isl_convex_hull.c: convex_hull_pair: use isl_bool for local variables
[isl.git] / isl_fold.c
blobf66d977cfc6b90b98ff86a863e860b2ae976f09d
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl_union_map_private.h>
13 #include <isl_polynomial_private.h>
14 #include <isl_point_private.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl_seq.h>
18 #include <isl_mat_private.h>
19 #include <isl_val_private.h>
20 #include <isl_vec_private.h>
21 #include <isl_config.h>
23 #undef BASE
24 #define BASE pw_qpolynomial_fold
26 #include <isl_list_templ.c>
28 enum isl_fold isl_fold_type_negate(enum isl_fold type)
30 switch (type) {
31 case isl_fold_min:
32 return isl_fold_max;
33 case isl_fold_max:
34 return isl_fold_min;
35 case isl_fold_list:
36 return isl_fold_list;
39 isl_die(NULL, isl_error_internal, "unhandled isl_fold type", abort());
42 static __isl_give isl_qpolynomial_fold *qpolynomial_fold_alloc(
43 enum isl_fold type, __isl_take isl_space *space, int n)
45 isl_qpolynomial_fold *fold;
47 if (!space)
48 goto error;
50 isl_assert(space->ctx, n >= 0, goto error);
51 fold = isl_calloc(space->ctx, struct isl_qpolynomial_fold,
52 sizeof(struct isl_qpolynomial_fold) +
53 (n - 1) * sizeof(struct isl_qpolynomial *));
54 if (!fold)
55 goto error;
57 fold->ref = 1;
58 fold->size = n;
59 fold->n = 0;
60 fold->type = type;
61 fold->dim = space;
63 return fold;
64 error:
65 isl_space_free(space);
66 return NULL;
69 isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold)
71 return fold ? fold->dim->ctx : NULL;
74 __isl_give isl_space *isl_qpolynomial_fold_get_domain_space(
75 __isl_keep isl_qpolynomial_fold *fold)
77 return fold ? isl_space_copy(fold->dim) : NULL;
80 __isl_give isl_space *isl_qpolynomial_fold_get_space(
81 __isl_keep isl_qpolynomial_fold *fold)
83 isl_space *space;
84 if (!fold)
85 return NULL;
86 space = isl_space_copy(fold->dim);
87 space = isl_space_from_domain(space);
88 space = isl_space_add_dims(space, isl_dim_out, 1);
89 return space;
92 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space(
93 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim)
95 int i;
97 fold = isl_qpolynomial_fold_cow(fold);
98 if (!fold || !dim)
99 goto error;
101 for (i = 0; i < fold->n; ++i) {
102 fold->qp[i] = isl_qpolynomial_reset_domain_space(fold->qp[i],
103 isl_space_copy(dim));
104 if (!fold->qp[i])
105 goto error;
108 isl_space_free(fold->dim);
109 fold->dim = dim;
111 return fold;
112 error:
113 isl_qpolynomial_fold_free(fold);
114 isl_space_free(dim);
115 return NULL;
118 /* Reset the space of "fold". This function is called from isl_pw_templ.c
119 * and doesn't know if the space of an element object is represented
120 * directly or through its domain. It therefore passes along both.
122 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain(
123 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space,
124 __isl_take isl_space *domain)
126 isl_space_free(space);
127 return isl_qpolynomial_fold_reset_domain_space(fold, domain);
130 int isl_qpolynomial_fold_involves_dims(__isl_keep isl_qpolynomial_fold *fold,
131 enum isl_dim_type type, unsigned first, unsigned n)
133 int i;
135 if (!fold)
136 return -1;
137 if (fold->n == 0 || n == 0)
138 return 0;
140 for (i = 0; i < fold->n; ++i) {
141 int involves = isl_qpolynomial_involves_dims(fold->qp[i],
142 type, first, n);
143 if (involves < 0 || involves)
144 return involves;
146 return 0;
149 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_set_dim_name(
150 __isl_take isl_qpolynomial_fold *fold,
151 enum isl_dim_type type, unsigned pos, const char *s)
153 int i;
155 fold = isl_qpolynomial_fold_cow(fold);
156 if (!fold)
157 return NULL;
158 fold->dim = isl_space_set_dim_name(fold->dim, type, pos, s);
159 if (!fold->dim)
160 goto error;
162 for (i = 0; i < fold->n; ++i) {
163 fold->qp[i] = isl_qpolynomial_set_dim_name(fold->qp[i],
164 type, pos, s);
165 if (!fold->qp[i])
166 goto error;
169 return fold;
170 error:
171 isl_qpolynomial_fold_free(fold);
172 return NULL;
175 /* Given a dimension type for an isl_qpolynomial_fold,
176 * return the corresponding type for the domain.
178 static enum isl_dim_type domain_type(enum isl_dim_type type)
180 if (type == isl_dim_in)
181 return isl_dim_set;
182 return type;
185 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_drop_dims(
186 __isl_take isl_qpolynomial_fold *fold,
187 enum isl_dim_type type, unsigned first, unsigned n)
189 int i;
190 enum isl_dim_type set_type;
192 if (!fold)
193 return NULL;
194 if (n == 0)
195 return fold;
197 set_type = domain_type(type);
199 fold = isl_qpolynomial_fold_cow(fold);
200 if (!fold)
201 return NULL;
202 fold->dim = isl_space_drop_dims(fold->dim, set_type, first, n);
203 if (!fold->dim)
204 goto error;
206 for (i = 0; i < fold->n; ++i) {
207 fold->qp[i] = isl_qpolynomial_drop_dims(fold->qp[i],
208 type, first, n);
209 if (!fold->qp[i])
210 goto error;
213 return fold;
214 error:
215 isl_qpolynomial_fold_free(fold);
216 return NULL;
219 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_insert_dims(
220 __isl_take isl_qpolynomial_fold *fold,
221 enum isl_dim_type type, unsigned first, unsigned n)
223 int i;
225 if (!fold)
226 return NULL;
227 if (n == 0 && !isl_space_is_named_or_nested(fold->dim, type))
228 return fold;
230 fold = isl_qpolynomial_fold_cow(fold);
231 if (!fold)
232 return NULL;
233 fold->dim = isl_space_insert_dims(fold->dim, type, first, n);
234 if (!fold->dim)
235 goto error;
237 for (i = 0; i < fold->n; ++i) {
238 fold->qp[i] = isl_qpolynomial_insert_dims(fold->qp[i],
239 type, first, n);
240 if (!fold->qp[i])
241 goto error;
244 return fold;
245 error:
246 isl_qpolynomial_fold_free(fold);
247 return NULL;
250 /* Determine the sign of the constant quasipolynomial "qp".
252 * Return
253 * -1 if qp <= 0
254 * 1 if qp >= 0
255 * 0 if unknown
257 * For qp == 0, we can return either -1 or 1. In practice, we return 1.
258 * For qp == NaN, the sign is undefined, so we return 0.
260 static int isl_qpolynomial_cst_sign(__isl_keep isl_qpolynomial *qp)
262 struct isl_upoly_cst *cst;
264 if (isl_qpolynomial_is_nan(qp))
265 return 0;
267 cst = isl_upoly_as_cst(qp->upoly);
268 if (!cst)
269 return 0;
271 return isl_int_sgn(cst->n) < 0 ? -1 : 1;
274 static int isl_qpolynomial_aff_sign(__isl_keep isl_set *set,
275 __isl_keep isl_qpolynomial *qp)
277 enum isl_lp_result res;
278 isl_vec *aff;
279 isl_int opt;
280 int sgn = 0;
282 aff = isl_qpolynomial_extract_affine(qp);
283 if (!aff)
284 return 0;
286 isl_int_init(opt);
288 res = isl_set_solve_lp(set, 0, aff->el + 1, aff->el[0],
289 &opt, NULL, NULL);
290 if (res == isl_lp_error)
291 goto done;
292 if (res == isl_lp_empty ||
293 (res == isl_lp_ok && !isl_int_is_neg(opt))) {
294 sgn = 1;
295 goto done;
298 res = isl_set_solve_lp(set, 1, aff->el + 1, aff->el[0],
299 &opt, NULL, NULL);
300 if (res == isl_lp_ok && !isl_int_is_pos(opt))
301 sgn = -1;
303 done:
304 isl_int_clear(opt);
305 isl_vec_free(aff);
306 return sgn;
309 /* Determine, if possible, the sign of the quasipolynomial "qp" on
310 * the domain "set".
312 * If qp is a constant, then the problem is trivial.
313 * If qp is linear, then we check if the minimum of the corresponding
314 * affine constraint is non-negative or if the maximum is non-positive.
316 * Otherwise, we check if the outermost variable "v" has a lower bound "l"
317 * in "set". If so, we write qp(v,v') as
319 * q(v,v') * (v - l) + r(v')
321 * if q(v,v') and r(v') have the same known sign, then the original
322 * quasipolynomial has the same sign as well.
324 * Return
325 * -1 if qp <= 0
326 * 1 if qp >= 0
327 * 0 if unknown
329 static int isl_qpolynomial_sign(__isl_keep isl_set *set,
330 __isl_keep isl_qpolynomial *qp)
332 int d;
333 int i;
334 int is;
335 struct isl_upoly_rec *rec;
336 isl_vec *v;
337 isl_int l;
338 enum isl_lp_result res;
339 int sgn = 0;
341 is = isl_qpolynomial_is_cst(qp, NULL, NULL);
342 if (is < 0)
343 return 0;
344 if (is)
345 return isl_qpolynomial_cst_sign(qp);
347 is = isl_qpolynomial_is_affine(qp);
348 if (is < 0)
349 return 0;
350 if (is)
351 return isl_qpolynomial_aff_sign(set, qp);
353 if (qp->div->n_row > 0)
354 return 0;
356 rec = isl_upoly_as_rec(qp->upoly);
357 if (!rec)
358 return 0;
360 d = isl_space_dim(qp->dim, isl_dim_all);
361 v = isl_vec_alloc(set->ctx, 2 + d);
362 if (!v)
363 return 0;
365 isl_seq_clr(v->el + 1, 1 + d);
366 isl_int_set_si(v->el[0], 1);
367 isl_int_set_si(v->el[2 + qp->upoly->var], 1);
369 isl_int_init(l);
371 res = isl_set_solve_lp(set, 0, v->el + 1, v->el[0], &l, NULL, NULL);
372 if (res == isl_lp_ok) {
373 isl_qpolynomial *min;
374 isl_qpolynomial *base;
375 isl_qpolynomial *r, *q;
376 isl_qpolynomial *t;
378 min = isl_qpolynomial_cst_on_domain(isl_space_copy(qp->dim), l);
379 base = isl_qpolynomial_var_pow_on_domain(isl_space_copy(qp->dim),
380 qp->upoly->var, 1);
382 r = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0,
383 isl_upoly_copy(rec->p[rec->n - 1]));
384 q = isl_qpolynomial_copy(r);
386 for (i = rec->n - 2; i >= 0; --i) {
387 r = isl_qpolynomial_mul(r, isl_qpolynomial_copy(min));
388 t = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0,
389 isl_upoly_copy(rec->p[i]));
390 r = isl_qpolynomial_add(r, t);
391 if (i == 0)
392 break;
393 q = isl_qpolynomial_mul(q, isl_qpolynomial_copy(base));
394 q = isl_qpolynomial_add(q, isl_qpolynomial_copy(r));
397 if (isl_qpolynomial_is_zero(q))
398 sgn = isl_qpolynomial_sign(set, r);
399 else if (isl_qpolynomial_is_zero(r))
400 sgn = isl_qpolynomial_sign(set, q);
401 else {
402 int sgn_q, sgn_r;
403 sgn_r = isl_qpolynomial_sign(set, r);
404 sgn_q = isl_qpolynomial_sign(set, q);
405 if (sgn_r == sgn_q)
406 sgn = sgn_r;
409 isl_qpolynomial_free(min);
410 isl_qpolynomial_free(base);
411 isl_qpolynomial_free(q);
412 isl_qpolynomial_free(r);
415 isl_int_clear(l);
417 isl_vec_free(v);
419 return sgn;
422 /* Combine "fold1" and "fold2" into a single reduction, eliminating
423 * those elements of one reduction that are already covered by the other
424 * reduction on "set".
426 * If "fold1" or "fold2" is an empty reduction, then return
427 * the other reduction.
428 * If "fold1" or "fold2" is a NaN, then return this NaN.
430 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain(
431 __isl_keep isl_set *set,
432 __isl_take isl_qpolynomial_fold *fold1,
433 __isl_take isl_qpolynomial_fold *fold2)
435 int i, j;
436 int n1;
437 struct isl_qpolynomial_fold *res = NULL;
438 int better;
440 if (!fold1 || !fold2)
441 goto error;
443 isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error);
444 isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim),
445 goto error);
447 better = fold1->type == isl_fold_max ? -1 : 1;
449 if (isl_qpolynomial_fold_is_empty(fold1) ||
450 isl_qpolynomial_fold_is_nan(fold2)) {
451 isl_qpolynomial_fold_free(fold1);
452 return fold2;
455 if (isl_qpolynomial_fold_is_empty(fold2) ||
456 isl_qpolynomial_fold_is_nan(fold1)) {
457 isl_qpolynomial_fold_free(fold2);
458 return fold1;
461 res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim),
462 fold1->n + fold2->n);
463 if (!res)
464 goto error;
466 for (i = 0; i < fold1->n; ++i) {
467 res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]);
468 if (!res->qp[res->n])
469 goto error;
470 res->n++;
472 n1 = res->n;
474 for (i = 0; i < fold2->n; ++i) {
475 for (j = n1 - 1; j >= 0; --j) {
476 isl_qpolynomial *d;
477 int sgn, equal;
478 equal = isl_qpolynomial_plain_is_equal(res->qp[j],
479 fold2->qp[i]);
480 if (equal < 0)
481 goto error;
482 if (equal)
483 break;
484 d = isl_qpolynomial_sub(
485 isl_qpolynomial_copy(res->qp[j]),
486 isl_qpolynomial_copy(fold2->qp[i]));
487 sgn = isl_qpolynomial_sign(set, d);
488 isl_qpolynomial_free(d);
489 if (sgn == 0)
490 continue;
491 if (sgn != better)
492 break;
493 isl_qpolynomial_free(res->qp[j]);
494 if (j != n1 - 1)
495 res->qp[j] = res->qp[n1 - 1];
496 n1--;
497 if (n1 != res->n - 1)
498 res->qp[n1] = res->qp[res->n - 1];
499 res->n--;
501 if (j >= 0)
502 continue;
503 res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]);
504 if (!res->qp[res->n])
505 goto error;
506 res->n++;
509 isl_qpolynomial_fold_free(fold1);
510 isl_qpolynomial_fold_free(fold2);
512 return res;
513 error:
514 isl_qpolynomial_fold_free(res);
515 isl_qpolynomial_fold_free(fold1);
516 isl_qpolynomial_fold_free(fold2);
517 return NULL;
520 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_qpolynomial(
521 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_qpolynomial *qp)
523 int i;
525 if (!fold || !qp)
526 goto error;
528 if (isl_qpolynomial_is_zero(qp)) {
529 isl_qpolynomial_free(qp);
530 return fold;
533 fold = isl_qpolynomial_fold_cow(fold);
534 if (!fold)
535 goto error;
537 for (i = 0; i < fold->n; ++i) {
538 fold->qp[i] = isl_qpolynomial_add(fold->qp[i],
539 isl_qpolynomial_copy(qp));
540 if (!fold->qp[i])
541 goto error;
544 isl_qpolynomial_free(qp);
545 return fold;
546 error:
547 isl_qpolynomial_fold_free(fold);
548 isl_qpolynomial_free(qp);
549 return NULL;
552 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain(
553 __isl_keep isl_set *dom,
554 __isl_take isl_qpolynomial_fold *fold1,
555 __isl_take isl_qpolynomial_fold *fold2)
557 int i;
558 isl_qpolynomial_fold *res = NULL;
560 if (!fold1 || !fold2)
561 goto error;
563 if (isl_qpolynomial_fold_is_empty(fold1)) {
564 isl_qpolynomial_fold_free(fold1);
565 return fold2;
568 if (isl_qpolynomial_fold_is_empty(fold2)) {
569 isl_qpolynomial_fold_free(fold2);
570 return fold1;
573 if (fold1->n == 1 && fold2->n != 1)
574 return isl_qpolynomial_fold_add_on_domain(dom, fold2, fold1);
576 if (fold2->n == 1) {
577 res = isl_qpolynomial_fold_add_qpolynomial(fold1,
578 isl_qpolynomial_copy(fold2->qp[0]));
579 isl_qpolynomial_fold_free(fold2);
580 return res;
583 res = isl_qpolynomial_fold_add_qpolynomial(
584 isl_qpolynomial_fold_copy(fold1),
585 isl_qpolynomial_copy(fold2->qp[0]));
587 for (i = 1; i < fold2->n; ++i) {
588 isl_qpolynomial_fold *res_i;
589 res_i = isl_qpolynomial_fold_add_qpolynomial(
590 isl_qpolynomial_fold_copy(fold1),
591 isl_qpolynomial_copy(fold2->qp[i]));
592 res = isl_qpolynomial_fold_fold_on_domain(dom, res, res_i);
595 isl_qpolynomial_fold_free(fold1);
596 isl_qpolynomial_fold_free(fold2);
597 return res;
598 error:
599 isl_qpolynomial_fold_free(res);
600 isl_qpolynomial_fold_free(fold1);
601 isl_qpolynomial_fold_free(fold2);
602 return NULL;
605 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities(
606 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq)
608 int i;
610 if (!fold || !eq)
611 goto error;
613 fold = isl_qpolynomial_fold_cow(fold);
614 if (!fold)
615 return NULL;
617 for (i = 0; i < fold->n; ++i) {
618 fold->qp[i] = isl_qpolynomial_substitute_equalities(fold->qp[i],
619 isl_basic_set_copy(eq));
620 if (!fold->qp[i])
621 goto error;
624 isl_basic_set_free(eq);
625 return fold;
626 error:
627 isl_basic_set_free(eq);
628 isl_qpolynomial_fold_free(fold);
629 return NULL;
632 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
633 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context)
635 int i;
637 if (!fold || !context)
638 goto error;
640 fold = isl_qpolynomial_fold_cow(fold);
641 if (!fold)
642 return NULL;
644 for (i = 0; i < fold->n; ++i) {
645 fold->qp[i] = isl_qpolynomial_gist(fold->qp[i],
646 isl_set_copy(context));
647 if (!fold->qp[i])
648 goto error;
651 isl_set_free(context);
652 return fold;
653 error:
654 isl_set_free(context);
655 isl_qpolynomial_fold_free(fold);
656 return NULL;
659 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
660 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context)
662 isl_space *space = isl_qpolynomial_fold_get_domain_space(fold);
663 isl_set *dom_context = isl_set_universe(space);
664 dom_context = isl_set_intersect_params(dom_context, context);
665 return isl_qpolynomial_fold_gist(fold, dom_context);
668 #define isl_qpolynomial_fold_involves_nan isl_qpolynomial_fold_is_nan
670 #define HAS_TYPE
672 #undef PW
673 #define PW isl_pw_qpolynomial_fold
674 #undef EL
675 #define EL isl_qpolynomial_fold
676 #undef EL_IS_ZERO
677 #define EL_IS_ZERO is_empty
678 #undef ZERO
679 #define ZERO zero
680 #undef IS_ZERO
681 #define IS_ZERO is_zero
682 #undef FIELD
683 #define FIELD fold
684 #undef DEFAULT_IS_ZERO
685 #define DEFAULT_IS_ZERO 1
687 #define NO_NEG
688 #define NO_SUB
689 #define NO_PULLBACK
691 #include <isl_pw_templ.c>
692 #include <isl_pw_eval.c>
694 #undef BASE
695 #define BASE pw_qpolynomial_fold
697 #define NO_SUB
699 #include <isl_union_single.c>
700 #include <isl_union_eval.c>
702 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type,
703 __isl_take isl_space *dim)
705 return qpolynomial_fold_alloc(type, dim, 0);
708 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc(
709 enum isl_fold type, __isl_take isl_qpolynomial *qp)
711 isl_qpolynomial_fold *fold;
713 if (!qp)
714 return NULL;
716 fold = qpolynomial_fold_alloc(type, isl_space_copy(qp->dim), 1);
717 if (!fold)
718 goto error;
720 fold->qp[0] = qp;
721 fold->n++;
723 return fold;
724 error:
725 isl_qpolynomial_fold_free(fold);
726 isl_qpolynomial_free(qp);
727 return NULL;
730 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
731 __isl_keep isl_qpolynomial_fold *fold)
733 if (!fold)
734 return NULL;
736 fold->ref++;
737 return fold;
740 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup(
741 __isl_keep isl_qpolynomial_fold *fold)
743 int i;
744 isl_qpolynomial_fold *dup;
746 if (!fold)
747 return NULL;
748 dup = qpolynomial_fold_alloc(fold->type,
749 isl_space_copy(fold->dim), fold->n);
750 if (!dup)
751 return NULL;
753 dup->n = fold->n;
754 for (i = 0; i < fold->n; ++i) {
755 dup->qp[i] = isl_qpolynomial_copy(fold->qp[i]);
756 if (!dup->qp[i])
757 goto error;
760 return dup;
761 error:
762 isl_qpolynomial_fold_free(dup);
763 return NULL;
766 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow(
767 __isl_take isl_qpolynomial_fold *fold)
769 if (!fold)
770 return NULL;
772 if (fold->ref == 1)
773 return fold;
774 fold->ref--;
775 return isl_qpolynomial_fold_dup(fold);
778 __isl_null isl_qpolynomial_fold *isl_qpolynomial_fold_free(
779 __isl_take isl_qpolynomial_fold *fold)
781 int i;
783 if (!fold)
784 return NULL;
785 if (--fold->ref > 0)
786 return NULL;
788 for (i = 0; i < fold->n; ++i)
789 isl_qpolynomial_free(fold->qp[i]);
790 isl_space_free(fold->dim);
791 free(fold);
793 return NULL;
796 int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold)
798 if (!fold)
799 return -1;
801 return fold->n == 0;
804 /* Does "fold" represent max(NaN) or min(NaN)?
806 isl_bool isl_qpolynomial_fold_is_nan(__isl_keep isl_qpolynomial_fold *fold)
808 if (!fold)
809 return isl_bool_error;
810 if (fold->n != 1)
811 return isl_bool_false;
812 return isl_qpolynomial_is_nan(fold->qp[0]);
815 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold(
816 __isl_take isl_qpolynomial_fold *fold1,
817 __isl_take isl_qpolynomial_fold *fold2)
819 int i;
820 struct isl_qpolynomial_fold *res = NULL;
822 if (!fold1 || !fold2)
823 goto error;
825 isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error);
826 isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim),
827 goto error);
829 if (isl_qpolynomial_fold_is_empty(fold1)) {
830 isl_qpolynomial_fold_free(fold1);
831 return fold2;
834 if (isl_qpolynomial_fold_is_empty(fold2)) {
835 isl_qpolynomial_fold_free(fold2);
836 return fold1;
839 res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim),
840 fold1->n + fold2->n);
841 if (!res)
842 goto error;
844 for (i = 0; i < fold1->n; ++i) {
845 res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]);
846 if (!res->qp[res->n])
847 goto error;
848 res->n++;
851 for (i = 0; i < fold2->n; ++i) {
852 res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]);
853 if (!res->qp[res->n])
854 goto error;
855 res->n++;
858 isl_qpolynomial_fold_free(fold1);
859 isl_qpolynomial_fold_free(fold2);
861 return res;
862 error:
863 isl_qpolynomial_fold_free(res);
864 isl_qpolynomial_fold_free(fold1);
865 isl_qpolynomial_fold_free(fold2);
866 return NULL;
869 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
870 __isl_take isl_pw_qpolynomial_fold *pw1,
871 __isl_take isl_pw_qpolynomial_fold *pw2)
873 int i, j, n;
874 struct isl_pw_qpolynomial_fold *res;
875 isl_set *set;
877 if (!pw1 || !pw2)
878 goto error;
880 isl_assert(pw1->dim->ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error);
882 if (isl_pw_qpolynomial_fold_is_zero(pw1)) {
883 isl_pw_qpolynomial_fold_free(pw1);
884 return pw2;
887 if (isl_pw_qpolynomial_fold_is_zero(pw2)) {
888 isl_pw_qpolynomial_fold_free(pw2);
889 return pw1;
892 if (pw1->type != pw2->type)
893 isl_die(pw1->dim->ctx, isl_error_invalid,
894 "fold types don't match", goto error);
896 n = (pw1->n + 1) * (pw2->n + 1);
897 res = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pw1->dim),
898 pw1->type, n);
900 for (i = 0; i < pw1->n; ++i) {
901 set = isl_set_copy(pw1->p[i].set);
902 for (j = 0; j < pw2->n; ++j) {
903 struct isl_set *common;
904 isl_qpolynomial_fold *sum;
905 set = isl_set_subtract(set,
906 isl_set_copy(pw2->p[j].set));
907 common = isl_set_intersect(isl_set_copy(pw1->p[i].set),
908 isl_set_copy(pw2->p[j].set));
909 if (isl_set_plain_is_empty(common)) {
910 isl_set_free(common);
911 continue;
914 sum = isl_qpolynomial_fold_fold_on_domain(common,
915 isl_qpolynomial_fold_copy(pw1->p[i].fold),
916 isl_qpolynomial_fold_copy(pw2->p[j].fold));
918 res = isl_pw_qpolynomial_fold_add_piece(res, common, sum);
920 res = isl_pw_qpolynomial_fold_add_piece(res, set,
921 isl_qpolynomial_fold_copy(pw1->p[i].fold));
924 for (j = 0; j < pw2->n; ++j) {
925 set = isl_set_copy(pw2->p[j].set);
926 for (i = 0; i < pw1->n; ++i)
927 set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set));
928 res = isl_pw_qpolynomial_fold_add_piece(res, set,
929 isl_qpolynomial_fold_copy(pw2->p[j].fold));
932 isl_pw_qpolynomial_fold_free(pw1);
933 isl_pw_qpolynomial_fold_free(pw2);
935 return res;
936 error:
937 isl_pw_qpolynomial_fold_free(pw1);
938 isl_pw_qpolynomial_fold_free(pw2);
939 return NULL;
942 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
943 __isl_take isl_union_pw_qpolynomial_fold *u,
944 __isl_take isl_pw_qpolynomial_fold *part)
946 struct isl_hash_table_entry *entry;
948 u = isl_union_pw_qpolynomial_fold_cow(u);
950 if (!part || !u)
951 goto error;
952 if (isl_space_check_equal_params(part->dim, u->space) < 0)
953 goto error;
955 entry = isl_union_pw_qpolynomial_fold_find_part_entry(u, part->dim, 1);
956 if (!entry)
957 goto error;
959 if (!entry->data)
960 entry->data = part;
961 else {
962 entry->data = isl_pw_qpolynomial_fold_fold(entry->data,
963 isl_pw_qpolynomial_fold_copy(part));
964 if (!entry->data)
965 goto error;
966 isl_pw_qpolynomial_fold_free(part);
969 return u;
970 error:
971 isl_pw_qpolynomial_fold_free(part);
972 isl_union_pw_qpolynomial_fold_free(u);
973 return NULL;
976 static isl_stat fold_part(__isl_take isl_pw_qpolynomial_fold *part, void *user)
978 isl_union_pw_qpolynomial_fold **u;
979 u = (isl_union_pw_qpolynomial_fold **)user;
981 *u = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(*u, part);
983 return isl_stat_ok;
986 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
987 __isl_take isl_union_pw_qpolynomial_fold *u1,
988 __isl_take isl_union_pw_qpolynomial_fold *u2)
990 u1 = isl_union_pw_qpolynomial_fold_cow(u1);
992 if (!u1 || !u2)
993 goto error;
995 if (isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(u2,
996 &fold_part, &u1) < 0)
997 goto error;
999 isl_union_pw_qpolynomial_fold_free(u2);
1001 return u1;
1002 error:
1003 isl_union_pw_qpolynomial_fold_free(u1);
1004 isl_union_pw_qpolynomial_fold_free(u2);
1005 return NULL;
1008 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial(
1009 enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp)
1011 int i;
1012 isl_pw_qpolynomial_fold *pwf;
1014 if (!pwqp)
1015 return NULL;
1017 pwf = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pwqp->dim),
1018 type, pwqp->n);
1020 for (i = 0; i < pwqp->n; ++i)
1021 pwf = isl_pw_qpolynomial_fold_add_piece(pwf,
1022 isl_set_copy(pwqp->p[i].set),
1023 isl_qpolynomial_fold_alloc(type,
1024 isl_qpolynomial_copy(pwqp->p[i].qp)));
1026 isl_pw_qpolynomial_free(pwqp);
1028 return pwf;
1031 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
1032 __isl_take isl_pw_qpolynomial_fold *pwf1,
1033 __isl_take isl_pw_qpolynomial_fold *pwf2)
1035 return isl_pw_qpolynomial_fold_union_add_(pwf1, pwf2);
1038 /* Compare two quasi-polynomial reductions.
1040 * Return -1 if "fold1" is "smaller" than "fold2", 1 if "fold1" is "greater"
1041 * than "fold2" and 0 if they are equal.
1043 int isl_qpolynomial_fold_plain_cmp(__isl_keep isl_qpolynomial_fold *fold1,
1044 __isl_keep isl_qpolynomial_fold *fold2)
1046 int i;
1048 if (fold1 == fold2)
1049 return 0;
1050 if (!fold1)
1051 return -1;
1052 if (!fold2)
1053 return 1;
1055 if (fold1->n != fold2->n)
1056 return fold1->n - fold2->n;
1058 for (i = 0; i < fold1->n; ++i) {
1059 int cmp;
1061 cmp = isl_qpolynomial_plain_cmp(fold1->qp[i], fold2->qp[i]);
1062 if (cmp != 0)
1063 return cmp;
1066 return 0;
1069 int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1,
1070 __isl_keep isl_qpolynomial_fold *fold2)
1072 int i;
1074 if (!fold1 || !fold2)
1075 return -1;
1077 if (fold1->n != fold2->n)
1078 return 0;
1080 /* We probably want to sort the qps first... */
1081 for (i = 0; i < fold1->n; ++i) {
1082 int eq = isl_qpolynomial_plain_is_equal(fold1->qp[i], fold2->qp[i]);
1083 if (eq < 0 || !eq)
1084 return eq;
1087 return 1;
1090 __isl_give isl_val *isl_qpolynomial_fold_eval(
1091 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt)
1093 isl_ctx *ctx;
1094 isl_val *v;
1096 if (!fold || !pnt)
1097 goto error;
1098 ctx = isl_point_get_ctx(pnt);
1099 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, fold->dim), goto error);
1100 isl_assert(pnt->dim->ctx,
1101 fold->type == isl_fold_max || fold->type == isl_fold_min,
1102 goto error);
1104 if (fold->n == 0)
1105 v = isl_val_zero(ctx);
1106 else {
1107 int i;
1108 v = isl_qpolynomial_eval(isl_qpolynomial_copy(fold->qp[0]),
1109 isl_point_copy(pnt));
1110 for (i = 1; i < fold->n; ++i) {
1111 isl_val *v_i;
1112 v_i = isl_qpolynomial_eval(
1113 isl_qpolynomial_copy(fold->qp[i]),
1114 isl_point_copy(pnt));
1115 if (fold->type == isl_fold_max)
1116 v = isl_val_max(v, v_i);
1117 else
1118 v = isl_val_min(v, v_i);
1121 isl_qpolynomial_fold_free(fold);
1122 isl_point_free(pnt);
1124 return v;
1125 error:
1126 isl_qpolynomial_fold_free(fold);
1127 isl_point_free(pnt);
1128 return NULL;
1131 size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf)
1133 int i;
1134 size_t n = 0;
1136 for (i = 0; i < pwf->n; ++i)
1137 n += pwf->p[i].fold->n;
1139 return n;
1142 __isl_give isl_val *isl_qpolynomial_fold_opt_on_domain(
1143 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max)
1145 int i;
1146 isl_val *opt;
1148 if (!set || !fold)
1149 goto error;
1151 if (fold->n == 0) {
1152 opt = isl_val_zero(isl_set_get_ctx(set));
1153 isl_set_free(set);
1154 isl_qpolynomial_fold_free(fold);
1155 return opt;
1158 opt = isl_qpolynomial_opt_on_domain(isl_qpolynomial_copy(fold->qp[0]),
1159 isl_set_copy(set), max);
1160 for (i = 1; i < fold->n; ++i) {
1161 isl_val *opt_i;
1162 opt_i = isl_qpolynomial_opt_on_domain(
1163 isl_qpolynomial_copy(fold->qp[i]),
1164 isl_set_copy(set), max);
1165 if (max)
1166 opt = isl_val_max(opt, opt_i);
1167 else
1168 opt = isl_val_min(opt, opt_i);
1171 isl_set_free(set);
1172 isl_qpolynomial_fold_free(fold);
1174 return opt;
1175 error:
1176 isl_set_free(set);
1177 isl_qpolynomial_fold_free(fold);
1178 return NULL;
1181 /* Check whether for each quasi-polynomial in "fold2" there is
1182 * a quasi-polynomial in "fold1" that dominates it on "set".
1184 static int qpolynomial_fold_covers_on_domain(__isl_keep isl_set *set,
1185 __isl_keep isl_qpolynomial_fold *fold1,
1186 __isl_keep isl_qpolynomial_fold *fold2)
1188 int i, j;
1189 int covers;
1191 if (!set || !fold1 || !fold2)
1192 return -1;
1194 covers = fold1->type == isl_fold_max ? 1 : -1;
1196 for (i = 0; i < fold2->n; ++i) {
1197 for (j = 0; j < fold1->n; ++j) {
1198 isl_qpolynomial *d;
1199 int sgn;
1201 d = isl_qpolynomial_sub(
1202 isl_qpolynomial_copy(fold1->qp[j]),
1203 isl_qpolynomial_copy(fold2->qp[i]));
1204 sgn = isl_qpolynomial_sign(set, d);
1205 isl_qpolynomial_free(d);
1206 if (sgn == covers)
1207 break;
1209 if (j >= fold1->n)
1210 return 0;
1213 return 1;
1216 /* Check whether "pwf1" dominated "pwf2", i.e., the domain of "pwf1" contains
1217 * that of "pwf2" and on each cell, the corresponding fold from pwf1 dominates
1218 * that of pwf2.
1220 int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1,
1221 __isl_keep isl_pw_qpolynomial_fold *pwf2)
1223 int i, j;
1224 isl_set *dom1, *dom2;
1225 isl_bool is_subset;
1227 if (!pwf1 || !pwf2)
1228 return -1;
1230 if (pwf2->n == 0)
1231 return 1;
1232 if (pwf1->n == 0)
1233 return 0;
1235 dom1 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf1));
1236 dom2 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf2));
1237 is_subset = isl_set_is_subset(dom2, dom1);
1238 isl_set_free(dom1);
1239 isl_set_free(dom2);
1241 if (is_subset < 0 || !is_subset)
1242 return is_subset;
1244 for (i = 0; i < pwf2->n; ++i) {
1245 for (j = 0; j < pwf1->n; ++j) {
1246 isl_bool is_empty;
1247 isl_set *common;
1248 int covers;
1250 common = isl_set_intersect(isl_set_copy(pwf1->p[j].set),
1251 isl_set_copy(pwf2->p[i].set));
1252 is_empty = isl_set_is_empty(common);
1253 if (is_empty < 0 || is_empty) {
1254 isl_set_free(common);
1255 if (is_empty < 0)
1256 return -1;
1257 continue;
1259 covers = qpolynomial_fold_covers_on_domain(common,
1260 pwf1->p[j].fold, pwf2->p[i].fold);
1261 isl_set_free(common);
1262 if (covers < 0 || !covers)
1263 return covers;
1267 return 1;
1270 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain(
1271 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph)
1273 int i;
1274 isl_ctx *ctx;
1276 if (!fold || !morph)
1277 goto error;
1279 ctx = fold->dim->ctx;
1280 isl_assert(ctx, isl_space_is_equal(fold->dim, morph->dom->dim), goto error);
1282 fold = isl_qpolynomial_fold_cow(fold);
1283 if (!fold)
1284 goto error;
1286 isl_space_free(fold->dim);
1287 fold->dim = isl_space_copy(morph->ran->dim);
1288 if (!fold->dim)
1289 goto error;
1291 for (i = 0; i < fold->n; ++i) {
1292 fold->qp[i] = isl_qpolynomial_morph_domain(fold->qp[i],
1293 isl_morph_copy(morph));
1294 if (!fold->qp[i])
1295 goto error;
1298 isl_morph_free(morph);
1300 return fold;
1301 error:
1302 isl_qpolynomial_fold_free(fold);
1303 isl_morph_free(morph);
1304 return NULL;
1307 enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold)
1309 if (!fold)
1310 return isl_fold_list;
1311 return fold->type;
1314 enum isl_fold isl_union_pw_qpolynomial_fold_get_type(
1315 __isl_keep isl_union_pw_qpolynomial_fold *upwf)
1317 if (!upwf)
1318 return isl_fold_list;
1319 return upwf->type;
1322 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift(
1323 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim)
1325 int i;
1327 if (!fold || !dim)
1328 goto error;
1330 if (isl_space_is_equal(fold->dim, dim)) {
1331 isl_space_free(dim);
1332 return fold;
1335 fold = isl_qpolynomial_fold_cow(fold);
1336 if (!fold)
1337 goto error;
1339 isl_space_free(fold->dim);
1340 fold->dim = isl_space_copy(dim);
1341 if (!fold->dim)
1342 goto error;
1344 for (i = 0; i < fold->n; ++i) {
1345 fold->qp[i] = isl_qpolynomial_lift(fold->qp[i],
1346 isl_space_copy(dim));
1347 if (!fold->qp[i])
1348 goto error;
1351 isl_space_free(dim);
1353 return fold;
1354 error:
1355 isl_qpolynomial_fold_free(fold);
1356 isl_space_free(dim);
1357 return NULL;
1360 isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
1361 __isl_keep isl_qpolynomial_fold *fold,
1362 isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user)
1364 int i;
1366 if (!fold)
1367 return isl_stat_error;
1369 for (i = 0; i < fold->n; ++i)
1370 if (fn(isl_qpolynomial_copy(fold->qp[i]), user) < 0)
1371 return isl_stat_error;
1373 return isl_stat_ok;
1376 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims(
1377 __isl_take isl_qpolynomial_fold *fold,
1378 enum isl_dim_type dst_type, unsigned dst_pos,
1379 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
1381 int i;
1382 enum isl_dim_type set_src_type, set_dst_type;
1384 if (n == 0)
1385 return fold;
1387 fold = isl_qpolynomial_fold_cow(fold);
1388 if (!fold)
1389 return NULL;
1391 set_src_type = domain_type(src_type);
1392 set_dst_type = domain_type(dst_type);
1394 fold->dim = isl_space_move_dims(fold->dim, set_dst_type, dst_pos,
1395 set_src_type, src_pos, n);
1396 if (!fold->dim)
1397 goto error;
1399 for (i = 0; i < fold->n; ++i) {
1400 fold->qp[i] = isl_qpolynomial_move_dims(fold->qp[i],
1401 dst_type, dst_pos, src_type, src_pos, n);
1402 if (!fold->qp[i])
1403 goto error;
1406 return fold;
1407 error:
1408 isl_qpolynomial_fold_free(fold);
1409 return NULL;
1412 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
1413 * in fold->qp[k] by subs[i].
1415 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute(
1416 __isl_take isl_qpolynomial_fold *fold,
1417 enum isl_dim_type type, unsigned first, unsigned n,
1418 __isl_keep isl_qpolynomial **subs)
1420 int i;
1422 if (n == 0)
1423 return fold;
1425 fold = isl_qpolynomial_fold_cow(fold);
1426 if (!fold)
1427 return NULL;
1429 for (i = 0; i < fold->n; ++i) {
1430 fold->qp[i] = isl_qpolynomial_substitute(fold->qp[i],
1431 type, first, n, subs);
1432 if (!fold->qp[i])
1433 goto error;
1436 return fold;
1437 error:
1438 isl_qpolynomial_fold_free(fold);
1439 return NULL;
1442 static isl_stat add_pwqp(__isl_take isl_pw_qpolynomial *pwqp, void *user)
1444 isl_pw_qpolynomial_fold *pwf;
1445 isl_union_pw_qpolynomial_fold **upwf;
1446 struct isl_hash_table_entry *entry;
1448 upwf = (isl_union_pw_qpolynomial_fold **)user;
1450 entry = isl_union_pw_qpolynomial_fold_find_part_entry(*upwf,
1451 pwqp->dim, 1);
1452 if (!entry)
1453 goto error;
1455 pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial((*upwf)->type, pwqp);
1456 if (!entry->data)
1457 entry->data = pwf;
1458 else {
1459 entry->data = isl_pw_qpolynomial_fold_add(entry->data, pwf);
1460 if (!entry->data)
1461 return isl_stat_error;
1462 if (isl_pw_qpolynomial_fold_is_zero(entry->data))
1463 *upwf = isl_union_pw_qpolynomial_fold_remove_part_entry(
1464 *upwf, entry);
1467 return isl_stat_ok;
1468 error:
1469 isl_pw_qpolynomial_free(pwqp);
1470 return isl_stat_error;
1473 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial(
1474 __isl_take isl_union_pw_qpolynomial_fold *upwf,
1475 __isl_take isl_union_pw_qpolynomial *upwqp)
1477 upwf = isl_union_pw_qpolynomial_fold_align_params(upwf,
1478 isl_union_pw_qpolynomial_get_space(upwqp));
1479 upwqp = isl_union_pw_qpolynomial_align_params(upwqp,
1480 isl_union_pw_qpolynomial_fold_get_space(upwf));
1482 upwf = isl_union_pw_qpolynomial_fold_cow(upwf);
1483 if (!upwf || !upwqp)
1484 goto error;
1486 if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &add_pwqp,
1487 &upwf) < 0)
1488 goto error;
1490 isl_union_pw_qpolynomial_free(upwqp);
1492 return upwf;
1493 error:
1494 isl_union_pw_qpolynomial_fold_free(upwf);
1495 isl_union_pw_qpolynomial_free(upwqp);
1496 return NULL;
1499 static isl_bool join_compatible(__isl_keep isl_space *space1,
1500 __isl_keep isl_space *space2)
1502 isl_bool m;
1503 m = isl_space_has_equal_params(space1, space2);
1504 if (m < 0 || !m)
1505 return m;
1506 return isl_space_tuple_is_equal(space1, isl_dim_out,
1507 space2, isl_dim_in);
1510 /* Compute the intersection of the range of the map and the domain
1511 * of the piecewise quasipolynomial reduction and then compute a bound
1512 * on the associated quasipolynomial reduction over all elements
1513 * in this intersection.
1515 * We first introduce some unconstrained dimensions in the
1516 * piecewise quasipolynomial, intersect the resulting domain
1517 * with the wrapped map and the compute the sum.
1519 __isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold(
1520 __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf,
1521 int *tight)
1523 isl_ctx *ctx;
1524 isl_set *dom;
1525 isl_space *map_space;
1526 isl_space *pwf_space;
1527 unsigned n_in;
1528 isl_bool ok;
1530 ctx = isl_map_get_ctx(map);
1531 if (!ctx)
1532 goto error;
1534 map_space = isl_map_get_space(map);
1535 pwf_space = isl_pw_qpolynomial_fold_get_space(pwf);
1536 ok = join_compatible(map_space, pwf_space);
1537 isl_space_free(map_space);
1538 isl_space_free(pwf_space);
1539 if (ok < 0)
1540 goto error;
1541 if (!ok)
1542 isl_die(ctx, isl_error_invalid, "incompatible dimensions",
1543 goto error);
1545 n_in = isl_map_dim(map, isl_dim_in);
1546 pwf = isl_pw_qpolynomial_fold_insert_dims(pwf, isl_dim_in, 0, n_in);
1548 dom = isl_map_wrap(map);
1549 pwf = isl_pw_qpolynomial_fold_reset_domain_space(pwf,
1550 isl_set_get_space(dom));
1552 pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, dom);
1553 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
1555 return pwf;
1556 error:
1557 isl_map_free(map);
1558 isl_pw_qpolynomial_fold_free(pwf);
1559 return NULL;
1562 __isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold(
1563 __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf,
1564 int *tight)
1566 return isl_map_apply_pw_qpolynomial_fold(set, pwf, tight);
1569 struct isl_apply_fold_data {
1570 isl_union_pw_qpolynomial_fold *upwf;
1571 isl_union_pw_qpolynomial_fold *res;
1572 isl_map *map;
1573 int tight;
1576 static isl_stat pw_qpolynomial_fold_apply(
1577 __isl_take isl_pw_qpolynomial_fold *pwf, void *user)
1579 isl_space *map_dim;
1580 isl_space *pwf_dim;
1581 struct isl_apply_fold_data *data = user;
1582 isl_bool ok;
1584 map_dim = isl_map_get_space(data->map);
1585 pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf);
1586 ok = join_compatible(map_dim, pwf_dim);
1587 isl_space_free(map_dim);
1588 isl_space_free(pwf_dim);
1590 if (ok < 0)
1591 return isl_stat_error;
1592 if (ok) {
1593 pwf = isl_map_apply_pw_qpolynomial_fold(isl_map_copy(data->map),
1594 pwf, data->tight ? &data->tight : NULL);
1595 data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
1596 data->res, pwf);
1597 } else
1598 isl_pw_qpolynomial_fold_free(pwf);
1600 return isl_stat_ok;
1603 static isl_stat map_apply(__isl_take isl_map *map, void *user)
1605 struct isl_apply_fold_data *data = user;
1606 isl_stat r;
1608 data->map = map;
1609 r = isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
1610 data->upwf, &pw_qpolynomial_fold_apply, data);
1612 isl_map_free(map);
1613 return r;
1616 __isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold(
1617 __isl_take isl_union_map *umap,
1618 __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight)
1620 isl_space *dim;
1621 enum isl_fold type;
1622 struct isl_apply_fold_data data;
1624 upwf = isl_union_pw_qpolynomial_fold_align_params(upwf,
1625 isl_union_map_get_space(umap));
1626 umap = isl_union_map_align_params(umap,
1627 isl_union_pw_qpolynomial_fold_get_space(upwf));
1629 data.upwf = upwf;
1630 data.tight = tight ? 1 : 0;
1631 dim = isl_union_pw_qpolynomial_fold_get_space(upwf);
1632 type = isl_union_pw_qpolynomial_fold_get_type(upwf);
1633 data.res = isl_union_pw_qpolynomial_fold_zero(dim, type);
1634 if (isl_union_map_foreach_map(umap, &map_apply, &data) < 0)
1635 goto error;
1637 isl_union_map_free(umap);
1638 isl_union_pw_qpolynomial_fold_free(upwf);
1640 if (tight)
1641 *tight = data.tight;
1643 return data.res;
1644 error:
1645 isl_union_map_free(umap);
1646 isl_union_pw_qpolynomial_fold_free(upwf);
1647 isl_union_pw_qpolynomial_fold_free(data.res);
1648 return NULL;
1651 __isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold(
1652 __isl_take isl_union_set *uset,
1653 __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight)
1655 return isl_union_map_apply_union_pw_qpolynomial_fold(uset, upwf, tight);
1658 /* Reorder the dimension of "fold" according to the given reordering.
1660 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain(
1661 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r)
1663 int i;
1664 isl_space *space;
1666 fold = isl_qpolynomial_fold_cow(fold);
1667 if (!fold || !r)
1668 goto error;
1670 for (i = 0; i < fold->n; ++i) {
1671 fold->qp[i] = isl_qpolynomial_realign_domain(fold->qp[i],
1672 isl_reordering_copy(r));
1673 if (!fold->qp[i])
1674 goto error;
1677 space = isl_reordering_get_space(r);
1678 fold = isl_qpolynomial_fold_reset_domain_space(fold, space);
1680 isl_reordering_free(r);
1682 return fold;
1683 error:
1684 isl_qpolynomial_fold_free(fold);
1685 isl_reordering_free(r);
1686 return NULL;
1689 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int(
1690 __isl_take isl_qpolynomial_fold *fold, isl_int v)
1692 int i;
1694 if (isl_int_is_one(v))
1695 return fold;
1696 if (fold && isl_int_is_zero(v)) {
1697 isl_qpolynomial_fold *zero;
1698 isl_space *dim = isl_space_copy(fold->dim);
1699 zero = isl_qpolynomial_fold_empty(fold->type, dim);
1700 isl_qpolynomial_fold_free(fold);
1701 return zero;
1704 fold = isl_qpolynomial_fold_cow(fold);
1705 if (!fold)
1706 return NULL;
1708 if (isl_int_is_neg(v))
1709 fold->type = isl_fold_type_negate(fold->type);
1710 for (i = 0; i < fold->n; ++i) {
1711 fold->qp[i] = isl_qpolynomial_mul_isl_int(fold->qp[i], v);
1712 if (!fold->qp[i])
1713 goto error;
1716 return fold;
1717 error:
1718 isl_qpolynomial_fold_free(fold);
1719 return NULL;
1722 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
1723 __isl_take isl_qpolynomial_fold *fold, isl_int v)
1725 return isl_qpolynomial_fold_mul_isl_int(fold, v);
1728 /* Multiply "fold" by "v".
1730 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val(
1731 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v)
1733 int i;
1735 if (!fold || !v)
1736 goto error;
1738 if (isl_val_is_one(v)) {
1739 isl_val_free(v);
1740 return fold;
1742 if (isl_val_is_zero(v)) {
1743 isl_qpolynomial_fold *zero;
1744 isl_space *space = isl_qpolynomial_fold_get_domain_space(fold);
1745 zero = isl_qpolynomial_fold_empty(fold->type, space);
1746 isl_qpolynomial_fold_free(fold);
1747 isl_val_free(v);
1748 return zero;
1750 if (!isl_val_is_rat(v))
1751 isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid,
1752 "expecting rational factor", goto error);
1754 fold = isl_qpolynomial_fold_cow(fold);
1755 if (!fold)
1756 goto error;
1758 if (isl_val_is_neg(v))
1759 fold->type = isl_fold_type_negate(fold->type);
1760 for (i = 0; i < fold->n; ++i) {
1761 fold->qp[i] = isl_qpolynomial_scale_val(fold->qp[i],
1762 isl_val_copy(v));
1763 if (!fold->qp[i])
1764 goto error;
1767 isl_val_free(v);
1768 return fold;
1769 error:
1770 isl_val_free(v);
1771 isl_qpolynomial_fold_free(fold);
1772 return NULL;
1775 /* Divide "fold" by "v".
1777 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_down_val(
1778 __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v)
1780 if (!fold || !v)
1781 goto error;
1783 if (isl_val_is_one(v)) {
1784 isl_val_free(v);
1785 return fold;
1787 if (!isl_val_is_rat(v))
1788 isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid,
1789 "expecting rational factor", goto error);
1790 if (isl_val_is_zero(v))
1791 isl_die(isl_val_get_ctx(v), isl_error_invalid,
1792 "cannot scale down by zero", goto error);
1794 return isl_qpolynomial_fold_scale_val(fold, isl_val_inv(v));
1795 error:
1796 isl_val_free(v);
1797 isl_qpolynomial_fold_free(fold);
1798 return NULL;