2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_dim_private.h>
22 #include <isl_div_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_dim
*dim
, enum isl_dim_type type
)
32 case isl_dim_param
: return 0;
33 case isl_dim_in
: return dim
->nparam
;
34 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
39 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
47 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
52 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
54 return (struct isl_upoly_cst
*)up
;
57 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
62 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
64 return (struct isl_upoly_rec
*)up
;
67 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
68 __isl_keep
struct isl_upoly
*up2
)
71 struct isl_upoly_rec
*rec1
, *rec2
;
77 if (up1
->var
!= up2
->var
)
79 if (isl_upoly_is_cst(up1
)) {
80 struct isl_upoly_cst
*cst1
, *cst2
;
81 cst1
= isl_upoly_as_cst(up1
);
82 cst2
= isl_upoly_as_cst(up2
);
85 return isl_int_eq(cst1
->n
, cst2
->n
) &&
86 isl_int_eq(cst1
->d
, cst2
->d
);
89 rec1
= isl_upoly_as_rec(up1
);
90 rec2
= isl_upoly_as_rec(up2
);
94 if (rec1
->n
!= rec2
->n
)
97 for (i
= 0; i
< rec1
->n
; ++i
) {
98 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
106 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
108 struct isl_upoly_cst
*cst
;
112 if (!isl_upoly_is_cst(up
))
115 cst
= isl_upoly_as_cst(up
);
119 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
122 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
124 struct isl_upoly_cst
*cst
;
128 if (!isl_upoly_is_cst(up
))
131 cst
= isl_upoly_as_cst(up
);
135 return isl_int_sgn(cst
->n
);
138 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
140 struct isl_upoly_cst
*cst
;
144 if (!isl_upoly_is_cst(up
))
147 cst
= isl_upoly_as_cst(up
);
151 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
154 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
156 struct isl_upoly_cst
*cst
;
160 if (!isl_upoly_is_cst(up
))
163 cst
= isl_upoly_as_cst(up
);
167 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
170 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
172 struct isl_upoly_cst
*cst
;
176 if (!isl_upoly_is_cst(up
))
179 cst
= isl_upoly_as_cst(up
);
183 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
186 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
188 struct isl_upoly_cst
*cst
;
192 if (!isl_upoly_is_cst(up
))
195 cst
= isl_upoly_as_cst(up
);
199 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
202 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
204 struct isl_upoly_cst
*cst
;
208 if (!isl_upoly_is_cst(up
))
211 cst
= isl_upoly_as_cst(up
);
215 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
218 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
220 struct isl_upoly_cst
*cst
;
222 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
231 isl_int_init(cst
->n
);
232 isl_int_init(cst
->d
);
237 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
239 struct isl_upoly_cst
*cst
;
241 cst
= isl_upoly_cst_alloc(ctx
);
245 isl_int_set_si(cst
->n
, 0);
246 isl_int_set_si(cst
->d
, 1);
251 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
253 struct isl_upoly_cst
*cst
;
255 cst
= isl_upoly_cst_alloc(ctx
);
259 isl_int_set_si(cst
->n
, 1);
260 isl_int_set_si(cst
->d
, 1);
265 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
267 struct isl_upoly_cst
*cst
;
269 cst
= isl_upoly_cst_alloc(ctx
);
273 isl_int_set_si(cst
->n
, 1);
274 isl_int_set_si(cst
->d
, 0);
279 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
281 struct isl_upoly_cst
*cst
;
283 cst
= isl_upoly_cst_alloc(ctx
);
287 isl_int_set_si(cst
->n
, -1);
288 isl_int_set_si(cst
->d
, 0);
293 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
295 struct isl_upoly_cst
*cst
;
297 cst
= isl_upoly_cst_alloc(ctx
);
301 isl_int_set_si(cst
->n
, 0);
302 isl_int_set_si(cst
->d
, 0);
307 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
308 isl_int n
, isl_int d
)
310 struct isl_upoly_cst
*cst
;
312 cst
= isl_upoly_cst_alloc(ctx
);
316 isl_int_set(cst
->n
, n
);
317 isl_int_set(cst
->d
, d
);
322 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
325 struct isl_upoly_rec
*rec
;
327 isl_assert(ctx
, var
>= 0, return NULL
);
328 isl_assert(ctx
, size
>= 0, return NULL
);
329 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
330 sizeof(struct isl_upoly_rec
) +
331 size
* sizeof(struct isl_upoly
*));
346 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_dim(
347 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*dim
)
349 qp
= isl_qpolynomial_cow(qp
);
353 isl_dim_free(qp
->dim
);
358 isl_qpolynomial_free(qp
);
363 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
365 return qp
? qp
->dim
->ctx
: NULL
;
368 __isl_give isl_dim
*isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial
*qp
)
370 return qp
? isl_dim_copy(qp
->dim
) : NULL
;
373 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
374 enum isl_dim_type type
)
376 return qp
? isl_dim_size(qp
->dim
, type
) : 0;
379 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
381 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
384 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
386 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
389 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
391 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
394 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
396 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
399 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
401 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
404 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
406 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
409 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
411 isl_int_clear(cst
->n
);
412 isl_int_clear(cst
->d
);
415 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
419 for (i
= 0; i
< rec
->n
; ++i
)
420 isl_upoly_free(rec
->p
[i
]);
423 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
432 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
434 struct isl_upoly_cst
*cst
;
435 struct isl_upoly_cst
*dup
;
437 cst
= isl_upoly_as_cst(up
);
441 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
444 isl_int_set(dup
->n
, cst
->n
);
445 isl_int_set(dup
->d
, cst
->d
);
450 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
453 struct isl_upoly_rec
*rec
;
454 struct isl_upoly_rec
*dup
;
456 rec
= isl_upoly_as_rec(up
);
460 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
464 for (i
= 0; i
< rec
->n
; ++i
) {
465 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
473 isl_upoly_free(&dup
->up
);
477 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
482 if (isl_upoly_is_cst(up
))
483 return isl_upoly_dup_cst(up
);
485 return isl_upoly_dup_rec(up
);
488 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
496 return isl_upoly_dup(up
);
499 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
508 upoly_free_cst((struct isl_upoly_cst
*)up
);
510 upoly_free_rec((struct isl_upoly_rec
*)up
);
512 isl_ctx_deref(up
->ctx
);
516 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
521 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
522 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
523 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
524 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
529 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
530 __isl_take
struct isl_upoly
*up2
)
532 struct isl_upoly_cst
*cst1
;
533 struct isl_upoly_cst
*cst2
;
535 up1
= isl_upoly_cow(up1
);
539 cst1
= isl_upoly_as_cst(up1
);
540 cst2
= isl_upoly_as_cst(up2
);
542 if (isl_int_eq(cst1
->d
, cst2
->d
))
543 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
545 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
546 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
547 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
550 isl_upoly_cst_reduce(cst1
);
560 static __isl_give
struct isl_upoly
*replace_by_zero(
561 __isl_take
struct isl_upoly
*up
)
569 return isl_upoly_zero(ctx
);
572 static __isl_give
struct isl_upoly
*replace_by_constant_term(
573 __isl_take
struct isl_upoly
*up
)
575 struct isl_upoly_rec
*rec
;
576 struct isl_upoly
*cst
;
581 rec
= isl_upoly_as_rec(up
);
584 cst
= isl_upoly_copy(rec
->p
[0]);
592 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
593 __isl_take
struct isl_upoly
*up2
)
596 struct isl_upoly_rec
*rec1
, *rec2
;
601 if (isl_upoly_is_nan(up1
)) {
606 if (isl_upoly_is_nan(up2
)) {
611 if (isl_upoly_is_zero(up1
)) {
616 if (isl_upoly_is_zero(up2
)) {
621 if (up1
->var
< up2
->var
)
622 return isl_upoly_sum(up2
, up1
);
624 if (up2
->var
< up1
->var
) {
625 struct isl_upoly_rec
*rec
;
626 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
630 up1
= isl_upoly_cow(up1
);
631 rec
= isl_upoly_as_rec(up1
);
634 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
636 up1
= replace_by_constant_term(up1
);
640 if (isl_upoly_is_cst(up1
))
641 return isl_upoly_sum_cst(up1
, up2
);
643 rec1
= isl_upoly_as_rec(up1
);
644 rec2
= isl_upoly_as_rec(up2
);
648 if (rec1
->n
< rec2
->n
)
649 return isl_upoly_sum(up2
, up1
);
651 up1
= isl_upoly_cow(up1
);
652 rec1
= isl_upoly_as_rec(up1
);
656 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
657 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
658 isl_upoly_copy(rec2
->p
[i
]));
661 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
662 isl_upoly_free(rec1
->p
[i
]);
668 up1
= replace_by_zero(up1
);
669 else if (rec1
->n
== 1)
670 up1
= replace_by_constant_term(up1
);
681 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
682 __isl_take
struct isl_upoly
*up
, isl_int v
)
684 struct isl_upoly_cst
*cst
;
686 up
= isl_upoly_cow(up
);
690 cst
= isl_upoly_as_cst(up
);
692 isl_int_addmul(cst
->n
, cst
->d
, v
);
697 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
698 __isl_take
struct isl_upoly
*up
, isl_int v
)
700 struct isl_upoly_rec
*rec
;
705 if (isl_upoly_is_cst(up
))
706 return isl_upoly_cst_add_isl_int(up
, v
);
708 up
= isl_upoly_cow(up
);
709 rec
= isl_upoly_as_rec(up
);
713 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
723 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
724 __isl_take
struct isl_upoly
*up
, isl_int v
)
726 struct isl_upoly_cst
*cst
;
728 if (isl_upoly_is_zero(up
))
731 up
= isl_upoly_cow(up
);
735 cst
= isl_upoly_as_cst(up
);
737 isl_int_mul(cst
->n
, cst
->n
, v
);
742 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
743 __isl_take
struct isl_upoly
*up
, isl_int v
)
746 struct isl_upoly_rec
*rec
;
751 if (isl_upoly_is_cst(up
))
752 return isl_upoly_cst_mul_isl_int(up
, v
);
754 up
= isl_upoly_cow(up
);
755 rec
= isl_upoly_as_rec(up
);
759 for (i
= 0; i
< rec
->n
; ++i
) {
760 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
771 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
772 __isl_take
struct isl_upoly
*up2
)
774 struct isl_upoly_cst
*cst1
;
775 struct isl_upoly_cst
*cst2
;
777 up1
= isl_upoly_cow(up1
);
781 cst1
= isl_upoly_as_cst(up1
);
782 cst2
= isl_upoly_as_cst(up2
);
784 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
785 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
787 isl_upoly_cst_reduce(cst1
);
797 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
798 __isl_take
struct isl_upoly
*up2
)
800 struct isl_upoly_rec
*rec1
;
801 struct isl_upoly_rec
*rec2
;
802 struct isl_upoly_rec
*res
= NULL
;
806 rec1
= isl_upoly_as_rec(up1
);
807 rec2
= isl_upoly_as_rec(up2
);
810 size
= rec1
->n
+ rec2
->n
- 1;
811 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
815 for (i
= 0; i
< rec1
->n
; ++i
) {
816 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
817 isl_upoly_copy(rec1
->p
[i
]));
822 for (; i
< size
; ++i
) {
823 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
828 for (i
= 0; i
< rec1
->n
; ++i
) {
829 for (j
= 1; j
< rec2
->n
; ++j
) {
830 struct isl_upoly
*up
;
831 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
832 isl_upoly_copy(rec1
->p
[i
]));
833 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
846 isl_upoly_free(&res
->up
);
850 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
851 __isl_take
struct isl_upoly
*up2
)
856 if (isl_upoly_is_nan(up1
)) {
861 if (isl_upoly_is_nan(up2
)) {
866 if (isl_upoly_is_zero(up1
)) {
871 if (isl_upoly_is_zero(up2
)) {
876 if (isl_upoly_is_one(up1
)) {
881 if (isl_upoly_is_one(up2
)) {
886 if (up1
->var
< up2
->var
)
887 return isl_upoly_mul(up2
, up1
);
889 if (up2
->var
< up1
->var
) {
891 struct isl_upoly_rec
*rec
;
892 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
893 isl_ctx
*ctx
= up1
->ctx
;
896 return isl_upoly_nan(ctx
);
898 up1
= isl_upoly_cow(up1
);
899 rec
= isl_upoly_as_rec(up1
);
903 for (i
= 0; i
< rec
->n
; ++i
) {
904 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
905 isl_upoly_copy(up2
));
913 if (isl_upoly_is_cst(up1
))
914 return isl_upoly_mul_cst(up1
, up2
);
916 return isl_upoly_mul_rec(up1
, up2
);
923 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
926 struct isl_upoly
*res
;
934 res
= isl_upoly_copy(up
);
936 res
= isl_upoly_one(up
->ctx
);
938 while (power
>>= 1) {
939 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
941 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
948 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_dim
*dim
,
949 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
951 struct isl_qpolynomial
*qp
= NULL
;
957 total
= isl_dim_total(dim
);
959 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
964 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
975 isl_qpolynomial_free(qp
);
979 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
988 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
990 struct isl_qpolynomial
*dup
;
995 dup
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
,
996 isl_upoly_copy(qp
->upoly
));
999 isl_mat_free(dup
->div
);
1000 dup
->div
= isl_mat_copy(qp
->div
);
1006 isl_qpolynomial_free(dup
);
1010 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1018 return isl_qpolynomial_dup(qp
);
1021 void *isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1029 isl_dim_free(qp
->dim
);
1030 isl_mat_free(qp
->div
);
1031 isl_upoly_free(qp
->upoly
);
1037 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1040 struct isl_upoly_rec
*rec
;
1041 struct isl_upoly_cst
*cst
;
1043 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1046 for (i
= 0; i
< 1 + power
; ++i
) {
1047 rec
->p
[i
] = isl_upoly_zero(ctx
);
1052 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1053 isl_int_set_si(cst
->n
, 1);
1057 isl_upoly_free(&rec
->up
);
1061 /* r array maps original positions to new positions.
1063 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1067 struct isl_upoly_rec
*rec
;
1068 struct isl_upoly
*base
;
1069 struct isl_upoly
*res
;
1071 if (isl_upoly_is_cst(up
))
1074 rec
= isl_upoly_as_rec(up
);
1078 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1080 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1081 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1083 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1084 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1085 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1088 isl_upoly_free(base
);
1097 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1102 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1103 div1
->n_col
>= div2
->n_col
, return -1);
1105 if (div1
->n_row
== div2
->n_row
)
1106 return isl_mat_is_equal(div1
, div2
);
1108 n_row
= div1
->n_row
;
1109 n_col
= div1
->n_col
;
1110 div1
->n_row
= div2
->n_row
;
1111 div1
->n_col
= div2
->n_col
;
1113 equal
= isl_mat_is_equal(div1
, div2
);
1115 div1
->n_row
= n_row
;
1116 div1
->n_col
= n_col
;
1121 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1125 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1126 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1131 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1134 struct isl_div_sort_info
{
1139 static int div_sort_cmp(const void *p1
, const void *p2
)
1141 const struct isl_div_sort_info
*i1
, *i2
;
1142 i1
= (const struct isl_div_sort_info
*) p1
;
1143 i2
= (const struct isl_div_sort_info
*) p2
;
1145 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1148 /* Sort divs and remove duplicates.
1150 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1155 struct isl_div_sort_info
*array
= NULL
;
1156 int *pos
= NULL
, *at
= NULL
;
1157 int *reordering
= NULL
;
1162 if (qp
->div
->n_row
<= 1)
1165 div_pos
= isl_dim_total(qp
->dim
);
1167 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1169 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1170 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1171 len
= qp
->div
->n_col
- 2;
1172 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1173 if (!array
|| !pos
|| !at
|| !reordering
)
1176 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1177 array
[i
].div
= qp
->div
;
1183 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1186 for (i
= 0; i
< div_pos
; ++i
)
1189 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1190 if (pos
[array
[i
].row
] == i
)
1192 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1193 pos
[at
[i
]] = pos
[array
[i
].row
];
1194 at
[pos
[array
[i
].row
]] = at
[i
];
1195 at
[i
] = array
[i
].row
;
1196 pos
[array
[i
].row
] = i
;
1200 for (i
= 0; i
< len
- div_pos
; ++i
) {
1202 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1203 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1204 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1205 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1206 2 + div_pos
+ i
- skip
);
1207 qp
->div
= isl_mat_drop_cols(qp
->div
,
1208 2 + div_pos
+ i
- skip
, 1);
1211 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1214 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1216 if (!qp
->upoly
|| !qp
->div
)
1230 isl_qpolynomial_free(qp
);
1234 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1235 int *exp
, int first
)
1238 struct isl_upoly_rec
*rec
;
1240 if (isl_upoly_is_cst(up
))
1243 if (up
->var
< first
)
1246 if (exp
[up
->var
- first
] == up
->var
- first
)
1249 up
= isl_upoly_cow(up
);
1253 up
->var
= exp
[up
->var
- first
] + first
;
1255 rec
= isl_upoly_as_rec(up
);
1259 for (i
= 0; i
< rec
->n
; ++i
) {
1260 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1271 static __isl_give isl_qpolynomial
*with_merged_divs(
1272 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1273 __isl_take isl_qpolynomial
*qp2
),
1274 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1278 isl_mat
*div
= NULL
;
1280 qp1
= isl_qpolynomial_cow(qp1
);
1281 qp2
= isl_qpolynomial_cow(qp2
);
1286 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1287 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1289 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1290 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1294 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1298 isl_mat_free(qp1
->div
);
1299 qp1
->div
= isl_mat_copy(div
);
1300 isl_mat_free(qp2
->div
);
1301 qp2
->div
= isl_mat_copy(div
);
1303 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1304 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1306 if (!qp1
->upoly
|| !qp2
->upoly
)
1313 return fn(qp1
, qp2
);
1318 isl_qpolynomial_free(qp1
);
1319 isl_qpolynomial_free(qp2
);
1323 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1324 __isl_take isl_qpolynomial
*qp2
)
1326 qp1
= isl_qpolynomial_cow(qp1
);
1331 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1332 return isl_qpolynomial_add(qp2
, qp1
);
1334 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1335 if (!compatible_divs(qp1
->div
, qp2
->div
))
1336 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1338 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1342 isl_qpolynomial_free(qp2
);
1346 isl_qpolynomial_free(qp1
);
1347 isl_qpolynomial_free(qp2
);
1351 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1352 __isl_keep isl_set
*dom
,
1353 __isl_take isl_qpolynomial
*qp1
,
1354 __isl_take isl_qpolynomial
*qp2
)
1356 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1357 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1361 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1362 __isl_take isl_qpolynomial
*qp2
)
1364 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1367 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1368 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1370 if (isl_int_is_zero(v
))
1373 qp
= isl_qpolynomial_cow(qp
);
1377 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1383 isl_qpolynomial_free(qp
);
1388 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1393 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1396 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1397 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1399 if (isl_int_is_one(v
))
1402 if (qp
&& isl_int_is_zero(v
)) {
1403 isl_qpolynomial
*zero
;
1404 zero
= isl_qpolynomial_zero(isl_dim_copy(qp
->dim
));
1405 isl_qpolynomial_free(qp
);
1409 qp
= isl_qpolynomial_cow(qp
);
1413 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1419 isl_qpolynomial_free(qp
);
1423 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1424 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1426 return isl_qpolynomial_mul_isl_int(qp
, v
);
1429 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1430 __isl_take isl_qpolynomial
*qp2
)
1432 qp1
= isl_qpolynomial_cow(qp1
);
1437 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1438 return isl_qpolynomial_mul(qp2
, qp1
);
1440 isl_assert(qp1
->dim
->ctx
, isl_dim_equal(qp1
->dim
, qp2
->dim
), goto error
);
1441 if (!compatible_divs(qp1
->div
, qp2
->div
))
1442 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1444 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1448 isl_qpolynomial_free(qp2
);
1452 isl_qpolynomial_free(qp1
);
1453 isl_qpolynomial_free(qp2
);
1457 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1460 qp
= isl_qpolynomial_cow(qp
);
1465 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1471 isl_qpolynomial_free(qp
);
1475 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1476 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1483 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1487 for (i
= 0; i
< pwqp
->n
; ++i
) {
1488 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1490 return isl_pw_qpolynomial_free(pwqp
);
1496 __isl_give isl_qpolynomial
*isl_qpolynomial_zero(__isl_take isl_dim
*dim
)
1500 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1503 __isl_give isl_qpolynomial
*isl_qpolynomial_one(__isl_take isl_dim
*dim
)
1507 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1510 __isl_give isl_qpolynomial
*isl_qpolynomial_infty(__isl_take isl_dim
*dim
)
1514 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1517 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty(__isl_take isl_dim
*dim
)
1521 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1524 __isl_give isl_qpolynomial
*isl_qpolynomial_nan(__isl_take isl_dim
*dim
)
1528 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1531 __isl_give isl_qpolynomial
*isl_qpolynomial_cst(__isl_take isl_dim
*dim
,
1534 struct isl_qpolynomial
*qp
;
1535 struct isl_upoly_cst
*cst
;
1540 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1544 cst
= isl_upoly_as_cst(qp
->upoly
);
1545 isl_int_set(cst
->n
, v
);
1550 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1551 isl_int
*n
, isl_int
*d
)
1553 struct isl_upoly_cst
*cst
;
1558 if (!isl_upoly_is_cst(qp
->upoly
))
1561 cst
= isl_upoly_as_cst(qp
->upoly
);
1566 isl_int_set(*n
, cst
->n
);
1568 isl_int_set(*d
, cst
->d
);
1573 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1576 struct isl_upoly_rec
*rec
;
1584 rec
= isl_upoly_as_rec(up
);
1591 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1593 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1599 return isl_upoly_is_affine(rec
->p
[0]);
1602 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1607 if (qp
->div
->n_row
> 0)
1610 return isl_upoly_is_affine(qp
->upoly
);
1613 static void update_coeff(__isl_keep isl_vec
*aff
,
1614 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1619 if (isl_int_is_zero(cst
->n
))
1624 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1625 isl_int_divexact(f
, cst
->d
, gcd
);
1626 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1627 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1628 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1633 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1634 __isl_keep isl_vec
*aff
)
1636 struct isl_upoly_cst
*cst
;
1637 struct isl_upoly_rec
*rec
;
1643 struct isl_upoly_cst
*cst
;
1645 cst
= isl_upoly_as_cst(up
);
1648 update_coeff(aff
, cst
, 0);
1652 rec
= isl_upoly_as_rec(up
);
1655 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1657 cst
= isl_upoly_as_cst(rec
->p
[1]);
1660 update_coeff(aff
, cst
, 1 + up
->var
);
1662 return isl_upoly_update_affine(rec
->p
[0], aff
);
1665 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1666 __isl_keep isl_qpolynomial
*qp
)
1674 d
= isl_dim_total(qp
->dim
);
1675 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1679 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1680 isl_int_set_si(aff
->el
[0], 1);
1682 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1691 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1692 __isl_keep isl_qpolynomial
*qp2
)
1699 equal
= isl_dim_equal(qp1
->dim
, qp2
->dim
);
1700 if (equal
< 0 || !equal
)
1703 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1704 if (equal
< 0 || !equal
)
1707 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1710 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1713 struct isl_upoly_rec
*rec
;
1715 if (isl_upoly_is_cst(up
)) {
1716 struct isl_upoly_cst
*cst
;
1717 cst
= isl_upoly_as_cst(up
);
1720 isl_int_lcm(*d
, *d
, cst
->d
);
1724 rec
= isl_upoly_as_rec(up
);
1728 for (i
= 0; i
< rec
->n
; ++i
)
1729 upoly_update_den(rec
->p
[i
], d
);
1732 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1734 isl_int_set_si(*d
, 1);
1737 upoly_update_den(qp
->upoly
, d
);
1740 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow(__isl_take isl_dim
*dim
,
1743 struct isl_ctx
*ctx
;
1750 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1753 __isl_give isl_qpolynomial
*isl_qpolynomial_var(__isl_take isl_dim
*dim
,
1754 enum isl_dim_type type
, unsigned pos
)
1759 isl_assert(dim
->ctx
, isl_dim_size(dim
, isl_dim_in
) == 0, goto error
);
1760 isl_assert(dim
->ctx
, pos
< isl_dim_size(dim
, type
), goto error
);
1762 if (type
== isl_dim_set
)
1763 pos
+= isl_dim_size(dim
, isl_dim_param
);
1765 return isl_qpolynomial_var_pow(dim
, pos
, 1);
1771 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1772 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1775 struct isl_upoly_rec
*rec
;
1776 struct isl_upoly
*base
, *res
;
1781 if (isl_upoly_is_cst(up
))
1784 if (up
->var
< first
)
1787 rec
= isl_upoly_as_rec(up
);
1791 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1793 if (up
->var
>= first
+ n
)
1794 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1796 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1798 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1799 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1800 struct isl_upoly
*t
;
1801 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1802 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1803 res
= isl_upoly_sum(res
, t
);
1806 isl_upoly_free(base
);
1815 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1816 isl_int denom
, unsigned len
)
1819 struct isl_upoly
*up
;
1821 isl_assert(ctx
, len
>= 1, return NULL
);
1823 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1824 for (i
= 0; i
< len
- 1; ++i
) {
1825 struct isl_upoly
*t
;
1826 struct isl_upoly
*c
;
1828 if (isl_int_is_zero(f
[1 + i
]))
1831 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1832 t
= isl_upoly_var_pow(ctx
, i
, 1);
1833 t
= isl_upoly_mul(c
, t
);
1834 up
= isl_upoly_sum(up
, t
);
1840 /* Remove common factor of non-constant terms and denominator.
1842 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1844 isl_ctx
*ctx
= qp
->div
->ctx
;
1845 unsigned total
= qp
->div
->n_col
- 2;
1847 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1848 isl_int_gcd(ctx
->normalize_gcd
,
1849 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1850 if (isl_int_is_one(ctx
->normalize_gcd
))
1853 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1854 ctx
->normalize_gcd
, total
);
1855 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1856 ctx
->normalize_gcd
);
1857 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1858 ctx
->normalize_gcd
);
1861 /* Replace the integer division identified by "div" by the polynomial "s".
1862 * The integer division is assumed not to appear in the definition
1863 * of any other integer divisions.
1865 static __isl_give isl_qpolynomial
*substitute_div(
1866 __isl_take isl_qpolynomial
*qp
,
1867 int div
, __isl_take
struct isl_upoly
*s
)
1876 qp
= isl_qpolynomial_cow(qp
);
1880 total
= isl_dim_total(qp
->dim
);
1881 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1885 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1888 for (i
= 0; i
< total
+ div
; ++i
)
1890 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1891 reordering
[i
] = i
- 1;
1892 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1893 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1894 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1897 if (!qp
->upoly
|| !qp
->div
)
1903 isl_qpolynomial_free(qp
);
1908 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1909 * divisions because d is equal to 1 by their definition, i.e., e.
1911 static __isl_give isl_qpolynomial
*substitute_non_divs(
1912 __isl_take isl_qpolynomial
*qp
)
1916 struct isl_upoly
*s
;
1921 total
= isl_dim_total(qp
->dim
);
1922 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1923 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1925 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1926 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1928 isl_seq_combine(qp
->div
->row
[j
] + 1,
1929 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1930 qp
->div
->row
[j
][2 + total
+ i
],
1931 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1932 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1933 normalize_div(qp
, j
);
1935 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1936 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1937 qp
= substitute_div(qp
, i
, s
);
1944 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1945 * with d the denominator. When replacing the coefficient e of x by
1946 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1947 * inside the division, so we need to add floor(e/d) * x outside.
1948 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1949 * to adjust the coefficient of x in each later div that depends on the
1950 * current div "div" and also in the affine expression "aff"
1951 * (if it too depends on "div").
1953 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1954 __isl_keep isl_vec
*aff
)
1958 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1961 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
1962 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
1963 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
1965 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1966 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
1967 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1968 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1969 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
1970 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
1971 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
1973 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
1974 v
, qp
->div
->row
[j
][2 + total
+ div
]);
1980 /* Check if the last non-zero coefficient is bigger that half of the
1981 * denominator. If so, we will invert the div to further reduce the number
1982 * of distinct divs that may appear.
1983 * If the last non-zero coefficient is exactly half the denominator,
1984 * then we continue looking for earlier coefficients that are bigger
1985 * than half the denominator.
1987 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
1992 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
1993 if (isl_int_is_zero(div
->row
[row
][i
]))
1995 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
1996 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
1997 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2007 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2008 * We only invert the coefficients of e (and the coefficient of q in
2009 * later divs and in "aff"). After calling this function, the
2010 * coefficients of e should be reduced again.
2012 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2013 __isl_keep isl_vec
*aff
)
2015 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2017 isl_seq_neg(qp
->div
->row
[div
] + 1,
2018 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2019 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2020 isl_int_add(qp
->div
->row
[div
][1],
2021 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2022 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2023 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2024 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2025 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2028 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2029 * in the interval [0, d-1], with d the denominator and such that the
2030 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2032 * After the reduction, some divs may have become redundant or identical,
2033 * so we call substitute_non_divs and sort_divs. If these functions
2034 * eliminate divs or merge two or more divs into one, the coefficients
2035 * of the enclosing divs may have to be reduced again, so we call
2036 * ourselves recursively if the number of divs decreases.
2038 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2041 isl_vec
*aff
= NULL
;
2042 struct isl_upoly
*s
;
2048 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2049 aff
= isl_vec_clr(aff
);
2053 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2055 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2056 normalize_div(qp
, i
);
2057 reduce_div(qp
, i
, aff
);
2058 if (needs_invert(qp
->div
, i
)) {
2059 invert_div(qp
, i
, aff
);
2060 reduce_div(qp
, i
, aff
);
2064 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2065 qp
->div
->ctx
->one
, aff
->size
);
2066 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2073 n_div
= qp
->div
->n_row
;
2074 qp
= substitute_non_divs(qp
);
2076 if (qp
&& qp
->div
->n_row
< n_div
)
2077 return reduce_divs(qp
);
2081 isl_qpolynomial_free(qp
);
2086 /* Assumes each div only depends on earlier divs.
2088 __isl_give isl_qpolynomial
*isl_qpolynomial_div_pow(__isl_take isl_div
*div
,
2091 struct isl_qpolynomial
*qp
= NULL
;
2092 struct isl_upoly_rec
*rec
;
2093 struct isl_upoly_cst
*cst
;
2100 d
= div
->line
- div
->bmap
->div
;
2102 pos
= isl_dim_total(div
->bmap
->dim
) + d
;
2103 rec
= isl_upoly_alloc_rec(div
->ctx
, pos
, 1 + power
);
2104 qp
= isl_qpolynomial_alloc(isl_basic_map_get_dim(div
->bmap
),
2105 div
->bmap
->n_div
, &rec
->up
);
2109 for (i
= 0; i
< div
->bmap
->n_div
; ++i
)
2110 isl_seq_cpy(qp
->div
->row
[i
], div
->bmap
->div
[i
], qp
->div
->n_col
);
2112 for (i
= 0; i
< 1 + power
; ++i
) {
2113 rec
->p
[i
] = isl_upoly_zero(div
->ctx
);
2118 cst
= isl_upoly_as_cst(rec
->p
[power
]);
2119 isl_int_set_si(cst
->n
, 1);
2123 qp
= reduce_divs(qp
);
2127 isl_qpolynomial_free(qp
);
2132 __isl_give isl_qpolynomial
*isl_qpolynomial_div(__isl_take isl_div
*div
)
2134 return isl_qpolynomial_div_pow(div
, 1);
2137 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst(__isl_take isl_dim
*dim
,
2138 const isl_int n
, const isl_int d
)
2140 struct isl_qpolynomial
*qp
;
2141 struct isl_upoly_cst
*cst
;
2146 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2150 cst
= isl_upoly_as_cst(qp
->upoly
);
2151 isl_int_set(cst
->n
, n
);
2152 isl_int_set(cst
->d
, d
);
2157 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2159 struct isl_upoly_rec
*rec
;
2165 if (isl_upoly_is_cst(up
))
2169 active
[up
->var
] = 1;
2171 rec
= isl_upoly_as_rec(up
);
2172 for (i
= 0; i
< rec
->n
; ++i
)
2173 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2179 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2182 int d
= isl_dim_total(qp
->dim
);
2187 for (i
= 0; i
< d
; ++i
)
2188 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2189 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2195 return up_set_active(qp
->upoly
, active
, d
);
2198 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2199 enum isl_dim_type type
, unsigned first
, unsigned n
)
2210 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2212 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2213 type
== isl_dim_set
, return -1);
2215 active
= isl_calloc_array(qp
->dim
->ctx
, int, isl_dim_total(qp
->dim
));
2216 if (set_active(qp
, active
) < 0)
2219 if (type
== isl_dim_set
)
2220 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2221 for (i
= 0; i
< n
; ++i
)
2222 if (active
[first
+ i
]) {
2235 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2236 * of the divs that do appear in the quasi-polynomial.
2238 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2239 __isl_take isl_qpolynomial
*qp
)
2246 int *reordering
= NULL
;
2253 if (qp
->div
->n_row
== 0)
2256 d
= isl_dim_total(qp
->dim
);
2257 len
= qp
->div
->n_col
- 2;
2258 ctx
= isl_qpolynomial_get_ctx(qp
);
2259 active
= isl_calloc_array(ctx
, int, len
);
2263 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2266 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2267 if (!active
[d
+ i
]) {
2271 for (j
= 0; j
< i
; ++j
) {
2272 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2284 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2288 for (i
= 0; i
< d
; ++i
)
2292 n_div
= qp
->div
->n_row
;
2293 for (i
= 0; i
< n_div
; ++i
) {
2294 if (!active
[d
+ i
]) {
2295 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2296 qp
->div
= isl_mat_drop_cols(qp
->div
,
2297 2 + d
+ i
- skip
, 1);
2300 reordering
[d
+ i
] = d
+ i
- skip
;
2303 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2305 if (!qp
->upoly
|| !qp
->div
)
2315 isl_qpolynomial_free(qp
);
2319 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2320 unsigned first
, unsigned n
)
2323 struct isl_upoly_rec
*rec
;
2327 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2329 if (up
->var
< first
+ n
) {
2330 up
= replace_by_constant_term(up
);
2331 return isl_upoly_drop(up
, first
, n
);
2333 up
= isl_upoly_cow(up
);
2337 rec
= isl_upoly_as_rec(up
);
2341 for (i
= 0; i
< rec
->n
; ++i
) {
2342 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2353 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2354 __isl_take isl_qpolynomial
*qp
,
2355 enum isl_dim_type type
, unsigned pos
, const char *s
)
2357 qp
= isl_qpolynomial_cow(qp
);
2360 qp
->dim
= isl_dim_set_name(qp
->dim
, type
, pos
, s
);
2365 isl_qpolynomial_free(qp
);
2369 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2370 __isl_take isl_qpolynomial
*qp
,
2371 enum isl_dim_type type
, unsigned first
, unsigned n
)
2375 if (n
== 0 && !isl_dim_is_named_or_nested(qp
->dim
, type
))
2378 qp
= isl_qpolynomial_cow(qp
);
2382 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
2384 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2385 type
== isl_dim_set
, goto error
);
2387 qp
->dim
= isl_dim_drop(qp
->dim
, type
, first
, n
);
2391 if (type
== isl_dim_set
)
2392 first
+= isl_dim_size(qp
->dim
, isl_dim_param
);
2394 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2398 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2404 isl_qpolynomial_free(qp
);
2408 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2409 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2415 struct isl_upoly
*up
;
2419 if (eq
->n_eq
== 0) {
2420 isl_basic_set_free(eq
);
2424 qp
= isl_qpolynomial_cow(qp
);
2427 qp
->div
= isl_mat_cow(qp
->div
);
2431 total
= 1 + isl_dim_total(eq
->dim
);
2433 isl_int_init(denom
);
2434 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2435 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2436 if (j
< 0 || j
== 0 || j
>= total
)
2439 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2440 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2442 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2443 &qp
->div
->row
[k
][0]);
2444 normalize_div(qp
, k
);
2447 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2448 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2449 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2450 isl_int_set_si(eq
->eq
[i
][j
], 0);
2452 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2453 eq
->eq
[i
], denom
, total
);
2454 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2457 isl_int_clear(denom
);
2462 isl_basic_set_free(eq
);
2464 qp
= substitute_non_divs(qp
);
2469 isl_basic_set_free(eq
);
2470 isl_qpolynomial_free(qp
);
2474 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2476 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2477 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2481 if (qp
->div
->n_row
> 0)
2482 eq
= isl_basic_set_add(eq
, isl_dim_set
, qp
->div
->n_row
);
2483 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2485 isl_basic_set_free(eq
);
2486 isl_qpolynomial_free(qp
);
2490 static __isl_give isl_basic_set
*add_div_constraints(
2491 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2499 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2502 total
= isl_basic_set_total_dim(bset
);
2503 for (i
= 0; i
< div
->n_row
; ++i
)
2504 if (isl_basic_set_add_div_constraints_var(bset
,
2505 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2512 isl_basic_set_free(bset
);
2516 /* Look for equalities among the variables shared by context and qp
2517 * and the integer divisions of qp, if any.
2518 * The equalities are then used to eliminate variables and/or integer
2519 * divisions from qp.
2521 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2522 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2528 if (qp
->div
->n_row
> 0) {
2529 isl_basic_set
*bset
;
2530 context
= isl_set_add_dims(context
, isl_dim_set
,
2532 bset
= isl_basic_set_universe(isl_set_get_dim(context
));
2533 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2534 context
= isl_set_intersect(context
,
2535 isl_set_from_basic_set(bset
));
2538 aff
= isl_set_affine_hull(context
);
2539 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2541 isl_qpolynomial_free(qp
);
2542 isl_set_free(context
);
2546 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2547 __isl_take isl_qpolynomial
*qp
)
2553 if (isl_qpolynomial_is_zero(qp
)) {
2554 isl_dim
*dim
= isl_qpolynomial_get_dim(qp
);
2555 isl_qpolynomial_free(qp
);
2556 return isl_pw_qpolynomial_zero(dim
);
2559 dom
= isl_set_universe(isl_qpolynomial_get_dim(qp
));
2560 return isl_pw_qpolynomial_alloc(dom
, qp
);
2564 #define PW isl_pw_qpolynomial
2566 #define EL isl_qpolynomial
2568 #define EL_IS_ZERO is_zero
2572 #define IS_ZERO is_zero
2576 #include <isl_pw_templ.c>
2579 #define UNION isl_union_pw_qpolynomial
2581 #define PART isl_pw_qpolynomial
2583 #define PARTS pw_qpolynomial
2585 #include <isl_union_templ.c>
2587 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2595 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2598 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2601 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2602 __isl_take isl_pw_qpolynomial
*pwqp1
,
2603 __isl_take isl_pw_qpolynomial
*pwqp2
)
2606 struct isl_pw_qpolynomial
*res
;
2608 if (!pwqp1
|| !pwqp2
)
2611 isl_assert(pwqp1
->dim
->ctx
, isl_dim_equal(pwqp1
->dim
, pwqp2
->dim
),
2614 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2615 isl_pw_qpolynomial_free(pwqp2
);
2619 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2620 isl_pw_qpolynomial_free(pwqp1
);
2624 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2625 isl_pw_qpolynomial_free(pwqp1
);
2629 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2630 isl_pw_qpolynomial_free(pwqp2
);
2634 n
= pwqp1
->n
* pwqp2
->n
;
2635 res
= isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1
->dim
), n
);
2637 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2638 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2639 struct isl_set
*common
;
2640 struct isl_qpolynomial
*prod
;
2641 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2642 isl_set_copy(pwqp2
->p
[j
].set
));
2643 if (isl_set_plain_is_empty(common
)) {
2644 isl_set_free(common
);
2648 prod
= isl_qpolynomial_mul(
2649 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2650 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2652 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2656 isl_pw_qpolynomial_free(pwqp1
);
2657 isl_pw_qpolynomial_free(pwqp2
);
2661 isl_pw_qpolynomial_free(pwqp1
);
2662 isl_pw_qpolynomial_free(pwqp2
);
2666 __isl_give
struct isl_upoly
*isl_upoly_eval(
2667 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2670 struct isl_upoly_rec
*rec
;
2671 struct isl_upoly
*res
;
2672 struct isl_upoly
*base
;
2674 if (isl_upoly_is_cst(up
)) {
2679 rec
= isl_upoly_as_rec(up
);
2683 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2685 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2687 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2690 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2691 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2692 res
= isl_upoly_sum(res
,
2693 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2694 isl_vec_copy(vec
)));
2697 isl_upoly_free(base
);
2707 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2708 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2711 struct isl_upoly
*up
;
2716 isl_assert(pnt
->dim
->ctx
, isl_dim_equal(pnt
->dim
, qp
->dim
), goto error
);
2718 if (qp
->div
->n_row
== 0)
2719 ext
= isl_vec_copy(pnt
->vec
);
2722 unsigned dim
= isl_dim_total(qp
->dim
);
2723 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2727 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2728 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2729 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2730 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2731 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2732 qp
->div
->row
[i
][0]);
2736 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2740 dim
= isl_dim_copy(qp
->dim
);
2741 isl_qpolynomial_free(qp
);
2742 isl_point_free(pnt
);
2744 return isl_qpolynomial_alloc(dim
, 0, up
);
2746 isl_qpolynomial_free(qp
);
2747 isl_point_free(pnt
);
2751 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2752 __isl_keep
struct isl_upoly_cst
*cst2
)
2757 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2758 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2759 cmp
= isl_int_sgn(t
);
2764 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2765 __isl_keep isl_qpolynomial
*qp2
)
2767 struct isl_upoly_cst
*cst1
, *cst2
;
2771 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2772 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2773 if (isl_qpolynomial_is_nan(qp1
))
2775 if (isl_qpolynomial_is_nan(qp2
))
2777 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2778 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2780 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2783 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2784 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2786 struct isl_upoly_cst
*cst1
, *cst2
;
2791 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2792 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2793 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2794 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2795 cmp
= isl_upoly_cmp(cst1
, cst2
);
2798 isl_qpolynomial_free(qp2
);
2800 isl_qpolynomial_free(qp1
);
2805 isl_qpolynomial_free(qp1
);
2806 isl_qpolynomial_free(qp2
);
2810 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2811 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2813 struct isl_upoly_cst
*cst1
, *cst2
;
2818 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2819 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2820 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2821 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2822 cmp
= isl_upoly_cmp(cst1
, cst2
);
2825 isl_qpolynomial_free(qp2
);
2827 isl_qpolynomial_free(qp1
);
2832 isl_qpolynomial_free(qp1
);
2833 isl_qpolynomial_free(qp2
);
2837 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2838 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2839 unsigned first
, unsigned n
)
2845 if (n
== 0 && !isl_dim_is_named_or_nested(qp
->dim
, type
))
2848 qp
= isl_qpolynomial_cow(qp
);
2852 isl_assert(qp
->div
->ctx
, first
<= isl_dim_size(qp
->dim
, type
),
2855 g_pos
= pos(qp
->dim
, type
) + first
;
2857 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
2861 total
= qp
->div
->n_col
- 2;
2862 if (total
> g_pos
) {
2864 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2867 for (i
= 0; i
< total
- g_pos
; ++i
)
2869 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2875 qp
->dim
= isl_dim_insert(qp
->dim
, type
, first
, n
);
2881 isl_qpolynomial_free(qp
);
2885 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2886 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2890 pos
= isl_qpolynomial_dim(qp
, type
);
2892 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2895 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2896 __isl_take isl_pw_qpolynomial
*pwqp
,
2897 enum isl_dim_type type
, unsigned n
)
2901 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2903 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2906 static int *reordering_move(isl_ctx
*ctx
,
2907 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2912 reordering
= isl_alloc_array(ctx
, int, len
);
2917 for (i
= 0; i
< dst
; ++i
)
2919 for (i
= 0; i
< n
; ++i
)
2920 reordering
[src
+ i
] = dst
+ i
;
2921 for (i
= 0; i
< src
- dst
; ++i
)
2922 reordering
[dst
+ i
] = dst
+ n
+ i
;
2923 for (i
= 0; i
< len
- src
- n
; ++i
)
2924 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2926 for (i
= 0; i
< src
; ++i
)
2928 for (i
= 0; i
< n
; ++i
)
2929 reordering
[src
+ i
] = dst
+ i
;
2930 for (i
= 0; i
< dst
- src
; ++i
)
2931 reordering
[src
+ n
+ i
] = src
+ i
;
2932 for (i
= 0; i
< len
- dst
- n
; ++i
)
2933 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2939 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2940 __isl_take isl_qpolynomial
*qp
,
2941 enum isl_dim_type dst_type
, unsigned dst_pos
,
2942 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2948 qp
= isl_qpolynomial_cow(qp
);
2952 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_dim_size(qp
->dim
, src_type
),
2955 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
2956 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
2957 if (dst_type
> src_type
)
2960 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
2967 reordering
= reordering_move(qp
->dim
->ctx
,
2968 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
2972 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2977 qp
->dim
= isl_dim_move(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
2983 isl_qpolynomial_free(qp
);
2987 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_dim
*dim
,
2988 isl_int
*f
, isl_int denom
)
2990 struct isl_upoly
*up
;
2995 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
, 1 + isl_dim_total(dim
));
2997 return isl_qpolynomial_alloc(dim
, 0, up
);
3000 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3003 struct isl_upoly
*up
;
3004 isl_qpolynomial
*qp
;
3009 ctx
= isl_aff_get_ctx(aff
);
3010 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3013 qp
= isl_qpolynomial_alloc(isl_aff_get_dim(aff
),
3014 aff
->ls
->div
->n_row
, up
);
3018 isl_mat_free(qp
->div
);
3019 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3020 qp
->div
= isl_mat_cow(qp
->div
);
3025 qp
= reduce_divs(qp
);
3026 qp
= remove_redundant_divs(qp
);
3033 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3034 __isl_take isl_pw_aff
*pwaff
)
3037 isl_pw_qpolynomial
*pwqp
;
3042 pwqp
= isl_pw_qpolynomial_alloc_(isl_pw_aff_get_dim(pwaff
), pwaff
->n
);
3044 for (i
= 0; i
< pwaff
->n
; ++i
) {
3046 isl_qpolynomial
*qp
;
3048 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3049 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3050 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3053 isl_pw_aff_free(pwaff
);
3057 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3058 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3062 aff
= isl_constraint_get_bound(c
, type
, pos
);
3063 isl_constraint_free(c
);
3064 return isl_qpolynomial_from_aff(aff
);
3067 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3068 * in "qp" by subs[i].
3070 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3071 __isl_take isl_qpolynomial
*qp
,
3072 enum isl_dim_type type
, unsigned first
, unsigned n
,
3073 __isl_keep isl_qpolynomial
**subs
)
3076 struct isl_upoly
**ups
;
3081 qp
= isl_qpolynomial_cow(qp
);
3084 for (i
= 0; i
< n
; ++i
)
3088 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_dim_size(qp
->dim
, type
),
3091 for (i
= 0; i
< n
; ++i
)
3092 isl_assert(qp
->dim
->ctx
, isl_dim_equal(qp
->dim
, subs
[i
]->dim
),
3095 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3096 for (i
= 0; i
< n
; ++i
)
3097 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3099 first
+= pos(qp
->dim
, type
);
3101 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3104 for (i
= 0; i
< n
; ++i
)
3105 ups
[i
] = subs
[i
]->upoly
;
3107 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3116 isl_qpolynomial_free(qp
);
3120 /* Extend "bset" with extra set dimensions for each integer division
3121 * in "qp" and then call "fn" with the extended bset and the polynomial
3122 * that results from replacing each of the integer divisions by the
3123 * corresponding extra set dimension.
3125 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3126 __isl_keep isl_basic_set
*bset
,
3127 int (*fn
)(__isl_take isl_basic_set
*bset
,
3128 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3132 isl_qpolynomial
*poly
;
3136 if (qp
->div
->n_row
== 0)
3137 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3140 div
= isl_mat_copy(qp
->div
);
3141 dim
= isl_dim_copy(qp
->dim
);
3142 dim
= isl_dim_add(dim
, isl_dim_set
, qp
->div
->n_row
);
3143 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3144 bset
= isl_basic_set_copy(bset
);
3145 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3146 bset
= add_div_constraints(bset
, div
);
3148 return fn(bset
, poly
, user
);
3153 /* Return total degree in variables first (inclusive) up to last (exclusive).
3155 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3159 struct isl_upoly_rec
*rec
;
3163 if (isl_upoly_is_zero(up
))
3165 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3168 rec
= isl_upoly_as_rec(up
);
3172 for (i
= 0; i
< rec
->n
; ++i
) {
3175 if (isl_upoly_is_zero(rec
->p
[i
]))
3177 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3187 /* Return total degree in set variables.
3189 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3197 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3198 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3199 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3202 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3203 unsigned pos
, int deg
)
3206 struct isl_upoly_rec
*rec
;
3211 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3213 return isl_upoly_copy(up
);
3215 return isl_upoly_zero(up
->ctx
);
3218 rec
= isl_upoly_as_rec(up
);
3222 if (up
->var
== pos
) {
3224 return isl_upoly_copy(rec
->p
[deg
]);
3226 return isl_upoly_zero(up
->ctx
);
3229 up
= isl_upoly_copy(up
);
3230 up
= isl_upoly_cow(up
);
3231 rec
= isl_upoly_as_rec(up
);
3235 for (i
= 0; i
< rec
->n
; ++i
) {
3236 struct isl_upoly
*t
;
3237 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3240 isl_upoly_free(rec
->p
[i
]);
3250 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3252 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3253 __isl_keep isl_qpolynomial
*qp
,
3254 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3257 struct isl_upoly
*up
;
3263 isl_assert(qp
->div
->ctx
, t_pos
< isl_dim_size(qp
->dim
, type
),
3266 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3267 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3269 c
= isl_qpolynomial_alloc(isl_dim_copy(qp
->dim
), qp
->div
->n_row
, up
);
3272 isl_mat_free(c
->div
);
3273 c
->div
= isl_mat_copy(qp
->div
);
3278 isl_qpolynomial_free(c
);
3282 /* Homogenize the polynomial in the variables first (inclusive) up to
3283 * last (exclusive) by inserting powers of variable first.
3284 * Variable first is assumed not to appear in the input.
3286 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3287 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3288 int first
, int last
)
3291 struct isl_upoly_rec
*rec
;
3295 if (isl_upoly_is_zero(up
))
3299 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3300 struct isl_upoly
*hom
;
3302 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3305 rec
= isl_upoly_as_rec(hom
);
3306 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3311 up
= isl_upoly_cow(up
);
3312 rec
= isl_upoly_as_rec(up
);
3316 for (i
= 0; i
< rec
->n
; ++i
) {
3317 if (isl_upoly_is_zero(rec
->p
[i
]))
3319 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3320 up
->var
< last
? deg
+ i
: i
, target
,
3332 /* Homogenize the polynomial in the set variables by introducing
3333 * powers of an extra set variable at position 0.
3335 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3336 __isl_take isl_qpolynomial
*poly
)
3340 int deg
= isl_qpolynomial_degree(poly
);
3345 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_set
, 0, 1);
3346 poly
= isl_qpolynomial_cow(poly
);
3350 ovar
= isl_dim_offset(poly
->dim
, isl_dim_set
);
3351 nvar
= isl_dim_size(poly
->dim
, isl_dim_set
);
3352 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3359 isl_qpolynomial_free(poly
);
3363 __isl_give isl_term
*isl_term_alloc(__isl_take isl_dim
*dim
,
3364 __isl_take isl_mat
*div
)
3372 n
= isl_dim_total(dim
) + div
->n_row
;
3374 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3375 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3382 isl_int_init(term
->n
);
3383 isl_int_init(term
->d
);
3392 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3401 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3410 total
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3412 dup
= isl_term_alloc(isl_dim_copy(term
->dim
), isl_mat_copy(term
->div
));
3416 isl_int_set(dup
->n
, term
->n
);
3417 isl_int_set(dup
->d
, term
->d
);
3419 for (i
= 0; i
< total
; ++i
)
3420 dup
->pow
[i
] = term
->pow
[i
];
3425 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3433 return isl_term_dup(term
);
3436 void isl_term_free(__isl_take isl_term
*term
)
3441 if (--term
->ref
> 0)
3444 isl_dim_free(term
->dim
);
3445 isl_mat_free(term
->div
);
3446 isl_int_clear(term
->n
);
3447 isl_int_clear(term
->d
);
3451 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3459 case isl_dim_out
: return isl_dim_size(term
->dim
, type
);
3460 case isl_dim_div
: return term
->div
->n_row
;
3461 case isl_dim_all
: return isl_dim_total(term
->dim
) + term
->div
->n_row
;
3466 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3468 return term
? term
->dim
->ctx
: NULL
;
3471 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3475 isl_int_set(*n
, term
->n
);
3478 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3482 isl_int_set(*d
, term
->d
);
3485 int isl_term_get_exp(__isl_keep isl_term
*term
,
3486 enum isl_dim_type type
, unsigned pos
)
3491 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3493 if (type
>= isl_dim_set
)
3494 pos
+= isl_dim_size(term
->dim
, isl_dim_param
);
3495 if (type
>= isl_dim_div
)
3496 pos
+= isl_dim_size(term
->dim
, isl_dim_set
);
3498 return term
->pow
[pos
];
3501 __isl_give isl_div
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3503 isl_basic_map
*bmap
;
3510 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3513 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3514 /* No nested divs for now */
3515 isl_assert(term
->dim
->ctx
,
3516 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3517 term
->div
->n_row
) == -1,
3520 bmap
= isl_basic_map_alloc_dim(isl_dim_copy(term
->dim
), 1, 0, 0);
3521 if ((k
= isl_basic_map_alloc_div(bmap
)) < 0)
3524 isl_seq_cpy(bmap
->div
[k
], term
->div
->row
[pos
], 2 + total
);
3526 return isl_basic_map_div(bmap
, k
);
3528 isl_basic_map_free(bmap
);
3532 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3533 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3534 __isl_take isl_term
*term
, void *user
)
3537 struct isl_upoly_rec
*rec
;
3542 if (isl_upoly_is_zero(up
))
3545 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3546 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3547 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3549 if (isl_upoly_is_cst(up
)) {
3550 struct isl_upoly_cst
*cst
;
3551 cst
= isl_upoly_as_cst(up
);
3554 term
= isl_term_cow(term
);
3557 isl_int_set(term
->n
, cst
->n
);
3558 isl_int_set(term
->d
, cst
->d
);
3559 if (fn(isl_term_copy(term
), user
) < 0)
3564 rec
= isl_upoly_as_rec(up
);
3568 for (i
= 0; i
< rec
->n
; ++i
) {
3569 term
= isl_term_cow(term
);
3572 term
->pow
[up
->var
] = i
;
3573 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3577 term
->pow
[up
->var
] = 0;
3581 isl_term_free(term
);
3585 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3586 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3593 term
= isl_term_alloc(isl_dim_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3597 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3599 isl_term_free(term
);
3601 return term
? 0 : -1;
3604 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3606 struct isl_upoly
*up
;
3607 isl_qpolynomial
*qp
;
3613 n
= isl_dim_total(term
->dim
) + term
->div
->n_row
;
3615 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3616 for (i
= 0; i
< n
; ++i
) {
3619 up
= isl_upoly_mul(up
,
3620 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3623 qp
= isl_qpolynomial_alloc(isl_dim_copy(term
->dim
), term
->div
->n_row
, up
);
3626 isl_mat_free(qp
->div
);
3627 qp
->div
= isl_mat_copy(term
->div
);
3631 isl_term_free(term
);
3634 isl_qpolynomial_free(qp
);
3635 isl_term_free(term
);
3639 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3640 __isl_take isl_dim
*dim
)
3649 if (isl_dim_equal(qp
->dim
, dim
)) {
3654 qp
= isl_qpolynomial_cow(qp
);
3658 extra
= isl_dim_size(dim
, isl_dim_set
) -
3659 isl_dim_size(qp
->dim
, isl_dim_set
);
3660 total
= isl_dim_total(qp
->dim
);
3661 if (qp
->div
->n_row
) {
3664 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3667 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3669 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3674 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3677 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3678 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3680 isl_dim_free(qp
->dim
);
3686 isl_qpolynomial_free(qp
);
3690 /* For each parameter or variable that does not appear in qp,
3691 * first eliminate the variable from all constraints and then set it to zero.
3693 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3694 __isl_keep isl_qpolynomial
*qp
)
3705 d
= isl_dim_total(set
->dim
);
3706 active
= isl_calloc_array(set
->ctx
, int, d
);
3707 if (set_active(qp
, active
) < 0)
3710 for (i
= 0; i
< d
; ++i
)
3719 nparam
= isl_dim_size(set
->dim
, isl_dim_param
);
3720 nvar
= isl_dim_size(set
->dim
, isl_dim_set
);
3721 for (i
= 0; i
< nparam
; ++i
) {
3724 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3725 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3727 for (i
= 0; i
< nvar
; ++i
) {
3728 if (active
[nparam
+ i
])
3730 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3731 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3743 struct isl_opt_data
{
3744 isl_qpolynomial
*qp
;
3746 isl_qpolynomial
*opt
;
3750 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3752 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3753 isl_qpolynomial
*val
;
3755 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3759 } else if (data
->max
) {
3760 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3762 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3768 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3769 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3771 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3776 if (isl_upoly_is_cst(qp
->upoly
)) {
3781 set
= fix_inactive(set
, qp
);
3784 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3788 data
.opt
= isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp
));
3791 isl_qpolynomial_free(qp
);
3795 isl_qpolynomial_free(qp
);
3796 isl_qpolynomial_free(data
.opt
);
3800 __isl_give isl_qpolynomial
*isl_qpolynomial_morph(__isl_take isl_qpolynomial
*qp
,
3801 __isl_take isl_morph
*morph
)
3806 struct isl_upoly
**subs
;
3809 qp
= isl_qpolynomial_cow(qp
);
3814 isl_assert(ctx
, isl_dim_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3816 n_sub
= morph
->inv
->n_row
- 1;
3817 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3818 n_sub
+= qp
->div
->n_row
;
3819 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3823 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3824 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3825 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3826 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3827 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3828 subs
[morph
->inv
->n_row
- 1 + i
] =
3829 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3831 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3833 for (i
= 0; i
< n_sub
; ++i
)
3834 isl_upoly_free(subs
[i
]);
3837 mat
= isl_mat_diagonal(isl_mat_identity(ctx
, 1), isl_mat_copy(morph
->inv
));
3838 mat
= isl_mat_diagonal(mat
, isl_mat_identity(ctx
, qp
->div
->n_row
));
3839 qp
->div
= isl_mat_product(qp
->div
, mat
);
3840 isl_dim_free(qp
->dim
);
3841 qp
->dim
= isl_dim_copy(morph
->ran
->dim
);
3843 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3846 isl_morph_free(morph
);
3850 isl_qpolynomial_free(qp
);
3851 isl_morph_free(morph
);
3855 static int neg_entry(void **entry
, void *user
)
3857 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3859 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3861 return *pwqp
? 0 : -1;
3864 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3865 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3867 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3871 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3872 &neg_entry
, NULL
) < 0)
3877 isl_union_pw_qpolynomial_free(upwqp
);
3881 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3882 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3883 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3885 return isl_union_pw_qpolynomial_add(upwqp1
,
3886 isl_union_pw_qpolynomial_neg(upwqp2
));
3889 static int mul_entry(void **entry
, void *user
)
3891 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3893 struct isl_hash_table_entry
*entry2
;
3894 isl_pw_qpolynomial
*pwpq
= *entry
;
3897 hash
= isl_dim_get_hash(pwpq
->dim
);
3898 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3899 hash
, &has_dim
, pwpq
->dim
, 0);
3903 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3904 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3905 isl_pw_qpolynomial_copy(entry2
->data
));
3907 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3909 isl_pw_qpolynomial_free(pwpq
);
3913 isl_pw_qpolynomial_free(pwpq
);
3917 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3922 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3923 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3924 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3926 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
3929 /* Reorder the columns of the given div definitions according to the
3932 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3933 __isl_take isl_reordering
*r
)
3942 extra
= isl_dim_total(r
->dim
) + div
->n_row
- r
->len
;
3943 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3947 for (i
= 0; i
< div
->n_row
; ++i
) {
3948 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3949 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3950 for (j
= 0; j
< r
->len
; ++j
)
3951 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3952 div
->row
[i
][2 + j
]);
3955 isl_reordering_free(r
);
3959 isl_reordering_free(r
);
3964 /* Reorder the dimension of "qp" according to the given reordering.
3966 __isl_give isl_qpolynomial
*isl_qpolynomial_realign(
3967 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
3969 qp
= isl_qpolynomial_cow(qp
);
3973 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
3977 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
3981 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
3985 qp
= isl_qpolynomial_reset_dim(qp
, isl_dim_copy(r
->dim
));
3987 isl_reordering_free(r
);
3990 isl_qpolynomial_free(qp
);
3991 isl_reordering_free(r
);
3995 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
3996 __isl_take isl_qpolynomial
*qp
, __isl_take isl_dim
*model
)
4001 if (!isl_dim_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
4002 isl_reordering
*exp
;
4004 model
= isl_dim_drop(model
, isl_dim_in
,
4005 0, isl_dim_size(model
, isl_dim_in
));
4006 model
= isl_dim_drop(model
, isl_dim_out
,
4007 0, isl_dim_size(model
, isl_dim_out
));
4008 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4009 exp
= isl_reordering_extend_dim(exp
,
4010 isl_qpolynomial_get_dim(qp
));
4011 qp
= isl_qpolynomial_realign(qp
, exp
);
4014 isl_dim_free(model
);
4017 isl_dim_free(model
);
4018 isl_qpolynomial_free(qp
);
4022 struct isl_split_periods_data
{
4024 isl_pw_qpolynomial
*res
;
4027 /* Create a slice where the integer division "div" has the fixed value "v".
4028 * In particular, if "div" refers to floor(f/m), then create a slice
4030 * m v <= f <= m v + (m - 1)
4035 * -f + m v + (m - 1) >= 0
4037 static __isl_give isl_set
*set_div_slice(__isl_take isl_dim
*dim
,
4038 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4041 isl_basic_set
*bset
= NULL
;
4047 total
= isl_dim_total(dim
);
4048 bset
= isl_basic_set_alloc_dim(isl_dim_copy(dim
), 0, 0, 2);
4050 k
= isl_basic_set_alloc_inequality(bset
);
4053 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4054 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4056 k
= isl_basic_set_alloc_inequality(bset
);
4059 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4060 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4061 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4062 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4065 return isl_set_from_basic_set(bset
);
4067 isl_basic_set_free(bset
);
4072 static int split_periods(__isl_take isl_set
*set
,
4073 __isl_take isl_qpolynomial
*qp
, void *user
);
4075 /* Create a slice of the domain "set" such that integer division "div"
4076 * has the fixed value "v" and add the results to data->res,
4077 * replacing the integer division by "v" in "qp".
4079 static int set_div(__isl_take isl_set
*set
,
4080 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4081 struct isl_split_periods_data
*data
)
4086 struct isl_upoly
*cst
;
4088 slice
= set_div_slice(isl_set_get_dim(set
), qp
, div
, v
);
4089 set
= isl_set_intersect(set
, slice
);
4094 total
= isl_dim_total(qp
->dim
);
4096 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4097 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4099 isl_int_addmul(qp
->div
->row
[i
][1],
4100 qp
->div
->row
[i
][2 + total
+ div
], v
);
4101 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4104 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4105 qp
= substitute_div(qp
, div
, cst
);
4107 return split_periods(set
, qp
, data
);
4110 isl_qpolynomial_free(qp
);
4114 /* Split the domain "set" such that integer division "div"
4115 * has a fixed value (ranging from "min" to "max") on each slice
4116 * and add the results to data->res.
4118 static int split_div(__isl_take isl_set
*set
,
4119 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4120 struct isl_split_periods_data
*data
)
4122 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4123 isl_set
*set_i
= isl_set_copy(set
);
4124 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4126 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4130 isl_qpolynomial_free(qp
);
4134 isl_qpolynomial_free(qp
);
4138 /* If "qp" refers to any integer division
4139 * that can only attain "max_periods" distinct values on "set"
4140 * then split the domain along those distinct values.
4141 * Add the results (or the original if no splitting occurs)
4144 static int split_periods(__isl_take isl_set
*set
,
4145 __isl_take isl_qpolynomial
*qp
, void *user
)
4148 isl_pw_qpolynomial
*pwqp
;
4149 struct isl_split_periods_data
*data
;
4154 data
= (struct isl_split_periods_data
*)user
;
4159 if (qp
->div
->n_row
== 0) {
4160 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4161 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4167 total
= isl_dim_total(qp
->dim
);
4168 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4169 enum isl_lp_result lp_res
;
4171 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4172 qp
->div
->n_row
) != -1)
4175 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4176 set
->ctx
->one
, &min
, NULL
, NULL
);
4177 if (lp_res
== isl_lp_error
)
4179 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4181 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4183 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4184 set
->ctx
->one
, &max
, NULL
, NULL
);
4185 if (lp_res
== isl_lp_error
)
4187 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4189 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4191 isl_int_sub(max
, max
, min
);
4192 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4193 isl_int_add(max
, max
, min
);
4198 if (i
< qp
->div
->n_row
) {
4199 r
= split_div(set
, qp
, i
, min
, max
, data
);
4201 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4202 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4214 isl_qpolynomial_free(qp
);
4218 /* If any quasi-polynomial in pwqp refers to any integer division
4219 * that can only attain "max_periods" distinct values on its domain
4220 * then split the domain along those distinct values.
4222 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4223 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4225 struct isl_split_periods_data data
;
4227 data
.max_periods
= max_periods
;
4228 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4230 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4233 isl_pw_qpolynomial_free(pwqp
);
4237 isl_pw_qpolynomial_free(data
.res
);
4238 isl_pw_qpolynomial_free(pwqp
);
4242 /* Construct a piecewise quasipolynomial that is constant on the given
4243 * domain. In particular, it is
4246 * infinity if cst == -1
4248 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4249 __isl_take isl_basic_set
*bset
, int cst
)
4252 isl_qpolynomial
*qp
;
4257 bset
= isl_basic_map_domain(isl_basic_map_from_range(bset
));
4258 dim
= isl_basic_set_get_dim(bset
);
4260 qp
= isl_qpolynomial_infty(dim
);
4262 qp
= isl_qpolynomial_zero(dim
);
4264 qp
= isl_qpolynomial_one(dim
);
4265 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4268 /* Factor bset, call fn on each of the factors and return the product.
4270 * If no factors can be found, simply call fn on the input.
4271 * Otherwise, construct the factors based on the factorizer,
4272 * call fn on each factor and compute the product.
4274 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4275 __isl_take isl_basic_set
*bset
,
4276 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4282 isl_qpolynomial
*qp
;
4283 isl_pw_qpolynomial
*pwqp
;
4287 f
= isl_basic_set_factorizer(bset
);
4290 if (f
->n_group
== 0) {
4291 isl_factorizer_free(f
);
4295 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4296 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4298 dim
= isl_basic_set_get_dim(bset
);
4299 dim
= isl_dim_domain(dim
);
4300 set
= isl_set_universe(isl_dim_copy(dim
));
4301 qp
= isl_qpolynomial_one(dim
);
4302 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4304 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4306 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4307 isl_basic_set
*bset_i
;
4308 isl_pw_qpolynomial
*pwqp_i
;
4310 bset_i
= isl_basic_set_copy(bset
);
4311 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4312 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4313 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4315 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4316 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4317 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4319 pwqp_i
= fn(bset_i
);
4320 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4325 isl_basic_set_free(bset
);
4326 isl_factorizer_free(f
);
4330 isl_basic_set_free(bset
);
4334 /* Factor bset, call fn on each of the factors and return the product.
4335 * The function is assumed to evaluate to zero on empty domains,
4336 * to one on zero-dimensional domains and to infinity on unbounded domains
4337 * and will not be called explicitly on zero-dimensional or unbounded domains.
4339 * We first check for some special cases and remove all equalities.
4340 * Then we hand over control to compressed_multiplicative_call.
4342 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4343 __isl_take isl_basic_set
*bset
,
4344 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4348 isl_pw_qpolynomial
*pwqp
;
4349 unsigned orig_nvar
, final_nvar
;
4354 if (isl_basic_set_plain_is_empty(bset
))
4355 return constant_on_domain(bset
, 0);
4357 orig_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4360 return constant_on_domain(bset
, 1);
4362 bounded
= isl_basic_set_is_bounded(bset
);
4366 return constant_on_domain(bset
, -1);
4368 if (bset
->n_eq
== 0)
4369 return compressed_multiplicative_call(bset
, fn
);
4371 morph
= isl_basic_set_full_compression(bset
);
4372 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4374 final_nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4376 pwqp
= compressed_multiplicative_call(bset
, fn
);
4378 morph
= isl_morph_remove_dom_dims(morph
, isl_dim_set
, 0, orig_nvar
);
4379 morph
= isl_morph_remove_ran_dims(morph
, isl_dim_set
, 0, final_nvar
);
4380 morph
= isl_morph_inverse(morph
);
4382 pwqp
= isl_pw_qpolynomial_morph(pwqp
, morph
);
4386 isl_basic_set_free(bset
);
4390 /* Drop all floors in "qp", turning each integer division [a/m] into
4391 * a rational division a/m. If "down" is set, then the integer division
4392 * is replaces by (a-(m-1))/m instead.
4394 static __isl_give isl_qpolynomial
*qp_drop_floors(
4395 __isl_take isl_qpolynomial
*qp
, int down
)
4398 struct isl_upoly
*s
;
4402 if (qp
->div
->n_row
== 0)
4405 qp
= isl_qpolynomial_cow(qp
);
4409 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4411 isl_int_sub(qp
->div
->row
[i
][1],
4412 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4413 isl_int_add_ui(qp
->div
->row
[i
][1],
4414 qp
->div
->row
[i
][1], 1);
4416 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4417 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4418 qp
= substitute_div(qp
, i
, s
);
4426 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4427 * a rational division a/m.
4429 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4430 __isl_take isl_pw_qpolynomial
*pwqp
)
4437 if (isl_pw_qpolynomial_is_zero(pwqp
))
4440 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4444 for (i
= 0; i
< pwqp
->n
; ++i
) {
4445 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4452 isl_pw_qpolynomial_free(pwqp
);
4456 /* Adjust all the integer divisions in "qp" such that they are at least
4457 * one over the given orthant (identified by "signs"). This ensures
4458 * that they will still be non-negative even after subtracting (m-1)/m.
4460 * In particular, f is replaced by f' + v, changing f = [a/m]
4461 * to f' = [(a - m v)/m].
4462 * If the constant term k in a is smaller than m,
4463 * the constant term of v is set to floor(k/m) - 1.
4464 * For any other term, if the coefficient c and the variable x have
4465 * the same sign, then no changes are needed.
4466 * Otherwise, if the variable is positive (and c is negative),
4467 * then the coefficient of x in v is set to floor(c/m).
4468 * If the variable is negative (and c is positive),
4469 * then the coefficient of x in v is set to ceil(c/m).
4471 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4477 struct isl_upoly
*s
;
4479 qp
= isl_qpolynomial_cow(qp
);
4482 qp
->div
= isl_mat_cow(qp
->div
);
4486 total
= isl_dim_total(qp
->dim
);
4487 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4489 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4490 isl_int
*row
= qp
->div
->row
[i
];
4494 if (isl_int_lt(row
[1], row
[0])) {
4495 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4496 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4497 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4499 for (j
= 0; j
< total
; ++j
) {
4500 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4503 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4505 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4506 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4508 for (j
= 0; j
< i
; ++j
) {
4509 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4511 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4512 row
[2 + total
+ j
], row
[0]);
4513 isl_int_submul(row
[2 + total
+ j
],
4514 row
[0], v
->el
[1 + total
+ j
]);
4516 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4517 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4519 isl_seq_combine(qp
->div
->row
[j
] + 1,
4520 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4521 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4523 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4524 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4525 qp
->div
->ctx
->one
, v
->size
);
4526 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4536 isl_qpolynomial_free(qp
);
4540 struct isl_to_poly_data
{
4542 isl_pw_qpolynomial
*res
;
4543 isl_qpolynomial
*qp
;
4546 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4547 * We first make all integer divisions positive and then split the
4548 * quasipolynomials into terms with sign data->sign (the direction
4549 * of the requested approximation) and terms with the opposite sign.
4550 * In the first set of terms, each integer division [a/m] is
4551 * overapproximated by a/m, while in the second it is underapproximated
4554 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4557 struct isl_to_poly_data
*data
= user
;
4558 isl_pw_qpolynomial
*t
;
4559 isl_qpolynomial
*qp
, *up
, *down
;
4561 qp
= isl_qpolynomial_copy(data
->qp
);
4562 qp
= make_divs_pos(qp
, signs
);
4564 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4565 up
= qp_drop_floors(up
, 0);
4566 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4567 down
= qp_drop_floors(down
, 1);
4569 isl_qpolynomial_free(qp
);
4570 qp
= isl_qpolynomial_add(up
, down
);
4572 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4573 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4578 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4579 * the polynomial will be an overapproximation. If "sign" is negative,
4580 * it will be an underapproximation. If "sign" is zero, the approximation
4581 * will lie somewhere in between.
4583 * In particular, is sign == 0, we simply drop the floors, turning
4584 * the integer divisions into rational divisions.
4585 * Otherwise, we split the domains into orthants, make all integer divisions
4586 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4587 * depending on the requested sign and the sign of the term in which
4588 * the integer division appears.
4590 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4591 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4594 struct isl_to_poly_data data
;
4597 return pwqp_drop_floors(pwqp
);
4603 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp
));
4605 for (i
= 0; i
< pwqp
->n
; ++i
) {
4606 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4607 isl_pw_qpolynomial
*t
;
4608 t
= isl_pw_qpolynomial_alloc(
4609 isl_set_copy(pwqp
->p
[i
].set
),
4610 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4611 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4614 data
.qp
= pwqp
->p
[i
].qp
;
4615 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4616 &to_polynomial_on_orthant
, &data
) < 0)
4620 isl_pw_qpolynomial_free(pwqp
);
4624 isl_pw_qpolynomial_free(pwqp
);
4625 isl_pw_qpolynomial_free(data
.res
);
4629 static int poly_entry(void **entry
, void *user
)
4632 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4634 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4636 return *pwqp
? 0 : -1;
4639 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4640 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4642 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4646 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4647 &poly_entry
, &sign
) < 0)
4652 isl_union_pw_qpolynomial_free(upwqp
);
4656 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4657 __isl_take isl_qpolynomial
*qp
)
4661 isl_vec
*aff
= NULL
;
4662 isl_basic_map
*bmap
= NULL
;
4668 if (!isl_upoly_is_affine(qp
->upoly
))
4669 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4670 "input quasi-polynomial not affine", goto error
);
4671 aff
= isl_qpolynomial_extract_affine(qp
);
4674 dim
= isl_qpolynomial_get_dim(qp
);
4675 dim
= isl_dim_from_domain(dim
);
4676 pos
= 1 + isl_dim_offset(dim
, isl_dim_out
);
4677 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
4678 n_div
= qp
->div
->n_row
;
4679 bmap
= isl_basic_map_alloc_dim(dim
, n_div
, 1, 2 * n_div
);
4681 for (i
= 0; i
< n_div
; ++i
) {
4682 k
= isl_basic_map_alloc_div(bmap
);
4685 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4686 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4687 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4690 k
= isl_basic_map_alloc_equality(bmap
);
4693 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4694 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4695 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4698 isl_qpolynomial_free(qp
);
4699 bmap
= isl_basic_map_finalize(bmap
);
4703 isl_qpolynomial_free(qp
);
4704 isl_basic_map_free(bmap
);