foreach_basic_set(set, &expr_from_set, &data) < 0)
1511 data.res = isl_ast_expr_free(data.res);
1512 else if (data.first) {
1513 isl_ctx *ctx = isl_ast_build_get_ctx(build);
1514 data.res = isl_ast_expr_from_val(isl_val_zero(ctx));
1517 isl_set_free(set);
1518 return data.res;
1521 struct isl_from_pw_aff_data {
1522 isl_ast_build *build;
1523 int n;
1524 isl_ast_expr **next;
1525 isl_set *dom;
1528 /* This function is called during the construction of an isl_ast_expr
1529 * that evaluates an isl_pw_aff.
1530 * Adjust data->next to take into account this piece.
1532 * data->n is the number of pairs of set and aff to go.
1533 * data->dom is the domain of the entire isl_pw_aff.
1535 * If this is the last pair, then data->next is set to evaluate aff
1536 * and the domain is ignored.
1537 * Otherwise, data->next is set to a select operation that selects
1538 * an isl_ast_expr corresponding to "aff" on "set" and to an expression
1539 * that will be filled in by later calls otherwise.
1541 * In both cases, the constraints of "set" are added to the generated
1542 * constraints of the build such that they can be exploited to simplify
1543 * the AST expression constructed from "aff".
1545 static int ast_expr_from_pw_aff(__isl_take isl_set *set,
1546 __isl_take isl_aff *aff, void *user)
1548 struct isl_from_pw_aff_data *data = user;
1549 isl_ctx *ctx;
1550 isl_ast_build *build;
1552 ctx = isl_set_get_ctx(set);
1553 data->n--;
1554 if (data->n == 0) {
1555 build = isl_ast_build_copy(data->build);
1556 build = isl_ast_build_restrict_generated(build, set);
1557 *data->next = isl_ast_expr_from_aff(aff, build);
1558 isl_ast_build_free(build);
1559 if (!*data->next)
1560 return -1;
1561 } else {
1562 isl_ast_expr *ternary, *arg;
1563 isl_set *gist;
1565 ternary = isl_ast_expr_alloc_op(ctx, isl_ast_op_select, 3);
1566 gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
1567 arg = isl_ast_build_expr_from_set(data->build, gist);
1568 ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
1569 build = isl_ast_build_copy(data->build);
1570 build = isl_ast_build_restrict_generated(build, set);
1571 arg = isl_ast_expr_from_aff(aff, build);
1572 isl_ast_build_free(build);
1573 ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
1574 if (!ternary)
1575 return -1;
1577 *data->next = ternary;
1578 data->next = &ternary->u.op.args[2];
1581 return 0;
1584 /* Construct an isl_ast_expr that evaluates "pa".
1585 * The result is simplified in terms of build->domain.
1587 * The domain of "pa" lives in the internal schedule space.
1589 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
1590 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
1592 struct isl_from_pw_aff_data data;
1593 isl_ast_expr *res = NULL;
1595 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
1596 pa = isl_pw_aff_coalesce(pa);
1597 if (!pa)
1598 return NULL;
1600 data.build = build;
1601 data.n = isl_pw_aff_n_piece(pa);
1602 data.next = &res;
1603 data.dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1605 if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) < 0)
1606 res = isl_ast_expr_free(res);
1607 else if (!res)
1608 isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
1609 "cannot handle void expression", res = NULL);
1611 isl_pw_aff_free(pa);
1612 isl_set_free(data.dom);
1613 return res;
1616 /* Construct an isl_ast_expr that evaluates "pa".
1617 * The result is simplified in terms of build->domain.
1619 * The domain of "pa" lives in the external schedule space.
1621 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
1622 __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
1624 isl_ast_expr *expr;
1626 if (isl_ast_build_need_schedule_map(build)) {
1627 isl_multi_aff *ma;
1628 ma = isl_ast_build_get_schedule_map_multi_aff(build);
1629 pa = isl_pw_aff_pullback_multi_aff(pa, ma);
1631 expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
1632 return expr;
1635 /* Set the ids of the input dimensions of "mpa" to the iterator ids
1636 * of "build".
1638 * The domain of "mpa" is assumed to live in the internal schedule domain.
1640 static __isl_give isl_multi_pw_aff *set_iterator_names(
1641 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
1643 int i, n;
1645 n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
1646 for (i = 0; i < n; ++i) {
1647 isl_id *id;
1649 id = isl_ast_build_get_iterator_id(build, i);
1650 mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
1653 return mpa;
1656 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
1657 * the remaining arguments derived from "mpa".
1658 * That is, construct a call or access expression that calls/accesses "arg0"
1659 * with arguments/indices specified by "mpa".
1661 static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
1662 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
1663 __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
1665 int i, n;
1666 isl_ctx *ctx;
1667 isl_ast_expr *expr;
1669 ctx = isl_ast_build_get_ctx(build);
1671 n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
1672 expr = isl_ast_expr_alloc_op(ctx, type, 1 + n);
1673 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1674 for (i = 0; i < n; ++i) {
1675 isl_pw_aff *pa;
1676 isl_ast_expr *arg;
1678 pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
1679 arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
1680 expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
1683 isl_multi_pw_aff_free(mpa);
1684 return expr;
1687 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
1688 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
1689 __isl_take isl_multi_pw_aff *mpa);
1691 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
1692 * The range of "mpa" is assumed to be wrapped relation.
1693 * The domain of this wrapped relation specifies the structure being
1694 * accessed, while the range of this wrapped relation spacifies the
1695 * member of the structure being accessed.
1697 * The domain of "mpa" is assumed to live in the internal schedule domain.
1699 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
1700 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
1702 isl_id *id;
1703 isl_multi_pw_aff *domain;
1704 isl_ast_expr *domain_expr, *expr;
1705 enum isl_ast_op_type type = isl_ast_op_access;
1707 domain = isl_multi_pw_aff_copy(mpa);
1708 domain = isl_multi_pw_aff_range_factor_domain(domain);
1709 domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
1710 type, domain);
1711 mpa = isl_multi_pw_aff_range_factor_range(mpa);
1712 if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
1713 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
1714 "missing field name", goto error);
1715 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
1716 expr = isl_ast_expr_from_id(id);
1717 expr = isl_ast_expr_alloc_binary(isl_ast_op_member, domain_expr, expr);
1718 return isl_ast_build_with_arguments(build, type, expr, mpa);
1719 error:
1720 isl_multi_pw_aff_free(mpa);
1721 return NULL;
1724 /* Construct an isl_ast_expr of type "type" that calls or accesses
1725 * the element specified by "mpa".
1726 * The first argument is obtained from the output tuple name.
1727 * The remaining arguments are given by the piecewise affine expressions.
1729 * If the range of "mpa" is a mapped relation, then we assume it
1730 * represents an access to a member of a structure.
1732 * The domain of "mpa" is assumed to live in the internal schedule domain.
1734 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
1735 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
1736 __isl_take isl_multi_pw_aff *mpa)
1738 isl_ctx *ctx;
1739 isl_id *id;
1740 isl_ast_expr *expr;
1742 if (!mpa)
1743 goto error;
1745 if (type == isl_ast_op_access &&
1746 isl_multi_pw_aff_range_is_wrapping(mpa))
1747 return isl_ast_build_from_multi_pw_aff_member(build, mpa);
1749 mpa = set_iterator_names(build, mpa);
1750 if (!build || !mpa)
1751 goto error;
1753 ctx = isl_ast_build_get_ctx(build);
1755 if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
1756 id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
1757 else
1758 id = isl_id_alloc(ctx, "", NULL);
1760 expr = isl_ast_expr_from_id(id);
1761 return isl_ast_build_with_arguments(build, type, expr, mpa);
1762 error:
1763 isl_multi_pw_aff_free(mpa);
1764 return NULL;
1767 /* Construct an isl_ast_expr of type "type" that calls or accesses
1768 * the element specified by "pma".
1769 * The first argument is obtained from the output tuple name.
1770 * The remaining arguments are given by the piecewise affine expressions.
1772 * The domain of "pma" is assumed to live in the internal schedule domain.
1774 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
1775 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
1776 __isl_take isl_pw_multi_aff *pma)
1778 isl_multi_pw_aff *mpa;
1780 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
1781 return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
1784 /* Construct an isl_ast_expr of type "type" that calls or accesses
1785 * the element specified by "mpa".
1786 * The first argument is obtained from the output tuple name.
1787 * The remaining arguments are given by the piecewise affine expressions.
1789 * The domain of "mpa" is assumed to live in the external schedule domain.
1791 static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
1792 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
1793 __isl_take isl_multi_pw_aff *mpa)
1795 int is_domain;
1796 isl_ast_expr *expr;
1797 isl_space *space_build, *space_mpa;
1799 space_build = isl_ast_build_get_space(build, 0);
1800 space_mpa = isl_multi_pw_aff_get_space(mpa);
1801 is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
1802 space_mpa, isl_dim_in);
1803 isl_space_free(space_build);
1804 isl_space_free(space_mpa);
1805 if (is_domain < 0)
1806 goto error;
1807 if (!is_domain)
1808 isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
1809 "spaces don't match", goto error);
1811 if (isl_ast_build_need_schedule_map(build)) {
1812 isl_multi_aff *ma;
1813 ma = isl_ast_build_get_schedule_map_multi_aff(build);
1814 mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
1817 expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
1818 return expr;
1819 error:
1820 isl_multi_pw_aff_free(mpa);
1821 return NULL;
1824 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
1825 * The name of the function is obtained from the output tuple name.
1826 * The arguments are given by the piecewise affine expressions.
1828 * The domain of "mpa" is assumed to live in the external schedule domain.
1830 __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
1831 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
1833 return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_call, mpa);
1836 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
1837 * The name of the array is obtained from the output tuple name.
1838 * The index expressions are given by the piecewise affine expressions.
1840 * The domain of "mpa" is assumed to live in the external schedule domain.
1842 __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
1843 __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
1845 return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_access, mpa);
1848 /* Construct an isl_ast_expr of type "type" that calls or accesses
1849 * the element specified by "pma".
1850 * The first argument is obtained from the output tuple name.
1851 * The remaining arguments are given by the piecewise affine expressions.
1853 * The domain of "pma" is assumed to live in the external schedule domain.
1855 static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
1856 __isl_keep isl_ast_build *build, enum isl_ast_op_type type,
1857 __isl_take isl_pw_multi_aff *pma)
1859 isl_multi_pw_aff *mpa;
1861 mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
1862 return isl_ast_build_from_multi_pw_aff(build, type, mpa);
1865 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
1866 * The name of the function is obtained from the output tuple name.
1867 * The arguments are given by the piecewise affine expressions.
1869 * The domain of "pma" is assumed to live in the external schedule domain.
1871 __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
1872 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
1874 return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_call, pma);
1877 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
1878 * The name of the array is obtained from the output tuple name.
1879 * The index expressions are given by the piecewise affine expressions.
1881 * The domain of "pma" is assumed to live in the external schedule domain.
1883 __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
1884 __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
1886 return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_access, pma);
1889 /* Construct an isl_ast_expr that calls the domain element
1890 * specified by "executed".
1892 * "executed" is assumed to be single-valued, with a domain that lives
1893 * in the internal schedule space.
1895 __isl_give isl_ast_node *isl_ast_build_call_from_executed(
1896 __isl_keep isl_ast_build *build, __isl_take isl_map *executed)
1898 isl_pw_multi_aff *iteration;
1899 isl_ast_expr *expr;
1901 iteration = isl_pw_multi_aff_from_map(executed);
1902 iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
1903 iteration = isl_pw_multi_aff_intersect_domain(iteration,
1904 isl_ast_build_get_domain(build));
1905 expr = isl_ast_build_from_pw_multi_aff_internal(build, isl_ast_op_call,
1906 iteration);
1907 return isl_ast_node_alloc_user(expr);