isl_tab_lexmin_add_eq: make sure the tableau has enough room
[isl.git] / isl_transitive_closure.c
bloba03df7cda1d052954357ababfa323a8031a8d6f0
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl/map.h>
14 #include <isl_seq.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
25 isl_map *map2;
26 int closed;
28 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
29 closed = isl_map_is_subset(map2, map);
30 isl_map_free(map2);
32 return closed;
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
37 isl_union_map *umap2;
38 int closed;
40 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
41 isl_union_map_copy(umap));
42 closed = isl_union_map_is_subset(umap2, umap);
43 isl_union_map_free(umap2);
45 return closed;
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
55 int exactly, int length)
57 isl_space *dim;
58 struct isl_basic_map *bmap;
59 unsigned d;
60 unsigned nparam;
61 int k;
62 isl_int *c;
64 if (!map)
65 return NULL;
67 dim = isl_map_get_space(map);
68 d = isl_space_dim(dim, isl_dim_in);
69 nparam = isl_space_dim(dim, isl_dim_param);
70 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
71 if (exactly) {
72 k = isl_basic_map_alloc_equality(bmap);
73 if (k < 0)
74 goto error;
75 c = bmap->eq[k];
76 } else {
77 k = isl_basic_map_alloc_inequality(bmap);
78 if (k < 0)
79 goto error;
80 c = bmap->ineq[k];
82 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
83 isl_int_set_si(c[0], -length);
84 isl_int_set_si(c[1 + nparam + d - 1], -1);
85 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
87 bmap = isl_basic_map_finalize(bmap);
88 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
90 return map;
91 error:
92 isl_basic_map_free(bmap);
93 isl_map_free(map);
94 return NULL;
97 /* Check whether the overapproximation of the power of "map" is exactly
98 * the power of "map". Let R be "map" and A_k the overapproximation.
99 * The approximation is exact if
101 * A_1 = R
102 * A_k = A_{k-1} \circ R k >= 2
104 * Since A_k is known to be an overapproximation, we only need to check
106 * A_1 \subset R
107 * A_k \subset A_{k-1} \circ R k >= 2
109 * In practice, "app" has an extra input and output coordinate
110 * to encode the length of the path. So, we first need to add
111 * this coordinate to "map" and set the length of the path to
112 * one.
114 static int check_power_exactness(__isl_take isl_map *map,
115 __isl_take isl_map *app)
117 int exact;
118 isl_map *app_1;
119 isl_map *app_2;
121 map = isl_map_add_dims(map, isl_dim_in, 1);
122 map = isl_map_add_dims(map, isl_dim_out, 1);
123 map = set_path_length(map, 1, 1);
125 app_1 = set_path_length(isl_map_copy(app), 1, 1);
127 exact = isl_map_is_subset(app_1, map);
128 isl_map_free(app_1);
130 if (!exact || exact < 0) {
131 isl_map_free(app);
132 isl_map_free(map);
133 return exact;
136 app_1 = set_path_length(isl_map_copy(app), 0, 1);
137 app_2 = set_path_length(app, 0, 2);
138 app_1 = isl_map_apply_range(map, app_1);
140 exact = isl_map_is_subset(app_2, app_1);
142 isl_map_free(app_1);
143 isl_map_free(app_2);
145 return exact;
148 /* Check whether the overapproximation of the power of "map" is exactly
149 * the power of "map", possibly after projecting out the power (if "project"
150 * is set).
152 * If "project" is set and if "steps" can only result in acyclic paths,
153 * then we check
155 * A = R \cup (A \circ R)
157 * where A is the overapproximation with the power projected out, i.e.,
158 * an overapproximation of the transitive closure.
159 * More specifically, since A is known to be an overapproximation, we check
161 * A \subset R \cup (A \circ R)
163 * Otherwise, we check if the power is exact.
165 * Note that "app" has an extra input and output coordinate to encode
166 * the length of the part. If we are only interested in the transitive
167 * closure, then we can simply project out these coordinates first.
169 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
170 int project)
172 isl_map *test;
173 int exact;
174 unsigned d;
176 if (!project)
177 return check_power_exactness(map, app);
179 d = isl_map_dim(map, isl_dim_in);
180 app = set_path_length(app, 0, 1);
181 app = isl_map_project_out(app, isl_dim_in, d, 1);
182 app = isl_map_project_out(app, isl_dim_out, d, 1);
184 app = isl_map_reset_space(app, isl_map_get_space(map));
186 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
187 test = isl_map_union(test, isl_map_copy(map));
189 exact = isl_map_is_subset(app, test);
191 isl_map_free(app);
192 isl_map_free(test);
194 isl_map_free(map);
196 return exact;
200 * The transitive closure implementation is based on the paper
201 * "Computing the Transitive Closure of a Union of Affine Integer
202 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
203 * Albert Cohen.
206 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
207 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
208 * that maps an element x to any element that can be reached
209 * by taking a non-negative number of steps along any of
210 * the extended offsets v'_i = [v_i 1].
211 * That is, construct
213 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
215 * For any element in this relation, the number of steps taken
216 * is equal to the difference in the final coordinates.
218 static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim,
219 __isl_keep isl_mat *steps)
221 int i, j, k;
222 struct isl_basic_map *path = NULL;
223 unsigned d;
224 unsigned n;
225 unsigned nparam;
227 if (!dim || !steps)
228 goto error;
230 d = isl_space_dim(dim, isl_dim_in);
231 n = steps->n_row;
232 nparam = isl_space_dim(dim, isl_dim_param);
234 path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n);
236 for (i = 0; i < n; ++i) {
237 k = isl_basic_map_alloc_div(path);
238 if (k < 0)
239 goto error;
240 isl_assert(steps->ctx, i == k, goto error);
241 isl_int_set_si(path->div[k][0], 0);
244 for (i = 0; i < d; ++i) {
245 k = isl_basic_map_alloc_equality(path);
246 if (k < 0)
247 goto error;
248 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
249 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
250 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
251 if (i == d - 1)
252 for (j = 0; j < n; ++j)
253 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
254 else
255 for (j = 0; j < n; ++j)
256 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
257 steps->row[j][i]);
260 for (i = 0; i < n; ++i) {
261 k = isl_basic_map_alloc_inequality(path);
262 if (k < 0)
263 goto error;
264 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
265 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
268 isl_space_free(dim);
270 path = isl_basic_map_simplify(path);
271 path = isl_basic_map_finalize(path);
272 return isl_map_from_basic_map(path);
273 error:
274 isl_space_free(dim);
275 isl_basic_map_free(path);
276 return NULL;
279 #define IMPURE 0
280 #define PURE_PARAM 1
281 #define PURE_VAR 2
282 #define MIXED 3
284 /* Check whether the parametric constant term of constraint c is never
285 * positive in "bset".
287 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
288 isl_int *c, int *div_purity)
290 unsigned d;
291 unsigned n_div;
292 unsigned nparam;
293 int i;
294 int k;
295 int empty;
297 n_div = isl_basic_set_dim(bset, isl_dim_div);
298 d = isl_basic_set_dim(bset, isl_dim_set);
299 nparam = isl_basic_set_dim(bset, isl_dim_param);
301 bset = isl_basic_set_copy(bset);
302 bset = isl_basic_set_cow(bset);
303 bset = isl_basic_set_extend_constraints(bset, 0, 1);
304 k = isl_basic_set_alloc_inequality(bset);
305 if (k < 0)
306 goto error;
307 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
308 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
309 for (i = 0; i < n_div; ++i) {
310 if (div_purity[i] != PURE_PARAM)
311 continue;
312 isl_int_set(bset->ineq[k][1 + nparam + d + i],
313 c[1 + nparam + d + i]);
315 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
316 empty = isl_basic_set_is_empty(bset);
317 isl_basic_set_free(bset);
319 return empty;
320 error:
321 isl_basic_set_free(bset);
322 return -1;
325 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
326 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
327 * Return MIXED if only the coefficients of the parameters and the set
328 * variables are non-zero and if moreover the parametric constant
329 * can never attain positive values.
330 * Return IMPURE otherwise.
332 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
333 int eq)
335 unsigned d;
336 unsigned n_div;
337 unsigned nparam;
338 int empty;
339 int i;
340 int p = 0, v = 0;
342 n_div = isl_basic_set_dim(bset, isl_dim_div);
343 d = isl_basic_set_dim(bset, isl_dim_set);
344 nparam = isl_basic_set_dim(bset, isl_dim_param);
346 for (i = 0; i < n_div; ++i) {
347 if (isl_int_is_zero(c[1 + nparam + d + i]))
348 continue;
349 switch (div_purity[i]) {
350 case PURE_PARAM: p = 1; break;
351 case PURE_VAR: v = 1; break;
352 default: return IMPURE;
355 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
356 return PURE_VAR;
357 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
358 return PURE_PARAM;
360 empty = parametric_constant_never_positive(bset, c, div_purity);
361 if (eq && empty >= 0 && !empty) {
362 isl_seq_neg(c, c, 1 + nparam + d + n_div);
363 empty = parametric_constant_never_positive(bset, c, div_purity);
366 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
378 int i, j;
379 int *div_purity;
380 unsigned d;
381 unsigned n_div;
382 unsigned nparam;
384 if (!bset)
385 return NULL;
387 n_div = isl_basic_set_dim(bset, isl_dim_div);
388 d = isl_basic_set_dim(bset, isl_dim_set);
389 nparam = isl_basic_set_dim(bset, isl_dim_param);
391 div_purity = isl_alloc_array(bset->ctx, int, n_div);
392 if (n_div && !div_purity)
393 return NULL;
395 for (i = 0; i < bset->n_div; ++i) {
396 int p = 0, v = 0;
397 if (isl_int_is_zero(bset->div[i][0])) {
398 div_purity[i] = IMPURE;
399 continue;
401 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
402 p = 1;
403 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
404 v = 1;
405 for (j = 0; j < i; ++j) {
406 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
407 continue;
408 switch (div_purity[j]) {
409 case PURE_PARAM: p = 1; break;
410 case PURE_VAR: v = 1; break;
411 default: p = v = 1; break;
414 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
417 return div_purity;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
422 * mapping.
424 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
426 isl_basic_map *test = NULL;
427 isl_basic_map *id = NULL;
428 int k;
429 int is_id;
431 test = isl_basic_map_copy(path);
432 test = isl_basic_map_extend_constraints(test, 1, 0);
433 k = isl_basic_map_alloc_equality(test);
434 if (k < 0)
435 goto error;
436 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
437 isl_int_set_si(test->eq[k][pos], 1);
438 test = isl_basic_map_gauss(test, NULL);
439 id = isl_basic_map_identity(isl_basic_map_get_space(path));
440 is_id = isl_basic_map_is_equal(test, id);
441 isl_basic_map_free(test);
442 isl_basic_map_free(id);
443 return is_id;
444 error:
445 isl_basic_map_free(test);
446 return -1;
449 /* If any of the constraints is found to be impure then this function
450 * sets *impurity to 1.
452 * If impurity is NULL then we are dealing with a non-parametric set
453 * and so the constraints are obviously PURE_VAR.
455 static __isl_give isl_basic_map *add_delta_constraints(
456 __isl_take isl_basic_map *path,
457 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
458 unsigned d, int *div_purity, int eq, int *impurity)
460 int i, k;
461 int n = eq ? delta->n_eq : delta->n_ineq;
462 isl_int **delta_c = eq ? delta->eq : delta->ineq;
463 unsigned n_div;
465 n_div = isl_basic_set_dim(delta, isl_dim_div);
467 for (i = 0; i < n; ++i) {
468 isl_int *path_c;
469 int p = PURE_VAR;
470 if (impurity)
471 p = purity(delta, delta_c[i], div_purity, eq);
472 if (p < 0)
473 goto error;
474 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
475 *impurity = 1;
476 if (p == IMPURE)
477 continue;
478 if (eq && p != MIXED) {
479 k = isl_basic_map_alloc_equality(path);
480 if (k < 0)
481 goto error;
482 path_c = path->eq[k];
483 } else {
484 k = isl_basic_map_alloc_inequality(path);
485 if (k < 0)
486 goto error;
487 path_c = path->ineq[k];
489 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
490 if (p == PURE_VAR) {
491 isl_seq_cpy(path_c + off,
492 delta_c[i] + 1 + nparam, d);
493 isl_int_set(path_c[off + d], delta_c[i][0]);
494 } else if (p == PURE_PARAM) {
495 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
496 } else {
497 isl_seq_cpy(path_c + off,
498 delta_c[i] + 1 + nparam, d);
499 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
501 isl_seq_cpy(path_c + off - n_div,
502 delta_c[i] + 1 + nparam + d, n_div);
505 return path;
506 error:
507 isl_basic_map_free(path);
508 return NULL;
511 /* Given a set of offsets "delta", construct a relation of the
512 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
513 * is an overapproximation of the relations that
514 * maps an element x to any element that can be reached
515 * by taking a non-negative number of steps along any of
516 * the elements in "delta".
517 * That is, construct an approximation of
519 * { [x] -> [y] : exists f \in \delta, k \in Z :
520 * y = x + k [f, 1] and k >= 0 }
522 * For any element in this relation, the number of steps taken
523 * is equal to the difference in the final coordinates.
525 * In particular, let delta be defined as
527 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
528 * C x + C'p + c >= 0 and
529 * D x + D'p + d >= 0 }
531 * where the constraints C x + C'p + c >= 0 are such that the parametric
532 * constant term of each constraint j, "C_j x + C'_j p + c_j",
533 * can never attain positive values, then the relation is constructed as
535 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
536 * A f + k a >= 0 and B p + b >= 0 and
537 * C f + C'p + c >= 0 and k >= 1 }
538 * union { [x] -> [x] }
540 * If the zero-length paths happen to correspond exactly to the identity
541 * mapping, then we return
543 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
544 * A f + k a >= 0 and B p + b >= 0 and
545 * C f + C'p + c >= 0 and k >= 0 }
547 * instead.
549 * Existentially quantified variables in \delta are handled by
550 * classifying them as independent of the parameters, purely
551 * parameter dependent and others. Constraints containing
552 * any of the other existentially quantified variables are removed.
553 * This is safe, but leads to an additional overapproximation.
555 * If there are any impure constraints, then we also eliminate
556 * the parameters from \delta, resulting in a set
558 * \delta' = { [x] : E x + e >= 0 }
560 * and add the constraints
562 * E f + k e >= 0
564 * to the constructed relation.
566 static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim,
567 __isl_take isl_basic_set *delta)
569 isl_basic_map *path = NULL;
570 unsigned d;
571 unsigned n_div;
572 unsigned nparam;
573 unsigned off;
574 int i, k;
575 int is_id;
576 int *div_purity = NULL;
577 int impurity = 0;
579 if (!delta)
580 goto error;
581 n_div = isl_basic_set_dim(delta, isl_dim_div);
582 d = isl_basic_set_dim(delta, isl_dim_set);
583 nparam = isl_basic_set_dim(delta, isl_dim_param);
584 path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1,
585 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
586 off = 1 + nparam + 2 * (d + 1) + n_div;
588 for (i = 0; i < n_div + d + 1; ++i) {
589 k = isl_basic_map_alloc_div(path);
590 if (k < 0)
591 goto error;
592 isl_int_set_si(path->div[k][0], 0);
595 for (i = 0; i < d + 1; ++i) {
596 k = isl_basic_map_alloc_equality(path);
597 if (k < 0)
598 goto error;
599 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
600 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
601 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
602 isl_int_set_si(path->eq[k][off + i], 1);
605 div_purity = get_div_purity(delta);
606 if (n_div && !div_purity)
607 goto error;
609 path = add_delta_constraints(path, delta, off, nparam, d,
610 div_purity, 1, &impurity);
611 path = add_delta_constraints(path, delta, off, nparam, d,
612 div_purity, 0, &impurity);
613 if (impurity) {
614 isl_space *dim = isl_basic_set_get_space(delta);
615 delta = isl_basic_set_project_out(delta,
616 isl_dim_param, 0, nparam);
617 delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
618 delta = isl_basic_set_reset_space(delta, dim);
619 if (!delta)
620 goto error;
621 path = isl_basic_map_extend_constraints(path, delta->n_eq,
622 delta->n_ineq + 1);
623 path = add_delta_constraints(path, delta, off, nparam, d,
624 NULL, 1, NULL);
625 path = add_delta_constraints(path, delta, off, nparam, d,
626 NULL, 0, NULL);
627 path = isl_basic_map_gauss(path, NULL);
630 is_id = empty_path_is_identity(path, off + d);
631 if (is_id < 0)
632 goto error;
634 k = isl_basic_map_alloc_inequality(path);
635 if (k < 0)
636 goto error;
637 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
638 if (!is_id)
639 isl_int_set_si(path->ineq[k][0], -1);
640 isl_int_set_si(path->ineq[k][off + d], 1);
642 free(div_purity);
643 isl_basic_set_free(delta);
644 path = isl_basic_map_finalize(path);
645 if (is_id) {
646 isl_space_free(dim);
647 return isl_map_from_basic_map(path);
649 return isl_basic_map_union(path, isl_basic_map_identity(dim));
650 error:
651 free(div_purity);
652 isl_space_free(dim);
653 isl_basic_set_free(delta);
654 isl_basic_map_free(path);
655 return NULL;
658 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
659 * construct a map that equates the parameter to the difference
660 * in the final coordinates and imposes that this difference is positive.
661 * That is, construct
663 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
665 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim,
666 unsigned param)
668 struct isl_basic_map *bmap;
669 unsigned d;
670 unsigned nparam;
671 int k;
673 d = isl_space_dim(dim, isl_dim_in);
674 nparam = isl_space_dim(dim, isl_dim_param);
675 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
676 k = isl_basic_map_alloc_equality(bmap);
677 if (k < 0)
678 goto error;
679 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
680 isl_int_set_si(bmap->eq[k][1 + param], -1);
681 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
682 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
684 k = isl_basic_map_alloc_inequality(bmap);
685 if (k < 0)
686 goto error;
687 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
688 isl_int_set_si(bmap->ineq[k][1 + param], 1);
689 isl_int_set_si(bmap->ineq[k][0], -1);
691 bmap = isl_basic_map_finalize(bmap);
692 return isl_map_from_basic_map(bmap);
693 error:
694 isl_basic_map_free(bmap);
695 return NULL;
698 /* Check whether "path" is acyclic, where the last coordinates of domain
699 * and range of path encode the number of steps taken.
700 * That is, check whether
702 * { d | d = y - x and (x,y) in path }
704 * does not contain any element with positive last coordinate (positive length)
705 * and zero remaining coordinates (cycle).
707 static int is_acyclic(__isl_take isl_map *path)
709 int i;
710 int acyclic;
711 unsigned dim;
712 struct isl_set *delta;
714 delta = isl_map_deltas(path);
715 dim = isl_set_dim(delta, isl_dim_set);
716 for (i = 0; i < dim; ++i) {
717 if (i == dim -1)
718 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
719 else
720 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
723 acyclic = isl_set_is_empty(delta);
724 isl_set_free(delta);
726 return acyclic;
729 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
730 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
731 * construct a map that is an overapproximation of the map
732 * that takes an element from the space D \times Z to another
733 * element from the same space, such that the first n coordinates of the
734 * difference between them is a sum of differences between images
735 * and pre-images in one of the R_i and such that the last coordinate
736 * is equal to the number of steps taken.
737 * That is, let
739 * \Delta_i = { y - x | (x, y) in R_i }
741 * then the constructed map is an overapproximation of
743 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
744 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
746 * The elements of the singleton \Delta_i's are collected as the
747 * rows of the steps matrix. For all these \Delta_i's together,
748 * a single path is constructed.
749 * For each of the other \Delta_i's, we compute an overapproximation
750 * of the paths along elements of \Delta_i.
751 * Since each of these paths performs an addition, composition is
752 * symmetric and we can simply compose all resulting paths in any order.
754 static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim,
755 __isl_keep isl_map *map, int *project)
757 struct isl_mat *steps = NULL;
758 struct isl_map *path = NULL;
759 unsigned d;
760 int i, j, n;
762 if (!map)
763 goto error;
765 d = isl_map_dim(map, isl_dim_in);
767 path = isl_map_identity(isl_space_copy(dim));
769 steps = isl_mat_alloc(map->ctx, map->n, d);
770 if (!steps)
771 goto error;
773 n = 0;
774 for (i = 0; i < map->n; ++i) {
775 struct isl_basic_set *delta;
777 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
779 for (j = 0; j < d; ++j) {
780 int fixed;
782 fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
783 &steps->row[n][j]);
784 if (fixed < 0) {
785 isl_basic_set_free(delta);
786 goto error;
788 if (!fixed)
789 break;
793 if (j < d) {
794 path = isl_map_apply_range(path,
795 path_along_delta(isl_space_copy(dim), delta));
796 path = isl_map_coalesce(path);
797 } else {
798 isl_basic_set_free(delta);
799 ++n;
803 if (n > 0) {
804 steps->n_row = n;
805 path = isl_map_apply_range(path,
806 path_along_steps(isl_space_copy(dim), steps));
809 if (project && *project) {
810 *project = is_acyclic(isl_map_copy(path));
811 if (*project < 0)
812 goto error;
815 isl_space_free(dim);
816 isl_mat_free(steps);
817 return path;
818 error:
819 isl_space_free(dim);
820 isl_mat_free(steps);
821 isl_map_free(path);
822 return NULL;
825 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
827 isl_set *i;
828 int no_overlap;
830 if (!set1 || !set2)
831 return -1;
833 if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set,
834 set2->dim, isl_dim_set))
835 return 0;
837 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
838 no_overlap = isl_set_is_empty(i);
839 isl_set_free(i);
841 return no_overlap < 0 ? -1 : !no_overlap;
844 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
845 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
846 * construct a map that is an overapproximation of the map
847 * that takes an element from the dom R \times Z to an
848 * element from ran R \times Z, such that the first n coordinates of the
849 * difference between them is a sum of differences between images
850 * and pre-images in one of the R_i and such that the last coordinate
851 * is equal to the number of steps taken.
852 * That is, let
854 * \Delta_i = { y - x | (x, y) in R_i }
856 * then the constructed map is an overapproximation of
858 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
859 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
860 * x in dom R and x + d in ran R and
861 * \sum_i k_i >= 1 }
863 static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
864 __isl_keep isl_map *map, int *exact, int project)
866 struct isl_set *domain = NULL;
867 struct isl_set *range = NULL;
868 struct isl_map *app = NULL;
869 struct isl_map *path = NULL;
870 int overlaps;
872 domain = isl_map_domain(isl_map_copy(map));
873 domain = isl_set_coalesce(domain);
874 range = isl_map_range(isl_map_copy(map));
875 range = isl_set_coalesce(range);
876 overlaps = isl_set_overlaps(domain, range);
877 if (overlaps < 0 || !overlaps) {
878 isl_set_free(domain);
879 isl_set_free(range);
880 isl_space_free(dim);
882 if (overlaps < 0)
883 map = NULL;
884 map = isl_map_copy(map);
885 map = isl_map_add_dims(map, isl_dim_in, 1);
886 map = isl_map_add_dims(map, isl_dim_out, 1);
887 map = set_path_length(map, 1, 1);
888 return map;
890 app = isl_map_from_domain_and_range(domain, range);
891 app = isl_map_add_dims(app, isl_dim_in, 1);
892 app = isl_map_add_dims(app, isl_dim_out, 1);
894 path = construct_extended_path(isl_space_copy(dim), map,
895 exact && *exact ? &project : NULL);
896 app = isl_map_intersect(app, path);
898 if (exact && *exact &&
899 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
900 project)) < 0)
901 goto error;
903 isl_space_free(dim);
904 app = set_path_length(app, 0, 1);
905 return app;
906 error:
907 isl_space_free(dim);
908 isl_map_free(app);
909 return NULL;
912 /* Call construct_component and, if "project" is set, project out
913 * the final coordinates.
915 static __isl_give isl_map *construct_projected_component(
916 __isl_take isl_space *dim,
917 __isl_keep isl_map *map, int *exact, int project)
919 isl_map *app;
920 unsigned d;
922 if (!dim)
923 return NULL;
924 d = isl_space_dim(dim, isl_dim_in);
926 app = construct_component(dim, map, exact, project);
927 if (project) {
928 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
929 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
931 return app;
934 /* Compute an extended version, i.e., with path lengths, of
935 * an overapproximation of the transitive closure of "bmap"
936 * with path lengths greater than or equal to zero and with
937 * domain and range equal to "dom".
939 static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
940 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
942 int project = 1;
943 isl_map *path;
944 isl_map *map;
945 isl_map *app;
947 dom = isl_set_add_dims(dom, isl_dim_set, 1);
948 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
949 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
950 path = construct_extended_path(dim, map, &project);
951 app = isl_map_intersect(app, path);
953 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
954 goto error;
956 return app;
957 error:
958 isl_map_free(app);
959 return NULL;
962 /* Check whether qc has any elements of length at least one
963 * with domain and/or range outside of dom and ran.
965 static int has_spurious_elements(__isl_keep isl_map *qc,
966 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
968 isl_set *s;
969 int subset;
970 unsigned d;
972 if (!qc || !dom || !ran)
973 return -1;
975 d = isl_map_dim(qc, isl_dim_in);
977 qc = isl_map_copy(qc);
978 qc = set_path_length(qc, 0, 1);
979 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
980 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
982 s = isl_map_domain(isl_map_copy(qc));
983 subset = isl_set_is_subset(s, dom);
984 isl_set_free(s);
985 if (subset < 0)
986 goto error;
987 if (!subset) {
988 isl_map_free(qc);
989 return 1;
992 s = isl_map_range(qc);
993 subset = isl_set_is_subset(s, ran);
994 isl_set_free(s);
996 return subset < 0 ? -1 : !subset;
997 error:
998 isl_map_free(qc);
999 return -1;
1002 #define LEFT 2
1003 #define RIGHT 1
1005 /* For each basic map in "map", except i, check whether it combines
1006 * with the transitive closure that is reflexive on C combines
1007 * to the left and to the right.
1009 * In particular, if
1011 * dom map_j \subseteq C
1013 * then right[j] is set to 1. Otherwise, if
1015 * ran map_i \cap dom map_j = \emptyset
1017 * then right[j] is set to 0. Otherwise, composing to the right
1018 * is impossible.
1020 * Similar, for composing to the left, we have if
1022 * ran map_j \subseteq C
1024 * then left[j] is set to 1. Otherwise, if
1026 * dom map_i \cap ran map_j = \emptyset
1028 * then left[j] is set to 0. Otherwise, composing to the left
1029 * is impossible.
1031 * The return value is or'd with LEFT if composing to the left
1032 * is possible and with RIGHT if composing to the right is possible.
1034 static int composability(__isl_keep isl_set *C, int i,
1035 isl_set **dom, isl_set **ran, int *left, int *right,
1036 __isl_keep isl_map *map)
1038 int j;
1039 int ok;
1041 ok = LEFT | RIGHT;
1042 for (j = 0; j < map->n && ok; ++j) {
1043 int overlaps, subset;
1044 if (j == i)
1045 continue;
1047 if (ok & RIGHT) {
1048 if (!dom[j])
1049 dom[j] = isl_set_from_basic_set(
1050 isl_basic_map_domain(
1051 isl_basic_map_copy(map->p[j])));
1052 if (!dom[j])
1053 return -1;
1054 overlaps = isl_set_overlaps(ran[i], dom[j]);
1055 if (overlaps < 0)
1056 return -1;
1057 if (!overlaps)
1058 right[j] = 0;
1059 else {
1060 subset = isl_set_is_subset(dom[j], C);
1061 if (subset < 0)
1062 return -1;
1063 if (subset)
1064 right[j] = 1;
1065 else
1066 ok &= ~RIGHT;
1070 if (ok & LEFT) {
1071 if (!ran[j])
1072 ran[j] = isl_set_from_basic_set(
1073 isl_basic_map_range(
1074 isl_basic_map_copy(map->p[j])));
1075 if (!ran[j])
1076 return -1;
1077 overlaps = isl_set_overlaps(dom[i], ran[j]);
1078 if (overlaps < 0)
1079 return -1;
1080 if (!overlaps)
1081 left[j] = 0;
1082 else {
1083 subset = isl_set_is_subset(ran[j], C);
1084 if (subset < 0)
1085 return -1;
1086 if (subset)
1087 left[j] = 1;
1088 else
1089 ok &= ~LEFT;
1094 return ok;
1097 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1099 map = isl_map_reset(map, isl_dim_in);
1100 map = isl_map_reset(map, isl_dim_out);
1101 return map;
1104 /* Return a map that is a union of the basic maps in "map", except i,
1105 * composed to left and right with qc based on the entries of "left"
1106 * and "right".
1108 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1109 __isl_take isl_map *qc, int *left, int *right)
1111 int j;
1112 isl_map *comp;
1114 comp = isl_map_empty(isl_map_get_space(map));
1115 for (j = 0; j < map->n; ++j) {
1116 isl_map *map_j;
1118 if (j == i)
1119 continue;
1121 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1122 map_j = anonymize(map_j);
1123 if (left && left[j])
1124 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1125 if (right && right[j])
1126 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1127 comp = isl_map_union(comp, map_j);
1130 comp = isl_map_compute_divs(comp);
1131 comp = isl_map_coalesce(comp);
1133 isl_map_free(qc);
1135 return comp;
1138 /* Compute the transitive closure of "map" incrementally by
1139 * computing
1141 * map_i^+ \cup qc^+
1143 * or
1145 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1147 * or
1149 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1151 * depending on whether left or right are NULL.
1153 static __isl_give isl_map *compute_incremental(
1154 __isl_take isl_space *dim, __isl_keep isl_map *map,
1155 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1157 isl_map *map_i;
1158 isl_map *tc;
1159 isl_map *rtc = NULL;
1161 if (!map)
1162 goto error;
1163 isl_assert(map->ctx, left || right, goto error);
1165 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1166 tc = construct_projected_component(isl_space_copy(dim), map_i,
1167 exact, 1);
1168 isl_map_free(map_i);
1170 if (*exact)
1171 qc = isl_map_transitive_closure(qc, exact);
1173 if (!*exact) {
1174 isl_space_free(dim);
1175 isl_map_free(tc);
1176 isl_map_free(qc);
1177 return isl_map_universe(isl_map_get_space(map));
1180 if (!left || !right)
1181 rtc = isl_map_union(isl_map_copy(tc),
1182 isl_map_identity(isl_map_get_space(tc)));
1183 if (!right)
1184 qc = isl_map_apply_range(rtc, qc);
1185 if (!left)
1186 qc = isl_map_apply_range(qc, rtc);
1187 qc = isl_map_union(tc, qc);
1189 isl_space_free(dim);
1191 return qc;
1192 error:
1193 isl_space_free(dim);
1194 isl_map_free(qc);
1195 return NULL;
1198 /* Given a map "map", try to find a basic map such that
1199 * map^+ can be computed as
1201 * map^+ = map_i^+ \cup
1202 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1204 * with C the simple hull of the domain and range of the input map.
1205 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1206 * and by intersecting domain and range with C.
1207 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1208 * Also, we only use the incremental computation if all the transitive
1209 * closures are exact and if the number of basic maps in the union,
1210 * after computing the integer divisions, is smaller than the number
1211 * of basic maps in the input map.
1213 static int incemental_on_entire_domain(__isl_keep isl_space *dim,
1214 __isl_keep isl_map *map,
1215 isl_set **dom, isl_set **ran, int *left, int *right,
1216 __isl_give isl_map **res)
1218 int i;
1219 isl_set *C;
1220 unsigned d;
1222 *res = NULL;
1224 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1225 isl_map_range(isl_map_copy(map)));
1226 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1227 if (!C)
1228 return -1;
1229 if (C->n != 1) {
1230 isl_set_free(C);
1231 return 0;
1234 d = isl_map_dim(map, isl_dim_in);
1236 for (i = 0; i < map->n; ++i) {
1237 isl_map *qc;
1238 int exact_i, spurious;
1239 int j;
1240 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1241 isl_basic_map_copy(map->p[i])));
1242 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1243 isl_basic_map_copy(map->p[i])));
1244 qc = q_closure(isl_space_copy(dim), isl_set_copy(C),
1245 map->p[i], &exact_i);
1246 if (!qc)
1247 goto error;
1248 if (!exact_i) {
1249 isl_map_free(qc);
1250 continue;
1252 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1253 if (spurious) {
1254 isl_map_free(qc);
1255 if (spurious < 0)
1256 goto error;
1257 continue;
1259 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1260 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1261 qc = isl_map_compute_divs(qc);
1262 for (j = 0; j < map->n; ++j)
1263 left[j] = right[j] = 1;
1264 qc = compose(map, i, qc, left, right);
1265 if (!qc)
1266 goto error;
1267 if (qc->n >= map->n) {
1268 isl_map_free(qc);
1269 continue;
1271 *res = compute_incremental(isl_space_copy(dim), map, i, qc,
1272 left, right, &exact_i);
1273 if (!*res)
1274 goto error;
1275 if (exact_i)
1276 break;
1277 isl_map_free(*res);
1278 *res = NULL;
1281 isl_set_free(C);
1283 return *res != NULL;
1284 error:
1285 isl_set_free(C);
1286 return -1;
1289 /* Try and compute the transitive closure of "map" as
1291 * map^+ = map_i^+ \cup
1292 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1294 * with C either the simple hull of the domain and range of the entire
1295 * map or the simple hull of domain and range of map_i.
1297 static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim,
1298 __isl_keep isl_map *map, int *exact, int project)
1300 int i;
1301 isl_set **dom = NULL;
1302 isl_set **ran = NULL;
1303 int *left = NULL;
1304 int *right = NULL;
1305 isl_set *C;
1306 unsigned d;
1307 isl_map *res = NULL;
1309 if (!project)
1310 return construct_projected_component(dim, map, exact, project);
1312 if (!map)
1313 goto error;
1314 if (map->n <= 1)
1315 return construct_projected_component(dim, map, exact, project);
1317 d = isl_map_dim(map, isl_dim_in);
1319 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1320 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1321 left = isl_calloc_array(map->ctx, int, map->n);
1322 right = isl_calloc_array(map->ctx, int, map->n);
1323 if (!ran || !dom || !left || !right)
1324 goto error;
1326 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1327 goto error;
1329 for (i = 0; !res && i < map->n; ++i) {
1330 isl_map *qc;
1331 int exact_i, spurious, comp;
1332 if (!dom[i])
1333 dom[i] = isl_set_from_basic_set(
1334 isl_basic_map_domain(
1335 isl_basic_map_copy(map->p[i])));
1336 if (!dom[i])
1337 goto error;
1338 if (!ran[i])
1339 ran[i] = isl_set_from_basic_set(
1340 isl_basic_map_range(
1341 isl_basic_map_copy(map->p[i])));
1342 if (!ran[i])
1343 goto error;
1344 C = isl_set_union(isl_set_copy(dom[i]),
1345 isl_set_copy(ran[i]));
1346 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1347 if (!C)
1348 goto error;
1349 if (C->n != 1) {
1350 isl_set_free(C);
1351 continue;
1353 comp = composability(C, i, dom, ran, left, right, map);
1354 if (!comp || comp < 0) {
1355 isl_set_free(C);
1356 if (comp < 0)
1357 goto error;
1358 continue;
1360 qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i);
1361 if (!qc)
1362 goto error;
1363 if (!exact_i) {
1364 isl_map_free(qc);
1365 continue;
1367 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1368 if (spurious) {
1369 isl_map_free(qc);
1370 if (spurious < 0)
1371 goto error;
1372 continue;
1374 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1375 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1376 qc = isl_map_compute_divs(qc);
1377 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1378 (comp & RIGHT) ? right : NULL);
1379 if (!qc)
1380 goto error;
1381 if (qc->n >= map->n) {
1382 isl_map_free(qc);
1383 continue;
1385 res = compute_incremental(isl_space_copy(dim), map, i, qc,
1386 (comp & LEFT) ? left : NULL,
1387 (comp & RIGHT) ? right : NULL, &exact_i);
1388 if (!res)
1389 goto error;
1390 if (exact_i)
1391 break;
1392 isl_map_free(res);
1393 res = NULL;
1396 for (i = 0; i < map->n; ++i) {
1397 isl_set_free(dom[i]);
1398 isl_set_free(ran[i]);
1400 free(dom);
1401 free(ran);
1402 free(left);
1403 free(right);
1405 if (res) {
1406 isl_space_free(dim);
1407 return res;
1410 return construct_projected_component(dim, map, exact, project);
1411 error:
1412 if (dom)
1413 for (i = 0; i < map->n; ++i)
1414 isl_set_free(dom[i]);
1415 free(dom);
1416 if (ran)
1417 for (i = 0; i < map->n; ++i)
1418 isl_set_free(ran[i]);
1419 free(ran);
1420 free(left);
1421 free(right);
1422 isl_space_free(dim);
1423 return NULL;
1426 /* Given an array of sets "set", add "dom" at position "pos"
1427 * and search for elements at earlier positions that overlap with "dom".
1428 * If any can be found, then merge all of them, together with "dom", into
1429 * a single set and assign the union to the first in the array,
1430 * which becomes the new group leader for all groups involved in the merge.
1431 * During the search, we only consider group leaders, i.e., those with
1432 * group[i] = i, as the other sets have already been combined
1433 * with one of the group leaders.
1435 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1437 int i;
1439 group[pos] = pos;
1440 set[pos] = isl_set_copy(dom);
1442 for (i = pos - 1; i >= 0; --i) {
1443 int o;
1445 if (group[i] != i)
1446 continue;
1448 o = isl_set_overlaps(set[i], dom);
1449 if (o < 0)
1450 goto error;
1451 if (!o)
1452 continue;
1454 set[i] = isl_set_union(set[i], set[group[pos]]);
1455 set[group[pos]] = NULL;
1456 if (!set[i])
1457 goto error;
1458 group[group[pos]] = i;
1459 group[pos] = i;
1462 isl_set_free(dom);
1463 return 0;
1464 error:
1465 isl_set_free(dom);
1466 return -1;
1469 /* Replace each entry in the n by n grid of maps by the cross product
1470 * with the relation { [i] -> [i + 1] }.
1472 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1474 int i, j, k;
1475 isl_space *dim;
1476 isl_basic_map *bstep;
1477 isl_map *step;
1478 unsigned nparam;
1480 if (!map)
1481 return -1;
1483 dim = isl_map_get_space(map);
1484 nparam = isl_space_dim(dim, isl_dim_param);
1485 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1486 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1487 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1488 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1489 bstep = isl_basic_map_alloc_space(dim, 0, 1, 0);
1490 k = isl_basic_map_alloc_equality(bstep);
1491 if (k < 0) {
1492 isl_basic_map_free(bstep);
1493 return -1;
1495 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1496 isl_int_set_si(bstep->eq[k][0], 1);
1497 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1498 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1499 bstep = isl_basic_map_finalize(bstep);
1500 step = isl_map_from_basic_map(bstep);
1502 for (i = 0; i < n; ++i)
1503 for (j = 0; j < n; ++j)
1504 grid[i][j] = isl_map_product(grid[i][j],
1505 isl_map_copy(step));
1507 isl_map_free(step);
1509 return 0;
1512 /* The core of the Floyd-Warshall algorithm.
1513 * Updates the given n x x matrix of relations in place.
1515 * The algorithm iterates over all vertices. In each step, the whole
1516 * matrix is updated to include all paths that go to the current vertex,
1517 * possibly stay there a while (including passing through earlier vertices)
1518 * and then come back. At the start of each iteration, the diagonal
1519 * element corresponding to the current vertex is replaced by its
1520 * transitive closure to account for all indirect paths that stay
1521 * in the current vertex.
1523 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1525 int r, p, q;
1527 for (r = 0; r < n; ++r) {
1528 int r_exact;
1529 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1530 (exact && *exact) ? &r_exact : NULL);
1531 if (exact && *exact && !r_exact)
1532 *exact = 0;
1534 for (p = 0; p < n; ++p)
1535 for (q = 0; q < n; ++q) {
1536 isl_map *loop;
1537 if (p == r && q == r)
1538 continue;
1539 loop = isl_map_apply_range(
1540 isl_map_copy(grid[p][r]),
1541 isl_map_copy(grid[r][q]));
1542 grid[p][q] = isl_map_union(grid[p][q], loop);
1543 loop = isl_map_apply_range(
1544 isl_map_copy(grid[p][r]),
1545 isl_map_apply_range(
1546 isl_map_copy(grid[r][r]),
1547 isl_map_copy(grid[r][q])));
1548 grid[p][q] = isl_map_union(grid[p][q], loop);
1549 grid[p][q] = isl_map_coalesce(grid[p][q]);
1554 /* Given a partition of the domains and ranges of the basic maps in "map",
1555 * apply the Floyd-Warshall algorithm with the elements in the partition
1556 * as vertices.
1558 * In particular, there are "n" elements in the partition and "group" is
1559 * an array of length 2 * map->n with entries in [0,n-1].
1561 * We first construct a matrix of relations based on the partition information,
1562 * apply Floyd-Warshall on this matrix of relations and then take the
1563 * union of all entries in the matrix as the final result.
1565 * If we are actually computing the power instead of the transitive closure,
1566 * i.e., when "project" is not set, then the result should have the
1567 * path lengths encoded as the difference between an extra pair of
1568 * coordinates. We therefore apply the nested transitive closures
1569 * to relations that include these lengths. In particular, we replace
1570 * the input relation by the cross product with the unit length relation
1571 * { [i] -> [i + 1] }.
1573 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim,
1574 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1576 int i, j, k;
1577 isl_map ***grid = NULL;
1578 isl_map *app;
1580 if (!map)
1581 goto error;
1583 if (n == 1) {
1584 free(group);
1585 return incremental_closure(dim, map, exact, project);
1588 grid = isl_calloc_array(map->ctx, isl_map **, n);
1589 if (!grid)
1590 goto error;
1591 for (i = 0; i < n; ++i) {
1592 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1593 if (!grid[i])
1594 goto error;
1595 for (j = 0; j < n; ++j)
1596 grid[i][j] = isl_map_empty(isl_map_get_space(map));
1599 for (k = 0; k < map->n; ++k) {
1600 i = group[2 * k];
1601 j = group[2 * k + 1];
1602 grid[i][j] = isl_map_union(grid[i][j],
1603 isl_map_from_basic_map(
1604 isl_basic_map_copy(map->p[k])));
1607 if (!project && add_length(map, grid, n) < 0)
1608 goto error;
1610 floyd_warshall_iterate(grid, n, exact);
1612 app = isl_map_empty(isl_map_get_space(grid[0][0]));
1614 for (i = 0; i < n; ++i) {
1615 for (j = 0; j < n; ++j)
1616 app = isl_map_union(app, grid[i][j]);
1617 free(grid[i]);
1619 free(grid);
1621 free(group);
1622 isl_space_free(dim);
1624 return app;
1625 error:
1626 if (grid)
1627 for (i = 0; i < n; ++i) {
1628 if (!grid[i])
1629 continue;
1630 for (j = 0; j < n; ++j)
1631 isl_map_free(grid[i][j]);
1632 free(grid[i]);
1634 free(grid);
1635 free(group);
1636 isl_space_free(dim);
1637 return NULL;
1640 /* Partition the domains and ranges of the n basic relations in list
1641 * into disjoint cells.
1643 * To find the partition, we simply consider all of the domains
1644 * and ranges in turn and combine those that overlap.
1645 * "set" contains the partition elements and "group" indicates
1646 * to which partition element a given domain or range belongs.
1647 * The domain of basic map i corresponds to element 2 * i in these arrays,
1648 * while the domain corresponds to element 2 * i + 1.
1649 * During the construction group[k] is either equal to k,
1650 * in which case set[k] contains the union of all the domains and
1651 * ranges in the corresponding group, or is equal to some l < k,
1652 * with l another domain or range in the same group.
1654 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1655 isl_set ***set, int *n_group)
1657 int i;
1658 int *group = NULL;
1659 int g;
1661 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1662 group = isl_alloc_array(ctx, int, 2 * n);
1664 if (!*set || !group)
1665 goto error;
1667 for (i = 0; i < n; ++i) {
1668 isl_set *dom;
1669 dom = isl_set_from_basic_set(isl_basic_map_domain(
1670 isl_basic_map_copy(list[i])));
1671 if (merge(*set, group, dom, 2 * i) < 0)
1672 goto error;
1673 dom = isl_set_from_basic_set(isl_basic_map_range(
1674 isl_basic_map_copy(list[i])));
1675 if (merge(*set, group, dom, 2 * i + 1) < 0)
1676 goto error;
1679 g = 0;
1680 for (i = 0; i < 2 * n; ++i)
1681 if (group[i] == i) {
1682 if (g != i) {
1683 (*set)[g] = (*set)[i];
1684 (*set)[i] = NULL;
1686 group[i] = g++;
1687 } else
1688 group[i] = group[group[i]];
1690 *n_group = g;
1692 return group;
1693 error:
1694 if (*set) {
1695 for (i = 0; i < 2 * n; ++i)
1696 isl_set_free((*set)[i]);
1697 free(*set);
1698 *set = NULL;
1700 free(group);
1701 return NULL;
1704 /* Check if the domains and ranges of the basic maps in "map" can
1705 * be partitioned, and if so, apply Floyd-Warshall on the elements
1706 * of the partition. Note that we also apply this algorithm
1707 * if we want to compute the power, i.e., when "project" is not set.
1708 * However, the results are unlikely to be exact since the recursive
1709 * calls inside the Floyd-Warshall algorithm typically result in
1710 * non-linear path lengths quite quickly.
1712 static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim,
1713 __isl_keep isl_map *map, int *exact, int project)
1715 int i;
1716 isl_set **set = NULL;
1717 int *group = NULL;
1718 int n;
1720 if (!map)
1721 goto error;
1722 if (map->n <= 1)
1723 return incremental_closure(dim, map, exact, project);
1725 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1726 if (!group)
1727 goto error;
1729 for (i = 0; i < 2 * map->n; ++i)
1730 isl_set_free(set[i]);
1732 free(set);
1734 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1735 error:
1736 isl_space_free(dim);
1737 return NULL;
1740 /* Structure for representing the nodes of the graph of which
1741 * strongly connected components are being computed.
1743 * list contains the actual nodes
1744 * check_closed is set if we may have used the fact that
1745 * a pair of basic maps can be interchanged
1747 struct isl_tc_follows_data {
1748 isl_basic_map **list;
1749 int check_closed;
1752 /* Check whether in the computation of the transitive closure
1753 * "list[i]" (R_1) should follow (or be part of the same component as)
1754 * "list[j]" (R_2).
1756 * That is check whether
1758 * R_1 \circ R_2
1760 * is a subset of
1762 * R_2 \circ R_1
1764 * If so, then there is no reason for R_1 to immediately follow R_2
1765 * in any path.
1767 * *check_closed is set if the subset relation holds while
1768 * R_1 \circ R_2 is not empty.
1770 static isl_bool basic_map_follows(int i, int j, void *user)
1772 struct isl_tc_follows_data *data = user;
1773 struct isl_map *map12 = NULL;
1774 struct isl_map *map21 = NULL;
1775 isl_bool subset;
1777 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1778 data->list[j]->dim, isl_dim_out))
1779 return isl_bool_false;
1781 map21 = isl_map_from_basic_map(
1782 isl_basic_map_apply_range(
1783 isl_basic_map_copy(data->list[j]),
1784 isl_basic_map_copy(data->list[i])));
1785 subset = isl_map_is_empty(map21);
1786 if (subset < 0)
1787 goto error;
1788 if (subset) {
1789 isl_map_free(map21);
1790 return isl_bool_false;
1793 if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
1794 data->list[i]->dim, isl_dim_out) ||
1795 !isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in,
1796 data->list[j]->dim, isl_dim_out)) {
1797 isl_map_free(map21);
1798 return isl_bool_true;
1801 map12 = isl_map_from_basic_map(
1802 isl_basic_map_apply_range(
1803 isl_basic_map_copy(data->list[i]),
1804 isl_basic_map_copy(data->list[j])));
1806 subset = isl_map_is_subset(map21, map12);
1808 isl_map_free(map12);
1809 isl_map_free(map21);
1811 if (subset)
1812 data->check_closed = 1;
1814 return subset < 0 ? isl_bool_error : !subset;
1815 error:
1816 isl_map_free(map21);
1817 return isl_bool_error;
1820 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1821 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1822 * construct a map that is an overapproximation of the map
1823 * that takes an element from the dom R \times Z to an
1824 * element from ran R \times Z, such that the first n coordinates of the
1825 * difference between them is a sum of differences between images
1826 * and pre-images in one of the R_i and such that the last coordinate
1827 * is equal to the number of steps taken.
1828 * If "project" is set, then these final coordinates are not included,
1829 * i.e., a relation of type Z^n -> Z^n is returned.
1830 * That is, let
1832 * \Delta_i = { y - x | (x, y) in R_i }
1834 * then the constructed map is an overapproximation of
1836 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1837 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1838 * x in dom R and x + d in ran R }
1840 * or
1842 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1843 * d = (\sum_i k_i \delta_i) and
1844 * x in dom R and x + d in ran R }
1846 * if "project" is set.
1848 * We first split the map into strongly connected components, perform
1849 * the above on each component and then join the results in the correct
1850 * order, at each join also taking in the union of both arguments
1851 * to allow for paths that do not go through one of the two arguments.
1853 static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim,
1854 __isl_keep isl_map *map, int *exact, int project)
1856 int i, n, c;
1857 struct isl_map *path = NULL;
1858 struct isl_tc_follows_data data;
1859 struct isl_tarjan_graph *g = NULL;
1860 int *orig_exact;
1861 int local_exact;
1863 if (!map)
1864 goto error;
1865 if (map->n <= 1)
1866 return floyd_warshall(dim, map, exact, project);
1868 data.list = map->p;
1869 data.check_closed = 0;
1870 g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
1871 if (!g)
1872 goto error;
1874 orig_exact = exact;
1875 if (data.check_closed && !exact)
1876 exact = &local_exact;
1878 c = 0;
1879 i = 0;
1880 n = map->n;
1881 if (project)
1882 path = isl_map_empty(isl_map_get_space(map));
1883 else
1884 path = isl_map_empty(isl_space_copy(dim));
1885 path = anonymize(path);
1886 while (n) {
1887 struct isl_map *comp;
1888 isl_map *path_comp, *path_comb;
1889 comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
1890 while (g->order[i] != -1) {
1891 comp = isl_map_add_basic_map(comp,
1892 isl_basic_map_copy(map->p[g->order[i]]));
1893 --n;
1894 ++i;
1896 path_comp = floyd_warshall(isl_space_copy(dim),
1897 comp, exact, project);
1898 path_comp = anonymize(path_comp);
1899 path_comb = isl_map_apply_range(isl_map_copy(path),
1900 isl_map_copy(path_comp));
1901 path = isl_map_union(path, path_comp);
1902 path = isl_map_union(path, path_comb);
1903 isl_map_free(comp);
1904 ++i;
1905 ++c;
1908 if (c > 1 && data.check_closed && !*exact) {
1909 int closed;
1911 closed = isl_map_is_transitively_closed(path);
1912 if (closed < 0)
1913 goto error;
1914 if (!closed) {
1915 isl_tarjan_graph_free(g);
1916 isl_map_free(path);
1917 return floyd_warshall(dim, map, orig_exact, project);
1921 isl_tarjan_graph_free(g);
1922 isl_space_free(dim);
1924 return path;
1925 error:
1926 isl_tarjan_graph_free(g);
1927 isl_space_free(dim);
1928 isl_map_free(path);
1929 return NULL;
1932 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1933 * construct a map that is an overapproximation of the map
1934 * that takes an element from the space D to another
1935 * element from the same space, such that the difference between
1936 * them is a strictly positive sum of differences between images
1937 * and pre-images in one of the R_i.
1938 * The number of differences in the sum is equated to parameter "param".
1939 * That is, let
1941 * \Delta_i = { y - x | (x, y) in R_i }
1943 * then the constructed map is an overapproximation of
1945 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1946 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1947 * or
1949 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1950 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1952 * if "project" is set.
1954 * If "project" is not set, then
1955 * we construct an extended mapping with an extra coordinate
1956 * that indicates the number of steps taken. In particular,
1957 * the difference in the last coordinate is equal to the number
1958 * of steps taken to move from a domain element to the corresponding
1959 * image element(s).
1961 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1962 int *exact, int project)
1964 struct isl_map *app = NULL;
1965 isl_space *dim = NULL;
1967 if (!map)
1968 return NULL;
1970 dim = isl_map_get_space(map);
1972 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1973 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1975 app = construct_power_components(isl_space_copy(dim), map,
1976 exact, project);
1978 isl_space_free(dim);
1980 return app;
1983 /* Compute the positive powers of "map", or an overapproximation.
1984 * If the result is exact, then *exact is set to 1.
1986 * If project is set, then we are actually interested in the transitive
1987 * closure, so we can use a more relaxed exactness check.
1988 * The lengths of the paths are also projected out instead of being
1989 * encoded as the difference between an extra pair of final coordinates.
1991 static __isl_give isl_map *map_power(__isl_take isl_map *map,
1992 int *exact, int project)
1994 struct isl_map *app = NULL;
1996 if (exact)
1997 *exact = 1;
1999 if (!map)
2000 return NULL;
2002 isl_assert(map->ctx,
2003 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2004 goto error);
2006 app = construct_power(map, exact, project);
2008 isl_map_free(map);
2009 return app;
2010 error:
2011 isl_map_free(map);
2012 isl_map_free(app);
2013 return NULL;
2016 /* Compute the positive powers of "map", or an overapproximation.
2017 * The result maps the exponent to a nested copy of the corresponding power.
2018 * If the result is exact, then *exact is set to 1.
2019 * map_power constructs an extended relation with the path lengths
2020 * encoded as the difference between the final coordinates.
2021 * In the final step, this difference is equated to an extra parameter
2022 * and made positive. The extra coordinates are subsequently projected out
2023 * and the parameter is turned into the domain of the result.
2025 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2027 isl_space *target_dim;
2028 isl_space *dim;
2029 isl_map *diff;
2030 unsigned d;
2031 unsigned param;
2033 if (!map)
2034 return NULL;
2036 d = isl_map_dim(map, isl_dim_in);
2037 param = isl_map_dim(map, isl_dim_param);
2039 map = isl_map_compute_divs(map);
2040 map = isl_map_coalesce(map);
2042 if (isl_map_plain_is_empty(map)) {
2043 map = isl_map_from_range(isl_map_wrap(map));
2044 map = isl_map_add_dims(map, isl_dim_in, 1);
2045 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2046 return map;
2049 target_dim = isl_map_get_space(map);
2050 target_dim = isl_space_from_range(isl_space_wrap(target_dim));
2051 target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1);
2052 target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k");
2054 map = map_power(map, exact, 0);
2056 map = isl_map_add_dims(map, isl_dim_param, 1);
2057 dim = isl_map_get_space(map);
2058 diff = equate_parameter_to_length(dim, param);
2059 map = isl_map_intersect(map, diff);
2060 map = isl_map_project_out(map, isl_dim_in, d, 1);
2061 map = isl_map_project_out(map, isl_dim_out, d, 1);
2062 map = isl_map_from_range(isl_map_wrap(map));
2063 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2065 map = isl_map_reset_space(map, target_dim);
2067 return map;
2070 /* Compute a relation that maps each element in the range of the input
2071 * relation to the lengths of all paths composed of edges in the input
2072 * relation that end up in the given range element.
2073 * The result may be an overapproximation, in which case *exact is set to 0.
2074 * The resulting relation is very similar to the power relation.
2075 * The difference are that the domain has been projected out, the
2076 * range has become the domain and the exponent is the range instead
2077 * of a parameter.
2079 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2080 int *exact)
2082 isl_space *dim;
2083 isl_map *diff;
2084 unsigned d;
2085 unsigned param;
2087 if (!map)
2088 return NULL;
2090 d = isl_map_dim(map, isl_dim_in);
2091 param = isl_map_dim(map, isl_dim_param);
2093 map = isl_map_compute_divs(map);
2094 map = isl_map_coalesce(map);
2096 if (isl_map_plain_is_empty(map)) {
2097 if (exact)
2098 *exact = 1;
2099 map = isl_map_project_out(map, isl_dim_out, 0, d);
2100 map = isl_map_add_dims(map, isl_dim_out, 1);
2101 return map;
2104 map = map_power(map, exact, 0);
2106 map = isl_map_add_dims(map, isl_dim_param, 1);
2107 dim = isl_map_get_space(map);
2108 diff = equate_parameter_to_length(dim, param);
2109 map = isl_map_intersect(map, diff);
2110 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2111 map = isl_map_project_out(map, isl_dim_out, d, 1);
2112 map = isl_map_reverse(map);
2113 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2115 return map;
2118 /* Check whether equality i of bset is a pure stride constraint
2119 * on a single dimensions, i.e., of the form
2121 * v = k e
2123 * with k a constant and e an existentially quantified variable.
2125 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2127 unsigned nparam;
2128 unsigned d;
2129 unsigned n_div;
2130 int pos1;
2131 int pos2;
2133 if (!bset)
2134 return -1;
2136 if (!isl_int_is_zero(bset->eq[i][0]))
2137 return 0;
2139 nparam = isl_basic_set_dim(bset, isl_dim_param);
2140 d = isl_basic_set_dim(bset, isl_dim_set);
2141 n_div = isl_basic_set_dim(bset, isl_dim_div);
2143 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2144 return 0;
2145 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2146 if (pos1 == -1)
2147 return 0;
2148 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2149 d - pos1 - 1) != -1)
2150 return 0;
2152 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2153 if (pos2 == -1)
2154 return 0;
2155 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2156 n_div - pos2 - 1) != -1)
2157 return 0;
2158 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2159 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2160 return 0;
2162 return 1;
2165 /* Given a map, compute the smallest superset of this map that is of the form
2167 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2169 * (where p ranges over the (non-parametric) dimensions),
2170 * compute the transitive closure of this map, i.e.,
2172 * { i -> j : exists k > 0:
2173 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2175 * and intersect domain and range of this transitive closure with
2176 * the given domain and range.
2178 * If with_id is set, then try to include as much of the identity mapping
2179 * as possible, by computing
2181 * { i -> j : exists k >= 0:
2182 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2184 * instead (i.e., allow k = 0).
2186 * In practice, we compute the difference set
2188 * delta = { j - i | i -> j in map },
2190 * look for stride constraint on the individual dimensions and compute
2191 * (constant) lower and upper bounds for each individual dimension,
2192 * adding a constraint for each bound not equal to infinity.
2194 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2195 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2197 int i;
2198 int k;
2199 unsigned d;
2200 unsigned nparam;
2201 unsigned total;
2202 isl_space *dim;
2203 isl_set *delta;
2204 isl_map *app = NULL;
2205 isl_basic_set *aff = NULL;
2206 isl_basic_map *bmap = NULL;
2207 isl_vec *obj = NULL;
2208 isl_int opt;
2210 isl_int_init(opt);
2212 delta = isl_map_deltas(isl_map_copy(map));
2214 aff = isl_set_affine_hull(isl_set_copy(delta));
2215 if (!aff)
2216 goto error;
2217 dim = isl_map_get_space(map);
2218 d = isl_space_dim(dim, isl_dim_in);
2219 nparam = isl_space_dim(dim, isl_dim_param);
2220 total = isl_space_dim(dim, isl_dim_all);
2221 bmap = isl_basic_map_alloc_space(dim,
2222 aff->n_div + 1, aff->n_div, 2 * d + 1);
2223 for (i = 0; i < aff->n_div + 1; ++i) {
2224 k = isl_basic_map_alloc_div(bmap);
2225 if (k < 0)
2226 goto error;
2227 isl_int_set_si(bmap->div[k][0], 0);
2229 for (i = 0; i < aff->n_eq; ++i) {
2230 if (!is_eq_stride(aff, i))
2231 continue;
2232 k = isl_basic_map_alloc_equality(bmap);
2233 if (k < 0)
2234 goto error;
2235 isl_seq_clr(bmap->eq[k], 1 + nparam);
2236 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2237 aff->eq[i] + 1 + nparam, d);
2238 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2239 aff->eq[i] + 1 + nparam, d);
2240 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2241 aff->eq[i] + 1 + nparam + d, aff->n_div);
2242 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2244 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2245 if (!obj)
2246 goto error;
2247 isl_seq_clr(obj->el, 1 + nparam + d);
2248 for (i = 0; i < d; ++ i) {
2249 enum isl_lp_result res;
2251 isl_int_set_si(obj->el[1 + nparam + i], 1);
2253 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2254 NULL, NULL);
2255 if (res == isl_lp_error)
2256 goto error;
2257 if (res == isl_lp_ok) {
2258 k = isl_basic_map_alloc_inequality(bmap);
2259 if (k < 0)
2260 goto error;
2261 isl_seq_clr(bmap->ineq[k],
2262 1 + nparam + 2 * d + bmap->n_div);
2263 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2264 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2265 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2268 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2269 NULL, NULL);
2270 if (res == isl_lp_error)
2271 goto error;
2272 if (res == isl_lp_ok) {
2273 k = isl_basic_map_alloc_inequality(bmap);
2274 if (k < 0)
2275 goto error;
2276 isl_seq_clr(bmap->ineq[k],
2277 1 + nparam + 2 * d + bmap->n_div);
2278 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2279 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2280 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2283 isl_int_set_si(obj->el[1 + nparam + i], 0);
2285 k = isl_basic_map_alloc_inequality(bmap);
2286 if (k < 0)
2287 goto error;
2288 isl_seq_clr(bmap->ineq[k],
2289 1 + nparam + 2 * d + bmap->n_div);
2290 if (!with_id)
2291 isl_int_set_si(bmap->ineq[k][0], -1);
2292 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2294 app = isl_map_from_domain_and_range(dom, ran);
2296 isl_vec_free(obj);
2297 isl_basic_set_free(aff);
2298 isl_map_free(map);
2299 bmap = isl_basic_map_finalize(bmap);
2300 isl_set_free(delta);
2301 isl_int_clear(opt);
2303 map = isl_map_from_basic_map(bmap);
2304 map = isl_map_intersect(map, app);
2306 return map;
2307 error:
2308 isl_vec_free(obj);
2309 isl_basic_map_free(bmap);
2310 isl_basic_set_free(aff);
2311 isl_set_free(dom);
2312 isl_set_free(ran);
2313 isl_map_free(map);
2314 isl_set_free(delta);
2315 isl_int_clear(opt);
2316 return NULL;
2319 /* Given a map, compute the smallest superset of this map that is of the form
2321 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2323 * (where p ranges over the (non-parametric) dimensions),
2324 * compute the transitive closure of this map, i.e.,
2326 * { i -> j : exists k > 0:
2327 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2329 * and intersect domain and range of this transitive closure with
2330 * domain and range of the original map.
2332 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2334 isl_set *domain;
2335 isl_set *range;
2337 domain = isl_map_domain(isl_map_copy(map));
2338 domain = isl_set_coalesce(domain);
2339 range = isl_map_range(isl_map_copy(map));
2340 range = isl_set_coalesce(range);
2342 return box_closure_on_domain(map, domain, range, 0);
2345 /* Given a map, compute the smallest superset of this map that is of the form
2347 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2349 * (where p ranges over the (non-parametric) dimensions),
2350 * compute the transitive and partially reflexive closure of this map, i.e.,
2352 * { i -> j : exists k >= 0:
2353 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2355 * and intersect domain and range of this transitive closure with
2356 * the given domain.
2358 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2359 __isl_take isl_set *dom)
2361 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2364 /* Check whether app is the transitive closure of map.
2365 * In particular, check that app is acyclic and, if so,
2366 * check that
2368 * app \subset (map \cup (map \circ app))
2370 static int check_exactness_omega(__isl_keep isl_map *map,
2371 __isl_keep isl_map *app)
2373 isl_set *delta;
2374 int i;
2375 int is_empty, is_exact;
2376 unsigned d;
2377 isl_map *test;
2379 delta = isl_map_deltas(isl_map_copy(app));
2380 d = isl_set_dim(delta, isl_dim_set);
2381 for (i = 0; i < d; ++i)
2382 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2383 is_empty = isl_set_is_empty(delta);
2384 isl_set_free(delta);
2385 if (is_empty < 0)
2386 return -1;
2387 if (!is_empty)
2388 return 0;
2390 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2391 test = isl_map_union(test, isl_map_copy(map));
2392 is_exact = isl_map_is_subset(app, test);
2393 isl_map_free(test);
2395 return is_exact;
2398 /* Check if basic map M_i can be combined with all the other
2399 * basic maps such that
2401 * (\cup_j M_j)^+
2403 * can be computed as
2405 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2407 * In particular, check if we can compute a compact representation
2408 * of
2410 * M_i^* \circ M_j \circ M_i^*
2412 * for each j != i.
2413 * Let M_i^? be an extension of M_i^+ that allows paths
2414 * of length zero, i.e., the result of box_closure(., 1).
2415 * The criterion, as proposed by Kelly et al., is that
2416 * id = M_i^? - M_i^+ can be represented as a basic map
2417 * and that
2419 * id \circ M_j \circ id = M_j
2421 * for each j != i.
2423 * If this function returns 1, then tc and qc are set to
2424 * M_i^+ and M_i^?, respectively.
2426 static int can_be_split_off(__isl_keep isl_map *map, int i,
2427 __isl_give isl_map **tc, __isl_give isl_map **qc)
2429 isl_map *map_i, *id = NULL;
2430 int j = -1;
2431 isl_set *C;
2433 *tc = NULL;
2434 *qc = NULL;
2436 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2437 isl_map_range(isl_map_copy(map)));
2438 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2439 if (!C)
2440 goto error;
2442 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2443 *tc = box_closure(isl_map_copy(map_i));
2444 *qc = box_closure_with_identity(map_i, C);
2445 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2447 if (!id || !*qc)
2448 goto error;
2449 if (id->n != 1 || (*qc)->n != 1)
2450 goto done;
2452 for (j = 0; j < map->n; ++j) {
2453 isl_map *map_j, *test;
2454 int is_ok;
2456 if (i == j)
2457 continue;
2458 map_j = isl_map_from_basic_map(
2459 isl_basic_map_copy(map->p[j]));
2460 test = isl_map_apply_range(isl_map_copy(id),
2461 isl_map_copy(map_j));
2462 test = isl_map_apply_range(test, isl_map_copy(id));
2463 is_ok = isl_map_is_equal(test, map_j);
2464 isl_map_free(map_j);
2465 isl_map_free(test);
2466 if (is_ok < 0)
2467 goto error;
2468 if (!is_ok)
2469 break;
2472 done:
2473 isl_map_free(id);
2474 if (j == map->n)
2475 return 1;
2477 isl_map_free(*qc);
2478 isl_map_free(*tc);
2479 *qc = NULL;
2480 *tc = NULL;
2482 return 0;
2483 error:
2484 isl_map_free(id);
2485 isl_map_free(*qc);
2486 isl_map_free(*tc);
2487 *qc = NULL;
2488 *tc = NULL;
2489 return -1;
2492 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2493 int *exact)
2495 isl_map *app;
2497 app = box_closure(isl_map_copy(map));
2498 if (exact)
2499 *exact = check_exactness_omega(map, app);
2501 isl_map_free(map);
2502 return app;
2505 /* Compute an overapproximation of the transitive closure of "map"
2506 * using a variation of the algorithm from
2507 * "Transitive Closure of Infinite Graphs and its Applications"
2508 * by Kelly et al.
2510 * We first check whether we can can split of any basic map M_i and
2511 * compute
2513 * (\cup_j M_j)^+
2515 * as
2517 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2519 * using a recursive call on the remaining map.
2521 * If not, we simply call box_closure on the whole map.
2523 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2524 int *exact)
2526 int i, j;
2527 int exact_i;
2528 isl_map *app;
2530 if (!map)
2531 return NULL;
2532 if (map->n == 1)
2533 return box_closure_with_check(map, exact);
2535 for (i = 0; i < map->n; ++i) {
2536 int ok;
2537 isl_map *qc, *tc;
2538 ok = can_be_split_off(map, i, &tc, &qc);
2539 if (ok < 0)
2540 goto error;
2541 if (!ok)
2542 continue;
2544 app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2546 for (j = 0; j < map->n; ++j) {
2547 if (j == i)
2548 continue;
2549 app = isl_map_add_basic_map(app,
2550 isl_basic_map_copy(map->p[j]));
2553 app = isl_map_apply_range(isl_map_copy(qc), app);
2554 app = isl_map_apply_range(app, qc);
2556 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2557 exact_i = check_exactness_omega(map, app);
2558 if (exact_i == 1) {
2559 if (exact)
2560 *exact = exact_i;
2561 isl_map_free(map);
2562 return app;
2564 isl_map_free(app);
2565 if (exact_i < 0)
2566 goto error;
2569 return box_closure_with_check(map, exact);
2570 error:
2571 isl_map_free(map);
2572 return NULL;
2575 /* Compute the transitive closure of "map", or an overapproximation.
2576 * If the result is exact, then *exact is set to 1.
2577 * Simply use map_power to compute the powers of map, but tell
2578 * it to project out the lengths of the paths instead of equating
2579 * the length to a parameter.
2581 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2582 int *exact)
2584 isl_space *target_dim;
2585 int closed;
2587 if (!map)
2588 goto error;
2590 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2591 return transitive_closure_omega(map, exact);
2593 map = isl_map_compute_divs(map);
2594 map = isl_map_coalesce(map);
2595 closed = isl_map_is_transitively_closed(map);
2596 if (closed < 0)
2597 goto error;
2598 if (closed) {
2599 if (exact)
2600 *exact = 1;
2601 return map;
2604 target_dim = isl_map_get_space(map);
2605 map = map_power(map, exact, 1);
2606 map = isl_map_reset_space(map, target_dim);
2608 return map;
2609 error:
2610 isl_map_free(map);
2611 return NULL;
2614 static isl_stat inc_count(__isl_take isl_map *map, void *user)
2616 int *n = user;
2618 *n += map->n;
2620 isl_map_free(map);
2622 return isl_stat_ok;
2625 static isl_stat collect_basic_map(__isl_take isl_map *map, void *user)
2627 int i;
2628 isl_basic_map ***next = user;
2630 for (i = 0; i < map->n; ++i) {
2631 **next = isl_basic_map_copy(map->p[i]);
2632 if (!**next)
2633 goto error;
2634 (*next)++;
2637 isl_map_free(map);
2638 return isl_stat_ok;
2639 error:
2640 isl_map_free(map);
2641 return isl_stat_error;
2644 /* Perform Floyd-Warshall on the given list of basic relations.
2645 * The basic relations may live in different dimensions,
2646 * but basic relations that get assigned to the diagonal of the
2647 * grid have domains and ranges of the same dimension and so
2648 * the standard algorithm can be used because the nested transitive
2649 * closures are only applied to diagonal elements and because all
2650 * compositions are peformed on relations with compatible domains and ranges.
2652 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2653 __isl_keep isl_basic_map **list, int n, int *exact)
2655 int i, j, k;
2656 int n_group;
2657 int *group = NULL;
2658 isl_set **set = NULL;
2659 isl_map ***grid = NULL;
2660 isl_union_map *app;
2662 group = setup_groups(ctx, list, n, &set, &n_group);
2663 if (!group)
2664 goto error;
2666 grid = isl_calloc_array(ctx, isl_map **, n_group);
2667 if (!grid)
2668 goto error;
2669 for (i = 0; i < n_group; ++i) {
2670 grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2671 if (!grid[i])
2672 goto error;
2673 for (j = 0; j < n_group; ++j) {
2674 isl_space *dim1, *dim2, *dim;
2675 dim1 = isl_space_reverse(isl_set_get_space(set[i]));
2676 dim2 = isl_set_get_space(set[j]);
2677 dim = isl_space_join(dim1, dim2);
2678 grid[i][j] = isl_map_empty(dim);
2682 for (k = 0; k < n; ++k) {
2683 i = group[2 * k];
2684 j = group[2 * k + 1];
2685 grid[i][j] = isl_map_union(grid[i][j],
2686 isl_map_from_basic_map(
2687 isl_basic_map_copy(list[k])));
2690 floyd_warshall_iterate(grid, n_group, exact);
2692 app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2694 for (i = 0; i < n_group; ++i) {
2695 for (j = 0; j < n_group; ++j)
2696 app = isl_union_map_add_map(app, grid[i][j]);
2697 free(grid[i]);
2699 free(grid);
2701 for (i = 0; i < 2 * n; ++i)
2702 isl_set_free(set[i]);
2703 free(set);
2705 free(group);
2706 return app;
2707 error:
2708 if (grid)
2709 for (i = 0; i < n_group; ++i) {
2710 if (!grid[i])
2711 continue;
2712 for (j = 0; j < n_group; ++j)
2713 isl_map_free(grid[i][j]);
2714 free(grid[i]);
2716 free(grid);
2717 if (set) {
2718 for (i = 0; i < 2 * n; ++i)
2719 isl_set_free(set[i]);
2720 free(set);
2722 free(group);
2723 return NULL;
2726 /* Perform Floyd-Warshall on the given union relation.
2727 * The implementation is very similar to that for non-unions.
2728 * The main difference is that it is applied unconditionally.
2729 * We first extract a list of basic maps from the union map
2730 * and then perform the algorithm on this list.
2732 static __isl_give isl_union_map *union_floyd_warshall(
2733 __isl_take isl_union_map *umap, int *exact)
2735 int i, n;
2736 isl_ctx *ctx;
2737 isl_basic_map **list = NULL;
2738 isl_basic_map **next;
2739 isl_union_map *res;
2741 n = 0;
2742 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2743 goto error;
2745 ctx = isl_union_map_get_ctx(umap);
2746 list = isl_calloc_array(ctx, isl_basic_map *, n);
2747 if (!list)
2748 goto error;
2750 next = list;
2751 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2752 goto error;
2754 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2756 if (list) {
2757 for (i = 0; i < n; ++i)
2758 isl_basic_map_free(list[i]);
2759 free(list);
2762 isl_union_map_free(umap);
2763 return res;
2764 error:
2765 if (list) {
2766 for (i = 0; i < n; ++i)
2767 isl_basic_map_free(list[i]);
2768 free(list);
2770 isl_union_map_free(umap);
2771 return NULL;
2774 /* Decompose the give union relation into strongly connected components.
2775 * The implementation is essentially the same as that of
2776 * construct_power_components with the major difference that all
2777 * operations are performed on union maps.
2779 static __isl_give isl_union_map *union_components(
2780 __isl_take isl_union_map *umap, int *exact)
2782 int i;
2783 int n;
2784 isl_ctx *ctx;
2785 isl_basic_map **list = NULL;
2786 isl_basic_map **next;
2787 isl_union_map *path = NULL;
2788 struct isl_tc_follows_data data;
2789 struct isl_tarjan_graph *g = NULL;
2790 int c, l;
2791 int recheck = 0;
2793 n = 0;
2794 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2795 goto error;
2797 if (n == 0)
2798 return umap;
2799 if (n <= 1)
2800 return union_floyd_warshall(umap, exact);
2802 ctx = isl_union_map_get_ctx(umap);
2803 list = isl_calloc_array(ctx, isl_basic_map *, n);
2804 if (!list)
2805 goto error;
2807 next = list;
2808 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2809 goto error;
2811 data.list = list;
2812 data.check_closed = 0;
2813 g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
2814 if (!g)
2815 goto error;
2817 c = 0;
2818 i = 0;
2819 l = n;
2820 path = isl_union_map_empty(isl_union_map_get_space(umap));
2821 while (l) {
2822 isl_union_map *comp;
2823 isl_union_map *path_comp, *path_comb;
2824 comp = isl_union_map_empty(isl_union_map_get_space(umap));
2825 while (g->order[i] != -1) {
2826 comp = isl_union_map_add_map(comp,
2827 isl_map_from_basic_map(
2828 isl_basic_map_copy(list[g->order[i]])));
2829 --l;
2830 ++i;
2832 path_comp = union_floyd_warshall(comp, exact);
2833 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2834 isl_union_map_copy(path_comp));
2835 path = isl_union_map_union(path, path_comp);
2836 path = isl_union_map_union(path, path_comb);
2837 ++i;
2838 ++c;
2841 if (c > 1 && data.check_closed && !*exact) {
2842 int closed;
2844 closed = isl_union_map_is_transitively_closed(path);
2845 if (closed < 0)
2846 goto error;
2847 recheck = !closed;
2850 isl_tarjan_graph_free(g);
2852 for (i = 0; i < n; ++i)
2853 isl_basic_map_free(list[i]);
2854 free(list);
2856 if (recheck) {
2857 isl_union_map_free(path);
2858 return union_floyd_warshall(umap, exact);
2861 isl_union_map_free(umap);
2863 return path;
2864 error:
2865 isl_tarjan_graph_free(g);
2866 if (list) {
2867 for (i = 0; i < n; ++i)
2868 isl_basic_map_free(list[i]);
2869 free(list);
2871 isl_union_map_free(umap);
2872 isl_union_map_free(path);
2873 return NULL;
2876 /* Compute the transitive closure of "umap", or an overapproximation.
2877 * If the result is exact, then *exact is set to 1.
2879 __isl_give isl_union_map *isl_union_map_transitive_closure(
2880 __isl_take isl_union_map *umap, int *exact)
2882 int closed;
2884 if (!umap)
2885 return NULL;
2887 if (exact)
2888 *exact = 1;
2890 umap = isl_union_map_compute_divs(umap);
2891 umap = isl_union_map_coalesce(umap);
2892 closed = isl_union_map_is_transitively_closed(umap);
2893 if (closed < 0)
2894 goto error;
2895 if (closed)
2896 return umap;
2897 umap = union_components(umap, exact);
2898 return umap;
2899 error:
2900 isl_union_map_free(umap);
2901 return NULL;
2904 struct isl_union_power {
2905 isl_union_map *pow;
2906 int *exact;
2909 static isl_stat power(__isl_take isl_map *map, void *user)
2911 struct isl_union_power *up = user;
2913 map = isl_map_power(map, up->exact);
2914 up->pow = isl_union_map_from_map(map);
2916 return isl_stat_error;
2919 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
2921 static __isl_give isl_union_map *increment(__isl_take isl_space *dim)
2923 int k;
2924 isl_basic_map *bmap;
2926 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2927 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2928 bmap = isl_basic_map_alloc_space(dim, 0, 1, 0);
2929 k = isl_basic_map_alloc_equality(bmap);
2930 if (k < 0)
2931 goto error;
2932 isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
2933 isl_int_set_si(bmap->eq[k][0], 1);
2934 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
2935 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
2936 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2937 error:
2938 isl_basic_map_free(bmap);
2939 return NULL;
2942 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2944 static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
2946 isl_basic_map *bmap;
2948 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2949 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2950 bmap = isl_basic_map_universe(dim);
2951 bmap = isl_basic_map_deltas_map(bmap);
2953 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2956 /* Compute the positive powers of "map", or an overapproximation.
2957 * The result maps the exponent to a nested copy of the corresponding power.
2958 * If the result is exact, then *exact is set to 1.
2960 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
2961 int *exact)
2963 int n;
2964 isl_union_map *inc;
2965 isl_union_map *dm;
2967 if (!umap)
2968 return NULL;
2969 n = isl_union_map_n_map(umap);
2970 if (n == 0)
2971 return umap;
2972 if (n == 1) {
2973 struct isl_union_power up = { NULL, exact };
2974 isl_union_map_foreach_map(umap, &power, &up);
2975 isl_union_map_free(umap);
2976 return up.pow;
2978 inc = increment(isl_union_map_get_space(umap));
2979 umap = isl_union_map_product(inc, umap);
2980 umap = isl_union_map_transitive_closure(umap, exact);
2981 umap = isl_union_map_zip(umap);
2982 dm = deltas_map(isl_union_map_get_space(umap));
2983 umap = isl_union_map_apply_domain(umap, dm);
2985 return umap;
2988 #undef TYPE
2989 #define TYPE isl_map
2990 #include "isl_power_templ.c"
2992 #undef TYPE
2993 #define TYPE isl_union_map
2994 #include "isl_power_templ.c"