add rudimentary argument parsing facility
[isl.git] / basis_reduction_templ.c
blob7481798c374c4d207ff802d9d962603119cb68f5
1 #include <stdlib.h>
2 #include "isl_basis_reduction.h"
4 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
6 int i;
8 for (i = 0; i < n; ++i)
9 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
12 /* Compute a reduced basis for the set represented by the tableau "tab".
13 * tab->basis, must be initialized by the calling function to an affine
14 * unimodular basis, is updated to reflect the reduced basis.
15 * The first tab->n_zero rows of the basis (ignoring the constant row)
16 * are assumed to correspond to equalities and are left untouched.
17 * tab->n_zero is updated to reflect any additional equalities that
18 * have been detected in the first rows of the new basis.
19 * The final tab->n_unbounded rows of the basis are assumed to correspond
20 * to unbounded directions and are also left untouched.
21 * In particular this means that the remaining rows are assumed to
22 * correspond to bounded directions.
24 * This function implements the algorithm described in
25 * "An Implementation of the Generalized Basis Reduction Algorithm
26 * for Integer Programming" of Cook el al. to compute a reduced basis.
27 * We use \epsilon = 1/4.
29 * If ctx->gbr_only_first is set, the user is only interested
30 * in the first direction. In this case we stop the basis reduction when
31 * the width in the first direction becomes smaller than 2.
33 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
35 unsigned dim;
36 struct isl_ctx *ctx;
37 struct isl_mat *B;
38 int unbounded;
39 int i;
40 GBR_LP *lp = NULL;
41 GBR_type F_old, alpha, F_new;
42 int row;
43 isl_int tmp;
44 struct isl_vec *b_tmp;
45 GBR_type *F = NULL;
46 GBR_type *alpha_buffer[2] = { NULL, NULL };
47 GBR_type *alpha_saved;
48 GBR_type F_saved;
49 int use_saved = 0;
50 isl_int mu[2];
51 GBR_type mu_F[2];
52 GBR_type two;
53 GBR_type one;
54 int empty = 0;
55 int fixed = 0;
56 int fixed_saved = 0;
57 int mu_fixed[2];
58 int n_bounded;
60 if (!tab)
61 return NULL;
63 if (tab->empty)
64 return tab;
66 ctx = tab->mat->ctx;
67 dim = tab->n_var;
68 B = tab->basis;
69 if (!B)
70 return tab;
72 n_bounded = dim - tab->n_unbounded;
73 if (n_bounded <= tab->n_zero + 1)
74 return tab;
76 isl_int_init(tmp);
77 isl_int_init(mu[0]);
78 isl_int_init(mu[1]);
80 GBR_init(alpha);
81 GBR_init(F_old);
82 GBR_init(F_new);
83 GBR_init(F_saved);
84 GBR_init(mu_F[0]);
85 GBR_init(mu_F[1]);
86 GBR_init(two);
87 GBR_init(one);
89 b_tmp = isl_vec_alloc(ctx, dim);
90 if (!b_tmp)
91 goto error;
93 F = isl_alloc_array(ctx, GBR_type, n_bounded);
94 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
95 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
96 alpha_saved = alpha_buffer[0];
98 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
99 goto error;
101 for (i = 0; i < n_bounded; ++i) {
102 GBR_init(F[i]);
103 GBR_init(alpha_buffer[0][i]);
104 GBR_init(alpha_buffer[1][i]);
107 GBR_set_ui(two, 2);
108 GBR_set_ui(one, 1);
110 lp = GBR_lp_init(tab);
111 if (!lp)
112 goto error;
114 i = tab->n_zero;
116 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
117 ctx->stats->gbr_solved_lps++;
118 unbounded = GBR_lp_solve(lp);
119 isl_assert(ctx, !unbounded, goto error);
120 GBR_lp_get_obj_val(lp, &F[i]);
122 if (GBR_lt(F[i], one)) {
123 if (!GBR_is_zero(F[i])) {
124 empty = GBR_lp_cut(lp, B->row[1+i]+1);
125 if (empty)
126 goto done;
127 GBR_set_ui(F[i], 0);
129 tab->n_zero++;
132 do {
133 if (i+1 == tab->n_zero) {
134 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
135 ctx->stats->gbr_solved_lps++;
136 unbounded = GBR_lp_solve(lp);
137 isl_assert(ctx, !unbounded, goto error);
138 GBR_lp_get_obj_val(lp, &F_new);
139 fixed = GBR_lp_is_fixed(lp);
140 GBR_set_ui(alpha, 0);
141 } else
142 if (use_saved) {
143 row = GBR_lp_next_row(lp);
144 GBR_set(F_new, F_saved);
145 fixed = fixed_saved;
146 GBR_set(alpha, alpha_saved[i]);
147 } else {
148 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
149 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
150 ctx->stats->gbr_solved_lps++;
151 unbounded = GBR_lp_solve(lp);
152 isl_assert(ctx, !unbounded, goto error);
153 GBR_lp_get_obj_val(lp, &F_new);
154 fixed = GBR_lp_is_fixed(lp);
156 GBR_lp_get_alpha(lp, row, &alpha);
158 if (i > 0)
159 save_alpha(lp, row-i, i, alpha_saved);
161 if (GBR_lp_del_row(lp) < 0)
162 goto error;
164 GBR_set(F[i+1], F_new);
166 GBR_floor(mu[0], alpha);
167 GBR_ceil(mu[1], alpha);
169 if (isl_int_eq(mu[0], mu[1]))
170 isl_int_set(tmp, mu[0]);
171 else {
172 int j;
174 for (j = 0; j <= 1; ++j) {
175 isl_int_set(tmp, mu[j]);
176 isl_seq_combine(b_tmp->el,
177 ctx->one, B->row[1+i+1]+1,
178 tmp, B->row[1+i]+1, dim);
179 GBR_lp_set_obj(lp, b_tmp->el, dim);
180 ctx->stats->gbr_solved_lps++;
181 unbounded = GBR_lp_solve(lp);
182 isl_assert(ctx, !unbounded, goto error);
183 GBR_lp_get_obj_val(lp, &mu_F[j]);
184 mu_fixed[j] = GBR_lp_is_fixed(lp);
185 if (i > 0)
186 save_alpha(lp, row-i, i, alpha_buffer[j]);
189 if (GBR_lt(mu_F[0], mu_F[1]))
190 j = 0;
191 else
192 j = 1;
194 isl_int_set(tmp, mu[j]);
195 GBR_set(F_new, mu_F[j]);
196 fixed = mu_fixed[j];
197 alpha_saved = alpha_buffer[j];
199 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
200 tmp, B->row[1+i]+1, dim);
202 if (i+1 == tab->n_zero && fixed) {
203 if (!GBR_is_zero(F[i+1])) {
204 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
205 if (empty)
206 goto done;
207 GBR_set_ui(F[i+1], 0);
209 tab->n_zero++;
212 GBR_set(F_old, F[i]);
214 use_saved = 0;
215 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
216 GBR_set_ui(mu_F[0], 4);
217 GBR_mul(mu_F[0], mu_F[0], F_new);
218 GBR_set_ui(mu_F[1], 3);
219 GBR_mul(mu_F[1], mu_F[1], F_old);
220 if (GBR_lt(mu_F[0], mu_F[1])) {
221 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
222 if (i > tab->n_zero) {
223 use_saved = 1;
224 GBR_set(F_saved, F_new);
225 fixed_saved = fixed;
226 if (GBR_lp_del_row(lp) < 0)
227 goto error;
228 --i;
229 } else {
230 GBR_set(F[tab->n_zero], F_new);
231 if (ctx->gbr_only_first && GBR_lt(F[tab->n_zero], two))
232 break;
234 if (fixed) {
235 if (!GBR_is_zero(F[tab->n_zero])) {
236 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
237 if (empty)
238 goto done;
239 GBR_set_ui(F[tab->n_zero], 0);
241 tab->n_zero++;
244 } else {
245 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
246 ++i;
248 } while (i < n_bounded - 1);
250 if (0) {
251 done:
252 if (empty < 0) {
253 error:
254 isl_mat_free(B);
255 B = NULL;
259 GBR_lp_delete(lp);
261 if (alpha_buffer[1])
262 for (i = 0; i < n_bounded; ++i) {
263 GBR_clear(F[i]);
264 GBR_clear(alpha_buffer[0][i]);
265 GBR_clear(alpha_buffer[1][i]);
267 free(F);
268 free(alpha_buffer[0]);
269 free(alpha_buffer[1]);
271 isl_vec_free(b_tmp);
273 GBR_clear(alpha);
274 GBR_clear(F_old);
275 GBR_clear(F_new);
276 GBR_clear(F_saved);
277 GBR_clear(mu_F[0]);
278 GBR_clear(mu_F[1]);
279 GBR_clear(two);
280 GBR_clear(one);
282 isl_int_clear(tmp);
283 isl_int_clear(mu[0]);
284 isl_int_clear(mu[1]);
286 tab->basis = B;
288 return tab;
291 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
293 struct isl_mat *basis;
294 struct isl_tab *tab;
296 isl_assert(bset->ctx, bset->n_eq == 0, return NULL);
298 tab = isl_tab_from_basic_set(bset);
299 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
300 tab = isl_tab_compute_reduced_basis(tab);
301 if (!tab)
302 return NULL;
304 basis = isl_mat_copy(tab->basis);
306 isl_tab_free(tab);
308 return basis;